NASA Astrophysics Data System (ADS)
Gupta, Tanmay; Kumar, Manoj
2017-06-01
Usually, the design moments in the simply supported bridges are obtained as the sum of moments due to dead loads and live load where the live load moments are calculated using the rolling load concept neglecting the effect of dead loads. For the simply supported bridges, uniformly distributed dead load produces maximum moment at mid-span while the absolute maximum bending moment due to multi-axel vehicles occur under a wheel which usually do not lie at mid-span. Since, the location of absolute maximum bending moment due to multi-axel vehicle do not coincide with the location of maximum moment due to dead loads occurring at mid-span, the design moment may not be obtained by simply superimposing the effect of dead load and live load. Moreover, in case of Class-A and Class-70R wheeled vehicular live loads, which consists of several axels, the number of axels to be considered over the bridge of given span and their location is tedious to find out and needs several trials. The aim of the present study is to find the number of wheels for Class-A and Class-70R wheeled vehicles and their precise location to produce absolute maximum moment in the bridge considering the effect of dead loads and impact factor. Finally, in order to enable the designers, the design moments due to Class-70R wheeled and Class-A loading have been presented in tabular form for the spans from 10 to 50 m.
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
1987-01-01
Buckling loads of thick-walled, orthotropic, simply-supported right circular cylinders are predicted using a new higher-order transverse shear deformation theory. The higher-order theory shows that, by more accurately accounting for transverse shear deformation effects, the predicted buckling load may be reduced by as much as 80 percent compared to predictions based on conventional transverse shear deformation theory. A parametric study of the effect of ply orientation on the buckling load of axially compressed cylinders indicates that laminates containing 0 deg plies are the most sensitive to transverse shear deformation effects. Interaction curves for buckling of cylinders with axial compressive and external pressure loadings indicate that buckling loads due to external pressure loadings are much less sensitive to transverse shear deformation effects than those due to axial compressive loadings.
NASA Astrophysics Data System (ADS)
Scherneck, Hans-Georg; Haas, Rüdiger
We show the influence of horizontal displacements due to ocean tide loading on the determination of polar motion and UT1 (PMU) on the daily and subdaily timescale. So called ‘virtual PMU variations’ due to modelling errors of ocean tide loading are predicted for geodetic Very Long Baseline Interferometry (VLBI) networks. This leads to errors of subdaily determination of PMU. The predicted effects are confirmed by the analysis of geodetic VLBI observations.
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
1987-01-01
Buckling loads of thick-walled orthotropic and anisotropic simply supported circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of buckling loads predicted by the conventional first-order transverse-shear deformation theory and the higher-order theory show that the additional allowance for transverse shear deformation has a negligible effect on the predicted buckling loads of medium-thick metallic isotropic cylinders. However, the higher-order theory predicts buckling loads which are significantly lower than those predicted by the first-order transverse-shear deformation theory for certain short, thick-walled cylinders which have low through-the-thickness shear moduli. A parametric study of the effects of ply orientation on the buckling load of axially compressed cylinders indicates that laminates containing 45 degree plies are most sensitive to transverse-shear deformation effects. Interaction curves for buckling loads of cylinders subjected to axial compressive and external pressure loadings indicate that buckling loads due to external pressure loadings are as sensitive to transverse-shear deformation effects as buckling loads due to axial compressive loadings. The effects of anisotropy are important over a much wider range of cylinder geometries than the effects of transverse shear deformation.
The influence of operational and environmental loads on the process of assessing damages in beams
NASA Astrophysics Data System (ADS)
Furdui, H.; Muntean, F.; Minda, A. A.; Praisach, Z. I.; Gillich, N.
2015-07-01
Damage detection methods based on vibration analysis make use of the modal parameter changes. Natural frequencies are the features that can be acquired most simply and inexpensively. But this parameter is influenced by environmental conditions, e.g. temperature and operational loads as additional masses or axial loads induced by restraint displacements. The effect of these factors is not completely known, but in the numerous actual research it is considered that they affect negatively the damage assessment process. This is justified by the small frequency changes occurring due to damage, which can be masked by the frequency shifts due to external loads. The paper intends to clarify the effect of external loads on the natural frequencies of beams and truss elements, and to show in which manner the damage detection process is affected by these loads. The finite element analysis, performed on diverse structures for a large range of temperature values, has shown that the temperature itself has a very limited effect on the frequency changes. Thus, axial forces resulted due to obstructed displacements can influence more substantially the frequency changes. These facts are demonstrated by experimental and theoretical studies. Finally, we succeed to adapt a prior contrived relation providing the frequency changes due to damage in order to fit the case of known external loads. Whereas a new baseline for damage detection was found, considering the effect of temperature and external loads, this process can be performed without other complication.
75 FR 1363 - Integrated System Power Rates
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-11
... service load immediately when disturbance conditions are experienced due to a sudden loss of generation or... conditions are experienced due to a sudden loss of generation or load. ``Supplemental Operating Reserve... Secretary has approved and placed into effect on an [[Page 1364
Uni-Directional Cell Stretching Device
NASA Technical Reports Server (NTRS)
Feeback, Daniel L. (Inventor); Clarke, Mark S. F. (Inventor)
2000-01-01
The present invention relates to an apparatus and method for applying various degrees of linear, mechanical loads on mammalian tissues, and in particular, for effecting linear stretching of tissue and simulating changes in hydrostatic pressures encountered during tissue contraction in vivo. The apparatus is useful for the study of mechanical loading in human tissue, and specifically, for permitting the evaluation of the effects of mechanical loading of skeletal or cardiac tissue and of the effects of removal of mechanical loading due to inactivity or the like, and the subsequent reapplication of load to these tissues.
NASA Astrophysics Data System (ADS)
Khanadeev, Vitaly; Khlebtsov, Boris; Packirisamy, Gopinath; Khlebtsov, Nikolai
2017-03-01
Polymeric nanoparticles (NPs) are widely used for drug delivery applications due to high biodegradability, low toxicity and high loading capacity. The focus of this study is the development of photosensitizer Photosens (PS) loaded albumin NPs for efficient photodynamic therapy (PDT). To fabricate PS-loaded bovine serum albumin nanoparticles (BSA-PS NPs), we used a coacervation method with glutaraldehyde followed by passive loading of PS. Successful loading of PS was confirmed by appearance of characteristic peak in absorption spectrum which allows to determine the PS loading in BSA NPs. The synthesized BSA-PS NPs demonstrated low toxicity to HeLa cells at therapeutic concentrations of loaded PS. Compared to free PS solution, the synthesized BSA-PS NPs generated the singlet oxygen more effectively under laser irradiation at 660 nm. In addition, due to presence of various chemical groups on the surface of BSA-PS NPs, they are capable to adsorb on cell surface and accumulate in cells due to cellular uptake mechanisms. Owing to combination of PD and cell uptake advantages, BSA-PS NPs demonstrated higher efficacy of photodynamic damage to cancer cells as compared to free PS at equivalent concentrations. These results suggest that non-targeted BSA-PS NPs with high PD activity and low-fabrication costs of are promising candidates for transfer to PD clinic treatments.
Training and shape retention in conducting polymer artificial muscles
NASA Astrophysics Data System (ADS)
Tominaga, Kazuo; Hashimoto, Hikaru; Takashima, Wataru; Kaneto, Keiichi
2011-12-01
Electrochemomechanical deformation (ECMD) of the conducting polymer polyaniline film is studied to investigate the behaviour of actuation under tensile loads. The ECMD was induced by the strains due to the insertion of ionic species (cyclic strain) and a creep due to applied loads during the redox cycle. The cyclic strain was enhanced by the experience of high tensile loads, indicating a training effect. The training effect was explained by the enhanced electrochemical activity of the film. The creep was recovered by removal of the tensile load and several electrochemical cycles. This fact indicates that the creep results from the one-dimensional anisotropic deformation, and is retained (shape retention) by the ionic crosslink. The recovery of creep results from the elastic relaxation of the polymer conformation.
NASA Astrophysics Data System (ADS)
Vasanth, K. R.; Hanumagowda, B. N.; Santhosh Kumar, J.
2018-04-01
Squeeze film investigations focus upon film pressure, load bearing quantity and the minimum thickness of film. The combined effect of pressure viscous dependent and non- Newtonian couple stress in porous annular plate is studied. The modified equations of one dimensional pressure, load bearing quantity, non dimensional squeeze time are obtained. The conclusions obtained in the study are found to be in very good agreement compared to the previous results which are published. The load carrying capacity is increased due to the variation in the pressure dependent viscosity and also due to the couple stress effect. Finally this results in change in the squeeze film timings.
77 FR 2521 - Integrated System Power Rates
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-18
... experienced due to a sudden loss of generation or load. 1.1.5. Supplemental Operating Reserve Service provides... experienced due to a sudden loss of generation or load. 1.1.5. Supplemental Operating Reserve Service provides... Secretary has approved and placed into effect on an interim basis Rate Order No. SWPA-63, which increases...
Maximum von Mises Stress in the Loading Environment of Mass Acceleration Curve
NASA Technical Reports Server (NTRS)
Glaser, Robert J.; Chen, Long Y.
2006-01-01
Method for calculating stress due to acceleration loading: 1) Part has been designed by FEA and hand calculation in one critical loading direction judged by the analyst; 2) Maximum stress can be due to loading in another direction; 3) Analysis procedure to be presented determines: a) The maximum Mises stress at any point; and b) The direction of maximum loading associated with the "stress". Concept of Mass Acceleration Curves (MAC): 1) Developed by JPL to perform preliminary structural sizing (i.e. Mariners, Voyager, Galileo, Pathfinder, MER,...MSL); 2) Acceleration of physical masses are bounded by a curve; 3) G-levels of vibro-acoustic and transient environments; 4) Convergent process before the couple loads cycle; and 5) Semi-empirical method to effectively bound the loads, not a simulation of the actual response.
On thermal edge effects in composite laminates
NASA Technical Reports Server (NTRS)
Herakovich, C. T.
1976-01-01
Results are presented for a finite-element investigation of the combined influence of edge effects due to mechanical and thermal mismatch in composite laminates with free edges. Laminates of unidirectional boron/epoxy symmetrically bonded to sheets of aluminum and titanium were studied. It is shown that interlaminar thermal stresses may be more significant than the interlaminar stresses due to loading only. In addition, the stresses due to thermal mismatch may be of the same sign as those due to Poisson's mismatch or they may be of opposite sign depending upon material properties, stacking sequence, and direction of loading. The paper concludes with a brief discussion of thermal stresses in all-composite laminates.
A finite element formulation with combined loadings for shear dominant RC structures.
DOT National Transportation Integrated Search
2008-08-01
Inelastic failure of reinforced concrete (RC) structures under seismic loadings can be due either to loss of flexural, shear or bond : capacity. Specifically, the effect of combined loadings can lead to a complex failure mechanism that plays a vital ...
Moerman, Kevin M; van Vijven, Marc; Solis, Leandro R; van Haaften, Eline E; Loenen, Arjan C Y; Mushahwar, Vivian K; Oomens, Cees W J
2017-04-01
Pressure ulcers are a type of local soft tissue injury due to sustained mechanical loading and remain a common issue in patient care. People with spinal cord injury (SCI) are especially at risk of pressure ulcers due to impaired mobility and sensory perception. The development of load improving support structures relies on realistic tissue load evaluation e.g. using finite element analysis (FEA). FEA requires realistic subject-specific mechanical properties and geometries. This study focuses on the effect of geometry. MRI is used for the creation of geometrically accurate models of the human buttock for three able-bodied volunteers and three volunteers with SCI. The effect of geometry on observed internal tissue deformations for each subject is studied by comparing FEA findings for equivalent loading conditions. The large variations found between subjects confirms the importance of subject-specific FEA.
Effect of protein load on stability of immobilized enzymes.
Fernandez-Lopez, Laura; Pedrero, Sara G; Lopez-Carrobles, Nerea; Gorines, Beatriz C; Virgen-Ortíz, Jose J; Fernandez-Lafuente, Roberto
2017-03-01
Different lipases have been immobilized on octyl agarose beads at 1mg/g and at maximum loading, via physical interfacial activation versus the octyl layer on the support. The stability of the preparations was analyzed. Most biocatalysts had the expected result: the apparent stability increased using the highly loaded preparations, due to the diffusional limitations that reduced the initial observed activity. However, lipase B from Candida antarctica (CALB) was significantly more stable using the lowly loaded preparation than the maximum loaded one. This negative effect of the enzyme crowding on enzyme stability was found in inactivations at pH 5, 7 or 9, but not in inactivations in the presence of organic solvents. The immobilization using ethanol to reduce the immobilization rate had no effect on the stability of the lowly loaded preparation, while the highly loaded enzyme biocatalysts increased their stabilities, becoming very similar to that of the lowly loaded preparation. Results suggested that CALB molecules immobilized on octyl agarose may be closely packed together due to the high immobilization rate and this produced some negative interactions between immobilized enzyme molecules during enzyme thermal inactivation. Slowing-down the immobilization rate may be a solution for this unexpected problem. Copyright © 2016 Elsevier Inc. All rights reserved.
Carel, R S
1982-04-01
The cost-effectiveness of a computerized ECG interpretation system in an ambulatory health care organization has been evaluated in comparison with a conventional (manual) system. The automated system was shown to be more cost-effective at a minimum load of 2,500 patients/month. At larger monthly loads an even greater cost-effectiveness was found, the average cost/ECG being about $2. In the manual system the cost/unit is practically independent of patient load. This is primarily due to the fact that 87% of the cost/ECG is attributable to wages and fees of highly trained personnel. In the automated system, on the other hand, the cost/ECG is heavily dependent on examinee load. This is due to the relatively large impact of equipment depreciation on fixed (and total) cost. Utilization of a computer-assisted system leads to marked reduction in cardiologists' interpretation time, substantially shorter turnaround time (of unconfirmed reports), and potential provision of simultaneous service at several remotely located "heart stations."
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Singh, Mrityunjay; Shpargel, Tarah; Asthana, Rajiv
2006-01-01
A simple tube-plate joint tensile test was implemented to compare the effectiveness of commercial brazes, namely, TiCuNi, TiCuSil, and Cu-ABA, used for bonding Ti-tubes joined to C-C composite plates. The different braze systems yielded different; yet, repeatable results. The Cu-ABA system proved to have about twice the load-carrying ability of the other two systems due to the fact that the bonded area between the braze material and the C-C plate was largest for this system. The orientation of the surface fiber tows also had a significant effect on load-carrying ability with tows oriented perpendicular to the tube axis displaying the highest failure loads. Increasing the process load and modifying the surface of the C-C plate by grooving out channels for the Ti-Tube to nest in resulted in increased load-carrying ability for the TiCuSil and Cu-ABA systems due to increased bonded area and better penetration of the braze material into the C-C composite.
NASA Technical Reports Server (NTRS)
Schmucker, R. H.
1984-01-01
Methods for measuring the lateral forces, occurring as a result of asymmetric nozzle flow separation, are discussed. The effect of some parameters on the side load is explained. A new method was developed for calculation of the side load. The values calculated are compared with side load data of the J-2 engine. Results are used for predicting side loads of the space shuttle main engine.
Visual short-term memory load strengthens selective attention.
Roper, Zachary J J; Vecera, Shaun P
2014-04-01
Perceptual load theory accounts for many attentional phenomena; however, its mechanism remains elusive because it invokes underspecified attentional resources. Recent dual-task evidence has revealed that a concurrent visual short-term memory (VSTM) load slows visual search and reduces contrast sensitivity, but it is unknown whether a VSTM load also constricts attention in a canonical perceptual load task. If attentional selection draws upon VSTM resources, then distraction effects-which measure attentional "spill-over"-will be reduced as competition for resources increases. Observers performed a low perceptual load flanker task during the delay period of a VSTM change detection task. We observed a reduction of the flanker effect in the perceptual load task as a function of increasing concurrent VSTM load. These findings were not due to perceptual-level interactions between the physical displays of the two tasks. Our findings suggest that perceptual representations of distractor stimuli compete with the maintenance of visual representations held in memory. We conclude that access to VSTM determines the degree of attentional selectivity; when VSTM is not completely taxed, it is more likely for task-irrelevant items to be consolidated and, consequently, affect responses. The "resources" hypothesized by load theory are at least partly mnemonic in nature, due to the strong correspondence they share with VSTM capacity.
NASA Technical Reports Server (NTRS)
Dahya, Kevin
2004-01-01
Analysis of GLAST ACD Photo-Multiplier Tube (PMT) assembly under thermal loading demonstrates that the glass tube experiences high stresses due to Coefficient of Thermal Expansion mismatch, as well as increased stress due to high stiffness and incompressibility of potting compound. Further investigation shows adverse loading effects due to the magnetic shield, a thin piece of steel wrapped around the PMT. This steel, Mu Metal, contained an overlap region that directly attributed to crack propagation in the outside surface of the tube. Sensitivities to different configurations were studied to reduce the stress and provide a more uniform loading throughout the PMT to ensure mission success. Studies indicate substituting a softer and more compressible potting compound and moving the Mu metal from the glass tube to the outside wall of the aluminum housing yields lower stress.
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Veazie, David R.; Brinson, L. Catherine
1996-01-01
Experimental and analytical methods were used to investigate the similarities and differences of the effects of physical aging on creep compliance of IM7/K3B composite loaded in tension and compression. Two matrix dominated loading modes, shear and transverse, were investigated for two load cases, tension and compression. The tests, run over a range of sub-glass transition temperatures, provided material constants, material master curves and aging related parameters. Comparing results from the short-term data indicated that although trends in the data with respect to aging time and aging temperature are similar, differences exist due to load direction and mode. The analytical model used for predicting long-term behavior using short-term data as input worked equally as well for the tension or compression loaded cases. Comparison of the loading modes indicated that the predictive model provided more accurate long term predictions for the shear mode as compared to the transverse mode. Parametric studies showed the usefulness of the predictive model as a tool for investigating long-term performance and compliance acceleration due to temperature.
Wu; Thompson
2000-09-01
The track foundation is preloaded by multiple wheel loads due to the train weight and, as the pad and ballast are nonlinear, their stiffness depends upon the preload in them. Due to the influence of these resilient components of the track, the track vibration is affected by the wheel loads. It is also affected by the wheel/rail interactions. In this article the preloads in the pad and ballast are calculated by considering the nonlinear properties of the track foundation, and thus the preloaded pad and ballast stiffnesses are determined. The vibration properties are explored for the track under multiple wheel loads and multiple wheel/rail interactions by comparing the results from different track models with and without these effects. It is found that the point receptance of the track is reduced and the vibration decay rate is enhanced at low frequencies due to the wheel loads. The effects of the wheel/rail interactions are most significant for frequencies 400-2000 Hz. Because of the wheel/rail interactions, the point receptance fluctuates and the vibration decay is enhanced in the regions around the wheels.
Ropponen, Annina; Svedberg, Pia; Koskenvuo, Markku; Silventoinen, Karri; Kaprio, Jaakko
2014-06-01
Physical work loading and psychological stress commonly co-occur in working life, hence potentially having an interrelationship that may affect work incapacity. This prospective cohort study aimed to investigate the effect of stability and change in physical work loading and stress on the risk of disability pension (DP) due to musculoskeletal diagnoses (MSD), while accounting for familial confounding in these associations. Data on 12,455 twins born before 1958 were surveyed of their physical work loading and psychological stress of daily activities in 1975 and 1981. The follow-up data was collected from pension registers until 2004. Cox proportional hazards regression models were used. During the follow up, 893 participants were granted DP due to MSD. Stable high (hazard ratio, HR, 2.21), but also increased physical work loading (HR 2.05) and high psychological stress (HR 2.22) were associated with increased risk for DP, and had significant interaction (p=0.032). The associations were confirmed when accounting for several confounding factors. Stable high but also increased physical work loading and psychological stress of daily activities between two timepoints with 6 years apart confirms their predictive role for an increased risk of DP. Both physical work loading and psychological stress seem to be independent from various confounding factors hence suggesting direct effect on risk for DP providing potential for occupational health care to early identification of persons at risk. © 2014 the Nordic Societies of Public Health.
NASA Astrophysics Data System (ADS)
Liu, J. X.; Deng, S. C.; Liang, N. G.
2008-02-01
Concrete is heterogeneous and usually described as a three-phase material, where matrix, aggregate and interface are distinguished. To take this heterogeneity into consideration, the Generalized Beam (GB) lattice model is adopted. The GB lattice model is much more computationally efficient than the beam lattice model. Numerical procedures of both quasi-static method and dynamic method are developed to simulate fracture processes in uniaxial tensile tests conducted on a concrete panel. Cases of different loading rates are compared with the quasi-static case. It is found that the inertia effect due to load increasing becomes less important and can be ignored with the loading rate decreasing, but the inertia effect due to unstable crack propagation remains considerable no matter how low the loading rate is. Therefore, an unrealistic result will be obtained if a fracture process including unstable cracking is simulated by the quasi-static procedure.
Sonic-boom-induced building structure responses including damage.
NASA Technical Reports Server (NTRS)
Clarkson, B. L.; Mayes, W. H.
1972-01-01
Concepts of sonic-boom pressure loading of building structures and the associated responses are reviewed, and results of pertinent theoretical and experimental research programs are summarized. The significance of sonic-boom load time histories, including waveshape effects, are illustrated with the aid of simple structural elements such as beams and plates. Also included are discussions of the significance of such other phenomena as three-dimensional loading effects, air cavity coupling, multimodal responses, and structural nonlinearities. Measured deflection, acceleration, and strain data from laboratory models and full-scale building tests are summarized, and these data are compared, where possible, with predicted values. Damage complaint and claim experience due both to controlled and uncontrolled supersonic flights over communities are summarized with particular reference to residential, commercial, and historic buildings. Sonic-boom-induced building responses are compared with those from other impulsive loadings due to natural and cultural events and from laboratory simulation tests.
NASA Technical Reports Server (NTRS)
Onwubiko, Chin-Yere; Onyebueke, Landon
1996-01-01
Structural failure is rarely a "sudden death" type of event, such sudden failures may occur only under abnormal loadings like bomb or gas explosions and very strong earthquakes. In most cases, structures fail due to damage accumulated under normal loadings such as wind loads, dead and live loads. The consequence of cumulative damage will affect the reliability of surviving components and finally causes collapse of the system. The cumulative damage effects on system reliability under time-invariant loadings are of practical interest in structural design and therefore will be investigated in this study. The scope of this study is, however, restricted to the consideration of damage accumulation as the increase in the number of failed components due to the violation of their strength limits.
NASA Technical Reports Server (NTRS)
Wu, Xiaoping; Argus, Donald F.; Heflin, Michael B.; Ivins, Erik R.; Webb, Frank H.
2002-01-01
Precise GPS measurements of elastic relative site displacements due to surface mass loading offer important constraints on global surface mass transport. We investigate effects of site distribution and aliasing by higher-degree (n greater than or equal 2) loading terms on inversion of GPS data for n = 1 load coefficients and geocenter motion. Covariance and simulation analyses are conducted to assess the sensitivity of the inversion to aliasing and mismodeling errors and possible uncertainties in the n = 1 load coefficient determination. We found that the use of center-of-figure approximation in the inverse formulation could cause 10- 15% errors in the inverted load coefficients. n = 1 load estimates may be contaminated significantly by unknown higher-degree terms, depending on the load scenario and the GPS site distribution. The uncertainty in n = 1 zonal load estimate is at the level of 80 - 95% for two load scenarios.
Jeong, Yoseok; Lee, Jaeha; Kim, WooSeok
2015-01-29
This paper aims at presenting the effects of short-term sustained load and temperature on time-dependent deformation of carbon fiber-reinforced polymer (CFRP) bonded to concrete and pull-off strength at room temperature after the sustained loading period. The approach involves experimental and numerical analysis. Single-lap shear specimens were used to evaluate temperature and short-term sustained loading effects on time-dependent behavior under sustained loading and debonding behavior under pull-off loading after a sustained loading period. The numerical model was parameterized with experiments on the concrete, FRP, and epoxy. Good correlation was seen between the numerical results and single-lap shear experiments. Sensitivity studies shed light on the influence of temperature, epoxy modulus, and epoxy thickness on the redistribution of interfacial shear stress during sustained loading. This investigation confirms the hypothesis that interfacial stress redistribution can occur due to sustained load and elevated temperature and its effect can be significant.
Jeong, Yoseok; Lee, Jaeha; Kim, WooSeok
2015-01-01
This paper aims at presenting the effects of short-term sustained load and temperature on time-dependent deformation of carbon fiber-reinforced polymer (CFRP) bonded to concrete and pull-off strength at room temperature after the sustained loading period. The approach involves experimental and numerical analysis. Single-lap shear specimens were used to evaluate temperature and short-term sustained loading effects on time-dependent behavior under sustained loading and debonding behavior under pull-off loading after a sustained loading period. The numerical model was parameterized with experiments on the concrete, FRP, and epoxy. Good correlation was seen between the numerical results and single-lap shear experiments. Sensitivity studies shed light on the influence of temperature, epoxy modulus, and epoxy thickness on the redistribution of interfacial shear stress during sustained loading. This investigation confirms the hypothesis that interfacial stress redistribution can occur due to sustained load and elevated temperature and its effect can be significant. PMID:28787948
Lee, Sangchul; Sadeghi, Ali M.; Yeo, In-Young; McCarty, Gregory W.; Hively, W. Dean
2017-01-01
Winter cover crops (WCCs) have been widely implemented in the Coastal Plain of the Chesapeake Bay watershed (CBW) due to their high effectiveness at reducing nitrate loads. However, future climate conditions (FCCs) are expected to exacerbate water quality degradation in the CBW by increasing nitrate loads from agriculture. Accordingly, the question remains whether WCCs are sufficient to mitigate increased nutrient loads caused by FCCs. In this study, we assessed the impacts of FCCs on WCC nitrate reduction efficiency on the Coastal Plain of the CBW using Soil and Water Assessment Tool (SWAT) model. Three FCC scenarios (2085 – 2098) were prepared using General Circulation Models (GCMs), considering three Intergovernmnental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) greenhouse gas emission scenarios. We also developed six representative WCC implementation scenarios based on the most commonly used planting dates and species of WCCs in this region. Simulation results showed that WCC biomass increased by ~ 58 % under FCC scenarios, due to climate conditions conducive to the WCC growth. Prior to implementing WCCs, annual nitrate loads increased by ~ 43 % under FCC scenarios compared to the baseline scenario (2001 – 2014). When WCCs were planted, annual nitrate loads were substantially reduced by ~ 48 % and WCC nitrate reduction efficiency water ~ 5 % higher under FCC scenarios relative to the baseline. The increase rate of WCC nitrate reduction efficiency varied by FCC scenarios and WCC planting methods. As CO2 concentration was higher and winters were warmer under FCC scenarios, WCCs had greater biomass and therefore showed higher nitrate reduction efficiency. In response to FCC scenarios, the performance of less effective WCC practices (e.g., barley, wheat, and late planting) under the baseline indicated ~ 14 % higher increase rate of nitrate reduction efficiency compared to ones with better effectiveness under the baseline (e.g., rye and early planting), due to warmer temperatures. According to simulation results, WCCs were effective to mitigate nitrate loads accelerated by FCCs and therefore the role of WCCs in mitigating nitrate loads is even more important in the given FCCs.
Cathode Loading Effect on Sulfur Utilization in Lithium–Sulfur Battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Ke; Liu, Helen; Gan, Hong
The Lithium-Sulfur (Li-S) battery is under intensive research in recent years due to its potential to provide higher energy density and lower cost than the current state-of-the-art lithium-ion battery technology. To meet cost target for transportation application, high sulfur loading up to 8 mAh cm -2 is predicted by modeling. In this work, we have investigated the sulfur loading effect on the galvanostatic charge/discharge cycling performance of Li-S cells with theoretical sulfur loading ranging from 0.5 mAh cm -2 to 7.5 mAh cm -2. We found that the low sulfur utilization of electrodes with sulfur loading of > 3.0 mAhmore » cm-2 is due to their inability to deliver capacities at the 2.1V voltage plateau, which corresponds to the conversion of soluble Li 2S 4 to insoluble Li 2S 2/Li 2S. This electrochemical conversion process recovers to deliver the expected sulfur utilization after several activation cycles for electrodes with sulfur loading up to 4.5 mAh cm -2. For electrodes with 7.0 mAh cm -2 loading, no sulfur utilization recovery was observed for 100 cycles. The root cause of this phenomenon is elucidated by SEM/EDS and EIS investigation. Carbon interlayer cell design and low rate discharge activation are demonstrated to be effective mitigation methods.« less
Cathode Loading Effect on Sulfur Utilization in Lithium–Sulfur Battery
Sun, Ke; Liu, Helen; Gan, Hong
2016-05-01
The Lithium-Sulfur (Li-S) battery is under intensive research in recent years due to its potential to provide higher energy density and lower cost than the current state-of-the-art lithium-ion battery technology. To meet cost target for transportation application, high sulfur loading up to 8 mAh cm -2 is predicted by modeling. In this work, we have investigated the sulfur loading effect on the galvanostatic charge/discharge cycling performance of Li-S cells with theoretical sulfur loading ranging from 0.5 mAh cm -2 to 7.5 mAh cm -2. We found that the low sulfur utilization of electrodes with sulfur loading of > 3.0 mAhmore » cm-2 is due to their inability to deliver capacities at the 2.1V voltage plateau, which corresponds to the conversion of soluble Li 2S 4 to insoluble Li 2S 2/Li 2S. This electrochemical conversion process recovers to deliver the expected sulfur utilization after several activation cycles for electrodes with sulfur loading up to 4.5 mAh cm -2. For electrodes with 7.0 mAh cm -2 loading, no sulfur utilization recovery was observed for 100 cycles. The root cause of this phenomenon is elucidated by SEM/EDS and EIS investigation. Carbon interlayer cell design and low rate discharge activation are demonstrated to be effective mitigation methods.« less
NASA Astrophysics Data System (ADS)
Ozdemir, Ozan C.; Widener, Christian A.; Carter, Michael J.; Johnson, Kyle W.
2017-10-01
As the industrial application of the cold spray technology grows, the need to optimize both the cost and the quality of the process grows with it. Parameter selection techniques available today require the use of a coupled system of equations to be solved to involve the losses due to particle loading in the gas stream. Such analyses cause a significant increase in the computational time in comparison with calculations with isentropic flow assumptions. In cold spray operations, engineers and operators may, therefore, neglect the effects of particle loading to simplify the multiparameter optimization process. In this study, two-way coupled (particle-fluid) quasi-one-dimensional fluid dynamics simulations are used to test the particle loading effects under many potential cold spray scenarios. Output of the simulations is statistically analyzed to build regression models that estimate the changes in particle impact velocity and temperature due to particle loading. This approach eases particle loading optimization for more complete analysis on deposition cost and time. The model was validated both numerically and experimentally. Further numerical analyses were completed to test the particle loading capacity and limitations of a nozzle with a commonly used throat size. Additional experimentation helped document the physical limitations to high-rate deposition.
NASALIFE - Component Fatigue and Creep Life Prediction Program
NASA Technical Reports Server (NTRS)
Gyekenyesi, John Z.; Murthy, Pappu L. N.; Mital, Subodh K.
2014-01-01
NASALIFE is a life prediction program for propulsion system components made of ceramic matrix composites (CMC) under cyclic thermo-mechanical loading and creep rupture conditions. Although the primary focus was for CMC components, the underlying methodologies are equally applicable to other material systems as well. The program references empirical data for low cycle fatigue (LCF), creep rupture, and static material properties as part of the life prediction process. Multiaxial stresses are accommodated by Von Mises based methods and a Walker model is used to address mean stress effects. Varying loads are reduced by the Rainflow counting method or a peak counting type method. Lastly, damage due to cyclic loading and creep is combined with Minor's Rule to determine damage due to cyclic loading, damage due to creep, and the total damage per mission and the number of potential missions the component can provide before failure.
Rayleigh wave effects in an elastic half-space.
NASA Technical Reports Server (NTRS)
Aggarwal, H. R.
1972-01-01
Consideration of Rayleigh wave effects in a homogeneous isotropic linearly elastic half-space subject to an impulsive uniform disk pressure loading. An approximate formula is obtained for the Rayleigh wave effects. It is shown that the Rayleigh waves near the center of loading arise from the portion of the dilatational and shear waves moving toward the axis, after they originate at the edge of the load disk. A study is made of the vertical displacement due to Rayleigh waves at points on the axis near the surface of the elastic half-space.
Muscle-Specific Effective Mechanical Advantage and Joint Impulse in Weightlifting.
Kipp, Kristof; Harris, Chad
2017-07-01
Kipp, K, and Harris, C. Muscle-specific effective mechanical advantage and joint impulse in weightlifting. J Strength Cond Res 31(7): 1905-1910, 2017-Lifting greater loads during weightlifting exercises may theoretically be achieved through increasing the magnitudes of net joint impulses or manipulating the joints' effective mechanical advantage (EMA). The purpose of this study was to investigate muscle-specific EMA and joint impulse as well as impulse-momentum characteristics of the lifter-barbell system across a range of external loads during the execution of the clean. Collegiate-level weightlifters performed submaximal cleans at 65, 75, and 85% of their 1-repetition maximum (1-RM), whereas data from a motion analysis system and a force plate were used to calculate lifter-barbell system impulse and velocity, as well as net extensor impulse generated at the hip, knee, and ankle joints and the EMA of the gluteus maximus, hamstrings, quadriceps, and triceps surae muscles. The results indicated that the lifter-barbell system impulse did not change as load increased, whereas the velocity of the lifter-barbell system decreased with greater load. In addition, the net extensor impulse at all joints increased as load increased. The EMA of all muscles did not, however, change as load increased. The load-dependent effects on the impulse-velocity characteristics of the lifter-barbell system may reflect musculoskeletal force-velocity behaviors, and may further indicate that the weightlifting performance is limited by the magnitude of ground reaction force impulse. In turn, the load-dependent effects observed at the joint level indicated that lifting greater loads were due to greater net extensor impulses generated at the joints of the lower extremity and not greater EMAs of the respective extensor muscles. In combination, these results suggest that lifting greater external loads during the clean is due to the ability to generate large extensor joint impulses, rather than manipulate EMA.
Macrophyte Community Response to Nitrogen Loading and ...
Empirical determination of nutrient loading thresholds that negatively impact seagrass communities have been elusive due to the multitude of factors involved. Using a mesocosm system that simulated Pacific Northwest estuaries, we evaluated macrophyte metrics across gradients of NO3 loading (0, 1.5, 3 and 6x ambient) and temperature (10 and 20 °C). Macroalgal growth, biomass, and C:N responded positively to increased NO3 load and floating algal mats developed at 20 ºC. Zostera japonica metrics, including C:N, responded more to temperature than to NO3 loading. Z. marina biomass exhibited a negative temperature effect and in some cases a negative NO3 effect, while growth rate increased with temperature. Shoot survival decreased at 20 ºC but was not influenced by NO3 loading. Wasting disease index exhibited a significant temperature by NO3 interaction consistent with increased disease susceptibility. Community shifts observed were consistent with the nutrient loading hypothesis at 20 ºC, but there was no evidence of other eutrophication symptoms due to the short residence time. The Nutrient Pollution Index tracked the NO3 gradient at 10 ºC but exhibited no response at 20 ºC. We suggest that systems characterized by cool temperatures, high NO3 loads, and short residence time may be resilient to many symptoms of eutrophication. Estuarine systems characterized by cool temperatures, high nutrient loads and rapid flushing may be resilient to some symptoms
Adaptive Load-Balancing Algorithms Using Symmetric Broadcast Networks
NASA Technical Reports Server (NTRS)
Das, Sajal K.; Biswas, Rupak; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
In a distributed-computing environment, it is important to ensure that the processor workloads are adequately balanced. Among numerous load-balancing algorithms, a unique approach due to Dam and Prasad defines a symmetric broadcast network (SBN) that provides a robust communication pattern among the processors in a topology-independent manner. In this paper, we propose and analyze three novel SBN-based load-balancing algorithms, and implement them on an SP2. A thorough experimental study with Poisson-distributed synthetic loads demonstrates that these algorithms are very effective in balancing system load while minimizing processor idle time. They also compare favorably with several other existing load-balancing techniques. Additional experiments performed with real data demonstrate that the SBN approach is effective in adaptive computational science and engineering applications where dynamic load balancing is extremely crucial.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soerensen, B.F.; Holmes, J.W.
The stress-strain behavior of a continuous-fiber-reinforced ceramic matrix composite has been measured over a wide range of loading rates (0.01 to 500 MPa/s). It was found that the loading rate has a strong effect on almost every feature of the stress-strain curve: the proportionality stress, the composite strength and failure strain increase with increasing loading rate. The microstructural damage varies also with the loading rate; with increasing loading rate, the average matrix crack spacing increases and the average fiber pullout length decreases. Using simple models, it is suggested that these phenomena are caused partly by time-dependent matrix cracking (due tomore » stress corrosion) and partly by an increasing interfacial shear stress with loading rate.« less
Macdonald, James S P; Lavie, Nilli
2008-10-01
Although the perceptual load theory of attention has stimulated a great deal of research, evidence for the role of perceptual load in determining perception has typically relied on indirect measures that infer perception from distractor effects on reaction times or neural activity (see N. Lavie, 2005, for a review). Here we varied the level of perceptual load in a letter-search task and assessed its effect on the conscious perception of a search-irrelevant shape stimulus appearing in the periphery, using a direct measure of awareness (present/absent reports). Detection sensitivity (d') was consistently reduced with high, compared to low, perceptual load but was unaffected by the level of working memory load. Because alternative accounts in terms of expectation, memory, response bias, and goal-neglect due to the more strenuous high load task were ruled out, these experiments clearly demonstrate that high perceptual load determines conscious perception, impairing the ability to merely detect the presence of a stimulus--a phenomenon of load induced blindness.
Review: Moisture loading—the hidden information in groundwater observation well records
NASA Astrophysics Data System (ADS)
van der Kamp, Garth; Schmidt, Randy
2017-12-01
Changes of total moisture mass above an aquifer such as snow accumulation, soil moisture, and storage at the water table, represent changes of mechanical load acting on the aquifer. The resulting moisture-loading effects occur in all observation well records for confined aquifers. Deep observation wells therefore act as large-scale geological weighing lysimeters, referred to as "geolysimeters". Barometric pressure effects on groundwater levels are a similar response to surface loading and are familiar to every hydrogeologist dealing with the "barometric efficiency" of observation wells. Moisture-loading effects are small and generally not recognized because they are obscured by hydraulic head fluctuations due to other causes, primarily barometric pressure changes. For semiconfined aquifers, long-term moisture-loading effects may be dissipated and obscured by transient flow through overlying aquitards. Removal of barometric and earth tide effects from observation well records allows identification of moisture loading and comparison with hydrological observations, and also comparison with the results of numerical models that can account for transient groundwater flow.
Bulk electric system reliability evaluation incorporating wind power and demand side management
NASA Astrophysics Data System (ADS)
Huang, Dange
Electric power systems are experiencing dramatic changes with respect to structure, operation and regulation and are facing increasing pressure due to environmental and societal constraints. Bulk electric system reliability is an important consideration in power system planning, design and operation particularly in the new competitive environment. A wide range of methods have been developed to perform bulk electric system reliability evaluation. Theoretically, sequential Monte Carlo simulation can include all aspects and contingencies in a power system and can be used to produce an informative set of reliability indices. It has become a practical and viable tool for large system reliability assessment technique due to the development of computing power and is used in the studies described in this thesis. The well-being approach used in this research provides the opportunity to integrate an accepted deterministic criterion into a probabilistic framework. This research work includes the investigation of important factors that impact bulk electric system adequacy evaluation and security constrained adequacy assessment using the well-being analysis framework. Load forecast uncertainty is an important consideration in an electrical power system. This research includes load forecast uncertainty considerations in bulk electric system reliability assessment and the effects on system, load point and well-being indices and reliability index probability distributions are examined. There has been increasing worldwide interest in the utilization of wind power as a renewable energy source over the last two decades due to enhanced public awareness of the environment. Increasing penetration of wind power has significant impacts on power system reliability, and security analyses become more uncertain due to the unpredictable nature of wind power. The effects of wind power additions in generating and bulk electric system reliability assessment considering site wind speed correlations and the interactive effects of wind power and load forecast uncertainty on system reliability are examined. The concept of the security cost associated with operating in the marginal state in the well-being framework is incorporated in the economic analyses associated with system expansion planning including wind power and load forecast uncertainty. Overall reliability cost/worth analyses including security cost concepts are applied to select an optimal wind power injection strategy in a bulk electric system. The effects of the various demand side management measures on system reliability are illustrated using the system, load point, and well-being indices, and the reliability index probability distributions. The reliability effects of demand side management procedures in a bulk electric system including wind power and load forecast uncertainty considerations are also investigated. The system reliability effects due to specific demand side management programs are quantified and examined in terms of their reliability benefits.
Effect of environmental factors on pavement deterioration : Final report, Volume II of II
DOT National Transportation Integrated Search
1988-11-01
A computerized model for the determination of pavement deterioration responsibilities due to load and non-load related factors was developed. The model is based on predicted pavement performance and the relationship of pavement performance to a quant...
Effect of environmental factors on pavement deterioration : Final report, Volume I of II.
DOT National Transportation Integrated Search
1988-11-01
A computerized model for the determination of pavement deterioration responsibilities due to load and non-load related factors was developed. The model is based on predicted pavement performance and the relationship of pavement performance to a quant...
Impact of Groundwater Flow and Energy Load on Multiple Borehole Heat Exchangers.
Dehkordi, S Emad; Schincariol, Robert A; Olofsson, Bo
2015-01-01
The effect of array configuration, that is, number, layout, and spacing, on the performance of multiple borehole heat exchangers (BHEs) is generally known under the assumption of fully conductive transport. The effect of groundwater flow on BHE performance is also well established, but most commonly for single BHEs. In multiple-BHE systems the effect of groundwater advection can be more complicated due to the induced thermal interference between the boreholes. To ascertain the influence of groundwater flow and borehole arrangement, this study investigates single- and multi-BHE systems of various configurations. Moreover, the influence of energy load balance is also examined. The results from corresponding cases with and without groundwater flow as well as balanced and unbalanced energy loads are cross-compared. The groundwater flux value, 10(-7) m/s, is chosen based on the findings of previous studies on groundwater flow interaction with BHEs and thermal response tests. It is observed that multi-BHE systems with balanced loads are less sensitive to array configuration attributes and groundwater flow, in the long-term. Conversely, multi-BHE systems with unbalanced loads are influenced by borehole array configuration as well as groundwater flow; these effects become more pronounced with time, unlike when the load is balanced. Groundwater flow has more influence on stabilizing loop temperatures, compared to array characteristics. Although borehole thermal energy storage (BTES) systems have a balanced energy load function, preliminary investigation on their efficiency shows a negative impact by groundwater which is due to their dependency on high temperature gradients between the boreholes and surroundings. © 2014, National Ground Water Association.
Kutzner, Ines; Dymke, Jörn; Damm, Philipp; Duda, Georg N.; Günzl, Reiner; Bergmann, Georg
2017-01-01
Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity. Due to these opposing effects on joint loading, the load-reducing effect during aquatic exercises remains unknown. The aim of this study was to quantify the joint loads during various aquatic exercises and to determine the load reducing effect of water. Instrumented knee and hip implants with telemetric data transfer were used to measure the resultant joint contact forces in 12 elderly subjects (6x hip, 6x knee) in vivo. Different dynamic, weight-bearing and non-weight-bearing activities were performed by the subjects on land and in chest-high water. Non-weight-bearing hip and knee flexion/extension was performed at different velocities and with additional Aquafins. Joint forces during aquatic exercises ranged between 32 and 396% body weight (BW). Highest forces occurred during dynamic activities, followed by weight-bearing and slow non-weight-bearing activities. Compared to the same activities on land, joint forces were reduced by 36–55% in water with absolute reductions being greater than 100%BW during weight-bearing and dynamic activities. During non-weight-bearing activities, high movement velocities and additional Aquafins increased the joint forces by up to 59% and resulted in joint forces of up to 301%BW. This study confirms the load reducing effect of water during weight-bearing and dynamic exercises. Nevertheless, high drag forces result in increased joint contact forces and indicate greater muscle activity. By the choice of activity, movement velocity and additional resistive devices joint forces can be modulated individually in the course of rehabilitation or preventive therapies. PMID:28319145
Kutzner, Ines; Richter, Anja; Gordt, Katharina; Dymke, Jörn; Damm, Philipp; Duda, Georg N; Günzl, Reiner; Bergmann, Georg
2017-01-01
Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity. Due to these opposing effects on joint loading, the load-reducing effect during aquatic exercises remains unknown. The aim of this study was to quantify the joint loads during various aquatic exercises and to determine the load reducing effect of water. Instrumented knee and hip implants with telemetric data transfer were used to measure the resultant joint contact forces in 12 elderly subjects (6x hip, 6x knee) in vivo. Different dynamic, weight-bearing and non-weight-bearing activities were performed by the subjects on land and in chest-high water. Non-weight-bearing hip and knee flexion/extension was performed at different velocities and with additional Aquafins. Joint forces during aquatic exercises ranged between 32 and 396% body weight (BW). Highest forces occurred during dynamic activities, followed by weight-bearing and slow non-weight-bearing activities. Compared to the same activities on land, joint forces were reduced by 36-55% in water with absolute reductions being greater than 100%BW during weight-bearing and dynamic activities. During non-weight-bearing activities, high movement velocities and additional Aquafins increased the joint forces by up to 59% and resulted in joint forces of up to 301%BW. This study confirms the load reducing effect of water during weight-bearing and dynamic exercises. Nevertheless, high drag forces result in increased joint contact forces and indicate greater muscle activity. By the choice of activity, movement velocity and additional resistive devices joint forces can be modulated individually in the course of rehabilitation or preventive therapies.
Genetic variants in Alzheimer disease – molecular and brain network approaches
Gaiteri, Chris; Mostafavi, Sara; Honey, Christopher; De Jager, Philip L.; Bennett, David A.
2016-01-01
Genetic studies in late-onset Alzheimer disease (LOAD) are aimed at identifying core disease mechanisms and providing potential biomarkers and drug candidates to improve clinical care for AD. However, due to the complexity of LOAD, including pathological heterogeneity and disease polygenicity, extracting actionable guidance from LOAD genetics has been challenging. Past attempts to summarize the effects of LOAD-associated genetic variants have used pathway analysis and collections of small-scale experiments to hypothesize functional convergence across several variants. In this review, we discuss how the study of molecular, cellular and brain networks provides additional information on the effect of LOAD-associated genetic variants. We then discuss emerging combinations of omic data types in multiscale models, which provide a more comprehensive representation of the effect of LOAD-associated genetic variants at multiple biophysical scales. Further, we highlight the clinical potential of mechanistically coupling genetic variants and disease phenotypes with multiscale brain models. PMID:27282653
High perceptual load leads to both reduced gain and broader orientation tuning
Stolte, Moritz; Bahrami, Bahador; Lavie, Nilli
2014-01-01
Due to its limited capacity, visual perception depends on the allocation of attention. The resultant phenomena of inattentional blindness, accompanied by reduced sensory visual cortex response to unattended stimuli in conditions of high perceptual load in the attended task, are now well established (Lavie, 2005; Lavie, 2010, for reviews). However, the underlying mechanisms for these effects remain to be elucidated. Specifically, is reduced perceptual processing under high perceptual load a result of reduced sensory signal gain, broader tuning, or both? We examined this question with psychophysical measures of orientation tuning under different levels of perceptual load in the task performed. Our results show that increased perceptual load leads to both reduced sensory signal and broadening of tuning. These results clarify the effects of attention on elementary visual perception and suggest that high perceptual load is critical for attentional effects on sensory tuning. PMID:24610952
Dilution: atheoretical burden or just load? A reply to Tsal and Benoni (2010).
Lavie, Nilli; Torralbo, Ana
2010-12-01
Load theory of attention proposes that distractor processing is reduced in tasks with high perceptual load that exhaust attentional capacity within task-relevant processing. In contrast, tasks of low perceptual load leave spare capacity that spills over, resulting in the perception of task-irrelevant, potentially distracting stimuli. Tsal and Benoni (2010) find that distractor response competition effects can be reduced under conditions with a high search set size but low perceptual load (due to a singleton color target). They claim that the usual effect of search set size on distractor processing is not due to attentional load but instead attribute this to lower level visual interference. Here, we propose an account for their findings within load theory. We argue that in tasks of low perceptual load but high set size, an irrelevant distractor competes with the search nontargets for remaining capacity. Thus, distractor processing is reduced under conditions in which the search nontargets receive the spillover of capacity instead of the irrelevant distractor. We report a new experiment testing this prediction. Our new results demonstrate that, when peripheral distractor processing is reduced, it is the search nontargets nearest to the target that are perceived instead. Our findings provide new evidence for the spare capacity spillover hypothesis made by load theory and rule out accounts in terms of lower level visual interference (or mere "dilution") for cases of reduced distractor processing under low load in displays of high set size. We also discuss additional evidence that discounts the viability of Tsal and Benoni's dilution account as an alternative to perceptual load.
Lai, Junmin; Lin, Wu; Scholes, Peter; Li, Mingzhong
2017-01-01
The aim of the study was to investigate the effects of the loading factors, i.e., the initial drug loading concentration and the ratio of the drug to carriers, on the in vitro pharmaceutical performance of drug-loaded mesoporous systems. Ibuprofen (IBU) was used as a model drug, and two non-ordered mesoporous materials of commercial silica Syloid® 244FP (S244FP) and Neusilin® US2 (NS2) were selected in the study. The IBU-loaded mesoporous samples were prepared by a solvent immersion method with a rotary evaporation drying technique and characterized by polarized light microscopy (PLM), Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC). Dissolution experiments were performed in simulated gastric media at 37 °C under non-sink conditions. The concentration of IBU in solution was determined by HPLC. The study showed that the dissolution rate of IBU can be improved significantly using the mesoporous S224FP carriers due to the conversion of crystalline IBU into the amorphous form. Both of the loading factors affected the IBU dissolution kinetics. Due to the molecular interaction between the IBU and NS2 carriers, the loading factors had little effects on the drug release kinetics with incomplete drug desorption recovery and insignificant dissolution enhancement. Care and extensive evaluation must therefore be taken when mesoporous materials are chosen as carrier delivery systems. PMID:28772509
Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M; McCarty, Gregory W; Hively, W Dean; Lang, Megan W
2016-01-01
The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic characteristics for reducing N leaching.
Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M.; McCarty, Gregory W.; Hively, W. Dean; Lang, Megan W.
2016-01-01
The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic characteristics for reducing N leaching. PMID:27352119
Kaneko, Mami; Kishimoto, Yo; Suzuki, Ryo; Kawai, Yoshitaka; Tateya, Ichiro; Hirano, Shigeru
2017-05-01
Professional voice users, such as singers and teachers, are at greater risk of developing vocal fold injury from excessive use of voice; thus, protection of the vocal fold is essential. One of the most important factors that aggravates injury is the production of reactive oxygen species at the wound site. The purpose of the current study was to assess the effect of astaxanthin, a strong antioxidant, on the protection of the vocal fold from injury and inflammation due to vocal loading. This study is an institutional review board-approved human clinical trial. Ten male subjects underwent a 60-minute vocal loading session and received vocal assessments prior to, immediately after, and 30 minutes postvocal loading (AST(-) status). All subjects were then prescribed 24 mg/day of astaxanthin for 28 days, after which they received the same vocal task and assessments (AST(+) status). Phonatory parameters were compared between both groups. Aerodynamic assessment, acoustic analysis, and GRBAS scale (grade, roughness, breathiness, asthenia, and strain) were significantly worse in the AST(-) status immediately after vocal loading, but improved by 30 minutes after loading. In contrast, none of the phonatory parameters in the AST(+) status were statistically worse, even when measured immediately after vocal loading. No allergic responses or adverse effects were observed after administration of astaxanthin. The current results suggest that astaxanthin can protect the vocal fold from injury and inflammation caused by vocal loading possibly through the regulation of oxidative stress. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Cyclic Load Effects on Long Term Behavior of Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Shah, A. R.; Chamis, C. C.
1996-01-01
A methodology to compute the fatigue life for different ratios, r, of applied stress to the laminate strength based on first ply failure criteria combined with thermal cyclic loads has been developed and demonstrated. Degradation effects resulting from long term environmental exposure and thermo-mechanical cyclic loads are considered in the simulation process. A unified time-stress dependent multi-factor interaction equation model developed at NASA Lewis Research Center has been used to account for the degradation of material properties caused by cyclic and aging loads. Effect of variation in the thermal cyclic load amplitude on a quasi-symmetric graphite/epoxy laminate has been studied with respect to the impending failure modes. The results show that, for the laminate under consideration, the fatigue life under combined mechanical and low thermal amplitude cyclic loads is higher than that due to mechanical loads only. However, as the thermal amplitude increases, the life also decreases. The failure mode changes from tensile under mechanical loads only to the compressive and shear at high mechanical and thermal loads. Also, implementation of the developed methodology in the design process has been discussed.
USDA-ARS?s Scientific Manuscript database
Winter cover crops (WCCs) have been widely implemented in the Coastal Plain of the Chesapeake Bay watershed (CBW) due to their high effectiveness at reducing nitrate loads. However, future climate conditions (FCCs) are expected to exacerbate water quality degradation in the CBW by increasing nitrat...
Meier, Beat; Zimmermann, Thomas D
2015-01-01
In prospective memory tasks different kinds of load can occur. Adding a prospective memory task can impose a load on ongoing task performance. Adding ongoing task load (OTL) can affect prospective memory performance. The existence of multiple target events increases prospective load (PL) and adding complexity to the to-be-remembered action increases retrospective load (RL). In two experiments, we systematically examined the effects of these different types of load on prospective memory performance. Results showed an effect of PL on costs in the ongoing task for categorical targets (Experiment 2), but not for specific targets (Experiment 1). RL and OTL both affected remembering the retrospective component of the prospective memory task. We suggest that PL can enhance costs in the ongoing task due to additional monitoring requirements. RL and OTL seem to impact the division of resources between the ongoing task and retrieval of the retrospective component, which may affect disengagement from the ongoing task. In general, the results demonstrate that the different types of load affect prospective memory differentially.
Meier, Beat; Zimmermann, Thomas D.
2015-01-01
In prospective memory tasks different kinds of load can occur. Adding a prospective memory task can impose a load on ongoing task performance. Adding ongoing task load (OTL) can affect prospective memory performance. The existence of multiple target events increases prospective load (PL) and adding complexity to the to-be-remembered action increases retrospective load (RL). In two experiments, we systematically examined the effects of these different types of load on prospective memory performance. Results showed an effect of PL on costs in the ongoing task for categorical targets (Experiment 2), but not for specific targets (Experiment 1). RL and OTL both affected remembering the retrospective component of the prospective memory task. We suggest that PL can enhance costs in the ongoing task due to additional monitoring requirements. RL and OTL seem to impact the division of resources between the ongoing task and retrieval of the retrospective component, which may affect disengagement from the ongoing task. In general, the results demonstrate that the different types of load affect prospective memory differentially. PMID:26082709
Hoogendoorn, Iris; Reenalda, Jasper; Koopman, Bart F J M; Rietman, Johan S
2017-08-01
Pressure ulcers are a significant problem in health care, due to high costs and large impact on patients' life. In general, pressure ulcers develop as tissue viability decreases due to prolonged mechanical loading. The relation between load and tissue viability is highly influenced by individual characteristics. It is proposed that measurements of skin blood flow regulation could provide good assessment of the risk for pressure ulcer development, as skin blood flow is essential for tissue viability. . Therefore, the aim of this systematic review is to gain insight in the relation between mechanical load and the response of the skin and underlying tissue to this loading measured in-vivo with non-invasive techniques. A systematic literature search was performed to identify articles analysing the relation between mechanical load (pressure and/or shear) and tissue viability measured in-vivo. Two independent reviewers scored the methodological quality of the 22 included studies. Methodological information as well as tissue viability parameters during load application and after load removal were extracted from the included articles and used in a meta-analysis. Pressure results in a decrease in skin blood flow parameters, compared to baseline; showing a larger decrease with higher magnitudes of load. The steepness of the decrease is mostly dependent on the anatomical location. After load removal the magnitude of the post-reactive hyperaemic peak is related to the magnitude of pressure. Lastly, shear in addition to pressure, shows an additional negative effect, but the effect is less apparent than pressure on skin viability. Copyright © 2017 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.
Hempel, Nico; Bunn, Jeffrey R.; Nitschke-Pagel, Thomas; ...
2017-02-02
This research is dedicated to the experimental investigation of the residual stress relaxation in girth-welded pipes due to quasi-static bending loads. Ferritic-pearlitic steel pipes are welded with two passes, resulting in a characteristic residual stress state with high tensile residual stresses at the weld root. Also, four-point bending is applied to generate axial load stress causing changes in the residual stress state. These are determined both on the outer and inner surfaces of the pipes, as well as in the pipe wall, using X-ray and neutron diffraction. Focusing on the effect of tensile load stress, it is revealed that notmore » only the tensile residual stresses are reduced due to exceeding the yield stress, but also the compressive residual stresses for equilibrium reasons. Furthermore, residual stress relaxation occurs both parallel and perpendicular to the applied load stress.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hempel, Nico; Bunn, Jeffrey R.; Nitschke-Pagel, Thomas
This research is dedicated to the experimental investigation of the residual stress relaxation in girth-welded pipes due to quasi-static bending loads. Ferritic-pearlitic steel pipes are welded with two passes, resulting in a characteristic residual stress state with high tensile residual stresses at the weld root. Also, four-point bending is applied to generate axial load stress causing changes in the residual stress state. These are determined both on the outer and inner surfaces of the pipes, as well as in the pipe wall, using X-ray and neutron diffraction. Focusing on the effect of tensile load stress, it is revealed that notmore » only the tensile residual stresses are reduced due to exceeding the yield stress, but also the compressive residual stresses for equilibrium reasons. Furthermore, residual stress relaxation occurs both parallel and perpendicular to the applied load stress.« less
Performance of fuzzy approach in Malaysia short-term electricity load forecasting
NASA Astrophysics Data System (ADS)
Mansor, Rosnalini; Zulkifli, Malina; Yusof, Muhammad Mat; Ismail, Mohd Isfahani; Ismail, Suzilah; Yin, Yip Chee
2014-12-01
Many activities such as economic, education and manafucturing would paralyse with limited supply of electricity but surplus contribute to high operating cost. Therefore electricity load forecasting is important in order to avoid shortage or excess. Previous finding showed festive celebration has effect on short-term electricity load forecasting. Being a multi culture country Malaysia has many major festive celebrations such as Eidul Fitri, Chinese New Year and Deepavali but they are moving holidays due to non-fixed dates on the Gregorian calendar. This study emphasis on the performance of fuzzy approach in forecasting electricity load when considering the presence of moving holidays. Autoregressive Distributed Lag model was estimated using simulated data by including model simplification concept (manual or automatic), day types (weekdays or weekend), public holidays and lags of electricity load. The result indicated that day types, public holidays and several lags of electricity load were significant in the model. Overall, model simplification improves fuzzy performance due to less variables and rules.
SRM attrition rate study of the aft motor case segments due to water impact cavity collapse loading
NASA Technical Reports Server (NTRS)
Crockett, C. D.
1976-01-01
The attrition assessment of the aft segments of Solid Rocket Motor due to water impact requires the establishment of a correlation between loading occurrences and structural capability. Each discrete load case, as identified by the water impact velocities and angle, varies longitudinally and radially in magnitude and distribution of the external pressure. The distributions are further required to be shifted forward or aft one-fourth the vehicle diameter to assure minimization of the effect of test instrumentation location for the load determinations. The asymmetrical load distributions result in large geometric nonlinearities in structural response. The critical structural response is progressive buckling of the case. Discrete stiffeners have been added to these aft segments to aid in gaining maximum structural capability for minimum weight addition for resisting these loads. This report presents the development of the attrition assessment of the aft segments and includes the rationale for eliminating all assessable conservatisms from this assessment.
FEMCAM Analysis of SULTAN Test Results for ITER Nb3SN Cable-conduit Conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuhu Zhai, Pierluigi Bruzzone, Ciro Calzolaio
2013-03-19
Performance degradation due to filament fracture of Nb3 Sn cable-in-conduit conductors (CICCs) is a critical issue in large-scale magnet designs such as ITER which is currently being constructed in the South of France. The critical current observed in most SULTAN TF CICC samples is significantly lower than expected and the voltage-current characteristic is seen to have a much broader transition from a single strand to the CICC. Moreover, most conductors exhibit the irreversible degradation due to filament fracture and strain relaxation under electromagnetic cyclic loading. With recent success in monitoring thermal strain distribution and its evolution under the electromagnetic cyclicmore » loading from in situ measurement of critical temperature, we apply FEMCAM which includes strand filament breakage and local current sharing effects to SULTAN tested CICCs to study Nb3 Sn strain sensitivity and irreversible performance degradation. FEMCAM combines the thermal bending effect during cool down and the EM bending effect due to locally accumulating Lorentz force during magnet operation. It also includes strand filament fracture and related local current sharing for the calculation of cable n value. In this paper, we model continuous performance degradation under EM cyclic loading based on strain relaxation and the transition broadening upon cyclic loading to the extreme cases seen in SULTAN test data to better quantify conductor performance degradation.« less
Lavie, Nilli; Torralbo, Ana
2010-01-01
Load theory of attention proposes that distractor processing is reduced in tasks with high perceptual load that exhaust attentional capacity within task-relevant processing. In contrast, tasks of low perceptual load leave spare capacity that spills over, resulting in the perception of task-irrelevant, potentially distracting stimuli. Tsal and Benoni (2010) find that distractor response competition effects can be reduced under conditions with a high search set size but low perceptual load (due to a singleton color target). They claim that the usual effect of search set size on distractor processing is not due to attentional load but instead attribute this to lower level visual interference. Here, we propose an account for their findings within load theory. We argue that in tasks of low perceptual load but high set size, an irrelevant distractor competes with the search nontargets for remaining capacity. Thus, distractor processing is reduced under conditions in which the search nontargets receive the spillover of capacity instead of the irrelevant distractor. We report a new experiment testing this prediction. Our new results demonstrate that, when peripheral distractor processing is reduced, it is the search nontargets nearest to the target that are perceived instead. Our findings provide new evidence for the spare capacity spillover hypothesis made by load theory and rule out accounts in terms of lower level visual interference (or mere “dilution”) for cases of reduced distractor processing under low load in displays of high set size. We also discuss additional evidence that discounts the viability of Tsal and Benoni's dilution account as an alternative to perceptual load. PMID:21133554
The effect of trench width on the behavior of buried rigid pipes
NASA Astrophysics Data System (ADS)
Balkaya, Müge; Saǧlamer, Ahmet
2014-12-01
In this study, in order to determine the effect of trench width (Bd) on the behavior of buried rigid pipes, a concrete pipe having an outside diameter of 150 cm and wall thickness (t) of 15 cm was analyzed using 2D PLAXIS finite element program. In the analyses, three different trench widths (Bd = 2.20 m, 3.40 m, and 4.40 m) were modeled. The results of the analyses indicated that, as the width of the trench increases, the axial force, shear force, bending moment, effective normal stress, and the earth load acting on the pipe increased. The variations of the loads acting on the pipe due to the increasing trench widths were also evaluated using the Marston load theory. When the loads calculated by the Marston Load Theory and the finite element analysis were compared with each other, it was seen that the Marston Load Theory resulted in slightly higher load values than the finite element analysis. On the other hand, for the two methods, the loads acting on the pipe increased with increasing trench width.
78 FR 62616 - Integrated System Power Rates
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-22
... sudden loss of generation or load. 1.1.5. Supplemental Operating Reserve Service provides an additional... experienced due to a sudden loss of generation or load. 1.1.5. Supplemental Operating Reserve Service provides... Deputy Secretary has approved and placed into effect on an interim basis Rate Order No. SWPA-66, which...
Estimation of Local Bone Loads for the Volume of Interest.
Kim, Jung Jin; Kim, Youkyung; Jang, In Gwun
2016-07-01
Computational bone remodeling simulations have recently received significant attention with the aid of state-of-the-art high-resolution imaging modalities. They have been performed using localized finite element (FE) models rather than full FE models due to the excessive computational costs of full FE models. However, these localized bone remodeling simulations remain to be investigated in more depth. In particular, applying simplified loading conditions (e.g., uniform and unidirectional loads) to localized FE models have a severe limitation in a reliable subject-specific assessment. In order to effectively determine the physiological local bone loads for the volume of interest (VOI), this paper proposes a novel method of estimating the local loads when the global musculoskeletal loads are given. The proposed method is verified for the three VOI in a proximal femur in terms of force equilibrium, displacement field, and strain energy density (SED) distribution. The effect of the global load deviation on the local load estimation is also investigated by perturbing a hip joint contact force (HCF) in the femoral head. Deviation in force magnitude exhibits the greatest absolute changes in a SED distribution due to its own greatest deviation, whereas angular deviation perpendicular to a HCF provides the greatest relative change. With further in vivo force measurements and high-resolution clinical imaging modalities, the proposed method will contribute to the development of reliable patient-specific localized FE models, which can provide enhanced computational efficiency for iterative computing processes such as bone remodeling simulations.
NASA Astrophysics Data System (ADS)
Gonderman, S.; Tripathi, J. K.; Sinclair, G.; Novakowski, T. J.; Sizyuk, T.; Hassanein, A.
2018-02-01
The strong thermal and mechanical properties of tungsten (W) are well suited for the harsh fusion environment. However, increasing interest in using tungsten as plasma-facing components (PFCs) has revealed several key issues. These potential roadblocks necessitate more investigation of W and other alternative W based materials exposed to realistic fusion conditions. In this work, W and tungsten-tantalum (W-Ta) alloys were exposed to single (He+) and dual (He+ + D+) ion irradiations with simultaneous pulsed heat loading to elucidate PFCs response under more realistic conditions. Laser only exposer revealed significantly more damage in W-Ta samples as compared to pure W samples. This was due to the difference in the mechanical properties of the two different materials. Further erosion studies were conducted to evaluate the material degradation due to transient heat loading in both the presence and absence of He+ and/or D+ ions. We concluded that erosion of PFC materials was significantly enhanced due to the presence of ion irradiation. This is important as it demonstrates that there are key synergistic effects resulting from more realistic fusion loading conditions that need to be considered when evaluating the response of plasma facing materials.
Research on improvement of power quality of Micro - grid based on SVG pulse load
NASA Astrophysics Data System (ADS)
Lv, Chuang; Xie, Pu
2017-05-01
Pulse load will make the micro-grid public bus power to produce a high peak pulse due to its cyclical pulsation characteristics,, and make the micro-grid voltage fluctuations, frequency fluctuations, voltage and current distortion, power factor reduction and other adverse effects. In order to suppress the adverse effects of the pulse load on the microgrid and improve the power quality of the microgrid, this paper established the SVG simulation model in Matlab / Simulink environment, the superiority of SVG is verified by comparing the improvement of power quality before and after adding the SVG to microgrid system. The results show that the SVG model can suppress the adverse effects effectively of the pulse load on the microgrid, which is of great value and significance to the reactive power compensation and harmonic suppression of the microgrid.
NASA Technical Reports Server (NTRS)
Tang, M. H.; Sefic, W. J.; Sheldon, R. G.
1978-01-01
Concurrent strain gage and pressure transducer measured flight loads on a lifting reentry vehicle are compared and correlated with wind tunnel-predicted loads. Subsonic, transonic, and supersonic aerodynamic loads are presented for the left fin and control surfaces of the X-24B lifting reentry vehicle. Typical left fin pressure distributions are shown. The effects of variations in angle of attack, angle of sideslip, and Mach number on the left fin loads and rudder hinge moments are presented in coefficient form. Also presented are the effects of variations in angle of attack and Mach number on the upper flap, lower flap, and aileron hinge-moment coefficients. The effects of variations in lower flap hinge moments due to changes in lower flap deflection and Mach number are presented in terms of coefficient slopes.
NASA Astrophysics Data System (ADS)
Park, Jin-Young; Lee, Dong-Eun; Kim, Byung-Soo
2017-10-01
Due to the increasing concern about climate change, efforts to reduce environmental load are continuously being made in construction industry, and LCA (life cycle assessment) is being presented as an effective method to assess environmental load. Since LCA requires information on construction quantity used for environmental load estimation, however, it is not being utilized in the environmental review in the early design phase where it is difficult to obtain such information. In this study, computation system for construction quantity based on standard cross section of road drainage facilities was developed to compute construction quantity required for LCA using only information available in the early design phase to develop and verify the effectiveness of a model that can perform environmental load estimation. The result showed that it is an effective model that can be used in the early design phase as it revealed a 13.39% mean absolute error rate.
Effect of spanwise variations in gust intensity on the lift due to atmospheric turbulence
NASA Technical Reports Server (NTRS)
Diederich, Franklin W; Drischler, Joseph A
1957-01-01
The effect of spanwise variations in gust intensity on the power spectrum directly due to atmospheric turbulence is calculated for several analytic approximations to the correlation function or power spectra of atmospheric turbulence, for several spanwise weighing functions (span loadings), and for various angles of sweepback.
NASA Astrophysics Data System (ADS)
Jing, Lin; Han, Liangliang
2017-12-01
A comprehensive dynamic finite-element simulation method was proposed to study the wheel-rail impact response induced by a single wheel flat based on a 3-D rolling contact model, where the influences of the structural inertia, strain rate effect of wheel-rail materials and thermal stress due to the wheel-rail sliding friction were considered. Four different initial conditions (i.e. pure mechanical loading plus rate-independent, pure mechanical loading plus rate-dependent, thermo-mechanical loading plus rate-independent, and thermo-mechanical loading plus rate-dependent) were involved into explore the corresponding impact responses in term of the vertical impact force, von-Mises equivalent stress, equivalent plastic strain and shear stress. Influences of train speed, flat length and axle load on the flat-induced wheel-rail impact response were discussed, respectively. The results indicate that the maximum thermal stresses are occurred on the tread of the wheel and on the top surface of the middle rail; the strain rate hardening effect contributes to elevate the von-Mises equivalent stress and restrain the plastic deformation; and the initial thermal stress due to the sliding friction will aggravate the plastic deformation of wheel and rail. Besides, the wheel-rail impact responses (i.e. impact force, von-Mises equivalent stress, equivalent plastic strain, and XY shear stress) induced by a flat are sensitive to the train speed, flat length and axle load.
Wrinkled Few-Layer Graphene as Highly Efficient Load Bearer.
Androulidakis, Charalampos; Koukaras, Emmanuel N; Rahova, Jaroslava; Sampathkumar, Krishna; Parthenios, John; Papagelis, Konstantinos; Frank, Otakar; Galiotis, Costas
2017-08-09
Multilayered graphitic materials are not suitable as load-bearers due to their inherent weak interlayer bonding (for example, graphite is a solid lubricant in certain applications). This situation is largely improved when two-dimensional (2D) materials such as a monolayer (SLG) graphene are employed. The downside in these cases is the presence of thermally or mechanically induced wrinkles which are ubiquitous in 2D materials. Here we set out to examine the effect of extensive large wavelength/amplitude wrinkling on the stress transfer capabilities of exfoliated simply supported graphene flakes. Contrary to common belief we present clear evidence that this type of "corrugation" enhances the load-bearing capacity of few-layer graphene as compared to "flat" specimens. This effect is the result of the significant increase of the graphene/polymer interfacial shear stress per increment of applied strain due to wrinkling and paves the way for designing affordable graphene composites with highly improved stress-transfer efficiency.
SRB attrition rate study of the aft skirt due to water impact cavity collapse loading
NASA Technical Reports Server (NTRS)
Crockett, C. D.
1976-01-01
A methodology was presented so that realistic attrition prediction could aid in selecting an optimum design option for minimizing the effects of updated loads on the Space Shuttle Solid Rocket Booster (SRB) aft skirt. The updated loads resulted in water impact attrition rates greater than 10 percent for the aft skirt structure. Adding weight to reinforce the aft skirt was undesirable. The refined method treats the occurrences of the load distribution probabilistically, radially and longitudinally, with respect to the critical structural response.
On delay adjustment for dynamic load balancing in distributed virtual environments.
Deng, Yunhua; Lau, Rynson W H
2012-04-01
Distributed virtual environments (DVEs) are becoming very popular in recent years, due to the rapid growing of applications, such as massive multiplayer online games (MMOGs). As the number of concurrent users increases, scalability becomes one of the major challenges in designing an interactive DVE system. One solution to address this scalability problem is to adopt a multi-server architecture. While some methods focus on the quality of partitioning the load among the servers, others focus on the efficiency of the partitioning process itself. However, all these methods neglect the effect of network delay among the servers on the accuracy of the load balancing solutions. As we show in this paper, the change in the load of the servers due to network delay would affect the performance of the load balancing algorithm. In this work, we conduct a formal analysis of this problem and discuss two efficient delay adjustment schemes to address the problem. Our experimental results show that our proposed schemes can significantly improve the performance of the load balancing algorithm with neglectable computation overhead.
An Examination of a Pumping Rotor Blade Design for Brownout Mitigation
2015-05-18
and 60° above the horizontal axis. All blade designs were tested in a hovering state in ground effect at a blade loading coefficient of 0.08...were tested in a hovering state in ground effect at a blade loading coefficient, CT/σ, of 0.08. Additional measurements were performed on the baseline...comparison to the 0◦ pumping blade due to a negative thrust effect that resulted from mass flow through the pumping slots. When operating at the higher
2014-01-01
We developed an evidence-based practice guideline to support occupational safety and health (OSH) professionals in assessing the risk due to lifting and in selecting effective preventive measures for low back pain (LBP) in the Netherlands. The guideline was developed at the request of the Dutch government by a project team of experts and OSH professionals in lifting and work-related LBP. The recommendations for risk assessment were based on the quality of instruments to assess the risk on LBP due to lifting. Recommendations for interventions were based on a systematic review of the effects of worker- and work directed interventions to reduce back load due to lifting. The quality of the evidence was rated as strong (A), moderate (B), limited (C) or based on consensus (D). Finally, eight experts and twenty-four OSH professionals commented on and evaluated the content and the feasibility of the preliminary guideline. For risk assessment we recommend loads heavier than 25 kg always to be considered a risk for LBP while loads less than 3 kg do not pose a risk. For loads between 3–25 kg, risk assessment shall be performed using the Manual handling Assessment Charts (MAC)-Tool or National Institute for Occupational Safety and Health (NIOSH) lifting equation. Effective work oriented interventions are patient lifting devices (Level A) and lifting devices for goods (Level C), optimizing working height (Level A) and reducing load mass (Level C). Ineffective work oriented preventive measures are regulations to ban lifting without proper alternatives (Level D). We do not recommend worker-oriented interventions but consider personal lift assist devices as promising (Level C). Ineffective worker-oriented preventive measures are training in lifting technique (Level A), use of back-belts (Level A) and pre-employment medical examinations (Level A). This multidisciplinary evidence-based practice guideline gives clear criteria whether an employee is at risk for LBP while lifting and provides an easy-reference for (in)effective risk reduction measures based on scientific evidence, experience, and consensus among OSH experts and practitioners. PMID:24999432
Kuijer, P Paul Fm; Verbeek, Jos Ham; Visser, Bart; Elders, Leo Am; Van Roden, Nico; Van den Wittenboer, Marion Er; Lebbink, Marian; Burdorf, Alex; Hulshof, Carel Tj
2014-01-01
We developed an evidence-based practice guideline to support occupational safety and health (OSH) professionals in assessing the risk due to lifting and in selecting effective preventive measures for low back pain (LBP) in the Netherlands. The guideline was developed at the request of the Dutch government by a project team of experts and OSH professionals in lifting and work-related LBP. The recommendations for risk assessment were based on the quality of instruments to assess the risk on LBP due to lifting. Recommendations for interventions were based on a systematic review of the effects of worker- and work directed interventions to reduce back load due to lifting. The quality of the evidence was rated as strong (A), moderate (B), limited (C) or based on consensus (D). Finally, eight experts and twenty-four OSH professionals commented on and evaluated the content and the feasibility of the preliminary guideline. For risk assessment we recommend loads heavier than 25 kg always to be considered a risk for LBP while loads less than 3 kg do not pose a risk. For loads between 3-25 kg, risk assessment shall be performed using the Manual handling Assessment Charts (MAC)-Tool or National Institute for Occupational Safety and Health (NIOSH) lifting equation. Effective work oriented interventions are patient lifting devices (Level A) and lifting devices for goods (Level C), optimizing working height (Level A) and reducing load mass (Level C). Ineffective work oriented preventive measures are regulations to ban lifting without proper alternatives (Level D). We do not recommend worker-oriented interventions but consider personal lift assist devices as promising (Level C). Ineffective worker-oriented preventive measures are training in lifting technique (Level A), use of back-belts (Level A) and pre-employment medical examinations (Level A). This multidisciplinary evidence-based practice guideline gives clear criteria whether an employee is at risk for LBP while lifting and provides an easy-reference for (in)effective risk reduction measures based on scientific evidence, experience, and consensus among OSH experts and practitioners.
Some calculated effects of non-uniform inflow on the radiated noise of a large wind turbine
NASA Technical Reports Server (NTRS)
Greene, G. C.; Hubbard, H. H.
1980-01-01
Far field computations were performed for a large wind turbine to evaluate the effects of non-uniform aerodynamic loading over the rotor disk. A modified version of the Farassat/Nystrom propeller noise prediction program was applied to account for the variations in loading due to inflow interruption by the upstream support tower. The computations indicate that for the uniform inflow case, relatively low noise levels are generated and the first rotational harmonic dominated the spectrum. For cases representing wake flow deficiences due to the tower structure, subtantially increased noise levels for all harmonics are indicated, the greatest increases being associated with the higher order harmonics.
Assessment of dynamic effects on aircraft design loads: The landing impact case
NASA Astrophysics Data System (ADS)
Bronstein, Michael; Feldman, Esther; Vescovini, Riccardo; Bisagni, Chiara
2015-10-01
This paper addresses the potential benefits due to a fully dynamic approach to determine the design loads of a mid-size business jet. The study is conducted by considering the fuselage midsection of the DAEDALOS aircraft model with landing impact conditions. The comparison is presented in terms of stress levels between the novel dynamic approach and the standard design practice based on the use of equivalent static loads. The results illustrate that a slight reduction of the load levels can be achieved, but careful modeling of the damping level is needed. Guidelines for an improved load definition are discussed, and suggestions for future research activities are provided.
Adaptive Load-Balancing Algorithms using Symmetric Broadcast Networks
NASA Technical Reports Server (NTRS)
Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak; Biegel, Bryan A. (Technical Monitor)
2002-01-01
In a distributed computing environment, it is important to ensure that the processor workloads are adequately balanced, Among numerous load-balancing algorithms, a unique approach due to Das and Prasad defines a symmetric broadcast network (SBN) that provides a robust communication pattern among the processors in a topology-independent manner. In this paper, we propose and analyze three efficient SBN-based dynamic load-balancing algorithms, and implement them on an SGI Origin2000. A thorough experimental study with Poisson distributed synthetic loads demonstrates that our algorithms are effective in balancing system load. By optimizing completion time and idle time, the proposed algorithms are shown to compare favorably with several existing approaches.
A parametric study of harmonic rotor hub loads
NASA Technical Reports Server (NTRS)
He, Chengjian
1993-01-01
A parametric study of vibratory rotor hub loads in a nonrotating system is presented. The study is based on a CAMRAD/JA model constructed for the GBH (Growth Version of Blackhawk Helicopter) Mach-scaled wind tunnel rotor model with high blade twist (-16 deg). The theoretical hub load predictions are validated by correlation with available measured data. Effects of various blade aeroelastic design changes on the harmonic nonrotating frame hub loads at both low and high forward flight speeds are investigated. The study aims to illustrate some of the physical mechanisms for change in the harmonic rotor hub loads due to blade design variations.
Rotor-to-stator rub vibration in centrifugal compressor
NASA Technical Reports Server (NTRS)
Gao, J. J.; Qi, Q. M.
1985-01-01
One example of excessive vibration encountered during loading of a centrifugal compressor train (H type compressor with HP casing) is discussed. An investigation was made of the effects of the dynamic load on the bearing stiffness and the rotor-bearing system critical speed. The high vibration occurred at a "threshold load," but the machine didn't run smoothly due to rubs even when it had passed through the threshold load. The acquisition and discussion of the data taken in the field as well as a description of the case history which utilizes background information to identify the malfunction conditions is presented. The analysis shows that the failures, including full reverse precession rub and exact one half subharmonic vibration, were caused by the oversize bearings and displacement of the rotor center due to foundation deformation and misalignment between gear shafts, etc. The corrective actions taken to alleviate excessive vibration and the problems which remain to be solved are also presented.
Injectable SN-38-loaded Polymeric Depots for Cancer Chemotherapy of Glioblastoma Multiforme.
Manaspon, Chawan; Nasongkla, Norased; Chaimongkolnukul, Khuanjit; Nittayacharn, Pinunta; Vejjasilpa, Ketpat; Kengkoom, Kanchana; Boongird, Atthaporn; Hongeng, Suradej
2016-12-01
SN-38, a potent chemotherapeutic drug, has not been used clinically because of its severe side effects and poor solubility. In this work, we aimed to evaluate the effect of dose and multiple injections of SN-38-loaded polymeric depots on antitumor efficacy and toxicity in vivo. Preparation and characterization of SN-38-loaded depots were performed and evaluated in vitro using human glioblastoma cell line, U-87MG. Antitumor efficacy with different depot administrations including dose, position of depot injection and number of injections were evaluated in tumor model in nude mice. Depots encapsulated SN-38 with high encapsulation efficiency (~98.3%). High amount of SN-38 (3.0 ± 0.1 mg) was prolonged and controlled release over time and showed anticancer activity against U-87MG cell line in vitro. For one course administration, depots exhibited better antitumor efficacy and reduced toxicity compared to free SN-38. Elevated doses and multiple injections of SN-38-loaded depots and free SN-38 provided greater tumor growth inhibition and animal survival. All animals received SN-38-loaded depots were well tolerated and survived while most of those received free SN-38 died at day 30. Free SN-38 showed severe toxic effect compared to minimal toxicity from SN-38-loaded depots which was due to lower SN-38 level in systemic circulation. Fluorescence imaging and histopathology confirmed that SN-38 released from depots was detected throughout tumors 35 days post administration. SN-38-loaded depots were proved as a promising new treatment for highly invasive glioblastoma multiforme with low acute toxicity due to controlled release of SN-38.
Spranger, T; Hettelingh, J-P; Slootweg, J; Posch, M
2008-08-01
Long-range transboundary air pollution has caused severe environmental effects in Europe. European air pollution abatement policy, in the framework of the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP Convention) and the European Union Clean Air for Europe (CAFE) programme, has used critical loads and their exceedances by atmospheric deposition to design emission abatement targets and strategies. The LRTAP Convention International Cooperative Programme on Modelling and Mapping Critical Loads and Levels and Air Pollution Effects, Risks and Trends (ICP M&M) generates European critical loads datasets to enable this work. Developing dynamic nitrogen flux models and using them for a prognosis and assessment of nitrogen effects remains a challenge. Further research is needed on links between nitrogen deposition effects, climate change, and biodiversity.
Large inter-individual and intra-individual variability in the effect of perceptual load
Yeshurun, Yaffa
2017-01-01
This study examined whether the recurrent difficulty to replicate results obtained with paradigms measuring distractor processing as a function of perceptual load is due to individual differences. We first reanalyzed, at the individual level, the data of eight previously reported experiments. These reanalyses revealed substantial inter-individual differences, with particularly low percentage of participants whose performance matched the load theory’s predictions (i.e., larger distractor interference with low than high levels of load). Moreover, frequently the results were opposite to the theory's predictions–larger interference in the high than low load condition; and often a reversed compatibility effect emerged–better performance in the incompatible than neutral condition. Subsequently, seven observers participated in five identical experimental sessions. If the observed inter-individual differences are due to some stable trait or perceptual capacity, similar results should have emerged in all sessions of a given participant. However, all seven participants showed large between-sessions variations with similar patterns to those found between participants. These findings question the theoretical foundation implemented with these paradigms, as none of the theories suggested thus far can account for such inter- and intra-individual differences. Thus, these paradigms should be used with caution until further research will provide better understanding of what they actually measure. PMID:28406997
Lake, Spencer P; Miller, Kristin S; Elliott, Dawn M; Soslowsky, Louis J
2009-12-01
Tendon exhibits nonlinear stress-strain behavior that may be partly due to movement of collagen fibers through the extracellular matrix. While a few techniques have been developed to evaluate the fiber architecture of other soft tissues, the organizational behavior of tendon under load has not been determined. The supraspinatus tendon (SST) of the rotator cuff is of particular interest for investigation due to its complex mechanical environment and corresponding inhomogeneity. In addition, SST injury occurs frequently with limited success in treatment strategies, illustrating the need for a better understanding of SST properties. Therefore, the objective of this study was to quantitatively evaluate the inhomogeneous tensile mechanical properties, fiber organization, and fiber realignment under load of human SST utilizing a novel polarized light technique. Fiber distributions were found to become more aligned under load, particularly during the low stiffness toe-region, suggesting that fiber realignment may be partly responsible for observed nonlinear behavior. Fiber alignment was found to correlate significantly with mechanical parameters, providing evidence for strong structure-function relationships in tendon. Human SST exhibits complex, inhomogeneous mechanical properties and fiber distributions, perhaps due to its complex loading environment. Surprisingly, histological grade of degeneration did not correlate with mechanical properties.
NASA Astrophysics Data System (ADS)
Kumbhalkar, M. A.; Bhope, D. V.; Vanalkar, A. V.
2016-09-01
The dynamics of the rail vehicle represents a balance between the forces acting between wheel and rail, the inertia forces and the forces exerted by suspension and articulation. Axial loading on helical spring causes vertical deflection at straight track but failures calls to investigate for lateral and longitudinal loading at horizontal and vertical curves respectively. Goods carrying vehicle has the frequent failures of middle axle inner suspension spring calls for investigation. The springs are analyzed for effect of stress concentration due to centripetal force and due to tractive and breaking effort. This paper also discusses shear failure analysis of spring at curvature and at uphill at various speeds for different loading condition analytically and by finite element analysis. Two mass rail vehicle suspension systems have been analyzed for vibration responses analytically using mathematical tool Matlab Simulink and the same will be evaluated using FFT vibration analyzer to find peak resonance in vertical, lateral and longitudinal direction. The results prove that the suspension acquires high repeated load in vertical and lateral direction due to tracking and curving causes maximum stress concentration on middle axle suspension spring as height of this spring is larger than end axle spring in primary suspension system and responsible for failure of middle axle suspension spring due to high stress acquisition.
To hear or not to hear: Voice processing under visual load.
Zäske, Romi; Perlich, Marie-Christin; Schweinberger, Stefan R
2016-07-01
Adaptation to female voices causes subsequent voices to be perceived as more male, and vice versa. This contrastive aftereffect disappears under spatial inattention to adaptors, suggesting that voices are not encoded automatically. According to Lavie, Hirst, de Fockert, and Viding (2004), the processing of task-irrelevant stimuli during selective attention depends on perceptual resources and working memory. Possibly due to their social significance, faces may be an exceptional domain: That is, task-irrelevant faces can escape perceptual load effects. Here we tested voice processing, to study whether voice gender aftereffects (VGAEs) depend on low or high perceptual (Exp. 1) or working memory (Exp. 2) load in a relevant visual task. Participants adapted to irrelevant voices while either searching digit displays for a target (Exp. 1) or recognizing studied digits (Exp. 2). We found that the VGAE was unaffected by perceptual load, indicating that task-irrelevant voices, like faces, can also escape perceptual-load effects. Intriguingly, the VGAE was increased under high memory load. Therefore, visual working memory load, but not general perceptual load, determines the processing of task-irrelevant voices.
Wireless and embedded carbon nanotube networks for damage detection in concrete structures
NASA Astrophysics Data System (ADS)
Saafi, Mohamed
2009-09-01
Concrete structures undergo an uncontrollable damage process manifesting in the form of cracks due to the coupling of fatigue loading and environmental effects. In order to achieve long-term durability and performance, continuous health monitoring systems are needed to make critical decisions regarding operation, maintenance and repairs. Recent advances in nanostructured materials such as carbon nanotubes have opened the door for new smart and advanced sensing materials that could effectively be used in health monitoring of structures where wireless and real time sensing could provide information on damage development. In this paper, carbon nanotube networks were embedded into a cement matrix to develop an in situ wireless and embedded sensor for damage detection in concrete structures. By wirelessly measuring the change in the electrical resistance of the carbon nanotube networks, the progress of damage can be detected and monitored. As a proof of concept, wireless cement-carbon nanotube sensors were embedded into concrete beams and subjected to monotonic and cyclic loading to evaluate the effect of damage on their response. Experimental results showed that the wireless response of the embedded nanotube sensors changes due to the formation of cracks during loading. In addition, the nanotube sensors were able to detect the initiation of damage at an early stage of loading.
A procedure for utilization of a damage-dependent constitutive model for laminated composites
NASA Technical Reports Server (NTRS)
Lo, David C.; Allen, David H.; Harris, Charles E.
1992-01-01
Described here is the procedure for utilizing a damage constitutive model to predict progressive damage growth in laminated composites. In this model, the effects of the internal damage are represented by strain-like second order tensorial damage variables and enter the analysis through damage dependent ply level and laminate level constitutive equations. The growth of matrix cracks due to fatigue loading is predicted by an experimentally based damage evolutionary relationship. This model is incorporated into a computer code called FLAMSTR. This code is capable of predicting the constitutive response and matrix crack damage accumulation in fatigue loaded laminated composites. The structure and usage of FLAMSTR are presented along with sample input and output files to assist the code user. As an example problem, an analysis of crossply laminates subjected to two stage fatigue loading was conducted and the resulting damage accumulation and stress redistribution were examined to determine the effect of variations in fatigue load amplitude applied during the first stage of the load history. It was found that the model predicts a significant loading history effect on damage evolution.
Phuengkham, Hathaichanok; Teeranachaideekul, Veerawat; Chulasiri, Malyn; Nasongkla, Norased
2016-01-01
Chlorophene-loaded nanospheres with various formulation parameters were evaluated. The optimal formulation was found at 0.1% w/v of poloxamer 407, 15 mL of ethyl acetate and 20% initial chlorophene loading that provided the suitable size (179 nm), the highest loading content (19.2%), encapsulation efficiency (88.0%) and yield (91.6%). Moreover, encapsulation of chlorophene in nanospheres was able to prolong and sustain drug release over one month. Chlorophene-loaded nanospheres were effective against Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans), the main cause of hospital-acquired infections. Chlorophene-loaded nanospheres were effective against S. aureus (>46 µg/mL) and C. albicans (>184 µg/mL). These nanospheres appeared to have profound effect on the time-dependent hemolytic activity due to gradual release of chlorophene. At the concentration of 46 µg/mL, nearly no HRBC hemolysis in 24 h compared to 80% of hemolysis from free drug. In conclusion, polymeric nanospheres were successfully fabricated to encapsulate chlorophene which can eliminate inherent toxicity of drugs and have potential uses in prolonged release of antimicrobial.
Nishida, Yasuhiro; Maruyama, Satoshi; Shouji, Ichiro; Kemuriyama, Takehito; Tashiro, Akimasa; Ohta, Hiroyuki; Hagisawa, Kohsue; Hiruma, Megumi; Yokoe, Hidetake
2016-11-01
The effects of gravitational loading (G load) on humans have been studied ever since the early 20th century. After the dangers of G load in the vertical head-to-leg direction (+Gz load) became evident, many animal experiments were performed between 1920 and 1945 in an effort to identify the origins of high G-force-induced loss of consciousness (G-LOC), which led to development of the anti-G suit. The establishment of norms and training for G-LOC prevention resulted in a gradual decline in reports of animal experiments on G load, a decline that steepened with the establishment of anti-G techniques in humans, such as special breathing methods and skeletal muscle contraction, called an anti-G straining maneuver, which are voluntary physiological functions. Because the issue involves humans during flight, the effects on humans themselves are clearly of great importance, but ethical considerations largely preclude any research on the human body that probes to any depth the endogenous physiological states and functions. The decline in reports on animal experiments may therefore signify a general decline in research into the changes seen in the various involuntary, autonomic functions. The declining number of related reports on investigations of physiological autonomic systems other than the circulatory system seems to bear this out. In this review, we therefore describe our findings on the effects of G load on the autonomic nervous system, cardiac function, cerebral blood flow, tissue oxygen level, and other physiological autonomic functions as measured in animal experiments, including denervation or pharmacological blocking, in an effort to present the limits and the mechanisms of G-load response extending physiologically. We demonstrate previously unrecognized risks due to G load, and also describe fundamental research aimed at countering these effects and development of a scientific training measure devised for actively enhancing +Gz tolerance in involuntary, autonomic system functions. The research described here is rough and incomplete, but it is offered as a beginning, in the hope that researchers may find it of reference and carry the effort toward completion. The advances described here include (1) a finding that cerebral arterial perfusion pressure decreases to nearly zero under +5.0 Gz loads, (2) indications that G load may cause myocardial microinjuries, (3) detection of differences between cerebral regions in tissue-oxygen level under +3.0 Gz load, (4) discovery that hypotension is deeper under decreasing +Gz loads than increasing +Gz loads with use of an anti-G system, due in part to suppression of baroreceptor reflex, and (5) revelations and efforts investigating new measures to reduce cerebral hypotension, namely the "teeth-clenching pressor response" and preconditioning with slight but repeated G loads.
Comparing models of seasonal deformation to horizontal and vertical PBO GPS data
NASA Astrophysics Data System (ADS)
Bartlow, N. M.; Fialko, Y. A.; van Dam, T. M.
2015-12-01
GPS monuments around the world exhibit seasonal displacements in both the horizontal and vertical direction with amplitudes on the order of centimeters. For analysis of tectonic signals, researchers typically fit and remove a sine function with an annual period, and sometimes an additional sine function with a semiannual period. As interest grows in analyzing small-amplitude, long-period deformation signals it becomes more important to accurately correct for seasonal variations. It is well established that the vertical component of seasonal GPS signals is largely due to continental water storage cycles (e.g. van Dam et al., GRL, 2001). Other recognized sources of seasonal loading include atmospheric pressure loading and oceanic loading due to non-steric changes in ocean height (e.g. van Dam et al., J. Geodesy, 2012). Here we attempt to build a complete physical model of seasonal loading by considering all of these sources (continental water storage, atmospheric pressure, and oceanic loading) and comparing our model to horizontal and vertical GPS data in the Western US. Atmospheric loading effects are computed from the National Center for Environmental Prediction 6-hourly global reanalysis surface pressure fields; the terrestrial water loading and ocean loading models are generated using SPOTL (Some Programs for Ocean Tide Loading; Agnew, SIO Technical Report, 2012) and parameters from NASA's Land Data Assimilation Systems and the Estimating the Circulation and Climate of the Ocean model, version 4. We find that with a few exceptions, our seasonal loading model predicts the correct phases but underestimates the amplitudes of vertical seasonal loads, and is a generally poor fit to the observed horizontal seasonal signals. This implies that our understanding of the driving mechanisms behind seasonal variations in the GPS data is still incomplete and needs to be improved before physics-based models can be used as an effective correction tool for the GPS timeseries.
Wei, Yi; Gao, Li; Wang, Lu; Shi, Lin; Wei, Erdong; Zhou, Baotong; Zhou, Li; Ge, Bo
2017-11-01
We reported a simple polydopamine (PDA)-based surface modification method to prepare novel targeted doxorubicin-loaded mesoporous silica nanoparticles and peptide CSNRDARRC conjugation (DOX-loaded MSNs@PDA-PEP) for enhancing the therapeutic effects on bladder cancer. Drug-loaded NPs were characterized in terms of size, size distribution, zeta potential, transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) surface area and drug loading content. In vitro drug release indicated that DOX-loaded MSNs@PDA and MSNs@PDA-PEP had similar release kinetic profiles of DOX. The PDA coating well controlled DOX release and was highly sensitive to pH value. Confocal laser scanning microscopy (CLSM) showed that drug-loaded MSNs could be internalized by human bladder cancer cell line HT-1376, and DOX-loaded MSNs@PDA-PEP had the highest cellular uptake efficiency due to ligand-receptor recognition. The antitumor effects of DOX-loaded nanoparticles were evaluated by the MTT assay in vitro and by a xenograft tumor model in vivo, demonstrating that targeted nanocarriers DOX-loaded MSNs@PDA-PEP were significantly superior to free DOX and DOX-loaded MSNs@PDA. The novel DOX-loaded MSNs@PDA-PEP, which specifically recognized HT-1376 cells, can be used as a potential targeted drug delivery system for bladder cancer therapy.
Computational evaluation of load carriage effects on gait balance stability.
Mummolo, Carlotta; Park, Sukyung; Mangialardi, Luigi; Kim, Joo H
2016-01-01
Evaluating the effects of load carriage on gait balance stability is important in various applications. However, their quantification has not been rigorously addressed in the current literature, partially due to the lack of relevant computational indices. The novel Dynamic Gait Measure (DGM) characterizes gait balance stability by quantifying the relative effects of inertia in terms of zero-moment point, ground projection of center of mass, and time-varying foot support region. In this study, the DGM is formulated in terms of the gait parameters that explicitly reflect the gait strategy of a given walking pattern and is used for computational evaluation of the distinct balance stability of loaded walking. The observed gait adaptations caused by load carriage (decreased single support duration, inertia effects, and step length) result in decreased DGM values (p < 0.0001), which indicate that loaded walking motions are more statically stable compared with the unloaded normal walking. Comparison of the DGM with other common gait stability indices (the maximum Floquet multiplier and the margin of stability) validates the unique characterization capability of the DGM, which is consistently informative of the presence of the added load.
The effect of circumferential distortion on fan performance at two levels of blade loading
NASA Technical Reports Server (NTRS)
Hartmann, M. J.; Sanger, N. L.
1975-01-01
Single stage fans designed for two levels of pressure ratio or blade loading were subjected to screen-induced circumferential distortions of 90-degree extent. Both fan rotors were designed for a blade tip speed of 425 m/sec, blade solidity of 1.3 and a hub-to-tip radius ratio of 0.5. Circumferential measurements of total pressure, temperature, static pressure, and flow angle were obtained at the hub, mean and tip radii at five axial stations. Rotor loading level did not appear to have a significant influence on rotor response to distorted flow. Losses in overall pressure ratio due to distortion were most severe in the stator hub region of the more highly loaded stage. At the near stall operating condition tip and hub regions of (either) rotor demonstrated different response characteristics to the distorted flow. No effect of loading was apparent on interactions between rotor and upstream distorted flow fields.
Time- & Load-Dependence of Triboelectric Effect.
Pan, Shuaihang; Yin, Nian; Zhang, Zhinan
2018-02-06
Time- and load-dependent friction behavior is considered as important for a long time, due to its time-evolution and force-driving characteristics. However, its electronic behavior, mainly considered in triboelectric effect, has almost never been given the full attention and analyses from the above point of view. In this paper, by experimenting with fcc-latticed aluminum and copper friction pairs, the mechanical and electronic behaviors of friction contacts are correlated by time and load analyses, and the behind physical understanding is provided. Most importantly, the difference of "response lag" in force and electricity is discussed, the extreme points of coefficient of friction with the increasing normal loads are observed and explained with the surface properties and dynamical behaviors (i.e. wear), and the micro and macro theories linking tribo-electricity to normal load and wear (i.e. the physical explanation between coupled electrical and mechanical phenomena) are successfully developed and tested.
Klemen, Jane; Büchel, Christian; Bühler, Mira; Menz, Mareike M; Rose, Michael
2010-03-01
Attentional interference between tasks performed in parallel is known to have strong and often undesired effects. As yet, however, the mechanisms by which interference operates remain elusive. A better knowledge of these processes may facilitate our understanding of the effects of attention on human performance and the debilitating consequences that disruptions to attention can have. According to the load theory of cognitive control, processing of task-irrelevant stimuli is increased by attending in parallel to a relevant task with high cognitive demands. This is due to the relevant task engaging cognitive control resources that are, hence, unavailable to inhibit the processing of task-irrelevant stimuli. However, it has also been demonstrated that a variety of types of load (perceptual and emotional) can result in a reduction of the processing of task-irrelevant stimuli, suggesting a uniform effect of increased load irrespective of the type of load. In the present study, we concurrently presented a relevant auditory matching task [n-back working memory (WM)] of low or high cognitive load (1-back or 2-back WM) and task-irrelevant images at one of three object visibility levels (0%, 50%, or 100%). fMRI activation during the processing of the task-irrelevant visual stimuli was measured in the lateral occipital cortex and found to be reduced under high, compared to low, WM load. In combination with previous findings, this result is suggestive of a more generalized load theory, whereby cognitive load, as well as other types of load (e.g., perceptual), can result in a reduction of the processing of task-irrelevant stimuli, in line with a uniform effect of increased load irrespective of the type of load.
NASA Technical Reports Server (NTRS)
Levy, Samuel; Krupen, Philip
1943-01-01
The von Karman equations for flat plates are solved beyond the buckling load up to edge strains equal to eight time the buckling strain, for the extreme case of rigid clamping along the edges parallel to the load. Deflections, bending stresses, and membrane stresses are given as a function of end compressive load. The theoretical values of effective width are compared with the values derived for simple support along the edges parallel to the load. The increases in effective width due to rigid clamping drops from about 20 percent near the buckling strain to about 8 percent at an edge strain equal to eight times the buckling strain. Experimental values of effective width in the elastic range reported in NACA Technical Note No. 684 are between the theoretical curves for the extremes of simple support and rigid clamping.
Movahedi, Nima; Marsavina, Liviu
2018-01-01
In this research work, the effect of lateral loading (LL) on the crushing performance of empty tubes (ETs) and ex situ aluminum foam-filled tubes (FFTs) was investigated at 300 °C. The cylindrical thin-walled steel tube was filled with the closed-cell aluminum alloy foam that compressed under quasi-static loading conditions. During the compression test, the main mechanical properties of the ETs improved due to the interaction effect between the cellular structure of the foam and the inner wall of the empty tube. In addition, the initial propagated cracks on the steel tubes reduced considerably as a result of such interaction. Furthermore, the obtained results of the LL loading were compared with the axial loading (AL) results for both ETs and FFTs at the same temperature. The findings indicated that the application of loading on the lateral surface of the composite causes the lower mechanical properties of both ETs and FFTs in comparison with the axial loading conditions. PMID:29617300
Modeling fuel treatment costs on Forest Service Lands in the Western United States
David Calkin; Krista Gebert
2006-01-01
Years of successful fire suppression have led to high fuel loads on the nation's forests, and steps are being taken by the nation's land management agencies to reduce these fuel loads. However, to achieve desired outcomes in a fiscally responsible manner, the cost and effectiveness in reducing losses due to wildland fire of different fuel treatments in...
Vibration analysis of printed circuit boards: Effect of boundary condition
NASA Astrophysics Data System (ADS)
Prashanth, M. D.
2018-04-01
A spacecraft consists of a number of electronic packages to meet the functional requirements. An electronic package is generally an assembly of printed circuit boards placed in a mechanical housing. A number of electronic components are mounted on the printed circuit board (PCB). A spacecraft experiences various types of loads during its launch such as vibration, acoustic and shock loads. Prediction of response for printed circuit boards due to vibration loads is important for mechanical design and reliability of electronic packages. The modeling and analysis of printed circuit boards is required for accurate prediction of response due to vibration loads. The response of PCB is highly dependent on the mounting configuration of PCB. In addition, anti-vibration mounts or stiffeners are used to reduce the PCB response. Vibration analysis of printed circuit boards is carried out using finite element method. The objective of this paper is to determine the dynamic characteristics of a printed circuit board. Modeling and analysis of PCB shall be carried out to study the effect of boundary conditions on the vibration response. The modeling of stiffeners or ribs shall also be considered in detail. The analysis results shall be validated using vibration tests of PCB.
Theoretical antisymmetric span loading for wings of arbitrary plan form at subsonic speeds
NASA Technical Reports Server (NTRS)
Deyoung, John
1951-01-01
A simplified lifting-surface theory that includes effects of compressibility and spanwise variation of section lift-curve slope is used to provide charts with which antisymmetric loading due to arbitrary antisymmetric angle of attack can be found for wings having symmetric plan forms with a constant spanwise sweep angle of the quarter-chord line. Consideration is given to the flexible wing in roll. Aerodynamic characteristics due to rolling, deflected ailerons, and sideslip of wings with dihedral are considered. Solutions are presented for straight-tapered wings for a range of swept plan forms.
Changes of instability thresholds of rotor due to bearing misalignments
NASA Technical Reports Server (NTRS)
Springer, H.; Ecker, H.; Gunter, E. J.
1985-01-01
The influence of bearing misalignment upon the dynamic characteristics of statistically indeterminant rotor bearing systems is investigated. Both bearing loads and stability speed limits of a rotor may be changed significantly by magnitude and direction of bearing misalignment. The useful theory of short journal bearings is introduced and simple analytical expressions, governing the misalignment problem, are carried out. Polar plots for the bearing load capacities and stability maps, describing the speed limit in terms of misalignment, are presented. These plots can be used by the designer to estimate deviations between calculation and experimental data due to misalignment effects.
White matter lesions and the cholinergic deficit in aging and mild cognitive impairment.
Richter, Nils; Michel, Anne; Onur, Oezguer A; Kracht, Lutz; Dietlein, Markus; Tittgemeyer, Marc; Neumaier, Bernd; Fink, Gereon R; Kukolja, Juraj
2017-05-01
In Alzheimer's disease (AD), white matter lesions (WMLs) are associated with an increased risk of progression from mild cognitive impairment (MCI) to dementia, while memory deficits have, at least in part, been linked to a cholinergic deficit. We investigated the relationship between WML load assessed with the Scheltens scale, cerebral acetylcholinesterase (AChE) activity measured with [ 11 C]N-methyl-4-piperidyl acetate PET, and neuropsychological performance in 17 patients with MCI due to AD and 18 cognitively normal older participants. Only periventricular, not nonperiventricular, WML load negatively correlated with AChE activity in both groups. Memory performance depended on periventricular and total WML load across groups. Crucially, AChE activity predicted memory function better than WML load, gray matter atrophy, or age. The effects of WML load on memory were fully mediated by AChE activity. Data suggest that the contribution of WML to the dysfunction of the cholinergic system in MCI due to AD depends on WML distribution. Pharmacologic studies are warranted to explore whether this influences the response to cholinergic treatment. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sinclair, Gregory; Gonderman, Sean; Tripathi, Jitendra; Ray, Tyler; Hassanein, Ahmed
2017-10-01
The performance of plasma facing components (PFCs) in a fusion device are expected to change due to high flux particle loading during operation. Tungsten (W) is a promising PFC candidate material, due to its high melting point, high thermal conductivity, and low tritium retention. However, ion irradiation of D and He have each shown to diminish the thermal strength of W. This work investigates the synergistic effect between ion species, using dual beam irradiation, on the thermal response of W during ELM-like pulsed heat loading. Experiments studied three different loading conditions: laser, laser + He+, and laser + He+ + D+. 100 eV He+ and D+ exposures used a flux of 3.0-3.5 x 1020 m-2 s-1. ELM-like loading was applied using a pulsed Nd:YAG laser at an energy density of 0.38-1.51 MJ m-2 (3600 1 ms pulses at 1 Hz). SEM imaging revealed that laser + He+ loading at 0.76 MJ m-2 caused surface melting, inhibiting fuzz formation. Increasing the laser fluence decreased grain size and increased surface pore density. Thermally-enhanced migration of trapped gases appear to reflect resultant molten morphology. This work was supported by the National Science Foundation PIRE project.
Working memory load eliminates the survival processing effect.
Kroneisen, Meike; Rummel, Jan; Erdfelder, Edgar
2014-01-01
In a series of experiments, Nairne, Thompson, and Pandeirada (2007) demonstrated that words judged for their relevance to a survival scenario are remembered better than words judged for a scenario not relevant on a survival dimension. They explained this survival-processing effect by arguing that nature "tuned" our memory systems to process and remember fitness-relevant information. Kroneisen and Erdfelder (2011) proposed that it may not be survival processing per se that facilitates recall but the richness and distinctiveness with which information is encoded. To further test this account, we investigated how the survival processing effect is affected by cognitive load. If the survival processing effect is due to automatic processes or, alternatively, if survival processing is routinely prioritized in dual-task contexts, we would expect this effect to persist under cognitive load conditions. If the effect relies on cognitively demanding processes like richness and distinctiveness of encoding, however, the survival processing benefit should be hampered by increased cognitive load during encoding. Results were in line with the latter prediction, that is, the survival processing effect vanished under dual-task conditions.
Effects of Load and Speed on Wear Rate of Abrasive Wear for 2014 Al Alloy
NASA Astrophysics Data System (ADS)
Odabas, D.
2018-01-01
In this paper, the effects of the normal load and sliding speed on wear rate of two-body abrasive wear for 2014 Al Alloy were investigated in detail. In order to understand the variation in wear behaviour with load and speed, wear tests were carried out at a sliding distance of 11 m, a speed of 0.36 m/s, a duration of 30 s and loads in the range 3-11 N using 220 grit abrasive paper, and at a speed range 0.09-0.90 m/s, a load of 5 N and an average sliding distance of 11 m using abrasive papers of 150 grit size under dry friction conditions. Before the wear tests, solution treatment of the 2014 Al alloy was carried out at temperatures of 505 and 520 °C for 1 h in a muffle furnace and then quenched in cold water at 15 °C. Later, the ageing treatment was carried out at 185 °C for 8 h in the furnace. Generally, wear rate due to time increased linearly and linear wear resistance decreased with increasing loads. However, the wear rate was directly proportional to the load up to a critical load of 7 N. After this load, the slope of the curves decreased because the excessive deformation of the worn surface and the instability of the abrasive grains began to increase. When the load on an abrasive grain reaches a critical value, the groove width is about 0.17 of the abrasive grain diameter, and the abrasive grains begin to fail. The wear rate due to time increased slightly as the sliding speed increased in the range 0.09-0.90 m/s. The reason for this is that changes arising from strain rate and friction heating are expected with increasing sliding speeds.
NASA Technical Reports Server (NTRS)
Hunton, Lynn W.; Dew, Joseph K.; Salisbury, Ralph D.
1949-01-01
Wind-tunnel tests at low Mach number of a Republic F-84C airplane were conducted to determine by pressure-distribution measurements the air loads on wing-tip tanks and the change in wing load distribution due to the presence of tip tanks. Measurements of the aeroelastic twist of the wing were also obtained. Results are presented in the form of loading coefficient, center-of- pressure location, pitching-moment coefficient, aerodynamic-center location, and aeroelastic twist. The investigation revealed that the redistributions in loading brought about by either the tip tanks or elastic deformation of the wing were relatively small when compared with the chnnges in loading normally associated with the deflection of an aileron.
Mullins effect in a filled elastomer under uniaxial tension
Maiti, A.; Small, W.; Gee, R. H.; ...
2014-01-16
Modulus softening and permanent set in filled polymeric materials due to cyclic loading and unloading, commonly known as the Mullins effect, can have a significant impact on their use as support cushions. The quantitative analysis of such behavior is essential to ensure the effectiveness of such materials in long-term deployment. In this work we combine existing ideas of filler-induced modulus enhancement, strain amplification, and irreversible deformation within a simple non-Gaussian constitutive model to quantitatively interpret recent measurements on a relevant PDMS-based elastomeric cushion. Also, we find that the experimental stress-strain data is consistent with the picture that during stretching (loading)more » two effects take place simultaneously: (1) the physical constraints (entanglements) initially present in the polymer network get disentangled, thus leading to a gradual decrease in the effective cross-link density, and (2) the effective filler volume fraction gradually decreases with increasing strain due to the irreversible pulling out of an initially occluded volume of the soft polymer domain.« less
Biomechanical effect of latissimus dorsi tendon transfer for irreparable massive cuff tear.
Oh, Joo Han; Tilan, Justin; Chen, Yu-Jen; Chung, Kyung Chil; McGarry, Michelle H; Lee, Thay Q
2013-02-01
The purpose of this study was to determine the biomechanical effects of latissimus dorsi transfer in a cadaveric model of massive posterosuperior rotator cuff tear. Eight cadaveric shoulders were tested at 0°, 30°, and 60° of abduction in the scapular plane with anatomically based muscle loading. Humeral rotational range of motion and the amount of humeral rotation due to muscle loading were measured. Glenohumeral kinematics and contact characteristics were measured throughout the range of motion. After testing in the intact condition, the supraspinatus and infraspinatus were resected. The cuff tear was then repaired by latissimus dorsi transfer. Two muscle loading conditions were applied after latissimus transfer to simulate increased tension that may occur due to limited muscle excursion. A repeated-measures analysis of variance was used for statistical analysis. The amount of internal rotation due to muscle loading and maximum internal rotation increased with massive cuff tear and was restored with latissimus transfer (P < .05). At maximum internal rotation, the humeral head apex shifted anteriorly, superiorly, and laterally at 0° of abduction after massive cuff tear (P < .05); this abnormal shift was corrected with latissimus transfer (P < .05). However, at 30° and 60° of abduction, latissimus transfer significantly altered kinematics (P < .05) and latissimus transfer with increased muscle loading increased contact pressure, especially at 60° of abduction. Latissimus dorsi transfer is beneficial in restoring humeral internal/external rotational range of motion, the internal/external rotational balance of the humerus, and glenohumeral kinematics at 0° of abduction. However, latissimus dorsi transfer with simulated limited excursion may lead to an overcompensation that can further deteriorate normal biomechanics, especially at higher abduction angles. Published by Mosby, Inc.
Spectral solar attenuation due to aerosol loading over an urban area in India
NASA Astrophysics Data System (ADS)
Latha, K. Madhavi; Badarinath, K. V. S.
2005-06-01
Anthropogenic activities in urban areas are sources for atmospheric aerosols and are increasing due to population explosion and migration. Many large cities in the developing world are presently plagued by high levels of atmospheric pollution and long-term effect of urban aerosol on climate is an important topic. In the present study, ground-based measurements of solar irradiance, aerosol loading and black carbon (BC) aerosol concentration have been analyzed during different aerosol loading conditions during 2003 over an urban environment. BC aerosols concentration has been observed to be enhanced during high aerosol optical depth day suggesting influence of local anthropogenic activities. The analysis of wind fields over the study area during the measurement period is from north with continental air mass prevailing over the region. Spectral measurements of solar irradiance exhibited variations based on aerosol loading in urban atmosphere. Relative attenuations caused by aerosols have been found to be of the order of 21% and 17% on the irradiance on visible and near infrared respectively.
NASA Technical Reports Server (NTRS)
Mccomb, Harvey G , Jr
1954-01-01
Equations are derived for the stress distributions caused by three types of loading on infinitely long circular, semimonocoque cylinders with flexible rings. The results are given as formula for the stringer loads and shear flows in the shell due to each type of loading. For each loading case these formulas can be used to construct tables of influence coefficients giving stringer loads and shear flows in the neighborhood of the load due to a unit magnitude of the load. (author)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugavaneshwar, Ramu Pasupathi, E-mail: r.p.sugavaneshwar@nims.go.jp, E-mail: NAGAO.Tadaaki@nims.go.jp; Chen, Kai; Lakshminarayana, Gandham
2015-11-01
Thin films of SrTiO{sub 3} (STO) and Rh-doped SrTiO{sub 3} (Rh-STO) were synthesized by sol-gel method and loaded with Ag nanoparticles. Pristine STO films exhibited anodic photocurrent while Rh-STO exhibited cathodic photocurrent. An enhancement in the overall cathodic photocurrent is observed with Ag nanoparticle loading and an additional enhancement in the visible light range is seen from the incident photon-to-current efficiency spectrum due to synergetic effect of Rh doping and Ag loading in STO.
Modeling Operator Performance in Low Task Load Supervisory Domains
2011-06-01
PDF Probability Distribution Function SAFE System for Aircrew Fatigue Evaluation SAFTE Sleep , Activity, Fatigue, and Task Effectiveness SCT...attentional capacity due to high mental workload. In low task load settings, fatigue is mainly caused by lack of sleep and boredom experienced by...performance decrements. Also, psychological fatigue is strongly correlated with lack of sleep . Not surprisingly, operators of the morning shift reported the
Ying Ouyang; Theodor D. Leininger; Jeff Hatten
2013-01-01
Elevated phosphorus (P) in surface waters can cause eutrophication of aquatic ecosystems and can impair water for drinking, industry, agriculture, and recreation. Currently, no effort has been devoted to estimating real-time variation and load of total P (TP) in surface waters due to the lack of suitable and/or cost-effective wireless sensors. However, when considering...
Neural effects of cognitive control load on auditory selective attention
Sabri, Merav; Humphries, Colin; Verber, Matthew; Liebenthal, Einat; Binder, Jeffrey R.; Mangalathu, Jain; Desai, Anjali
2014-01-01
Whether and how working memory disrupts or alters auditory selective attention is unclear. We compared simultaneous event-related potentials (ERP) and functional magnetic resonance imaging (fMRI) responses associated with task-irrelevant sounds across high and low working memory load in a dichotic-listening paradigm. Participants performed n-back tasks (1-back, 2-back) in one ear (Attend ear) while ignoring task-irrelevant speech sounds in the other ear (Ignore ear). The effects of working memory load on selective attention were observed at 130-210 msec, with higher load resulting in greater irrelevant syllable-related activation in localizer-defined regions in auditory cortex. The interaction between memory load and presence of irrelevant information revealed stronger activations primarily in frontal and parietal areas due to presence of irrelevant information in the higher memory load. Joint independent component analysis of ERP and fMRI data revealed that the ERP component in the N1 time-range is associated with activity in superior temporal gyrus and medial prefrontal cortex. These results demonstrate a dynamic relationship between working memory load and auditory selective attention, in agreement with the load model of attention and the idea of common neural resources for memory and attention. PMID:24946314
NASA Astrophysics Data System (ADS)
Yang, Di
Duplex stainless steel (DSS) is a dual-phase material with approximately equal volume amount of austenite and ferrite. It has both great mechanical properties (good ductility and high tensile/fatigue strength) and excellent corrosion resistance due to the mixture of the two phases. Cyclic loadings with high stress level and low frequency are experienced by many structures. However, the existing study on corrosion fatigue (CF) study of various metallic materials has mainly concentrated on relatively high frequency range. No systematic study has been done to understand the ultra-low frequency (˜10-5 Hz) cyclic loading effect on stress corrosion cracking (SCC) of DSSs. In this study, the ultra-low frequency cyclic loading effect on SCC of DSS 2205 was studied in acidified sodium chloride and caustic white liquor (WL) solutions. The research work focused on the environmental effect on SCC of DSS 2205, the cyclic stress effect on strain accumulation behavior of DSS 2205, and the combined environmental and cyclic stress effect on the stress corrosion crack initiation of DSS 2205 in the above environments. Potentiodynamic polarization tests were performed to investigate the electrochemical behavior of DSS 2205 in acidic NaCl solution. Series of slow strain rate tests (SSRTs) at different applied potential values were conducted to reveal the optimum applied potential value for SCC to happen. Room temperature static and cyclic creep tests were performed in air to illustrate the strain accumulation effect of cyclic stresses. Test results showed that cyclic loading could enhance strain accumulation in DSS 2205 compared to static loading. Moreover, the strain accumulation behavior of DSS 2205 was found to be controlled by the two phases of DSS 2205 with different crystal structures. The B.C.C. ferrite phase enhanced strain accumulation due to extensive cross-slips of the dislocations, whereas the F.C.C. austenite phase resisted strain accumulation due to cyclic strain hardening. Cyclic SSRTs were performed under the conditions that SCC occurs in sodium chloride and WL solutions. Test results show that cyclic stress facilitated crack initiations in DSS 2205. Stress corrosion cracks initiated from the intermetallic precipitates in acidic chloride environment, and the cracks initiated from austenite phase in WL environment. Cold-working has been found to retard the crack initiations induced by cyclic stresses.
Mechanical behaviour of TWIP steel under shear loading
NASA Astrophysics Data System (ADS)
Vincze, G.; Butuc, M. C.; Barlat, F.
2016-08-01
Twinning induced plasticity steels (TWIP) are very good candidate for automotive industry applications because they potentially offer large energy absorption before failure due to their exceptional strain hardening capability and high strength. However, their behaviour is drastically influenced by the loading conditions. In this work, the mechanical behaviour of a TWIP steel sheet sample was investigated at room temperature under monotonic and reverse simple shear loading. It was shown that all the expected features of load reversal such as Bauschinger effect, transient strain hardening with high rate and permanent softening, depend on the prestrain level. This is in agreement with the fact that these effects, which occur during reloading, are related to the rearrangement of the dislocation structure induced during the predeformation. The homogeneous anisotropic hardening (HAH) approach proposed by Barlat et al. (2011) [1] was successfully employed to predict the experimental results.
Dynamic assessment of reinforced concrete beams repaired with externally bonded FRP sheets
NASA Astrophysics Data System (ADS)
Bonfiglioli, B.; Pascale, G.
2006-01-01
This research deals with RC beams strengthened with FRP. An experimental research is presented which is aimed at evaluating the capability of an experimental modal analysis to assess the stiffness decrease due to damage, as well as the stiffness recovery due to strengthening. Ten beams were tested. All of them were subjected to loading cycles with increasing load levels in order to induce cracking of different severity in them. The beams were then retrofitted by externally bonded FRP sheets. Three types of composites were used. The number of layers was varied, too. Modal tests were carried out after each loading-unloading cycle. The modal frequencies and damping ratios were determined for the first four vibration modes. The results obtained indicate that an experimental modal analysis can give useful information on the severity of damage and the effectiveness of strengthening.
NASA Astrophysics Data System (ADS)
Ko, Dae-Eun; Shin, Sang-Hoon
2017-11-01
Spherical LNG tanks having many advantages such as structural safety are used as a cargo containment system of LNG carriers. However, it is practically difficult to fabricate perfectly spherical tanks of different sizes in the yard. The most effective method of manufacturing LNG tanks of various capacities is to insert a cylindrical part at the center of existing spherical tanks. While a simplified high-precision analysis method for the initial design of the spherical tanks has been developed for both static and dynamic loads, in the case of spherical tanks with a cylindrical central part, the analysis method available only considers static loads. The purpose of the present study is to derive the dynamic pressure distribution due to horizontal acceleration, which is essential for developing an analysis method that considers dynamic loads as well.
Hao, Na; Sun, Changzhen; Wu, Zhengfei; Xu, Long; Gao, Wenxia; Cao, Jun; Li, Li; He, Bin
2017-07-19
With the aim of obtaining effective cancer therapy with simultaneous cellular imaging, dynamic drug-release monitoring, and chemotherapeutic treatment, a polymeric micelle with aggregation-induced emission (AIE) imaging and a Forster resonance energy transfer (FRET) effect was fabricated as the drug carrier. An amphiphilic conjugate of 1H-pyrrole-1-propanoicacid (MAL)-poly(ethylene glycol) (PEG)-Tripp-bearing AIE molecules were synthesized and self-assembled into micelles to load the anticancer drug doxorubicin (DOX). Spherical DOX-loaded micelles with the mean size of 106 nm were obtained with good physiological stability (CMC, 12.5 μg/mL), high drug-loading capacity (10.4%), and encapsulation efficiency (86%). The cellular uptake behavior of DOX-loaded MAL-PEG-Tripp micelles was visible for high-quality intracellular imaging due to the AIE property. The delivery of DOX from the drug-loaded micelles was dynamic monitored by the FRET effect between the DOX and MAL-PEG-Tripp. Both in vitro (IC50, 2.36 μg/mL) and in vivo anticancer activity tests revealed that the DOX-loaded MAL-PEG-Tripp micelles exhibited promising therapeutic efficacy to cancer with low systematic toxicity. In summary, this micelle provided an effective way to fabricate novel nanoplatform for intracellular imaging, drug-delivery tracing, and chemotherapy.
Superior anticancer efficacy of curcumin-loaded nanoparticles against lung cancer.
Yin, Haitao; Zhang, Hao; Liu, Baorui
2013-08-01
Curcumin (CM) has anticancer potential for several cancers and blocks several steps in the carcinogenesis process. However, the clinical application of CM is greatly limited due to its low effects in vivo resulted from its poor solubility and pharmacokinetics. This raises the possibility of taking CM as a novel model drug in a new nanoparticle-based delivery system. In this study, CM-loaded nanoparticles were prepared from three kinds of amphilic methoxy poly(ethylene glycol) (mPEG)-polycaprolactone (PCL) block copolymers. It was noted that CM-loaded nanoparticles prepared from mPEG10k-PCL30k showed not only the highest loading efficiency, but also the most sustained release pattern. In vitro studies showed that CM was effectively transported into A549 cells by nanoparticles and localized around the nuclei in the cytoplasm. In addition, the cytotoxicity of CM-loaded nanoparticles with mEPG10k-PCL30k as a drug carrier was in a dose- and time-dependent manner in A549 cells. Further apoptotic staining results demonstrated the superior pro-apoptotic effect of CM-loaded nanoparticles over free drug. Data in this study not only confirmed the potential of CM in treating lung cancer, but also offered an effective way to improve the anticancer efficiency of CM through the nano-drug delivery system.
Influence of the conservative rotor loads on the near wake of a wind turbine
NASA Astrophysics Data System (ADS)
Herráez, I.; Micallef, D.; van Kuik, G. A. M.
2017-05-01
The presence of conservative forces on rotor blades is neglected in the blade element theory and all the numerical methods derived from it (like e.g. the blade element momentum theory and the actuator line technique). This might seem a reasonable simplification of the real flow of rotor blades, since conservative loads, by definition, do not contribute to the power conversion. However, conservative loads originating from the chordwise bound vorticity might affect the tip vortex trajectory, as we discussed in a previous work. In that work we also hypothesized that this effect, in turn, could influence the wake induction and correspondingly the rotor performance. In the current work we extend a standard actuator line model in order to account for the conservative loads at the blade tip. This allows to isolate the influence of conservative forces from other effects. The comparison of numerical results with and without conservative loads enables to confirm qualitatively their relevance for the near wake and the rotor performance. However, an accurate quantitative assessment of the effect still remains out of reach due to the inherent uncertainty of the numerical model.
Secular and annual hydrologic effects from the Plate Boundary Observatory GPS network
NASA Astrophysics Data System (ADS)
Meertens, C. M.; Wahr, J. M.; Borsa, A. A.; Jackson, M. E.; Herring, T.
2009-12-01
The Plate Boundary Observatory (PBO) GPS network is providing accurate and spatially coherent vertical signals that can be interpreted in terms of hydrological loading and poroelastic effects from both natural and anthropogenic changes in water storage. Data used for this analysis are the precise coordinate time series produced on a daily basis by PBO Analysis Centers at New Mexico Institute of Mining and Technology and at Central Washington University and combined by the Analysis Center Coordinator at the Massachusetts Institute of Technology. These products, as well as derived velocity solutions, are made freely available from the UNAVCO Data Center in Boulder. Analysis of secular trends and annual variations in the time series was made using the analysis software of Langbein, 2008. Spatial variations in the amplitude and phase of the annual vertical component of motion allow for identification of anthropogenic effects due to water pumping, irrigation, and reservoir lake variations, and of outliers due to instrumental or other local site effects. Vertical annual signals of 8-10 mm peak-to-peak amplitude are evident at stations in the mountains of northern and central California and the Pacific Northwest. The peak annual uplift is in October and is correlated to hydrological loading effects. Mountainous areas appear to be responding elastically to the load of the water contained in surface soil, fractures, and snow. Vertical signals are highest when the water load is at a minimum. The vertical elastic hydrologic loading signal was modeled using the 0.25 degree community NOAH land-surface model (LSM) and generally fits the observed GPS signal. Addition comparisons will be made using the Mosaic LSM and the NOAA “Leaky Bucket” hydrologic model. In contrast to mountain stations that are installed principally in bedrock, stations in the valleys of California are installed in sediments. Observations from these stations show greater spatial variability ranging from almost no detectable annual signal to very large, 20-30 mm, vertical amplitudes that reach a maximum in March. Vertical signals in the valleys are the result of poroelastic effects induced by groundwater variations caused by pumping for irrigation or other purposes and are highest when groundwater is at maximum recharge level. Secular trends in the vertical time series show 1-3 mm/yr of subsidence across the western U.S. In areas of groundwater pumping the rates are up to several cm/yr showing subsidence as pumping exceeds annual recharge over a multi-year time period. In the mountainous areas where hydrologic loading is evident in the annual signals, secular trends show uplift of 1-3 mm/yr possibly due to regional drought and decreased overall water volumes that result in less load and vertical uplift. Overall, these results illustrate the potential of using GPS data to constrain hydrological models. In return, accurate hydrologic loading models will be needed to better measure and detect vertical tectonic motions at the mm-level.
Load measurement system with load cell lock-out mechanism
NASA Technical Reports Server (NTRS)
Le, Thang; Carroll, Monty; Liu, Jonathan
1995-01-01
In the frame work of the project Shuttle Plume Impingement Flight Experiment (SPIFEX), a Load Measurement System was developed and fabricated to measure the impingement force of Shuttle Reaction Control System (RCS) jets. The Load Measurement System is a force sensing system that measures any combination of normal and shear forces up to 40 N (9 lbf) in the normal direction and 22 N (5 lbf) in the shear direction with an accuracy of +/- 0.04 N (+/- 0.01 lbf) Since high resolution is required for the force measurement, the Load Measurement System is built with highly sensitive load cells. To protect these fragile load cells in the non-operational mode from being damaged due to flight loads such as launch and landing loads of the Shuttle vehicle, a motor driven device known as the Load Cell Lock-Out Mechanism was built. This Lock-Out Mechanism isolates the load cells from flight loads and re-engages the load cells for the force measurement experiment once in space. With this highly effective protection system, the SPIFEX load measurement experiment was successfully conducted on STS-44 in September 1994 with all load cells operating properly and reading impingement forces as expected.
Soldier-relevant body borne loads increase knee joint contact force during a run-to-stop maneuver.
Ramsay, John W; Hancock, Clifford L; O'Donovan, Meghan P; Brown, Tyler N
2016-12-08
The purpose of this study was to understand the effects of load carriage on human performance, specifically during a run-to-stop (RTS) task. Using OpenSim analysis tools, knee joint contact force, grounds reaction force, leg stiffness and lower extremity joint angles and moments were determined for nine male military personnel performing a RTS under three load configurations (light, ~6kg, medium, ~20kg, and heavy, ~40kg). Subject-based means for each biomechanical variable were submitted to repeated measures ANOVA to test the effects of load. During the RTS, body borne load significantly increased peak knee joint contact force by 1.2 BW (p<0.001) and peak vertical (p<0.001) and anterior-posterior (p=0.002) ground reaction forces by 0.6 BW and 0.3 BW, respectively. Body borne load also had a significant effect on hip (p=0.026) posture with the medium load and knee (p=0.046) posture with the heavy load. With the heavy load, participants exhibited a substantial, albeit non-significant increase in leg stiffness (p=0.073 and d=0.615). Increases in joint contact force exhibited during the RTS were primarily due to greater GRFs that impact the soldier with each incremental addition of body borne load. The stiff leg, extended knee and large braking force the soldiers exhibited with the heavy load suggests their injury risk may be greatest with that specific load configuration. Further work is needed to determine if the biomechanical profile exhibited with the heavy load configuration translates to unsafe shear forces at the knee joint and consequently, a higher likelihood of injury. Published by Elsevier Ltd.
Association between gravitational force and tissue metabolism in periparturient rats
NASA Technical Reports Server (NTRS)
Zakrzewska, E. I.; Maple, R.; Lintault, L.; Wade, C.; Baer, L.; Ronca, A.; Plaut, K.
2004-01-01
Recently, interest in mammalian reproduction and offspring survival in altered gravity has been growing. Because successful lactation is critical for mammalian neonate survival, we have been studying the effect of gravity metabolism. We have shown an exponential relationship between glucose metabolic rate in mammary tissue of periparturient rats and an increase in gravity load. In this study we showed that changes in mammary metabolic rate due to gravity force were accompanied by a decrease in glucose metabolism in adipose tissue and by a reduced size of adipocytes. We assume that these changes are likely due to changes in prolactin or leptin levels related to altered gravity load.
Patil, Narendra G; Rebrov, Evgeny V; Eränen, Kari; Benaskar, Faysal; Meuldijk, Jan; Mikkola, Jyri-Pekka; Hessel, Volker; Hulshof, Lumbertus A; Murzin, Dmitry Yu; Schouten, Jaap C
2012-01-01
A novel heating efficiency analysis of the microwave heated stop-flow (i.e. stagnant liquid) and continuous-flow reactors has been presented. The thermal losses to the surrounding air by natural convection have been taken into account for heating efficiency calculation of the microwave heating process. The effect of the load diameter in the range of 4-29 mm on the heating efficiency of ethylene glycol was studied in a single mode microwave cavity under continuous flow and stop-flow conditions. The variation of the microwave absorbing properties of the load with temperature was estimated. Under stop-flow conditions, the heating efficiency depends on the load diameter. The highest heating efficiency has been observed at the load diameter close to the half wavelength of the electromagnetic field in the corresponding medium. Under continuous-flow conditions, the heating efficiency increased linearly. However, microwave leakage above the propagation diameter restricted further experimentation at higher load diameters. Contrary to the stop-flow conditions, the load temperature did not raise monotonously from the inlet to outlet under continuous-flow conditions. This was due to the combined effect of lagging convective heat fluxes in comparison to volumetric heating. This severely disturbs the uniformity of the electromagnetic field in the axial direction and creates areas of high and low field intensity along the load Length decreasing the heating efficiency as compared to stop-flow conditions.
NASA Astrophysics Data System (ADS)
Wang, Tiening; Chiesa, Luisa; Takayasu, Makoto; Bordini, Bernardo
2014-09-01
Superconducting Nb3Sn Powder-In-Tube (PIT) strands could be used for the superconducting magnets of the next generation Large Hadron Collider. The strands are cabled into the typical flat Rutherford cable configuration. During the assembly of a magnet and its operation the strands experience not only longitudinal but also transverse load due to the pre-compression applied during the assembly and the Lorentz load felt when the magnets are energized. To properly design the magnets and guarantee their safe operation, mechanical load effects on the strand superconducting properties are studied extensively; particularly, many scaling laws based on tensile load experiments have been established to predict the critical current dependence on strain. However, the dependence of the superconducting properties on transverse load has not been extensively studied so far. One of the reasons is that transverse loading experiments are difficult to conduct due to the small diameter of the strand (about 1 mm) and the data currently available do not follow a common measurement standard making the comparison between different data sets difficult. Recently at the University of Geneva, a new device has been developed to characterize the critical current of Nb3Sn strands under transverse loads. In this work we present a new 2D Finite Element Analysis (FEA) to predict the electro-mechanical response of a PIT strand that was tested at the University of Geneva when transverse load is applied. The FEA provides the strain map for the superconducting filaments when the load is applied. Those strain maps are then used to evaluate the critical current behavior of a PIT strand using a recently developed scaling law that correlates the superconducting properties of a wire with the strain invariants due to the load applied on the superconductor. The benefits and limitations of this method are discussed based on the comparison between the critical current simulation results obtained with the filament strain map and the experimental results available for PIT strands.
Edge Effects in a Composite Weakly Reinforced with Fibers of Rectangular Cross Section
NASA Astrophysics Data System (ADS)
Boichuk, V. Yu.
2001-05-01
This paper deal with the edge effect in a composite weakly reinforced with fibers of rectangular cross section and subjected to biaxial uniform loading. The edge effects due to the difference between Poisson's ratios of the composite components are studied. Numerical results are presented
Jeppesen, Erik; Kronvang, Brian; Meerhoff, Mariana; Søndergaard, Martin; Hansen, Kristina M; Andersen, Hans E; Lauridsen, Torben L; Liboriussen, Lone; Beklioglu, Meryem; Ozen, Arda; Olesen, Jørgen E
2009-01-01
Climate change may have profound effects on phosphorus (P) transport in streams and on lake eutrophication. Phosphorus loading from land to streams is expected to increase in northern temperate coastal regions due to higher winter rainfall and to a decline in warm temperate and arid climates. Model results suggest a 3.3 to 16.5% increase within the next 100 yr in the P loading of Danish streams depending on soil type and region. In lakes, higher eutrophication can be expected, reinforced by temperature-mediated higher P release from the sediment. Furthermore, a shift in fish community structure toward small and abundant plankti-benthivorous fish enhances predator control of zooplankton, resulting in higher phytoplankton biomass. Data from Danish lakes indicate increased chlorophyll a and phytoplankton biomass, higher dominance of dinophytes and cyanobacteria (most notably of nitrogen fixing forms), but lower abundance of diatoms and chrysophytes, reduced size of copepods and cladocerans, and a tendency to reduced zooplankton biomass and zooplankton:phytoplankton biomass ratio when lakes warm. Higher P concentrations are also seen in warm arid lakes despite reduced external loading due to increased evapotranspiration and reduced inflow. Therefore, the critical loading for good ecological state in lakes has to be lowered in a future warmer climate. This calls for adaptation measures, which in the northern temperate zone should include improved P cycling in agriculture, reduced loading from point sources, and (re)-establishment of wetlands and riparian buffer zones. In the arid Southern Europe, restrictions on human use of water are also needed, not least on irrigation.
NASA Astrophysics Data System (ADS)
Gorospe, Alking; Bautista, Zhierwinjay; Shin, Hyung-Seop
2016-10-01
Coated conductor (CC) tapes utilized in high-current-density superconducting cables are commonly subjected to different loading modes, primarily torsion and tension especially in the case of twisted stacked-tape cable. Torsion load can occur due to twisting along the length or when winding the CC tapes around a former, while tension load can occur due to pre-tension when coiled and as a hoop stress when the coil is energized. In this study, electromechanical properties of single CC tapes under torsion load were investigated using a new test apparatus. The results could provide basic information for cable designers to fully characterize stacked cables. Copper-electroplated and brass-laminated CC tapes fabricated with different deposition techniques were subjected to pure torsion and combined tension-torsion loading. The critical current, I c degradation behaviours of CC tapes under torsional deformation were examined. Also, the effect of further external lamination on the I c degradation behaviour of the CC tapes under such loading conditions was investigated. In the case of the combined tension-torsion test, short samples were subjected to twist pitches of 200 mm and 100 mm. Critical parameters including reversible axial stress and strain in such twist pitch conditions were also investigated.
Lewandowski, Jörg; Meinikmann, Karin; Nützmann, Gunnar; Rosenberry, Donald O.
2015-01-01
Lacustrine groundwater discharge (LGD) transports nutrients from a catchment to a lake, which may fuel eutrophication, one of the major threats to our fresh waters. Unfortunately, LGD has often been disregarded in lake nutrient studies. Most measurement techniques are based on separate determinations of volume and nutrient concentration of LGD: Loads are calculated by multiplying seepage volumes by concentrations of exfiltrating water. Typically low phosphorus (P) concentrations of pristine groundwater often are increased due to anthropogenic sources such as fertilizer, manure or sewage. Mineralization of naturally present organic matter might also increase groundwater P. Reducing redox conditions favour P transport through the aquifer to the reactive aquifer-lake interface. In some cases, large decreases of P concentrations may occur at the interface, for example, due to increased oxygen availability, while in other cases, there is nearly no decrease in P. The high reactivity of the interface complicates quantification of groundwater-borne P loads to the lake, making difficult clear differentiation of internal and external P loads to surface water. Anthropogenic sources of nitrogen (N) in groundwater are similar to those of phosphate. However, the environmental fate of N differs fundamentally from P because N occurs in several different redox states, each with different mobility. While nitrate behaves essentially conservatively in most oxic aquifers, ammonium's mobility is similar to that of phosphate. Nitrate may be transformed to gaseous N2 in reducing conditions and permanently removed from the system. Biogeochemical turnover of N is common at the reactive aquifer-lake interface. Nutrient loads from LGD were compiled from the literature. Groundwater-borne P loads vary from 0.74 to 2900 mg PO4-P m−2 year−1; for N, these loads vary from 0.001 to 640 g m−2 year−1. Even small amounts of seepage can carry large nutrient loads due to often high nutrient concentrations in groundwater. Large spatial heterogeneity, uncertain areal extent of the interface and difficult accessibility make every determination of LGD a challenge. However, determinations of LGD are essential to effective lake management.
Computational fluid dynamics modeling of bun baking process under different oven load conditions.
Tank, A; Chhanwal, N; Indrani, D; Anandharamakrishnan, C
2014-09-01
A computational fluid dynamics (CFD) model was developed to study the temperature profile of the bun during baking process. Evaporation-condensation mechanism and effect of the latent heat during phase change of water was incorporated in this model to represent actual bun baking process. Simulation results were validated with experimental measurements of bun temperature at two different positions. Baking process is completed within 20 min, after the temperature of crumb become stable at 98 °C. Further, this study was extended to investigate the effect of partially (two baking trays) loaded and fully loaded (eight baking trays) oven on temperature profile of bun. Velocity and temperature profile differs in partially loaded and fully loaded oven. Bun placed in top rack showed rapid baking while bun placed in bottom rack showed slower baking due to uneven temperature distribution in the oven. Hence, placement of bun inside the oven affects temperature of bun and consequently, the quality of the product.
Structures to Resist the Effects of Accidental Explosions. Volume 3. Principles of Dynamic Analysis
1984-06-01
multi-degree-of-freedom systems) is presented. A step-by-step numerical integration of an element’s motion under dynamic loads using the...structural arrangements; providing closures, and preventing damage to interior portions of structures due to structual motion , shock, and fragment...an element’s motion under dynamic loads utilizing the Acceleration-Impulse- Extrapolation Method or the Average Acceleration Method and design charts
Dynamic Failure Processes Under Confining Stress in AlON, a Transparent Polycrystalline Ceramic
2008-12-01
axes, the dynamic loading is imposed (using MKB) along the second specimen axis and the third axis is used for the ultra-high-speed photography. The...to its optically isotropic cubic crystal structure, fully dense, polycrystalline bodies can be rendered completely transparent, making it a viable... tribological loading conditions. During indentation, the region beneath the indenter is effectively confined due to the surrounding medium, and it
Wind Turbine Load Mitigation based on Multivariable Robust Control and Blade Root Sensors
NASA Astrophysics Data System (ADS)
Díaz de Corcuera, A.; Pujana-Arrese, A.; Ezquerra, J. M.; Segurola, E.; Landaluze, J.
2014-12-01
This paper presents two H∞ multivariable robust controllers based on blade root sensors' information for individual pitch angle control. The wind turbine of 5 MW defined in the Upwind European project is the reference non-linear model used in this research work, which has been modelled in the GH Bladed 4.0 software package. The main objective of these controllers is load mitigation in different components of wind turbines during power production in the above rated control zone. The first proposed multi-input multi-output (MIMO) individual pitch H" controller mitigates the wind effect on the tower side-to-side acceleration and reduces the asymmetrical loads which appear in the rotor due to its misalignment. The second individual pitch H" multivariable controller mitigates the loads on the three blades reducing the wind effect on the bending flapwise and edgewise momentums in the blades. The designed H" controllers have been validated in GH Bladed and an exhaustive analysis has been carried out to calculate fatigue load reduction on wind turbine components, as well as to analyze load mitigation in some extreme cases.
Rao, Komal; Imran, Muhammad; Jabri, Tooba; Ali, Imdad; Perveen, Samina; Shafiullah; Ahmed, Shakil; Shah, Muhammad Raza
2017-10-15
Gold nanoparticles (AuNPs) have attracted greater scientific interests for the construction of drugs loading cargos due to their biocompatibility, safety and facile surface modifications. This study deals with the fabrication of gum tragacanth (GT) green AuNPs as carrier for Naringin, a less water soluble therapeutic molecule. The optimized AuNPs were characterized through UV-vis spectroscopy, FT-IR and atomic force microscope (AFM). Naringin loaded nanoparticles were investigated for their bactericidal potentials using Tetrazolium Microplate assay. Morphological studies conducted via AFM revealed spherical shape for AuNPs with nano-range size and stabilized by GT multi-functional groups. The AuNPs acted as carrier for increased amount of Naringin. Upon loading in AuNPs, Naringin An increased in the bactericidal potentials of Naringin was observed after loading on AuNPs against various tested bacterial strains. This was further authenticated by the surface morphological analysis, showing enhanced membrane destabilizing effects of loaded Naringin. The results suggest that GT stabilized green AuNPs can act as effective delivery vehicles for enhancing bactericidal potentials of Naringin. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Farley, Gary L.; Jones, Robert M.
1992-01-01
Simplified procedures for determining the qualitative effect a variable has on structural response of a composite tube are very useful in both preliminary design as well as in providing insight into the general response. An analysis procedure is presented that can be used to determine the qualitative change in the sustained crushing load due to a change in specimen material properties or geometry. The analysis procedure is similar in form to the equation for the buckling load of a column on an elastic foundation.
Numerical Simulations of Mass Loading in the Solar Wind Interaction with Venus
NASA Technical Reports Server (NTRS)
Murawski, K.; Steinolfson, R. S.
1996-01-01
Numerical simulations are performed in the framework of nonlinear two-dimensional magnetohydrodynamics to investigate the influence of mass loading on the solar wind interaction with Venus. The principal physical features of the interaction of the solar wind with the atmosphere of Venus are presented. The formation of the bow shock, the magnetic barrier, and the magnetotail are some typical features of the interaction. The deceleration of the solar wind due to the mass loading near Venus is an additional feature. The effect of the mass loading is to push the shock farther outward from the planet. The influence of different values of the magnetic field strength on plasma evolution is considered.
Stroop-like effects in a new-code learning task: A cognitive load theory perspective.
Hazan-Liran, Batel; Miller, Paul
2017-09-01
To determine whether and how learning is biased by competing task-irrelevant information that creates extraneous cognitive load, we assessed the efficiency of university students with a learning paradigm in two experiments. The paradigm asked participants to learn associations between eight words and eight digits. We manipulated congruity of the digits' ink colour with the words' semantics. In Experiment 1 word stimuli were colour words (e.g., blue, yellow) and in Experiment 2 colour-related word concepts (e.g., sky, banana). Marked benefits and costs on learning due to variation in extraneous cognitive load originating from processing task-irrelevant information were evident. Implications for cognitive load theory and schooling are discussed.
Aeroelastic response and blade loads of a composite rotor in forward flight
NASA Technical Reports Server (NTRS)
Smith, Edward C.; Chopra, Inderjit
1992-01-01
The aeroelastic response, blade and hub loads, and shaft-fixed aeroelastic stability is investigated for a helicopter with elastically tailored composite rotor blades. A new finite element based structural analysis including nonclassical effects such as transverse shear, torsion related warping and inplane elasticity is integrated with the University of Maryland Advanced Rotorcraft Code. The structural dynamics analysis is correlated against both experimental data and detailed finite element results. Correlation of rotating natural frequencies of coupled composite box-beams is generally within 5-10 percent. The analysis is applied to a soft-inplane hingeless rotor helicopter in free flight propulsive trim. For example, lag mode damping can be increased 300 percent over a range of thrust conditions and forward speeds. The influence of unsteady aerodynamics on the blade response and vibratory hub loads is also investigated. The magnitude and phase of the flap response is substantially altered by the unsteady aerodynamic effects. Vibratory hub loads increase up to 30 percent due to unsteady aerodynamic effects.
NASA Astrophysics Data System (ADS)
Wheeler, Robert W.; Lagoudas, Dimitris C.
2017-04-01
Shape memory alloys (SMAs), due to their ability to repeatably recover substantial deformations under applied mechanical loading, have the potential to impact the aerospace, automotive, biomedical, and energy industries as weight and volume saving replacements for conventional actuators. While numerous applications of SMA actuators have been flight tested and can be found in industrial applications, these actuators are generally limited to non-critical components, are not widely implemented and frequently one-off designs, and are generally overdesigned due to a lack of understanding of the effect of the loading path on the fatigue life and the lack of an accurate method for predicting actuator lifetimes. In recent years, multiple research efforts have increased our understanding of the actuation fatigue process of SMAs. These advances can be utilized to predict the fatigue lives and failure loads in SMA actuators. Additionally, these prediction methods can be implemented in order to intelligently design actuators in accordance with their fatigue and failure limits. In the following paper, both simple and complex thermomechanical loading paths have been considered. Experimental data was utilized from two material systems: equiatomic Nickel-Titanium and Nickelrich Nickel-Titanium.
Alavi, S. Hamed; Ruiz, Victor; Krasieva, Tatiana; Botvinick, Elliot L.; Kheradvar, Arash
2014-01-01
When implanted inside the body, bioprosthetic heart valve leaflets experience a variety of cyclic mechanical stresses such as shear stress due to blood flow when the valve is open, flexural stress due to cyclic opening and closure of the valve, and tensile stress when the valve is closed. These types of stress lead to a variety of failure modes. In either a natural valve leaflet or a processed pericardial tissue leaflet, collagen fibers reinforce the tissue and provide structural integrity such that the very thin leaflet can stand enormous loads related to cyclic pressure changes. The mechanical response of the leaflet tissue greatly depends on collagen fiber concentration, characteristics, and orientation. Thus, understating the microstructure of pericardial tissue and its response to dynamic loading is crucial for the development of more durable heart valve, and computational models to predict heart valves’ behavior. In this work, we have characterized the 3D collagen fiber arrangement of bovine pericardial tissue leaflets in response to a variety of different loading conditions under Second-Harmonic Generation Microscopy. This real-time visualization method assists in better understanding of the effect of cyclic load on collagen fiber orientation in time and space. PMID:23180029
Circuit transients due to negative bias arcs-II. [on solar cell power systems in low earth orbit
NASA Technical Reports Server (NTRS)
Metz, R. N.
1986-01-01
Two new models of negative-bias arcing on a solar cell power system in Low Earth Orbit are presented. One is an extended, analytical model and the other is a non-linear, numerical model. The models are based on an earlier analytical model in which the interactions between solar cell interconnects and the space plasma as well as the parameters of the power circuit are approximated linearly. Transient voltages due to arcs struck at the negative thermal of the solar panel are calculated in the time domain. The new models treat, respectively, further linear effects within the solar panel load circuit and non-linear effects associated with the plasma interactions. Results of computer calculations with the models show common-mode voltage transients of the electrically floating solar panel struck by an arc comparable to the early model but load transients that differ substantially from the early model. In particular, load transients of the non-linear model can be more than twice as great as those of the early model and more than twenty times as great as the extended, linear model.
NASA Astrophysics Data System (ADS)
Hanumagowda, B. N.; Salma, A.; Nagarajappa, C. S.
2018-04-01
The theoretical discussion is carried out for understanding the combined study of MHD, rough surface and couple-stress in the presence of applied magnetic field between two curved circular plates is present analysis. Modified Reynolds Equations accounting for rough surface using stochastic model of Christensen are mathematically formulated. The close form derivations for pressure, load-supporting capacity and response-film time are obtained. Our results shows that, there is an significant increase (decrease) for pressure, load-supporting capacity and squeeze film time due to the effect of azimuthal (radial) roughness parameter when compared to the Hanumagowda.et.al [14] and numerical data of load supporting capacity and response time are given in Table for engineering applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toyosada, M.; Niwa, T.
1995-12-31
In this paper, Newman`s calculation model is modified to solve his neglected effect of the change of stress distribution ahead of a crack, and to leave elastic plastic materials along the crack surface because of the compatibility of Dugdale model. In addition to above treatment, the authors introduce plastic shrinkage at an immediate generation of new crack surfaces due to emancipation of internal force with the magnitude of yield stress level during unloading process in the model. Moreover, the model is expanded to arbitrary stress distribution field. By using the model, RPG load is simulated for a center notched specimenmore » under constant amplitude loading with various stress ratios and decreased maximum load while keeping minimum load.« less
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)
2003-01-01
Computational simulation results can give the prediction of damage growth and progression and fracture toughness of composite structures. The experimental data from literature provide environmental effects on the fracture behavior of metallic or fiber composite structures. However, the traditional experimental methods to analyze the influence of the imposed conditions are expensive and time consuming. This research used the CODSTRAN code to model the temperature effects, scaling effects and the loading effects of fiber/braided composite specimens with and without fiber-optic sensors on the damage initiation and energy release rates. The load-displacement relationship and fracture toughness assessment approach is compared with the test results from literature and it is verified that the computational simulation, with the use of established material modeling and finite element modules, adequately tracks the changes of fracture toughness and subsequent fracture propagation for any fiber/braided composite structure due to the change of fiber orientations, presence of large diameter optical fibers, and any loading conditions.
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)
2003-01-01
Computational simulation results can give the prediction of damage growth and progression and fracture toughness of composite structures. The experimental data from literature provide environmental effects on the fracture behavior of metallic or fiber composite structures. However, the traditional experimental methods to analyze the influence of the imposed conditions are expensive and time consuming. This research used the CODSTRAN code to model the temperature effects, scaling effects and the loading effects of fiberbraided composite specimens with and without fiber-optic sensors on the damage initiation and energy release rates. The load-displacement relationship and fracture toughness assessment approach is compared with the test results from literature and it is verified that the computational simulation, with the use of established material modeling and finite element modules, adequately tracks the changes of fracture toughness and subsequent fracture propagation for any fiberbraided composite structure due to the change of fiber orientations, presence of large diameter optical fibers, and any loading conditions.
Global Cryptosporidium Loads from Livestock Manure.
Vermeulen, Lucie C; Benders, Jorien; Medema, Gertjan; Hofstra, Nynke
2017-08-01
Understanding the environmental pathways of Cryptosporidium is essential for effective management of human and animal cryptosporidiosis. In this paper we aim to quantify livestock Cryptosporidium spp. loads to land on a global scale using spatially explicit process-based modeling, and to explore the effect of manure storage and treatment on oocyst loads using scenario analysis. Our model GloWPa-Crypto L1 calculates a total global Cryptosporidium spp. load from livestock manure of 3.2 × 10 23 oocysts per year. Cattle, especially calves, are the largest contributors, followed by chickens and pigs. Spatial differences are linked to animal spatial distributions. North America, Europe, and Oceania together account for nearly a quarter of the total oocyst load, meaning that the developing world accounts for the largest share. GloWPa-Crypto L1 is most sensitive to oocyst excretion rates, due to large variation reported in literature. We compared the current situation to four alternative management scenarios. We find that although manure storage halves oocyst loads, manure treatment, especially of cattle manure and particularly at elevated temperatures, has a larger load reduction potential than manure storage (up to 4.6 log units). Regions with high reduction potential include India, Bangladesh, western Europe, China, several countries in Africa, and New Zealand.
Optimization of scintillator loading with the tellurium-130 isotope for long-term stability
NASA Astrophysics Data System (ADS)
Duhamel, Lauren; Song, Xiaoya; Goutnik, Michael; Kaptanoglu, Tanner; Klein, Joshua; SNO+ Collaboration
2017-09-01
Tellurium-130 was selected as the isotope for the SNO + neutrinoless double beta decay search, as 130Te decays to 130Xe via double beta decay. Linear alkyl benzene(LAB) is the liquid scintillator for the SNO + experiment. To load tellurium into scintillator, it is combined with 1,2-butanediol to form an organometallic complex, commonly called tellurium butanediol (TeBD). This study focuses on maximizing the percentage of tellurium loaded into scintillator and evaluates the complex's long-term stability. Studies on the effect of nucleation due to imperfections in the detector's surface and external particulates were employed by filtration and induced nucleation. The impact of water on the stability of TeBD complex was evaluated by liquid-nitrogen sparging, variability in pH and induced humidity. Alternative loading methods were evaluated, including the addition of stability-inducing organic compounds. Samples of tellurium-loaded scintillator were synthesized, treated, and consistently monitored in a controlled environment. It was found that the hydronium ions cause precipitation in the loaded scintillator, demonstrating that water has a detrimental effect on long-term stability. Optimization of loaded scintillator stability can contribute to the SNO + double beta decay search.
NASA Astrophysics Data System (ADS)
Hidayat, Irpan; Suangga, Made; Reshki Maulana, Moh
2017-12-01
Serviceability of a bridge will decrease based on the function of time. Most likely due to the cyclic load from the traffic. The indicators which can be measured to determine the serviceability is the deflection of the girder. In this research, the PCI-Girder and vehicle load are analyzed by using the finite element method (Midas/Civil) Program. For comparison, the running vehicle test to the bridge has been conducted where the bridge deflections are measured using LVDT sensors on PCI-Girder Bridge. To find the effect of vehicle distance to the LVDV position, the running vehicle goes through on several lanes. The finite element program (Midas/Civil) gives relatively similar result to the measured deflection using LVDT sensors. However, when the vehicle load is situated far from the sensor, the result from both analysis showed significant differences.
Validation of Hydrodynamic Load Models Using CFD for the OC4-DeepCwind Semisubmersible: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.
Computational fluid dynamics (CFD) simulations were carried out on the OC4-DeepCwind semi-submersible to obtain a better understanding of how to set hydrodynamic coefficients for the structure when using an engineering tool such as FAST to model the system. The focus here was on the drag behavior and the effects of the free-surface, free-ends and multi-member arrangement of the semi-submersible structure. These effects are investigated through code-to-code comparisons and flow visualizations. The implications on mean load predictions from engineering tools are addressed. The work presented here suggests that selection of drag coefficients should take into consideration a variety of geometric factors.more » Furthermore, CFD simulations demonstrate large time-varying loads due to vortex shedding, which FAST's hydrodynamic module, HydroDyn, does not model. The implications of these oscillatory loads on the fatigue life needs to be addressed.« less
Deformation history and load sequence effects on cumulative fatigue damage and life predictions
NASA Astrophysics Data System (ADS)
Colin, Julie
Fatigue loading seldom involves constant amplitude loading. This is especially true in the cooling systems of nuclear power plants, typically made of stainless steel, where thermal fluctuations and water turbulent flow create variable amplitude loads, with presence of mean stresses and overloads. These complex loading sequences lead to the formation of networks of microcracks (crazing) that can propagate. As stainless steel is a material with strong deformation history effects and phase transformation resulting from plastic straining, such load sequence and variable amplitude loading effects are significant to its fatigue behavior and life predictions. The goal of this study was to investigate the effects of cyclic deformation on fatigue behavior of stainless steel 304L as a deformation history sensitive material and determine how to quantify and accumulate fatigue damage to enable life predictions under variable amplitude loading conditions for such materials. A comprehensive experimental program including testing under fully-reversed, as well as mean stress and/or mean strain conditions, with initial or periodic overloads, along with step testing and random loading histories was conducted on two grades of stainless steel 304L, under both strain-controlled and load-controlled conditions. To facilitate comparisons with a material without deformation history effects, similar tests were also carried out on aluminum 7075-T6. Experimental results are discussed, including peculiarities observed with stainless steel behavior, such as a phenomenon, referred to as secondary hardening characterized by a continuous increase in the stress response in a strain-controlled test and often leading to runout fatigue life. Possible mechanisms for secondary hardening observed in some tests are also discussed. The behavior of aluminum is shown not to be affected by preloading, whereas the behavior of stainless steel is greatly influenced by prior loading. Mean stress relaxation in strain control and ratcheting in load control and their influence on fatigue life are discussed. Some unusual mean strain test results are presented for stainless steel 304L, where in spite of mean stress relaxation fatigue lives were significantly longer than fully-reversed tests. Prestraining indicated no effect on either deformation or fatigue behavior of aluminum, while it induced considerable hardening in stainless steel 304L and led to different results on fatigue life, depending on the test control mode. In step tests for stainless steel 304L, strong hardening induced by the first step of a high-low sequence significantly affects the fatigue behavior, depending on the test control mode used. For periodic overload tests of stainless steel 340L, hardening due to the overloads was progressive throughout life and more significant than in high-low step tests. For aluminum, no effect on deformation behavior was observed due to periodic overloads. However, the direction of the overloads was found to affect fatigue life, as tensile overloads led to longer lives, while compressive overloads led to shorter lives. Deformation and fatigue behaviors under random loading conditions are also presented and discussed for the two materials. The applicability of a common cumulative damage rule, the linear damage rule, is assessed for the two types of material, and for various loading conditions. While the linear damage rule associated with a strain-life or stress-life curve is shown to be fairly accurate for life predictions for aluminum, it is shown to poorly represent the behavior of stainless steel, especially in prestrained and high-low step tests, in load control. In order to account for prior deformation effects and achieve accurate fatigue life predictions for stainless steel, parameters including both stress and strain terms are required. The Smith-Watson-Topper and Fatemi-Socie approaches, as such parameters, are shown to correlate most test data fairly accurately. For damage accumulation under variable amplitude loading, the linear damage rule associated with strain-life or stress-life curves can lead to inaccurate fatigue life predictions, especially for materials presenting strong deformation memory effect, such as stainless steel 304L. The inadequacy of this method is typically attributed to the linear damage rule itself. On the contrary, this study demonstrates that damage accumulation using the linear damage rule can be accurate, provided that the linear damage rule is used in conjunction with parameters including both stress and strain terms. By including both loading history and response of the material in damage quantification, shortcomings of the commonly used linear damage rule approach can be circumvented in an effective manner. In addition, cracking behavior was also analyzed under various loading conditions. Results on microcrack initiation and propagation are presented in relation to deformation and fatigue behaviors of the materials. Microcracks were observed to form during the first few percent of life, indicating that most of the fatigue life of smooth specimens is spent in microcrack formation and growth. Analyses of fractured specimens showed that microcrack formation and growth is dependent on the loading history, and less important in aluminum than stainless steel 304L, due to the higher toughness of this latter material.
Basic temperature correction of QWIP cameras in thermoelastic/plastic tests of composite materials.
Boccardi, Simone; Carlomagno, Giovanni Maria; Meola, Carosena
2016-12-01
The present work is concerned with the use of a quantum well infrared photodetector (QWIP) infrared camera to measure very small temperature variations, which are related to thermoelastic/plastic effects, developing on composites under relatively low loads, either periodic or due to impact. As is evident from previous work, some temperature variations are difficult to measure, being at the edge of the IR camera resolution and/or affected by the instrument noise. Conversely, they may be valuable to get either information about the material characteristics and its behavior under periodic load (thermoelastic), or to assess the overall extension of delaminations due to impact (thermo-plastic). An image post-processing procedure is herein described that, with the help of a reference signal, allows for suppression of the instrument noise and better discrimination of thermal signatures induced by the two different loads.
Settlement mechanism of piled-raft foundation due to cyclic train loads and its countermeasure
NASA Astrophysics Data System (ADS)
Gu, Linlin; Ye, Guanlin; Wang, Zhen; Ling, Xianzhang; Zhang, Feng
2017-07-01
In this paper, numerical simulation with soil-water coupling finite element-finite difference (FE-FD) analysis is conducted to investigate the settlement and the excess pore water pressure (EPWP) of a piled-raft foundation due to cyclic high-speed (speed: 300km/h) train loading. To demonstrate the performance of this numerical simulation, the settlement and EPWP in the ground under the train loading within one month was calculated and confirmed by monitoring data, which shows that the change of the settlement and EPWP can be simulated well on the whole. In order to ensure the safety of train operation, countermeasure by the fracturing grouting is proposed. Two cases are analyzed, namely, grouting in No-4 softest layer and No-9 pile bearing layer respectively. It is found that fracturing grouting in the pile bearing layer (No-9 layer) has better effect on reducing the settlement.
Bennett, Ilana J.; Rivera, Hannah G.; Rypma, Bart
2013-01-01
Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. PMID:23357076
NASA Technical Reports Server (NTRS)
Merten, Kenneth F; Beck, Edgar B
1951-01-01
A smooth-water-landing investigation was conducted with a small seaplane to obtain experimental wing-bending-moment time histories together with time histories of the various parameters necessary for the prediction of wing bending moments during hydrodynamic forcing functions. The experimental results were compared with calculated results which include inertia-load effects and the effects of air-load variation during impact. The responses of the fundamental mode were calculated with the use of the measured hydrodynamic forcing functions. From these responses, the wing bending moments due to the hydrodynamic load were calculated according to the procedure given in R.M. No. 2221. The comparison of the time histories of the experimental and calculated wing bending moments showed good agreement both in phase relationship of the oscillations and in numerical values.
NASA Astrophysics Data System (ADS)
Jose, L.; Bennett, R. A.; Harig, C.
2017-12-01
Currently, cGPS data is well suited to track vertical changes in the Earth's surface. However, there are annual, semi-annual, and interannual signals within cGPS time series that are not well constrained. We hypothesize that these signals are primarily due to water loading. If this is the case, the conventional method of modeling cGPS data as an annual or semiannual sinusoid falls short, as such models cannot accurately capture all variations in surface displacement, especially those due to extreme hydrologic events. We believe that we can better correct the cGPS time series with another method we are developing wherein we use a time series of surface displacement derived from the GRACE geopotential field instead of a sinusoidal model to correct the data. Currently, our analysis is constrained to the Amazon Basin, where the signal due to water loading is large enough to appear in both the GRACE and cGPS measurements. The vertical signal from cGPS stations across the Amazon Basin show an apparent spatial correlation, which further supports our idea that these signals are due to a regional water loading signal. In our preliminary research, we used tsview for Matlab to find that the WRMS of the corrected cGPS time series can be reduced as much as 30% from the model corrected data to the GRACE corrected data. The Amazon, like many places around the world, has experienced extreme drought, in 2005, 2010, and recently in 2015. In addition to making the cGPS vertical signal more robust, the method we are developing has the potential to help us understand the effects of these weather events and track trends in water loading.
NASA Technical Reports Server (NTRS)
Frost, W.
1985-01-01
The influence of terrain features on wind loading of the space shuttle while on the launch pad, or during early liftoff, was investigated both qualitatively and quantitatively. The climatology and meteorology producing macroscale wind patterns and characteristics for the Vandenburg Air Force Base launch site are described. Field test data are analyzed, and the nature and characteristic of flow disturbances due to the various terrain features, both natural and man-made, are reviewed. The magnitude of these wind loads are estimated. Finally, effects of turbulence are discussed. It is concluded that the influence of complex terrain can create significant wind loading on the vehicle.
NASA Astrophysics Data System (ADS)
Nittrouer, J. A.; Viparelli, E.
2013-12-01
The Mississippi Delta is presently undergoing a catastrophic drowning, whereby 5000 km2 of low-lying wetlands have converted to open water. This land loss is primarily the result of: a) relative sea-level rise, occurring due to the combined effect of rapid subsidence associated with subsurface fluids extraction and eustatic rise; b) leveeing and damming of the river and its tributaries, which restricts sediment delivery to and dispersal within the delta; and c) severe excavation of the delta for navigation channels. It has been argued that continued net land loss of the Mississippi Delta is inevitable due to declining measured total (sand and mud) suspended sediment loads over the past 6 decades. However, recent research has documented that the key to delta growth is deposition of sand, which accounts for ~50-70% of modern and ancient (up to 9 m.a.) Mississippi Delta deposits, but comprises only ~20% of the sampled portion of the total load. Here we present new analysis of existing data to show that sand transport has not diminished since dam construction. Furthermore, we produce a numerical model based on the mass balance of bed material loads over the lower 1600 km of the Mississippi River to show that mining of sand from the channel bed continues to replenish downstream sand loads. For example, our model results indicate that it requires approximately 240 years for a reduced sand load to reach the delta apex. Furthermore, our calculations indicate that sand load at the delta apex is reduced by a noticeable amount (17%) only after about 600 years. We also show how channel bed elevations are predicted to change over the lower 1600 km of the river channel due to channel mining. Channel-bed degradation is greatest at the upstream end of the study reach and decreases downstream. After 300 years the wave of significant degradation has just passed ~800 km downstream, or roughly half of our model domain. These results are in contrast to the measurements which concern the reduction of total suspended sediment load, and here we provide a reasonable hypothesis to help explain: sand possesses a much slower time scale of movement through a sand-bed river compared to mud, because sand exchanges with the bed, building dunes and bars that migrate gradually downstream, whereas the mud travels the length of the system in suspension as washload. This produces orders-of-magnitude difference in transport timescales between mud -- which accounts for ~80% of the total suspended sediment load of the Mississippi River -- and sand (bedload and suspended load). Combined with the abundance and availability of sand to be mined within the main channel, the river effectively buffers the reduction of sand load arising due to main-channel dams. Thus the bed of the lower Mississippi River downstream will provide a stable supply of sand to the delta for the foreseeable future.
Neural effects of cognitive control load on auditory selective attention.
Sabri, Merav; Humphries, Colin; Verber, Matthew; Liebenthal, Einat; Binder, Jeffrey R; Mangalathu, Jain; Desai, Anjali
2014-08-01
Whether and how working memory disrupts or alters auditory selective attention is unclear. We compared simultaneous event-related potentials (ERP) and functional magnetic resonance imaging (fMRI) responses associated with task-irrelevant sounds across high and low working memory load in a dichotic-listening paradigm. Participants performed n-back tasks (1-back, 2-back) in one ear (Attend ear) while ignoring task-irrelevant speech sounds in the other ear (Ignore ear). The effects of working memory load on selective attention were observed at 130-210ms, with higher load resulting in greater irrelevant syllable-related activation in localizer-defined regions in auditory cortex. The interaction between memory load and presence of irrelevant information revealed stronger activations primarily in frontal and parietal areas due to presence of irrelevant information in the higher memory load. Joint independent component analysis of ERP and fMRI data revealed that the ERP component in the N1 time-range is associated with activity in superior temporal gyrus and medial prefrontal cortex. These results demonstrate a dynamic relationship between working memory load and auditory selective attention, in agreement with the load model of attention and the idea of common neural resources for memory and attention. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yang, Chuan; Liu, Shao Qiong; Venkataraman, Shrinivas; Gao, Shu Jun; Ke, Xiyu; Chia, Xin Tian; Hedrick, James L; Yang, Yi Yan
2015-06-28
Amphiphilic polycarbonate/PEG copolymer with a star-like architecture was designed to facilitate a unique supramolecular transformation of micelles to vesicles in aqueous solution for the efficient delivery of anticancer drugs. The star-shaped amphipilic block copolymer was synthesized by initiating the ring-opening polymerization of trimethylene carbonate (TMC) from methyl cholate through a combination of metal-free organo-catalytic living ring-opening polymerization and post-polymerization chain-end derivatization strategies. Subsequently, the self-assembly of the star-like polymer in aqueous solution into nanosized vesicles for anti-cancer drug delivery was studied. DOX was physically encapsulated into vesicles by dialysis and drug loading level was significant (22.5% in weight) for DOX. Importantly, DOX-loaded nanoparticles self-assembled from the star-like copolymer exhibited greater kinetic stability and higher DOX loading capacity than micelles prepared from cholesterol-initiated diblock analogue. The advantageous disparity is believed to be due to the transformation of micelles (diblock copolymer) to vesicles (star-like block copolymer) that possess greater core space for drug loading as well as the ability of such supramolecular structures to encapsulate DOX. DOX-loaded vesicles effectively inhibited the proliferation of 4T1, MDA-MB-231 and BT-474 cells, with IC50 values of 10, 1.5 and 1.0mg/L, respectively. DOX-loaded vesicles injected into 4T1 tumor-bearing mice exhibited enhanced accumulation in tumor tissue due to the enhanced permeation and retention (EPR) effect. Importantly, DOX-loaded vesicles demonstrated greater tumor growth inhibition than free DOX without causing significant body weight loss or cardiotoxicity. The unique ability of the star-like copolymer emanating from the methyl cholate core provided the requisite modification in the block copolymer interfacial curvature to generate vesicles of high loading capacity for DOX with significant kinetic stability that have potential for use as an anti-cancer drug delivery carrier for cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.
Han, Qiang; Yu, Xing Xiu; Wang, Wei; Xu, Miao Miao; Ren, Rui; Zhang, Jia Peng
2017-04-18
Taking Hujiashan small watershed as the study area, based on the classified result of Landsat TM/ETM images of 2005, 2010 and 2015, combined with long-term field observation data, and used the export coefficient model, our study explored the effect of small watershed management project on temporal and spatial variation of total nitrogen (TN) load of non-point source pollution under the support of GIS technology. The results indicated that, due to the implementation of slope modification project, the area of cultivated land was significantly increased, while forest and bareland were decreased. The load of non-point source TN increased from 63208 kg in 2005 to 72778 kg in 2010, but reduced to 46876 kg in 2015. The contribution rate from residential areas was higher, the average contribution rate of the three periods was 53.5%, but it showed a decreasing trend year by year. The contribution rate of land use types was 45%, which showed an increasing trend year by year. The contribution rate of livestock was always low. From the spatial distribution, TN loading intensity was changed obviously after the terracing project. High load intensity zone was mainly concentrated on the slope of 5°-15° before terracing project. Nevertheless, high load intensity zone was concentrated on the slope of 15°-35° after terracing project, and 5°-8° had become a low load strength area. The TN load intensity changed little with time on the slope of 0°-8°, and it increased first and then decreased on the slope above 8°. With the treatment of sewage, garbage and livestock manure in rural areas, the output of nitrogen in the living and livestock breeding were significantly reduced. Due to the implementation of the project, the cultivated land area increased by 31%.
Schwiesau, Jens; Schilling, Carolin; Kaddick, Christian; Utzschneider, Sandra; Jansson, Volkmar; Fritz, Bernhard; Blömer, Wilhelm; Grupp, Thomas M
2013-05-01
The objective of our study was the definition of testing scenarios for knee wear simulation under various highly demanding daily activities of patients after total knee arthroplasty. This was mainly based on a review of published data on knee kinematics and kinetics followed by the evaluation of the accuracy and precision of a new experimental setup. We combined tibio-femoral load and kinematic data reported in the literature to develop deep squatting loading profiles for simulator input. A servo-hydraulic knee wear simulator was customised with a capability of a maximum flexion of 120°, a tibio-femoral load of 5000N, an anterior-posterior (AP) shear force of ±1000N and an internal-external (IE) rotational torque of ±50Nm to simulate highly demanding patient activities. During the evaluation of the newly configurated simulator the ability of the test machine to apply the required load and torque profiles and the flexion kinematics in a precise manner was examined by nominal-actual profile comparisons monitored periodically during subsequent knee wear simulation. For the flexion kinematics under displacement control a delayed actuator response of approximately 0.05s was inevitable due to the inertia of masses in movement of the coupled knee wear stations 1-3 during all applied activities. The axial load and IE torque is applied in an effective manner without substantial deviations between nominal and actual load and torque profiles. During the first third of the motion cycle a marked deviation between nominal and actual AP shear load profiles has to be noticed but without any expected measurable effect on the latter wear simulation due to the fact that the load values are well within the peak magnitude of the nominal load amplitude. In conclusion the described testing method will be an important tool to have more realistic knee wear simulations based on load conditions of the knee joint during activities of daily living. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Cognitive Aspects and Behavioral Effects of Transitions Between Levels of Automation
2007-01-06
operator’s mental load: − changes in performance due to the allocation of resources to multiple tasks; − operator’s self-reports (e.g., NASA - TLX , SWAT...difficulty was randomized across participants. After each block participants compiled the NASA -Task Load indeX ( NASA - TLX : Hart & Staveland, 1988) for...the subjective assessment of mental workload. DATA ANALYSIS AND RESULTS NASA - TLX weighted scores and number of completed lines (an index of
Zullmar Lucena; Micheal Lee
2016-01-01
Excessive sediment and nutrient loading are among the leading causes of impairment in water bodies of the United States due to their effect on biologic productivity, water quality, and aquatic food webs. Understanding the nutrient and suspended sediment loads affecting estuarine waters is fundamental to the assessment of the physical, chemical, and biological processes...
Effects of Variable Helmet Weight on Human Response to -Gx Impact
2016-02-01
may increase the potential for aircrew neck injury during aircraft ejection due to the increase in dynamic loads generated in the cervical spine as a...began experiencing discomfort and pain when wearing 3.5 lb helmets at 10 G seat accelerations. While overall neck loads demonstrated little or no... cervical spine as a result of the change in helmet inertial properties including weight, center-of-gravity (CG), and moments-of-inertia (MOI
1991-01-01
their midsurface counterparts due to the nature of the pin deflection and resulting load transfer. Linear elastic coupon radial stresses also followed... midsurface counterparts. The effects of the nonlinear elastic material behavior were quite evident when viewing the [(0/90)3,01, coupon intralaminar...to the midsurface of the coupon. The nonlinear elastic intralaminar shear stress-strain assumption acted to increase through thickness stresses
NCEL (Naval Civil Engineering Lab.) Ocean Platforms Seminar.
1983-11-01
propagating and evanescent modes. The resulting pressure field from both the scattered and radiated waves are integrated over the submerged surface of...fully submerged value. At the same time, an impact load occurs due to water entry of the member. Repeated loading of this type can result in fatigue...pronounced on deeply submerged caissons than on surface-piercing caissons. In the case of surface piercing caissons where the nonlinear effects tend to
Effect of Combined Loading Due to Bending and Internal Pressure on Pipe Flaw Evaluation Criteria
NASA Astrophysics Data System (ADS)
Miura, Naoki; Sakai, Shinsuke
Considering a rule for the rationalization of maintenance of Light Water Reactor piping, reliable flaw evaluation criteria are essential for determining how a detected flaw will be detrimental to continuous plant operation. Ductile fracture is one of the dominant failure modes that must be considered for carbon steel piping and can be analyzed by elastic-plastic fracture mechanics. Some analytical efforts have provided various flaw evaluation criteria using load correction factors, such as the Z-factors in the JSME codes on fitness-for-service for nuclear power plants and the section XI of the ASME boiler and pressure vessel code. The present Z-factors were conventionally determined, taking conservativity and simplicity into account; however, the effect of internal pressure, which is an important factor under actual plant conditions, was not adequately considered. Recently, a J-estimation scheme, LBB.ENGC for the ductile fracture analysis of circumferentially through-wall-cracked pipes subjected to combined loading was developed for more accurate prediction under more realistic conditions. This method explicitly incorporates the contributions of both bending and tension due to internal pressure by means of a scheme that is compatible with an arbitrary combined-loading history. In this study, the effect of internal pressure on the flaw evaluation criteria was investigated using the new J-estimation scheme. The Z-factor obtained in this study was compared with the presently used Z-factors, and the predictability of the current flaw evaluation criteria was quantitatively evaluated in consideration of the internal pressure.
Safety Identifying of Integral Abutment Bridges under Seismic and Thermal Loads
Easazadeh Far, Narges; Barghian, Majid
2014-01-01
Integral abutment bridges (IABs) have many advantages over conventional bridges in terms of strength and maintenance cost. Due to the integrity of these structures uniform thermal and seismic loads are known important ones on the structure performance. Although all bridge design codes consider temperature and earthquake loads separately in their load combinations for conventional bridges, the thermal load is an “always on” load and, during the occurrence of an earthquake, these two important loads act on bridge simultaneously. Evaluating the safety level of IABs under combination of these loads becomes important. In this paper, the safety of IABs—designed by AASHTO LRFD bridge design code—under combination of thermal and seismic loads is studied. To fulfill this aim, first the target reliability indexes under seismic load have been calculated. Then, these analyses for the same bridge under combination of thermal and seismic loads have been repeated and the obtained reliability indexes are compared with target indexes. It is shown that, for an IAB designed by AASHTO LRFD, the indexes have been reduced under combined effects. So, the target level of safety during its design life is not provided and the code's load combination should be changed. PMID:25405232
Thin film modeling of crystal dissolution and growth in confinement.
Gagliardi, Luca; Pierre-Louis, Olivier
2018-01-01
We present a continuum model describing dissolution and growth of a crystal contact confined against a substrate. Diffusion and hydrodynamics in the liquid film separating the crystal and the substrate are modeled within the lubrication approximation. The model also accounts for the disjoining pressure and surface tension. Within this framework, we obtain evolution equations which govern the nonequilibrium dynamics of the crystal interface. Based on this model, we explore the problem of dissolution under an external load, known as pressure solution. We find that in steady state, diverging (power-law) crystal-surface repulsions lead to flat contacts with a monotonic increase of the dissolution rate as a function of the load. Forces induced by viscous dissipation then surpass those due to disjoining pressure at large enough loads. In contrast, finite repulsions (exponential) lead to sharp pointy contacts with a dissolution rate independent of the load and the liquid viscosity. Ultimately, in steady state, the crystal never touches the substrate when pressed against it. This result is independent from the nature of the crystal-surface interaction due to the combined effects of viscosity and surface tension.
Thin film modeling of crystal dissolution and growth in confinement
NASA Astrophysics Data System (ADS)
Gagliardi, Luca; Pierre-Louis, Olivier
2018-01-01
We present a continuum model describing dissolution and growth of a crystal contact confined against a substrate. Diffusion and hydrodynamics in the liquid film separating the crystal and the substrate are modeled within the lubrication approximation. The model also accounts for the disjoining pressure and surface tension. Within this framework, we obtain evolution equations which govern the nonequilibrium dynamics of the crystal interface. Based on this model, we explore the problem of dissolution under an external load, known as pressure solution. We find that in steady state, diverging (power-law) crystal-surface repulsions lead to flat contacts with a monotonic increase of the dissolution rate as a function of the load. Forces induced by viscous dissipation then surpass those due to disjoining pressure at large enough loads. In contrast, finite repulsions (exponential) lead to sharp pointy contacts with a dissolution rate independent of the load and the liquid viscosity. Ultimately, in steady state, the crystal never touches the substrate when pressed against it. This result is independent from the nature of the crystal-surface interaction due to the combined effects of viscosity and surface tension.
Transient three-dimensional startup side load analysis of a regeneratively cooled nozzle
NASA Astrophysics Data System (ADS)
Wang, Ten-See
2009-07-01
The objective of this effort is to develop a computational methodology to capture the side load physics and to anchor the computed aerodynamic side loads with the available data by simulating the startup transient of a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, and a transient inlet history based on an engine system simulation. Emphases were put on the effects of regenerative cooling on shock formation inside the nozzle, and ramp rate on side load reduction. The results show that three types of asymmetric shock physics incur strong side loads: the generation of combustion wave, shock transitions, and shock pulsations across the nozzle lip, albeit the combustion wave can be avoided with sparklers during hot-firing. Results from both regenerative cooled and adiabatic wall boundary conditions capture the early shock transitions with corresponding side loads matching the measured secondary side load. It is theorized that the first transition from free-shock separation to restricted-shock separation is caused by the Coanda effect. After which the regeneratively cooled wall enhances the Coanda effect such that the supersonic jet stays attached, while the hot adiabatic wall fights off the Coanda effect, and the supersonic jet becomes detached most of the time. As a result, the computed peak side load and dominant frequency due to shock pulsation across the nozzle lip associated with the regeneratively cooled wall boundary condition match those of the test, while those associated with the adiabatic wall boundary condition are much too low. Moreover, shorter ramp time results show that higher ramp rate has the potential in reducing the nozzle side loads.
Impact Damage and Strain Rate Effects for Toughened Epoxy Composite Structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Minnetyan, Levon
2006-01-01
Structural integrity of composite systems under dynamic impact loading is investigated herein. The GENOA virtual testing software environment is used to implement the effects of dynamic loading on fracture progression and damage tolerance. Combinations of graphite and glass fibers with a toughened epoxy matrix are investigated. The effect of a ceramic coating for the absorption of impact energy is also included. Impact and post impact simulations include verification and prediction of (1) Load and Impact Energy, (2) Impact Damage Size, (3) Maximum Impact Peak Load, (4) Residual Strength, (5) Maximum Displacement, (6) Contribution of Failure Modes to Failure Mechanisms, (7) Prediction of Impact Load Versus Time, and (8) Damage, and Fracture Pattern. A computer model is utilized for the assessment of structural response, progressive fracture, and defect/damage tolerance characteristics. Results show the damage progression sequence and the changes in the structural response characteristics due to dynamic impact. The fundamental premise of computational simulation is that the complete evaluation of composite fracture requires an assessment of ply and subply level damage/fracture processes as the structure is subjected to loads. Simulation results for the graphite/epoxy composite were compared with the impact and tension failure test data, correlation and verification was obtained that included: (1) impact energy, (2) damage size, (3) maximum impact peak load, (4) residual strength, (5) maximum displacement, and (6) failure mechanisms of the composite structure.
Boltaña, Sebastian; Sanchez, Marcos; Valenzuela, Valentina; Gallardo-Escárate, Cristian
2016-12-01
Sea lice infestations are a particular concern in the salmonid aquaculture industry due to damaging effects on fish growth, disease/infection susceptibility, and survival. Despite the impacts of sea lice parasitism, few studies have determined corresponding physiological thresholds, or the quantity of sea lice that can trigger measurable effects in the host immune response. The present study evaluated the mRNA expressions of immune-related genes in Salmo salar (Atlantic salmon) under infestation challenges with contrasting loads of the sea louse Caligus rogercresseyi. Specifically, two groups of S. salar were infected with either 35 (i.e. low parasitic load) or 100 (i.e. high parasitic load) copepodids per fish. At 14 days post-infestation, the mRNA levels of immune-related genes (e.g. related to oxidative stress, pro- and inflammatory responses, and the adaptive T H 1/T H 2 pathways) were assessed through RT-qPCR. Significant differences were found in relation to parasitic load, suggesting density-dependent effects that activated the S. salar immune system. Higher parasitic load promoted strong inflammatory and oxidative stress responses that were correlated with the T H 1 immune response. This study highlights the molecular signatures for distinct parasitic loads, providing new perspectives towards fully understanding parasite-host interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Inattentional Deafness: Visual Load Leads to Time-Specific Suppression of Auditory Evoked Responses
Molloy, Katharine; Griffiths, Timothy D.; Lavie, Nilli
2015-01-01
Due to capacity limits on perception, conditions of high perceptual load lead to reduced processing of unattended stimuli (Lavie et al., 2014). Accumulating work demonstrates the effects of visual perceptual load on visual cortex responses, but the effects on auditory processing remain poorly understood. Here we establish the neural mechanisms underlying “inattentional deafness”—the failure to perceive auditory stimuli under high visual perceptual load. Participants performed a visual search task of low (target dissimilar to nontarget items) or high (target similar to nontarget items) load. On a random subset (50%) of trials, irrelevant tones were presented concurrently with the visual stimuli. Brain activity was recorded with magnetoencephalography, and time-locked responses to the visual search array and to the incidental presence of unattended tones were assessed. High, compared to low, perceptual load led to increased early visual evoked responses (within 100 ms from onset). This was accompanied by reduced early (∼100 ms from tone onset) auditory evoked activity in superior temporal sulcus and posterior middle temporal gyrus. A later suppression of the P3 “awareness” response to the tones was also observed under high load. A behavioral experiment revealed reduced tone detection sensitivity under high visual load, indicating that the reduction in neural responses was indeed associated with reduced awareness of the sounds. These findings support a neural account of shared audiovisual resources, which, when depleted under load, leads to failures of sensory perception and awareness. SIGNIFICANCE STATEMENT The present work clarifies the neural underpinning of inattentional deafness under high visual load. The findings of near-simultaneous load effects on both visual and auditory evoked responses suggest shared audiovisual processing capacity. Temporary depletion of shared capacity in perceptually demanding visual tasks leads to a momentary reduction in sensory processing of auditory stimuli, resulting in inattentional deafness. The dynamic “push–pull” pattern of load effects on visual and auditory processing furthers our understanding of both the neural mechanisms of attention and of cross-modal effects across visual and auditory processing. These results also offer an explanation for many previous failures to find cross-modal effects in experiments where the visual load effects may not have coincided directly with auditory sensory processing. PMID:26658858
NASA Astrophysics Data System (ADS)
Borsa, A. A.; Mencin, D.; van Dam, T. M.
2017-12-01
Hurricane Harvey was the first major hurricane to impact the USA in over a decade, making landfall southwest of Houston, TX on August 26, 2017. Although Harvey was downgraded to a tropical storm shortly after landfall, it dropped a record amount of rain and was responsible for epic flooding across much of southeast Texas. While precipitation from a large storm like Harvey can be estimated from in-situ rain gages and Doppler radar, the accompanying surface water changes that lead to flooding are imperfectly observed due to the limited coverage of existing stream and lake level gages and because floodwaters inundate areas that are typically unmonitored. Earth's response to changes in surface loading provides an opportunity to observe the local hydrological response to Hurricane Harvey, specifically the dramatic changes in water storage coincident with and following the storm. Continuous GPS stations in southeastern Texas observed an average drop in land surface elevations of 1.8 cm following Harvey's landfall, followed by a gradual recovery to pre-storm levels over the following month. We interpret this surface motion as Earth's elastic response to the weight of cumulative rainfall during the storm, followed by rebound as that weight was removed by runoff and evapotranspiration (ET). Using observations of surface displacements from GPS stations in the HoustonNET and Plate Boundary Observatory networks, we model the daily water storage changes across Texas and Louisiana associated with Harvey. Because Harvey's barometric pressure low caused surface uplift at the cm level which temporarily obscured the subsidence signal due to precipitation, we model and remove the effect of atmospheric loading from the GPS data prior to our analysis. We also consider the effect on GPS position time series of non-tidal ocean loading due to the hurricane storm surge, which at the coast was an order of magnitude larger than loads due to precipitation alone. Finally, we use our results to estimate 1) the total precipitation load from the storm, 2) the spatial distribution of flooding, and 3) the runoff/ET component of water storage changes (incorporating independent estimates of precipitation).
GGFC Special Bureau for Loading: current status and plans
NASA Astrophysics Data System (ADS)
van Dam, T.; Plag, H.-P.; Francis, O.; Gegout, P.
The Earth's surface is perpetually being displaced due to temporally varying atmospheric, oceanic and continental water mass surface loads. These non-geodynamic signals are of substantial magnitude that they contribute significantly to the scatter in geodetic observations of crustal motion. In February, 2002, the International Earth Rotation Service (IERS) established a Special Bureau of Loading (SBL) whose primary charge is to provide consistent and valid estimates of surface mass loading effects to the IERS community for the purpose of correcting geodetic time series. Here we outline the primary principles involved in modelling the surface displacements and gravity changes induced by surface mass loading including the basic theory, the Earth model and the surface load data. We then identify a list of operational issues, including product validation, that need to be addressed by the SBL before products can be provided to the community. Finally, we outline areas for future research to further improve the loading estimates. We conclude by formulating a recommendation on the best procedure for including loading corrections into geodetic data. Success of the SBL will depend on our ability to efficiently provide consistent and reliable estimates of surface mass loading effects. It is imperative that we work closely with the existing Global Geophysical Fluids Center (GGFC) Special Bureaus and with the community to as much as possible to verify the products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richins, W.D.; Snow, S.D.; Miller, G.K.
1995-12-01
Some motor operated valves now have higher torque switch settings due to regulatory requirements to ensure valve operability with appropriate margins at design basis conditions. Verifying operability with these settings imposes higher stem loads during periodic inservice testing. These higher test loads increase stresses in the various valve internal parts which may in turn increase the fatigue usage factors. This increased fatigue is judged to be a concern primarily in the valve disks, seats, yokes, stems, and stem nuts. Although the motor operators may also have significantly increased loading, they are being evaluated by the manufacturers and are beyond themore » scope of this study. Two gate valves representative of both relatively weak and strong valves commonly used in commercial nuclear applications were selected for fatigue analyses. Detailed dimensional and test data were available for both valves from previous studies at the Idaho National Engineering Laboratory. Finite element models were developed to estimate maximum stresses in the internal parts of the valves and to identity the critical areas within the valves where fatigue may be a concern. Loads were estimated using industry standard equations for calculating torque switch settings prior and subsequent to the testing requirements of USNRC Generic Letter 89--10. Test data were used to determine both; (1) the overshoot load between torque switch trip and final seating of the disk during valve closing and (2) the stem thrust required to open the valves. The ranges of peak stresses thus determined were then used to estimate the increase in the fatigue usage factors due to the higher stem thrust loads. The usages that would be accumulated by 100 base cycles plus one or eight test cycles per year over 40 and 60 years of operation were calculated.« less
Ply cracking in composite laminates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Youngmyong.
1989-01-01
Ply cracking behavior and accompanying stiffness changes in thermoset as well as thermoplastic matrix composites under various loading conditions are investigated. Specific topics addressed are: analytical model development for property degradations due to ply cracking under general in-plane loading; crack initiation and multiplication under static loading; and crack multiplication under cyclic loading. A model was developed to calculate the energy released due to ply cracking in a composite laminate subjected to general in-plane loading. The method is based on the use of a second order polynomial to represent the crack opening displacement and the concept of a through-the-thickness inherent flaw.more » The model is then used in conjunction with linear elastic fracture mechanics to predict the progressive ply cracking as well as first ply cracking. A resistance curve for crack multiplication is proposed as a means of characterizing the resistance to ply cracking in composite laminates. A methodology of utilizing the resistance curve to assess the crack density or overloading is also discussed. The method was applied to the graphite/thermoplastic polyimide composite to predict progressive ply cracking. However, unlike the thermoset matrix composites, a strength model is found to fit the experimental results better than the fracture mechanics based model. A set of closed form equations is also developed to calculate the accompanying stiffness changes due to the ply cracking. The effect of thermal residual stress is included in the analysis. A new method is proposed to characterize transverse ply cracking of symmetric balanced laminates under cyclic loading. The method is based on the concept of a through-the-thickness inherent flaw, the Paris law, and the resistance curve. Only two constants are needed to predict the crack density as a function of fatigue cycles.« less
Wang, Jing-Zhou; Guo, Ze-Qing; Zhou, Jian-Ping; Lei, Yu-Xi
2018-07-27
The noble metals Au, Ag and Pt were loaded onto Na 0.9 Mg 0.45 Ti 3.55 O 8 (NMTO) using a chemical bath deposition method devised in our recent work for the first time. The composite photocatalysts exhibit more effective photodegradation of methylene blue, due to the Schottky barrier built between NMTO and noble metal. Hot electrons generated during localized surface plasmon processes in metal nanoparticles transfer to the semiconductor, manifesting as a depression of surface potential directly detectable by scanning Kelvin probe microscopy. The key factor responsible for the improved ability of semiconductor-based photocatalysts is charge separation. The most effective weight concentrations of Au, Ag and Pt loaded onto NMTO were found to be 5.00%, 12.6% and 5.55% respectively. NMTO loaded with noble metals shows good photostability and recyclability for the degradation of methylene blue. A possible mechanism for the photodegradation of methylene blue over NMTO loaded with noble metals is proposed. This work highlights the potential application of NMTO-based photocatalysts, and provides an effective method to detect localized surface plasmons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papadias, D. D.; Ahluwalia, R. K.; Kariuki, N.
The durability of Pt-Co alloy cathode catalysts supported on high surface area carbon is investigated by subjecting them to accelerated stress tests (ASTs). The catalysts had different initial Co contents and nanoparticle morphologies: a “spongy” porous morphology for the high-Co (H) content catalyst, and a fully alloyed crystalline morphology for the medium-Co (M) and low-Co (L) content catalysts. The specific activity of the catalysts depends on their initial Co content, morphology and nanoparticle size, and remained higher than 1000 μA/cm 2-Pt after 27–50% Co loss. The H-catalyst electrode showed the smallest kinetic overpotentials (η c s) due to higher initialmore » Pt loading than the other two electrodes, but it had the fastest increase in ηcs with AST cycling due to lower Co retention; the L-catalyst electrode showed higher η c s due to a lower initial Pt loading, but had a smaller increase in η c s with aging due to higher Co retention; the M-catalyst electrode showed a similar increase in η c s with aging, but this increase was due to the combined effects of Co dissolution and electrochemically active surface area (ECSA) loss. In conclusion, the modeled increase in mass transfer overpotentials with aging correlates with the initial Pt loading, ECSA loss and the initial catalyst morphology« less
Papadias, D. D.; Ahluwalia, R. K.; Kariuki, N.; ...
2018-03-17
The durability of Pt-Co alloy cathode catalysts supported on high surface area carbon is investigated by subjecting them to accelerated stress tests (ASTs). The catalysts had different initial Co contents and nanoparticle morphologies: a “spongy” porous morphology for the high-Co (H) content catalyst, and a fully alloyed crystalline morphology for the medium-Co (M) and low-Co (L) content catalysts. The specific activity of the catalysts depends on their initial Co content, morphology and nanoparticle size, and remained higher than 1000 μA/cm 2-Pt after 27–50% Co loss. The H-catalyst electrode showed the smallest kinetic overpotentials (η c s) due to higher initialmore » Pt loading than the other two electrodes, but it had the fastest increase in ηcs with AST cycling due to lower Co retention; the L-catalyst electrode showed higher η c s due to a lower initial Pt loading, but had a smaller increase in η c s with aging due to higher Co retention; the M-catalyst electrode showed a similar increase in η c s with aging, but this increase was due to the combined effects of Co dissolution and electrochemically active surface area (ECSA) loss. In conclusion, the modeled increase in mass transfer overpotentials with aging correlates with the initial Pt loading, ECSA loss and the initial catalyst morphology« less
Energy Savings in Cellular Networks Based on Space-Time Structure of Traffic Loads
NASA Astrophysics Data System (ADS)
Sun, Jingbo; Wang, Yue; Yuan, Jian; Shan, Xiuming
Since most of energy consumed by the telecommunication infrastructure is due to the Base Transceiver Station (BTS), switching off BTSs when traffic load is low has been recognized as an effective way of saving energy. In this letter, an energy saving scheme is proposed to minimize the number of active BTSs based on the space-time structure of traffic loads as determined by principal component analysis. Compared to existing methods, our approach models traffic loads more accurately, and has a much smaller input size. As it is implemented in an off-line manner, our scheme also avoids excessive communications and computing overheads. Simulation results show that the proposed method has a comparable performance in energy savings.
NASA Technical Reports Server (NTRS)
Hanson, D. B.
1991-01-01
A unified theory for the aerodynamics and noise of advanced turboprops are presented. Aerodynamic topics include calculation of performance, blade load distribution, and non-uniform wake flow fields. Blade loading can be steady or unsteady due to fixed distortion, counter-rotating wakes, or blade vibration. The aerodynamic theory is based on the pressure potential method and is therefore basically linear. However, nonlinear effects associated with finite axial induction and blade vortex flow are included via approximate methods. Acoustic topics include radiation of noise caused by blade thickness, steady loading (including vortex lift), and unsteady loading. Shielding of the fuselage by its boundary layer and the wing are treated in separate analyses that are compatible but not integrated with the aeroacoustic theory for rotating blades.
Iwase, Satoshi
2005-01-01
To test the effectiveness of centrifuge-induced artificial gravity with ergometric exercise, 12 healthy young men (20.7 +/- 1.9 yr) were exposed to simulated microgravity for 14 days of -6 degrees head-down bedrest. Half the subjects were randomly selected and loaded 1.2 G artificial gravity with 60 W (four out of six subjects) or 40 W (two out of six subjects) of ergometric workload on days 1, 2, 3, 5, 7, 9, 11, 12, 13, 14 (CM group). The rest of the subjects served as the control. Anti-G score, defined as the G-load x running time to the endpoint, was significantly elongated by the load of the centrifuge-ergometer. Plasma volume loss was suppressed (-5.0 +/- 2.4 vs. -16.4 +/- 1.9%), and fluid volume shift was prevented by the countermeasure load. Elevated heart rate and muscle sympathetic nerve activity after bedrest were counteracted, and exaggerated response to head-up tilt was also suppressed. Centrifuge-induced artificial gravity with exercise is effective in preventing cardiovascular deconditioning due to microgravity exposure, however, an effective and appropriate regimen (magnitude of G-load and exercise workload) should be determined in future studies. c2005 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Iwase, Satoshi
2005-07-01
To test the effectiveness of centrifuge-induced artificial gravity with ergometric exercise, 12 healthy young men (20.7±1.9yr) were exposed to simulated microgravity for 14 days of -6∘ head-down bedrest. Half the subjects were randomly selected and loaded 1.2 G artificial gravity with 60 W (four out of six subjects) or 40 W (two out of six subjects) of ergometric workload on days 1,2,3,5,7,9,11,12,13,14 (CM group). The rest of the subjects served as the control. Anti-G score, defined as the G-load×running time to the endpoint, was significantly elongated by the load of the centrifuge-ergometer. Plasma volume loss was suppressed ( -5.0±2.4 vs. -16.4±1.9%), and fluid volume shift was prevented by the countermeasure load. Elevated heart rate and muscle sympathetic nerve activity after bedrest were counteracted, and exaggerated response to head-up tilt was also suppressed. Centrifuge-induced artificial gravity with exercise is effective in preventing cardiovascular deconditioning due to microgravity exposure, however, an effective and appropriate regimen (magnitude of G-load and exercise workload) should be determined in future studies.
Secondary Moments due to Prestressing with Different Bond at the Ultimate Limit State
NASA Astrophysics Data System (ADS)
Halvoník, Jaroslav; Pažma, Peter; Vida, Radoslav
2018-03-01
Secondary effects of prestressing develop in statically indeterminate structures (e.g., continuous beams) due to the restraint of deformations imposed by hyperstatic restraints. These effects may significantly influence internal forces and stresses in prestressed structures. Secondary effects are influenced by the redundancy of a structural system, which raises the question of whether they will remain constant after a change in the structural system, e.g., due to the development of plastic hinge(s) in a critical cross-section(s) or after the development of a kinematic mechanism, or if they will disappear when the structure changes into a sequence of simply supported beams. The paper deals with an investigation of the behavior of continuous post-tensioned beams subjected to an ultimate load with significant secondary effects from prestressing. A total of 6 two-span beams prestressed by tendons with different bonds were tested in a laboratory with a load that changed their structural system into a kinematic mechanism. The internal forces and secondary effects of the prestressing were controlled through measurements of the reactions in all the supports. The results revealed that the secondary effects remained as a permanent part of the action on the experimental beams, even after the development of the kinematic mechanism. The results obtained confirmed that secondary effects should be included in all combinations of actions for verifications of ultimate limit states (ULS).
King, Mark A; Glynn, Jonathan A; Mitchell, Sean R
2011-11-01
A subject-specific angle-driven computer model of a tennis player, combined with a forward dynamics, equipment-specific computer model of tennis ball-racket impacts, was developed to determine the effect of ball-racket impacts on loading at the elbow for one-handed backhand groundstrokes. Matching subject-specific computer simulations of a typical topspin/slice one-handed backhand groundstroke performed by an elite tennis player were done with root mean square differences between performance and matching simulations of < 0.5 degrees over a 50 ms period starting from ball impact. Simulation results suggest that for similar ball-racket impact conditions, the difference in elbow loading for a topspin and slice one-handed backhand groundstroke is relatively small. In this study, the relatively small differences in elbow loading may be due to comparable angle-time histories at the wrist and elbow joints with the major kinematic differences occurring at the shoulder. Using a subject-specific angle-driven computer model combined with a forward dynamics, equipment-specific computer model of tennis ball-racket impacts allows peak internal loading, net impulse, and shock due to ball-racket impact to be calculated which would not otherwise be possible without impractical invasive techniques. This study provides a basis for further investigation of the factors that may increase elbow loading during tennis strokes.
14 CFR 25.367 - Unsymmetrical loads due to engine failure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the engine compressor from the turbine or from loss of the turbine blades are considered to be... § 25.367 Unsymmetrical loads due to engine failure. (a) The airplane must be designed for the unsymmetrical loads resulting from the failure of the critical engine. Turbopropeller airplanes must be designed...
14 CFR 25.367 - Unsymmetrical loads due to engine failure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the engine compressor from the turbine or from loss of the turbine blades are considered to be... § 25.367 Unsymmetrical loads due to engine failure. (a) The airplane must be designed for the unsymmetrical loads resulting from the failure of the critical engine. Turbopropeller airplanes must be designed...
14 CFR 25.367 - Unsymmetrical loads due to engine failure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the engine compressor from the turbine or from loss of the turbine blades are considered to be... § 25.367 Unsymmetrical loads due to engine failure. (a) The airplane must be designed for the unsymmetrical loads resulting from the failure of the critical engine. Turbopropeller airplanes must be designed...
Petrini, Lorenza; Bertini, Alessandro; Berti, Francesca; Pennati, Giancarlo; Migliavacca, Francesco
2017-05-01
Nickel-titanium alloys are commonly adopted for producing cardiovascular minimally invasive devices such as self-expandable stents, aortic valves and stent-grafts. These devices are subjected to cyclic loads (due to blood pulsatility, leg or heart movements), that can induce fatigue fracture, and may also be subjected to very large deformations (due to crimping procedure, a tortuous physiological path or overloads), that can induce material yield. Recently, the authors developed a new constitutive model that considers inelastic strains due to not-completed reverse phase transformation (not all the stress-induced martensite turns back to austenite) or/and plasticity and their accumulation during cyclic loads. In this article, the model is implemented in the finite element code ABAQUS/Standard and it is used to investigate the effects of inelastic strain accumulation on endovascular nickel-titanium devices. In particular, the behavior of a transcatheter aortic valve is studied considering the following steps: (1) crimping, (2) expansion in a tube resembling a durability test chamber and (3) cyclic loads due to pressure variation applied on the inner surface of the tube. The analyses are performed twice, activating and not activating that part of the new model which describes the development of irreversible strain. From the results, it is interesting to note that plasticity has a very significant effect on the local material response, inducing stress modification from compression to tension. However, permanent deformations are concentrated in few zones of the stent frame and their presence does not affect the global behavior of the device that maintains its capability of recovering the original shape. In conclusion, this work suggests that at least for cardiovascular devices where the crimping is high (local strain may reach values of 8%-9%), taking into account inelastic effects due to plasticity and not-completed reverse phase transformation can be important, and hence using a suitable constitutive model is recommended.
Experimental characterization of composites. [load test methods
NASA Technical Reports Server (NTRS)
Bert, C. W.
1975-01-01
The experimental characterization for composite materials is generally more complicated than for ordinary homogeneous, isotropic materials because composites behave in a much more complex fashion, due to macroscopic anisotropic effects and lamination effects. Problems concerning the static uniaxial tension test for composite materials are considered along with approaches for conducting static uniaxial compression tests and static uniaxial bending tests. Studies of static shear properties are discussed, taking into account in-plane shear, twisting shear, and thickness shear. Attention is given to static multiaxial loading, systematized experimental programs for the complete characterization of static properties, and dynamic properties.
High Dietary Protein Intake and Protein-Related Acid Load on Bone Health.
Cao, Jay J
2017-12-01
Consumption of high-protein diets is increasingly popular due to the benefits of protein on preserving lean mass and controlling appetite and satiety. The paper is to review recent clinical research assessing dietary protein on calcium metabolism and bone health. Epidemiological studies show that long-term, high-protein intake is positively associated with bone mineral density and reduced risk of bone fracture incidence. Short-term interventional studies demonstrate that a high-protein diet does not negatively affect calcium homeostasis. Existing evidence supports that the negative effects of the acid load of protein on urinary calcium excretion are offset by the beneficial skeletal effects of high-protein intake. Future research should focus on the role and the degree of contribution of other dietary and physiological factors, such as intake of fruits and vegetables, in reducing the acid load and further enhancing the anabolic effects of protein on the musculoskeletal system.
Load concentration due to missing members in planar faces of a large space truss
NASA Technical Reports Server (NTRS)
Waltz, J. E.
1979-01-01
A large space structure with members missing was investigated using a finite element analysis. The particular structural configuration was the tetrahedral truss, with attention restricted to one of its planar faces. Initially the finite element model of a complete face was verified by comparing it with known results for some basic loadings. Then an analysis was made of the structure with members near the center removed. Some calculations were made on the influence of the mesh size of a structure containing a hexagonal hole, and an analysis was also made of a structure with a rigid hexagonal insert. In general, load concentration effects in these trusses were significantly lower than classical stress concentration effects in an infinitely wide isotropic plate with a circular rigid inclusion, although larger effects were obtained when a hole extended over several rings of elements.
Schwartz, Sophie; Vuilleumier, Patrik; Hutton, Chloe; Maravita, Angelo; Dolan, Raymond J; Driver, Jon
2005-06-01
Perceptual suppression of distractors may depend on both endogenous and exogenous factors, such as attentional load of the current task and sensory competition among simultaneous stimuli, respectively. We used functional magnetic resonance imaging (fMRI) to compare these two types of attentional effects and examine how they may interact in the human brain. We varied the attentional load of a visual monitoring task performed on a rapid stream at central fixation without altering the central stimuli themselves, while measuring the impact on fMRI responses to task-irrelevant peripheral checkerboards presented either unilaterally or bilaterally. Activations in visual cortex for irrelevant peripheral stimulation decreased with increasing attentional load at fixation. This relative decrease was present even in V1, but became larger for successive visual areas through to V4. Decreases in activation for contralateral peripheral checkerboards due to higher central load were more pronounced within retinotopic cortex corresponding to 'inner' peripheral locations relatively near the central targets than for more eccentric 'outer' locations, demonstrating a predominant suppression of nearby surround rather than strict 'tunnel vision' during higher task load at central fixation. Contralateral activations for peripheral stimulation in one hemifield were reduced by competition with concurrent stimulation in the other hemifield only in inferior parietal cortex, not in retinotopic areas of occipital visual cortex. In addition, central attentional load interacted with competition due to bilateral versus unilateral peripheral stimuli specifically in posterior parietal and fusiform regions. These results reveal that task-dependent attentional load, and interhemifield stimulus-competition, can produce distinct influences on the neural responses to peripheral visual stimuli within the human visual system. These distinct mechanisms in selective visual processing may be integrated within posterior parietal areas, rather than earlier occipital cortex.
Bennett, Ilana J; Rivera, Hannah G; Rypma, Bart
2013-05-15
Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. Copyright © 2013 Elsevier Inc. All rights reserved.
SadguruPrasad, Lakshminarayana Turuvekere; Madhusudhan, Basavaraj; Kodihalli B, Prakash; Ghosh, Prahlad Chandra
2017-02-01
Poly-methyl methacrylate (PMMA) polymer with remarkable properties and merits are being preferred in various biomedical applications due to its biocompatibility, non-toxicity and cost effectiveness. In this investigation, oxytetracycline-loaded PMMA nanoparticles were prepared using nano-precipitation method for the treatment of anaplasmosis. The prepared nanoparticles were characterised using dynamic light scattering (DLS), atomic force microscopy (AFM), differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The mean average diameter of the nanoparticles ranged between 190-240 nm and zeta potential was found to be -19 mV. The drug loading capacity and entrapment efficiency of nanoparticles was found varied between 33.7-62.2% and 40.5-60.0%. The in vitro drug release profile exhibited a biphasic phenomenon indicating controlled drug release. The uptake of coumarin-6(C-6)-loaded PMMA nanoparticles in Plasmodium falciparum ( Pf 3D7) culture model was studied. The preferential uptake of C-6-loaded nanoparticles by the Plasmodium infected erythrocytes in comparison with the uninfected erythrocytes was observed under fluorescence microscopy. These findings suggest that oxytetracycline-loaded PMMA nanoparticles were found to be an effective oral delivery vehicle and an alternative pharmaceutical formulation in anaplasmosis treatment, too.
Physical, toxicological, and energy systems modeling were combined to make estimates of likely ecosystem-level effects due to residual chlorine in sewage effluent. The energy systems model also allowed us to make estimates of the effects of nutrient loading on the estuary both se...
NASA Technical Reports Server (NTRS)
Wahr, J. M.; Sasao, T.
1981-01-01
The effects of the oceans, which are subject to a resonance due to a free rotational eigenmode of an elliptical, rotating earth with a fluid outer core having an eigenfrequency of (1 + 1/460) cycle/day, on the body tide and nutational response of the earth to the diurnal luni-tidal force are computed. The response of an elastic, rotating, elliptical, oceanless earth with a fluid outer core to a given load distribution on its surface is first considered, and the tidal sea level height for equilibrium and nonequilibrium oceans is examined. Computations of the effects of equilibrium and nonequilibrium oceans on the nutational and deformational responses of the earth are then presented which show small but significant perturbations to the retrograde 18.6-year and prograde six-month nutations, and more important effects on the earth body tide, which is also resonant at the free core notation eigenfrequency.
Camilleri, Matt J; Malige, Ajith; Fujimoto, Jeffrey; Rempel, David M
2013-01-01
Direct touch displays can improve the human-computer experience and productivity; however, the higher hand locations may increase shoulder fatigue. Palm rejection (PR) technology may reduce shoulder loads by allowing the palms to rest on the display and increase productivity by registering the touched content and fingertips through the palms rather than shoulders. The effects of PR were evaluated by having participants perform touch tasks while posture and reaction force on the display were measured. Enabling PR, during which the subjects could place the palms on the display (but were not required to), resulted in increased wrist extension, force applied to the display and productivity, and less discomfort, but had no effect on the self-selected positioning of the display. Participants did not deliberately place their palms on the display; therefore, there was no reduction in shoulder load and the increased productivity was not due to improved hand registration. The increased productivity may have been due to reduced interruptions from palm contacts or reduced motor control demands.
Tendon biomechanics and mechanobiology - a mini-review of basic concepts and recent advancements
Wang, James H-C.; Guo, Qianping; Li, Bin
2011-01-01
Due to their unique hierarchical structure and composition, tendons possess characteristic biomechanical properties, including high mechanical strength and viscoelasticity, which enable them to carry and transmit mechanical loads (muscular forces) effectively. Tendons are also mechano-responsive by adaptively changing their structure and function in response to altered mechanical loading conditions. In general, mechanical loading at physiological levels is beneficial to tendons, but excessive loading or disuse of tendons is detrimental. This mechano-adaptability is due to the cells present in tendons. Tendon fibroblasts (tenocytes) are the dominant tendon cells responsible for tendon homeostasis and repair. Tendon stem cells (TSCs), which were recently discovered, also play a vital role in tendon maintenance and repair by virtue of their ability to self-renew and differentiate into tenocytes. TSCs may also be responsible for chronic tendon injury, or tendinopathy, by undergoing aberrant differentiation into non-tenocytes in response to excessive mechanical loading. Thus, it is necessary to devise optimal rehabilitation protocols in order to enhance tendon healing while reducing scar tissue formation and tendon adhesions. Moreover, along with scaffolds that can mimic tendon matrix environments and platelet-rich plasma (PRP), which serves as a source of growth factors, TSCs may be the optimal cell type for enhancing repair of injured tendons. PMID:21925835
Dynamic response for structural health monitoring of the Penang (I) cable-stayed bridge
NASA Astrophysics Data System (ADS)
Mohammed, M. I.; Sulaeman, E.; Mustapha, F.
2017-03-01
The paper discusses the dynamic response of the Penang (I) cable stayed bridge structure under various moving load representing typical traffic load of the bridge. The bridge has a total span of 440 m excluding the transition bridge that assumed to be not connected structurally to the main bridge structure. The bridge that links the fast growing Pinang Island and the Malaysian Mainland Peninsula has been known to be fully utilized which leads to the construction of Penang (II) bridge and now the third one. Due to highly traffic use of the bridge that may lead to reduction of the bridge design life, the dynamic response of the bridge becomes important to predict critical part of the bridge structure elements including the main girder and the 144 stay cables. The present study reveals that, due to flexible nature of the cable stayed bridge, the moving load that interacts with the natural dynamic characteristics of the bridge, gives significant stress increment compare to proportional static load especially when the moving load is un-symmetric. For this reason, several classes of typical vehicle passing the bridge with various vehicle speeds are investigated to demonstrate their effect on the bridge displacement, internal forces and stresses. The results can be used for further fatigue assessment of the bridge.
Tendon biomechanics and mechanobiology--a minireview of basic concepts and recent advancements.
Wang, James H-C; Guo, Qianping; Li, Bin
2012-01-01
Due to their unique hierarchical structure and composition, tendons possess characteristic biomechanical properties, including high mechanical strength and viscoelasticity, which enable them to carry and transmit mechanical loads (muscular forces) effectively. Tendons are also mechanoresponsive by adaptively changing their structure and function in response to altered mechanical loading conditions. In general, mechanical loading at physiological levels is beneficial to tendons, but excessive loading or disuse of tendons is detrimental. This mechanoadaptability is due to the cells present in tendons. Tendon fibroblasts (tenocytes) are the dominant tendon cells responsible for tendon homeostasis and repair. Tendon stem cells (TSCs), which were recently discovered, also play a vital role in tendon maintenance and repair by virtue of their ability to self-renew and differentiate into tenocytes. TSCs may also be responsible for chronic tendon injury, or tendinopathy, by undergoing aberrant differentiation into nontenocytes in response to excessive mechanical loading. Thus, it is necessary to devise optimal rehabilitation protocols to enhance tendon healing while reducing scar tissue formation and tendon adhesions. Moreover, along with scaffolds that can mimic tendon matrix environments and platelet-rich plasma, which serves as a source of growth factors, TSCs may be the optimal cell type for enhancing repair of injured tendons. Copyright © 2012 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tihay, V.; Morandini, F.; Santoni, P. A.; Perez-Ramirez, Y.; Barboni, T.
2012-11-01
A set of experiments using a Large Scale Heat Release Rate Calorimeter was conducted to test the effects of slope and fuel load on the fire dynamics. Different parameters such as the geometry of the flame front, the rate of spread, the mass loss rate and the heat release rate were investigated. Increasing the fuel load or the slope modifies the fire behaviour. As expected, the flame length and the rate of spread increase when fuel load or slope increases. The heat release rate does not reach a quasi-steady state when the propagation takes place with a slope of 20° and a high fuel load. This is due to an increase of the length of the fire front leading to an increase of fuel consumed. These considerations have shown that the heat release can be estimated with the mass loss rate by considering the effective heat of combustion. This approach can be a good alternative to estimate accurately the fireline intensity when the measure of oxygen consumption is not possible.
NASA Astrophysics Data System (ADS)
Sanyang, M. L.; Sapuan, S. M.; Haron, M.
2017-10-01
Over the years, cocoa-pod husk (CPH) generation significantly increased due to the growing global demand of chocolate products, since cocoa bean is the main ingredient for chocolate production. Proper utilization of CPH as natural filler for reinforcement of polymer composites provides economic advantages as well as environmental solutions for CPH waste disposal problems. In this study, CPH filled PLA composite films were developed using solution casting method. The effect of CPH loading on the tensile properties of CPH/PLA composite films were investigated. The obtained results manifested that increasing CPH loading from 0% to 10 % significantly increased tensile strength of CPH/PLA composite. However, further addition of CPH loading up to 15 % decreased the tensile strength of film samples. As CPH loading increased from 0% to 15%, tensile modulus of CPH/PLA composite films also increased from 1.5MPa to 10.4MPa, whereas their elongation at break reduced from 190% to 90%. These findings points out CPH as a potential natural filler for reinforcing thermoplastic polymer composites.
Global Cryptosporidium Loads from Livestock Manure
2017-01-01
Understanding the environmental pathways of Cryptosporidium is essential for effective management of human and animal cryptosporidiosis. In this paper we aim to quantify livestock Cryptosporidium spp. loads to land on a global scale using spatially explicit process-based modeling, and to explore the effect of manure storage and treatment on oocyst loads using scenario analysis. Our model GloWPa-Crypto L1 calculates a total global Cryptosporidium spp. load from livestock manure of 3.2 × 1023 oocysts per year. Cattle, especially calves, are the largest contributors, followed by chickens and pigs. Spatial differences are linked to animal spatial distributions. North America, Europe, and Oceania together account for nearly a quarter of the total oocyst load, meaning that the developing world accounts for the largest share. GloWPa-Crypto L1 is most sensitive to oocyst excretion rates, due to large variation reported in literature. We compared the current situation to four alternative management scenarios. We find that although manure storage halves oocyst loads, manure treatment, especially of cattle manure and particularly at elevated temperatures, has a larger load reduction potential than manure storage (up to 4.6 log units). Regions with high reduction potential include India, Bangladesh, western Europe, China, several countries in Africa, and New Zealand. PMID:28654242
Vibrations and structureborne noise in space station
NASA Technical Reports Server (NTRS)
Vaicaitis, R.
1985-01-01
Theoretical models were developed capable of predicting structural response and noise transmission to random point mechanical loads. Fiber reinforced composite and aluminum materials were considered. Cylindrical shells and circular plates were taken as typical representatives of structural components for space station habitability modules. Analytical formulations include double wall and single wall constructions. Pressurized and unpressurized models were considered. Parametric studies were conducted to determine the effect on structural response and noise transmission due to fiber orientation, point load location, damping in the core and the main load carrying structure, pressurization, interior acoustic absorption, etc. These analytical models could serve as preliminary tools for assessing noise related problems, for space station applications.
Carmont, Michael R; Highland, Adrian M; Blundell, Christopher M; Davies, Mark B
2009-11-01
Ruptures of the Achilles tendon are common however simultaneous ruptures occur less frequently. Eccentric loading exercise programmes have been used to successfully treat Achilles tendinopathy. We report a case of simultaneous bilateral Achilles tendon rupture in a patient predisposed to rupture due to longstanding raised serum lipoprotein and recently introduced therapeutic statin medication. The patient was also a keen rock climber and had regularly undertaken loading exercise. This case illustrates that the therapeutic effect of mixed loading exercises for the Achilles tendon may not be adequate to overcome the predisposition to rupture caused by hyperlipidaemia and statin medication.
Insert Design and Manufacturing for Foam-Core Composite Sandwich Structures
NASA Astrophysics Data System (ADS)
Lares, Alan
Sandwich structures have been used in the aerospace industry for many years. The high strength to weight ratios that are possible with sandwich constructions makes them desirable for airframe applications. While sandwich structures are effective at handling distributed loads such as aerodynamic forces, they are prone to damage from concentrated loads at joints or due to impact. This is due to the relatively thin face-sheets and soft core materials typically found in sandwich structures. Carleton University's Uninhabited Aerial Vehicle (UAV) Project Team has designed and manufactured a UAV (GeoSury II Prototype) which features an all composite sandwich structure fuselage structure. The purpose of the aircraft is to conduct geomagnetic surveys. The GeoSury II Prototype serves as the test bed for many areas of research in advancing UAV technologies. Those areas of research include: low cost composite materials manufacturing, geomagnetic data acquisition, obstacle detection, autonomous operations and magnetic signature control. In this thesis work a methodology for designing and manufacturing inserts for foam-core sandwich structures was developed. The results of this research work enables a designer wishing to design a foam-core sandwich airframe structure, a means of quickly manufacturing optimized inserts for the safe introduction of discrete loads into the airframe. The previous GeoSury II Prototype insert designs (v.1 & v.2) were performance tested to establish a benchmark with which to compare future insert designs. Several designs and materials were considered for the new v.3 inserts. A plug and sleeve design was selected, due to its ability to effectively transfer the required loads to the sandwich structure. The insert material was chosen to be epoxy, reinforced with chopped carbon fibre. This material was chosen for its combination of strength, low mass and also compatibility with the face-sheet material. The v.3 insert assembly is 60% lighter than the previous insert designs. A casting process for manufacturing the v.3 inserts was developed. The developed casting process, when producing more than 13 inserts, becomes more economical than machining. An exploratory study was conducted looking at the effects of dynamic loading on the v.3 insert performance. The results of this study highlighted areas for improving dynamic testing of foam-core sandwich structure inserts. Correlations were developed relating design variables such as face-sheet thickness and insert diameter to a failure load for different load cases. This was done through simulations using Computer Aided Engineering (CAE) software, and experimental testing. The resulting correlations were integrated into a computer program which outputs the required insert dimensions given a set of design parameters, and load values.
Horev, Benjamin; Klein, Marlise I.; Hwang, Geelsu; Li, Yong; Kim, Dongyeop; Koo, Hyun; Benoit, Danielle S.W.
2015-01-01
Development of effective therapies to control oral biofilms is challenging, as topically introduced agents must avoid rapid clearance from biofilm-tooth interfaces while targeting biofilm microenvironments. Additionally, exopolysaccharide matrix and acidification of biofilm microenvironments are associated with cariogenic (caries-producing) biofilm virulence. Thus, nanoparticle carriers capable of binding to hydroxyapatite (HA), saliva-coated HA (sHA), and exopolysaccharides with enhanced drug-release at acidic pH were developed. Nanoparticles are formed from diblock copolymers composed of 2-(dimethylamino)ethyl methacrylate (DMAEMA), butyl methacrylate (BMA), and 2-propylacrylic acid (PAA) (p(DMAEMA)-b-p(DMAEMA-co-BMA-co-PAA)) that self-assemble into ~21 nm cationic nanoparticles. Nanoparticles exhibit outstanding adsorption affinities (~244 L-mmol−1) to negatively-charged HA, sHA, and exopolysaccharide-coated sHA due to strong electrostatic interactions via multivalent tertiary amines of p(DMAEMA). Owing to hydrophobic cores, Nanoparticles load farnesol, a hydrophobic antibacterial drug, at ~22 wt%. Farnesol release is pH-dependent with t1/2=7 and 15 h for release at pH 4.5 and 7.2, as Nanoparticles undergo core destabilization at acidic pH, characteristic of cariogenic biofilm microenvironments. Importantly, topical applications of farnesol-loaded nanoparticles disrupted Streptococcus mutans biofilms 4-fold more effectively than free farnesol. Mechanical stability of biofilms treated with drug-loaded nanoparticles was compromised, resulting in >2-fold enhancement in biofilm removal under shear stress compared to free farnesol and controls. Farnesol-loaded nanoparticles effectively attenuated biofilm virulence in vivo using a clinically-relevant topical treatment regimen (2×/day) in a rodent dental caries disease model. Treatment with farnesol-loaded nanoparticles reduced both the number and severity of carious lesions, while free-farnesol had no effect. Nanoparticles have great potential to enhance the efficacy of antibiofilm agents through multi-targeted binding and pH-responsive drug release due to microenvironmental triggers. PMID:25661192
The effect of tip vortex structure on helicopter noise due to blade/vortex interaction
NASA Technical Reports Server (NTRS)
Wolf, T. L.; Widnall, S. E.
1978-01-01
A potential cause of helicopter impulsive noise, commonly called blade slap, is the unsteady lift fluctuation on a rotor blade due to interaction with the vortex trailed from another blade. The relationship between vortex structure and the intensity of the acoustic signal is investigated. The analysis is based on a theoretical model for blade/vortex interaction. Unsteady lift on the blades due to blade/vortex interaction is calculated using linear unsteady aerodynamic theory, and expressions are derived for the directivity, frequency spectrum, and transient signal of the radiated noise. An inviscid rollup model is used to calculate the velocity profile in the trailing vortex from the spanwise distribution of blade tip loading. A few cases of tip loading are investigated, and numerical results are presented for the unsteady lift and acoustic signal due to blade/vortex interaction. The intensity of the acoustic signal is shown to be quite sensitive to changes in tip vortex structure.
NASA Technical Reports Server (NTRS)
Baker, Donald J.; Li, Ji-An
2005-01-01
The experimental results from a stitched VaRTM carbon-epoxy composite panel tested under uni-axial compression loading are presented along with nonlinear finite element analysis prediction of the response. The curved panel is divided by frames and stringers into six bays with a column of three bays along the compressive loading direction. The frames are supported at the frame ends to resist out-of-plane translation. Back-to-back strain gages are used to record the strain and displacement transducers were used to record the out-of-plane displacements. In addition a full-field-displacement measurement technique that utilizes a camera-based-stereo-vision system was used to record the displacements. The panel was loaded to 1.5 times the predicted initial buckling load (1st bay buckling load, P(sub er) from the nonlinear finite element analysis and then was removed from the test machine for impact testing. After impacting with 20 ft-lbs of energy using a spherical impactor to produce barely visible damage the panel was loaded in compression until failure. The buckling load of the first bay to buckle was 97% of the buckling load before impact. The stitching constrained the impact damage from growing during the loading to failure. Impact damage had very little overall effect on panel stiffness. Panel stiffness measured by the full-field-displacement technique indicated a 13% loss in stiffness after impact. The panel failed at 1.64 times the first panel buckling load. The barely visible impact damage did not grow noticeably as the panel failed by global instability due to stringer-web terminations at the frame locations. The predictions from the nonlinear analysis of the finite element modeling of the entire specimen were very effective in the capture of the initial buckling and global behavior of the panel. In addition, the prediction highlighted the weakness of the panel under compression due to stringer web terminations. Both the test results and the nonlinear predictions serve to reinforce the severe penalty in structural integrity caused by the low cost manufacturing technique to terminate the stringer webs, and demonstrates the importance of this type of sub-component testing and high fidelity failure analysis in the design of a composite fuselage.
Reliability and Creep/Fatigue Analysis of a CMC Component
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Mital, Subodh K.; Gyekenyesi, John Z.; Gyekenyesi, John P.
2007-01-01
High temperature ceramic matrix composites (CMC) are being explored as viable candidate materials for hot section gas turbine components. These advanced composites can potentially lead to reduced weight and enable higher operating temperatures requiring less cooling; thus leading to increased engine efficiencies. There is a need for convenient design tools that can accommodate various loading conditions and material data with their associated uncertainties to estimate the minimum predicted life as well as the failure probabilities of a structural component. This paper presents a review of the life prediction and probabilistic analyses performed for a CMC turbine stator vane. A computer code, NASALife, is used to predict the life of a 2-D woven silicon carbide fiber reinforced silicon carbide matrix (SiC/SiC) turbine stator vane due to a mission cycle which induces low cycle fatigue and creep. The output from this program includes damage from creep loading, damage due to cyclic loading and the combined damage due to the given loading cycle. Results indicate that the trends predicted by NASALife are as expected for the loading conditions used for this study. In addition, a combination of woven composite micromechanics, finite element structural analysis and Fast Probability Integration (FPI) techniques has been used to evaluate the maximum stress and its probabilistic distribution in a CMC turbine stator vane. Input variables causing scatter are identified and ranked based upon their sensitivity magnitude. Results indicate that reducing the scatter in proportional limit strength of the vane material has the greatest effect in improving the overall reliability of the CMC vane.
NASA Astrophysics Data System (ADS)
Gattesco, Natalino; Boem, Ingrid
2017-10-01
The paper investigates the effectiveness of a modern reinforcement technique based on a Glass Fiber-Reinforced Mortar (GFRM) for the enhancement of the performances of existing masonry vaults subjected to horizontal seismic actions. In fact, the authors recently evidenced, through numerical simulations, that the typical simplified loading patterns generally adopted in the literature for the experimental tests, based on concentrated vertical loads at 1/4 of the span, are not reliable for such a purpose, due to an unrealistic stress distribution. Thus, experimental quasi-static cyclic tests on full-scale masonry vaults based on a specific setup, designed to apply a horizontal load pattern proportional to the mass, were performed. Three samples were tested: an unreinforced vault, a vault reinforced at the extrados and a vault reinforced at the intrados. The experimental results demonstrated the technique effectiveness in both strength and ductility. Moreover, numerical simulations were performed by adopting a simplified FE, smear-crack model, evidencing the good reliability of the prediction by comparison with the experimental results.
Pallapolu, Venkata Ramesh; Lee, Y Y; Garlock, Rebecca J; Balan, Venkatesh; Dale, Bruce E; Kim, Youngmi; Mosier, Nathan S; Ladisch, Michael R; Falls, Matthew; Holtzapple, Mark T; Sierra-Ramirez, Rocio; Shi, Jian; Ebrik, Mirvat A; Redmond, Tim; Yang, Bin; Wyman, Charles E; Donohoe, Bryon S; Vinzant, Todd B; Elander, Richard T; Hames, Bonnie; Thomas, Steve; Warner, Ryan E
2011-12-01
The objective of this work is to investigate the effects of cellulase loading and β-glucosidase supplementation on enzymatic hydrolysis of pretreated Dacotah switchgrass. To assess the difference among various pretreatment methods, the profiles of sugars and intermediates were determined for differently treated substrates. For all pretreatments, 72 h glucan/xylan digestibilities increased sharply with enzyme loading up to 25mg protein/g-glucan, after which the response varied depending on the pretreatment method. For a fixed level of enzyme loading, dilute sulfuric acid (DA), SO(2), and Lime pretreatments exhibited higher digestibility than the soaking in aqueous ammonia (SAA) and ammonia fiber expansion (AFEX). Supplementation of Novozyme-188 to Spezyme-CP improved the 72 h glucan digestibility only for the SAA treated samples. The effect of β-glucosidase supplementation was discernible only at the early phase of hydrolysis where accumulation of cellobiose and oligomers is significant. Addition of β-glucosidase increased the xylan digestibility of alkaline treated samples due to the β-xylosidase activity present in Novozyme-188. Copyright © 2011 Elsevier Ltd. All rights reserved.
Feasibility of CO/sub 2/ monitoring to assess air quality in mines using diesel equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, J.H. Jr.
1987-01-01
The methodology includes: (1) establishing pollutant to CO/sub 2/ ratios for in-service equipment, (2) estimating pollutant concentrations from the ratios and in-mine CO/sub 2/ measurements, and (3) using an air quality index to combine the pollutants into a single number, which indicates the health hazard associated with the pollutants. For the methodology to be valid, the pollutant to CO/sub 2/ ratios must remain constant if engine operating conditions do not significantly change. However, due to the complex dynamics of the fuel injection system, the fuel-air combustion process, and the engine speed-load governing system, the pollutant to CO/sub 2/ ratios maymore » vary during repetitive, but transient engine speed-and-load operation. These transient effects were investigated. In addition, the influence of changing engine conditions due to engine maladjustment, and a practical means to evaluate engine condition were investigated to advance the methodology. The laboratory investigation determined that CO/sub 2/ is an effective indicator of engine exhaust pollutants. It was shown that the exhaust concentrations of carbon monoxide, carbon dioxide, oxides of nitrogen, hydrocarbons, and particulate matter do not significantly vary among repetitive, but transient engine speed-and-load duty cycles typical of in-service equipment. Based on an air quality index and threshold limit values, particulate matter exhibited the greatest adverse effect on air quality. Particulate mass was separated into volatile (organic soluble fraction) and nonvolatile (insoluble carbon fraction) components. Due to particulate concentrations, the engine operating conditions of overfueling and advanced injector timing had greater adverse effects on air quality than the conditions of retarded injector timing, intake air restriction, and Federal certification specifications.« less
NASA Technical Reports Server (NTRS)
Olsson, W. J.
1982-01-01
The results of a flight loads test of the JT9D-7 engine are presented. The goals of this test program were to: measure aerodynamic and inertia loads on the engine during flight, explore the effects of airplane gross weight and typical maneuvers on these flight loads, simultaneously measure the changes in engine running clearances and performance resulting from the maneuvers, make refinements of engine performance deterioration prediction models based on analytical results of the tests, and make recommendations to improve propulsion system performance retention. The test program included a typical production airplane acceptance test plus additional flights and maneuvers to encompass the range of flight loads in revenue service. The test results indicated that aerodynamic loads, primarily at take-off, were the major cause of rub-indicated that aerodynamic loads, primarily at take-off, were the major cause of rub-induced deterioration in the cold sectin of the engine. Differential thermal expansion between rotating and static parts plus aerodynamic loads combined to cause blade-to-seal rubs in the turbine.
Experimental Study on Impact Load on a Dam Due to Debris Flow
lwao Miyoshi
1991-01-01
When a dam is struck by mud or debris flow, it is put under a great impact load and sometimes is destroyed. To prevent such destruction, it is important to perform basic research about the impact load on a dam due to debris flow. Thus, we have made an experimental study and tried to establish a method to estimate such a impact load on the dam. The experiment was...
NASA Astrophysics Data System (ADS)
Loiseau, Jason; Georges, William; Frost, David; Higgins, Andrew
2015-06-01
The incidence angle of a detonation wave is often assumed to weakly influence the terminal velocity of an explosively driven flyer. For explosives heavily loaded with dense additives, this may not be true due to differences in momentum and energy transfer between detonation products, additive particles, and the flyer. For tangential incidence the particles are first accelerated against the flyer via an expansion fan, whereas they are first accelerated by the detonation wave in the normal case. In the current study we evaluate the effect of normal versus tangential incidence on the acceleration of flyers by nitromethane heavily loaded with a variety of additives. Normal detonation was initiated via an explosively driven slapper. Flyer acceleration was measured with heterodyne laser interferometry (PDV). The influence of wave angle is evaluated by comparing the terminal velocity in the two cases (i.e., normal and grazing) for the heavily loaded mixtures. The decrement in flyer velocity correlated primarily with additive volume fraction and had a weak dependence on additive density or particle size. The Gurney energy of the heterogeneous explosive was observed to increase with flyer mass, presumably due to the timescale over which impinging particles could transfer momentum.
Aeroelastic performance evaluation of a flexure box morphing airfoil concept
NASA Astrophysics Data System (ADS)
Pankonien, Alexander M.; Inman, Daniel J.
2014-04-01
The flexure-box morphing aileron concept utilizes Macro-Fiber Composites (MFCs) and a compliant box to create a conformal morphing aileron. This work evaluates the impact of the number of MFCs on the performance, power and mass of the aileron by experimentally investigating two different actuator configurations: unimorph and bimorph. Implemented in a NACA 0012 airfoil with 304.8 mm chord, the unimorph and bimorph configurations are experimentally tested over a range of flow speeds from 5 to 20 m/s and angles of attack from -20 to 20 degrees under aerodynamic loads in a wind tunnel. An embedded flexible sensor is installed in the aileron to evaluate the effect of aerodynamic loading on tip position. For both design choices, the effect of actuation on lift, drag and pitching moment coefficients are measured. Finally, the impact on aileron mass and average power consumption due to the added MFCs is considered. The results showed the unimorph exhibiting superior ability to influence flow up to 15 m/s, with equivalent power consumption and lower overall mass. At 20 m/s, the bimorph exhibited superior control over aerodynamic forces and the unimorph experienced significant deformation due to aerodynamic loading.
Tan, Y L; Abdullah, A Z; Hameed, B H
2018-05-18
Silica-alumina catalyst was prepared and used in the catalytic fast pyrolysis of durian rind in a drop-type two-stage reactor. The effects of catalytic temperature (400 °C-600 °C) and catalyst-to-durian rind ratio (1:30-3:30) were evaluated. Bio-oil yield was increased with increased catalytic temperature due to considerable dehydration process, but it was reduced with high catalyst loading due to the overcracking of organics into light gases. Silica-alumina catalyst possessed good selectivity and the products changed according to the temperature. The major components in bio-oil were hydrocarbons, furan derivatives, and aromatic compounds at 400 °C, 500 °C, and 600 °C, respectively. The hydrogen and carbon contents of bio-oil were reduced with high catalyst loading due to the overcracking of organics, and the deoxygenation process became unfavorable. The silica-alumina catalyst worked well in catalytic fast pyrolysis of durian rind, and the condition may be adjusted based on the desired products. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer.
Zeisser-Labouèbe, Magali; Lange, Norbert; Gurny, Robert; Delie, Florence
2006-12-01
A photodynamic approach has been suggested to improve diagnosis and therapy of ovarian cancer. As Hypericin (Hy), a natural photosensitizer (PS) extracted from Hypericum perforatum, has been shown to be efficient in vitro and in vivo for the detection or treatment of other cancers, Hy could also be a potent tool for the treatment and detection of ovarian cancer. Due to its hydrophobicity, systemic administration of Hy is problematic. Thus, polymeric nanoparticles (NPs) of polylactic acid (PLA) or polylactic-co-glycolic acid (PLGA) were used as a drug delivery system. Hy-loaded NPs were produced with the following characteristics: (i) size in the 200-300 nm range, (ii) negative zeta potential, (iii) low residual PVAL and (iv) drug loading from 0.03 to 0.15% (w/w). Their in vitro photoactivity was investigated on the NuTu-19 ovarian cancer cell model derived from Fischer 344 rats and compared to free drug. Hy-loaded PLA NPs exhibited a higher photoactivity than free drug. Increasing light dose or incubation time with cells induced an enhanced activity of Hy-loaded PLA NPs. Increased NP drug loading had a negative effect on their photoactivity on NuTu-19 cells: at the same Hy concentration, the higher was the drug loading, the lower was the phototoxic effect. The influence of NP drug loading on the Hy release from NPs was also investigated.
Feuser, Paulo Emilio; Arévalo, Juan Marcelo Carpio; Junior, Enio Lima; Rossi, Gustavo Rodrigues; da Silva Trindade, Edvaldo; Rocha, Maria Eliane Merlin; Jacques, Amanda Virtuoso; Ricci-Júnior, Eduardo; Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H Hermes
2016-12-01
Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid were synthesized by miniemulsion polymerization in just one step. In vitro biocompatibility and cytotoxicity assays on L929 (murine fibroblast), human red blood, and HeLa (uterine colon cancer) cells were performed. The effect of folic acid at the nanoparticles surface was evaluated through cellular uptake assays in HeLa cells. Results showed that the presence of folic acid did not affect substantially the polymer particle size (~120 nm), the superparamagnetic behavior, the encapsulation efficiency of lauryl gallate (~87 %), the Zeta potential (~38 mV) of the polymeric nanoparticles or the release profile of lauryl gallate. The release profile of lauryl gallate from superparamagnetic poly(methyl methacrylate) nanoparticles presented an initial burst effect (0-1 h) followed by a slow and sustained release, indicating a biphasic release system. Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles with folic acid did not present cytotoxicity effects on L929 and human red blood cells. However, free lauryl gallate presented significant cytotoxic effects on L929 and human red blood cells at all tested concentrations. The presence of folic acid increased the cytotoxicity of lauryl gallate loaded in nanoparticles on HeLa cells due to a higher cellular uptake when HeLa cells were incubated at 37 °C. On the other hand, when the nanoparticles were incubated at low temperature (4 °C) cellular uptake was not observed, suggesting that the uptake occurred by folate receptor mediated energy-dependent endocytosis. Based on presented results our work suggests that this carrier system can be an excellent alternative in targeted drug delivery by folate receptor.
Review of Slow-Wave Structures
NASA Technical Reports Server (NTRS)
Wallett, Thomas M.; Qureshi, A. Haq
1994-01-01
The majority of recent theoretical and experimental reports published in the literature dealing with helical slow-wave structures focus on the dispersion characteristics and their effects due to the finite helix wire thickness and attenuation, dielectric loading, metal loading, and the introduction of plasma. In many papers, an effective dielectric constant is used to take into account helix wire dimensions and conductivity losses, while the propagation constant of the signal and the interaction impedance of the structure are found to depend on the surface resistivity of the helix. Also, various dielectric supporting rods are simulated by one or several uniform cylinders having an effective dielectric constant, while metal vane loading and plasma effects are incorporated in the effective dielectric constant. The papers dealing with coupled cavities and folded or loaded wave guides describe equivalent circuit models, efficiency enhancement, and the prediction of instabilities for these structures. Equivalent circuit models of various structures are found using computer software programs SUPERFISH and TOUCHSTONE. Efficiency enhancement in tubes is achieved through dynamic velocity and phase adjusted tapers using computer techniques. The stability threshold of unwanted antisymmetric and higher order modes is predicted using SOS and MAGIC codes and the dependence of higher order modes on beam conductance, section length, and effective Q of a cavity is shown.
Use of lightweight concrete for reducing cracks in bridge decks.
DOT National Transportation Integrated Search
2016-04-01
Cracks in bridge decks can be due to many factors related to environmental effects, chemical reactions, and structural : loads. Careful selection of materials and mixture proportions can minimize cracking to some degree. To reduce cracking, : shrinka...
DOT National Transportation Integrated Search
1963-05-01
Data obtained in three different studies related to measurement of forces on the body due to air movement are summarized. The effects of short duration blast forces on personnel seated or standing at various distances from openings during pressure lo...
Impact of aerosols on ice crystal size
NASA Astrophysics Data System (ADS)
Zhao, Bin; Liou, Kuo-Nan; Gu, Yu; Jiang, Jonathan H.; Li, Qinbin; Fu, Rong; Huang, Lei; Liu, Xiaohong; Shi, Xiangjun; Su, Hui; He, Cenlin
2018-01-01
The interactions between aerosols and ice clouds represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. In particular, the impact of aerosols on ice crystal effective radius (Rei), which is a key parameter determining ice clouds' net radiative effect, is highly uncertain due to limited and conflicting observational evidence. Here we investigate the effects of aerosols on Rei under different meteorological conditions using 9-year satellite observations. We find that the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters. While there is a significant negative correlation between Rei and aerosol loading in moist conditions, consistent with the "Twomey effect" for liquid clouds, a strong positive correlation between the two occurs in dry conditions. Simulations based on a cloud parcel model suggest that water vapor modulates the relative importance of different ice nucleation modes, leading to the opposite aerosol impacts between moist and dry conditions. When ice clouds are decomposed into those generated from deep convection and formed in situ, the water vapor modulation remains in effect for both ice cloud types, although the sensitivities of Rei to aerosols differ noticeably between them due to distinct formation mechanisms. The water vapor modulation can largely explain the difference in the responses of Rei to aerosol loadings in various seasons. A proper representation of the water vapor modulation is essential for an accurate estimate of aerosol-cloud radiative forcing produced by ice clouds.
Effect of stiffness characteristics on the response of composite grid-stiffened structures
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Rehfield, Lawrence W.
1991-01-01
A study of the effect of stiffness discontinuities and structural parameters on the response of continuous-filament grid-stiffened flat panels is presented. The buckling load degradation due to manufacturing-introduced stiffener discontinuities associated with a filament cut-and-add approach at the stiffener intersections is investigated. The degradation of buckling resistance in isogrid flat panels subjected to uni-axial compression and combined axial compression and shear loading conditions and induced damage is quantified using FEM. The combined loading case is the most critical one. Nonsolid stiffener cross sections, such as a foam-filled blade or hat with a 0-deg dominant cap, result in grid-stiffened structures that are structurally very efficient for wing and fuselage applications. The results of a study of the ability of grid-stiffened structural concepts to enhance the effective Poisson's ratio of a panel are presented. Grid-stiffened concepts create a highly effective Poisson's ratio, which can produce large camber deformations for certain elastic tailoring applications.
Ninagawa, Takako; Kawamura, Yukio; Konishi, Tadashi; Narumi, Akira
2016-08-01
Cryopreservation techniques are expected to evolve further to preserve biomaterials and foods in a fresh state for extended periods of time. Long-term cryopreservation of living materials such as food and biological tissue is generally achieved by freezing; thus, intracellular freezing occurs. Intracellular freezing injures the cells and leads to cell death. Therefore, a dream cryopreservation technique would preserve the living materials without internal ice crystal formation at a temperature low enough to prevent bacterial activity. This study was performed to investigate the effect of micro electrical current loading during cooling as a new cryopreservation technique. The behavior of intracellular ice crystal formation in plant tissues with or without an electric current load was evaluated using the degree of supercooling, degree of cell deformation, and grain size and growing rate of intracellular ice crystal. Moreover, the transition of intracellular pH during plant tissue cooling with or without electric current loading was also examined using the fluorescence intensity ratio to comprehend cell activity at lower temperatures. The results indicated that micro electric current load did not only decrease the degree of cell deformation and grain size of intracellular ice crystal but also reduced the decline in intracellular pH due to temperature lowering, compared with tissues subjected to the same cooling rate without an electric current load. Thus, the effect of electric current load on cryopreservation and the potential of a new cryopreservation technique using electric current load were discussed based on these results. Copyright © 2016 Elsevier Inc. All rights reserved.
Impacting load control of floating supported friction plate and its experimental verification
NASA Astrophysics Data System (ADS)
Ning, Keyan; Wang, Yu; Huang, Dingchuan; Yin, Lei
2017-05-01
Friction plates are key components in automobile transmission system. Unfortunately, due to the tough working condition i.e. high impact, high temperature, fracture and plastic deformation are easily observed in friction plates. In order to reduce the impact load and increase the impact resistance and life span of the friction plate. This paper presents a variable damping design method and structure, by punching holes in the key position of the friction plate and filling it with damping materials, the impact load of the floating support friction plate can be controlled. Simulation is applied to study the effect of the position and number of damping holes on tooth root stress. Furthermore, physic test was designed and conducted to validate the correctness and effectiveness of the proposed method. Test result shows that the impact load of the new structure is reduced by 40% and its fatigue life is 4.7 times larger. The new structure provides a new way for floating supported friction plates design.
Bring, Arvid; Rogberg, Peter; Destouni, Georgia
2015-06-01
Changes to runoff due to climate change may influence management of nutrient loading to the sea. Assuming unchanged river nutrient concentrations, we evaluate the effects of changing runoff on commitments to nutrient reductions under the Baltic Sea Action Plan. For several countries, climate projections point to large variability in load changes in relation to reduction targets. These changes either increase loads, making the target more difficult to reach, or decrease them, leading instead to a full achievement of the target. The impact of variability in climate projections varies with the size of the reduction target and is larger for countries with more limited commitments. In the end, a number of focused actions are needed to manage the effects of climate change on nutrient loads: reducing uncertainty in climate projections, deciding on frameworks to identify best performing models with respect to land surface hydrology, and increasing efforts at sustained monitoring of water flow changes.
Bring, Arvid; Rogberg, Peter; Destouni, Georgia
2015-05-28
Changes to runoff due to climate change may influence management of nutrient loading to the sea. Assuming unchanged river nutrient concentrations, we evaluate the effects of changing runoff on commitments to nutrient reductions under the Baltic Sea Action Plan. For several countries, climate projections point to large variability in load changes in relation to reduction targets. These changes either increase loads, making the target more difficult to reach, or decrease them, leading instead to a full achievement of the target. The impact of variability in climate projections varies with the size of the reduction target and is larger for countriesmore » with more limited commitments. Finally, in the end, a number of focused actions are needed to manage the effects of climate change on nutrient loads: reducing uncertainty in climate projections, deciding on frameworks to identify best performing models with respect to land surface hydrology, and increasing efforts at sustained monitoring of water flow changes.« less
Melter Throughput Enhancements for High-Iron HLW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, A. A.; Gan, Hoa; Joseph, Innocent
2012-12-26
This report describes work performed to develop and test new glass and feed formulations in order to increase glass melting rates in high waste loading glass formulations for HLW with high concentrations of iron. Testing was designed to identify glass and melter feed formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts to assess melt rate using a vertical gradient furnace system and to develop new formulations with enhanced melt rate. Testing evaluated the effects of waste loading on glass properties and themore » maximum waste loading that can be achieved. The results from crucible-scale testing supported subsequent DuraMelter 100 (DM100) tests designed to examine the effects of enhanced glass and feed formulations on waste processing rate and product quality. The DM100 was selected as the platform for these tests due to its extensive previous use in processing rate determination for various HLW streams and glass compositions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bring, Arvid; Rogberg, Peter; Destouni, Georgia
Changes to runoff due to climate change may influence management of nutrient loading to the sea. Assuming unchanged river nutrient concentrations, we evaluate the effects of changing runoff on commitments to nutrient reductions under the Baltic Sea Action Plan. For several countries, climate projections point to large variability in load changes in relation to reduction targets. These changes either increase loads, making the target more difficult to reach, or decrease them, leading instead to a full achievement of the target. The impact of variability in climate projections varies with the size of the reduction target and is larger for countriesmore » with more limited commitments. Finally, in the end, a number of focused actions are needed to manage the effects of climate change on nutrient loads: reducing uncertainty in climate projections, deciding on frameworks to identify best performing models with respect to land surface hydrology, and increasing efforts at sustained monitoring of water flow changes.« less
Experimental investigation of springback in air bending process
NASA Astrophysics Data System (ADS)
Alhammadi, Aysha; Rafique, Hafsa; Alkaabi, Meera; Abu Qudeiri, Jaber
2018-03-01
Bending processes is one of the important processes in sheet metal forming. One of the challenge that faces the air bending process is springback, which happens due to the elastic recovery during unloading stage. An accurate analysis of springback during the bending process is crucial to achieve a required bend angle. This paper will investigate the springback experimentally by changing many parameters such as tested material, die opening, thickness, etc. and finding its effect on the value of springback. Additionally, the paper will investigate the effect of loading time at the end of loading stage on the springback by proposing a multistage bending technique (MBT). In MBT, the loading will stop during loading stage just before the end of this stage and it will restart again shortly after. In this study, three sheet metals with different thickness will be examined, namely stainless steel, aluminium and brass. Artificial neural network (ANN) will be utilized to develop a prediction model to predict springback based on the experimental results.
NASA Astrophysics Data System (ADS)
Radna, Lidia; Sakharov, Volodymyr
2017-12-01
Due to the strong and aggressive electrolyte media and thermal load, design of the electroplating vats in the copper industry often relies on the resin concrete. The article presents the results of the strength tests of the polymer concrete based on the "Derakane" resin, used in the construction of electroplating vats. Samples were taken from the real vats - both new and 17-year old. Strength tests included compression and bending tensile strength test. To assess the effect of operational conditions the tests were performed on the same-age vats, some of which were never used while others were subjected to the operational load. During the operation, the vats sustained load of the anode and cathode weights, cyclic electrolyte loading with a temperatures up to 60°C. As a result, it was noted that the operational conditions led to the increased strength of the polymer concrete material.
On the coherency of dynamic load estimates for vehicles on flexible structures
NASA Astrophysics Data System (ADS)
Mitra, Mainak; Gordon, Timothy
2014-05-01
This paper develops a novel form of a well-known signal processing technique, so as to be applicable to the interaction between a heavy truck and a supporting bridge structure. Motivated by the problem of structural health monitoring of bridges, a new modal coherency function is defined. This relates the input action of moving wheel loads to the dynamic response of the bridge, including the effects of unevenness of the road surface and the vertical dynamics of the truck suspension. The analysis here is specifically aimed at future experimental testing - the validation of axle load estimators obtained from sensors on the truck. It is applicable even when no independent 'ground truth' for the dynamic loads is available. The approach can be more widely used in the analysis of dynamic interactions involving suspended moving loads on deformable structures, e.g. for structural vibrations due to high-speed trains.
Strength and failure of a damaged material
Cerreta, Ellen K.; Gray III, George T.; Trujillo, Carl P.; ...
2015-09-07
Under complex, dynamic loading conditions, damage can occur within a material. Should this damage not lead to catastrophic failure, the material can continue to sustain further loading. But, little is understood about how to represent the mechanical response of a material that has experienced dynamic loading leading to incipient damage. We examine this effect in copper. Copper is shock loaded to impart an incipient state of damage to the material. Thereafter compression and tensile specimens were sectioned from the dynamically damaged specimen to quantify the subsequent properties of the material in the region of intense incipient damage and in regionsmore » far from the damage. Finally, we observed that enhanced yield stresses result from the damaged material even over material, which has simply been shock loaded and not damaged. These results are rationalized in terms of stored plastic work due to the damage process.« less
Strength and failure of a damaged material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerreta, Ellen K.; Gray III, George T.; Trujillo, Carl P.
Under complex, dynamic loading conditions, damage can occur within a material. Should this damage not lead to catastrophic failure, the material can continue to sustain further loading. But, little is understood about how to represent the mechanical response of a material that has experienced dynamic loading leading to incipient damage. We examine this effect in copper. Copper is shock loaded to impart an incipient state of damage to the material. Thereafter compression and tensile specimens were sectioned from the dynamically damaged specimen to quantify the subsequent properties of the material in the region of intense incipient damage and in regionsmore » far from the damage. Finally, we observed that enhanced yield stresses result from the damaged material even over material, which has simply been shock loaded and not damaged. These results are rationalized in terms of stored plastic work due to the damage process.« less
NASA Astrophysics Data System (ADS)
Kimura, Yukio; Sadamichi, Yucho; Maruyama, Naoki; Kato, Seizo
These days the environmental impact due to vending machines'(VM) diffusion has greatly been discussed. This paper describes the numerical evaluation of the environmental impact by using the LCA (Life Cycle Assessment) scheme and then proposes eco-improvements' strategy toward environmentally conscious products(ECP). A new objective and universal consolidated method for the LCA-evaluation, so-called LCA-NETS(Numerical Eco-load Standardization ) developed by the authors is applied to the present issue. As a result, the environmental loads at the 5years' operation and the material procurement stages are found to dominate others over the life cycle. Further eco-improvement is realized by following the order of the LCA-NETS magnitude; namely, energy saving, materials reducing, parts' re-using, and replacing with low environmental load material. Above all, parts' re-using is specially recommendable for significant reduction of the environmental loads toward ECP.
Nonlinear temperature dependent failure analysis of finite width composite laminates
NASA Technical Reports Server (NTRS)
Nagarkar, A. P.; Herakovich, C. T.
1979-01-01
A quasi-three dimensional, nonlinear elastic finite element stress analysis of finite width composite laminates including curing stresses is presented. Cross-ply, angle-ply, and two quasi-isotropic graphite/epoxy laminates are studied. Curing stresses are calculated using temperature dependent elastic properties that are input as percent retention curves, and stresses due to mechanical loading in the form of an axial strain are calculated using tangent modulii obtained by Ramberg-Osgood parameters. It is shown that curing stresses and stresses due to tensile loading are significant as edge effects in all types of laminate studies. The tensor polynomial failure criterion is used to predict the initiation of failure. The mode of failure is predicted by examining individual stress contributions to the tensor polynomial.
A review of the effect of vital teeth bleaching on the mechanical properties of tooth enamel.
Elfallah, Hunida M; Swain, Michael V
2013-09-01
Tooth whitening is considered the easiest and most cost-effective procedure for treating tooth discoloration. Contemporary bleaching agents contain hydrogen peroxide as the active ingredient. It is either applied directly or produced from its precursor, carbamide peroxide. A review of the published literature was undertaken to investigate the potential adverse effects of whitening products on dental enamel, with a focus on its mechanical properties and the influence of various parameters on study outcomes. There appear to be considerable differences in opinion as to whether changes in mechanical properties occur as a result of tooth whitening. However, the mechanical property findings of those studies appear to be related to the load applied during the indentation tests. Most studies which used loads higher than 500mN to determine enamel hardness showed no effect of bleaching, whereas those using lower loads were able to detect hardness reduction in the surface layer of enamel. In conclusion, bleaching reduces the hardness of the enamel surface of enamel, and that is more readily detected with instrumented low load testing systems. This hardness reduction may arise due to degradation or denaturation of enamel matrix proteins by the peroxide oxidation.
NASA Astrophysics Data System (ADS)
Saitou, Yutaka; Kikuchi, Yoshiaki; Kusakabe, Osamu; Kiyomiya, Osamu; Yoneyama, Haruo; Kawakami, Taiji
Steel sheet pipe pile foundations with large diameter steel pipe sheet pile were used for the foundation of the main pier of the Tokyo Gateway bridge. However, as for the large diameter steel pipe pile, the bearing mechanism including a pile tip plugging effect is still unclear due to lack of the practical examinations even though loading tests are performed on Trans-Tokyo Bay Highway. In the light of the foregoing problems, static pile loading tests both vertical and horizontal directions, a dynamic loading test, and cone penetration tests we re conducted for determining proper design parameters of the ground for the foundations. Design parameters were determined rationally based on the tests results. Rational design verification was obtained from this research.
NASA Technical Reports Server (NTRS)
1985-01-01
Qualitative analyses (and quantitatively to the extend possible) of the influence of terrain features on wind loading of the space shuttle while on the launch pad, or during early liftoff, are presented. Initially, the climatology and meteorology producing macroscale wind patterns and characteristics fot he Vandenburg Air Force Base (VAFB) launch site are described. Also, limited field test data are analyzed, and then the nature and characteristic of flow disturbances due to the various terrain features, both natural and man-made, are then reviewed. Following this, the magnitude of these wind loads are estimated. Finally, effects of turbulence are discussed. The study concludes that the influence of complex terrain can create significant wind loading on the vehicle. Because of the limited information, it is not possible to quantify the magnitude of these loads.
Direct effect of acaricides on pathogen loads and gene expression levels of honey bee Apis mellifera
USDA-ARS?s Scientific Manuscript database
The effect of using miticides to control varroa mites has long been a concern to the beekeeping industry due to unintended negative impacts on honey bee health. Irregular ontogenesis, immune defense suppression, impairment of normal behavior are some of the described symptoms for the use of pestici...
NASA Astrophysics Data System (ADS)
Madun, A.; Meghzili, S. A.; Tajudin, SAA; Yusof, M. F.; Zainalabidin, M. H.; Al-Gheethi, A. A.; Dan, M. F. Md; Ismail, M. A. M.
2018-04-01
The most important application of various geotechnical construction techniques is for ground improvement. Many soil improvement project had been developed due to the ongoing increase in urban and industrial growth and the need for greater access to lands. Stone columns are one of the best effective and feasible techniques for soft clay soil improvement. Stone columns increase the bearing capacity and reduce the settlement of soil. Finite element analyses were performed using the program PLAXIS 2D. An elastic-perfectly plastic constitutive relation, based on the Mohr–Coulomb criterion, governs the soft clay and stone column behaviour. This paper presents on how the response surface methodology (RSM) software is used to optimize the effect of the diameters and lengths of column on the load bearing capacity and settlement of soft clay. Load tests through the numerical modelling using Plaxis 2D were carried out on the loading plate at 66 mm. Stone column load bearing capacity increases with the increasing diameter of the column and settlement decreases with the increasing length of the column. Results revealed that the bigger column diameter, the higher load bearing capacity of soil while the longer column length, the lower settlement of soil. However, the optimum design of stone column was varied with each factor (diameter and length) separately for improvement.
Wang, Ke; Zhang, Tao; Liu, Lina; Wang, Xiaolei; Wu, Ping; Chen, Zhigang; Ni, Chao; Zhang, Junshu; Hu, Fuqiang; Huang, Jian
2012-01-01
Background and methods: Curcumin has extraordinary anticancer properties but has limited use due to its insolubility in water and instability, which leads to low systemic bioavailability. We have developed a novel nanoparticulate formulation of curcumin encapsulated in stearic acid-g-chitosan oligosaccharide (CSO-SA) polymeric micelles to overcome these hurdles. Results: The synthesized CSO-SA copolymer was able to self-assemble to form nanoscale micelles in aqueous medium. The mean diameter of the curcumin-loaded CSO-SA micelles was 114.7 nm and their mean surface potential was 18.5 mV. Curcumin-loaded CSO-SA micelles showed excellent internalization ability that increased curcumin accumulation in cancer cells. Curcumin-loaded CSO-SA micelles also had potent antiproliferative effects on primary colorectal cancer cells in vitro, resulting in about 6-fold greater inhibition compared with cells treated with a solution containing an equivalent concentration of free curcumin. Intravenous administration of curcumin-loaded CSO-SA micelles marginally suppressed tumor growth but did not increase cytotoxicity to mice, as confirmed by no change in body weight. Most importantly, curcumin-loaded CSO-SA micelles were effective for inhibiting subpopulations of CD44+/CD24+ cells (putative colorectal cancer stem cell markers) both in vitro and in vivo. Conclusion: The present study identifies an effective and safe means of using curcumin-loaded CSO-SA micelles for cancer therapy. PMID:22927762
Effect of Cyclic Thermo-Mechanical Loads on Fatigue Reliability in Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Shah, A. R.; Murthy, P. L. N.; Chamis, C. C.
1996-01-01
A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multi-factor interaction relationship developed at NASA Lewis Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability- based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)(sub s) graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.
Effects of Second-Order Hydrodynamics on a Semisubmersible Floating Offshore Wind Turbine: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayati, I.; Jonkman, J.; Robertson, A.
2014-07-01
The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of the system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at themore » MARIN offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST in the future. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method has been applied to the OC4-DeepCwind semisubmersible platform, supporting the NREL 5-MW baseline wind turbine. The loads and response of the system due to the second-order hydrodynamics are analysed and compared to first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second-order loads and induced response data are compared to the loads and motions induced by aerodynamic loading as solved by FAST.« less
Frequency of Loaded Road March Training and Performance on a Loaded Road March
1990-04-01
heart rate through the use of beta - blockers can substantially improve shooting accuracy (29, 44). Post road march decrements in the grenade throw may...the road march. An Increase in body tremors due to fatigue or an elevated post exercise heart rate may account for this. Whole body sway while aiming...a rifle is substantially increased even after a short period of exercise (39) and this may effect accuracy. Muscle tremors increase after brief or
Dynamics of rain-induced pollutographs of solubles in sewers.
Rutsch, M; Müller, I; Krebs, P
2005-01-01
When looking at acute receiving water impacts due to combined sewer overflows the characteristics of the background diurnal sewage flux variation may influence the peak loads from combined sewer overflows (CSO) and wastewater treatment plant (WWTP) effluent significantly. In this paper, effects on the dynamic compounds transported in the sewer, on CSO discharges and WWTP loading are evaluated by means of hydrodynamic simulations. The simulations are based on different scenarios for diurnal dry-weather flow variations induced by different infiltration rates.
Beni, Yaghoub Tadi; Zeverdejani, M Karimi; Mehralian, Fahimeh
2017-10-01
Protein microtubules (MTs) are one of the important intercellular components and have a vital role in the stability and strength of the cells. Due to applied external loads, protein microtubules may be involved buckling phenomenon. Due to impact of protein microtubules in cell reactions, it is important to determine their critical buckling load. Considering nature of protein microtubules, various parameters are effective on microtubules buckling. The small size of microtubules and also lack of uniformity of MTs properties in different directions caused the necessity of accuracy in the analysis of these bio-structure. In fact, microtubules must be considered as a size dependent cylinder, which behave as an orthotropic material. Hence, in the present work using first-order shear deformation model (FSDT), the buckling equations of anisotropic MTs are derived based on new modified couple stress theory (NMCST). After solving the stability equations, the influences of various parameters are measured on the MTs critical buckling load. Copyright © 2017 Elsevier Inc. All rights reserved.
RATE-DEPENDENT PULL-OUT BEARING CAPACITY OF PILES BY SIMILITUDE MODEL TESTS USING SEEPAGE FORCE
NASA Astrophysics Data System (ADS)
Kato, Tatsuya; Kokusho, Takaji
Pull-out test of model piles was conducted by varying the pull-out velocity and skin friction of piles using a seepage force similitude model test apparatus. Due to the seepage consolidation under the pressure of 150kPa, the effective stress distribution in a prototype saturated soil of 17m could be successfully reproduced in the model ground of 28cm thick, in which the pull-out tests were carried out. The pull-out load rose to a peak value at small displacement, and then decreased to a residual value. At the same time, pore pressure in the vicinity of the pile decreased due to suction near the tip and the positive dilatancy near the pile skin. The maximum pull-out load, pile axial load, side friction and the corresponding displacement increased dramatically with increasing pull-out velocity. It was found that these rate-dependent trends become more prominent with increasing skin friction.
Aging Theories for Establishing Safe Life Spans of Airborne Critical Structural Components
NASA Technical Reports Server (NTRS)
Ko, William L.
2003-01-01
New aging theories have been developed to establish the safe life span of airborne critical structural components such as B-52B aircraft pylon hooks for carrying air-launch drop-test vehicles. The new aging theories use the equivalent-constant-amplitude loading spectrum to represent the actual random loading spectrum with the same damaging effect. The crack growth due to random loading cycling of the first flight is calculated using the half-cycle theory, and then extrapolated to all the crack growths of the subsequent flights. The predictions of the new aging theories (finite difference aging theory and closed-form aging theory) are compared with the classical flight-test life theory and the previously developed Ko first- and Ko second-order aging theories. The new aging theories predict the number of safe flights as considerably lower than that predicted by the classical aging theory, and slightly lower than those predicted by the Ko first- and Ko second-order aging theories due to the inclusion of all the higher order terms.
Relationship of obesity with osteoporosis
Zhao, Lan-Juan; Liu, Yong-Jun; Liu, Peng-Yuan; Hamilton, James; Recker, Robert R.; Deng, Hong-Wen
2007-01-01
Context The relationship between obesity and osteoporosis has been widely studied, and epidemiological evidence shows that obesity is correlated with increased bone mass. Previous analyses, however, did not control for the mechanical loading effects of total body weight on bone mass and may have generated a confounded or even biased relationship between obesity and osteoporosis. Objective To re-evaluate the relationship between obesity and osteoporosis by accounting for the mechanical loading effects of total body weight on bone mass. Methods We measured whole body fat mass, lean mass, percentage fat mass (PFM), body mass index (BMI), and bone mass in two large samples of different ethnicity: 1,988 unrelated Chinese subjects and 4,489 Caucasian subjects from 512 pedigrees. We first evaluated the Pearson correlations among different phenotypes. We then dissected the phenotypic correlations into genetic and environmental components, with bone mass unadjusted, or adjusted, for body weight. This allowed us to compare the results with and without controlling for mechanical loading effects of body weight on bone mass. Results In both Chinese and Caucasians, when the mechanical loading effect of body weight on bone mass was adjusted for, the phenotypic correlation (including its genetic and environmental components) between fat mass (or PFM) and bone mass was negative. Further multivariate analyses in subjects stratified by body weight confirmed the inverse relationship between bone mass and fat mass, after mechanical loading effects due to total body weight was controlled. Conclusions Increasing fat mass may not have a beneficial effect on bone mass. PMID:17299077
Optimizing the U.S. Electric System with a High Penetration of Renewables
NASA Astrophysics Data System (ADS)
Corcoran, B. A.; Jacobson, M. Z.
2012-12-01
As renewable energy generators are increasingly being installed throughout the U.S., there is growing interest in interconnecting diverse renewable generators (primarily wind and solar) across large geographic areas through an enhanced transmission system. This reduces variability in the aggregate power output, increases system reliability, and allows for the development of the best overall group of renewable technologies and sites to meet the load. Studies are therefore needed to determine the most efficient and economical plan to achieve large area interconnections in a future electric system with a high penetration of renewables. This research quantifies the effects of aggregating electric load and, separately, electric load together with diverse renewable generation throughout the ten Federal Energy Regulatory Commission (FERC) regions in the contiguous U.S. The effects of aggregating electric load alone -- including generator capacity capital cost savings, load energy shift operating cost savings, reserve requirement cost savings, and transmission costs -- were calculated for various groupings of FERC regions using 2006 data. Transmission costs outweighed cost savings due to aggregation in nearly all cases. East-west transmission layouts had the highest overall cost, and interconnecting ERCOT to adjacent FERC regions resulted in increased costs, both due to limited existing transmission capacity. Scenarios consisting of smaller aggregation groupings had the lowest overall cost. This analysis found no economic case for further aggregation of load alone within the U.S., except possibly in the West and Northwest. If aggregation of electric load is desired, then small, regional consolidations yield the lowest overall system cost. Next, the effects of aggregating electric load together with renewable electricity generation are being quantified through the development and use of an optimization tool in AMPL (A Mathematical Programming Language). This deterministic linear program solves for the least-cost organizational structure and system (generator, transmission, storage, and reserve requirements) for a highly renewable U.S. electric grid. The analysis will 1) examine a highly renewable 2006 electric system, and 2) create a "roadmap" from the existing 2006 system to a highly renewable system in 2030, accounting for projected price and demand changes and generator retirements based on age and environmental regulations. Ideally, results from this study will offer insight for a federal renewable energy policy (such as a renewable portfolio standard) and how to best organize regions for transmission planning.
Yield Behavior of Solution Treated and Aged Ti-6Al-4V
NASA Technical Reports Server (NTRS)
Ring, Andrew J.; Baker, Eric H.; Salem, Jonathan A.; Thesken, John C.
2014-01-01
Post yield uniaxial tension-compression tests were run on a solution treated and aged (STA), titanium 6-percent aluminum 4-percent vanadium (Ti-6Al-4V) alloy to determine the yield behavior on load reversal. The material exhibits plastic behavior almost immediately on load reversal implying a strong Bauschinger effect. The resultant stress-strain data was compared to a 1D mechanics model and a finite element model used to design a composite overwrapped pressure vessel (COPV). Although the models and experimental data compare well for the initial loading and unloading in the tensile regime, agreement is lost in the compressive regime due to the Bauschinger effect and the assumption of perfect plasticity. The test data presented here are being used to develop more accurate cyclic hardening constitutive models for future finite element design analysis of COPVs.
Liu, Songlin; Jiang, Zhijian; Wu, Yunchao; Zhang, Jingping; Arbi, Iman; Ye, Feng; Huang, Xiaoping; Macreadie, Peter Ian
2017-04-15
Nutrient loading is a leading cause of global seagrass decline, triggering shifts from seagrass- to macroalgal-dominance. Within seagrass meadows of Xincun Bay (South China Sea), we found that nutrient loading (due to fish farming) increased sediment microbial biomass and extracellular enzyme activity associated with carbon cycling (polyphenol oxidase, invertase and cellulase), with a corresponding decrease in percent sediment organic carbon (SOC), suggesting that nutrients primed microorganism and stimulated SOC remineralization. Surpisingly, however, the relative contribution of seagrass-derived carbon to bacteria (δ 13 C bacteria ) increased with nutrient loading, despite popular theory being that microbes switch to consuming macroalgae which are assumed to provide a more labile carbon source. Organic carbon sources of fungi were unaffected by nutrient loading. Overall, this study suggests that nutrient loading changes the relative contribution of seagrass and algal sources to SOC pools, boosting sediment microbial biomass and extracellular enzyme activity, thereby possibly changing seagrass blue carbon. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sivagurunathan, Rubentheran; Lau Tze Way, Saijod; Sivagurunathan, Linkesvaran; Yaakob, Mohd. Yuhazri
2018-01-01
The usage of composite materials have been improving over the years due to its superior mechanical properties such as high tensile strength, high energy absorption capability, and corrosion resistance. In this present study, the energy absorption capability of circular jute/epoxy composite tubes were tested and evaluated. To induce the progressive crushing of the composite tubes, four different types of triggering mechanisms were used which were the non-trigger, single chamfered trigger, double chamfered trigger and tulip trigger. Quasi-static axial loading test was carried out to understand the deformation patterns and the load-displacement characteristics for each composite tube. Besides that, the influence of energy absorption, crush force efficiency, peak load, mean load and load-displacement history were examined and discussed. The primary results displayed a significant influence on the energy absorption capability provided that stable progressive crushing occurred mostly in the triggered tubes compared to the non-triggered tubes. Overall, the tulip trigger configuration attributed the highest energy absorption.
Improved Neural Networks with Random Weights for Short-Term Load Forecasting
Lang, Kun; Zhang, Mingyuan; Yuan, Yongbo
2015-01-01
An effective forecasting model for short-term load plays a significant role in promoting the management efficiency of an electric power system. This paper proposes a new forecasting model based on the improved neural networks with random weights (INNRW). The key is to introduce a weighting technique to the inputs of the model and use a novel neural network to forecast the daily maximum load. Eight factors are selected as the inputs. A mutual information weighting algorithm is then used to allocate different weights to the inputs. The neural networks with random weights and kernels (KNNRW) is applied to approximate the nonlinear function between the selected inputs and the daily maximum load due to the fast learning speed and good generalization performance. In the application of the daily load in Dalian, the result of the proposed INNRW is compared with several previously developed forecasting models. The simulation experiment shows that the proposed model performs the best overall in short-term load forecasting. PMID:26629825
Improved Neural Networks with Random Weights for Short-Term Load Forecasting.
Lang, Kun; Zhang, Mingyuan; Yuan, Yongbo
2015-01-01
An effective forecasting model for short-term load plays a significant role in promoting the management efficiency of an electric power system. This paper proposes a new forecasting model based on the improved neural networks with random weights (INNRW). The key is to introduce a weighting technique to the inputs of the model and use a novel neural network to forecast the daily maximum load. Eight factors are selected as the inputs. A mutual information weighting algorithm is then used to allocate different weights to the inputs. The neural networks with random weights and kernels (KNNRW) is applied to approximate the nonlinear function between the selected inputs and the daily maximum load due to the fast learning speed and good generalization performance. In the application of the daily load in Dalian, the result of the proposed INNRW is compared with several previously developed forecasting models. The simulation experiment shows that the proposed model performs the best overall in short-term load forecasting.
CaSR-mediated interactions between calcium and magnesium homeostasis in mice.
Quinn, Stephen J; Thomsen, Alex R B; Egbuna, Ogo; Pang, Jian; Baxi, Khanjan; Goltzman, David; Pollak, Martin; Brown, Edward M
2013-04-01
Calcium (Ca) and magnesium (Mg) homeostasis are interrelated and share common regulatory hormones, including parathyroid hormone (PTH) and vitamin D. However, the role of the calcium-sensing receptor (CaSR) in Mg homeostasis in vivo is not well understood. We sought to investigate the interactions between Mg and Ca homeostasis using genetic mouse models with targeted inactivation of PTH (PTH KO) or both PTH and the calcium-sensing receptor (CaSR) (double knockout, DKO). Serum Mg is lower in PTH KO and DKO mice than in WT mice on standard chow, whereas supplemental dietary Ca leads to equivalent Mg levels for all three genotypes. Mg loading increases serum Mg in all genotypes; however, the increase in serum Mg is most pronounced in the DKO mice. Serum Ca is increased with Mg loading in the PTH KO and DKO mice but not in the WT mice. Here, too, the hypercalcemia is much greater in the DKO mice. Serum and especially urinary phosphate are reduced during Mg loading, which is likely due to intestinal chelation of phosphate by Mg. Mg loading decreases serum PTH in WT mice and increases serum calcitonin in both WT and PTH KO mice but not DKO mice. Furthermore, Mg loading elevates serum 1,25-dihydroxyvitamin D in all genotypes, with greater effects in PTH KO and DKO mice, possibly due to reduced levels of serum phosphorus and FGF23. These hormonal responses to Mg loading and the CaSR's role in regulating renal function may help to explain changes in serum Mg and Ca found during Mg loading.
NASA Astrophysics Data System (ADS)
Mémin, Anthony; Viswanathan, Vishnu; Fienga, Agnes; Santamarìa-Gómez, Alvaro; Boy, Jean-Paul; Cavalié, Olivier; Deleflie, Florent; Exertier, Pierre; Bernard, Jean-Daniel; Hinderer, Jacques
2017-04-01
Crustal deformations due to surface-mass loading account for a significant part of the variability in geodetic time series. A perfect understanding of the loading signal observed by geodetic techniques should help in improving terrestrial reference frame (TRF) realizations. Yet, discrepancies between crustal motion estimates from models of surface-mass loading and observations are still too large so that no model is currently recommended by the IERS for reducing the observations. We investigate the discrepancy observed in the seasonal variations of the position at the CERGA station, South of France. We characterize the seasonal motions of the reference geodetic station CERGA from GNSS, SLR, LLR and InSAR. We investigate the consistency between the station motions deduced from these geodetic techniques and compare the observed station motion with that estimated using models of surface-mass change. In that regard, we compute atmospheric loading effects using surface pressure fields from ECMWF, assuming an ocean response according to the classical inverted barometer (IB) assumption, considered to be valid for periods typically exceeding a week. We also used general circulation ocean models (ECCO and GLORYS) forced by wind, heat and fresh water fluxes. The continental water storage is described using GLDAS/Noah and MERRA-land models. Using the surface-mass models, we estimate that the seasonal signal due to loading deformation at the CERGA station is about 8-9, 1-2 and 1-2 mm peak-to-peak in Up, North and East component, respectively. There is a very good correlation between GPS observations and non-tidal loading predicted deformation due to atmosphere, ocean and hydrology which is the main driver of seasonal signal at CERGA. Despite large error bars, LLR observations agree reasonably well with GPS and non-tidal loading predictions in Up component. Local deformation as observed by InSAR is very well correlated with GPS observations corrected for non-tidal loading. Finally, we estimate local mass changes using the absolute gravity measurement campaigns available at the station and the global models of surface-mass change. We compute the induced station motion that we compare with the local deformation observed by InSAR and GPS.
A Load-Based Temperature Prediction Model for Anomaly Detection
NASA Astrophysics Data System (ADS)
Sobhani, Masoud
Electric load forecasting, as a basic requirement for the decision-making in power utilities, has been improved in various aspects in the past decades. Many factors may affect the accuracy of the load forecasts, such as data quality, goodness of the underlying model and load composition. Due to the strong correlation between the input variables (e.g., weather and calendar variables) and the load, the quality of input data plays a vital role in forecasting practices. Even if the forecasting model were able to capture most of the salient features of the load, a low quality input data may result in inaccurate forecasts. Most of the data cleansing efforts in the load forecasting literature have been devoted to the load data. Few studies focused on weather data cleansing for load forecasting. This research proposes an anomaly detection method for the temperature data. The method consists of two components: a load-based temperature prediction model and a detection technique. The effectiveness of the proposed method is demonstrated through two case studies: one based on the data from the Global Energy Forecasting Competition 2014, and the other based on the data published by ISO New England. The results show that by removing the detected observations from the original input data, the final load forecast accuracy is enhanced.
Cortical bone viscoelasticity and fixation strength of press-fit femoral stems: an in-vitro model.
Norman, T L; Ackerman, E S; Smith, T S; Gruen, T A; Yates, A J; Blaha, J D; Kish, V L
2006-02-01
Cementless total hip femoral components rely on press-fit for initial stability and bone healing and remodeling for secondary fixation. However, the determinants of satisfactory press-fit are not well understood. In previous studies, human cortical bone loaded circumferentially to simulate press-fit exhibited viscoelastic, or time dependent, behavior. The effect of bone viscoelastic behavior on the initial stability of press-fit stems is not known. Therefore, in the current study, push-out loads of cylindrical stems press-fit into reamed cadaver diaphyseal femoral specimens were measured immediately after assembly and 24 h with stem-bone diametral interference and stem surface treatment as independent variables. It was hypothesized that stem-bone interference would result in a viscoelastic response of bone that would decrease push-out load thereby impairing initial press-fit stability. Results showed that push-out load significantly decreased over a 24 h period due to bone viscoelasticity. It was also found that high and low push-out loads occurred at relatively small amounts of stem-bone interference, but a relationship between stem-bone interference and push-out load could not be determined due to variability among specimens. On the basis of this model, it was concluded that press-fit fixation can occur at relatively low levels of diametral interference and that stem-bone interference elicits viscoelastic response that reduces stem stability over time. From a clinical perspective, these results suggest that there could be large variations in initial press-fit fixation among patients.
NASA Technical Reports Server (NTRS)
Allen, Julian H
1957-01-01
An analysis is given of the oscillating motion of a ballistic missile which upon entering the atmosphere is angularly misaligned with respect to the flight path. The history of the motion for some example missiles is discussed from the point of view of the effect of the motion on the aerodynamic heating and loading. The miss distance at the target due to misalignment and to small accidental trim angles is treated. The stability problem is also discussed for the case where the missile is tumbling prior to atmospheric entry.
Wang, Xia-Rong; Gao, Si-Qian; Niu, Xiao-Qian; Li, Long-Jian; Ying, Xiao-Ying; Hu, Zhong-Jie; Gao, Jian-Qing
2017-01-01
Capsaicin has been used in clinical applications for the treatment of pain disorders and inflammatory diseases. Given the strong pungency and high oil/water partition coefficient of capsaicin, capsaicin-loaded nanolipoidal carriers (NLCs) were designed to increase permeation and achieve the analgesic, anti-inflammatory effect with lower skin irritation. Capsaicin-loaded NLCs were prepared and later optimized by the Box-Behnken design. The physicochemical characterizations, morphology, and encapsulation of the capsaicin-loaded NLCs were subsequently confirmed. Capsaicin-loaded NLCs and capsaicin-loaded NLCs gel exhibited sustained release and no cytotoxicity properties. Also, they could significantly enhance the penetration amount, permeation flux, and skin retention amounts of capsaicin due to the application of NLCs. To study the topical permeation mechanism of capsaicin, 3,3'-dioctadecyloxacarbocyanine perchlorate (Dio) was used as a fluorescent dye. Dio-loaded NLCs and Dio-loaded NLCs gel could effectively deliver Dio up to a skin depth of 260 and 210 μm, respectively, primarily through the appendage route on the basis of version skin sections compared with Dio solution, which only delivered Dio up to 150 μm. In vivo therapeutic experiments demonstrated that capsaicin-loaded NLCs and capsaicin-loaded NLCs gel could improve the pain threshold in a dose-dependent manner and inhibit inflammation, primarily by reducing the prostaglandin E2 levels in the tissue compared with capsaicin cream and capsaicin solution. Meanwhile, skin irritation was reduced, indicating that application of NLCs could decrease the irritation caused by capsaicin. Overall, NLCs may be a potential carrier for topical delivery of capsaicin for useful pain and inflammation therapy.
1974-06-01
stiffness, lb-in. I Integer used to designate wing strip number 2 I Airplanw pitching moment of inertia, slug ft 2 I Airplane yawing moment of inertia...slug ft J Integer used to designated wing-loading distribution, i.e., J-l, loading due to angle of attack J=2> loading due to flap deflection J-3...moment at intersection of load reference line and body interface station (for vertical tail), in.-lb Integer used to designate type of wing airload
Wei, Qionghua; Keck, Cornelia M; Müller, Rainer H
2017-02-25
The oral bioavailability of poorly soluble drugs can be improved by amorphization generated by loading into the pores of mesoporous particles (pore size 2-50nm). The main mechanisms are increased kinetic saturation solubility and dissolution velocity due to the amorphous drug state and the nano-size of the drug (=increased dissolution pressure). In this study, the maximum achievable drug loading compared to the theoretical drug loading, and the effect of drug loading degree on the dissolution properties (solubility, dissolution velocity) were investigated. Hesperidin was used as the model active (having also practical relevance for e.g. nutraceutical products), loading was performed onto AEROPERL ® 300 Pharma. Degree of successful drug loading could be easily followed by simple light microscopy (=useful tool for formulation optimization), and was in agreement with scanning electron microscopy. Amorphous versus crystalline state was followed by X-ray diffraction and differential scanning calorimetry. Loadings prepared were 28.6wt.%, 54.5wt.% and 60.0wt.%, the maximum theoretical loading was 72.5wt.%. Obviously the maximum drug loading is not achievable, the 54.5wt.% drug loading was the practical maximum with already some minor crystalline hesperidin on the surface. Interestingly, the maximum kinetic saturation solubility was obtained for the 54.5wt.% drug loading (941.74μg/ml in pH 6.8 PBS), versus 408.80μg/ml for the 60.0wt.% drug loading (=overloaded system). The raw drug powder had a thermodynamic solubility of only 18.40μg/ml. The fastest in vitro release was obtained with the 28.6wt.% loaded system, followed by the 54.5wt.% and 60.0wt.% loadings. The dissolution properties (solubility, dissolution velocity) can obviously be influenced by a "controlled loading". This is a simple, cost-effective technological alternative to modulating this property by chemical modification of silica, requiring a new costly regulatory approval of these chemically modified materials. Copyright © 2016. Published by Elsevier B.V.
Ouellette, Eric S; Shenoy, Aarti A; Gilbert, Jeremy L
2018-04-01
The mechanically assisted crevice corrosion performance of head-neck modular tapers is a significant concern in orthopedic biomaterials. Fretting crevice corrosion processes in modular tapers are thought to be influenced by a wide array of factors including seating mechanics of the junction, hence there is a need for in vitro test methods that can assess their performance. This study presented a test method to directly measure the load-displacement seating mechanics of modular tapers and used this method to compare the seating mechanics for different tapers, moisture, seating loads and seating rates. Seating mechanics were explored whereby the instantaneous load-displacement behavior of the head seating onto the neck is captured and used to define the mechanics of seating. Two distinct taper design/material combinations were assembled wet or dry using axially applied loads (500, 1,000, 2,000, and 4,000 N) at two loading rates of 100 and 10 4 N/s (n = 5 for each condition) using a servohydraulic test frame. The results showed that pull-off strength scaled with seating load and ranged between 43% and 68% of seating load depending on sample and wetness. Tapers seated wet had higher pull-off strengths (2,200 ± 300 N) than those seated dry (1,800 ± 200 N, p < 0.05). Seating mechanics (load-displacement plots) varied due to sample type and due to wetness with differences in seating energy, seating stiffness, and seating displacement. These results show the detailed mechanics of seating during assembly and provide significant insight into the complex interplay of factors associated with even "ideal" seating (axial, quasistatic) loading. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1164-1172, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
SU-E-T-443: Geometric Uncertainties in Eye Plaque Dosimetry for a Fully Loaded 16 Mm COMS Plaque
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, H; Menon, G; Jans, H
Purpose: To determine the effect of geometric uncertainties in the seed positions in a COMS eye plaque on the central axis (CAX) dose. Methods: A Silastic insert was placed into a photopolymer 3D printed 16 mm COMS plaque, which was then positioned onto a custom-designed PMMA eye phantom. High resolution 3D images were acquired of the setup using a Siemens Inveon microPET/CT scanner. Images were acquired with the plaque unloaded and loaded with IsoAid I-125 seed shells (lack of silver core to minimize metal artifacts). Seed positions and Silastic thickness beneath each slot were measured. The measured seed coordinates weremore » used to alter the seed positions within a standard 16 mm COMS plaque in Plaque Simulator v5.7.3 software. Doses along the plaque CAX were compared for the original and modified plaque coordinates using 3.5 mCi seeds with treatment times set to deliver 70 Gy to tumour apexes of 3.5, 5, and 10 mm height. Results: The majority of seeds showed length-wise displacement, and all seeds showed displacement radially outward from the eye center. The average radial displacement was 0.15 mm larger than the expected 1.4 mm offset, approximately half of which was due to increased Silastic thickness beneath each slot. The CAX doses for the modified seed positions were consistently lower for all tumour heights due to geometric displacement of the seeds; dose differences were found to increase to a maximum of 2.6% at a depth of ∼10 mm, after which they decreased due to the inverse square dose fall-off minimizing this effect. Conclusion: This work presents initial results of a broader dosimetric uncertainty evaluation for fully loaded COMS eye plaques and demonstrates the effects of seed positioning uncertainties. The small shifts in seed depths had noticeable effects on the CAX doses indicating the importance of careful Silastic loading. Funding provided by Alberta Cancer Foundation Grant #26655, Vanier Canada Graduate Scholarship, and Alberta Innovates Health Sciences Graduate Studentship.« less
Permeability of Concrete with Recycled Concrete Aggregate and Pozzolanic Materials under Stress
Wang, Hailong; Sun, Xiaoyan; Wang, Junjie; Monteiro, Paulo J.M.
2016-01-01
The research reported herein studied the permeability of concrete containing recycled-concrete aggregate (RA), superfine phosphorous slag (PHS), and ground granulated blast-furnace slag (GGBS) with and without stress. Test results showed that the chloride diffusion coefficient of RA concrete (RAC) without external loads decreased with time, and the permeability of RAC is much lower than that of the reference concrete due to the on-going hydration and the pozzolanic reaction provided by the PHS and GGBS additives in the RAC mixture. The permeability of chloride under flexural load is much more sensitive than that under compressive load due to the differences in porosity and cracking pattern. At low compressive stress levels, the permeability of chloride decreased by the closing of pores and microcracks within RAC specimens. However, in a relatively short time the chloride diffusion coefficient and the chloride content increased rapidly with the increase of compressive stress when it exceeded a threshold stress level of approximate 35% of the ultimate compressive strength. Under flexural stress, the chloride transport capability increased with the increase of stress level and time. At high compressive and flexural stress levels, creep had a significant effect on the permeability of chloride in the RAC specimens due to the damage from the nucleation and propagation of microcracks over time. It is apparent that mortar cracking has more of a significant effect on the chloride transport in concrete than cracking in the interfacial transition zone (ITZ). PMID:28773376
Permeability of Concrete with Recycled Concrete Aggregate and Pozzolanic Materials under Stress.
Wang, Hailong; Sun, Xiaoyan; Wang, Junjie; Monteiro, Paulo J M
2016-03-30
The research reported herein studied the permeability of concrete containing recycled-concrete aggregate (RA), superfine phosphorous slag (PHS), and ground granulated blast-furnace slag (GGBS) with and without stress. Test results showed that the chloride diffusion coefficient of RA concrete (RAC) without external loads decreased with time, and the permeability of RAC is much lower than that of the reference concrete due to the on-going hydration and the pozzolanic reaction provided by the PHS and GGBS additives in the RAC mixture. The permeability of chloride under flexural load is much more sensitive than that under compressive load due to the differences in porosity and cracking pattern. At low compressive stress levels, the permeability of chloride decreased by the closing of pores and microcracks within RAC specimens. However, in a relatively short time the chloride diffusion coefficient and the chloride content increased rapidly with the increase of compressive stress when it exceeded a threshold stress level of approximate 35% of the ultimate compressive strength. Under flexural stress, the chloride transport capability increased with the increase of stress level and time. At high compressive and flexural stress levels, creep had a significant effect on the permeability of chloride in the RAC specimens due to the damage from the nucleation and propagation of microcracks over time. It is apparent that mortar cracking has more of a significant effect on the chloride transport in concrete than cracking in the interfacial transition zone (ITZ).
Atmospheric pressure loading effects on Global Positioning System coordinate determinations
NASA Technical Reports Server (NTRS)
Vandam, Tonie M.; Blewitt, Geoffrey; Heflin, Michael B.
1994-01-01
Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged. The source of the remaining discrepancy between the modeled and observed loading signal may be the result of (1) anisotropic effects in the Earth's loading response, (2) errors in GPS estimates of tropospheric delay, (3) errors in the surface pressure data, or (4) annual signals in the time series of loading and station heights. In addition, we find that using site dependent coefficients, determined by fitting local pressure to the modeled radial displacements, reduces the variance of the measured station heights as well as or better than using the global convolution sum.
NASA Astrophysics Data System (ADS)
LI, G.; Lin, H.
2014-12-01
From 2000 till present, most endorheic lakes in Tibetan plateau experienced quick increasing. Several largest lakes, gathered several meters depth water during one decade. Such massive mass increasing will lead to elastic and visco-elastic deformation of the ground. Qinghai-Tibetan Plateau is one the most active tectonic places in the world; monitoring its ground deformation is essential, when loading effect is a nuisance item. Due to the sparse distribution of GPS sites and most are roving sites, it is hard to distinguish tectonic component from mass loading effect. In this research we took Selin Co Lake located at Nujiang-Bangoin suture zone and evaluated long time ground deformation at hundred kilometers scale by multi-temporal SAR interferometry and simulate the ground deformation by loading history evaluated by multi mission satellite altimetry and optical images observation. At Nujiang-Bangoin suture zone, where GPS presented the maximum ground subsidence in Qinghai-Tibetan Plateau of 3.6mm/a which was found at the shore of Selin Co Lake from 1999 to 2011, when it experienced water level increasing of 0.7m/a. A model of elastic plate lying over Newtonian viscous half-space matches well with the results of multi-temporal SAR interferometry and GPS observations. We concluded that near Selin Co Lake area, ground deformation is composed by both tectonic and hydrological loading part. As SAR image coverage is much smaller than tectonic scale, we contribute the deformation detected by InSAR to loading effect. After evaluating and removing the hydrological loading effect, we founds that Nujiang-Bangoin suture zone did not experience quick subsidence, but only limited to 0.5mm/a. Selin Co Lake's quick volume increasing caused 3mm/a subsidence rate to the nearest GPS site. The Second nearest site showed the 1.4mm/a subsidence totally, which were composed by 1.05mm/a hydrological loading effect and the rest was tectonic. We also found that Young's Modulus is the most essential parameter for loading effect simulation, and our simulation gave the similar Young's Modulus as the previous seismic tomographic INDEPTH III program did. Therefore with accurate seismic tomographic results and loading history detected by remote sensing could accurately simulate ground deformation caused by hydrological loading.
Boxberger, John I.; Orlansky, Amy S.; Sen, Sounok; Elliott, Dawn M.
2009-01-01
The intervertebral disc functions over a range of dynamic loading regimes including axial loads applied across a spectrum of frequencies at varying compressive loads. Biochemical changes occurring in early degeneration, including reduced nucleus pulposus glycosaminoglycan content, may alter disc mechanical behavior and thus may contribute to the progression of degeneration. The objective of this study was to determine disc dynamic viscoelastic properties under several equilibrium loads and loading frequencies, and further, to determine how reduced nucleus glycosaminglycan content alters dynamic mechanics. We hypothesized (1) that dynamic stiffness would be elevated with increasing equilibrium load and increasing frequency, (2) that the disc would behave more elastically at higher frequencies, and finally, (3) that dynamic stiffness would be reduced at low equilibrium loads under all frequencies due to nucleus glycosaminoglycan loss. We mechanically tested control and chondroitinase-ABC injected rat lumbar motion segments at several equilibrium loads using oscillatory loading at frequencies ranging from 0.05 to 5 Hz. The rat lumbar disc behaved non-linearly with higher dynamic stiffness at elevated compressive loads irrespective of frequency. Phase angle was not affected by equilibrium load, although it decreased as frequency was increased. Reduced glycosaminoglycan decreased dynamic stiffness at low loads but not at high equilibrium loads and led to increased phase angle at all loads and frequencies. The findings of this study demonstrate the effect of equilibrium load and loading frequencies on dynamic disc mechanics and indicate possible mechanical mechanisms through which disc degeneration can progress. PMID:19539936
Revill, Paul; Walker, Simon; Cambiano, Valentina; Phillips, Andrew; Sculpher, Mark J
2018-01-01
The WHO HIV Treatment Guidelines suggest routine viral-load monitoring can be used to differentiate antiretroviral therapy (ART) delivery and reduce the frequency of clinic visits for patients stable on ART. This recommendation was informed by economic analysis that showed the approach is very likely to be cost-effective, even in the most resource constrained of settings. The health benefits were shown to be modest but the costs of introducing and scaling up viral load monitoring can be offset by anticipated reductions in the costs of clinic visits, due to these being less frequent for many patients. The cost-effectiveness of introducing viral-load informed differentiated care depends upon whether cost reductions are possible if the number of clinic visits is reduced and/or how freed clinic capacity is used for alternative priorities. Where freed resources, either physical or financial, generate large health gains (e.g. if committed to patients failing ART or to other high value health care interventions), the benefits of differentiated care are expected to be high; if however these freed physical resources are already under-utilized or financial resources are used less efficiently and would not be put to as beneficial an alternative use, the policy may not be cost-effective. The implication is that the use of conventional unit costs to value resources may not well reflect the latter's value in contributing to health improvement. Analyses intended to inform resource allocated decisions in a number of settings may therefore have to be interpreted with due consideration to local context. In this paper we present methods of how economic analyses can reflect the real value of health care resources rather than simply applying their unit costs. The analyses informing the WHO Guidelines are re-estimated by implementing scenarios using this framework, informing how differentiated care can be prioritized to generate greatest gains in population health. The findings have important implications for how economic analyses should be undertaken and reported in HIV and other disease areas. Results provide guidance on conditions under which viral load informed differentiated care will more likely prove to be cost effective when implemented.
NASA Astrophysics Data System (ADS)
Zhao, Junhua; Jiang, Jin-Wu; Rabczuk, Timon
2013-12-01
The temperature-dependent mechanical properties of single-layer molybdenum disulphide (MoS2) are obtained using molecular dynamics (MD) nanoindentation simulations. The Young's moduli, maximum load stress, and maximum loading strain decrease with increasing temperature from 4.2 K to 500 K. The obtained Young's moduli are in good agreement with those using our MD uniaxial tension simulations and the available experimental results. The tendency of maximum loading strain with different temperature is opposite with that of metal materials due to the short range Stillinger-Weber potentials in MoS2. Furthermore, the indenter tip radius and fitting strain effect on the mechanical properties are also discussed.
Degradation of lead-zirconate-titanate ceramics under different dc loads
NASA Astrophysics Data System (ADS)
Balke, Nina; Granzow, Torsten; Rödel, Jürgen
2009-05-01
During poling and application in actuators, piezoelectric ceramics like lead-zirconate-titanate are exposed to static or cyclically varying electric fields, often leading to pronounced changes in the electromechanical properties. These fatigue phenomena depend on time, peak electric load, and temperature. Although this process impacts the performance of many actuator materials, its physical understanding remains elusive. This paper proposes a set of key experiments to systematically investigate the changes in the ferroelectric hysteresis, field-dependent relative permittivity, and piezoelectric coefficient after submitting the material to dc loads of varying amplitude and duration. The observed effects are explained based on a model of domain stabilization due to charge accumulation at domain boundaries.
Din, Fakhar Ud; Kim, Dong Wuk; Choi, Ju Yeon; Thapa, Raj Kumar; Mustapha, Omer; Kim, Dong Shik; Oh, Yu-Kyoung; Ku, Sae Kwang; Youn, Yu Seok; Oh, Kyung Taek; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon
2017-05-01
Intramuscularly administered, anti-tumour drugs induce severe side effects due to their direct contact with body tissues and initial burst effect. In this study, to solve this problem, a novel double-reversible thermogel system (DRTG) for the intramuscular administration of irinotecan was developed. This irinotecan-loaded DRTG was prepared by dispersing the irinotecan-loaded thermoreversible solid lipid nanoparticles (SLNs) in the thermoreversible hydrogel. In DRTG, the former was solid at 25°C but converted to liquid at 36.5°C; in contrast, the latter existed in a liquid form but transformed to gel state in the body. The DRTG was easily administered intramuscularly. Its particle size and drug content were not noticeably changeable, resulting that it was stable at 40°C for at least 6months. Compared to the irinotecan-loaded solution and conventional hydrogel, the DRTG significantly delayed drug release, leading to a reduced burst effect. Moreover, it showed decreased C max and maintained the sustained plasma concentrations at a relatively low level for the long period of 60h in rats, resulting in ameliorated side effects of the anti-tumour drug. Furthermore, it gave significantly improved anti-tumour efficacy in tumour-bearing mice compared to the hydrogel but, unlike the conventional hydrogel, induced no body weight loss and local damage to the muscle. Thus, this DRTG with improved antitumor efficacy without initial burst effect and toxicity could provide a potential pharmaceutical system for the intramuscular administration of irinotecan. Intramuscularly administered, anti-tumour drugs induce severe side effects due to their direct contact with body tissues and initial burst effect. To solve this problem, we developed a novel double-reversible thermogel system (DRTG) for the intramuscular administration of irinotecan. Unlike the conventional hydrogel, the DRTG is a dispersion of the irinotecan-loaded thermoreversible solid lipid nanoparticles in the thermoreversible hydrogel. In DRTG, the former was solid at 25°C but converted to liquid at 36.5°C; in contrast, the latter existed in a liquid form but transformed to gel state in the body. This DRTG gave significantly improved anti-tumour efficacy in tumour-bearing mice compared to the hydrogel but, unlike the conventional hydrogel, induced no body weight loss and local damage to the muscle. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Vicari, Luisa; Musumeci, Teresa; Giannone, Ignazio; Adamo, Luana; Conticello, Concetta; De Maria, Ruggero; Pignatello, Rosario; Puglisi, Giovanni; Gulisano, Massimo
2008-01-01
Background PTX is one of the most widely used drug in oncology due to its high efficacy against solid tumors and several hematological cancers. PTX is administered in a formulation containing 1:1 Cremophor® EL (polyethoxylated castor oil) and ethanol, often responsible for toxic effects. Its encapsulation in colloidal delivery systems would gain an improved targeting to cancer cells, reducing the dose and frequency of administration. Methods In this paper PTX was loaded in PLGA NS. The activity of PTX-NS was assessed in vitro against thyroid, breast and bladder cancer cell lines in cultures. Cell growth was evaluated by MTS assay, intracellular NS uptake was performed using coumarin-6 labelled NS and the amount of intracellular PTX was measured by HPLC. Results NS loaded with 3% PTX (w/w) had a mean size < 250 nm and a polydispersity index of 0.4 after freeze-drying with 0.5% HP-Cyd as cryoprotector. PTX encapsulation efficiency was 30% and NS showed a prolonged drug release in vitro. An increase of the cytotoxic effect of PTX-NS was observed with respect to free PTX in all cell lines tested. Conclusion These findings suggest that the greater biological effect of PTX-NS could be due to higher uptake of the drug inside the cells as shown by intracellular NS uptake and cell accumulation studies. PMID:18657273
A Model Study of the Impact of Source Gas Changes on the Stratosphere for 1850-2100
NASA Technical Reports Server (NTRS)
Fleming, E. L.; Jackman, C. H.; Stolarski, R. S.; Douglass, A. R.
2011-01-01
The long term stratospheric impacts due to emissions of CO2, CH4, N2O, and ozone depleting substances (ODSs) are investigated using an updated version of the Goddard two-dimensional (2D) model. Perturbation simulations with the ODSs, CO2, CH4, and N2O varied individually are performed to isolate the relative roles of these gases in driving stratospheric changes over the 1850-2100 time period. We also show comparisons with observations and the God- 40 dard Earth Observing System chemistry-climate model simulations for the time period 1970-2100 to illustrate that the 2D model captures the basic processes responsible for longterm stratospheric change. The 2D simulations indicate that prior to 1940, the 45 ozone increases due to CO2 and CH4 loading outpace the ozone losses due to increasing N2O and carbon tetrachloride (CCl4) emissions, so that ozone reaches a broad maximum during the 1920s-1930s. This preceeds the significant ozone depletion during approx. 1960-2050 driven by the ODS loading. During the latter half of the 21st century as ODS emissions diminish, CO2, N2O, and CH4 loading will all have significant impacts on global total ozone based on the IPCC AIB (medium) scenario, with CO2 having the largest individual effect. Sensitivity tests illustrate that due to the strong chemical interaction between methane and chlorine, the CH4 impact on total ozone becomes significantly more positive with larger ODS loading. The model simulations also show that changes in stratospheric temperature, Brewer-Dobson circulation (BDC), and age of air during 1850-2100 are controlled mainly by the CO2 and ODS loading. The simulated acceleration of the BDC causes the age of air to decrease by approx. 1 year from 1860-2100. The corresponding photochemical lifetimes of N2O, CFCl3, CF2Cl2, and CCl4 decrease by 11-13% during 1960-2100 due to the acceleration of the BDC, with much smaller lifetime changes 4%) caused by changes in the photochemical loss rates.
Naeimi, Reza; Safarpour, Fatemeh; Hashemian, Mona; Tashakorian, Hamed; Ahmadian, Seyed Raheleh; Ashrafpour, Manouchehr; Ghasemi-Kasman, Maryam
2018-05-01
Curcumin has been introduced as effective anti-inflammatory agent in treatment of several inflammatory disorders. Despite the wide range pharmacological activities, clinical application of curcumin is restricted mainly due to the low water solubility of this substance. More recently, we could remarkably improve the aqueous solubility of curcumin by its encapsulation in chitosan-alginate-sodium tripolyphosphate nanoparticles (CS-ALG-STPP NPs). In this study, the anti-inflammatory and myelin protective effects of curcumin-loaded NPs were evaluated in lysolecithin (LPC)-induced focal demyelination model. Pharmacokinetic of curcumin was assessed using high performance liquid chromatography (HPLC). Local demyelination was induced by injection of LPC into corpus callosum of rats. Animals were pre-treated with intraperitoneal (i.p.) injections of curcumin or curcumin-loaded NPs at dose of 12.5 mg/kg, 10 days prior to LPC injection and the injections were continued for 7 or 14 days post lesion. Hematoxylin and eosin (H&E) staining and immunostaining against activated glial cells including astrocytes and microglia were carried out for assessment of inflammation level in lesion site. Myelin specific staining was performed to evaluate the effect of curcumin-loaded NPs on myelination of LPC receiving animals. HPLC results showed the higher plasma concentration of curcumin after administration of NPs. Histological evaluation demonstrated that, the extent of demyelination areas was reduced in animals under treatment of curcumin-loaded NPs. Furthermore, treatment with curcumin-loaded NPs effectively attenuated glial activation and inflammation in LPC-induced demyelination model compared to curcumin receiving animals. Overall; these findings indicate that treatment with curcumin-loaded NPs preserve myelinated axons through amelioration of glial activation and inflammation in demyelination context. Copyright © 2018 Elsevier B.V. All rights reserved.
Survival Model for Foot and Leg High Rate Axial Impact Injury Data.
Bailey, Ann M; McMurry, Timothy L; Poplin, Gerald S; Salzar, Robert S; Crandall, Jeff R
2015-01-01
Understanding how lower extremity injuries from automotive intrusion and underbody blast (UBB) differ is of key importance when determining whether automotive injury criteria can be applied to blast rate scenarios. This article provides a review of existing injury risk analyses and outlines an approach to improve injury prediction for an expanded range of loading rates. This analysis will address issues with existing injury risk functions including inaccuracies due to inertial and potential viscous resistance at higher loading rates. This survival analysis attempts to minimize these errors by considering injury location statistics and a predictor variable selection process dependent upon failure mechanisms of bone. Distribution of foot/ankle/leg injuries induced by axial impact loading at rates characteristic of UBB as well as automotive intrusion was studied and calcaneus injuries were found to be the most common injury; thus, footplate force was chosen as the main predictor variable because of its proximity to injury location to prevent inaccuracies associated with inertial differences due to loading rate. A survival analysis was then performed with age, sex, dorsiflexion angle, and mass as covariates. This statistical analysis uses data from previous axial postmortem human surrogate (PMHS) component leg tests to provide perspectives on how proximal boundary conditions and loading rate affect injury probability in the foot/ankle/leg (n = 82). Tibia force-at-fracture proved to be up to 20% inaccurate in previous analyses because of viscous resistance and inertial effects within the data set used, suggesting that previous injury criteria are accurate only for specific rates of loading and boundary conditions. The statistical model presented in this article predicts 50% probability of injury for a plantar force of 10.2 kN for a 50th percentile male with a neutral ankle position. Force rate was found to be an insignificant covariate because of the limited range of loading rate differences within the data set; however, compensation for inertial effects caused by measuring the force-at-fracture in a location closer to expected injury location improved the model's predictive capabilities for the entire data set. This study provides better injury prediction capabilities for both automotive and blast rates because of reduced sensitivity to inertial effects and tibia-fibula load sharing. Further, a framework is provided for future injury criteria generation for high rate loading scenarios. This analysis also suggests key improvements to be made to existing anthropomorphic test device (ATD) lower extremities to provide accurate injury prediction for high rate applications such as UBB.
NASA Technical Reports Server (NTRS)
Sadler, S. G.
1971-01-01
Rotor wake geometries are predicted by a process similar to the startup of a rotor in a free stream. An array of discrete trailing and shed vortices is generated with vortex strengths corresponding to stepwise radial and azimuthal blade circulations. The array of shed and trailing vortices is limited to an arbitrary number of azimuthal steps behind each blade. The remainder of the wake model of each blade is an arbitrary number of trailing vortices. Vortex element end points were allowed to be transported by the resultant velocity of the free stream and vortex-induced velocities. Wake geometry, wake flow, and wake-induced velocity influence coefficients are generated by this program for use in the blade loads portion of the calculations. Blade loads computations include the effects of nonuniform inflow due to a free wake, nonlinear airfoil characteristics, and response of flexible blades to the applied loads. Computed wake flows and blade loads are compared with experimentally measured data. Predicted blade loads, response and shears and moments are obtained for a model rotor system having two independent rotors. The effects of advance ratio, vertical separation of rotors, different blade radius ratios, and different azimuthal spacing of the blades of one rotor with respect to the other are investigated.
Dynamic axle and wheel loads identification: laboratory studies
NASA Astrophysics Data System (ADS)
Zhu, X. Q.; Law, S. S.
2003-12-01
Two methods have been reported by Zhu and Law to identify moving loads on the top of a bridge deck. One is based on the exact solution (ESM) and the other is based on the finite element formulation (FEM). Simulation studies on the effect of different influencing factors have been reported previously. This paper comparatively studies the performances of these two methods with experimental measurements obtained from a bridge/vehicle system in the laboratory. The strains of the bridge deck are measured when a model car moves across the bridge deck along different paths. The moving loads on the bridge deck are identified from the measured strains using these two methods, and the responses are reconstructed from the identified loads for comparison with the measured responses to verify the performances of these methods. Studies on the identification accuracy due to the effect of the number of vibration mode used, the number of measuring points and eccentricities of travelling paths are performed. Results show that the ESM could identify the moving loads individually or as axle loads when they are travelling at an eccentricity with the sensors located close to the travelling path of the forces. And the accuracy of the FEM is dependent on the amount of measured information used in the identification.
NASA Astrophysics Data System (ADS)
Srouji, A. K.; Zheng, L. J.; Dross, R.; Aaron, D.; Mench, M. M.
2017-10-01
Limiting current measurements are used to evaluate oxygen transport resistance in the catalyst layer of a polymer electrolyte fuel cell (PEFC). The pressure independent oxygen transport resistance in the electrode is quantified for two cell architectures and two cathode Pt loadings (0.4 and 0.07 mgPt.cm-2). The compounded effect of the flow field and Pt loading is used to shed light on the nature of the observed transport resistance, especially its response to fundamentally different flow fields, which is shown to directly or indirectly scale with Pt loading in the open literature. By varying gas pressure and using low oxygen concentrations, the total oxygen transport resistance is divided into intermolecular gas diffusion (a pressure-dependent component) and a pressure independent component, which can be attributed to Knudsen diffusion or dissolution film resistance. The pressure-independent oxygen transport resistance in the catalyst layer varies between 13.3 and 34.4 s/m. It is shown that the pressure independent oxygen transport resistance increases with reduced Pt loading, but that effect is greatly exacerbated by using conventional channel/lands. The results indicate that open metallic element architecture improves the oxygen transport resistance in ultra-low Pt loading electrodes, likely due to enhanced water management at the catalyst layer.
Liu, Feng; Williams, Sophie; Jin, Zhongmin; Fisher, John
2013-11-01
Head contact on the rim of the cup causes stress concentration and consequently increased wear. The head contact on the rim of the cup may in addition cause an offset load and torque on the cup. The head-rim contact resulting from microseparation or subluxation has been investigated. An analytical model has been developed to calculate the offset loading and resultant torque on the cup as a function of the translational displacement of the head under simplified loading condition of the hip joint at heel strike during a walking cycle. The magnitude of the torque on the cup was found to increase with the increasing translational displacement, larger diameter heads, eccentric cups, and the coefficient of friction of the contact. The effects of cup inclination, cup rim radius, and cup coverage angle on the magnitude of the torque were found to be relatively small with a maximum variation in the torque magnitude being lower than 20%. This study has shown an increased torque due to the head loading on the rim of the cup, and this may contribute to the incidence of cup loosening. Particularly, metal-on-metal hip joints with larger head diameters may produce the highest offset loading torque.
Turbine blade unsteady aerodynamic loading and heat transfer
NASA Astrophysics Data System (ADS)
Johnston, David Alan
Stator indexing to minimize the unsteady aerodynamic loading of closely spaced airfoil rows in turbomachinery is a new technique for the passive control of flow-induced vibrations. This technique, along with the effects of steady blade loading, were studied by means of experiments performed in a two-stage low-speed research turbine. With the second vane row fixed, the inlet vane row was indexed to six positions over one vane-pitch cycle for a range of stage loadings. The aerodynamic forcing function to the first-stage rotor was measured in the rotating reference frame, with the resulting rotor blade unsteady aerodynamic response quantified by rotor blades instrumented with dynamic pressure transducers. Reductions in the unsteady lift magnitude were achieved at all turbine operating conditions, with attenuation ranging from 37% to 74% of the maximum unsteady lift. Additionally, in complementary experiments, the effects of stator indexing and steady blade loading on the unsteady heat transfer of the first- and second-stage rotors was studied for the design and highest blade loading conditions using platinum-film heat gages. The attenuation of unsteady heat transfer coefficient was blade-loading dependent and location dependent along the chord and span, ranging 10% to 90% of maximum. Due to the high degree of location dependence of attenuation, stator indexing is therefore best suited to minimize unsteady heat transfer in local hot spots of the blade rather than the blade as a whole.
NASA Astrophysics Data System (ADS)
Ikeda, Tetsuya; Amano, Kunihiko; Kishida, Hiroyuki
In the field of infrastructure construction including river works, construction materials such as concrete are used, and it needs to transport them for the long distance. Due to recent growth of public awareness on the environmental issues, it becomes more important to estimate and reduce the environmental loads brought by the infrastructure construction. In the infrastructure construction, it is necessary to take notice of carbon dioxide and waste materials as the broad-based and long-range environmental loads. On the other hand, it is necessary to conduct the quantitative evaluation on these environmental loads and to investigate the reduction measures by considering the actual situation of construction. Focusing on the river works, this paper estimates the cost of construction, the carbon dioxide emission and final disposal volume on the several alternative plans at the designing stage, compares the significance of different environmental loads by using the integrated factors of LIME2, and analyzes the effectiveness of reduction measures. It also establishes the reduction scenarios of the environmental loads, and analyzes the effectiveness compared to the base-line scenario in which the materials are newly extracted and produced. Based on the results, it establishes the procedure intending to reduce the environmental loads at the time of river planning and construction, which will be referentialized by river managers, construction consultants and constructors nationwide.
Stasuk, Alexander
2017-01-01
Adipose-derived mesenchymal stem cells have become a popular cell choice for tendon repair strategies due to their relative abundance, ease of isolation, and ability to differentiate into tenocytes. In this study, we investigated the solo effect of different uniaxial tensile strains and loading frequencies on the matrix directionality and tenogenic differentiation of adipose-derived stem cells encapsulated within three-dimensional collagen scaffolds. Samples loaded at 0%, 2%, 4%, and 6% strains and 0.1 Hz and 1 Hz frequencies for 2 hours/day over a 7-day period using a custom-built uniaxial tensile strain bioreactor were characterized in terms of matrix organization, cell viability, and musculoskeletal gene expression profiles. The results displayed that the collagen fibers of the loaded samples exhibited increased matrix directionality with an increase in strain values. Gene expression analyses demonstrated that ASC-encapsulated collagen scaffolds loaded at 2% strain and 0.1 Hz frequency showed significant increases in extracellular matrix genes and tenogenic differentiation markers. Importantly, no cross-differentiation potential to osteogenic, chondrogenic, and myogenic lineages was observed at 2% strain and 0.1 Hz frequency loading condition. Thus, 2% strain and 0.1 Hz frequency were identified as the appropriate mechanical loading regime to induce tenogenic differentiation of adipose-derived stem cells cultured in a three-dimensional environment. PMID:29375625
Safety envelope for load tolerance of structural element design based on multi-stage testing
Park, Chanyoung; Kim, Nam H.
2016-09-06
Structural elements, such as stiffened panels and lap joints, are basic components of aircraft structures. For aircraft structural design, designers select predesigned elements satisfying the design load requirement based on their load-carrying capabilities. Therefore, estimation of safety envelope of structural elements for load tolerances would be a good investment for design purpose. In this article, a method of estimating safety envelope is presented using probabilistic classification, which can estimate a specific level of failure probability under both aleatory and epistemic uncertainties. An important contribution of this article is that the calculation uncertainty is reflected in building a safety envelope usingmore » Gaussian process, and the effect of element test data on reducing the calculation uncertainty is incorporated by updating the Gaussian process model with the element test data. It is shown that even one element test can significantly reduce the calculation uncertainty due to lacking knowledge of actual physics, so that conservativeness in a safety envelope is significantly reduced. The proposed approach was demonstrated with a cantilever beam example, which represents a structural element. The example shows that calculation uncertainty provides about 93% conservativeness against the uncertainty due to a few element tests. As a result, it is shown that even a single element test can increase the load tolerance modeled with the safety envelope by 20%.« less
NASA Astrophysics Data System (ADS)
Quinto, Christopher A.; Mohindra, Priya; Tong, Sheng; Bao, Gang
2015-07-01
Superparamagnetic iron oxide (SPIO) nanoparticles have the potential for use as a multimodal cancer therapy agent due to their ability to carry anticancer drugs and generate localized heat when exposed to an alternating magnetic field, resulting in combined chemotherapy and hyperthermia. To explore this potential, we synthesized SPIOs with a phospholipid-polyethylene glycol (PEG) coating, and loaded Doxorubicin (DOX) with a 30.8% w/w loading capacity when the PEG length is optimized. We found that DOX-loaded SPIOs exhibited a sustained DOX release over 72 hours where the release kinetics could be altered by the PEG length. In contrast, the heating efficiency of the SPIOs showed minimal change with the PEG length. With a core size of 14 nm, the SPIOs could generate sufficient heat to raise the local temperature to 43 °C, sufficient to trigger apoptosis in cancer cells. Further, we found that DOX-loaded SPIOs resulted in cell death comparable to free DOX, and that the combined effect of DOX and SPIO-induced hyperthermia enhanced cancer cell death in vitro. This study demonstrates the potential of using phospholipid-PEG coated SPIOs for chemotherapy-hyperthermia combinatorial cancer treatment with increased efficacy.Superparamagnetic iron oxide (SPIO) nanoparticles have the potential for use as a multimodal cancer therapy agent due to their ability to carry anticancer drugs and generate localized heat when exposed to an alternating magnetic field, resulting in combined chemotherapy and hyperthermia. To explore this potential, we synthesized SPIOs with a phospholipid-polyethylene glycol (PEG) coating, and loaded Doxorubicin (DOX) with a 30.8% w/w loading capacity when the PEG length is optimized. We found that DOX-loaded SPIOs exhibited a sustained DOX release over 72 hours where the release kinetics could be altered by the PEG length. In contrast, the heating efficiency of the SPIOs showed minimal change with the PEG length. With a core size of 14 nm, the SPIOs could generate sufficient heat to raise the local temperature to 43 °C, sufficient to trigger apoptosis in cancer cells. Further, we found that DOX-loaded SPIOs resulted in cell death comparable to free DOX, and that the combined effect of DOX and SPIO-induced hyperthermia enhanced cancer cell death in vitro. This study demonstrates the potential of using phospholipid-PEG coated SPIOs for chemotherapy-hyperthermia combinatorial cancer treatment with increased efficacy. Electronic supplementary information (ESI) available: Core size distribution; temperature increase for specific absorption rate calculations; effect of DOX loading on zeta potential; combined effect of hyperthermia and free DOX; cell morphology following DOX/hyperthermia treatment. See DOI: 10.1039/c5nr02718g
Rhode Island Salt Marshes: Elevation Capital and Resilience to Sea Level Rise
Tidal salt marsh is especially sensitive to deterioration due to the effects of accelerated sea level rise when combined with other anthropogenically linked stressors, including crab herbivory, changes in tidal hydrology, nutrient loading, dam construction, changes in temperature...
Cost effective prevention of reflective cracking of composite pavement : research project capsule.
DOT National Transportation Integrated Search
2008-12-01
Reflection cracks are caused by discontinuities (cracks or joints) in underlying layers, which : propagate through a hot-mix asphalt (HMA) overlay due to continuous movement at the crack : prompted by thermal and traffic loading. If the new overlay i...
Zhang, Hanze; Huang, Yangxin; Wang, Wei; Chen, Henian; Langland-Orban, Barbara
2017-01-01
In longitudinal AIDS studies, it is of interest to investigate the relationship between HIV viral load and CD4 cell counts, as well as the complicated time effect. Most of common models to analyze such complex longitudinal data are based on mean-regression, which fails to provide efficient estimates due to outliers and/or heavy tails. Quantile regression-based partially linear mixed-effects models, a special case of semiparametric models enjoying benefits of both parametric and nonparametric models, have the flexibility to monitor the viral dynamics nonparametrically and detect the varying CD4 effects parametrically at different quantiles of viral load. Meanwhile, it is critical to consider various data features of repeated measurements, including left-censoring due to a limit of detection, covariate measurement error, and asymmetric distribution. In this research, we first establish a Bayesian joint models that accounts for all these data features simultaneously in the framework of quantile regression-based partially linear mixed-effects models. The proposed models are applied to analyze the Multicenter AIDS Cohort Study (MACS) data. Simulation studies are also conducted to assess the performance of the proposed methods under different scenarios.
A research on motion design for APP's loading pages based on time perception
NASA Astrophysics Data System (ADS)
Cao, Huai; Hu, Xiaoyun
2018-04-01
Due to restrictions caused by objective reasons like network bandwidth, hardware performance and etc., waiting is still an inevitable phenomenon that appears in our using mobile-terminal products. Relevant researches show that users' feelings in a waiting scenario can affect their evaluations on the whole product and services the product provides. With the development of user experience and inter-facial design subjects, the role of motion effect in the interface design has attracted more and more scholars' attention. In the current studies, the research theory of motion design in a waiting scenario is imperfect. This article will use the basic theory and experimental research methods of cognitive psychology to explore the motion design's impact on user's time perception when users are waiting for loading APP pages. Firstly, the article analyzes the factors that affect waiting experience of loading APP pages based on the theory of time perception, and then discusses motion design's impact on the level of time-perception when loading pages and its design strategy. Moreover, by the operation analysis of existing loading motion designs, the article classifies the existing loading motions and designs an experiment to verify the impact of different types of motions on the user's time perception. The result shows that the waiting time perception of mobile's terminals' APPs is related to the loading motion types, the combination type of loading motions can effectively shorten the waiting time perception as it scores a higher mean value in the length of time perception.
Mechanisms of anterior-posterior stability of the knee joint under load-bearing.
Reynolds, Ryan J; Walker, Peter S; Buza, John
2017-05-24
The anterior-posterior (AP) stability of the knee is an important aspect of functional performance. Studies have shown that the stability increases when compressive loads are applied, as indicated by reduced laxity, but the mechanism has not been fully explained. A test rig was designed which applied combinations of AP shear and compressive forces, and measured the AP displacements relative to the neutral position. Five knees were evaluated at compressive loads of 0, 250, 500, and 750N, with the knee at 15° flexion. At each load, three cycles of shear force at ±100N were applied. For the intact knee under load, the posterior tibial displacement was close to zero, due to the upward slope of the anterior medial tibial surface. The soft tissues were then resected in sequence to determine their role in AP laxity. After anterior cruciate ligament (ACL) resection, the anterior tibial displacement increased significantly even under load, highlighting its importance in stability. Meniscal resection further increased displacement but also the vertical displacement increased, implying the meniscus was providing a buffering effect. The PCL had no effect on any of the displacements under load. Plowing cartilage deformation and surface friction were negligible. This work highlighted the particular importance of the upward slope of the anterior medial tibial surface and the ACL to AP knee stability under load. The results are relevant to the design of total knees which reproduce anatomic knee stability behavior. Copyright © 2017. Published by Elsevier Ltd.
Extended Glauert tip correction to include vortex rollup effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maniaci, David; Schmitz, Sven
Wind turbine loads predictions by blade-element momentum theory using the standard tip-loss correction have been shown to over-predict loading near the blade tip in comparison to experimental data. This over-prediction is theorized to be due to the assumption of light rotor loading, inherent in the standard tip-loss correction model of Glauert. A higher- order free-wake method, WindDVE, is used to compute the rollup process of the trailing vortex sheets downstream of wind turbine blades. Results obtained serve an exact correction function to the Glauert tip correction used in blade-element momentum methods. Lastly, it is found that accounting for the effectsmore » of tip vortex rollup within the Glauert tip correction indeed results in improved prediction of blade tip loads computed by blade-element momentum methods.« less
Extended Glauert tip correction to include vortex rollup effects
Maniaci, David; Schmitz, Sven
2016-10-03
Wind turbine loads predictions by blade-element momentum theory using the standard tip-loss correction have been shown to over-predict loading near the blade tip in comparison to experimental data. This over-prediction is theorized to be due to the assumption of light rotor loading, inherent in the standard tip-loss correction model of Glauert. A higher- order free-wake method, WindDVE, is used to compute the rollup process of the trailing vortex sheets downstream of wind turbine blades. Results obtained serve an exact correction function to the Glauert tip correction used in blade-element momentum methods. Lastly, it is found that accounting for the effectsmore » of tip vortex rollup within the Glauert tip correction indeed results in improved prediction of blade tip loads computed by blade-element momentum methods.« less
Co-optimization of Energy and Demand-Side Reserves in Day-Ahead Electricity Markets
NASA Astrophysics Data System (ADS)
Surender Reddy, S.; Abhyankar, A. R.; Bijwe, P. R.
2015-04-01
This paper presents a new multi-objective day-ahead market clearing (DAMC) mechanism with demand-side reserves/demand response (DR) offers, considering realistic voltage-dependent load modeling. The paper proposes objectives such as social welfare maximization (SWM) including demand-side reserves, and load served error (LSE) minimization. In this paper, energy and demand-side reserves are cleared simultaneously through co-optimization process. The paper clearly brings out the unsuitability of conventional SWM for DAMC in the presence of voltage-dependent loads, due to reduction of load served (LS). Under such circumstances multi-objective DAMC with DR offers is essential. Multi-objective Strength Pareto Evolutionary Algorithm 2+ (SPEA 2+) has been used to solve the optimization problem. The effectiveness of the proposed scheme is confirmed with results obtained from IEEE 30 bus system.
Development of an efficient procedure for calculating the aerodynamic effects of planform variation
NASA Technical Reports Server (NTRS)
Mercer, J. E.; Geller, E. W.
1981-01-01
Numerical procedures to compute gradients in aerodynamic loading due to planform shape changes using panel method codes were studied. Two procedures were investigated: one computed the aerodynamic perturbation directly; the other computed the aerodynamic loading on the perturbed planform and on the base planform and then differenced these values to obtain the perturbation in loading. It is indicated that computing the perturbed values directly can not be done satisfactorily without proper aerodynamic representation of the pressure singularity at the leading edge of a thin wing. For the alternative procedure, a technique was developed which saves most of the time-consuming computations from a panel method calculation for the base planform. Using this procedure the perturbed loading can be calculated in about one-tenth the time of that for the base solution.
Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy.
Cleveland, Robin O; Sapozhnikov, Oleg A
2005-10-01
A time-domain finite-difference solution to the equations of linear elasticity was used to model the propagation of lithotripsy waves in kidney stones. The model was used to determine the loading on the stone (principal stresses and strains and maximum shear stresses and strains) due to the impact of lithotripsy shock waves. The simulations show that the peak loading induced in kidney stones is generated by constructive interference from shear waves launched from the outer edge of the stone with other waves in the stone. Notably the shear wave induced loads were significantly larger than the loads generated by the classic Hopkinson or spall effect. For simulations where the diameter of the focal spot of the lithotripter was smaller than that of the stone the loading decreased by more than 50%. The constructive interference was also sensitive to shock rise time and it was found that the peak tensile stress reduced by 30% as rise time increased from 25 to 150 ns. These results demonstrate that shear waves likely play a critical role in stone comminution and that lithotripters with large focal widths and short rise times should be effective at generating high stresses inside kidney stones.
Apparent negative mass in QCM sensors due to punctual rigid loading
NASA Astrophysics Data System (ADS)
Castro, P.; Resa, P.; Elvira, L.
2012-12-01
Quartz Crystal Microbalances (QCM) are highly sensitive piezoelectric sensors able to detect very small loads attached to them. These devices are widely employed in many applications including process control and industrial and environmental monitoring. Mass loading is usually related to frequency shift by the well-known Sauerbrey's equation, valid for thin rigid homogeneous films. However, a significant deviation from this equation can occur when the mass is not uniformly distributed over the surface. Whereas the effects of a thin film on a QCM have been thoroughly studied, there are relatively few results on punctual loads, even though particles are usually deposited randomly and non-uniformly on the resonator surface. In this work, we have studied the effect of punctual rigid loading on the resonant frequency shift of a QCM sensor, both experimentally and using finite element method (FEM). The FEM numerical analysis was done using COMSOL software, 3D modeling a linear elastic piezoelectric solid and introducing the properties of an AT-cut quartz crystal. It is shown that a punctual rigid mass deposition on the surface of a QCM sensor can lead to positive shifts of resonance frequency, contrary to Sauerbrey's equation.
Assessing the physical loading of wearable computers.
Knight, James F; Baber, Chris
2007-03-01
Wearable computers enable workers to interact with computer equipment in situations where previously they were unable. Attaching a computer to the body though has an unknown physical effect. This paper reports a methodology for addressing this, by assessing postural effects and the effect of added weight. Using the example of arm-mounted computers (AMCs), the paper shows that adopting a posture to interact with an AMC generates fatiguing levels of stress and a load of 0.54 kg results in increased level of stress and increased rate of fatigue. The paper shows that, due to poor postures adopted when wearing and interacting with computers and the weight of the device attached to the body, one possible outcome for prolonged exposure is the development of musculoskeletal disorders.
Some problems of the solar wind interaction with Venus
NASA Astrophysics Data System (ADS)
Breus, T. K.; Krymskii, A. M.
1987-09-01
The aim of this paper is to analyze the effect of solar wind mass-loading due to hot-oxygen Venus corona photoionization on the plasma flow parameters in the nose part of the magnetosheath and the flow stability, taking into consideration the axial symmetry of the flow. The analysis has shown that the mass-loading effect increases the distance between the shock front and the ionopause and reduces the maximum magnetic field strength in the magnetic barrier in the vicinity of the stagnation region of the ionopause. The axial symmetry of the stream stabilizes the ionopause disturbances in the nose part. For shorter wavelengths the instability problem should be investigated numerically and should account for the stabilizing effect of the finite Larmor ion radius.
Diagnosis and management of trimethylaminuria (FMO3 deficiency) in children.
Chalmers, R A; Bain, M D; Michelakakis, H; Zschocke, J; Iles, R A
2006-02-01
Persistent trimethylaminuria in children is caused by autosomal recessively inherited impairment of hepatic trimethylamine (TMA) oxidation due to deficiency of flavin monooxygenase 3 (FMO3) secondary to mutations in the FMO3 gene. Trimethylaminuria or 'fish odour syndrome' is due to excessive excretion into body fluids and breath of TMA derived from the enterobacterial metabolism of dietary precursors. The disorder is present from birth but becomes apparent as foods containing high amounts of choline or of trimethylamine N-oxide (TMAO) from marine (sea or saltwater) fish are introduced into the diet. In our experience, trimethylaminuria (FMO3 deficiency) in children is rare. We have compared the dynamics and diagnostic efficacy of choline loading with marine fish meals in six children with trimethylaminuria. Loading with a marine fish meal provides a simple and acceptable method for confirmation of diagnosis of suspected trimethylaminuria in children, with the effects being cleared more quickly than with a choline load test. However, oral loading with choline bitartrate allows estimation of residual oxidative capacity in vivo and is a useful adjunct to molecular studies. Patients homozygous for the 'common' P153L mutation in the FMO3 gene showed virtual complete lack of residual TMA N-oxidative capacity, consistent with a nonfunctional or absent FMO3 enzyme, whereas a patient with the M82T mutation showed some residual oxidative capacity. A patient compound heterozygous for two novel mutations, G193E and R483T, showed considerable residual N-oxidative capacity. A further patient, heterozygous for two novel sequence variations in the FMO3 gene, consistently showed malodour and elevated urinary TMA/TMAO ratios under basal conditions but a negative response to both choline and marine fish meal loading. Comparison of the effects of administration of antibiotics (metronidazole, amoxicillin, neomycin) on gut bacterial production of trimethylamine from choline showed they all reduced TMA production to a limited extent, with neomycin being most effective. 'Best-practice' diagnostic and treatment guidelines are summarized.
Study on the Aging Behaviors of Rubber Materials in Tension and Compression Loads
NASA Astrophysics Data System (ADS)
Jiang, Can; Wang, Hongyu; Ma, Xiaobing
Rubber materials are widely used in aviation, aerospace, shipbuilding, automobile and other military field. However, rubber materials are easy to aging, which largely restricts its using life. In working environment, due to the combined effect of heat and oxygen, vulcanized rubber will undergo degradation and crosslinking reaction which will cause elasticity decease and permanent deformation, so mostly rubber products are used under stress state. Due to the asymmetric structure and asymmetric stress distribution, mechanical stress may cause serious damage to molecular structure; therefore, this paper is aimed to analyze the aging behavior of rubber materials under tensile and compressive loadings, through analyzing experiment data, and adopting Gauss function to describe stress relaxation coefficient, to build an aging equation containing compression ratio parameter and aging time.
NASA Astrophysics Data System (ADS)
Farokhi, Hamed; Païdoussis, Michael P.; Misra, Arun K.
2018-04-01
The present study examines the nonlinear behaviour of a cantilevered carbon nanotube (CNT) resonator and its mass detection sensitivity, employing a new nonlinear electrostatic load model. More specifically, a 3D finite element model is developed in order to obtain the electrostatic load distribution on cantilevered CNT resonators. A new nonlinear electrostatic load model is then proposed accounting for the end effects due to finite length. Additionally, a new nonlinear size-dependent continuum model is developed for the cantilevered CNT resonator, employing the modified couple stress theory (to account for size-effects) together with the Kelvin-Voigt model (to account for nonlinear damping); the size-dependent model takes into account all sources of nonlinearity, i.e. geometrical and inertial nonlinearities as well as nonlinearities associated with damping, small-scale, and electrostatic load. The nonlinear equation of motion of the cantilevered CNT resonator is obtained based on the new models developed for the CNT resonator and the electrostatic load. The Galerkin method is then applied to the nonlinear equation of motion, resulting in a set of nonlinear ordinary differential equations, consisting of geometrical, inertial, electrical, damping, and size-dependent nonlinear terms. This high-dimensional nonlinear discretized model is solved numerically utilizing the pseudo-arclength continuation technique. The nonlinear static and dynamic responses of the system are examined for various cases, investigating the effect of DC and AC voltages, length-scale parameter, nonlinear damping, and electrostatic load. Moreover, the mass detection sensitivity of the system is examined for possible application of the CNT resonator as a nanosensor.
Estill, Janne; Egger, Matthias; Blaser, Nello; Vizcaya, Luisa Salazar; Garone, Daniela; Wood, Robin; Campbell, Jennifer; Hallett, Timothy B; Keiser, Olivia
2013-06-01
Monitoring of HIV viral load in patients on combination antiretroviral therapy (ART) is not generally available in resource-limited settings. We examined the cost-effectiveness of qualitative point-of-care viral load tests (POC-VL) in sub-Saharan Africa. Mathematical model based on longitudinal data from the Gugulethu and Khayelitsha township ART programmes in Cape Town, South Africa. Cohorts of patients on ART monitored by POC-VL, CD4 cell count or clinically were simulated. Scenario A considered the more accurate detection of treatment failure with POC-VL only, and scenario B also considered the effect on HIV transmission. Scenario C further assumed that the risk of virologic failure is halved with POC-VL due to improved adherence. We estimated the change in costs per quality-adjusted life-year gained (incremental cost-effectiveness ratios, ICERs) of POC-VL compared with CD4 and clinical monitoring. POC-VL tests with detection limits less than 1000 copies/ml increased costs due to unnecessary switches to second-line ART, without improving survival. Assuming POC-VL unit costs between US$5 and US$20 and detection limits between 1000 and 10,000 copies/ml, the ICER of POC-VL was US$4010-US$9230 compared with clinical and US$5960-US$25540 compared with CD4 cell count monitoring. In Scenario B, the corresponding ICERs were US$2450-US$5830 and US$2230-US$10380. In Scenario C, the ICER ranged between US$960 and US$2500 compared with clinical monitoring and between cost-saving and US$2460 compared with CD4 monitoring. The cost-effectiveness of POC-VL for monitoring ART is improved by a higher detection limit, by taking the reduction in new HIV infections into account and assuming that failure of first-line ART is reduced due to targeted adherence counselling.
Uskoković, Vuk; Desai, Tejal A.
2014-01-01
S aureus internalized by bone cells and shielded from the immune system provides a reservoir of bacteria in recurring osteomyelitis. Its targeting by the antibiotic therapy may thus be more relevant for treating chronic bone infection than eliminating only the pathogens colonizing the bone matrix. Assessed was the combined osteogenic and antibacterial effect of clindamycin-loaded calcium phosphate nanoparticles of different monophasic compositions on co-cultures comprising osteoblasts infected with S aureus. Antibiotic-carrying particles were internalized by osteoblasts and minimized the concentration of intracellular bacteria. In vitro treatments of the infected cells, however, could not prevent cell necrosis due to the formation of toxic byproducts of the degradation of the bacterium. Antibiotic-loaded particles had a positive morphological effect on osteoblasts per se, without reducing their viability, alongside stimulating upregulation of expression of different bone growth markers in infected osteoblasts to a higher degree than achieved during the treatment with antibiotic only. PMID:24582242
NASA Technical Reports Server (NTRS)
Waszak, Martin R.; Fung, Jimmy
1998-01-01
This report describes the development of transfer function models for the trailing-edge and upper and lower spoiler actuators of the Benchmark Active Control Technology (BACT) wind tunnel model for application to control system analysis and design. A simple nonlinear least-squares parameter estimation approach is applied to determine transfer function parameters from frequency response data. Unconstrained quasi-Newton minimization of weighted frequency response error was employed to estimate the transfer function parameters. An analysis of the behavior of the actuators over time to assess the effects of wear and aerodynamic load by using the transfer function models is also presented. The frequency responses indicate consistent actuator behavior throughout the wind tunnel test and only slight degradation in effectiveness due to aerodynamic hinge loading. The resulting actuator models have been used in design, analysis, and simulation of controllers for the BACT to successfully suppress flutter over a wide range of conditions.
1988-01-01
Settlements ........ 2.6-21 2.6.2.7.4.2 Total Settleme. t ... 2.6-21 2.6.2.7.4.3 Lateral Deformations ........ 2.6-22 2.6.2.7.5 Limits for Soil Loads and...otherwise specified, such as construction loads , etc. 2.1-2 F - Loads due to lateral and vertical pressure of incidental liquids. H - Loads due to lateral ...design loads , as well as forces and moments imposed by the continuity of the structural framing system. Columns should be designed to sustain all design
NASA Astrophysics Data System (ADS)
Milliner, C. W. D.; Materna, K.; Burgmann, R.; Fu, Y.; Bekaert, D. P.; Moore, A. W.; Adhikari, S.
2017-12-01
The Global Positioning System (GPS) measures elastic ground motions due to variations in terrestrial water mass. Such measurements have been used to successfully study variations of hydrological loading over monthly-to-yearly timescales; e.g., seasonal changes in water storage in California (Argus et al., 2014), 3-year drought of Western US (Borsa et al., 2014) and monthly water storage change in the Pacific Northwest (Fu et al., 2015). However, inferring water storage variations from single loading events over daily-to-weekly timescales presents a major challenge, due to the relatively higher level of noise and systematic errors, such as common mode errors (CME). This makes geodetic investigations of transient hydrologic events, such as major hurricanes, particularly difficult. By using daily vertical GPS timeseries we resolve the spatial and temporal evolution of water loading from Hurricane Harvey across the Gulf coast by applying multiple network correction methods, which helps to isolate the hydrological loading signal. Using 340 GPS stations distributed across the southern US, we mitigate for the effects of spatially correlated CME by firstly removing vertical contributions from atmospheric and non-ocean tidal loading, and secondly correcting the residual positions for changes in translation, rotation and scaling using a Helmert transformation. Our results show a maximum subsidence of 1.8 cm occurring around Houston, and a clear migration of land subsidence from Corpus Christi to western Louisiana over a 7-day period, consistent with the movement of Harvey itself. We also present preliminary results using the Network Inversion Filter (Bekaert et al., 2016), in which we use a Kalman filter approach to describe the time-varying water mass in a stochastic sense. Although our results are preliminary, we find removal of systematic sources of noise can help reveal hydrological loading signals due to extreme, transient events, that would typically go missed by other spatially and temporally coarser methods (e.g., GRACE), providing valuable constraints on large and sudden changes to the hydrosphere.
Energy output of a single outer hair cell: Effect of resonance
NASA Astrophysics Data System (ADS)
Iwasa, Kuni H.
2018-05-01
The ability of the mammalian ear in processing high frequency sounds, up to ˜100 kHz, is based on the capability of outer hair cells (OHCs) in responding to stimulation at high frequencies. These cells show a unique motility in their cell body coupled with charge movement. With this motile element, voltage changes generated by stimuli at their hair bundles drive the cell body and that, in turn, amplifies the signal. In vitro experiments show that the movement of these charges significantly increases the membrane capacitance, limiting the motile activity by an additional attenuation of voltage changes. It was found, however, that such an effect is due to the absence of mechanical load. In the presence of mechanical load, particularly inertial load, such as under in vivo conditions, the movement of motile charges should reduce the membrane capacitance, enhancing the mechanical power output.
Mehdi, Ghalem; Belarbi, Abderrahmane; Mansouri, Bensmaine; Azari, Zitouni
2015-01-01
This paper focused on optimal stress distribution in the mandibular bone surrounding a dental implant and is devoted to the development of a modified Osteoplant® implant type in order to minimize stress concentration in the bone-implant interface. This study investigated 0.4 mm thick layers of two elastomeric stress barriers incorporated into the dental implant using 3-D finite element analysis. Overall, this proposed implant provoked lower load transfer in bone-implant interface due to the effect of the elastomers as stress absorbers. The stress level in the bone was reduced between 28% and 42% for three load cases: 75 N, 60 N and 27 N in corono-apical, linguo-buccal and disto-mesial direction, respectively. The proposed model provided an acceptable solution for load transfer reduction to the mandible. This investigation also permitted to choose how to incorporate two elastomers into the Osteoplant® implant system.
Preliminary analysis of dynamic stall effects on a 91-meter wind turbine rotor
NASA Technical Reports Server (NTRS)
Wilson, Robert E.
1995-01-01
Analytical investigation of dynamic stall on HAWT (horizontal-axis wind turbines) rotor loads was conducted. Dynamic stall was modeled using the Gormont approach on the MOD-2 rotor, treating the blade as a rigid body teetering about a fixed axis. Blade flapwise bending moments at station 370 were determined with and without dynamic stall for spatial variations in local wind speed due to wind shear and yaw. The predicted mean flapwise bending moments were found to be in good agreement with test results. Results obtained with and without dynamic stall showed no significant difference for the mean flapwise bending moment. The cyclic bending moments calculated with and without dynamic stall effects were substantially the same. None of the calculated cyclic loads reached the level of the cyclic loads measured on the MOD-2 using the Boeing five-minute-average technique.
Shukla, Rajesh; Kashaw, Sushil K; Jain, Alok Pal; Lodhi, Santram
2016-10-01
The Apigenin (APN) was isolated from ethanolic extract of M. alba leaves and screened by in-vivo wound models (Diabetic and Dead space) in rats. Apigenin loaded hydrogel (HGs) was prepared using gellan gum-chitosan (GGCH) with PEG as a cross linker and characterized for various parameter like AFM, swelling property, entrapment efficiency and drug release. Further performance of hydrogel was evaluated by wound healing activity tested against wound contraction, collagen content, dried granuloma weights and antioxidant activity. The percent entrapment efficiency of optimized hydrogel found to be 87.15±1.20. APN loaded GGCH-HGs were able to release 96.11% APN in 24h. The level of superoxide dismutase (SOD) and catalase were found increased significantly in granuloma tissue of APN treated group. APN GGCH-HGs found higher wound healing effect in diabetic as well as normal wound tissues with significant antioxidant activity. Results proven the utility of prepared hydrogel (APN loaded GGCH-HGs) seems to be highly suitable for wound healing due to its unique properties of biocompatibility, biodegradability, moist nature and antioxidant effectiveness. Copyright © 2016 Elsevier B.V. All rights reserved.
Effective Thermal Conductivity of Graphite Materials with Cracks
NASA Astrophysics Data System (ADS)
Pestchaanyi, S. E.; Landman, I. S.
The dependence of effective thermal diffusivity on temperature caused by volumetric cracks is modelled for macroscopic graphite samples using the three-dimensional thermomechanics code Pegasus-3D. At high off-normal heat loads typical of the divertor armour, thermostress due to the anisotropy of graphite grains is much larger than that due to the temperature gradient. Numerical simulation demonstrated that the volumetric crack density both in fine grain graphites and in the CFC matrix depends mainly on the local sample temperature, not on the temperature gradient. This allows to define an effective thermal diffusivity for graphite with cracks. The results obtained are used to explain intense cracking and particle release from carbon based materials under electron beam heat load. Decrease of graphite thermal diffusivity with increase of the crack density explains particle release mechanism in the experiments with CFC where a clear energy threshold for the onset of particle release has been observed in J. Linke et al. Fusion Eng. Design, in press, Bazyler et al., these proceedings. Surface temperature measurement is necessary to calibrate the Pegasus-3D code for simulation of ITER divertor armour brittle destruction.
Ag/AgBr-loaded mesoporous silica for rapid sterilization and promotion of wound healing.
Jin, Chen; Liu, Xiangmei; Tan, Lei; Cui, Zhenduo; Yang, Xianjin; Zheng, Yufeng; Yeung, Kelvin Wai Kwok; Chu, Paul K; Wu, Shuilin
2018-06-25
Bacterial infection is a major concern during the wound healing process. Herein, Ag/AgBr-loaded mesoporous silica nanoparticles (Ag/AgBr/MSNs) are designed to harvest visible light for rapid sterilization and acceleration of wound healing. The Ag/AgBr nanostructure has remarkable photocatalysis ability due to the critical factor that it can generate electron-hole pairs easily after light absorption. This remarkable photocatalytic effect enhances the antibacterial activity by producing reactive oxygen species (ROS). The bacterial killing efficiency of Ag/AgBr/MSNs is 95.62% and 99.99% against Staphylococcus aureus and Escherichia coli, respectively, within 15 min under simulated solar light irradiation due to the generation of ROS. Furthermore, the composites can arrest the bacterial growth and damage the bacterial membrane through electrostatic interaction. The gradual release of Ag+ not only prevents bacterial infection with good long-term effectiveness but also stimulates the immune function to produce a large number of white blood cells and neutrophils, which favors the promotion of the wound healing process. This platform provides an effective strategy to prevent bacterial infection during wound healing.
Identifying Factors that Influence Expression of Eutrophication in a Central California Estuary
Coastal eutrophication models have proposed that various environmental conditions can serve as filters mediating the effects of nutrient loading on coastal ecosystems. Variation in such filters due to natural or anthropogenic causes can potentially lead to varied responses in ove...
Wheel Unloading of Rail Vehicles Due to Track Twist
DOT National Transportation Integrated Search
1986-02-01
An analysis is presented describing the effect that track twist has on the loads carried by the wheels of a rail car. Wheel unloading is determined as a function of the difference in crosslevel between the truck centers of the car. The different vehi...
The effect of unsteady blade loading on the aeroacoustics of a pusher propeller
NASA Astrophysics Data System (ADS)
Mauk, Clay S.; Farokhi, Saeed
1993-06-01
A theoretical/computational approach is developed to predict the change in near-field noise due to a momentum-deficit upstream of a propeller plane, specifically for a pylon wake in a pusher configuration. The acoustic pressure is computed using blade geometry and unsteady blade surface pressure history. The steady blade surface pressure is predicted using blade-momentum theory and two-dimensional airfoil characteristics. Unsteady blade pressures are derived from in-flight measurements. In-flight acoustic measurements are used for code validation purposes. Overall sound pressure levels (OSPL) are computed for an array of observer locations parallel to the propeller axis of rotation. In order to clearly realize the effect of the wake encounter on the radiated sound, the wake signature is eliminated from the unsteady blade pressures. By subtracting the OSPL computed with the smoothed data from that computed with the original unsteady data, the change in noise resulting from the wake encounter is deduced. In general, the noise was increased due to the propeller-wake chopping activity. For all flight conditions, the largest increase in radiated noise occurred for a highly loaded propeller. The results indicate that the propeller noise due to periodic wake encounter may possess a unique directivity pattern.
Wu, Yiping; Liu, Shu-Guang
2012-01-01
Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (~78%) and nutrients (~30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.
Wu, Yiping; Liu, Shuguang
2012-09-01
Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (∼78%) and nutrients (∼30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.
Impacts of Climate Change on Electricity Consumption in Baden-Wuerttemberg
NASA Astrophysics Data System (ADS)
Mimler, S.
2009-04-01
Changes in electricity consumption due to changes in mean air temperatures were examined for the German federal state Baden-Wuerttemberg. Unlike in most recent studies on future electricity demand variations due to climate change, other load influencing factors like the economic, technological and demographic situation were fixed to the state of 2006. This allows isolating the climate change effect on electricity demand. The analysis was realised in two major steps. Firstly, an electricity forecast model based on multiple regressions was estimated on the region of Baden-Wuerttemberg by using historical load and temperature data. The estimation of the forecast model provides information on the temperature sensitivity of electricity demand in the given region. The overall heating and cooling gradients are estimated with -59 and 84 MW / °C respectively. These results already point out a low temperature sensitivity of demand in the region of Baden-Wuerttemberg mostly due to a low share of households equipped with electric heating and air conditioning systems. Secondly, near surface air temperature data of the regional climate model REMO [1] was used to simulate load curves for the control period 1971 to 2000 and for three future scenarios 2006 to 2035, 2036 to 2065 and 2066 to 2095. The results show that the overall load decreases throughout all future scenario periods in comparison to the control period. This is due to a higher decrease in heating than increase in cooling load. Nevertheless, the weather dependent part in Baden-Wuerttemberg loads only accounts for 0.05 % of the average load level. Within this weather dependent part, the heating load decreases are highest in June to September concentrated on the day times evening and afternoon. The cooling period broadens from May to September in the control period to April to October by 2095. The highest relative increases occur in October. Regarding day times, the increase in cooling load is concentrated on afternoons, evenings and nights. [1] Jacob, D. (2005a), "REMO A1B Scenario run, UBA project, 0.088 degree resolution, run no.006211, 1H data", World Data Center for Climate, CERA-DB "REMO_UBA_A1B_1_R006211_1H", http://cera-www.dkrz.de/WDCC/ui/Compact.jsp? acronym=REMO_UBA_A1B_1_R006211_1H Jacob, D. (2005b), "REMO climate of the 20th century run, UBA project, 0.088 degree resolution, run no. 006210, 1H data", World Data Center for Climate, CERA-DB "REMO_UBA_C20_1_R006210_1H", http://cera-www.dkrz.de/WDCC/ui/Compact. jsp?acronym=REMO_UBA_C20_1_R006210_1H
Serravite, Daniel H; Edwards, David; Edwards, Elizabeth S; Gallo, Sara E; Signorile, Joseph F
2013-01-01
Exercise is commonly used as an intervention to increase caloric output and positively affect body composition. A major challenge is the low compliance often seen when the prescribed exercise is associated with high levels of exertion. Whole-body vibration (WBV) may allow increased caloric output with reduced effort; however, there is limited information concerning the effect of WBV on oxygen consumption (VO2). Therefore, this study assessed the synergistic effects of resistance training and WBV on VO2. We examined VO2 at different loads (0%, 20%, and 40% body weight (BW)) and vibration intensities (No vibration (NV), 35HZ, 2-3mm (35L), 50Hz, 57mm (50H)) in ten men (26.5 ± 5.1 years). Data were collected during different stages (rest, six 30s sets of squatting, and recovery). Repeated measures ANOVA showed a stage x load x vibration interaction. Post hoc analysis revealed no differences during rest; however, a significant vibration x load interaction occurred during exercise. Both 35L and 50H produced greater VO2 than NV at a moderate load of 20%BW. Although 40%BW produced greater VO2 than 20%BW or 0%BW using NV, no significant difference in VO2 was seen among vibratory conditions at 40%BW. Moreover, no significant differences were seen between 50H and 35L at 20%BW and NV at 40%BW. During recovery there was a main effect for load. Post hoc analyses revealed that VO2 at 40%BW was significantly higher than 20%BW or 0%BW, and 20%BW produced higher VO2 than no load. Minute-by-minute analysis revealed a significant impact on VO2 due to load but not to vibratory condition. We conclude that the synergistic effect of WBV and active squatting with a moderate load is as effective at increasing VO2 as doubling the external load during squatting without WBV. Key PointsSynchronous whole body vibration in conjunction with moderate external loading (app 20% BW) can increase oxygen consumption to the same extent as heavier loading (40% BW) during performance of the parallel squat.While the application of synchronous whole body vibration had no effect on recovery oxygen, under bot vibratory and non-vibratory conditions, the heavier the external load the greater the recovery oxygen consumption levels.Regardless of vibratory condition, during the squatting exercise bout 40% BW produced higher heart rates than 20%BW or 0% BW, and 20% BW produced higher heart rates than 0% BW.There were strong trends toward higher heart rates in both vibratory conditions (50 Hz, 5-6mm; 35 Hz, 2-3 mm) than in the non-vibratory condition regardless of external loading.
Luan, Congcong; Shen, Hongyao; Fu, Jianzhong
2018-01-01
Condition monitoring in polymer composites and structures based on continuous carbon fibers show overwhelming advantages over other potentially competitive sensing technologies in long-gauge measurements due to their great electromechanical behavior and excellent reinforcement property. Although carbon fibers have been developed as strain- or stress-sensing agents in composite structures through electrical resistance measurements, the electromechanical behavior under flexural loads in terms of different loading positions still lacks adequate research, which is the most common situation in practical applications. This study establishes the relationship between the fractional change in electrical resistance of carbon fibers and the external loads at different loading positions along the fibers’ longitudinal direction. An approach for real-time monitoring of flexural loads at different loading positions was presented simultaneously based on this relationship. The effectiveness and feasibility of the approach were verified by experiments on carbon fiber-embedded three-dimensional (3D) printed thermoplastic polymer beam. The error in using the provided approach to monitor the external loads at different loading positions was less than 1.28%. The study fully taps the potential of continuous carbon fibers as long-gauge sensory agents and reinforcement in the 3D-printed polymer structures. PMID:29584665
Harned, Douglas
1988-01-01
An evaluation of water-quality data from streams that receive stormwater runoff from a segment of Interstate Highway 85 in North Carolina indicated increased levels of many constituents compared to levels in nearby undeveloped basins. Additional data collected from a network of dry and wet atmospheric deposition collectors, lysimeter samples, soil surveys, wind measurements, and road sweepings helped define the general sources and migration of chemical substances near the highway. The eight study basins, located in a rural area in the Piedmont of North Carolina, had a combined area of 17.5 square miles and drained a 4.8-mile-long segment of the interstate. The average traffic flow along this section was 25,000 vehicles per day. During storm runoff, streamflow in basins traversed by the highway rose and fell more rapidly than that in the undeveloped basins. This more rapid response is due to the impervious, paved area of the basins and the manmade drainage systems designed to rapidly move water off the highway. Alkalinity, specific conductance, and concentrations of calcium, sodium, and chloride were greater at the highway stations than in the undeveloped basins as a result of highway salting for control of ice. Specific conductance and concentrations of dissolved and total nitrogen peaked at the beginning of each storm event. The data indicated that, for the study basins, highway runoff had little or no effect on suspended sediment, water temperature, dissolved oxygen, and pH. However, the pH at all stations decreased during stormflow because the rainfall drained off by the streams had pH values less than 5.7. High metals concentrations were found in the soils within 100 feet of the highway and in the soil water infiltrating the soil zone. Chromium, copper, nickel, and zinc concentrations in the streams near the highway generally were above the maximum levels recommended by the U.S. Environmental Protection Agency (EPA) for the protection of aquatic life. Lead and cadmium concentrations frequently exceeded the maximum levels recommended by the EPA for drinking water. The highway is a source of contaminants to surrounding areas. Particulate and metal loads in dustfall and chemical-constituent concentrations in soils decrease exponentially with distance from the highway. The highest concentrations of contaminants were found on the downwind side. Increased concentrations of metals (cadmium, chromium, iron, lead, nickel, and zinc) in rainfall were observed in samples collected near the highway and in samples collected approximately one-half mile away. Material loading due to dustfall was greater than loading due to rainfall. Loading due to saltated particles, those heavier particles bounced along the highway surface, was higher than loading due to dustfall. Saltation loads were greatest during the winter months because of highway deicing and sanding, which supplied an estimated two-thirds of the saltated materials. The remaining one-third of the saltated load came primarily from the deposition of particles from vehicles. Some of the greatest constituent concentrations were measured in the soil water sampled from the lysimeters located adjacent to the highway.
Experimental Study of Deformation and of Effective Width in Axially Loaded Sheet-stringer Panels
NASA Technical Reports Server (NTRS)
Ramberg, Walter; MCPHERSON ALBERT E; Levy, Sam
1939-01-01
The deformation of two sheet-stringer panels subjected to end compression under carefully controlled end conditions was measured at a number of points and at a number of loads, most of which were above the load at which the sheet had begun to buckle. The two panels were identical except for the sheet, which was 0.70-inch 24st alclad for specimen 1 and 0.025-inch 24st aluminum alloy for specimen 6. A technique was developed for attaching Tuckerman optical strain gauges to the sheet without disturbing the strain distribution in the sheet by the method of attachment. This technique was used to explore the strain distribution in the sheet at various loads. The twisting and the bending of the stringers was measured by means of pointers attached to the stringers. The shape of the buckles in the sheet of specimen 6 was recorded at two loads by means of plaster casts. The sheet and the stringer loads at failure are compared with the corresponding loads for five similar panels tested at the Navy Model Basin. A detailed comparison is made between the measured deformation of the buckled sheet and the deformation calculated from approximate theories for the deformation in a rectangular sheet with freely supported edges buckling under end compression advanced by Timoshenko, Frankland, and Marguerre. The measured effective width for the specimens is compared with the effective width given by nine different relations for effective width as a function of the edge stress divided by the buckling stress of the sheet. The analysis of the measured stringer deformation is confined to an application of Southwell's method of plotting deformation against deformation over load. It was concluded that the stringer failure in both specimens were due to an instability in which the stringer was simultaneously twisted and bent as a column.
Characterization of a tin-loaded liquid scintillator for gamma spectroscopy and neutron detection
NASA Astrophysics Data System (ADS)
Wen, Xianfei; Harvey, Taylor; Weinmann-Smith, Robert; Walker, James; Noh, Young; Farley, Richard; Enqvist, Andreas
2018-07-01
A tin-loaded liquid scintillator has been developed for gamma spectroscopy and neutron detection. The scintillator was characterized in regard to energy resolution, pulse shape discrimination, neutron light output function, and timing resolution. The loading of tin into scintillators with low effective atomic number was demonstrated to provide photopeaks with acceptable energy resolution. The scintillator was shown to have reasonable neutron/gamma discrimination capability based on the charge comparison method. The effect on the discrimination quality of the total charge integration time and the initial delay time for tail charge integration was studied. To obtain the neutron light output function, the time-of-flight technique was utilized with a 252Cf source. The light output function was validated with the MCNPX-PoliMi code by comparing the measured and simulated pule height spectra. The timing resolution of the developed scintillator was also evaluated. The tin-loading was found to have negligible impact on the scintillation decay times. However, a relatively large degradation of timing resolution was observed due to the reduced light yield.
Han, Qian; Wang, Yuqi; Li, Xiabin; Peng, Ribo; Li, Ailing; Qian, Zhiyong; Yu, Ling
2015-08-01
PEG-PCL-PEG (PECE) hydrogel for intracameral injection as a sustained delivery system can get a stable release of the medication and achieve an effective local concentration. The injectable PECE hydrogel is thermosensitive nano-material which is flowing sol at low temperature and can shift to nonflowing gel at body temperature. This study evaluated the intracameral injection of bevacizumab combined with a PECE hydrogel drug release system on postoperative scarring and bleb survival after experimental glaucoma filtration surgery. The best result was achieved in the bevacizumab loaded PECE hydrogels group, which presented the lowest IOP values after surgery. And the blebs were significantly more persistent in this group. Histology, Massion trichrome staining and immunohistochemistry further demonstrated that glaucoma filtration surgery in combination with bevacizumab loaded PECE hydrogel resulted in good bleb survival due to scar formation inhibition. In conclusions, this study demonstrated that bevacizumab-loaded PECE hydrogel for intracameral injection as a sustained delivery system provide a great opportunity to increase the therapeutic efficacy of glaucoma filtration surgery.
Gelatin modified lipid nanoparticles for anti- viral drug delivery.
K S, Joshy; S, Snigdha; Kalarikkal, Nandakumar; Pothen, Laly A; Thomas, Sabu
2017-10-01
The major challenges to clinical application of zidovudine are its moderate aqueous solubility and relative short half-life and serious side effects due to frequent administrations. We investigated the preparation of zidovudine-loaded nanoparticles based on lipids which were further modified with the polymer gelatin. Formulation and stability of the modified nanoparticles were analysed from the physico-chemical characterizations. The interactions of nanoparticles with blood components were tested by haemolysis and aggregation studies. The drug content and entrapment efficiencies were assessed by UV analysis. The effect of nanoparticles on protein adsorption was assessed by native polyacrylamide gel electrophoresis (PAGE). In vitro release studies showed a sustained release profile of zidovudine. In vitro cytotoxicity and cellular uptake of the zidovudine-loaded nanoparticles were performed in MCF-7 and neuro 2a brain cells. The enhanced cellular internalization of drug loaded modified nanoparticles in both the cell lines were revealed by fluorescence microscopy. Hence the present study focuses on the feasibility of zidovudine-loaded polymer modified lipid nanoparticles as carriers for safe and efficient HIV/AIDS therapy. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Denghui; Wang, Wenxian; Zhou, Jun; He, Xiuli; Dong, Peng; Zhang, Hongxia; Sun, Liyong
2018-01-01
In this paper, studies were conducted to investigate the deformation behavior and microstructure change in a hot-rolled AZ31B magnesium alloy during a tensile-tensile cyclic loading. The relationship between ratcheting effect and microstructure change was discussed. The ratcheting effect in the material during current tensile-tensile fatigue loading exceeds the material’s fatigue limit and the development of ratcheting strain in the material experienced three stages: initial sharp increase stage (Stage I); steady stage (Stage II); and final abrupt increase stage (Stage III). Microstructure changes in Stage I and Stage II are mainly caused by activation of basal slip system. The Extra Geometrically Necessary Dislocations (GNDs) were also calculated to discuss the relationship between the dislocation caused by the basal slip system and the ratcheting strain during the cyclic loading. In Stage III, both the basal slip and the {11−20} twins are found active during the crack propagation. The fatigue crack initiation in the AZ31B magnesium alloy is found due to the basal slip and the {11−20} tensile twins. PMID:29597278
Tanudji, Marcel; Machalek, Dorothy; Arndt, Greg M; Rivory, Laurent
2010-02-01
Cotransfection of a mixture of siRNAs species is typically used when simultaneous targeting of more than one mRNA is required. However, competition between siRNAs could occur and reduce the activity of some siRNAs within the mixture. To further study the factors affecting the degree of competition between siRNAs, we cotransfected luciferase targeting siRNAs with various irrelevant (ie, nonluciferase targeting) siRNAs into cells and examined differences in their competition profiles by assessing the effect on luciferase expression. We show that the degree of competition varies between irrelevant siRNAs and occurs at the point of RISC loading. Although the competition profile appears to be related to the calculated RNA-induced silencing complex (RISC) loading potential, empirical testing is required to confirm the competitive effects. We also observed reduced competition with siRNAs in the Dicer-substrate format, presumably due to more efficient RISC loading as a consequence of the physical transfer of the processed siRNA from Dicer.
Yan, Zhifeng; Wang, Denghui; Wang, Wenxian; Zhou, Jun; He, Xiuli; Dong, Peng; Zhang, Hongxia; Sun, Liyong
2018-03-28
In this paper, studies were conducted to investigate the deformation behavior and microstructure change in a hot-rolled AZ31B magnesium alloy during a tensile-tensile cyclic loading. The relationship between ratcheting effect and microstructure change was discussed. The ratcheting effect in the material during current tensile-tensile fatigue loading exceeds the material's fatigue limit and the development of ratcheting strain in the material experienced three stages: initial sharp increase stage (Stage I); steady stage (Stage II); and final abrupt increase stage (Stage III). Microstructure changes in Stage I and Stage II are mainly caused by activation of basal slip system. The Extra Geometrically Necessary Dislocations (GNDs) were also calculated to discuss the relationship between the dislocation caused by the basal slip system and the ratcheting strain during the cyclic loading. In Stage III, both the basal slip and the {11-20} twins are found active during the crack propagation. The fatigue crack initiation in the AZ31B magnesium alloy is found due to the basal slip and the {11-20} tensile twins.
Din, Fakhar Ud; Mustapha, Omer; Kim, Dong Wuk; Rashid, Rehmana; Park, Jong Hyuck; Choi, Ju Yeon; Ku, Sae Kwang; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon
2015-08-01
The purpose of this study was to develop novel solid lipid nanoparticle (SLN)-loaded dual-reverse thermosensitive hydrogel (DRTH) for rectal administration of flurbiprofen with improved bioavailability and reduced initial burst effect. The flurbiprofen-loaded SLNs were prepared by hot homogenisation technique, after optimising the amounts of lipid mixture (tricaprin and triethanolamine in 8:2 weight ratio), drug and surfactant. The flurbiprofen-loaded thermosensitive SLN composed of drug, lipid mixture and surfactant at a weight ratio of 10/15/1.3 was a solid at room temperature, and changed to liquid form at physiological temperature due to its melting point of about 32°C. This SLN gave the mean particle size of about 190nm and entrapment efficiency of around 90%. The DRTHs were prepared by adding this flurbiprofen-loaded thermosensitive SLN in various poloxamer solutions. Their rheological characterisation, release and stability were investigated while a morphological and pharmacokinetic study was performed after its rectal administration to rats compared with the drug and hydrogel. Poloxamer 188 and SLN decreased the gelation temperature and gelation time, but increased the viscosity at 25°C, gel strength and mucoadhesive force of DRTHs. In particular, the DRTH composed of [SLN/P 407/P 188 (10%/15%/25%)] with the gelation temperature of about 35°C existed as liquid at room temperature, but gelled at 30-36°C, leading to opposite reversible property of SLN. Thus, it was easy to administer rectally, and it gelled rapidly inside the body. This DRTH gave a significantly increased dissolution rate of the drug as compared to the flurbiprofen, but significantly retarded as compared to the hydrogel, including the initial dissolution rate. Moreover, this DRTH gave significantly higher plasma concentration and 7.5-fold AUC values compared to the drug, and lower initial plasma concentration and Cmax value compared to the hydrogel due to reduced initial burst effect. No damage in rectal mucosa was observed after the application of DRTH. Thus, this DRTH system with improved bioavailability and reduced initial burst effect would be recommended as an alternative for the flurbiprofen-loaded rectal pharmaceutical products. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isozaki, Toshikuni; Shibata, Katsuyuki
1997-04-01
Experimental and computed results applicable to Leak Before Break analysis are presented. The specific area of investigation is the effect of the temperature distribution changes due to wetting of the test pipe near the crack on the increase in the crack opening area and leak rate. Two 12-inch straight pipes subjected to both internal pressure and thermal load, but not to bending load, are modelled. The leak rate was found to be very susceptible to the metal temperature of the piping. In leak rate tests, therefore, it is recommended that temperature distribution be measured precisely for a wide area.
Lauwaet, Tineke; Andersen, Yolanda; Van de Ven, Liesbeth; Eckmann, Lars; Gillin, Frances D.
2010-01-01
Objectives Attachment to the small intestinal mucosa is crucial for initiating and maintaining Giardia infection. We tested the effect of isoflavones on Giardia attachment. Methods We evaluated the effect of formononetin on trophozoite attachment to glass, to intestinal epithelial cell layers in vitro and to murine small intestinal explants, and on the intestinal load in mice. Results We found that the isoflavone formononetin inhibits both attachment and flagellar motility within minutes and reduces the trophozoite load of Giardia in mice within 1.5 h after treatment. Conclusions The antigiardial activity of formononetin is at least partially due to its capacity to rapidly detach trophozoites. PMID:20067984
Andersson, Ingela; Jarsjö, Jerker; Petersson, Mona
2014-11-01
Nutrient loads from inland sources to the Baltic Sea and adjacent inland waters need to be reduced in order to prevent eutrophication and meet requirements of the European Water Framework Directive (WFD) and the Baltic Sea Action Plan (BSAP). We here investigate the spatial implications of using different possible criteria for reducing water-borne phosphorous (P) loads in the Northern Baltic Sea River Basin District (NBS-RBD) in Sweden. Results show that most catchments that have a high degree of internal eutrophication do not express high export of P from their outlets. Furthermore, due to lake retention, lake catchments with high P-loads per agricultural area (which is potentially of concern for the WFD) did not considerably contribute to the P-loading of the Baltic Sea. Spatially uniform water quality goals may, therefore, not be effective in NBS-RBD, emphasizing more generally the need for regional adaptation of WFD and BSAP-related goals.
Ductile Crack Initiation Criterion with Mismatched Weld Joints Under Dynamic Loading Conditions.
An, Gyubaek; Jeong, Se-Min; Park, Jeongung
2018-03-01
Brittle failure of high toughness steel structures tends to occur after ductile crack initiation/propagation. Damages to steel structures were reported in the Hanshin Great Earthquake. Several brittle failures were observed in beam-to-column connection zones with geometrical discontinuity. It is widely known that triaxial stresses accelerate the ductile fracture of steels. The study examined the effects of geometrical heterogeneity and strength mismatches (both of which elevate plastic constraints due to heterogeneous plastic straining) and loading rate on critical conditions initiating ductile fracture. This involved applying the two-parameter criterion (involving equivalent plastic strain and stress triaxiality) to estimate ductile cracking for strength mismatched specimens under static and dynamic tensile loading conditions. Ductile crack initiation testing was conducted under static and dynamic loading conditions using circumferentially notched specimens (Charpy type) with/without strength mismatches. The results indicated that the condition for ductile crack initiation using the two parameter criterion was a transferable criterion to evaluate ductile crack initiation independent of the existence of strength mismatches and loading rates.
NASA Technical Reports Server (NTRS)
Sprowls, D. O.; Bucci, R. J.; Ponchel, B. M.; Brazill, R. L.; Bretz, P. E.
1984-01-01
A technique is demonstrated for accelerated stress corrosion testing of high strength aluminum alloys. The method offers better precision and shorter exposure times than traditional pass fail procedures. The approach uses data from tension tests performed on replicate groups of smooth specimens after various lengths of exposure to static stress. The breaking strength measures degradation in the test specimen load carrying ability due to the environmental attack. Analysis of breaking load data by extreme value statistics enables the calculation of survival probabilities and a statistically defined threshold stress applicable to the specific test conditions. A fracture mechanics model is given which quantifies depth of attack in the stress corroded specimen by an effective flaw size calculated from the breaking stress and the material strength and fracture toughness properties. Comparisons are made with experimental results from three tempers of 7075 alloy plate tested by the breaking load method and by traditional tests of statistically loaded smooth tension bars and conventional precracked specimens.
Simulation of upwind maneuvering of a sailing yacht
NASA Astrophysics Data System (ADS)
Harris, Daniel Hartrick
A time domain maneuvering simulation of an IACC class yacht suitable for the analysis of unsteady upwind sailing including tacking is presented. The simulation considers motions in six degrees of freedom. The hydrodynamic and aerodynamic loads are calculated primarily with unsteady potential theory supplemented by empirical viscous models. The hydrodynamic model includes the effects of incident waves. Control of the rudder is provided by a simple rate feedback autopilot which is augmented with open loop additions to mimic human steering. The hydrodynamic models are based on the superposition of force components. These components fall into two groups, those which the yacht will experience in calm water, and those due to incident waves. The calm water loads are further divided into zero Froude number, or "double body" maneuvering loads, hydrostatic loads, gravitational loads, free surface radiation loads, and viscous/residual loads. The maneuvering loads are calculated with an unsteady panel code which treats the instantaneous geometry of the yacht below the undisturbed free surface. The free surface radiation loads are calculated via convolution of impulse response functions derived from seakeeping strip theory. The viscous/residual loads are based upon empirical estimates. The aerodynamic model consists primarily of a database of steady state sail coefficients. These coefficients treat the individual contributions to the total sail force of a number of chordwise strips on both the main and jib. Dynamic effects are modeled by using the instantaneous incident wind velocity and direction as the independent variables for the sail load contribution of each strip. The sail coefficient database was calculated numerically with potential methods and simple empirical viscous corrections. Additional aerodynamic load calculations are made to determine the parasitic contributions of the rig and hull. Validation studies compare the steady sailing hydro and aerodynamic loads, seaway induced motions, added resistance in waves, and tacking performance with trials data and other sources. Reasonable agreement is found in all cases.
Corrosion and tribocorrosion behavior of Ti-B4C composite intended for orthopaedic implants.
Toptan, F; Rego, A; Alves, A C; Guedes, A
2016-08-01
Poor wear resistance of titanium is a major concern since relative movements due to the cyclic loads in body environment cause wear between the bone and the implant material leading to detachment of the wear debris and release of metal ions due to the simultaneous action of corrosion and wear, defined as tribocorrosion. In order to increase the tribocorrosion resistance, Grade 2 Ti matrix 24vol% B4C particle reinforced composites were processed by hot pressing. Corrosion behaviour was investigated by electrochemical impedance spectroscopy and potentiodynamic polarization in 9g/L NaCl solution at body temperature. Tribocorrosion tests were performed under open circuit potential, as well as under potentiodynamic polarization using a reciprocating ball-on-plate tribometer. Results suggested that the addition of B4C particles provided lower tendency to corrosion and lower corrosion kinetics under sliding, along with significantly reduced wear loss, mainly due to the load carrying effect given by the reinforcement particles. Copyright © 2016 Elsevier Ltd. All rights reserved.
Assessment of spill flow emissions on the basis of measured precipitation and waste water data
NASA Astrophysics Data System (ADS)
Hochedlinger, Martin; Gruber, Günter; Kainz, Harald
2005-09-01
Combined sewer overflows (CSOs) are substantial contributors to the total emissions into surface water bodies. The emitted pollution results from dry-weather waste water loads, surface runoff pollution and from the remobilisation of sewer deposits and sewer slime during storm events. One possibility to estimate overflow loads is a calculation with load quantification models. Input data for these models are pollution concentrations, e.g. Total Chemical Oxygen Demand (COD tot), Total Suspended Solids (TSS) or Soluble Chemical Oxygen Demand (COD sol), rainfall series and flow measurements for model calibration and validation. It is important for the result of overflow loads to model with reliable input data, otherwise this inevitably leads to bad results. In this paper the correction of precipitation measurements and the sewer online-measurements are presented to satisfy the load quantification model requirements already described. The main focus is on tipping bucket gauge measurements and their corrections. The results evidence the importance of their corrections due the effects on load quantification modelling and show the difference between corrected and not corrected data of storm events with high rain intensities.
The Influence of The Temperature on Dry Friction of AISI 3315 Steel Sliding Against AISI 3150 Steel
NASA Astrophysics Data System (ADS)
Odabas, D.
2018-01-01
In this paper, the effects the influence of frictional heating on the wear of AISI 3315 Steel were investigated experimentally using a pin-on-ring geometry. All the tests were carried out in air without any lubricant. In order to understand the variation in frictional coefficient and temperature with load and speed, the friction tests were carried out at a speed of 1 m/s and loads in the range 115-250 N, and at a speed range 1-4 m/s, a load of 115 N. The sliding distance was 1500 m. The bulk temperature of the specimen was measured from the interface surface at a distance of 1 mm from the contact surface by using type K thermocouples (Ni-Cr-Ni). The coefficient of friction was determined as a function of test load and speed. The steady state coefficient of friction of the test material decreases with increasing load and speed due to the oxide formation. But the unsteady state coefficient of friction increases with an increase in load and speed.
Effects of front-loading and stagger angle on endwall losses of high lift low pressure turbine vanes
NASA Astrophysics Data System (ADS)
Lyall, M. Eric
Past efforts to reduce the airfoil count in low pressure turbines have produced high lift profiles with unacceptably high endwall loss. The purpose of the current work is to suggest alternative approaches for reducing endwall losses. The effects of the fluid mechanics and high lift profile geometry are considered. Mixing effects of the mean flow and turbulence fields are decoupled to show that mean flow shear in the endwall wake is negligible compared to turbulent shear, indicating that turbulence dissipation is the primary cause of total pressure loss. The mean endwall flow field does influence total pressure loss by causing excessive wake growth and perhaps outright separation on the suction surface. For equivalent stagger angles, a front-loaded high lift profile will produce less endwall loss than one aft-loaded, primarily by suppressing suction surface flow separation. Increasing the stagger setting, however, increases the endwall loss due to the static pressure field generating a stronger blockage relative to the incoming endwall boundary layer flow and causing a larger mass of fluid to become entrained in the horseshoe vortex. In short, front-loading the pressure distribution suppresses suction surface separation whereas limiting the stagger angle suppresses inlet boundary layer separation. Results of this work suggest that a front-loaded low stagger profile be used at the endwall to reduce the endwall loss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Chanyoung; Kim, Nam H.
Structural elements, such as stiffened panels and lap joints, are basic components of aircraft structures. For aircraft structural design, designers select predesigned elements satisfying the design load requirement based on their load-carrying capabilities. Therefore, estimation of safety envelope of structural elements for load tolerances would be a good investment for design purpose. In this article, a method of estimating safety envelope is presented using probabilistic classification, which can estimate a specific level of failure probability under both aleatory and epistemic uncertainties. An important contribution of this article is that the calculation uncertainty is reflected in building a safety envelope usingmore » Gaussian process, and the effect of element test data on reducing the calculation uncertainty is incorporated by updating the Gaussian process model with the element test data. It is shown that even one element test can significantly reduce the calculation uncertainty due to lacking knowledge of actual physics, so that conservativeness in a safety envelope is significantly reduced. The proposed approach was demonstrated with a cantilever beam example, which represents a structural element. The example shows that calculation uncertainty provides about 93% conservativeness against the uncertainty due to a few element tests. As a result, it is shown that even a single element test can increase the load tolerance modeled with the safety envelope by 20%.« less
Carson, Daniel W.; Myer, Gregory D.; Hewett, Timothy E.; Heidt, Robert S.; Ford, Kevin R.
2014-01-01
Background Risk of overuse injury among athletes is high due in part to repeated loading of the lower extremities. Compared to individuals with normal arch (NA) structure, those with high (HA) or low arch (LA) may be at increased risk of specific overuse injuries, including stress fractures. A high medial longitudinal arch may result in decreased shock absorbing properties due to increased rigidity in foot mechanics. While the effect of arch structure on dynamic function has been examined in straight line walking and running, the relationship between the two during multi-directional movements remains unstudied. Objective The purpose of this study was to determine if differences in plantar loading in football players occur during both walking and pivoting movements. Method Plantar loading was examined in 9 regions of the foot for 26 participants (16 NA, 10 HA). Results High arch athletes demonstrated increased maximum force in the lateral rear foot and medial forefoot, and force time integral in the medial forefoot while walking. HA athletes also demonstrated increased maximum force in the medial rear foot and medial and central forefoot during rapid pivoting. Conclusions The current findings demonstrate that loading patterns differ between football players with high and normal arch structure, which could possibly influence injury risk in this population. PMID:23141809
Straightening of a wavy strip: An elastic-plastic contact problem including snap-through
NASA Technical Reports Server (NTRS)
Fischer, D. F.; Rammerstorfer, F. G.
1980-01-01
The nonlinear behavior of a wave like deformed metal strip during the levelling process were calculated. Elastic-plastic material behavior as well as nonlinearities due to large deformations were considered. The considered problem lead to a combined stability and contact problem. It is shown that, despite the initially concentrated loading, neglecting the change of loading conditions due to altered contact domains may lead to a significant error in the evaluation of the nonlinear behavior and particularly to an underestimation of the stability limit load. The stability was examined by considering the load deflection path and the behavior of a load-dependent current stiffness parameter in combination with the determinant of the current stiffness matrix.
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Smith, Ira C.
1991-01-01
Tuning maps are an aid in the controller tuning process because they provide a convenient way for the plant operator to determine the consequences of adjusting different controller parameters. In this application the maps provide a graphical representation of the effect of varying the gains in the state feedback matrix on startup and load disturbance transients for a three capacity process. Nominally, the three tank system, represented in diagonal form, has a Proportional-Integral control on each loop. Cross coupling is then introduced between the loops by using non-zero off-diagonal proportional parameters. Changes in transient behavior due to setpoint and load changes are examined by varying the gains of the cross coupling terms.
NASA Astrophysics Data System (ADS)
Buchanan, Dennis J.; John, Reji; Brockman, Robert A.; Rosenberger, Andrew H.
2010-01-01
Shot peening is a commonly used surface treatment process that imparts compressive residual stresses into the surface of metal components. Compressive residual stresses retard initiation and growth of fatigue cracks. During component loading history, shot-peened residual stresses may change due to thermal exposure, creep, and cyclic loading. In these instances, taking full credit for compressive residual stresses would result in a nonconservative life prediction. This article describes a methodical approach for characterizing and modeling residual stress relaxation under elevated temperature loading, near and above the monotonic yield strength of INI 00. The model incorporates the dominant creep deformation mechanism, coupling between the creep and plasticity models, and effects of prior plastic strain to simulate surface treatment deformation.
DOT National Transportation Integrated Search
2015-01-01
Not long after the construction of a pavement or a new pavement surface, various : forms of deterioration begin to accumulate due to the harsh effects of traffic loading : combined with weathering action. In a recent NEXTRANS project, a pavement crac...
ROLE OF OCEANIC AND RIVERINE SOURCES IN NUTRIENT AND PHYTOPLANKTON DYNAMICS IN YAQUINA BAY, OREGON
There is evidence that coastal ecosystems are experiencing environmental problems due to excess nutrients. The numerous sources, forms, and pathways of nutrients make it difficult to determine the effect of increases in anthropogenic loading. This is particularly evident in Pac...
NASA Astrophysics Data System (ADS)
Benage, M. C.; Dufek, J.; Mothes, P. A.
2016-07-01
The entrainment of air into pyroclastic density currents (PDCs) impacts the dynamics and thermal history of these highly mobile currents. However, direct measurement of entrainment in PDCs is hampered due to hazardous conditions and opaqueness of these flows. We combine three-dimensional multiphase Eulerian-Eulerian-Lagrangian calculations with proxies of thermal conditions preserved in deposits to quantify air entrainment in PDCs at Tungurahua volcano, Ecuador. We conclude that small-volume PDCs develop a particle concentration gradient that results in disparate thermal characteristics for the concentrated bed load (>600 to ~800 K) and the overlying dilute suspended load (~300-600 K). The dilute suspended load has effective entrainment coefficients 2-3 times larger than the bed load. This investigation reveals a dichotomy in entrainment and thermal history between two regions in the current and provides a mechanism to interpret the depositional thermal characteristics of small-volume but frequently occurring PDCs.
PLUM: Parallel Load Balancing for Unstructured Adaptive Meshes. Degree awarded by Colorado Univ.
NASA Technical Reports Server (NTRS)
Oliker, Leonid
1998-01-01
Dynamic mesh adaption on unstructured grids is a powerful tool for computing large-scale problems that require grid modifications to efficiently resolve solution features. By locally refining and coarsening the mesh to capture physical phenomena of interest, such procedures make standard computational methods more cost effective. Unfortunately, an efficient parallel implementation of these adaptive methods is rather difficult to achieve, primarily due to the load imbalance created by the dynamically-changing nonuniform grid. This requires significant communication at runtime, leading to idle processors and adversely affecting the total execution time. Nonetheless, it is generally thought that unstructured adaptive- grid techniques will constitute a significant fraction of future high-performance supercomputing. Various dynamic load balancing methods have been reported to date; however, most of them either lack a global view of loads across processors or do not apply their techniques to realistic large-scale applications.
A discrete element model for damage and fracture of geomaterials under fatigue loading
NASA Astrophysics Data System (ADS)
Gao, Xiaofeng; Koval, Georg; Chazallon, Cyrille
2017-06-01
Failure processes in geomaterials (concrete, asphalt concrete, masonry, etc.) under fatigue loading (repeated moving loads, cycles of temperature, etc.) are responsible for most of the dysfunctions in pavements, brick structures, etc. In the beginning of the lifetime of a structure, the material presents only inner defects (micro cracks, voids, etc.). Due to the effect of the cyclic loading, these small defects tend to grow in size and quantity which damage the material, reducing its stiffness. With a relatively high number of cycles, these growing micro cracks become large cracks, which characterizes the fracture behavior. From a theoretical point of view, both mechanisms are treated differently. Fracture is usually described locally, with the propagation of cracks defined by the energy release rate at the crack tip; damage is usually associated to non-local approaches. In the present work, damage and fracture mechanics are combined in a local discrete element approach.
Complete multipactor suppression in an X-band dielectric-loaded accelerating structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing, C.; Gold, S. H.; Fischer, Richard
2016-05-09
Multipactor is a major issue limiting the gradient of rf-driven Dielectric-Loaded Accelerating (DLA) structures. Theoretical models have predicted that an axial magnetic field applied to DLA structures may completely block the multipactor discharge. However, previous attempts to demonstrate this magnetic field effect in an X-band traveling-wave DLA structure were inconclusive, due to the axial variation of the applied magnetic field, and showed only partial suppression of the multipactor loading [Jing et al., Appl. Phys. Lett. 103, 213503 (2013)]. The present experiment has been performed under improved conditions with a uniform axial magnetic field extending along the length of an X-bandmore » standing-wave DLA structure. Multipactor loading began to be continuously reduced starting from 3.5 kG applied magnetic field and was completely suppressed at 8 kG. Dependence of multipactor suppression on the rf gradient inside the DLA structure was also measured.« less
A comparison of experimental and calculated thin-shell leading-edge buckling due to thermal stresses
NASA Technical Reports Server (NTRS)
Jenkins, Jerald M.
1988-01-01
High-temperature thin-shell leading-edge buckling test data are analyzed using NASA structural analysis (NASTRAN) as a finite element tool for predicting thermal buckling characteristics. Buckling points are predicted for several combinations of edge boundary conditions. The problem of relating the appropriate plate area to the edge stress distribution and the stress gradient is addressed in terms of analysis assumptions. Local plasticity was found to occur on the specimen analyzed, and this tended to simplify the basic problem since it effectively equalized the stress gradient from loaded edge to loaded edge. The initial loading was found to be difficult to select for the buckling analysis because of the transient nature of thermal stress. Multiple initial model loadings are likely required for complicated thermal stress time histories before a pertinent finite element buckling analysis can be achieved. The basic mode shapes determined from experimentation were correctly identified from computation.
The design and analysis of single flank transmission error testor for loaded gears
NASA Technical Reports Server (NTRS)
Houser, D. R.; Bassett, D. E.
1985-01-01
Due to geometrical imperfections in gears and finite tooth stiffnesses, the motion transmitted from an input gear shaft to an output gear shaft will not have conjugate action. In order to strengthen the understanding of transmission error and to verify mathematical models of gear transmission error, a test stand that will measure the transmission error of a gear pair at operating loads, but at reduced speeds would be desirable. This document describes the design and development of a loaded transmission error tester. For a gear box with a gear ratio of one, few tooth meshing combinations will occur during a single test. In order to observe the effects of different tooth mesh combinations and to increase the ability to load test gear pairs with higher gear ratios, the system was designed around a gear box with a gear ratio of two.
Creep-Fatigue Failure Diagnosis
Holdsworth, Stuart
2015-01-01
Failure diagnosis invariably involves consideration of both associated material condition and the results of a mechanical analysis of prior operating history. This Review focuses on these aspects with particular reference to creep-fatigue failure diagnosis. Creep-fatigue cracking can be due to a spectrum of loading conditions ranging from pure cyclic to mainly steady loading with infrequent off-load transients. These require a range of mechanical analysis approaches, a number of which are reviewed. The microstructural information revealing material condition can vary with alloy class. In practice, the detail of the consequent cracking mechanism(s) can be camouflaged by oxidation at high temperatures, although the presence of oxide on fracture surfaces can be used to date events leading to failure. Routine laboratory specimen post-test examination is strongly recommended to characterise the detail of deformation and damage accumulation under known and well-controlled loading conditions to improve the effectiveness and efficiency of failure diagnosis. PMID:28793676
Dehydration of glycerol over niobia-supported silicotungstic acid catalysts.
Lee, Young Yi; Ok, Hye Jeong; Moon, Dong Ju; Kim, Jong Ho; Park, Nam Cook; Kim, Young Chul
2013-01-01
Liquid-phase dehydration of glycerol to acrolein over nanosized niobia-supported silicotungstic acid catalysts was performed to investigate the effect of the silicotungstic acid loading on the catalytic performance of the catalysts. The catalysts were prepared by following an impregnation method with different HSiW loadings in the range of 10-50 wt%. The prepared catalysts were characterized by N2 physisorption, XRD, FT-IR, TPD of ammonia, and TGA. Dehydration of glycerol was conducted in an autoclave reactor under the conditions of controlled reaction temperatures under corresponding pressure. Increasing HSiW loading rapidly increased the acidity of HSiW/Nb205 catalyst and rate of glycerol conversion, but acrolein selectivity decreased due to enhanced deactivation of the catalyst by carbon deposit. Consequently, it was confirmed that catalytic activity for the dehydration of glycerol to acrolein was dependant on the acidity of catalyst and can be controlled by HSiW loading.
Design of a Sample Recovery Assembly for Magnetic Ramp-Wave Loading
NASA Astrophysics Data System (ADS)
Chantrenne, S.; Wise, J. L.; Asay, J. R.; Kipp, M. E.; Hall, C. A.
2009-06-01
Characterization of material behavior under dynamic loading requires studies at strain rates ranging from quasi-static to the limiting values of shock compression. For completeness, these studies involve complementary time-resolved data, which define the mechanical constitutive properties, and microstructural data, which reveal physical mechanisms underlying the observed mechanical response. Well-preserved specimens must be recovered for microstructural investigations. Magnetically generated ramp waves produce strain rates lower than those associated with shock waves, but recovery methods have been lacking for this type of loading. We adapted existing shock recovery techniques for application to magnetic ramp loading using 2-D and 3-D ALEGRA MHD code calculations to optimize the recovery design for mitigation of undesired late-time processing of the sample due to edge effects and secondary stress waves. To assess the validity of our simulations, measurements of sample deformation were compared to wavecode predictions.
NASA Astrophysics Data System (ADS)
Liu, Haitao
The objective of the present study is to investigate damage mechanisms and thermal residual stresses of composites, and to establish the frameworks to model the particle-reinforced metal matrix composites with particle-matrix interfacial debonding, particle cracking or thermal residual stresses. An evolutionary interfacial debonding model is proposed for the composites with spheroidal particles. The construction of the equivalent stiffness is based on the fact that when debonding occurs in a certain direction, the load-transfer ability will lose in that direction. By using this equivalent method, the interfacial debonding problem can be converted into a composite problem with perfectly bonded inclusions. Considering the interfacial debonding is a progressive process in which the debonding area increases in proportion to external loading, a progressive interfacial debonding model is proposed. In this model, the relation between external loading and the debonding area is established using a normal stress controlled debonding criterion. Furthermore, an equivalent orthotropic stiffness tensor is constructed based on the debonding areas. This model is able to study the composites with randomly distributed spherical particles. The double-inclusion theory is recalled to model the particle cracking problems. Cracks inside particles are treated as penny-shape particles with zero stiffness. The disturbed stress field due to the existence of a double-inclusion is expressed explicitly. Finally, a thermal mismatch eigenstrain is introduced to simulate the inconsistent expansions of the matrix and the particles due to the difference of the coefficients of thermal expansion. Micromechanical stress and strain fields are calculated due to the combination of applied external loads and the prescribed thermal mismatch eigenstrains. For all of the above models, ensemble-volume averaging procedures are employed to derive the effective yield function of the composites. Numerical simulations are performed to analyze the effects of various parameters and several good agreements between our model's predictions and experimental results are obtained. It should be mentioned that all of expressions in the frameworks are explicitly derived and these analytical results are easy to be adopted in other related investigations.
Liu, Xiaoli; Chen, Qiuwen; Zeng, Zhaoxia
2014-01-01
Different crops can generate different non-point source (NPS) loads because of their spatial topography heterogeneity and variable fertilization application rates. The objective of this study was to assess nitrogen NPS load reduction efficiency by spatially adjusting crop plantings as an agricultural conservation management (ACM) measure in a typical small agricultural watershed in the black soil region in northeast China. The assessment was undertaken using the Soil and Water Assessment Tool (SWAT). Results showed that lowland crops produce higher nitrogen NPS loads than those in highlands. It was also found that corn gave a comparatively larger NPS load than soybeans due to its larger fertilization demand. The ACM assessed was the conversion of lowland corn crops into soybean crops and highland soybean crops into corn crops. The verified SWAT model was used to evaluate the impact of the ACM action on nitrogen loads. The results revealed that the ACM could reduce NO3-N and total nitrogen loads by 9.5 and 10.7%, respectively, without changing the area of crops. Spatially optimized regulation of crop planting according to fertilizer demand and geological landscapes can effectively decrease NPS nitrogen exports from agricultural watersheds.
Microgrids for Service Restoration to Critical Load in a Resilient Distribution System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yin; Liu, Chen-Ching; Schneider, Kevin P.
icrogrids can act as emergency sources to serve critical loads when utility power is unavailable. This paper proposes a resiliency-based methodology that uses microgrids to restore critical loads on distribution feeders after a major disaster. Due to limited capacity of distributed generators (DGs) within microgrids, dynamic performance of the DGs during the restoration process becomes essential. In this paper, the stability of microgrids, limits on frequency deviation, and limits on transient voltage and current of DGs are incorporated as constraints of the critical load restoration problem. The limits on the amount of generation resources within microgrids are also considered. Bymore » introducing the concepts of restoration tree and load group, restoration of critical loads is transformed into a maximum coverage problem, which is a linear integer program (LIP). The restoration paths and actions are determined for critical loads by solving the LIP. A 4-feeder, 1069-bus unbalanced test system with four microgrids is utilized to demonstrate the effectiveness of the proposed method. The method is applied to the distribution system in Pullman, WA, resulting in a strategy that uses generators on the Washington State University campus to restore service to the Hospital and City Hall in Pullman.« less
Poorgholy, Nahid; Massoumi, Bakhshali; Ghorbani, Marjan; Jaymand, Mehdi; Hamishehkar, Hamed
2018-08-01
This article evaluates the anticancer drug delivery performances of two nanohydrogels composed of poly(N-isopropylacrylamide-co-itaconic anhydride) [P(NIPAAm-co-IA)], poly(ethylene glycol) (PEG), and Fe 3 O 4 nanoparticles. For this purpose, the magnetite nanohydrogels (MNHGs) were loaded with doxorubicin hydrochloride (DOX) as a universal anticancer drug. The morphologies and magnetic properties of the DOX-loaded MNHGs were investigated using transmission electron microscopy (TEM) and vibrating-sample magnetometer (VSM), respectively. The sizes and zeta potentials (ξ) of the MNHGs and their corresponding DOX-loaded nanosystems were also investigated. The DOX-loaded MNHGs showed the highest drug release values at condition of 41 °C and pH 5.3. The drug-loaded MNHGs at physiological condition (pH 7.4 and 37 °C) exhibited negligible drug release values. In vitro cytotoxic effects of the DOX-loaded MNHGs were extensively evaluated through the assessing survival rate of HeLa cells using the MTT assay, and there in vitro cellular uptake into the mentioned cell line were examined using fluorescent microscopy and fluorescence-activated cell sorting (FACS) flow cytometry analyses. As the results, the DOX-loaded MNHG1 exhibited higher anticancer drug delivery performance in the terms of cytotoxic effect and in vitro cellular uptake. Thus, the developed MNHG1 can be considered as a promising de novo drug delivery system, in part due to its pH and thermal responsive drug release behavior as well as proper magnetite character toward targeted drug delivery.
Reduced functional loads alter the physical characteristics of the bone-PDL-cementum complex
Niver, Eric L.; Leong, Narita; Greene, Janelle; Curtis, Donald; Ryder, Mark I.; Ho, Sunita P.
2011-01-01
Background Adaptive properties of the bone-PDL-tooth complex have been identified by changing the magnitude of functional loads using small-scale animal models such as rodents. Reported adaptive responses as a result of lower loads due to softer diet include decreased muscle development, change in structure-function relationship of the cranium, narrowed PDL-space, changes in mineral level of the cortical bone and alveolar jaw bone, and glycosaminoglycans of the alveolar bone. However, the adaptive role of the dynamic bone-PDL-cementum complex due to prolonged reduced loads has not been fully explained to date, especially with regards to concurrent adaptations of bone, PDL and cementum. Hence, the temporal effect of reduced functional loads on physical characteristics such as morphology and mechanical properties, and mineral profiles of the bone-periodontal ligament (PDL)-cementum complex using a rat model was investigated. Materials and Methods Two groups of six-week-old male Sprague-Dawley rats were fed nutritionally identical food with a stiffness range of 127–158N/mm for hard pellet or 0.32–0.47N/mm for soft powder forms. Spatio-temporal adaptation of the bone-PDL-cementum complex was identified by mapping changes in: 1) PDL-collagen orientation and birefringence using polarized light microscopy, bone and cementum adaptation using histochemistry, and bone and cementum morphology using micro X-ray computed tomography, 2) mineral profiles of the PDL-cementum and PDL-bone interfaces by X-ray attenuation, and 3) microhardness of bone and cementum by microindentation of specimens at ages six, eight, twelve, and fifteen weeks. Results Reduced functional loads over prolonged time resulted in 1) altered PDL orientation and decreased PDL collagen birefringence indicating decreased PDL turnover rate and decreased apical cementum resorption; 2) a gradual increase in X-ray attenuation, owing to mineral differences, at the PDL-bone and PDL-cementum interfaces without significant differences in the gradients for either group; 3) significantly (p<0.05) lower microhardness of alveolar bone (0.93±0.16 GPa) and secondary cementum (0.803±0.13 GPa) compared to the higher load group (1.10±0.17 GPa and 0.940±0.15 GPa respectively) at fifteen weeks indicating a temporal effect of loads on local mineralization of bone and cementum. Conclusions Based on the results from this study, the effect of reduced functional loads for a prolonged time could differentially affect morphology and mechanical properties, and mineral variations and of the local load-bearing sites in a bone-PDL-cementum complex. These observed local changes in turn could help explain the overall biomechanical function and adaptations of the tooth-bone joint. From a clinical translation perspective, our study provides an insight into modulation of load on the complex for improved tooth function during periodontal disease, and/or orthodontic and prosthodontic treatments. PMID:21848615
Anticipatory effects on anterior cruciate ligament loading during sidestep cutting.
Weinhandl, Joshua T; Earl-Boehm, Jennifer E; Ebersole, Kyle T; Huddleston, Wendy E; Armstrong, Brian S R; O'Connor, Kristian M
2013-07-01
A key to understanding potential anterior cruciate ligament injury mechanisms is to determine joint loading characteristics associated with an injury-causing event. However, direct measurement of anterior cruciate ligament loading during athletic tasks is invasive. Thus, previous research has been unable to study the association between neuromuscular variables and anterior cruciate ligament loading. Therefore, the purpose of this study was to determine the influence of movement anticipation on anterior cruciate ligament loading using a musculoskeletal modeling approach. Twenty healthy recreationally active females were recruited to perform anticipated and unanticipated sidestep cutting. Three-dimensional kinematics and kinetics of the right leg were calculated. Muscle, joint and anterior cruciate ligament forces were then estimated using a musculoskeletal model. Dependent t-tests were conducted to investigate differences between the two cutting conditions. ACL loading significantly increased during unanticipated sidestep cutting (p<0.05). This increase was primarily due to a significant increase in the sagittal plane ACL loading, which contributed 62% of the total loading. Frontal plane ACL loading contributed 26% and transverse plane ACL loading contributed 12%. These results suggest that anterior cruciate ligament loading resulted from a multifaceted interaction of the sagittal plane shear forces (i.e., quadriceps, hamstrings, and tibiofemoral), as well as the frontal and transverse plane knee moments. Additionally, the results of this study confirm the hypothesis in the current literature that unanticipated movements such as sidestep cutting increase anterior cruciate ligament loading. Copyright © 2013 Elsevier Ltd. All rights reserved.
Programmed Nanoparticle-Loaded Nanoparticles for Deep-Penetrating 3D Cancer Therapy.
Kim, Jinhwan; Jo, Changshin; Lim, Won-Gwang; Jung, Sungjin; Lee, Yeong Mi; Lim, Jun; Lee, Haeshin; Lee, Jinwoo; Kim, Won Jong
2018-05-18
Tumors are 3D, composed of cellular agglomerations and blood vessels. Therapies involving nanoparticles utilize specific accumulations due to the leaky vascular structures. However, systemically injected nanoparticles are mostly uptaken by cells located on the surfaces of cancer tissues, lacking deep penetration into the core cancer regions. Herein, an unprecedented strategy, described as injecting "nanoparticle-loaded nanoparticles" to address the long-lasting problem is reported for effective surface-to-core drug delivery in entire 3D tumors. The "nanoparticle-loaded nanoparticle" is a silica nanoparticle (≈150 nm) with well-developed, interconnected channels (diameter of ≈30 nm), in which small gold nanoparticles (AuNPs) (≈15 nm) with programmable DNA are located. The nanoparticle (AuNPs)-loaded nanoparticles (silica): (1) can accumulate in tumors through leaky vascular structures by protecting the inner therapeutic AuNPs during blood circulation, and then (2) allow diffusion of the AuNPs for penetration into the entire surface-to-core tumor tissues, and finally (3) release a drug triggered by cancer-characteristic pH gradients. The hierarchical "nanoparticle-loaded nanoparticle" can be a rational design for cancer therapies because the outer large nanoparticles are effective in blood circulation and in protection of the therapeutic nanoparticles inside, allowing the loaded small nanoparticles to penetrate deeply into 3D tumors with anticancer drugs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Dongfei; Zhang, Hongbo; Herranz-Blanco, Bárbara; Mäkilä, Ermei; Lehto, Vesa-Pekka; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A
2014-05-28
We report an advanced drug delivery platform for combination chemotherapy by concurrently incorporating two different drugs into microcompoistes with ratiometric control over the loading degree. Atorvastatin and celecoxib were selected as model drugs due to their different physicochemical properties and synergetic effect on colorectal cancer prevention and inhibition. To be effective in colorectal cancer prevention and inhibition, the produced microcomposite contained hypromellose acetate succinate, which is insoluble in acidic conditions but highly dissolving at neutral or alkaline pH conditions. Taking advantage of the large pore volume of porous silicon (PSi), atorvastatin was firstly loaded into the PSi matrix, and then encapsulated into the pH-responsive polymer microparticles containing celecoxib by microfluidics in order to obtain multi-drug loaded polymer/PSi microcomposites. The prepared microcomposites showed monodisperse size distribution, multistage pH-response, precise ratiometric controlled loading degree towards the simultaneously loaded drug molecules, and tailored release kinetics of the loaded cargos. This attractive microcomposite platform protects the payloads from being released at low pH-values, and enhances their release at higher pH-values, which can be further used for colon cancer prevention and treatment. Overall, the pH-responsive polymer/PSi-based microcomposite can be used as a universal platform for the delivery of different drug molecules for combination therapy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ductile fracture mechanism of low-temperature In-48Sn alloy joint under high strain rate loading.
Kim, Jong-Woong; Jung, Seung-Boo
2012-04-01
The failure behaviors of In-48Sn solder ball joints under various strain rate loadings were investigated with both experimental and finite element modeling study. The bonding force of In-48Sn solder on an Ni plated Cu pad increased with increasing shear speed, mainly due to the high strain-rate sensitivity of the solder alloy. In contrast to the cases of Sn-based Pb-free solder joints, the transition of the fracture mode from a ductile mode to a brittle mode was not observed in this solder joint system due to the soft nature of the In-48Sn alloy. This result is discussed in terms of the relationship between the strain-rate of the solder alloy, the work-hardening effect and the resulting stress concentration at the interfacial regions.
NASA Technical Reports Server (NTRS)
Nolte, W. E.
1976-01-01
LOADS determines rigid body vehicle shears, bending moments and axial loads on a space vehicle due to aerodynamic loads and propellant inertial loads. An example hand calculation is presented and was used to check LOADS. A brief description of the program and the equations used are presented. LOADS is operational on the Univac 1110, occupies 10505 core and typically takes less than one(1) second of CAU time to execute.
Lepori, Fabio; Roberts, James J.
2017-01-01
We used monitoring data from Lake Lugano (Switzerland and Italy) to assess key ecosystem responses to three decades of nutrient management (1983–2014). We investigated whether reductions in external phosphorus loadings (Lext) caused declines in lake phosphorus concentrations (P) and phytoplankton biomass (Chl a), as assumed by the predictive models that underpinned the management plan. Additionally, we examined the hypothesis that deep lakes respond quickly to Lext reductions. During the study period, nutrient management reduced Lext by approximately a half. However, the effects of such reduction on P and Chl a were complex. Far from the scenarios predicted by classic nutrient-management approaches, the responses of P and Chl a did not only reflect changes in Lext, but also variation in internal P loadings (Lint) and food-web structure. In turn, Lint varied depending on basin morphometry and climatic effects, whereas food-web structure varied due to apparently stochastic events of colonization and near-extinction of key species. Our results highlight the complexity of the trajectory of deep-lake ecosystems undergoing nutrient management. From an applied standpoint, they also suggest that [i] the recovery of warm monomictic lakes may be slower than expected due to the development of Lint, and that [ii] classic P and Chl a models based on Lext may be useful in nutrient management programs only if their predictions are used as starting points within adaptive frameworks.
Active stabilization of thin-wall structures under compressive loading
NASA Astrophysics Data System (ADS)
Welham, Jared; Calius, Emilio P.; Chase, J. Geoffrey
2003-08-01
The active suppression of elastic buckling instability has the potential to significantly increase the effective strength of thin-wall structures. Despite all the interest in smart structures, the active suppression of buckling has received comparatively little attention. This paper addresses the effects of embedded actuation on the compression buckling strength of laminated composite plates through analysis and simulation. Numerical models are formulated that include the influence of essential features such as sensor uncertainty and noise, actuator saturation and control architecture on the buckling process. Silicon-based strain sensors and diffuse laser distance sensors are both considered for use in the detection of incipient buckling behavior due to their increased sensitivity. Actuation is provided by paired distributions of piezo-electric material incorporated into both sides of the laminate. Optimal controllers are designed to command the structure to deform in ways that interfere with the development of buckling mode shapes. Commercial software packages are used to solve the resulting non-linear equations, and some of the tradeoffs are enumerated. Overall, the results show that active buckling control can considerably enhance resistance to instability under compressive loads. These buckling load predictions demonstrate the viability of optimal control and piezo-electric actuation for implementing active buckling control. Due to the importance of early detection, the relative effectiveness of active buckling control is shown to be strongly dependent on the performance of the sensing scheme, as well as on the characteristics of the structure.
Lee, Jae-Hyoung; Katoch, Akash; Choi, Sun-Woo; Kim, Jae-Hun; Kim, Hyoun Woo; Kim, Sang Sub
2015-02-11
We propose a novel approach to improve the gas-sensing properties of n-type nanofibers (NFs) that involves creation of local p-n heterojunctions with p-type reduced graphene oxide (RGO) nanosheets (NSs). This work investigates the sensing behaviors of n-SnO2 NFs loaded with p-RGO NSs as a model system. n-SnO2 NFs demonstrated greatly improved gas-sensing performances when loaded with an optimized amount of p-RGO NSs. Loading an optimized amount of RGOs resulted in a 20-fold higher sensor response than that of pristine SnO2 NFs. The sensing mechanism of monolithic SnO2 NFs is based on the joint effects of modulation of the potential barrier at nanograin boundaries and radial modulation of the electron-depletion layer. In addition to the sensing mechanisms described above, enhanced sensing was obtained for p-RGO NS-loaded SnO2 NFs due to creation of local p-n heterojunctions, which not only provided a potential barrier, but also functioned as a local electron absorption reservoir. These mechanisms markedly increased the resistance of SnO2 NFs, and were the origin of intensified resistance modulation during interaction of analyte gases with preadsorbed oxygen species or with the surfaces and grain boundaries of NFs. The approach used in this work can be used to fabricate sensitive gas sensors based on n-type NFs.
Measurements of the apparent thermal conductivity of multi-layer insulation between 20 K and 90 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurd, Joseph A.; Van Sciver, Steven W.
NASA has the need to efficiently store cryogenic propellants in space for long periods of time. One method to improve storage efficiency is to use multi-layer insulation (MLI), a technique that minimizes the boiling rate due to radiation heat transfer. Typically, the thermal performance of MLI is determined by measuring the rate of evaporation of liquid nitrogen from a calibrated cryostat. The main limitation with this method is that testing conditions are restricted by the boiling temperature of the LN{sub 2}, which may not match the requirements of the application. The Multi-Layer Insulation Thermal Conductivity Experiment (MIKE) at the Nationalmore » High Magnetic Field Laboratory is capable of measuring the effective thermal conductivity of MLI at variable boundary temperatures. MIKE uses cryo-refrigerators to control boundary temperatures in the calorimeter and a calibrated thermal link to measure the heat load. To make the measurements requested by NASA, MIKE needed to be recalibrated for the 20 K to 90 K range. Also, due to the expectation of a lower heat transfer rate, the heat load support rod material was changed to one with a lower thermal conductivity to ensure the temperature difference seen on the cold rod could be measurable at the estimated heat load. Presented are the alterations to MIKE including calibration data and heat load measurements on new load-bearing MLI supplied by NASA.« less
Production of Curcumin-Loaded Silk Fibroin Nanoparticles for Cancer Therapy.
Montalbán, Mercedes G; Coburn, Jeannine M; Lozano-Pérez, A Abel; Cenis, José L; Víllora, Gloria; Kaplan, David L
2018-02-24
Curcumin, extracted from the rhizome of Curcuma longa , has been widely used in medicine for centuries due to its anti-inflammatory, anti-cancer, anti-oxidant and anti-microbial effects. However, its bioavailability during treatments is poor because of its low solubility in water, slow dissolution rate and rapid intestinal metabolism. For these reasons, improving the therapeutic efficiency of curcumin using nanocarriers (e.g., biopolymer nanoparticles) has been a research focus, to foster delivery of the curcumin inside cells due to their small size and large surface area. Silk fibroin from the Bombyx mori silkworm is a biopolymer characterized by its biocompatibility, biodegradability, amphiphilic chemistry, and excellent mechanical properties in various material formats. These features make silk fibroin nanoparticles useful vehicles for delivering therapeutic drugs, such as curcumin. Curcumin-loaded silk fibroin nanoparticles were synthesized using two procedures (physical adsorption and coprecipitation) more scalable than methods previously described using ionic liquids. The results showed that nanoparticle formulations were 155 to 170 nm in diameter with a zeta potential of approximately -45 mV. The curcumin-loaded silk fibroin nanoparticles obtained by both processing methods were cytotoxic to carcinogenic cells, while not decreasing viability of healthy cells. In the case of tumor cells, curcumin-loaded silk fibroin nanoparticles presented higher efficacy in cytotoxicity against neuroblastoma cells than hepatocarcinoma cells. In conclusion, curcumin-loaded silk fibroin nanoparticles constitute a biodegradable and biocompatible delivery system with the potential to treat tumors by local, long-term sustained drug delivery.
Production of Curcumin-Loaded Silk Fibroin Nanoparticles for Cancer Therapy
Coburn, Jeannine M.; Cenis, José L.; Víllora, Gloria; Kaplan, David L.
2018-01-01
Curcumin, extracted from the rhizome of Curcuma longa, has been widely used in medicine for centuries due to its anti-inflammatory, anti-cancer, anti-oxidant and anti-microbial effects. However, its bioavailability during treatments is poor because of its low solubility in water, slow dissolution rate and rapid intestinal metabolism. For these reasons, improving the therapeutic efficiency of curcumin using nanocarriers (e.g., biopolymer nanoparticles) has been a research focus, to foster delivery of the curcumin inside cells due to their small size and large surface area. Silk fibroin from the Bombyx mori silkworm is a biopolymer characterized by its biocompatibility, biodegradability, amphiphilic chemistry, and excellent mechanical properties in various material formats. These features make silk fibroin nanoparticles useful vehicles for delivering therapeutic drugs, such as curcumin. Curcumin-loaded silk fibroin nanoparticles were synthesized using two procedures (physical adsorption and coprecipitation) more scalable than methods previously described using ionic liquids. The results showed that nanoparticle formulations were 155 to 170 nm in diameter with a zeta potential of approximately −45 mV. The curcumin-loaded silk fibroin nanoparticles obtained by both processing methods were cytotoxic to carcinogenic cells, while not decreasing viability of healthy cells. In the case of tumor cells, curcumin-loaded silk fibroin nanoparticles presented higher efficacy in cytotoxicity against neuroblastoma cells than hepatocarcinoma cells. In conclusion, curcumin-loaded silk fibroin nanoparticles constitute a biodegradable and biocompatible delivery system with the potential to treat tumors by local, long-term sustained drug delivery. PMID:29495296
Does adding antibiotics to cement reduce the need for early revision in total knee arthroplasty?
Bohm, Eric; Zhu, Naisu; Gu, Jing; de Guia, Nicole; Linton, Cassandra; Anderson, Tammy; Paton, David; Dunbar, Michael
2014-01-01
There is considerable debate about whether antibiotic-loaded bone cement should be used for fixation of TKAs. While antibiotics offer the theoretical benefit of lowering early revision due to infection, they may weaken the cement and thus increase the likelihood of aseptic loosening, perhaps resulting in a higher revision rate. We (1) compared the frequency of early knee revision arthroplasty in patients treated with antibiotic-loaded or non-antibiotic-loaded cement for initial fixation, (2) determined effects of age, sex, comorbidities, and surgeons' antibiotic-loaded cement usage patterns on revision rate, and (3) compared causes of revision (aseptic or septic) between groups. Our study sample was taken from the Canadian Joint Replacement Registry and Canada's Hospital Morbidity Database and included cemented TKAs performed between April 1, 2003, and March 31, 2008, including 20,016 TKAs inserted with non-antibiotic-loaded cement and 16,665 inserted with antibiotic-loaded cement. Chi-square test was used to compare the frequency of early revisions between groups. Cox regression modeling was used to determine whether revision rate would change by age, sex, comorbidities, or use of antibiotic-loaded cement. Similar Cox regression modeling was used to compare cause of revision between groups. Two-year revision rates were similar between the groups treated with non-antibiotic-loaded cement and antibiotic-loaded cement (1.40% versus 1.51%, p = 0.41). When controlling for age, sex, comorbidities, diabetes, and surgeons' antibiotic-loaded cement usage patterns, the revision risk likewise was similar between groups. Revision rates for infection were similar between groups; however, there were more revisions for aseptic loosening in the group treated with non-antibiotic-loaded cement (p = 0.02). The use of antibiotic-loaded cement in TKAs performed for osteoarthritis has no clinically significant effect on reducing revision within 2 years in patients who received perioperative antibiotics. Longer followup and confirmation of these findings with other national registries are warranted.
NASA Technical Reports Server (NTRS)
Kenner, WInfred S.; Jones, Thomas C.; Doggett, William R.; Duncan, Quinton; Plant, James
2015-01-01
An experimental study of the effects of environmental temperature and humidity conditions on long-term creep displacement data of high strength Kevlar and VectranTM woven fabric webbings under constant load for inflatable structures is presented. The restraint layer of an inflatable structure for long-duration space exploration missions is designed to bear load and consists of an assembly of high strength webbings. Long-term creep displacement data of webbings can be utilized by designers to validate service life parameters of restraint layers of inflatable structures. Five groups of high-strength webbings were researched over a two year period. Each group had a unique webbing length, load rating, applied load, and test period. The five groups consisted of 1.) 6K Vectran webbings loaded to 49% ultimate tensile strength (UTS), 2.) 6K Vectran webbings loaded to 55% UTS, 3.) 12.5K Vectran webbings loaded to 22% UTS, 4.) 6K Kevlar webbings loaded to 40% and 43% UTS, and 5.) 6K Kevlar webbings loaded to 48% UTS. Results show that all webbing groups exhibit the initial two stages of three of a typical creep curve of an elastic material. Results also show that webbings exhibit unique local wave patterns over the duration of the test period. Data indicate that the local pattern is primarily generated by daily variations in relative humidity values within the test facility. Data indicate that after a three to six month period, where webbings reach a steady-state creep condition, an annual sinusoidal displacement pattern is exhibited, primarily due to variations in annual mean temperature values. Data indicates that variations in daily temperature values and annual mean humidity values have limited secondary effects on creep displacement behavior. Results show that webbings in groups 2 and 5 do not exhibit well defined annual displacement patterns because the magnitude of the applied loads cause large deformations, and data indicate that material yielding within a webbing tends to neutralize the annual sinusoidal displacement pattern. Study indicates that applied load, environmental effects, mechanical strength, coefficient of thermal expansion, and hygroscopic properties of webbings are fundamental requirements for quantifying accurate creep displacements and behaviors over multiple year time periods. Results from a study of the environmental effects on long-term creep displacement data of Kevlar and Vectran woven webbings are presented to increase the knowledge base of webbing materials and to enhance designs of inflatable space structures for long-duration space missions.
Fuess, Lucas Tadeu; Garcia, Marcelo Loureiro; Zaiat, Marcelo
2018-09-01
Sugarcane vinasse has been widely used as a soil fertilizer in the Brazilian sucro-alcohol industry for recycling potassium and water. However, the potential negative effects from long-term soil fertirrigation represent a major drawback regarding this practice, whereas the application of biodigestion represents an efficient method for reducing the polluting organic load and recovering bioenergy from vinasse. Regardless of the predicted use for vinasse, an understanding of the potential of each option is imperative, as the seasonal alterations in the inorganic/organic fractions of vinasse directly affect its management. In this context, this study presents a detailed compositional characterization of sugarcane vinasse from a large-scale Brazilian biorefinery throughout the 2014/2015 harvest to assess the environmental effects (due to fertirrigation) and to estimate the biogas energetic potential. Calculated inputs of organic matter into soils due to vinasse land application were equivalent to the polluting load of populations (117-257inhabha -1 ) at least 2-fold greater than the largest Brazilian capital cities (78-70inhabha -1 ). Two-phase biodigestion could efficiently reduce the polluting load of vinasse (23-52inhabha -1 ) and eliminate the negative effects from direct sulfide emissions in the environment. However, a high risk of soil sodification could result from using high doses of Na-based alkalizing compounds in biodigestion plants. Finally, the optimized recovery of bioenergy through biogas (13.3-26.7MW as electricity) could supply populations as large as 305 thousand inhabitants, so that over 30% of the surplus electricity produced by the studied biorefinery could be obtained from biogas. Overall, applying biodigestion in the treatment of vinasse provides important environmental and energetic gains. However, the benefits of reducing the polluting organic load of vinasse through bioenergy recovery may lose their effect depending on the alkalizing strategy, indicating that the proper use of chemicals in full-scale biodigestion plants is imperative to attain process sustainability. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lahiri, B. B.; Ranoo, Surojit; Zaibudeen, A. W.; Philip, John
2017-11-01
Magnetic fluid hyperthermia (MFH) is a promising cancer treatment modality where alternating magnetic field is used for heating cancerous cells loaded with magnetic nanofluids. Of late, it is realized that magnetic nano-carriers in the size range ∼100-200 nm (e.g. magnetic nanocomposites, magnetic liposomes and magnetic nanoemulsions) are ideal candidates for multimodal MFH coupled with drug delivery or photodynamic therapy due to enhanced permeation and retention (EPR) in the leaky vasculature of cancerous tissues. Here, we study the radiofrequency alternating magnetic field induced heating in magnetically polarizable oil-in-water nanoemulsions of hydrodynamic diameter ∼200 nm, containing single domain superparamagnetic nanoparticles of average diameter ∼10 nm in the oil phase. We probe the effects of size polydispersity of the droplets and medium viscosity on the field induced heating efficiency. The contribution of Neel and Brown relaxation of the magnetic nanoparticles on specific absorption rate (SAR) of the magnetic nanoemulsions, was found to increase linearly with the square of the applied field, with a maximum value of 164.4 ± 4.3 W/gFe. In magnetic nanoemulsions, the heating is induced by the Neel-Brown relaxation of the MNP over a length scale of 10 nm, and the whole scale Brownian relaxation of the emulsion droplets has over a length scale of 200 nm. The magnetic nanoemulsion sample with lower polydispersity (σ = 0.2) exhibited a significantly higher SAR value (3.3 times higher) as compared to the sample with larger polydispersity (σ = 0.4). The SAR values of the samples with 4.6 and 1.7 wt.% of MNP loading with σ values 0.4 a 0.3, respectively were comparable, suggesting a higher heating efficiency in nanofluid containing particles of lower size polydispersity even at lower particle loading. The emulsion droplets, immobilized in an agar matrix (4 wt.%), gave a maximum SAR value of 41.7 ± 2.4 W/gFe as compared to 111.8 ± 3.4 W/gFe in the case of droplets dispersed in water, which indicate a ∼40-50% drop in SAR due to abrogation of whole scale Brownian relaxation of the emulsion droplets. This suggests the need for improving the heating efficiency during actual therapy in tissues. The residual SAR of the immobilized sample correlates well with the SAR of the magnetic nanofluid, albeit under a lower external field amplitude due to demagnetization effect of the clusters of MNP loaded inside the droplets. The observed heating efficiency of larger sized magnetic nanoemulsion offer new possibilities for multimodal therapy due to availability of large volume for loading anti-cancer drug or photodynamic agents.
Numerical Study of Head/Helmet Interaction Due to Blast Loading
2014-10-01
unidirectional laminate sheets. The MAT_162 material model in LS-DYNA is used to account for the effects of strain rate and strain softening after damage...C., Tan V., Lee H., 2008, “Ballistic Impact of a KEVLAR Helmet: Experimental and Simulations”, International Journal of Impact Engineering, 35, pp
DOT National Transportation Integrated Search
1999-05-01
The principal objective of this study is to provide a preliminary assessment of the effect of increasing the gross vehicle weight (GVW) on Louisiana type 2 and type 6 vehicles as allowed by special permits, on pavement costs to rehabilitate the damag...
Tsunami design criteria for coastal infrastructure : a case study for Spencer Creek Bridge, Oregon.
DOT National Transportation Integrated Search
2006-11-01
The load effects on a coastal bridge due to the impact of a tsunami wave were developed. Three Cascadia Fault : rupture scenarios were considered using the Cornell model and the FVWAVE model to generate the waves for : each scenario. The FVWAVE model...
Effects of mixing states on the multiple-scattering properties of soot aerosols.
Cheng, Tianhai; Wu, Yu; Gu, Xingfa; Chen, Hao
2015-04-20
The radiative properties of soot aerosols are highly sensitive to the mixing states of black carbon particles and other aerosol components. Light absorption properties are enhanced by the mixing state of soot aerosols. Quantification of the effects of mixing states on the scattering properties of soot aerosol are still not completely resolved, especially for multiple-scattering properties. This study focuses on the effects of the mixing state on the multiple scattering of soot aerosols using the vector radiative transfer model. Two types of soot aerosols with different mixing states such as external mixture soot aerosols and internal mixture soot aerosols are studied. Upward radiance/polarization and hemispheric flux are studied with variable soot aerosol loadings for clear and haze scenarios. Our study showed dramatic changes in upward radiance/polarization due to the effects of the mixing state on the multiple scattering of soot aerosols. The relative difference in upward radiance due to the different mixing states can reach 16%, whereas the relative difference of upward polarization can reach 200%. The effects of the mixing state on the multiple-scattering properties of soot aerosols increase with increasing soot aerosol loading. The effects of the soot aerosol mixing state on upwelling hemispheric flux are much smaller than in upward radiance/polarization, which increase with increasing solar zenith angle. The relative difference in upwelling hemispheric flux due to the different soot aerosol mixing states can reach 18% when the solar zenith angle is 75°. The findings should improve our understanding of the effects of mixing states on the optical properties of soot aerosols and their effects on climate. The mixing mechanism of soot aerosols is of critical importance in evaluating the climate effects of soot aerosols, which should be explicitly included in radiative forcing models and aerosol remote sensing.
Roughness Effects on Fretting Fatigue
NASA Astrophysics Data System (ADS)
Yue, Tongyan; Abdel Wahab, Magd
2017-05-01
Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.
Creep of plain weave polymer matrix composites
NASA Astrophysics Data System (ADS)
Gupta, Abhishek
Polymer matrix composites are increasingly used in various industrial sectors to reduce structural weight and improve performance. Woven (also known as textile) composites are one class of polymer matrix composites with increasing market share mostly due to their lightweight, their flexibility to form into desired shape, their mechanical properties and toughness. Due to the viscoelasticity of the polymer matrix, time-dependent degradation in modulus (creep) and strength (creep rupture) are two of the major mechanical properties required by engineers to design a structure reliably when using these materials. Unfortunately, creep and creep rupture of woven composites have received little attention by the research community and thus, there is a dire need to generate additional knowledge and prediction models, given the increasing market share of woven composites in load bearing structural applications. Currently, available creep models are limited in scope and have not been validated for any loading orientation and time period beyond the experimental time window. In this thesis, an analytical creep model, namely the Modified Equivalent Laminate Model (MELM), was developed to predict tensile creep of plain weave composites for any orientation of the load with respect to the orientation of the fill and warp fibers, using creep of unidirectional composites. The ability of the model to predict creep for any orientation of the load is a "first" in this area. The model was validated using an extensive experimental involving the tensile creep of plain weave composites under varying loading orientation and service conditions. Plain weave epoxy (F263)/ carbon fiber (T300) composite, currently used in aerospace applications, was procured as fabrics from Hexcel Corporation. Creep tests were conducted under two loading conditions: on-axis loading (0°) and off-axis loading (45°). Constant load creep, in the temperature range of 80-240°C and stress range of 1-70% UTS of the composites, was experimentally evaluated for time periods ranging from 1--120 hours under both loading conditions. The composite showed increase in creep with increase in temperature and stress. Creep of composite increased with increase in angle of loading, from 1% under on-axis loading to 31% under off-axis loading, within the tested time window. The experimental creep data for plain weave composites were superposed using TTSP (Time Temperature Superposition Principle) to obtain a master curve of experimental data extending to several years and was compared with model predictions to validate the model. The experimental and model results were found in good agreement within an error range of +/-1-3% under both loading conditions. A parametric study was also conducted to understand the effect of microstructure of plain weave composites on its on-axis and off-axis creep. Generation of knowledge in this area is also "first". Additionally, this thesis generated knowledge on time-dependent damage m woven composites and its effect on creep and tensile properties and their prediction.
Malaligned dynamic anterior cervical plate: a biomechanical analysis of effectiveness.
Lawrence, Brandon D; Patel, Alpesh A; Guss, Andrew; Ryan Spiker, W; Brodke, Darrel S
2014-12-01
Biomechanical evaluation. To evaluate the kinematic and load-sharing differences of dynamic anterior cervical plates when placed in-line at 0° and off-axis at 20°. The use of dynamic anterior cervical plating systems has recently gained popularity due to the theoretical benefit of improved load sharing with graft subsidence. Occasionally, due to anatomical restraints, the anterior cervical plate may be placed off-axis in the coronal plane. This may potentially decrease the dynamization capability of the plate, leading to less load sharing and potentially decreased fusion rates. The purpose of this study was to comprehensively evaluate the kinematic and load-sharing differences of a dynamic plate placed in-line versus off-axis in the coronal plane. Thirteen fresh-frozen human cadaveric cervical spines (C2-T1) were used. Nondestructive range-of-motion testing was performed with a pneumatically controlled spine simulator in flexion/extension, lateral bending, and axial rotation using the OptoTrak motion measurement system. A C5 corpectomy was performed, and a custom interbody spacer with an integrated load cell collected load-sharing data under axial compression at varying loads. A dynamic anterior cervical plate was placed in-line at 0° and then off-axis at 20°. Testing conditions ensued using a full-length spacer, followed by simulated subsidence by removing 10% of the height of the original spacer. There were no kinematic differences noted in the in-line model versus the off-axis model. After simulated subsidence, the small decreases in stiffness and increases in motion were similar whether the plate was placed in-line or off-axis in all 3 planes of motion. There were also no significant differences in the load-sharing characteristics of the in-line plate versus the off-axis plate in either the full-length model or the subsided interbody model. This study suggests that off-axis dynamic plate positioning does not significantly impact construct kinematics or graft load sharing. As such, we do not recommend removal or repositioning of an off-axis placed dynamic plate because the kinematic and load-sharing biomechanical properties are similar. N/A.
PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect.
Acharya, Sarbari; Sahoo, Sanjeeb K
2011-03-18
As mortality due to cancer continues to rise, advances in nanotechnology have significantly become an effective approach for achieving efficient drug targeting to tumour tissues by circumventing all the shortcomings of conventional chemotherapy. During the past decade, the importance of polymeric drug-delivery systems in oncology has grown exponentially. In this context, poly(lactic-co-glycolic acid) (PLGA) is a widely used polymer for fabricating 'nanoparticles' because of biocompatibility, long-standing track record in biomedical applications and well-documented utility for sustained drug release, and hence has been the centre of focus for developing drug-loaded nanoparticles for cancer therapy. Such PLGA nanoparticles have also been used to develop proteins and peptides for nanomedicine, and nanovaccines, as well as a nanoparticle-based drug- and gene-delivery system for cancer therapy, and nanoantigens and growth factors. These drug-loaded nanoparticles extravasate through the tumour vasculature, delivering their payload into the cells by the enhanced permeability and retention (EPR) effect, thereby increasing their therapeutic effect. Ongoing research about drug-loaded nanoparticles and their delivery by the EPR effect to the tumour tissues has been elucidated in this review with clarity. Copyright © 2010 Elsevier B.V. All rights reserved.
Ding, Jiule; Xing, Wei; Wu, Dongmei; Chen, Jie; Pan, Liang; Sun, Jun; Xing, Shijun; Dai, Yongming
2015-01-01
To assess the feasibility of susceptibility-weighted imaging (SWI) while monitoring changes in renal oxygenation level after water loading. Thirty-two volunteers (age, 28.0 ± 2.2 years) were enrolled in this study. SWI and multi-echo gradient echo sequence-based T2(*) mapping were used to cover the kidney before and after water loading. Cortical and medullary parameters were measured using small regions of interest, and their relative changes due to water loading were calculated based on baseline and post-water loading data. An intraclass correlation coefficient analysis was used to assess inter-observer reliability of each parameter. A receiver operating characteristic curve analysis was conducted to compare the performance of the two methods for detecting renal oxygenation changes due to water loading. Both medullary phase and medullary T2(*) values increased after water loading (p < 0.001), although poor correlations were found between the phase changes and the T2(*) changes (p > 0.05). Interobserver reliability was excellent for the T2(*) values, good for SWI cortical phase values, and moderate for the SWI medullary phase values. The area under receiver operating characteristic curve of the SWI medullary phase values was 0.85 and was not different from the medullary T2(*) value (0.84). Susceptibility-weighted imaging enabled monitoring changes in the oxygenation level in the medulla after water loading, and may allow comparable feasibility to detect renal oxygenation level changes due to water loading compared with that of T2(*) mapping.
Effect of large wood retention at check dams on sediment continuity
NASA Astrophysics Data System (ADS)
Schmocker, Lukas; Schalko, Isabella; Weitbrecht, Volker
2017-04-01
Large wood transport during flood events may seriously increase the damage potential due to accumulations at river infrastructures. The large wood is therefore mostly retained upstream of populated areas using retention structures that often combine a check dam with a debris rack. One disadvantages of this structures is, that the bed-load gets retained along with the wood. Especially if large wood blocks the rack early during a flood event, sediment continuity is completely interrupted. This may lead to severe bed erosion downstream of the check dam. So far, no common design to retain large wood but maintain sediment continuity is available. One attempt to separate the large wood from the bed-load was made with the large wood retention structure at River Sihl in Zürich, Switzerland. The retention of the large wood occurs in a bypass channel located along the main river. The bypass is located at an outer river bend, where a separation of bed-load and large wood results due to the secondary currents induced by the river curvature. Large wood floats towards the outer bend due to inertia and the secondary currents whereas bed-load remains at the inner bend. The bypass is separated by a side weir from the main river to ensure that the bed-load remains in the river during bed forming discharges and flood events. New model test are currently carried out at the Laboratory of Hydraulics, Hydrology, and Glaciology (VAW) of ETH Zurich, where sediment continuity should be achieved using an inclined rack. The rack is inclined in flow direction with a degree of 45° to 20°. First results show that the large wood deposits at the upper part of the rack whereas the lower part of the rack remains free for bed-load transport. Furthermore, the backwater rise for the inclined rack due to the accumulated wood is considerably reduced compared to a vertical rack, as a large part of the rack remains clear for the flow to pass. The findings of this studies help to understand the complex interaction between sediment and large wood at a check dam retention structure. Furthermore, new retention structures and rack designs are available, where sediment continuity can partially be maintained to reduce downstream bed erosion.
F-16B Pacer Aircraft Trailing Cone Length Extension Tube Investigative Study (HAVE CLETIS)
2007-06-01
the axial load experienced during high incompressible dynamic pressures and prevent the coupling from locking up as was observed for the 35-foot... axial loads due to incompressible dynamic pressure. (R4) “Guitar stringing” was used to describe the high frequency vibration of the pressure tube...Modify the design of the pressure tube and drag cone coupling to allow independent pressure tube and drag cone rotation under axial loads due to
Pasture BMP effectiveness using an HRU-based subarea approach in SWAT.
Sheshukov, Aleksey Y; Douglas-Mankin, Kyle R; Sinnathamby, Sumathy; Daggupati, Prasad
2016-01-15
Many conservation programs have been established to motivate producers to adopt best management practices (BMP) to minimize pasture runoff and nutrient loads, but a process is needed to assess BMP effectiveness to help target implementation efforts. A study was conducted to develop and demonstrate a method to evaluate water-quality impacts and the effectiveness of two widely used BMPs on a livestock pasture: off-stream watering site and stream fencing. The Soil and Water Assessment Tool (SWAT) model was built for the Pottawatomie Creek Watershed in eastern Kansas, independently calibrated at the watershed outlet for streamflow and at a pasture site for nutrients and sediment runoff, and also employed to simulate pollutant loads in a synthetic pasture. The pasture was divided into several subareas including stream, riparian zone, and two grazing zones. Five scenarios applied to both a synthetic pasture and a whole watershed were simulated to assess various combinations of widely used pasture BMPs: (1) baseline conditions with an open stream access, (2) an off-stream watering site installed in individual subareas in the pasture, and (3) stream or riparian zone fencing with an off-stream watering site. Results indicated that pollutant loads increase with increasing stocking rates whereas off-stream watering site and/or stream fencing reduce time cattle spend in the stream and nutrient loads. These two BMPs lowered organic P and N loads by more than 59% and nitrate loads by 19%, but TSS and sediment-attached P loads remained practically unchanged. An effectiveness index (EI) quantified impacts from the various combinations of off-stream watering sites and fencing in all scenarios. Stream bank contribution to pollutant loads was not accounted in the methodology due to limitations of the SWAT model, but can be incorporated in the approach if an amount of bank soil loss is known for various stocking rates. The proposed methodology provides an adaptable framework for pasture BMP assessment and was utilized to represent a consistent, defensible process to quantify the effectiveness of BMP proposals in a BMP auction in eastern Kansas. Copyright © 2015 Elsevier Ltd. All rights reserved.
Aksahin, Ertugrul; Kocadal, Onur; Aktekin, Cem N; Kaya, Defne; Pepe, Murad; Yılmaz, Serdar; Yuksel, H Yalcin; Bicimoglu, Ali
2016-03-01
Anterior knee pain is a common symptom after intramedullary nailing in tibia shaft fracture. Moreover, patellofemoral malalignment is also known to be a major reason for anterior knee pain. Patellofemoral malalignment predisposes to increased loading in patellar cartilage. In the previous study, we have demonstrated the quadriceps atrophy and patellofemoral malalignment after intramedullary nailing due to tibia shaft fracture. In this study, our aim was to clarify the effects of quadriceps atrophy and patellofemoral malalignment with the pathologic loading on the joint cartilage. Mesh models of patellofemoral joint were constructed with CT images and integrated with soft tissue components such as menisci and ligaments. Physiological and sagittal tilt models during extension and flexion at 15°, 30° and 60° were created generating eight models. All the models were applied with 137 N force to present the effects of normal loading and 115.7 N force for the simulation of quadriceps atrophy. Different degrees of loading were applied to evaluate the joint contact area and pressure value with the finite element analysis. There was increased patellofemoral contact area in patellar tilt models with respect to normal models. The similar loading patterns were diagnosed in all models at 0° and 15° knee flexion when 137 N force was applied. Higher loading values were obtained at 30° and 60° knee flexions in sagittal tilt models. Furthermore, in the sagittal tilt models, in which the quadriceps atrophy was simulated, the loadings at 30° and 60° knee flexion were higher than in the physiological ones. Sagittal malalignment of the patellofemoral joint is a new concept that results in different loading patterns in the patellofemoral joint biomechanics. This malalignment in sagittal plane leads to increased loading values on the patellofemoral joint at 30° and 60° of the knee flexions. This new concept should be kept in mind during the course of diagnosis and treatment in patients with anterior knee pain. Definition of the exact biomechanical effects of the sagittal tilting will lead to the development of new treatment modalities.
Working memory load impairs the evaluation of behavioral errors in the medial frontal cortex.
Maier, Martin E; Steinhauser, Marco
2017-10-01
Early error monitoring in the medial frontal cortex enables error detection and the evaluation of error significance, which helps prioritize adaptive control. This ability has been assumed to be independent from central capacity, a limited pool of resources assumed to be involved in cognitive control. The present study investigated whether error evaluation depends on central capacity by measuring the error-related negativity (Ne/ERN) in a flanker paradigm while working memory load was varied on two levels. We used a four-choice flanker paradigm in which participants had to classify targets while ignoring flankers. Errors could be due to responding either to the flankers (flanker errors) or to none of the stimulus elements (nonflanker errors). With low load, the Ne/ERN was larger for flanker errors than for nonflanker errors-an effect that has previously been interpreted as reflecting differential significance of these error types. With high load, no such effect of error type on the Ne/ERN was observable. Our findings suggest that working memory load does not impair the generation of an Ne/ERN per se but rather impairs the evaluation of error significance. They demonstrate that error monitoring is composed of capacity-dependent and capacity-independent mechanisms. © 2017 Society for Psychophysiological Research.
NASA Technical Reports Server (NTRS)
Van Dam, T. M.; Wahr, J. M.
1987-01-01
Atmospheric mass loads and deforms the earth's crust. By performing a convolution sum between daily, global barometric pressure data and mass loading Green's functions, the time dependent effects of atmospheric loading, including those associated with short-term synoptic storms, on surface point positioning measurements and surface gravity observations are estimated. The response for both an oceanless earth and an earth with an inverted barometer ocean is calculated. Load responses for near-coastal stations are significantly affected by the inclusion of an inverted barometer ocean. Peak-to-peak vertical displacements are frequently 15-20 mm with accompanying gravity perturbations of 3-6 micro Gal. Baseline changes can be as large as 20 mm or more. The perturbations are largest at higher latitudes and during winter months. These amplitudes are consistent with the results of Rabbel and Zschau (1985), who modeled synoptic pressure disturbances as Gaussian functions of radius around a central point. Deformation can be adequately computed using real pressure data from points within about 1000 km of the station. Knowledge of local pressure, alone, is not sufficient. Rabbel and Zschau's hypothesized corrections for these displacements, which use local pressure and the regionally averaged pressure, prove accurate at points well inland but are, in general, inadequate within a few hundred kilometers of the coast.
Lacy, Robert C; Ballou, Jonathan D
1998-06-01
It has been hypothesized that natural selection reduces the "genetic load" of deleterious alleles from populations that inbreed during bottlenecks, thereby ameliorating impacts of future inbreeding. We tested the efficiency with which natural selection purges deleterious alleles from three subspecies of Peromyscus polionotus during 10 generations of laboratory inbreeding by monitoring pairing success, litter size, viability, and growth in 3604 litters produced from 3058 pairs. In P. p. subgriseus, there was no reduction across generations in inbreeding depression in any of the fitness components. Strongly deleterious recessive alleles may have been removed previously during episodes of local inbreeding in the wild, and the residual genetic load in this population was not further reduced by selection in the lab. In P. p. rhoadsi, four of seven fitness components did show a reduction of the genetic load with continued inbreeding. The average reduction in the genetic load was as expected if inbreeding depression in this population is caused by highly deleterious recessive alleles that are efficiently removed by selection. For P. p. leucocephalus a population that experiences periodic bottlenecks in the wild, the effect of further inbreeding in the laboratory was to exacerbate rather than reduce the genetic load. Recessive deleterious alleles may have been removed from this population during repeated bottlenecks in the wild; the population may be close to a threshold level of heterozygosity below which fitness declines rapidly. Thus, the effects of selection on inbreeding depression varied substantially among populations, perhaps due to different histories of inbreeding and selection. © 1998 The Society for the Study of Evolution.
Tsermoulas, Georgios; Flett, Lisa; Gregson, Barbara; Mitchell, Patrick
2013-08-01
Subarachnoid haemorrhage (SAH) may present with coma and this is known to be associated with aneurysmal origin and blood load. Aneurysmal origin is associated with increased blood load and existing data do not allow us to determine if the association between coma and aneurysmal SAH is wholly due to blood load or if aneurysmal origin has an additional independent effect. The objective of our study is to find if an aneurysmal origin is a predictor of acute onset of coma independent of blood load. A series of consecutive patients with spontaneous SAH were divided into two groups: aneurysmal (aSAH) and non-aneurysmal--angiographically negative SAH (naSAH). Blood load was quantified so that the effect of aneurysmal origin could be resolved from the effect of the amount of blood spilled. Non-parametric regression was used to relate blood load to coma and poor outcome rates for aneurysmal bleeds. We analysed a total of 421 patients presenting during the period 2009-2011. Ninety aneurysmal cases presented with coma, seventy immediately in the early phase and seven shortly after rebleeding. None of the naSAH cases presented with immediate coma and 1 developed delayed coma. Delayed coma was associated with acute hydrocephalus in both groups. Aneurysmal origin was found to be an independent determinant of immediate coma (p=0.02) and poor outcome (p<0.001). Immediate coma and poor outcome in SAH are associated with an aneurysmal origin and do not characterize naSAH. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tsend-Ayush, Altansukh; Zhu, Xiumei; Ding, Yu; Yao, Jianxu; Yin, Lifang; Zhou, Jianping; Yao, Jing
2017-05-01
Many effective anti-cancer drugs have limited use in hepatocellular carcinoma (HCC) therapy due to the drug resistance mechanisms in liver cells. In recent years, tumor-targeted drug delivery and the inhibition of drug-resistance-related mechanisms has become an integrated strategy for effectively combating chemo-resistant cancer. Herein, lactobionic acid-conjugated d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS-LA conjugate) has been developed as a potential asialoglycoprotein receptor (ASGPR)-targeted nanocarrier and an efficient inhibitor of P-glycoprotein (P-gp) to enhance etoposide (ETO) efficacy against HCC. The main properties of ETO-loaded TPGS-LA nanoparticles (NPs) were tested through in vitro and in vivo studies after being prepared using the nanoprecipitation method and characterized by dynamic light scattering (DLS). According to the results, smaller (˜141.43 nm), positively charged ETO-loaded TPGS-LA NPs were more suitable for providing efficient delivery to hepatoma cells by avoiding the clearance mechanisms. It was found that ETO-loaded TPGS-LA NPs were noticeably able to enhance the cytotoxicity of ETO in HepG2 cells. Besides this, markedly higher internalization by the ASGPR-overexpressed HepG2 cells and efficient accumulation at the tumor site in vivo were revealed in the TPGS-LA NP group. More importantly, animal studies confirmed that ETO-loaded TPGS-LA NPs achieved the highest therapeutic efficacy against HCC. Interestingly, ETO-loaded TPGS-LA NPs also exhibited a great inhibitory effect on P-gp compared to the ETO-loaded TPGS NPs. These results suggest that TPGS-LA NPs could be used as a potential ETO delivery system against HCC.
Nanoindentation cannot accurately predict the tensile strength of graphene or other 2D materials
NASA Astrophysics Data System (ADS)
Han, Jihoon; Pugno, Nicola M.; Ryu, Seunghwa
2015-09-01
Due to the difficulty of performing uniaxial tensile testing, the strengths of graphene and its grain boundaries have been measured in experiments by nanoindentation testing. From a series of molecular dynamics simulations, we find that the strength measured in uniaxial simulation and the strength estimated from the nanoindentation fracture force can differ significantly. Fracture in tensile loading occurs simultaneously with the onset of crack nucleation near 5-7 defects, while the graphene sheets often sustain the indentation loads after the crack initiation because the sharply concentrated stress near the tip does not give rise to enough driving force for further crack propagation. Due to the concentrated stress, strength estimation is sensitive to the indenter tip position along the grain boundaries. Also, it approaches the strength of pristine graphene if the tip is located slightly away from the grain boundary line. Our findings reveal the limitations of nanoindentation testing in quantifying the strength of graphene, and show that the loading-mode-specific failure mechanism must be taken into account in designing reliable devices from graphene and other technologically important 2D materials.Due to the difficulty of performing uniaxial tensile testing, the strengths of graphene and its grain boundaries have been measured in experiments by nanoindentation testing. From a series of molecular dynamics simulations, we find that the strength measured in uniaxial simulation and the strength estimated from the nanoindentation fracture force can differ significantly. Fracture in tensile loading occurs simultaneously with the onset of crack nucleation near 5-7 defects, while the graphene sheets often sustain the indentation loads after the crack initiation because the sharply concentrated stress near the tip does not give rise to enough driving force for further crack propagation. Due to the concentrated stress, strength estimation is sensitive to the indenter tip position along the grain boundaries. Also, it approaches the strength of pristine graphene if the tip is located slightly away from the grain boundary line. Our findings reveal the limitations of nanoindentation testing in quantifying the strength of graphene, and show that the loading-mode-specific failure mechanism must be taken into account in designing reliable devices from graphene and other technologically important 2D materials. Electronic ESI (ESI) available: Modelling of polycrystalline graphene, verification of loading speed, biaxial tensile simulations, comparison of stress distribution, size effects of indenter radius, force-deflection curves, and stability analysis of crack propagation. See DOI: 10.1039/c5nr04134a
The positional-specificity effect reveals a passive-trace contribution to visual short-term memory.
Postle, Bradley R; Awh, Edward; Serences, John T; Sutterer, David W; D'Esposito, Mark
2013-01-01
The positional-specificity effect refers to enhanced performance in visual short-term memory (VSTM) when the recognition probe is presented at the same location as had been the sample, even though location is irrelevant to the match/nonmatch decision. We investigated the mechanisms underlying this effect with behavioral and fMRI studies of object change-detection performance. To test whether the positional-specificity effect is a direct consequence of active storage in VSTM, we varied memory load, reasoning that it should be observed for all objects presented in a sub-span array of items. The results, however, indicated that although robust with a memory load of 1, the positional-specificity effect was restricted to the second of two sequentially presented sample stimuli in a load-of-2 experiment. An additional behavioral experiment showed that this disruption wasn't due to the increased load per se, because actively processing a second object--in the absence of a storage requirement--also eliminated the effect. These behavioral findings suggest that, during tests of object memory, position-related information is not actively stored in VSTM, but may be retained in a passive tag that marks the most recent site of selection. The fMRI data were consistent with this interpretation, failing to find location-specific bias in sustained delay-period activity, but revealing an enhanced response to recognition probes that matched the location of that trial's sample stimulus.
ERIC Educational Resources Information Center
Schuler, Anne; Scheiter, Katharina; Rummer, Ralf; Gerjets, Peter
2012-01-01
The study examined whether the modality effect is caused by either high visuo-spatial load or a lack of temporal contiguity when processing written text and pictures. Students (N = 147) viewed pictures on the development of tornados, which were accompanied by either spoken or written explanations presented simultaneously with, before, or after the…
Analysis and Design of Variable Stiffness Composite Cylinders
NASA Technical Reports Server (NTRS)
Tatting, Brian F.; Guerdal, Zafer
1998-01-01
An investigation of the possible performance improvements of thin circular cylindrical shells through the use of the variable stiffness concept is presented. The variable stiffness concept implies that the stiffness parameters change spatially throughout the structure. This situation is achieved mainly through the use of curvilinear fibers within a fiber-reinforced composite laminate, though the possibility of thickness variations and discrete stiffening elements is also allowed. These three mechanisms are incorporated into the constitutive laws for thin shells through the use of Classical Lamination Theory. The existence of stiffness variation within the structure warrants a formulation of the static equilibrium equations from the most basic principles. The governing equations include sufficient detail to correctly model several types of nonlinearity, including the formation of a nonlinear shell boundary layer as well as the Brazier effect due to nonlinear bending of long cylinders. Stress analysis and initial buckling estimates are formulated for a general variable stiffness cylinder. Results and comparisons for several simplifications of these highly complex governing equations are presented so that the ensuing numerical solutions are considered reliable and efficient enough for in-depth optimization studies. Four distinct cases of loading and stiffness variation are chosen to investigate possible areas of improvement that the variable stiffness concept may offer over traditional constant stiffness and/or stiffened structures. The initial investigation deals with the simplest solution for cylindrical shells in which all quantities are constant around the circumference of the cylinder. This axisymmetric case includes a stiffness variation exclusively in the axial direction, and the only pertinent loading scenarios include constant loads of axial compression, pressure, and torsion. The results for these cases indicate that little improvement over traditional laminates exists through the use of curvilinear fibers, mainly due to the presence of a weak link area within the stiffness variation that limits the ultimate load that the structure can withstand. Rigorous optimization studies reveal that even though slight increases in the critical loads can be produced for designs with an arbitrary variation of the fiber orientation angle, the improvements are not significant when compared to traditional design techniques that utilize ring stiffeners and frames. The second problem that is studied involves arbitrary loading of a cylinder with a stiffness variation that changes only in the circumferential direction. The end effects of the cylinder are ignored, so that the problem takes the form of an analysis of a cross-section for a short cylinder segment. Various load cases including axial compression, pressure, torsion, bending, and transverse shear forces are investigated. It is found that the most significant improvements in load-carrying capability exist for cases which involve loads that also vary around the circumference of the shell, namely bending and shear forces. The stiffness variation of the optimal designs contribute to the increased performance in two ways: lowering the stresses in the critical areas through redistribution of the stresses; and providing a relatively stiff region that alters the buckling behavior of the structure. These results lead to an in-depth optimization study involving weight optimization of a fuselage structure subjected to typical design constraints. Comparisons of the curvilinear fiber format to traditional stiffened structures constructed of isotropic and composite materials are included. It is found that standard variable stiffness designs are quite comparable in terms of weight and load-carrying capability yet offer the added advantage of tailorability of distinct regions of the structure that experience drastically different loading conditions. The last two problems presented in this work involve the nonlinear phenomenon of long tubes under bending. Though this scenario is not as applicable to fuselage structures as the previous problems, the mechanisms that produce the nonlinear effect are ideally suited to be controlled by the variable stiffness concept. This is due to the fact that the dominating influence for long cylinders under bending is the ovalization of the cross-section, which is governed mainly by the stiffness parameters of the cylindrical shell. Possible improvement of the critical buckling moments for these structures is investigated using either a circumferential or axial stiffness variation. For the circumferential case involving infinite length cylinders, it is found that slight improvements can be observed by designing structures that resist the cross-sectional deformation yet do not detract from the buckling resistance at the critical location. The results also indicate that buckling behavior is extremely dependent on cylinder length. This effect is most easily seen in the solution of finite length cylinders under bending that contain an axial stiffness variation. For these structures, the only mechanism that exhibits improved response are those that effectively shorten the length of the cylinder, thus reducing the cross-sectional deformation due to the forced restraint at the ends. It was found that the use of curvilinear fibers was not able to achieve this effect in sufficient degree to resist the deformation, but that ring stiffeners produced the desired response admirably. Thus, it is shown that the variable stiffness concept is most effective at improving the bending response of long cylinders through the use of a circumferential stiffness variation.
Walker, Simon; Cambiano, Valentina; Phillips, Andrew; Sculpher, Mark J.
2018-01-01
Background The WHO HIV Treatment Guidelines suggest routine viral-load monitoring can be used to differentiate antiretroviral therapy (ART) delivery and reduce the frequency of clinic visits for patients stable on ART. This recommendation was informed by economic analysis that showed the approach is very likely to be cost-effective, even in the most resource constrained of settings. The health benefits were shown to be modest but the costs of introducing and scaling up viral load monitoring can be offset by anticipated reductions in the costs of clinic visits, due to these being less frequent for many patients. Key issues for economic evaluation The cost-effectiveness of introducing viral-load informed differentiated care depends upon whether cost reductions are possible if the number of clinic visits is reduced and/or how freed clinic capacity is used for alternative priorities. Where freed resources, either physical or financial, generate large health gains (e.g. if committed to patients failing ART or to other high value health care interventions), the benefits of differentiated care are expected to be high; if however these freed physical resources are already under-utilized or financial resources are used less efficiently and would not be put to as beneficial an alternative use, the policy may not be cost-effective. The implication is that the use of conventional unit costs to value resources may not well reflect the latter’s value in contributing to health improvement. Analyses intended to inform resource allocated decisions in a number of settings may therefore have to be interpreted with due consideration to local context. In this paper we present methods of how economic analyses can reflect the real value of health care resources rather than simply applying their unit costs. The analyses informing the WHO Guidelines are re-estimated by implementing scenarios using this framework, informing how differentiated care can be prioritized to generate greatest gains in population health. Implications The findings have important implications for how economic analyses should be undertaken and reported in HIV and other disease areas. Results provide guidance on conditions under which viral load informed differentiated care will more likely prove to be cost effective when implemented. PMID:29293611
The effect of carbon black loading and structure on tensile property of natural rubber composite
NASA Astrophysics Data System (ADS)
Savetlana, S.; Zulhendri; Sukmana, I.; Saputra, F. A.
2017-07-01
Natural rubber composite has been continuously developed due to its advantages such as a good combination of strength and damping property. Most of carbon black (CB)/Natural Rubber (NR) composite were used as material in tyre industry. The addition of CB in natural rubber is very important to enhance the strength of natural rubber. The particle loading and different structure of CB can affect the composite strength. The effects of CB particle loading of 20, 25 and 30 wt% and the effects of CB structures of N220, N330, N550 and N660 series on tensile property of composite were investigated. The result shows that the tensile strength and elastic modulus of natural rubber/CB composite was higher than pure natural rubber. From SEM observation the agglomeration of CB aggregate increases with particle loading. It leads to decrease of tensile strength of composite as more particle was added. High structure of CB particle i.e. N220 resulted in highest tensile stress. In fact, composite reinforced by N660 CB particle shown a comparable tensile strength and elastic modulus with N220 CB particle. SEM observation shows that agglomeration of CB aggregates of N330 and N550 results in lower stress of associate NR/CB composite.
NASA Astrophysics Data System (ADS)
Tarroja, Brian; Eichman, Joshua D.; Zhang, Li; Brown, Tim M.; Samuelsen, Scott
2015-03-01
A study has been performed that analyzes the effectiveness of utilizing plug-in vehicles to meet holistic environmental goals across the combined electricity and transportation sectors. In this study, plug-in hybrid electric vehicle (PHEV) penetration levels are varied from 0 to 60% and base renewable penetration levels are varied from 10 to 63%. The first part focused on the effect of installing plug-in hybrid electric vehicles on the environmental performance of the combined electricity and transportation sectors. The second part addresses impacts on the design and operation of load-balancing resources on the electric grid associated with fleet capacity factor, peaking and load-following generator capacity, efficiency, ramp rates, start-up events and the levelized cost of electricity. PHEVs using smart charging are found to counteract many of the disruptive impacts of intermittent renewable power on balancing generators for a wide range of renewable penetration levels, only becoming limited at high renewable penetration levels due to lack of flexibility and finite load size. This study highlights synergy between sustainability measures in the electric and transportation sectors and the importance of communicative dispatch of these vehicles.
Transient Three-Dimensional Side Load Analysis of a Film Cooled Nozzle
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Guidos, Mike
2008-01-01
Transient three-dimensional numerical investigations on the side load physics for an engine encompassing a film cooled nozzle extension and a regeneratively cooled thrust chamber, were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Ultimately, the computational results will be provided to the nozzle designers for estimating of effect of the peak side load on the nozzle structure. Computations simulating engine startup at ambient pressures corresponding to sea level and three high altitudes were performed. In addition, computations for both engine startup and shutdown transients were also performed for a stub nozzle, operating at sea level. For engine with the full nozzle extension, computational result shows starting up at sea level, the peak side load occurs when the lambda shock steps into the turbine exhaust flow, while the side load caused by the transition from free-shock separation to restricted-shock separation comes at second; and the side loads decreasing rapidly and progressively as the ambient pressure decreases. For the stub nozzle operating at sea level, the computed side loads during both startup and shutdown becomes very small due to the much reduced flow area.
Ignasiak, Dominika; Rüeger, Andrea; Sperr, Ramona; Ferguson, Stephen J
2018-03-21
Excessive mechanical loading of the spine is a critical factor in vertebral fracture initiation. Most vertebral fractures develop spontaneously or due to mild trauma, as physiological loads during activities of daily living might exceed the failure load of osteoporotic vertebra. Spinal loading patterns are affected by vertebral kinematics, which differ between elderly and young individuals. In this study, the effects of age-related changes in spine kinematics on thoracolumbar spinal segmental loading during dynamic activities of daily living were investigated using combined experimental and modeling approach. Forty-four healthy volunteers were recruited into two age groups: young (N = 23, age = 27.1 ± 3.8) and elderly (N = 21, age = 70.1 ± 3.9). The spinal curvature was assessed with a skin-surface device and the kinematics of the spine and lower extremities were recorded during daily living tasks (flexion-extension and stand-sit-stand) with a motion capture system. The obtained data were used as input for a musculoskeletal model with a detailed thoracolumbar spine representation. To isolate the effect of kinematics on predicted loads, other model properties were kept constant. Inverse dynamics simulations were performed in the AnyBody Modeling System to estimate corresponding spinal loads. The maximum compressive loads predicted for the elderly motion patterns were lower than those of the young for L2/L3 and L3/L4 lumbar levels during flexion and for upper thoracic levels during stand-to-sit (T1/T2-T8/T9) and sit-to-stand (T3/T4-T6/T7). However, the maximum loads predicted for the lower thoracic levels (T9/T10-L1/L2), a common site of vertebral fractures, were similar compared to the young. Nevertheless, these loads acting on the vertebrae of reduced bone quality might contribute to a higher fracture risk for the elderly. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of subglottal and supraglottal acoustic loading on voice production
NASA Astrophysics Data System (ADS)
Zhang, Zhaoyan; Mongeau, Luc; Frankel, Steven
2002-05-01
Speech production involves sound generation by confined jets through an orifice (the glottis) with a time-varying area. Predictive models are usually based on the quasi-steady assumption. This assumption allows the complex unsteady flows to be treated as steady flows, which are more effectively modeled computationally. Because of the reflective properties of the human lungs, trachea and vocal tract, subglottal and supraglottal resonance and other acoustic effects occur in speech, which might affect glottal impedance, especially in the regime of unsteady flow separation. Changes in the flow structure, or flow regurgitation due to a transient negative transglottal pressure, could also occur. These phenomena may affect the quasi-steady behavior of speech production. To investigate the possible effects of the subglottal and supraglottal acoustic loadings, a dynamic mechanical model of the larynx was designed and built. The subglottal and supraglottal acoustic loadings are simulated using an expansion in the tube upstream of the glottis and a finite length tube downstream, respectively. The acoustic pressures of waves radiated upstream and downstream of the orifice were measured and compared to those predicted using a model based on the quasi-steady assumption. A good agreement between the experimental data and the predictions was obtained for different operating frequencies, flow rates, and orifice shapes. This supports the validity of the quasi-steady assumption for various subglottal and supraglottal acoustic loadings.
NASA Astrophysics Data System (ADS)
Surya, I.; Hayeemasae, N.
2018-03-01
The effects of alkanolamide (ALK) addition on crosslink density, mechanical and morphological properties of unfilled polychloroprene rubber (CR) compounds were investigated. The ALK was prepared from Refined Bleached Deodorized Palm Stearin (RBDPS) and diethanolamine and -together with magnesium and zinc oxides-incorporated into the unfilled CR compounds. The ALK loadings were 0.5, 1.0, 1.5 and 2.0 phr. It was found that ALK enhanced crosslink density, tensile modulus, tensile strength and hardness especially up to a 1.5 phr loading. Scanning Electron Microscopy (SEM) proved that the 1.5 phr of ALK exhibited the greatest matrix tearing line and surface roughness, due to the highest degree of crosslink density and mechanical properties.
A Summary Report on the NPH Evaluation of 105-L Disassembly Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, J.R.
2002-04-30
The L Area Disassembly Basin (LDB) is evaluated for the natural phenomena hazards (NPH) effects due to earthquake, wind, and tornado in accordance with DOE Order 420.1 and DOE-STD-1020. The deterministic analysis is performed for a Performance Category 3 (PC3) level of loads. Savannah River Site (SRS) specific NPH loads and design criteria are obtained from Engineering Standard 01060. It is demonstrated that the demand to capacity (D/C) ratios for primary and significant structural elements are acceptable (equal to or less than 1.0). Thus, 105-L Disassembly Basin building structure is qualified for the PC3 NPH effects in accordance with DOEmore » Order 420.1.« less
Analysis of Delamination Growth from Matrix Cracks in Laminates Subjected to Bending Loads
NASA Technical Reports Server (NTRS)
Murri, G. B.; Guynn, E. G.
1986-01-01
A major source of delamination damage in laminated composite materials is from low-velocity impact. In thin composite laminates under point loads, matrix cracks develop first in the plies, and delaminations then grow from these cracks at the ply interfaces. The purpose of this study was to quantify the combined effects of bending and transverse shear loads on delamination initiation from matrix cracks. Graphite-epoxy laminates with 90 deg. plies on the outside were used to provide a two-dimensional simulation of the damage due to low-velocity impact. Three plate bending problems were considered: a 4-point bending, 3-point bending, and an end-clamped center-loaded plate. Under bending, a matrix crack will form on the tension side of the laminate, through the outer 90 deg. plies and parallel to the fibers. Delaminations will then grow in the interface between the cracked 90 deg. ply and the next adjacent ply. Laminate plate theory was used to derive simple equations relating the total strain energy release rate, G, associated with the delamination growth from a 90 deg. ply crack to the applied bending load and laminate stiffness properties. Three different lay-ups were tested and results compared. Test results verified that the delamination always formed at the interface between the cracked 90 deg. ply and the next adjacent ply. Calculated values for total G sub c from the analysis showed good agreement for all configurations. The analysis was able to predict the delamination onset load for the cases considered. The result indicated that the opening mode component (Mode I) for delamination growth from a matrix crack may be much larger than the component due to interlaminar shear (Mode II).
Pamukoglu, M Yunus; Kargi, Fikret
2007-09-05
Copper(II) ion toxicity onto activated sludge organisms was eliminated by addition of powdered waste sludge (PWS) to the feed wastewater for removal of Cu(II) ions by biosorption before biological treatment. The synthetic feed wastewater containing 14 or 22 mgl(-1) Cu(II) was mixed with PWS in a mixing tank where Cu(II) ions were adsorbed onto PWS and the mixture was fed to a sedimentation tank to separate Cu(II) containing PWS from the feed wastewater. The activated sludge unit fed with the effluent of the sedimentation tank was operated at a hydraulic residence time (HRT) of 10h and sludge age (SRT) of 10 days. To investigate Cu(II), COD and toxicity removal performance of the activated sludge unit at different PWS loadings, the system was operated at different PWS loading rates (0.1-1 gPWSh(-1)) while the Cu(II) loading rate was constant throughout the operation. Percent copper, COD and toxicity removals increased with increasing PWS loading rate due to increased adsorption of Cu(II) onto PWS yielding low Cu(II) contents in the feed. Biomass concentration in the aeration tank increased and the sludge volume index (SVI) decreased with increasing PWS loading rate due to elimination of Cu(II) from the feed wastewater by PWS addition. PWS addition to the Cu(II) containing wastewater was proven to be effective for removal of Cu(II) by biosorption before biological treatment. Approximately, 1 gPWSh(-1) should be added for 28 mgCuh(-1) loading rate for complete removal of Cu(II) from the feed wastewater to obtain high COD removals in the activated sludge unit.
Athlete's Heart: Is the Morganroth Hypothesis Obsolete?
Haykowsky, Mark J; Samuel, T Jake; Nelson, Michael D; La Gerche, Andre
2018-05-01
In 1975, Morganroth and colleagues reported that the increased left ventricular (LV) mass in highly trained endurance athletes versus nonathletes was primarily due to increased end-diastolic volume while the increased LV mass in resistance trained athletes was solely due to an increased LV wall thickness. Based on the divergent remodelling patterns observed, Morganroth and colleagues hypothesised that the increased "volume" load during endurance exercise may be similar to that which occurs in patients with mitral or aortic regurgitation while the "pressure" load associated with performing a Valsalva manoeuvre (VM) during resistance exercise may mimic the stress imposed on the heart by systemic hypertension or aortic stenosis. Despite widespread acceptance of the four-decade old Morganroth hypothesis in sports cardiology, some investigators have questioned whether such a divergent "athlete's heart" phenotype exists. Given this uncertainty, the purpose of this brief review is to re-evaluate the Morganroth hypothesis regarding: i) the acute effects of resistance exercise performed with a brief VM on LV wall stress, and the patterns of LV remodelling in resistance-trained athletes; ii) the acute effects of endurance exercise on biventricular wall stress, and the time course and pattern of LV and right ventricular (RV) remodelling with endurance training; and iii) the value of comparing "loading" conditions between athletes and patients with cardiac pathology. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Raethong, P.; Boonkerd, K.
2017-07-01
Adhesion property of natural rubber (NR) and reclaimed natural rubber (RNR) based sealant with concrete was studied here. The effect of tackifier type and loading on the tensile properties of the rubber based sealant sandwished between two flat cements was evaluated. There are three different tackifiers including Coumarone-indene resin (CI), petro resin (PE) and gum rosin (GR). The result initially showed that at the 20 phr of tackifier both NR and RNR sealant mixed with CI consumed the highest force to separate the rubber based sealant from the concrete. This might be due to the highest compatiblility between CI and rubber. Regardless of the tackifier type, all NR based sealants showed the cohesive failure while all RNR based sealants only showed the adhesive failure. Moreover, the NR based sealant seemed to be stronger than the RNR based one. When considering the effect of CI loading on the adhesion, it was shown that for both NR and RNR based sealents, the highest stress was observed when the rubber based sealant loaded with the 20 phr of CI.
NASA Astrophysics Data System (ADS)
Wang, Chuan; Ma, Chao; Wu, Zhenkai; Liang, He; Yan, Peng; Song, Jia; Ma, Nan; Zhao, Qinghua
2015-11-01
Nanofibers have attracted increasing attention in drug delivery and other biomedical applications due to their some special properties. The present study aims to prepare a fiber-based nanosolid dispersion system to enhance the bioavailability of curcumin (CUR). CUR-loaded polyvinyl pyrrolidone (CUR@PVP) nanofibers were successfully prepared via electrospinning. Scanning electron microscopy (SEM) was employed to observe the morphology of the nanofibers, and the SEM image showed that the drug-loaded nanofibers were smooth, and no CUR clusters were found on the surface of the nanofibers. The results of X-ray diffraction (XRD) demonstrated that the CUR was evenly distributed in the nanofibers in an amorphous state. Fourier transform infrared (FTIR) spectroscopy analysis indicated that intermolecular hydrogen bonding occurred between the CUR and the polymer matrix. In vitro dissolution profiles showed that CUR@PVP nanofiber could be quickly dissolved in phosphate-buffered saline (PBS) solution, while negligible dissolution was observed in pure CUR sample. Importantly, in vitro cell viability assays and in vivo animal tests revealed that the nanosolid dispersion system dramatically enhanced the bioavailability and showed effective anticancer effect of the CUR.
Plastic Deformation of Magnesium Alloy Subjected to Compression-First Cyclic Loading
NASA Astrophysics Data System (ADS)
Lee, Soo Yeol; Gharghouri, Michael A.; Root, John H.
In-situ neutron diffraction has been employed to study the deformation mechanisms in a precipitation-hardened and extruded Mg-8.5wt.% Al alloy subjected to compression followed by reverse tension. The starting texture is such that the basal poles of most grains are oriented normal to the extrusion axis and a small portion of grains are oriented with the basal pole parallel to the extrusion axis. Diffraction peak intensities for several grain orientations monitored in-situ during deformation show that deformation twinning plays an important role in the elastic-plastic transition and subsequent plastic deformation behavior. Significant non-linear behavior is observed during unloading after compression and appears to be due to detwinning. This effect is much stronger after compressive loading than after tensile loading.
Flicker Detection, Measurement and Means of Mitigation: A Review
NASA Astrophysics Data System (ADS)
Virulkar, V. B.; Aware, M. V.
2014-04-01
The voltage fluctuations caused by rapid industrial load change have been a major concern for supply utilities, regulatory agencies and customers. This paper gives a general review about how to examine/assess voltage flicker and methods followed in measuring the flickers due to rapid changing loads and means for its mitigation. It discusses the effects on utilities conditions, compensators response time and compensator capacity of flicker mitigation. A comparison between conventional mitigation techniques and the state-of-art mitigation techniques are carried out. It is shown in many cases that the state-of-art solution provides higher performance compared with conventional mitigation techniques. However, the choice of most suitable solution depends on characteristics of the supply at the point of connection, the requirement of the load and economics.
Smits, Marianne; Vanpachtenbeke, Floris; Horemans, Benjamin; De Wael, Karolien; Hauchecorne, Birger; Van Langenhove, Herman; Demeestere, Kristof; Lenaerts, Silvia
2012-01-01
Small stationary diesel engines, like in generator sets, have limited emission control measures and are therefore responsible for 44% of the particulate matter (PM) emissions in the United States. The diesel exhaust composition depends on operating conditions of the combustion engine. Furthermore, the measurements are influenced by the used sampling method. This study examines the effect of engine loading and exhaust gas dilution on the composition of small-scale power generators. These generators are used in different operating conditions than road-transport vehicles, resulting in different emission characteristics. Experimental data were obtained for gaseous volatile organic compounds (VOC) and PM mass concentration, elemental composition and nitrate content. The exhaust composition depends on load condition because of its effect on fuel consumption, engine wear and combustion temperature. Higher load conditions result in lower PM concentration and sharper edged particles with larger aerodynamic diameters. A positive correlation with load condition was found for K, Ca, Sr, Mn, Cu, Zn and Pb adsorbed on PM, elements that originate from lubricating oil or engine corrosion. The nitrate concentration decreases at higher load conditions, due to enhanced nitrate dissociation to gaseous NO at higher engine temperatures. Dilution on the other hand decreases PM and nitrate concentration and increases gaseous VOC and adsorbed metal content. In conclusion, these data show that operating and sampling conditions have a major effect on the exhaust gas composition of small-scale diesel generators. Therefore, care must be taken when designing new experiments or comparing literature results. PMID:22442670
Kilin, Vasyl N; Anton, Halina; Anton, Nicolas; Steed, Emily; Vermot, Julien; Vandamme, Thierry F; Mely, Yves; Klymchenko, Andrey S
2014-06-01
Superior brightness of fluorescent nanoparticles places them far ahead of the classical fluorescent dyes in the field of biological imaging. However, for in vivo applications, inorganic nanoparticles, such as quantum dots, are limited due to the lack of biodegradability. Nano-emulsions encapsulating high concentrations of organic dyes are an attractive alternative, but classical fluorescent dyes are inconvenient due to their poor solubility in the oil and their tendency to form non-fluorescent aggregates. This problem was solved here for a cationic cyanine dye (DiI) by substituting its perchlorate counterion for a bulky and hydrophobic tetraphenylborate. This new dye salt, due to its exceptional oil solubility, could be loaded at 8 wt% concentration into nano-droplets of controlled size in the range 30-90 nm. Our 90 nm droplets, which contained >10,000 cyanine molecules, were >100-fold brighter than quantum dots. This extreme brightness allowed, for the first time, single-particle tracking in the blood flow of live zebrafish embryo, revealing both the slow and fast phases of the cardiac cycle. These nano-droplets showed minimal cytotoxicity in cell culture and in the zebrafish embryo. The concept of counterion-based dye loading provides a new effective route to ultra-bright lipid nanoparticles, which enables tracking single particles in live animals, a new dimension of in vivo imaging. Copyright © 2014 Elsevier Ltd. All rights reserved.
Surface structural damage study in cortical bone due to medical drilling.
Tavera R, Cesar G; De la Torre-I, Manuel H; Flores-M, Jorge M; Hernandez M, Ma Del Socorro; Mendoza-Santoyo, Fernando; Briones-R, Manuel de J; Sanchez-P, Jorge
2017-05-01
A bone's fracture could be produced by an excessive, repetitive, or sudden load. A regular medical practice to heal it is to fix it in two possible ways: external immobilization, using a ferule, or an internal fixation, using a prosthetic device commonly attached to the bone by means of surgical screws. The bone's volume loss due to this drilling modifies its structure either in the presence or absence of a fracture. To observe the bone's surface behavior caused by the drilling effects, a digital holographic interferometer is used to analyze the displacement surface's variations in nonfractured post-mortem porcine femoral bones. Several nondrilled post-mortem bones are compressed and compared to a set of post-mortem bones with a different number of cortical drillings. During each compression test, a series of digital interferometric holograms were recorded using a high-speed CMOS camera. The results are presented as pseudo 3D mesh displacement maps for comparisons in the physiological range of load (30 and 50 lbs) and beyond (100, 200, and 400 lbs). The high resolution of the optical phase gives a better understanding about the bone's microstructural modifications. Finally, a relationship between compression load and bone volume loss due to the drilling was observed. The results prove that digital holographic interferometry is a viable technique to study the conditions that avoid the surgical screw from loosening in medical procedures of this kind.
On femtosecond laser shock peening of stainless steel AISI 316
NASA Astrophysics Data System (ADS)
Hoppius, Jan S.; Kukreja, Lalit M.; Knyazeva, Marina; Pöhl, Fabian; Walther, Frank; Ostendorf, Andreas; Gurevich, Evgeny L.
2018-03-01
In this paper we report on the competition in metal surface hardening between the femtosecond shock peening on the one hand, and formation of laser-induced periodic surface structures (LIPSS) and surface oxidation on the other hand. Peening of the stainless steel AISI 316 due to shock loading induced by femtosecond laser ablation was successfully demonstrated. However, for some range of processing parameters, surface erosion due to LIPSS and oxidation seems to dominate over the peening effect. Strategies to increase the peening efficiency are discussed.
NASA Astrophysics Data System (ADS)
Stančík, Vojtěch; Ryjáček, Pavel; Vokáč, Miroslav
2017-09-01
In modern slab tracks the continuously welded rail (CWR) is coupled through the fastening system with the substructure. The resulting restriction of expansion movement causes significant rail stress increments, which in the case of extreme loading may cause rail failures. These interaction phenomenon effects are naturally higher on a bridge due to different deformation capabilities of the bridge and the CWR. The presented contribution aims at investigating the state of the art European direct fastening system that is suitable for application on steel bridges. Analysis involves experimental determination of its nonlinear longitudinal interaction parameters under various vertical loads and numerical validation. During experimental procedures a two and a half meter long laboratory sample equipped with four nodes of the Vossloh DFF 300 was tested. There have been checked both DFF 300 modifications using the skl 15 tension clamps and the low resistance skl B15 tension clamps. The effects of clamping force lowering on the interaction parameters have also been investigated. Results are discussed in the paper.
Snow load effect on earth's rotation and gravitational field, 1979-1985
NASA Technical Reports Server (NTRS)
Chao, B. Fong; O'Connor, William P.; Chang, Alfred T. C.; Hall, Dorothy K.; Foster, James L.
1987-01-01
A global, monthly snow depth data set has been generated from the Nimbus 7 satellite observations using passive microwave remote-sensing techniques. Seven years of data, 1979-1985, are analyzed to compute the snow load effects on the earth's rotation and low-degree zonal gravitational field. The resultant time series show dominant seasonal cycles. The annual peak-to-peak variation in J2 is found to be 2.3 x 10 to the -10th, that in J3 to be 1.1 x 10 to the -10th, and believed to decrease rapidly for higher degrees. The corresponding change in the length of day is 41 micro-s. The annual wobble excitation is (4.9 marc sec, -109 deg) for the prograde motion component and (4.8 marc sec, -28 deg) for the retrograde motion component. The excitation power of the Chandler wobble due to the snow load is estimated to be about 25 dB less than the power needed to maintain the observed Chandler wobble.
Rolling Moments Due to Rolling and Yaw for Four Wing Models in Rotation
NASA Technical Reports Server (NTRS)
Knight, Montgomery; Wenzinger, Carl J
1932-01-01
This report presents the results of a series of autorotation and torque tests on four different rotating wing systems at various rates of roll and at several angles of yaw. The investigation covered an angle of attack range up to 90 degrees and angles of yaw of 0 degree, 5 degrees, 10 degrees, and 20 degrees. The tests were made in a 5-foot, closed-throat atmospheric wind tunnel. The object of the tests was primarily to determine the effects of various angles of yaw on the rolling moments of the rotating wings up to large angles of attack. It was found that at angles of attack above that of maximum lift the rolling moments on the wings due to yaw (or side slip) from 5 degrees to 20 degrees were roughly of the same magnitude as those due to rolling. There was a wide variation in magnitude of the rolling moment due to yaw angle. The rates and ranges of stable autorotation for the monoplane models were considerably increased by yaw, whereas for an unstaggered biplane they were little affected. The immediate cause of the rolling moment due to yaw is apparently the building up of large loads on the forward wing tip and the reduction of loads on the rearward wing tip.
Cognitive Load Does Not Affect the Behavioral and Cognitive Foundations of Social Cooperation.
Mieth, Laura; Bell, Raoul; Buchner, Axel
2016-01-01
The present study serves to test whether the cognitive mechanisms underlying social cooperation are affected by cognitive load. Participants interacted with trustworthy-looking and untrustworthy-looking partners in a sequential Prisoner's Dilemma Game. Facial trustworthiness was manipulated to stimulate expectations about the future behavior of the partners which were either violated or confirmed by the partners' cheating or cooperation during the game. In a source memory test, participants were required to recognize the partners and to classify them as cheaters or cooperators. A multinomial model was used to disentangle item memory, source memory and guessing processes. We found an expectancy-congruent bias toward guessing that trustworthy-looking partners were more likely to be associated with cooperation than untrustworthy-looking partners. Source memory was enhanced for cheating that violated the participants' positive expectations about trustworthy-looking partners. We were interested in whether or not this expectancy-violation effect-that helps to revise unjustified expectations about trustworthy-looking partners-depends on cognitive load induced via a secondary continuous reaction time task. Although this secondary task interfered with working memory processes in a validation study, both the expectancy-congruent guessing bias as well as the expectancy-violation effect were obtained with and without cognitive load. These findings support the hypothesis that the expectancy-violation effect is due to a simple mechanism that does not rely on demanding elaborative processes. We conclude that most cognitive mechanisms underlying social cooperation presumably operate automatically so that they remain unaffected by cognitive load.
Assessment of an improved hydrological loading model from space geodesy: case study in South America
NASA Astrophysics Data System (ADS)
Nicolas, Joëlle; Boy, Jean-Paul; Durand, Frédéric; Mémin, Anthony
2017-04-01
Loading effects are crustal deformations induced by ocean, atmosphere and continental water mass redistributions. In this study we focus on hydrological loading effect monitored by space geodesy and in particular by GNSS and GRACE. Classically, hydrological loading models take into account snow and soil-moisture but don't consider surface waters (rivers, lakes…). As a result, huge discrepancies between GPS observations and those models arise around large rivers such as the Amazon where nearly half of the vertical signal cannot be explained by the combination of atmospheric, oceanic and hydrological loading models. To better resolve the hydrological signal, we improve the continental water storage models computed from soil-moisture and snow GLDAS/Noah or MERRA data sets by including surface water runoff. We investigate how continental water storage model improvements are supported by GNSS and GRACE observations in South America main river basins: Amazon, Orinoco and Parana. In this area the hydrological effects are among the largest in the world mainly due to the river level variations. We present the results of time series analyses with spectral and principal component analysis (PCA) methods. We extract the dominant spatio-temporal annual mode. We also identify and characterize the spatio-temporal changes in the annual hydrology signal, which is the key to a better understanding of the water cycle variations of those major rivers. We demonstrate that it is crucial to take into account the river contribution in fluid signatures before investigating high-frequency variability and episodic events.
Transfer of movement sequences: bigger is better.
Dean, Noah J; Kovacs, Attila J; Shea, Charles H
2008-02-01
Experiment 1 was conducted to determine if proportional transfer from "small to large" scale movements is as effective as transferring from "large to small." We hypothesize that the learning of larger scale movement will require the participant to learn to manage the generation, storage, and dissipation of forces better than when practicing smaller scale movements. Thus, we predict an advantage for transfer of larger scale movements to smaller scale movements relative to transfer from smaller to larger scale movements. Experiment 2 was conducted to determine if adding a load to a smaller scale movement would enhance later transfer to a larger scale movement sequence. It was hypothesized that the added load would require the participants to consider the dynamics of the movement to a greater extent than without the load. The results replicated earlier findings of effective transfer from large to small movements, but consistent with our hypothesis, transfer was less effective from small to large (Experiment 1). However, when a load was added during acquisition transfer from small to large was enhanced even though the load was removed during the transfer test. These results are consistent with the notion that the transfer asymmetry noted in Experiment 1 was due to factors related to movement dynamics that were enhanced during practice of the larger scale movement sequence, but not during the practice of the smaller scale movement sequence. The findings that the movement structure is unaffected by transfer direction but the movement dynamics are influenced by transfer direction is consistent with hierarchal models of sequence production.
Influence of beam-loaded effects on phase-locking in the high power microwave oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhenghong; Zhou, Zhigang; Qiu, Rong
2014-06-15
Owing to the power limitation of a single device, much more attentions are focused on developing high power microwave (HPM) oscillators that can be phase-locked to the external signal in the recent HPM researches. Although the phase-locking is proved to be feasible in the conventional devices (such as magnetrons), challenges still exist in the HPM devices due to beam-loaded effects, which are more obvious in HPM devices because of its high current and the low Q-factor of the device. A simple structured HPM oscillator (Bitron) is introduced to study such effects on the phase-locking in the HPM oscillator. The self-consistentmore » analysis is carried out to study such effects together with particle in cell simulations. Then the modified Adler equation is established for the phase-locking HPM oscillator. Finally, conditions for the phase-locking in the HPM oscillator are given.« less
TRANSIENT BEAM LOADING EFFECTS IN RF SYSTEMS IN JLEIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Haipeng; Guo, Jiquan; Rimmer, Robert A.
2016-05-01
The pulsed electron bunch trains generated from the Continuous Electron Beam Accelerator Facility (CEBAF) linac to inject into the proposed Jefferson Lab Electron Ion Collider (JLEIC) e-ring will produce transient beam loading effects in the Superconducting Radio Frequency (SRF) systems that, if not mitigated, could cause unacceptably large beam energy deviation in the injection capture, or exceed the energy acceptance of CEBAF’s recirculating arcs. In the electron storage ring, the beam abort or ion clearing gaps or uneven bucket filling can cause large beam phase transients in the (S)RF cavity control systems and even beam loss due to Robinson instability.more » We have first analysed the beam stability criteria in steady state and estimated the transient effect in Feedforward and Feedback RF controls. Initial analytical models for these effects are shown for the design of the JLEIC e-ring from 3GeV to 12GeV.« less
Langohr, G Daniel G; Giles, Joshua W; Athwal, George S; Johnson, James A
2015-06-01
Little is known about the effects of glenosphere diameter on shoulder joint loads. The purpose of this biomechanical study was to investigate the effects of glenosphere diameter on joint load, load angle, and total deltoid force required for active abduction and range of motion in internal/external rotation and abduction. A custom, instrumented reverse shoulder arthroplasty implant system capable of measuring joint load and varying glenosphere diameter (38 and 42 mm) and glenoid offset (neutral and lateral) was implanted in 6 cadaveric shoulders to provide at least 80% power for all variables. A shoulder motion simulator was used to produce active glenohumeral and scapulothoracic motion. All implant configurations were tested with active and passive motion with joint kinematics, loads, and moments recorded. At neutral and lateralized glenosphere positions, increasing diameter significantly increased joint load (+12 ± 21 N and +6 ± 9 N; P < .01) and deltoid load required for active abduction (+9 ± 22 N and +11 ± 15 N; P < .02), whereas joint load angle was unaffected (P > .8). Passive internal rotation was reduced with increased diameter at both neutral and lateralized glenosphere positions (-6° ± 6° and -12° ± 6°; P < .002); however, external rotation was not affected (P > .05). At neutral glenosphere position, increasing diameter increased the maximum angles of both adduction (+1° ± 1°; P = .03) and abduction (+8° ± 9°; P < .05). Lateralization also increased abduction range of motion compared with neutral (P < .01). Although increasing glenosphere diameter significantly increased joint load and deltoid force, the clinical impact of these changes is presently unclear. Internal rotation, however, was reduced, which contradicts previous bone modeling studies, which we postulate is due to increased posterior capsular tension as it is forced to wrap around a larger 42 mm implant assembly. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
I can see clearly now: the effects of age and perceptual load on inattentional blindness
Remington, Anna; Cartwright-Finch, Ula; Lavie, Nilli
2014-01-01
Attention and awareness are known to be linked (e.g., see Lavie et al., 2014, for a review). However the extent to which this link changes over development is not fully understood. Most research concerning the development of attention has investigated the effects of attention on distraction, visual search and spatial orienting, typically using reaction time measures which cannot directly support conclusions about conscious awareness. Here we used Lavie’s Load Theory of Attention and Cognitive Control to examine the development of attention effects on awareness. According to Load Theory, awareness levels are determined by the availability of attentional capacity. We hypothesized that attentional capacity develops with age, and consequently that awareness rates should increase with development due to the enhanced capacity. Thus we predicted that greater rates of inattentional blindness (IB) would be found at a younger age, and that lower levels of load will be sufficient to exhaust capacity and cause IB in children but not adults. We tested this hypothesis using an IB paradigm with adults and children aged 7–8, 9–10, 11–12 and 13 years old. Participants performed a line-length judgment task (indicating which arm of a cross is longer) and on the last trial were asked to report whether they noticed an unexpected task-irrelevant stimulus (a small square) in the display. Perceptual load was varied by changing the line-length difference (with a smaller difference in the conditions of higher load). The results supported our hypothesis: levels of awareness increased with age, and a moderate increase in the perceptual load of the task led to greater IB for children but not adults. These results extended across both peripheral and central presentations of the task stimuli. Overall, these findings establish the development of capacity for awareness and demonstrate the critical role of the perceptual load in the attended task. PMID:24795596
I can see clearly now: the effects of age and perceptual load on inattentional blindness.
Remington, Anna; Cartwright-Finch, Ula; Lavie, Nilli
2014-01-01
Attention and awareness are known to be linked (e.g., see Lavie et al., 2014, for a review). However the extent to which this link changes over development is not fully understood. Most research concerning the development of attention has investigated the effects of attention on distraction, visual search and spatial orienting, typically using reaction time measures which cannot directly support conclusions about conscious awareness. Here we used Lavie's Load Theory of Attention and Cognitive Control to examine the development of attention effects on awareness. According to Load Theory, awareness levels are determined by the availability of attentional capacity. We hypothesized that attentional capacity develops with age, and consequently that awareness rates should increase with development due to the enhanced capacity. Thus we predicted that greater rates of inattentional blindness (IB) would be found at a younger age, and that lower levels of load will be sufficient to exhaust capacity and cause IB in children but not adults. We tested this hypothesis using an IB paradigm with adults and children aged 7-8, 9-10, 11-12 and 13 years old. Participants performed a line-length judgment task (indicating which arm of a cross is longer) and on the last trial were asked to report whether they noticed an unexpected task-irrelevant stimulus (a small square) in the display. Perceptual load was varied by changing the line-length difference (with a smaller difference in the conditions of higher load). The results supported our hypothesis: levels of awareness increased with age, and a moderate increase in the perceptual load of the task led to greater IB for children but not adults. These results extended across both peripheral and central presentations of the task stimuli. Overall, these findings establish the development of capacity for awareness and demonstrate the critical role of the perceptual load in the attended task.
MSC/NASTRAN Stress Analysis of Complete Models Subjected to Random and Quasi-Static Loads
NASA Technical Reports Server (NTRS)
Hampton, Roy W.
2000-01-01
Space payloads, such as those which fly on the Space Shuttle in Spacelab, are designed to withstand dynamic loads which consist of combined acoustic random loads and quasi-static acceleration loads. Methods for computing the payload stresses due to these loads are well known and appear in texts and NASA documents, but typically involve approximations such as the Miles' equation, as well as possible adjustments based on "modal participation factors." Alternatively, an existing capability in MSC/NASTRAN may be used to output exact root mean square [rms] stresses due to the random loads for any specified elements in the Finite Element Model. However, it is time consuming to use this methodology to obtain the rms stresses for the complete structural model and then combine them with the quasi-static loading induced stresses. Special processing was developed as described here to perform the stress analysis of all elements in the model using existing MSC/NASTRAN and MSC/PATRAN and UNIX utilities. Fail-safe and buckling analyses applications are also described.
Near-IR-induced dissociation of thermally-sensitive star polymers.
Dai, Yuqiong; Sun, Hao; Pal, Sunirmal; Zhang, Yunlu; Park, Sangwoo; Kabb, Christopher P; Wei, Wei David; Sumerlin, Brent S
2017-03-01
Responsive systems sensitive to near-infrared (NIR) light are promising for triggered release due to efficient deep tissue penetration of NIR irradiation relative to higher energy sources ( e.g. , UV), allowing for spatiotemporal control over triggering events with minimal potential for tissue damage. Herein, we report star polymers containing thermally-labile azo linkages that dissociate during conventional heating or during localized heating via the photothermal effect upon NIR irradiation. Controlled release during conventional heating was investigated for the star polymers loaded with a model dye, with negligible release being observed at 25 °C and >80% release at 90 °C. Star polymers co-loaded with NIR-responsive indocyanine green showed rapid dye release upon NIR irradiation ( λ ≥ 715 nm) due to the photothermally-induced degradation of azo linkages within the cores of the star polymers. This approach provides access to a new class of delivery and release systems that can be triggered by noninvasive external stimulation.
Improvements of the cyclone separator performance by down-comer tubes.
Ganegama Bogodage, Sakura; Leung, A Y T
2016-07-05
Enhancement of fine particle (PM2.5) separation is important for cyclone separators to reduce any extra purification process required at the outlet. Therefore, the present experimental research was performed to explore the performance of cyclone separators modified with down-comer tubes at solid loading rates from 0 to 8.0 g/m(3) with a 10 m/s inlet velocity. The study proved the effectiveness of down-comer tubes in reducing the particle re-entrainment and increasing the finer separation with acceptable pressure drops, which was pronounced at low solid loading conditions. The experimental results were compared with theories of Smolik and Muschelknautz. Theories were acceptable for certain ranges, and theory breakdown was mainly due to the neglect of particle agglomeration, re-entrainment and the reduction of swirling energy, as well as the increase of wall friction due to presence of particles. Copyright © 2016. Published by Elsevier B.V.
Myristicin and phenytoin toxicity in an infant
Sivathanu, Shobhana; Sampath, Sowmya; David, Henry Suresh; Rajavelu, Kulandai Kasthuri
2014-01-01
A developmentally normal infant presented with repeated episodes of afebrile status epilepticus following nutmeg ingestion. He had developed two episodes of afebrile status epilepticus and had received different treatments earlier, but the details of treatment were not available. On admission, he redeveloped convulsions and loading doses of phenytoin, phenobarbitone and midazolam were administered. However, seizures persisted and extrapyramidal movements, nystagmus and visual dysfunction were noted. Iatrogenic phenytoin toxicity was considered and confirmed by drug levels. His symptoms completely disappeared after discontinuation of phenytoin therapy. The initial seizures were attributed to myristicin, an active component of nutmeg, because of the temporal association. However, the subsequent seizures were due to phenytoin toxicity caused by administration of multiple loading doses. This case highlights that nutmeg, a spice, can cause serious toxic effects like status epilepticus. Furthermore, treatment of status epilepticus with phenytoin can cause iatrogenic seizures due to its narrow therapeutic range. PMID:24903724
NASA Astrophysics Data System (ADS)
Marcinowski, Jakub; Różycki, Zbigniew
2016-03-01
The paperdeals with tubular, cast-iron columns which should be reinforced due to the planned new structural function of these elements. According to the requirements of the monument conservator the general appearance of columns should not be altered significantly. Reinforcement with an external, thin coating (sleeve or jacket) made of composite (carbon fibre reinforced polymer - CFRP) was proposed. Details of the proposedtechniquewerepresented. The reinforcementeffect was verifiedin destructivetestsperformed on two columns without reinforcement and the two other columns reinforced with the chosentechnique. Due to the expected very high load capacity of the axially loaded column, the test rig was designed in such a manner that the force could be applied on big eccentricity. For this purpose a specialbase was prepared(comp. Fig. 1). Destructivetests have confirmed the high effectiveness of the adopted strengthening technique.
Modelling voltage sag mitigation using dynamic voltage restorer and analyzing power quality issue
NASA Astrophysics Data System (ADS)
Ismail, Nor Laili; Hidzir, Hizrin Dayana Mohd; Thanakodi, Suresh; Nazar, Nazatul Shiema Moh; Ibrahim, Pungut; Ali, Che Ku Muhammad Sabri Che Ku
2018-02-01
Power quality problem which are arise due to a fault or a pulsed load can have caused an interruption of critical load. The modern power systems are becoming more sensitive to the quality of the power supplied by the utility company. Voltage sags and swells, flicker, interruptions, harmonic distortion and other distortion to the sinusoidal waveform are the examples of the power quality problems. The most affected due to these problems is industrial customers who use a lot of sensitive equipment. There has suffered a huge loss to these problems. Resulting of broken or damage equipment if voltage sag exceeds the sensitive threshold of the equipment. Thus, device such as Static Synchronous Compensator (STATCOM) and Dynamic Voltage Restorer (DVR) has been created to solve this problem among users. DVR is a custom power device that most effective and efficient. This paper intended to report the DVR operations during voltage sag compensation.
Integrated NDE and FEM characterization of composite rotors
NASA Astrophysics Data System (ADS)
Abdul-Aziz, Ali; Baaklini, George Y.; Trudell, Jeffrey J.
2001-08-01
A structural assessment by integrating finite-element methods (FEM) and a nondestructive evaluation (NDE) of two flywheel rotor assemblies is presented. Composite rotor A is pancake like with a solid hub design, and composite rotor B is cylindrical with a hollow hub design. Detailed analyses under combined centrifugal and interference-fit loading are performed. Two- and three-dimensional stress analyses and two-dimensional fracture mechanics analyses are conducted. A comparison of the structural analysis results obtained with those extracted via NDE findings is reported. Contact effects due to press-fit conditions are evaluated. Stress results generated from the finite-element analyses were corroborated with the analytical solution. Cracks due to rotational loading up to 48 000 rpm for rotor A and 34 000 rpm for rotor B were successfully imaged with NDE and predicted with FEM and fracture mechanics analyses. A procedure that extends current structural analysis to a life prediction tool is also defined.
An Integrated NDE and FEM Characterization of Composite Rotors
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Baaklini, George Y.; Trudell, Jeffrey J.
2000-01-01
A structural assessment by integrating finite-element methods (FEM) and a nondestructive evaluation (NDE) of two flywheel rotor assemblies is presented. Composite rotor A is pancake like with a solid hub design, and composite rotor B is cylindrical with a hollow hub design. Detailed analyses under combined centrifugal and interference-fit loading are performed. Two- and three-dimensional stress analyses and two-dimensional fracture mechanics analyses are conducted. A comparison of the structural analysis results obtained with those extracted via NDE findings is reported. Contact effects due to press-fit conditions are evaluated. Stress results generated from the finite-element analyses were corroborated with the analytical solution. Cracks due to rotational loading up to 49 000 rpm for rotor A and 34 000 rpm for rotor B were successfully imaged with NDE and predicted with FEM and fracture mechanics analyses. A procedure that extends current structural analysis to a life prediction tool is also defined.
Structural Analysis of Composite Flywheels: an Integrated NDE and FEM Approach
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Baaklini, George; Trudell, Jeffrey
2001-01-01
A structural assessment by integrating finite-element methods (FEM) and a nondestructive evaluation (NDE) of two flywheel rotor assemblies is presented. Composite rotor A is pancake-like with a solid hub design, and composite rotor B is cylindrical with a hollow hub design. Detailed analyses under combined centrifugal and interference-fit loading are performed. Two- and three-dimensional stress analyses and two-dimensional fracture mechanics analyses are conducted. A comparison of the structural analysis results obtained with those extracted via NDE findings is reported. Contact effects due to press-fit conditions are evaluated. Stress results generated from the finite-element analyses were corroborated with the analytical solution. Cracks due to rotational loading up to 48,000 rpm for rotor A and 34,000 rpm for rotor B were successfully imaged with NDE and predicted with FEM and fracture mechanics analyses. A procedure that extends current structural analysis to a life prediction tool is also defined.
Simulation of Particle Size Effect on Dynamic Properties and Fracture of PTFE-W-Al Composites
NASA Astrophysics Data System (ADS)
Herbold, Eric; Cai, Jing; Benson, David; Nesterenko, Vitali
2007-06-01
Recent investigations of the dynamic compressive strength of cold isostatically pressed (CIP) composites of polytetrafluoroethylene (PTFE), tungsten and aluminum powders show significant differences depending on the size of metallic particles. PTFE and aluminum mixtures are known to be energetic under dynamic and thermal loading. The addition of tungsten increases density and overall strength of the sample. Multi-material Eulerian and arbitrary Lagrangian-Eulerian methods were used for the investigation due to the complexity of the microstructure, relatively large deformations and the ability to handle the formation of free surfaces in a natural manner. The calculations indicate that the observed dependence of sample strength on particle size is due to the formation of force chains under dynamic loading in samples with small particle sizes even at larger porosity in comparison with samples with large grain size and larger density.
NASA Astrophysics Data System (ADS)
Alias, N. F.; Ismail, H.
2018-06-01
Polyvinyl alcohol (PVA)/eggshell powder (ESP) were prepared via solution casting method. The effects of gradual replacement of ESP by halloysite nanotubes (HNTs) were investigated based on tensile properties, physical properties and biodegradability. The main objective is to study the effect of hybrid fillers and also to compare the properties of PVA/ESP composite with conventional filler, HNT. The tensile properties decreased with increasing HNT loading. Scanning electron microscopy (SEM) studies showed that agglomeration of filler were present throughout the composites. Due to the presence of hydroxyl group on the outer and inner surface of HNT, the water absorption and water vapor transmisibility were found to increase with increasing HNTs loading. The biodegradability of film filled with HNT is lower compared to the film filled with ESP.
Zatsiorsky, Vladimir M; Gao, Fan; Latash, Mark L
2005-04-01
According to basic physics, the local effects induced by gravity and acceleration are identical and cannot be separated by any physical experiment. In contrast-as this study shows-people adjust the grip forces associated with gravitational and inertial forces differently. In the experiment, subjects oscillated a vertically-oriented handle loaded with five different weights (from 3.8 N to 13.8 N) at three different frequencies in the vertical plane: 1 Hz, 1.5 Hz and 2.0 Hz. Three contributions to the grip force-static, dynamic, and stato-dynamic fractions-were quantified. The static fraction reflects grip force related to holding a load statically. The stato-dynamic fraction reflects a steady change in the grip force when the same load is moved cyclically. The dynamic fraction is due to acceleration-related adjustments of the grip force during oscillation cycles. The slope of the relation between the grip force and the load force was steeper for the static fraction than for the dynamic fraction. The stato-dynamic fraction increased with the frequency and load. The slope of the dynamic grip force-load force relation decreased with frequency, and as a rule, increased with the load. Hence, when adjusting grip force to task requirements, the central controller takes into account not only the expected magnitude of the load force but also such factors as whether the force is gravitational or inertial and the contributions of the object mass and acceleration to the inertial force. As an auxiliary finding, a complex finger coordination pattern aimed at preserving the rotational equilibrium of the object during shaking movements was reported.
Harmon, N.; Forsyth, D.W.; Scheirer, D.S.
2006-01-01
The Gravity Lieations Intraplate Melting Petrologic and Seismic Expedition (GLIMPSE) Experiment investigated the formation of a series of non-hot spot, intraplate volcanic ridges in the South Pacific and their relationship to cross-grain gravity lineaments detected by satellite altimetry. Using shipboard gravity measurements and a simple model of surface loading of a thin elastic plate, we estimate effective elastic thicknesses ranging from ???2 km beneath the Sojourn Ridge to a maximum of 10 km beneath the Southern Cross Seamount. These elastic thicknesses are lower than predicted for the 3-9 Ma seafloor on which the volcanoes lie, perhaps due to reheating and thinning of the plate during emplacement. Anomalously low apparent densities estimated for the Matua and Southern Cross seamounts 2050 and 2250 kg m-3, respectively, probably are artifacts caused by the assumption of only surface loading, ignoring the presence of subsurface loading in the form of underplated crust and/or low-density mantle. Using satellite free-air gravity and shipboard bathymetry, we calculate the age-detrended, residual mantle Bouguer anomaly (rMBA). The rMBA corrects the free-air anomaly for the direct effects of topography, including the thickening of the crust beneath the seamounts and volcanic ridges due to surface loading of the volcanic edifices. There are broad, negative rMBA anomalies along the Sojourn and Brown ridges and the Hotu Matua seamount chain that extend nearly to the East Pacific Rise. These negative rMBA anomalies connect to negative free-air anomalies in the western part of the study area that have been recognized previously as the beginnings of the cross-grain gravity lineaments. Subtracting the topographic effects of surface loading by the ridges and seamounts from the observed topography reveals that the ridges are built on broad bands of anomalously elevated seafloor. This swell topography and the negative rMBA anomalies contradict the predictions of lithospheric cracking models for the origin of gravity lineaments and associated volcanic ridges, favoring models with a dynamic mantle component such as small-scale convection or channelized asthenospheric return flow. Copyright 2006 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Tamura, Fumihiko; Ohmori, Chihiro; Yamamoto, Masanobu; Yoshii, Masahito; Schnase, Alexander; Nomura, Masahiro; Toda, Makoto; Shimada, Taihei; Hasegawa, Katsushi; Hara, Keigo
2013-05-01
Beam loading compensation is a key for acceleration of a high intensity proton beam in the main ring (MR) of the Japan Proton Accelerator Research Complex (J-PARC). Magnetic alloy loaded rf cavities with a Q value of 22 are used to achieve high accelerating voltages without a tuning bias loop. The cavity is driven by a single harmonic (h=9) rf signal while the cavity frequency response also covers the neighbor harmonics (h=8,10). Therefore the wake voltage induced by the high intensity beam consists of the three harmonics, h=8,9,10. The beam loading of neighbor harmonics is the source of periodic transient effects and a possible source of coupled bunch instabilities. In the article, we analyze the wake voltage induced by the high intensity beam. We employ the rf feedforward method to compensate the beam loading of these three harmonics (h=8,9,10). The full-digital multiharmonic feedforward system was developed for the MR. We describe the system architecture and the commissioning methodology of the feedforward patterns. The commissioning of the feedforward system has been performed by using high intensity beams with 1.0×1014 proteins per pulse. The impedance seen by the beam is successfully reduced and the longitudinal oscillations due to the beam loading are reduced. By the beam loading compensation, stable high power beam operation is achieved. We also report the reduction of the momentum loss during the debunching process for the slow extraction by the feedforward.
Hussein, O; Utton, C; Ojovan, M; Kinoshita, H
2013-10-15
The BaSO4 scales obtained from piping decontamination from oil and gas industries are most often classified as low level radioactive waste. These wastes could be immobilised by stable cement matrix to provide higher safety of handling, transportation, storage and disposal. However, the information available for the effects of the basic formulation such as waste loading on the fundamental properties is still limited. The present study investigated the effect of BaSO4 loading and water content on the properties of OPC-BaSO4 systems containing fine BaSO4 powder and coarse granules. The BaSO4 with different particle size had a marked effect on the compressive strength due to their different effects on hydration products formed. Introduction of fine BaSO4 powder resulted in an increased formation of CaCO3 in the system, which significantly contributed to the compressive strength of the products. Amount of water was important to control the CaCO3 formation, and water to cement ratio of 0.53 was found to be a good level to maintain a low porosity of the products both for fine BaSO4 powder and coarse BaSO4 granule. BaSO4 loading of up to 60 wt% has been achieved satisfying the minimum compressive strength of 5 MPa required for the radioactive wasteforms. Copyright © 2013 Elsevier B.V. All rights reserved.
Effect of polyethylene glycols on the trans-ungual delivery of terbinafine.
Nair, Anroop B; Chakraborty, Bireswar; Murthy, S Narasimha
2010-12-01
Topical nail drug delivery could be improved by identifying potent chemical penetration enhancers. The purpose of this study was to assess the effect of polyethylene glycols (PEGs) on the trans-ungual delivery of terbinafine. In vitro permeation studies were carried out by passive and iontophoresis (0.5 mA/cm2) processes for a period of 1 h using gel formulations containing different molecular weight PEGs (30%w/w). The release of drug from the loaded nail plates and the possible mechanisms for the enhanced delivery was studied. Passive delivery using formulation with low molecular weight PEGs (200 and 400 MW) indicated moderate enhancement in the permeation and drug load in the nail plate, compared to the control formulation. However, the effect of low molecular weight PEGs was predominant during iontophoresis process with greater amount of terbinafine being permeated (≈35 µg/cm2) and loaded into the nail plate (≈2.7 µg/mg). However, little or no effect on drug delivery was observed with high molecular weight PEGs (1000- 3350 MW) in passive and iontophoresis processes. Release of drug from the nail plates loaded by iontophoresis using low molecular weight PEG (400 MW) exhibited sustain effect which continued over a period of 72 days. The enhancement in drug permeation by low molecular weight PEGs is likely due to their ability to lead to greater water uptake and swelling of nail. This study concluded that the low molecular weight PEGs are indeed a promising trans-ungual permeation enhancer.
Green infrastructure and urban sustainability
NASA Astrophysics Data System (ADS)
Hagishima, Aya
2018-02-01
Temperature increase in urban areas due to the urban heat island as well as the global climate change inevitably raises the peak load supply for space cooling as well as the risk of heat-related illness in hot climate. This paper provides the comprehensive review of the thermal mitigation effect of urban vegetation based on the field observations.
NASA Technical Reports Server (NTRS)
Viswanathan, A. V.; Tamekuni, M.; Tripp, L. L.
1974-01-01
General-purpose program is intended for thermal stress and instability analyses of structures such as axially-stiffened curved panels. Two types of instability analyses can be effected by program: (1) thermal buckling with temperature variation as specified and (2) buckling due to in-plane biaxial loading.
USDA-ARS?s Scientific Manuscript database
Despite some beneficial effects on bone, high protein diets are conventionally considered a primary dietary risk factor for osteoporosis and bone fracture due to the acid load associated with protein catabolism. To test the hypothesis that high dietary protein diets do not negatively affect calcium ...
The Use of Keywords for Delivering Immediate Performance Feedback on Teacher Competence Development
ERIC Educational Resources Information Center
Coninx, Nele; Kreijns, Karel; Jochems, Wim
2013-01-01
Literature shows that feedback that is specific, immediate and goal-oriented is effective on (pre-service) teachers' performance. Synchronous coaching gives this kind of feedback. Due to immediateness of feedback, pre-service teachers can suffer from cognitive load. We propose a set of standardised keywords through which this performance feedback…
40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.
Code of Federal Regulations, 2011 CFR
2011-07-01
....053 (3) The column should be connected to a recycling pump capable of controlling flows of... the carrier is not achieved due to partition effects on the surface of the carrier. (2) The loading of... this, the recycling pump is connected and the apparatus allowed to run until equilibration is...
40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.
Code of Federal Regulations, 2013 CFR
2013-07-01
....053 (3) The column should be connected to a recycling pump capable of controlling flows of... the carrier is not achieved due to partition effects on the surface of the carrier. (2) The loading of... this, the recycling pump is connected and the apparatus allowed to run until equilibration is...
40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.
Code of Federal Regulations, 2012 CFR
2012-07-01
....053 (3) The column should be connected to a recycling pump capable of controlling flows of... the carrier is not achieved due to partition effects on the surface of the carrier. (2) The loading of... this, the recycling pump is connected and the apparatus allowed to run until equilibration is...
40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.
Code of Federal Regulations, 2014 CFR
2014-07-01
....053 (3) The column should be connected to a recycling pump capable of controlling flows of... the carrier is not achieved due to partition effects on the surface of the carrier. (2) The loading of... this, the recycling pump is connected and the apparatus allowed to run until equilibration is...
Wear Behavior of an Ultra-High-Strength Eutectoid Steel
NASA Astrophysics Data System (ADS)
Mishra, Alok; Maity, Joydeep
2018-02-01
Wear behavior of an ultra-high-strength AISI 1080 steel developed through incomplete austenitization-based combined cyclic heat treatment is investigated in comparison with annealed and conventional hardened and tempered conditions against an alumina disk (sliding speed = 1 m s-1) using a pin-on-disk tribometer at a load range of 7.35-14.7 N. On a gross scale, the mechanism of surface damage involves adhesive wear coupled with abrasive wear (microcutting effects in particular) at lower loads. At higher loads, mainly the abrasive wear (both microcutting and microploughing mechanisms) and evolution of adherent oxide are observed. Besides, microhardness of matrix increases with load indicating substantial strain hardening during wear test. The rate of overall wear is found to increase with load. As-received annealed steel with the lowest initial hardness suffers from severe abrasive wear, thereby exhibiting the highest wear loss. Such a severe wear loss is not observed in conventional hardened and tempered and combined cyclic heat treatment conditions. Combined cyclic heat-treated steel exhibits the greatest wear resistance (lowest wear loss) due to its initial high hardness and evolution of hard abrasion-resistant tribolayer during wear test at higher load.
Buoyancy-corrected gravimetric analysis of lightly loaded filters.
Rasmussen, Pat E; Gardner, H David; Niu, Jianjun
2010-09-01
Numerous sources of uncertainty are associated with the gravimetric analysis of lightly loaded air filter samples (< 100 microg). The purpose of the study presented here is to investigate the effectiveness and limitations of air buoyancy corrections over experimentally adjusted conditions of temperature (21-25 degrees C) and relative humidity (RH) (16-60% RH). Conditioning (24 hr) and weighing were performed inside the Archimedes M3 environmentally controlled chamber. The measurements were performed using 20 size-fractionated samples of resuspended house dust loaded onto Teflo (PTFE) filters using a Micro-Orifice Uniform Deposit Impactor representing a wide range of mass loading (7.2-3130 microg) and cut sizes (0.056-9.9 microm). By maintaining tight controls on humidity (within 0.5% RH of control setting) throughout pre- and postweighing at each stepwise increase in RH, it was possible to quantify error due to water absorption: 45% of the total mass change due to water absorption occurred between 16 and 50% RH, and 55% occurred between 50 and 60% RH. The buoyancy corrections ranged from -3.5 to +5.8 microg in magnitude and improved relative standard deviation (RSD) from 21.3% (uncorrected) to 5.6% (corrected) for a 7.2 microg sample. It is recommended that protocols for weighing low-mass particle samples (e.g., nanoparticle samples) should include buoyancy corrections and tight temperature/humidity controls. In some cases, conditioning times longer than 24 hr may be warranted.
Role of angiotensin in renal sympathetic activation in cirrhotic rats.
Voigt, M D; Jones, S Y; DiBona, G F
1999-08-01
Central nervous system (CNS) renin-angiotensin activity influences the basal level of renal sympathetic nerve activity (RSNA) and its reflex regulation. The effect of type 1 angiotensin II (ANG II)-receptor antagonist treatment (losartan) on cardiac baroreflex regulation of RSNA and renal sodium handling was examined in rats with cirrhosis due to common bile duct ligation (CBDL). Basal levels of heart rate, mean arterial pressure (MAP), RSNA, and urinary sodium excretion were not affected by intracerebroventricular administration of either losartan or vehicle to CBDL rats. After acute intravenous isotonic saline loading (10% body wt) in vehicle-treated CBDL rats, MAP was unchanged and the decrease in RSNA seen in normal rats did not occur. However, in losartan-treated CBDL rats, there were significant concurrent but transient decreases in MAP (-20 +/- 2 mmHg) and RSNA (-25 +/- 3%). The natriuretic response to acute volume loading in losartan-treated CBDL rats was significantly less than that in vehicle-treated CBDL rats only at those time points where there were significant decreases in MAP. Antagonism of CNS ANG II type 1 receptors augments the renal sympathoinhibitory response to acute volume loading in CBDL. However, the natriuretic response to the acute volume loading is not improved, likely due to the strong antinatriuretic influence of the concomitant marked decrease in MAP (renal perfusion pressure) mediated by widespread sympathetic withdrawal from the systemic vasculature.
JWST ISIM Harness Thermal Evaluation
NASA Technical Reports Server (NTRS)
Kobel, Mark; Glazer, Stuart; Tuttle, Jim; Martins, Mario; Ruppel, Sean
2008-01-01
The James Webb Space Telescope (JWST) will be a large infrared telescope with a 6.5-meter primary mirror. Launch is planned for 2013. JWST wl1 be the premier observatory of the next decade serving thousands of astronomers worldwide. The Integrated Science Instrument Module (ISIM) is the unit that will house thc four main JWST instruments. The ISIM enclosure passively cooled to 37 Kelvin and has a tightly managed thermal budget. A significant portion of the ISIM heat load is due to parasitic heat gains from the instrument harnesses. These harnesses provide a thermal path from the Instrument Electronics Control (IEC) to the ISIM. Because of the impact of this load to the ISIM thermal design, understanding the harness parasitic heat gains is critical. To this effect, a thermal test program has been conducted in order to characterize these parasitic loads and verify harness thermal models. Recent parasitic heat loads tests resulted in the addition of a dedicated multiple stage harness radiator. In order for the radiator to efficiently reject heat from the harness, effective thermal contact conductance values for multiple harnesses had to be determined. This presentation will describe the details and the results of this test program.
NASA Astrophysics Data System (ADS)
Qiu, J. H.; Jiang, Q.
2007-02-01
A phenomenological Landau-Devonshine theory is used to describe the effects of external mechanical loading on equilibrium polarization states and dielectric properties in epitaxial ferroelectric thin films grown on dissimilar orthorhombic substrates which induce anisotropic misfit strains in the film plane. The calculation focuses on single-domain perovskite BaTiO3 and PbTiO3 thin films on the assumption that um1=-um2. Compared with the phase diagrams without external loading, the characteristic features of "misfit strain-misfit strain" phase diagrams at room temperature are the presence of paraelectric phase and the strain-induced ferroelectric to paraelectric phase transition. Due to the external loading, the "misfit strain-stress" and "stress-temperature" phase diagrams also have drastic changes, especially for the vanishing of paraelectric phase in "misfit strain-stress" phase map and the appearance of possible ferroelectric phases. We also investigate the dielectric properties and the tunability of both BaTiO3 and PbTiO3 thin films. We find that the external stress dependence of phase diagrams and dielectric properties largely depends on strain anisotropy as well.
Comparison Between PCI and Box Girder in BridgesPrestressed Concrete Design
NASA Astrophysics Data System (ADS)
Rahmawati, Cut; Zainuddin, Z.; Is, Syafridal; Rahim, Robbi
2018-04-01
This research is done by comparing PCI and Box Girder types of prestressed concrete design. The method used is load balance. Previous studies have just discussed the differences in terms of effectiveness and economics. In this study, the researchers want to know the design process by comparing the working forces, the resulting moment, and the losses of the prestressed. As the case in this study, the researchers used the bridge with the span of 31 meters. The tendon pulling system was conducted with post-tensioning system The analysis result showed that prestressed of the Girder box type sustained the greatest moment due to the combination of its own weight, additional dead load, lane load, and wind load of 44,029 kNm, while the biggest moment of PCI Girder was 7,556.75 KNm The Girder beam box experiences greater moment and shear force than PCI Girder. This is the effect of the weight of its own Girderboxwaslarger than PCI Girder. The losses ofprestressed style of Girderboxand PCI Girder type were 24.85% and 26.32%, respectively.Moreover, it showed that the type of Girder box is cheaper, easier, and more efficient than PCI Girder.
NASA Astrophysics Data System (ADS)
Abdel-Aal, H. A.; Mansori, M. El
2012-12-01
Cutting tools are subject to extreme thermal and mechanical loads during operation. The state of loading is intensified in dry cutting environment especially when cutting the so called hard-to-cut-materials. Although, the effect of mechanical loads on tool failure have been extensively studied, detailed studies on the effect of thermal dissipation on the deterioration of the cutting tool are rather scarce. In this paper we study failure of coated carbide tools due to thermal loading. The study emphasizes the role assumed by the thermo-physical properties of the tool material in enhancing or preventing mass attrition of the cutting elements within the tool. It is shown that within a comprehensive view of the nature of conduction in the tool zone, thermal conduction is not solely affected by temperature. Rather it is a function of the so called thermodynamic forces. These are the stress, the strain, strain rate, rate of temperature rise, and the temperature gradient. Although that within such consideration description of thermal conduction is non-linear, it is beneficial to employ such a form because it facilitates a full mechanistic understanding of thermal activation of tool wear.
Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz; Miveh, Mohammad Reza; Guerrero, Josep M
2017-01-01
In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions. It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed to control the active and reactive power and harmonic current compensation, and it also corrects the system unbalance. The proposed control method features the synchronous reference frame (SRF) method. Simulation results are presented to demonstrate the effective performance of the proposed method.
Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz; Miveh, Mohammad Reza; Guerrero, Josep M.
2017-01-01
In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions. It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed to control the active and reactive power and harmonic current compensation, and it also corrects the system unbalance. The proposed control method features the synchronous reference frame (SRF) method. Simulation results are presented to demonstrate the effective performance of the proposed method. PMID:28192436
78 FR 13213 - Regional Reliability Standard PRC-006-NPCC-1- Automatic Underfrequency Load Shedding
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-27
...; Order No. 775] Regional Reliability Standard PRC-006-NPCC-1--Automatic Underfrequency Load Shedding... transferred to the system upon loss of the facility.'' \\27\\ Compensatory load shedding is automatic shedding of load adequate to compensate for the loss of a generator due to the generator tripping early (i.e...
Artificial Virus Delivers CRISPR-Cas9 System for Genome Editing of Cells in Mice.
Li, Ling; Song, Linjiang; Liu, Xiaowei; Yang, Xi; Li, Xia; He, Tao; Wang, Ning; Yang, Suleixin; Yu, Chuan; Yin, Tao; Wen, Yanzhu; He, Zhiyao; Wei, Xiawei; Su, Weijun; Wu, Qinjie; Yao, Shaohua; Gong, Changyang; Wei, Yuquan
2017-01-24
CRISPR-Cas9 has emerged as a versatile genome-editing platform. However, due to the large size of the commonly used CRISPR-Cas9 system, its effective delivery has been a challenge and limits its utility for basic research and therapeutic applications. Herein, a multifunctional nucleus-targeting "core-shell" artificial virus (RRPHC) was constructed for the delivery of CRISPR-Cas9 system. The artificial virus could efficiently load with the CRISPR-Cas9 system, accelerate the endosomal escape, and promote the penetration into the nucleus without additional nuclear-localization signal, thus enabling targeted gene disruption. Notably, the artificial virus is more efficient than SuperFect, Lipofectamine 2000, and Lipofectamine 3000. When loaded with a CRISPR-Cas9 plasmid, it induced higher targeted gene disruption efficacy than that of Lipofectamine 3000. Furthermore, the artificial virus effectively targets the ovarian cancer via dual-receptor-mediated endocytosis and had minimum side effects. When loaded with the Cas9-hMTH1 system targeting MTH1 gene, RRPHC showed effective disruption of MTH1 in vivo. This strategy could be adapted for delivering CRISPR-Cas9 plasmid or other functional nucleic acids in vivo.
NASA Astrophysics Data System (ADS)
Zhong, Z. W.; Ridhwan Salleh, Saiful; Chow, W. X.; Ong, Z. M.
2016-10-01
Air traffic forecasting is important as it helps stakeholders to plan their budgets and facilities. Thus, three most commonly used forecasting models were compared to see which model suited the air passenger traffic the best. General forecasting equations were also created to forecast the passenger traffic. The equations could forecast around 6.0% growth from 2015 onwards. Another study sought to provide an initial work for determining a theoretical airspace load with relevant calculations. The air traffic was simulated to investigate the current airspace load. Logical and reasonable results were obtained from the modelling and simulations. The current utilization percentages for airspace load per hour and the static airspace load in the interested airspace were found to be 6.64% and 11.21% respectively. Our research also studied how ADS-B would affect the time taken for aircraft to travel. 6000 flights departing from and landing at the airport were studied. New flight plans were simulated with improved flight paths due to the implementation of ADS-B, and flight times of all studied flights could be improved.
Effect of transient sodium chloride shock loads on the performance of submerged membrane bioreactor.
Yogalakshmi, K N; Joseph, Kurian
2010-09-01
Membrane bioreactor (MBR) is a promising technological option to meet water reuse demands. Though MBR provides effluent quality of reusable standard, its versatility to shock loads remains unexplored. The present study investigates the robustness of MBR under sodium chloride shock load (5-60 g/L) conditions. A bench scale aerobic submerged MBR (6L working volume) with polyethylene hollow fiber membrane module (pore size 0.4 microm) was operated with synthetic wastewater at steady state OLR of 3.6g COD/L/d and HRT of 8h. This resulted in 99% TSS removal and 95% COD and TKN removal. The COD removal during the salt shock load was in the range of 84-64%. The TSS removal showed maximum disturbance (88%) with a corresponding decrease in biomass MLVSS by 8% at 60 g/L shock. TKN removal was reduced due to inhibition of nitrification with increasing shock loads. It took about 4-9 days for the MBR to regain its steady state performance. Copyright 2010 Elsevier Ltd. All rights reserved.
NASTRAN forced vibration analysis of rotating cyclic structures
NASA Technical Reports Server (NTRS)
Elchuri, V.; Smith, G. C. C.; Gallo, A. M.
1983-01-01
Theoretical aspects of a new capability developed and implemented in NASTRAN level 17.7 to analyze forced vibration of a cyclic structure rotating about its axis of symmetry are presented. Fans, propellers, and bladed shrouded discs of turbomachines are some examples of such structures. The capability includes the effects of Coriolis and centripetal accelerations on the rotating structure which can be loaded with: (1) directly applied loads moving with the structure and (2) inertial loas due to the translational acceleration of the axis of rotation (''base' acceleration). Steady-state sinusoidal or general periodic loads are specified to represent: (1) the physical loads on various segments of the complete structure, or (2) the circumferential harmonic components of the loads in (1). The cyclic symmetry feature of the rotating structure is used in deriving and solving the equations of forced motion. Consequently, only one of the cyclic sectors is modelled and analyzed using finite elements, yielding substantial savings in the analysis cost. Results, however, are obtained for the entire structure. A tuned twelve bladed disc example is used to demonstrate the various features of the capability.
The proprioceptive reflex control of the intercostal muscles during their voluntary activation
Davis, J. Newsom; Sears, T. A.
1970-01-01
1. A quantitative study has been made of the reflex effects of sudden changes in mechanical load on contracting human intercostal muscles during willed breathing movements involving the chest wall. Averaging techniques were applied to recordings of electromyogram (EMG) and lung volume, and to other parameters of breathing. 2. Load changes were effected for brief periods (10-150 msec) at any predetermined lung volume by sudden connexion of the airway to a pressure source variable between ± 80 cm H2O so that respiratory movement could be either assisted or opposed. In some experiments airway resistance was suddenly reduced by porting from a high to a low resistance external airway. 3. Contracting inspiratory and expiratory intercostal muscles showed a `silent period' with unloading which is attributed to the sudden withdrawal from intercostal motoneurones of monosynaptic excitation of muscle spindle origin. 4. For both inspiratory and expiratory intercostal muscles the typical immediate effect of an increase in load was an inhibitory response (IR) with a latency of about 22 msec followed by an excitatory response (ER) with a latency of 50-60 msec. 5. It was established using brief duration stimuli (< 40 msec) that the IR depended on mechanical events associated with the onset of stimulation, whereas stimuli greater than 40 msec in duration were required to evoke the ER. 6. For constant expiratory flow rate and a constant load, the ER of expiratory intercostal muscles increased as lung volume decreased within the limits set by maximal activation of the motoneurone pool as residual volume was approached. 7. The ER to a constant load increased directly with the expiratory flow rate at which the load applied, also within limits set by maximal activation of the motoneurone pool. 8. For a given load, the ER during phonation was greater than that occurring at a similar expiratory flow rate without phonation when the resistance of the phonating larynx was mimicked by an external airway resistance. 9. It is argued that the IR is due to autogenetic inhibition arising from tendon organs and that the ER is due to autogenetic excitation arising from intercostal muscle spindles. 10. The initial dominance of inhibition in this dual proprioceptive reflex control was not predicted by the servo theory. It is proposed that the reflex pathways subserving autogenetic inhibition are under a centrifugal control which determines in relation to previous experience (learning) the conditions under which autogenetic facilitation is allowed. PMID:5499805
14 CFR 23.367 - Unsymmetrical loads due to engine failure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Unsymmetrical loads due to engine failure. 23.367 Section 23.367 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... may be based on the limit pilot forces specified in § 23.397 except that lower forces may be assumed...
14 CFR 25.367 - Unsymmetrical loads due to engine failure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Unsymmetrical loads due to engine failure. 25.367 Section 25.367 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... may be based on the control forces specified in § 25.397(b) except that lower forces may be assumed...
14 CFR 25.367 - Unsymmetrical loads due to engine failure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Unsymmetrical loads due to engine failure. 25.367 Section 25.367 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... may be based on the control forces specified in § 25.397(b) except that lower forces may be assumed...
14 CFR 23.367 - Unsymmetrical loads due to engine failure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Unsymmetrical loads due to engine failure. 23.367 Section 23.367 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... may be based on the limit pilot forces specified in § 23.397 except that lower forces may be assumed...
14 CFR 23.367 - Unsymmetrical loads due to engine failure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Unsymmetrical loads due to engine failure. 23.367 Section 23.367 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... may be based on the limit pilot forces specified in § 23.397 except that lower forces may be assumed...
[Correlation of mental fatigue due to work load and professional qualifications of physicians].
Wichrowski, A; Dudek, B
1988-01-01
The results presented in the paper refer to the relationship between physicians' professional qualifications and mental fatigue. It was that professional qualifications determining man's capabilities affect the level and structure of mental fatigue caused by work. Furthermore, it was assumed that this workload is multidimensional, and so its following five dimensions were singled out: mental difficulties, monotony, risk and responsibility, moral conflicts and dilemmas. The level of qualifications was measured by the length of employment and specialization and scientific degrees. The studies involved 10% of randomly selected physicians from all over Poland. The obtained results indicate that with increasing length of employment the workload due to moral dilemmas, risk and responsibility and mental difficulties, gets reduced; on the other hand, the load resulting from work monotony is increased. Also the specialization degree affects the workload caused by the risk, responsibility and moral dilemmas. Noticeable here is the trend towards a reduction in the workload with increasing specialization degrees. Instead, the higher the scientific degree the higher the sense of load due to risk and responsibility with simultaneous decrease in the load due to work monotony.
Reconciling Consumer and Utility Objectives in the Residential Solar PV Market
NASA Astrophysics Data System (ADS)
Arnold, Michael R.
Today's energy market is facing large-scale changes that will affect all market players. Near the top of that list is the rapid deployment of residential solar photovoltaic (PV) systems. Yet that growing trend will be influenced multiple competing interests between various stakeholders, namely the utility, consumers and technology provides. This study provides a series of analyses---utility-side, consumer-side, and combined analyses---to understand and evaluate the effect of increases in residential solar PV market penetration. Three urban regions have been selected as study locations---Chicago, Phoenix, Seattle---with simulated load data and solar insolation data at each locality. Various time-of-use pricing schedules are investigated, and the effect of net metering is evaluated to determine the optimal capacity of solar PV and battery storage in a typical residential home. The net residential load profile is scaled to assess system-wide technical and economic figures of merit for the utility with an emphasis on intraday load profiles, ramp rates and electricity sales with increasing solar PV penetration. The combined analysis evaluates the least-cost solar PV system for the consumer and models the associated system-wide effects on the electric grid. Utility revenue was found to drop by 1.2% for every percent PV penetration increase, net metering on a monthly or annual basis improved the cost-effectiveness of solar PV but not battery storage, the removal of net metering policy and usage of an improved the cost-effectiveness of battery storage and increases in solar PV penetration reduced the system load factor. As expected, Phoenix had the most favorable economic scenario for residential solar PV, primarily due to high solar insolation. The study location---solar insolation and load profile---was also found to affect the time of year at which the largest net negative system load was realized.
NASA Astrophysics Data System (ADS)
Winter, L.; Morgenstern, R.; Hockauf, K.; Lampke, T.
2016-03-01
In this work the mean stress influence on the high cycle fatigue behavior of the plasma electrolytic oxidized (PEO) 6082 aluminum alloy (AlSi1MgMn) is investigated. The present study is focused on the fatigue life time and the susceptibility of fatigue-induced cracking of the oxide coating and their dependence on the applied mean stress. Systematic work is done comparing conditions with and without PEO treatment, which have been tested using three different load ratios. For the uncoated substrate the cycles to failure show a significant dependence on the mean stress, which is typical for aluminum alloys. With increased load ratio and therefore increased mean stress, the fatigue strength decreases. The investigation confirms the well-known effect of PEO treatment on the fatigue life: The fatigue strength is significantly reduced by the PEO process, compared to the uncoated substrate. However, also the mean stress sensitivity of the fatigue performance is reduced. The fatigue limit is not influenced by an increasing mean stress for the PEO treated conditions. This effect is firstly shown in these findings and no explanation for this effect can be found in literature. Supposedly the internal compressive stresses and the micro-cracks in the oxide film have a direct influence on the crack initiation and growth from the oxide film through the interface and in the substrate. Contrary to these findings, the susceptibility of fatigue-induced cracking of the oxide coating is influenced by the load ratio. At tension-tension loading a large number of cracks, which grow partially just in the aluminum substrate, are present. With decreasing load ratio to alternating tension-compression stresses, the crack number and length increases and shattering of the oxide film is more pronounced due to the additional effective compressive part of the load cycle.
CFTLB: a novel cross-layer fault tolerant and load balancing protocol for WMN
NASA Astrophysics Data System (ADS)
Krishnaveni, N. N.; Chitra, K.
2017-12-01
Wireless mesh network (WMN) forms a wireless backbone framework for multi-hop transmission among the routers and clients in the extensible coverage area. To improve the throughput of WMNs with multiple gateways (GWs), several issues related to GW selection, load balancing and frequent link failures due to the presence of dynamic obstacles and channel interference should be addressed. This paper presents a novel cross-layer fault tolerant and load balancing (CFTLB) protocol to overcome the issues in WMN. Initially, the neighbour GW is searched and channel load is calculated. The GW having least channel load is selected which is estimated during the arrival of the new node. The proposed algorithm finds the alternate GWs and calculates the channel availability under high loading scenarios. If the current load in the GW is high, another GW is found and channel availability is calculated. Besides, it initiates the channel switching and establishes the communication with the mesh client effectively. The utilisation of hashing technique in proposed CFTLB verifies the status of the packets and achieves better performance in terms of router average throughput, throughput, average channel access time and lower end-to-end delay, communication overhead and average data loss in the channel compared to the existing protocols.
NASA Technical Reports Server (NTRS)
Jutte, Christine V.; Ko, William L.; Stephens, Craig A.; Bakalyar, John A.; Richards, W. Lance
2011-01-01
A ground loads test of a full-scale wing (175-ft span) was conducted using a fiber optic strain-sensing system to obtain distributed surface strain data. These data were input into previously developed deformed shape equations to calculate the wing s bending and twist deformation. A photogrammetry system measured actual shape deformation. The wing deflections reached 100 percent of the positive design limit load (equivalent to 3 g) and 97 percent of the negative design limit load (equivalent to -1 g). The calculated wing bending results were in excellent agreement with the actual bending; tip deflections were within +/- 2.7 in. (out of 155-in. max deflection) for 91 percent of the load steps. Experimental testing revealed valuable opportunities for improving the deformed shape equations robustness to real world (not perfect) strain data, which previous analytical testing did not detect. These improvements, which include filtering methods developed in this work, minimize errors due to numerical anomalies discovered in the remaining 9 percent of the load steps. As a result, all load steps attained +/- 2.7 in. accuracy. Wing twist results were very sensitive to errors in bending and require further development. A sensitivity analysis and recommendations for fiber implementation practices, along with, effective filtering methods are included
Drug release from porous silicon for stable neural interface
NASA Astrophysics Data System (ADS)
Sun, Tao; Tsang, Wei Mong; Park, Woo-Tae
2014-02-01
70 μm-thick porous Si (PSi) layer with the pore size of 11.1 ± 7.6 nm was formed on an 8-in. Si wafer via an anodization process for the microfabrication of a microelectrode to record neural signals. To reduce host tissue responses to the microelectrode and achieve a stable neural interface, water-soluble dexamethesone (Dex) was loaded into the PSi via incubation with the drug solution overnight. After the drug loading process, the pore size of PSi reduced to 4.7 ± 2.6 nm on the basis of scanning electron microscopic (SEM) images, while its wettability was remarkably enhanced. Fluorescence images demonstrated that Dex was loaded into the porous structure of the PSi. Degradation rate of the PSi was investigated by incubation in distilled water for 21 days. Moreover, the drug release profile of the Dex-loaded PSi was a combination of an initial burst release and subsequent sustained release. To evaluate cellular responses to the drug release from the PSi, primary astrocytes were seeded on the surface of samples. After 2 days of culture, the Dex-loaded PSi could not only moderately prevent astrocyte adhesion in comparison with Si, but also more effectively suppress the activation of primary astrocytes than unloaded PSi due to the drug release. Therefore, it might be an effective method to reduce host tissue responses and stabilize the quality of the recorded neural signal by means of loading drugs into the PSi component of the microelectrode.
Wu, Weiliang; Zhang, Xianming; Lin, Lin; Ou, Yonger; Li, Xiaoying; Guan, Lili; Guo, Bingpeng; Zhou, Luqian; Chen, Rongchang
2017-01-01
Inspiratory muscle training (IMT) is a rehabilitation therapy for stable patients with COPD. However, its therapeutic effect remains undefined due to the unclear nature of diaphragmatic mobilization during IMT. Diaphragmatic mobilization, represented by transdiaphragmatic pressure (Pdi), and neural respiratory drive, expressed as the corrected root mean square (RMS) of the diaphragmatic electromyogram (EMGdi), both provide vital information to select the proper IMT device and loads in COPD, therefore contributing to the curative effect of IMT. Pdi and RMS of EMGdi (RMSdi%) were measured and compared during inspiratory resistive training and threshold load training in stable patients with COPD. Pdi and neural respiratory drive were measured continuously during inspiratory resistive training and threshold load training in 12 stable patients with COPD (forced expiratory volume in 1 s ± SD was 26.1%±10.2% predicted). Pdi was significantly higher during high-intensity threshold load training (91.46±17.24 cmH 2 O) than during inspiratory resistive training (27.24±6.13 cmH 2 O) in stable patients with COPD, with P <0.01 for each. Significant difference was also found in RMSdi% between high-intensity threshold load training and inspiratory resistive training (69.98%±16.78% vs 17.26%±14.65%, P <0.01). We concluded that threshold load training shows greater mobilization of Pdi and neural respiratory drive than inspiratory resistive training in stable patients with COPD.
Bunterngchit, Yuthachai; Lockhart, Thurmon; Woldstad, Jeffrey C.; Smith, James L.
2010-01-01
A laboratory study was conducted to examine gait changes between younger and older subjects as they walked across different floor surfaces. Twenty subjects participated in the experiment (five each of older and younger males and females). For half of the trials, subjects carried light loads that blocked their view of the floor surface immediately in front of them. Subjects walked on slippery (soapy water on vinyl) and stable (outdoor carpet) floor surfaces, as well as transitioning from one surface to another. Responses studied included: required coefficient of friction (RCOF), stride length (SL), and minimum toe clearance (MTC). Significant effects were found for the floor surface, load versus no load condition, and some interactions involving age (older versus younger subjects). Not all expected differences due to age were found in this experiment. The lack of significant differences between younger and older subjects could be due to the older subjects that participated in the experiment. They were volunteers at a local medical center, were in good physical shape, and were probably not typical of the population of people over 65 years of age. Relevance to industry Slips and falls in industry are costly safety issues in terms of human suffering as well as financial compensation. In many facilities and at home, people make transitions from one floor surface to another many times each day, while carrying loads or just walking. A better understanding of characteristics of people as they walk on slippery floor surfaces and the changes that might occur with age, will allow engineers to design better floor surfaces to reduce the incidence of slips and falls. PMID:20607122
Partial gravity unloading inhibits bone healing responses in a large animal model.
Gadomski, Benjamin C; McGilvray, Kirk C; Easley, Jeremiah T; Palmer, Ross H; Santoni, Brandon G; Puttlitz, Christian M
2014-09-22
The reduction in mechanical loading associated with space travel results in dramatic decreases in the bone mineral density (BMD) and mechanical strength of skeletal tissue resulting in increased fracture risk during spaceflight missions. Previous rodent studies have highlighted distinct bone healing differences in animals in gravitational environments versus those during spaceflight. While these data have demonstrated that microgravity has deleterious effects on fracture healing, the direct translation of these results to human skeletal repair remains problematic due to substantial differences between rodent and human bone. Thus, the objective of this study was to investigate the effects of partial gravitational unloading on long-bone fracture healing in a previously-developed large animal Haversian bone model. In vivo measurements demonstrated significantly higher orthopedic plate strains (i.e. load burden) in the Partial Unloading (PU) Group as compared to the Full Loading (FL) Group following the 28-day healing period due to inhibited healing in the reduced loading environment. DEXA BMD in the metatarsus of the PU Group decreased 17.6% (p<0.01) at the time of the ostectomy surgery. Four-point bending stiffness of the PU Group was 4.4 times lower than that of the FL Group (p<0.01), while µCT and histomorphometry demonstrated reduced periosteal callus area (p<0.05), mineralizing surface (p<0.05), mineral apposition rate (p<0.001), bone formation rate (p<0.001), and periosteal/endosteal osteoblast numbers (p<0.001/p<0.01, respectively) as well as increased periosteal osteoclast number (p<0.05). These data provide strong evidence that the mechanical environment dramatically affects the fracture healing cascade, and likely has a negative impact on Haversian system healing during spaceflight. Copyright © 2014 Elsevier Ltd. All rights reserved.
Simulating Fatigue Crack Growth in Spiral Bevel Pinion
NASA Technical Reports Server (NTRS)
Ural, Ani; Wawrzynek, Paul A.; Ingraffe, Anthony R.
2003-01-01
This project investigates computational modeling of fatigue crack growth in spiral bevel gears. Current work is a continuation of the previous efforts made to use the Boundary Element Method (BEM) to simulate tooth-bending fatigue failure in spiral bevel gears. This report summarizes new results predicting crack trajectory and fatigue life for a spiral bevel pinion using the Finite Element Method (FEM). Predicting crack trajectories is important in determining the failure mode of a gear. Cracks propagating through the rim may result in catastrophic failure, whereas the gear may remain intact if one tooth fails and this may allow for early detection of failure. Being able to predict crack trajectories is insightful for the designer. However, predicting growth of three-dimensional arbitrary cracks is complicated due to the difficulty of creating three-dimensional models, the computing power required, and absence of closed- form solutions of the problem. Another focus of this project was performing three-dimensional contact analysis of a spiral bevel gear set incorporating cracks. These analyses were significant in determining the influence of change of tooth flexibility due to crack growth on the magnitude and location of contact loads. This is an important concern since change in contact loads might lead to differences in SIFs and therefore result in alteration of the crack trajectory. Contact analyses performed in this report showed the expected trend of decreasing tooth loads carried by the cracked tooth with increasing crack length. Decrease in tooth loads lead to differences between SIFs extracted from finite element contact analysis and finite element analysis with Hertz contact loads. This effect became more pronounced as the crack grew.
Three-Dimensional Modeling of Fluid and Heat Transport in an Accretionary Complex
NASA Astrophysics Data System (ADS)
Paula, C. A.; Ge, S.; Screaton, E. J.
2001-12-01
As sediments are scraped off of the subducting oceanic crust and accreted to the overriding plate, the rapid loading causes pore pressures in the underthrust sediments to increase. The change in pore pressure drives fluid flow and heat transport within the accretionary complex. Fluid is channeled along higher permeability faults and fractures and expelled at the seafloor. In this investigation, we examined the effects of sediment loading on fluid flow and thermal transport in the decollement at the Barbados Ridge subduction zone. Both the width and thickness of the Barbados Ridge accretionary complex increase from north to south. The presence of mud diapers south of the Tiburon Rise and an observed southward decrease in heat flow measurements indicate that the increased thickness of the southern Barbados accretionary prism affects the transport of chemicals and heat by fluids. The three-dimensional geometry and physical properties of the accretionary complex were utilized to construct a three-dimensional fluid flow/heat transport model. We calculated the pore pressure change due to a period of sediment loading and added this to steady-state pressure conditions to generate initial conditions for transient simulations. We then examined the diffusion of pore pressure and possible perturbation of the thermal regime over time due to loading of the underthrust sediments. The model results show that the sediment-loading event was sufficient to create small temperature fluctuations in the decollement zone. The magnitude of temperature fluctuation in the decollement was greatest at the deformation front but did not vary significantly from north to south of the Tiburon Rise.
Enhanced stability and dermal delivery of hydroquinone using solid lipid nanoparticles.
Ghanbarzadeh, Saeed; Hariri, Reza; Kouhsoltani, Maryam; Shokri, Javad; Javadzadeh, Yousef; Hamishehkar, Hamed
2015-12-01
Hydroquinone (HQ), a well-known anti-hyperpigmentation agent suffers from (a) instability due to rapid oxidation, (b) insufficient skin penetration because of hydrophilic structure, and (c) severe side effects as a results of systemic absorption. This study aimed to load HQ into solid lipid nanoparticles (SLNs) to overcome the mentioned drawbacks for the efficient treatment of hyperpigmentation. The optimized SLN formulation was prepared by hot melt homogenization method and fully characterized by various techniques. The ability of SLNs in dermal delivery of HQ was assessed through the excised rat skin. The optimized HQ-loaded SLNs (particle size of 86 nm, encapsulation efficiency% of 89.5% and loading capacity% of 11.2%) exhibited a good physicochemical stability during a period of five months. XRD and DSC results showed that HQ was dispersed in an amorphous state, confirming uniform drug dispersion in the SLNs structure and embedment of drug in the solid lipid matrix. In vitro penetration studies showed almost 3 times higher drug accumulation in the skin and 6.5 times lower drug entrance to receiving compartment of Franz diffusion cell from HQ-loaded SLN hydrogel compared with HQ Carbopol made hydrogel. These results indicated the better HQ localization in the skin and its lower systemic absorption. It was concluded that SLN is a promising colloidal drug carrier for topical administration of HQ in the treatment of hyperpigmentation due to suitable HQ loading value in spite of its hydrophilic structure, high stability against oxidation and appropriate skin penetration along with the low systemic absorption. Copyright © 2015 Elsevier B.V. All rights reserved.