Sample records for loading fatigue crack

  1. The signatures of acoustic emission waveforms from fatigue crack advancing in thin metallic plates

    NASA Astrophysics Data System (ADS)

    Yeasin Bhuiyan, Md; Giurgiutiu, Victor

    2018-01-01

    The acoustic emission (AE) waveforms from a fatigue crack advancing in a thin metallic plate possess diverse and complex spectral signatures. In this article, we analyze these waveform signatures in coordination with the load level during cyclic fatigue. The advancing fatigue crack may generate numerous AE hits while it grows under fatigue loading. We found that these AE hits can be sorted into various groups based on their AE waveform signatures. Each waveform group has a particular time-domain signal pattern and a specific frequency spectrum. This indicates that each group represents a certain AE event related to the fatigue crack growth behavior. In situ AE-fatigue experiments were conducted to monitor the fatigue crack growth with simultaneous measurement of AE signals, fatigue loading, and optical crack growth measurement. An in situ microscope was installed in the load-frame of the mechanical testing system (MTS) to optically monitor the fatigue crack growth and relate the AE signals with the crack growth measurement. We found the AE signal groups at higher load levels (75%-85% of maximum load) were different from the AE signal groups that happened at lower load levels (below 60% of load level). These AE waveform groups are highly related to the fatigue crack-related AE events. These AE signals mostly contain the higher frequency peaks (100 kHz, 230 kHz, 450 kHz, 550 kHz). Some AE signal groups happened as a clustered form that relates a sequence of small AE events within the fatigue crack. They happened at relatively lower load level (50%-60% of the maximum load). These AE signal groups may be related to crack friction and micro-fracture during the friction process. These AE signals mostly contain the lower frequency peaks (60 kHz, 100 kHz, 200 kHz). The AE waveform based analysis may give us comprehensive information of the metal fatigue.

  2. Load-Differential Features for Automated Detection of Fatigue Cracks Using Guided Waves (Preprint)

    DTIC Science & Technology

    2011-11-01

    AFRL-RX-WP-TP-2011-4363 LOAD-DIFFERENTIAL FEATURES FOR AUTOMATED DETECTION OF FATIGUE CRACKS USING GUIDED WAVES (PREPRINT) Jennifer E...AUTOMATED DETECTION OF FATIGUE CRACKS USING GUIDED WAVES (PREPRINT) 5a. CONTRACT NUMBER FA8650-09-C-5206 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...tensile loads open fatigue cracks and thus enhance their detectability using ultrasonic methods. Here we introduce a class of load-differential methods

  3. Fatigue Crack Detection via Load-Differential Guided Wave Methods (Preprint)

    DTIC Science & Technology

    2011-11-01

    AFRL-RX-WP-TP-2011-4362 FATIGUE CRACK DETECTION VIA LOAD- DIFFERENTIAL GUIDED WAVE METHODS (PREPRINT) Jennifer E. Michaels, Sang Jun Lee...November 2011 Technical Paper 1 November 2011 – 1 November 2011 4. TITLE AND SUBTITLE FATIGUE CRACK DETECTION VIA LOAD-DIFFERENTIAL GUIDED WAVE...document contains color. 14. ABSTRACT Detection of fatigue cracks originating from fastener holes is an important application for structural health

  4. Fatigue-Crack-Growth Structural Analysis

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1986-01-01

    Elastic and plastic deformations calculated under variety of loading conditions. Prediction of fatigue-crack-growth lives made with FatigueCrack-Growth Structural Analysis (FASTRAN) computer program. As cyclic loads are applied to initial crack configuration, FASTRAN predicts crack length and other parameters until complete break occurs. Loads are tensile or compressive and of variable or constant amplitude. FASTRAN incorporates linear-elastic fracture mechanics with modifications of load-interaction effects caused by crack closure. FASTRAN considered research tool, because of lengthy calculation times. FASTRAN written in FORTRAN IV for batch execution.

  5. Fatigue Crack Closure Analysis Using Digital Image Correlation

    NASA Technical Reports Server (NTRS)

    Leser, William P.; Newman, John A.; Johnston, William M.

    2010-01-01

    Fatigue crack closure during crack growth testing is analyzed in order to evaluate the critieria of ASTM Standard E647 for measurement of fatigue crack growth rates. Of specific concern is remote closure, which occurs away from the crack tip and is a product of the load history during crack-driving-force-reduction fatigue crack growth testing. Crack closure behavior is characterized using relative displacements determined from a series of high-magnification digital images acquired as the crack is loaded. Changes in the relative displacements of features on opposite sides of the crack are used to generate crack closure data as a function of crack wake position. For the results presented in this paper, remote closure did not affect fatigue crack growth rate measurements when ASTM Standard E647 was strictly followed and only became a problem when testing parameters (e.g., load shed rate, initial crack driving force, etc.) greatly exceeded the guidelines of the accepted standard.

  6. Discrete Dislocation Modeling of Fatigue

    NASA Astrophysics Data System (ADS)

    Needleman, Alan

    2004-03-01

    In joint work with V.S. Deshpande of Cambridge University and E. Van der Giessen of the University of Groningen a framework has been developed for the analysis of crack growth under cyclic loading conditions where plastic flow arises from the motion of large numbers of discrete dislocations and the fracture properties are embedded in a cohesive surface constitutive relation. The material model is independent of the presence of a crack and the only distinction between an analysis of monotonic crack growth and fatigue crack growth is that in fatigue the remote loading is specified to be an oscillating function of time. Thus, a basic question is: within this framework, do cracks grow at a lower driving force under cyclic loading than under monotonic loading, and if so, what features of fatigue crack growth emerge? Fatigue does emerge from the calculations as a consequence of the evolution of internal stresses associated with the irreversibility of the dislocation motion. A fatigue threshold, Paris law behavior, striations and the accelerated growth of short cracks are outcomes of the simulations. Also, scaling predictions obtained for the fatigue threshold and the fatigue crack growth rate are discussed.

  7. Generating Fatigue Crack Growth Thresholds with Constant Amplitude Loads

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Newman, James C., J.; Forman, Royce G.

    2002-01-01

    The fatigue crack growth threshold, defining crack growth as either very slow or nonexistent, has been traditionally determined with standardized load reduction methodologies. Some experimental procedures tend to induce load history effects that result in remote crack closure from plasticity. This history can affect the crack driving force, i.e. during the unloading process the crack will close first at some point along the wake, reducing the effective load at the crack tip. One way to reduce the effects of load history is to propagate a crack under constant amplitude loading. As a crack propagates under constant amplitude loading, the stress intensity factor, K, will increase, as will the crack growth rate, da/dN. A fatigue crack growth threshold test procedure is developed and experimentally validated that does not produce load history effects and can be conducted at a specified stress ratio, R.

  8. Behavior of Fatigue Crack Tip Opening in Air and Corrosive Atmosphere

    NASA Astrophysics Data System (ADS)

    Hayashi, Morihito; Toeda, Kazunori

    In the study, a formula for predicting fatigue crack tip opening displacement is deduced firstly. And then, due to comparing actual crack growth rate with the deduced formula, the crack tip configuration factor is defined to figure out the crack tip opening configuration that is useful to clarify the behavior of fatigue crack tip formation apparently. Applying the concept, the crack growth of 7/3 brass and 6/4 brass is predicted from the formula, by replacing material properties such as plastic flow resistance, Young modulus, the Poisson ratio, and fatigue toughness, and fatigue test conditions such as the stress intensity factor range, the load ratio, and cycle frequency. Furthermore, the theoretically expected results are verified with the fatigue tests which were carried out on CT specimens under different load conditions of load ratio, cycle frequency, and cyclic peak load, in different environments of air or corrosive ammonia atmosphere, for various brasses. And by comparing and discussing the calculated crack growth rate with attained experimental results, the apparent configuration factor at the crack tip is determined. And through the attained factor which changes along with crack growth, the behaviors of fatigue crack tip formation under different test conditions have been found out.

  9. Corrosion-Fatigue Crack Growth in Plates: A Model Based on the Paris Law

    PubMed Central

    Toribio, Jesús; Matos, Juan-Carlos; González, Beatriz

    2017-01-01

    In this paper, a Paris law-based model is presented whereby crack propagation occurs under cyclic loading in air (fatigue) and in an aggressive environment (corrosion-fatigue) for the case of corner cracks (with a wide range of aspect ratios in the matter of the initial cracks) in finite-thickness plates of 316L austenitic stainless steel subjected to tension, bending, or combined (tension + bending) loading. Results show that the cracks tend during their growth towards a preferential propagation path, exhibiting aspect ratios slightly lower than unity only for the case of very shallow cracks, and diminishing as the crack grows (increasing the relative crack depth)—more intensely in the case of bending than in the case of tension (the mixed loading tension/bending representing an intermediate case). In addition, the crack aspect ratios during fatigue propagation evolution are lower in fatigue (in air) than in corrosion-fatigue (in aggressive environment). PMID:28772798

  10. Fatigue Analyses Under Constant- and Variable-Amplitude Loading Using Small-Crack Theory

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.

    1999-01-01

    Studies on the growth of small cracks have led to the observation that fatigue life of many engineering materials is primarily "crack growth" from micro-structural features, such as inclusion particles, voids, slip-bands or from manufacturing defects. This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using "small-crack theory" under various loading conditions. Constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective stress-intensity factor range (delta-Keff) under constant-amplitude loading. Modifications to the delta-Keff-rate relations in the near-threshold regime were needed to fit measured small-crack growth rate behavior. The model was then used to calculate small-and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens under constant-amplitude and spectrum loading. Fatigue lives were predicted using crack-growth relations and micro-structural features like those that initiated cracks in the fatigue specimens for most of the materials analyzed. Results from the tests and analyses agreed well.

  11. Analyses of Fatigue and Fatigue-Crack Growth under Constant- and Variable-Amplitude Loading

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1999-01-01

    Studies on the growth of small cracks have led to the observation that fatigue life of many engineering materials is primarily crack growth from micro-structural features, such as inclusion particles, voids, slip-bands or from manufacturing defects. This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using small-crack theory under various loading conditions. Constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective stress-intensity factor range (delta K(sub eff)) under constant-amplitude loading. Modifications to the delta K(sub eff)-rate relations in the near-threshold regime were needed to fit measured small-crack growth rate behavior. The model was then used to calculate small- and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens under constant-amplitude and spectrum loading. Fatigue lives were predicted using crack-growth relations and micro-structural features like those that initiated cracks in the fatigue specimens for most of the materials analyzed. Results from the tests and analyses agreed well.

  12. Shear fatigue crack growth - A literature survey

    NASA Technical Reports Server (NTRS)

    Liu, H. W.

    1985-01-01

    Recent studies of shear crack growth are reviewed, emphasizing test methods and data analyses. The combined mode I and mode II elastic crack tip stress fields are considered. The development and design of the compact shear specimen are described, and the results of fatigue crack growth tests using compact shear specimens are reviewed. The fatigue crack growth tests are discussed and the results of inclined cracks in tensile panels, center cracks in plates under biaxial loading, cracked beam specimens with combined bending and shear loading, center-cracked panels and double edge-cracked plates under cyclic shear loading are examined and analyzed in detail.

  13. Fatique crack growth behavior of a single crystal alloy as observed through an in situ fatigue loading stage

    NASA Technical Reports Server (NTRS)

    Telesman, Jack; Kantzos, Peter

    1988-01-01

    An in situ fatigue loading stage inside a scanning electron microscope (SEM) was used to determine the fatigue crack growth behavior of a PWA 1480 single-crystal nickel-based superalloy. The loading stage permits real-time viewing of the fatigue damage processes at high magnification. The PWA 1480 single-crystal, single-edge notch specimens were tested with the load axis parallel to the (100) orientation. Two distinct fatigue failure mechanisms were identified. The crack growth rate differed substantially when the failure occurred on a single slip system in comparison to multislip system failure. Two processes by which crack branching is produced were identified and are discussed. Also discussed are the observed crack closure mechanisms.

  14. On Generating Fatigue Crack Growth Thresholds

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Newman, James, Jr.; Forman, Royce G.

    2003-01-01

    The fatigue crack growth threshold, defining crack growth as either very slow or nonexistent, has been traditionally determined with standardized load reduction methodologies. These experimental procedures can induce load history effects that result in crack closure. This history can affect the crack driving force, i.e. during the unloading process the crack will close first at some point along the wake or blunt at the crack tip, reducing the effective load at the crack tip. One way to reduce the effects of load history is to propagate a crack under constant amplitude loading. As a crack propagates under constant amplitude loading, the stress intensity factor range, Delta K, will increase, as will the crack growth rate. da/dN. A fatigue crack growth threshold test procedure is experimentally validated that does not produce load history effects and can be conducted at a specified stress ratio, R. The authors have chosen to study a ductile aluminum alloy where the plastic deformations generated during testing may be of the magnitude to impact the crack opening.

  15. Investigation of Cracks Found in Helicopter Longerons

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James M.; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurigical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  16. Investigation of Helicopter Longeron Cracks

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  17. Fatigue crack growth under general-yielding cyclic-loading

    NASA Technical Reports Server (NTRS)

    Minzhong, Z.; Liu, H. W.

    1986-01-01

    In low cycle fatigue, cracks are initiated and propagated under general yielding cyclic loading. For general yielding cyclic loading, Dowling and Begley have shown that fatigue crack growth rate correlates well with the measured delta J. The correlation of da/dN with delta J was also studied by a number of other investigators. However, none of thse studies have correlated da/dN with delta J calculated specifically for the test specimens. Solomon measured fatigue crack growth in specimens in general yielding cyclic loading. The crack tips fields for Solomon's specimens are calculated using the finite element method and the J values of Solomon's tests are evaluated. The measured crack growth rate in Solomon's specimens correlates very well with the calculated delta J.

  18. Fatigue crack growth with single overload - Measurement and modeling

    NASA Technical Reports Server (NTRS)

    Davidson, D. L.; Hudak, S. J., Jr.; Dexter, R. J.

    1987-01-01

    This paper compares experiments with an analytical model of fatigue crack growth under variable amplitude. The stereoimaging technique was used to measure displacements near the tips of fatigue cracks undergoing simple variations in load amplitude-single overloads and overload/underload combinations. Measured displacements were used to compute strains, and stresses were determined from the strains. Local values of crack driving force (Delta-K effective) were determined using both locally measured opening loads and crack tip opening displacements. Experimental results were compared with simulations made for the same load variation conditions using Newman's FAST-2 model. Residual stresses caused by overloads, crack opening loads, and growth retardation periods were compared.

  19. A robust signal processing method for quantitative high-cycle fatigue crack monitoring using soft elastomeric capacitor sensors

    NASA Astrophysics Data System (ADS)

    Kong, Xiangxiong; Li, Jian; Collins, William; Bennett, Caroline; Laflamme, Simon; Jo, Hongki

    2017-04-01

    A large-area electronics (LAE) strain sensor, termed soft elastomeric capacitor (SEC), has shown great promise in fatigue crack monitoring. The SEC is able to monitor strain changes over a mesoscale structural surface and endure large deformations without being damaged under cracking. Previous tests verified that the SEC is able to detect, localize, and monitor fatigue crack activities under low-cycle fatigue loading. In this paper, to examine the SEC's capability of monitoring high-cycle fatigue cracks, a compact specimen is tested under cyclic tension, designed to ensure realistic crack opening sizes representative of those in real steel bridges. To overcome the difficulty of low signal amplitude and relatively high noise level under high-cycle fatigue loading, a robust signal processing method is proposed to convert the measured capacitance time history from the SEC sensor to power spectral densities (PSD) in the frequency domain, such that signal's peak-to-peak amplitude can be extracted at the dominant loading frequency. A crack damage indicator is proposed as the ratio between the square root of the amplitude of PSD and load range. Results show that the crack damage indicator offers consistent indication of crack growth.

  20. Effects of load and thermal histories on mechanical behavior of materials; Proceedings of the Symposium, Denver, CO, Feb. 25, 26, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liaw, P.K.; Nicholas, T.

    This volume includes topics on fatigue crack propagation; isothermal and thermal-mechanical fatigue; and microstructure, fracture, and damage. Papers are presented on transients in fatigue crack growth, elevated-temperature fatigue crack propagation, the role of crack closure in crack retardation in P/M and I/M aluminum alloys, the acoustic interrogation of fatigue overload effects, and the effects of frequency and environment on crack growth in Inconel 718. Special attention is given to isothermal fatigue failure mechanisms in low-tin lead-based solder, the stress and strain controlled low-cycle fatigue of Pb-Sn solder for electronic packaging applications, load sequence effects on the deformation of isolated microplasticmore » grains, and thermal fatigue of stainless steel. Other papers are on the influence of thermal aging on the creep crack growth behavior of a Cr-Mo steel, the effect of cyclic loading on the fracture toughness of a modified 4340 steel, and the effects of hot rolling condition and boron microalloying on phase transformation and microstructure in niobium-bearing interstitial free steel.« less

  1. Recent advances in the modelling of crack growth under fatigue loading conditions

    NASA Technical Reports Server (NTRS)

    Dekoning, A. U.; Tenhoeve, H. J.; Henriksen, T. K.

    1994-01-01

    Fatigue crack growth associated with cyclic (secondary) plastic flow near a crack front is modelled using an incremental formulation. A new description of threshold behaviour under small load cycles is included. Quasi-static crack extension under high load excursions is described using an incremental formulation of the R-(crack growth resistance)- curve concept. The integration of the equations is discussed. For constant amplitude load cycles the results will be compared with existing crack growth laws. It will be shown that the model also properly describes interaction effects of fatigue crack growth and quasi-static crack extension. To evaluate the more general applicability the model is included in the NASGRO computer code for damage tolerance analysis. For this purpose the NASGRO program was provided with the CORPUS and the STRIP-YIELD models for computation of the crack opening load levels. The implementation is discussed and recent results of the verification are presented.

  2. Fatigue-Life Prediction Methodology Using Small-Crack Theory

    NASA Technical Reports Server (NTRS)

    Newmann, James C., Jr.; Phillips, Edward P.; Swain, M. H.

    1997-01-01

    This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using 'small-crack theory' for various materials and loading conditions. Crack-tip constraint factors, to account for three-dimensional state-of-stress effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta K(eff)) under constant-amplitude loading. Some modifications to the delta k(eff)-rate relations were needed in the near-threshold regime to fit measured small-crack growth rate behavior and fatigue endurance limits. The model was then used to calculate small- and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens made of two aluminum alloys and a steel under constant-amplitude and spectrum loading. Fatigue lives were calculated using the crack-growth relations and microstructural features like those that initiated cracks for the aluminum alloys and steel for edge-notched specimens. An equivalent-initial-flaw-size concept was used to calculate fatigue lives in other cases. Results from the tests and analyses agreed well.

  3. Load-Differential Imaging for Detection and Localization of Fatigue Cracks Using Lamb Waves (Preprint)

    DTIC Science & Technology

    2012-03-01

    AFRL-RX-WP-TP-2012-0278 LOAD-DIFFERENTIAL IMAGING FOR DETECTION AND LOCALIZATION OF FATIGUE CRACKS USING LAMB WAVES (PREPRINT) X. Chen...OF FATIGUE CRACKS USING LAMB WAVES (PREPRINT) 5a. CONTRACT NUMBER FA8650-09-C-5206 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6...Jan 2012. Preprint journal article to be submitted to NDT & E. This document contains color. 14. ABSTRACT Fatigue cracks are common and

  4. High cycle fatigue in the transmission electron microscope

    DOE PAGES

    Bufford, Daniel C.; Stauffer, Douglas; Mook, William M.; ...

    2016-06-28

    One of the most common causes of structural failure in metals is fatigue induced by cyclic loading. Historically, microstructure-level analysis of fatigue cracks has primarily been performed post mortem. However, such investigations do not directly reveal the internal structural processes at work near micro- and nanoscale fatigue cracks and thus do not provide direct evidence of active microstructural mechanisms. In this paper, the tension–tension fatigue behavior of nanocrystalline Cu was monitored in real time at the nanoscale by utilizing a new capability for quantitative cyclic mechanical loading performed in situ in a transmission electron microscope (TEM). Controllable loads were appliedmore » at frequencies from one to several hundred hertz, enabling accumulations of 10 6 cycles within 1 h. The nanometer-scale spatial resolution of the TEM allows quantitative fatigue crack growth studies at very slow crack growth rates, measured here at ~10 –12 m·cycle –1. This represents an incipient threshold regime that is well below the tensile yield stress and near the minimum conditions for fatigue crack growth. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard imaging and precession electron diffraction orientation mapping. Finally, these observations begin to reveal with unprecedented detail the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during fatigue loading in nanocrystalline Cu.« less

  5. High cycle fatigue in the transmission electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bufford, Daniel C.; Stauffer, Douglas; Mook, William M.

    One of the most common causes of structural failure in metals is fatigue induced by cyclic loading. Historically, microstructure-level analysis of fatigue cracks has primarily been performed post mortem. However, such investigations do not directly reveal the internal structural processes at work near micro- and nanoscale fatigue cracks and thus do not provide direct evidence of active microstructural mechanisms. In this paper, the tension–tension fatigue behavior of nanocrystalline Cu was monitored in real time at the nanoscale by utilizing a new capability for quantitative cyclic mechanical loading performed in situ in a transmission electron microscope (TEM). Controllable loads were appliedmore » at frequencies from one to several hundred hertz, enabling accumulations of 10 6 cycles within 1 h. The nanometer-scale spatial resolution of the TEM allows quantitative fatigue crack growth studies at very slow crack growth rates, measured here at ~10 –12 m·cycle –1. This represents an incipient threshold regime that is well below the tensile yield stress and near the minimum conditions for fatigue crack growth. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard imaging and precession electron diffraction orientation mapping. Finally, these observations begin to reveal with unprecedented detail the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during fatigue loading in nanocrystalline Cu.« less

  6. Fatigue crack growth in 2024-T3 aluminum under tensile and transverse shear stresses

    NASA Technical Reports Server (NTRS)

    Viz, Mark J.; Zehnder, Alan T.

    1994-01-01

    The influence of transverse shear stresses on the fatigue crack growth rate in thin 2024-T3 aluminum alloy sheets is investigated experimentally. The tests are performed on double-edge cracked sheets in cyclic tensile and torsional loading. This loading generates crack tip stress intensity factors in the same ratio as the values computed for a crack lying along a lap joint in a pressurized aircraft fuselage. The relevant fracture mechanics of cracks in thin plates along with the details of the geometrically nonlinear finite element analyses used for the test specimen calibration are developed and discussed. Preliminary fatigue crack growth data correlated using the fully coupled stress intensity factor calibration are presented and compared with fatigue crack growth data from pure delta K(sub I)fatigue tests.

  7. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller

    NASA Astrophysics Data System (ADS)

    Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng

    2015-03-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  8. Anomolous Fatigue Crack Growth Phenomena in High-Strength Steel

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; James, Mark A.; Johnston, William M., Jr.; Newman, James C., Jr.

    2004-01-01

    The growth of a fatigue crack through a material is the result of a complex interaction between the applied loading, component geometry, three-dimensional constraint, load history, environment, material microstructure and several other factors. Previous studies have developed experimental and computational methods to relate the fatigue crack growth rate to many of the above conditions, with the intent of discovering some fundamental material response, i.e. crack growth rate as a function of something. Currently, the technical community uses the stress intensity factor solution as a simplistic means to relate fatigue crack growth rate to loading, geometry and all other variables. The stress intensity factor solution is a very simple linear-elastic representation of the continuum mechanics portion of crack growth. In this paper, the authors present fatigue crack growth rate data for two different high strength steel alloys generated using standard methods. The steels exhibit behaviour that appears unexplainable, compared to an aluminium alloy presented as a baseline for comparison, using the stress intensity factor solution.

  9. Fatigue of concrete subjected to biaxial loading in the tension region

    NASA Astrophysics Data System (ADS)

    Subramaniam, Kolluru V. L.

    Rigid airport pavement structures are subjected to repeated high-amplitude loads resulting from passing aircraft. The resulting stress-state in the concrete is a biaxial combination of compression and tension. It is of interest to model the response of plain concrete to such loading conditions and develop accurate fatigue-based material models for implementation in mechanistic pavement design procedures. The objective of this work is to characterize the quasi-static and low-cycle fatigue response of concrete subjected to biaxial stresses in the tensile-compression-tension (t-C-T) region, where the principal tensile stress is larger in magnitude than the principal compressive stress. An experimental investigation of material behavior in the biaxial t-C-T region is conducted. The experimental setup consists of the following test configurations: (a) notched concrete beams tested in three-point bend configuration, and (b) hollow concrete cylinders subjected to torsion with or without superimposed axial tensile force. The damage imparted to the material is examined using mechanical measurements and an independent nondestructive evaluation (NDE) technique based on vibration measurements. The failure of concrete in t-C-T region is shown to be a local phenomenon under quasi-static and fatigue loading, wherein the specimen fails owing to a single crack. The crack propagation is studied using the principles of fracture mechanics. It is shown that the crack propagation resulting from the t-C-T loading can be predicted using mode I fracture parameters. It is observed that crack growth in constant amplitude fatigue loading is a two-phase process: a deceleration phase followed by an acceleration stage. The quasi-static load envelope is shown to predict the crack length at fatigue failure. A fracture-based fatigue failure criterion is proposed, wherein the fatigue failure can be predicted using the critical mode I stress intensity factor. A material model for the damage evolution during fatigue loading of concrete in terms of crack propagation is proposed. The crack growth acceleration stage is shown to follow Paris law. The model parameters obtained from uniaxial fatigue tests are shown to be sufficient for predicting the considered biaxial fatigue response.

  10. Near-threshold fatigue crack behaviour in EUROFER 97 at different temperatures

    NASA Astrophysics Data System (ADS)

    Aktaa, J.; Lerch, M.

    2006-07-01

    The fatigue crack behaviour in EUROFER 97 was investigated at room temperature (RT), 300, 500 and 550 °C for the assessment of cracks in first wall structures built from EUROFER 97 of future fusion reactors. For this purpose, fatigue crack growth tests were performed using CT specimens with two R-ratios, R = 0.1 and R = 0.5 ( R is the load ratio with R = Fmin/ Fmax where Fmin and Fmax are the minimum and maximum applied loads within a cycle, respectively). Hence, fatigue crack threshold, fatigue crack growth behaviour in the near-threshold range and their dependences on temperature and R-ratio were determined and described using an analytical formula. The fatigue crack threshold showed a monotonous dependence on temperature which is for R = 0.5 insignificantly small. The fatigue crack growth behaviour exhibited for R = 0.1 a non-monotonous dependence on temperature which is explained by the decrease of yield stress and the increase of creep damage with increasing temperature.

  11. Fatigue life and crack growth prediction methodology

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.

    1993-01-01

    The capabilities of a plasticity-induced crack-closure model and life-prediction code to predict fatigue crack growth and fatigue lives of metallic materials are reviewed. Crack-tip constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta(K(sub eff))) under constant-amplitude loading. Some modifications to the delta(K(sub eff))-rate relations were needed in the near threshold regime to fit small-crack growth rate behavior and endurance limits. The model was then used to calculate small- and large-crack growth rates, and in some cases total fatigue lives, for several aluminum and titanium alloys under constant-amplitude, variable-amplitude, and spectrum loading. Fatigue lives were calculated using the crack growth relations and microstructural features like those that initiated cracks. Results from the tests and analyses agreed well.

  12. Micromechanisms of fatigue crack growth in polycarbonate polyurethane: Time dependent and hydration effects.

    PubMed

    Ford, Audrey C; Gramling, Hannah; Li, Samuel C; Sov, Jessica V; Srinivasan, Amrita; Pruitt, Lisa A

    2018-03-01

    Polycarbonate polyurethane has cartilage-like, hygroscopic, and elastomeric properties that make it an attractive material for orthopedic joint replacement application. However, little data exists on the cyclic loading and fracture behavior of polycarbonate polyurethane. This study investigates the mechanisms of fatigue crack growth in polycarbonate polyurethane with respect to time dependent effects and conditioning. We studied two commercially available polycarbonate polyurethanes, Bionate® 75D and 80A. Tension testing was performed on specimens at variable time points after being removed from hydration and variable strain rates. Fatigue crack propagation characterized three aspects of loading. Study 1 investigated the impact of continuous loading (24h/day) versus intermittent loading (8-10h/day) allowing for relaxation overnight. Study 2 evaluated the effect of frequency and study 3 examined the impact of hydration on the fatigue crack propagation in polycarbonate polyurethane. Samples loaded intermittently failed instantaneously and prematurely upon reloading while samples loaded continuously sustained longer stable cracks. Crack growth for samples tested at 2 and 5Hz was largely planar with little crack deflection. However, samples tested at 10Hz showed high degrees of crack tip deflection and multiple crack fronts. Crack growth in hydrated samples proceeded with much greater ductile crack mouth opening displacement than dry samples. An understanding of the failure mechanisms of this polymer is important to assess the long-term structural integrity of this material for use in load-bearing orthopedic implant applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Modeling time-dependent corrosion fatigue crack propagation in 7000 series aluminum alloys

    NASA Technical Reports Server (NTRS)

    Mason, Mark E.; Gangloff, Richard P.

    1994-01-01

    Stress corrosion cracking and corrosion fatigue experiments were conducted with the susceptible S-L orientation of AA7075-T651, immersed in acidified and inhibited NaCl solution, to provide a basis for incorporating environmental effects into fatigue crack propagation life prediction codes such as NASA FLAGRO. This environment enhances da/dN by five to ten-fold compared to fatigue in moist air. Time-based crack growth rates from quasi-static load experiments are an order of magnitude too small for accurate linear superposition prediction of da/dN for loading frequencies above 0.001 Hz. Alternate methods of establishing da/dt, based on rising-load or ripple-load-enhanced crack tip strain rate, do not increase da/dt and do not improve linear superposition. Corrosion fatigue is characterized by two regimes of frequency dependence; da/dN is proportional to f(exp -1) below 0.001 Hz and to F(exp 0) to F(exp -0.1) for higher frequencies. Da/dN increases mildly both with increasing hold-time at K(sub max) and with increasing rise-time for a range of loading waveforms. The mild time-dependence is due to cycle-time-dependent corrosion fatigue growth. This behavior is identical for S-L nd L-T crack orientations. The frequency response of environmental fatigue in several 7000 series alloys is variable and depends on undefined compositional or microstructural variables. Speculative explanations are based on the effect of Mg on occluded crack chemistry and embritting hydrogen uptake, or on variable hydrogen diffusion in the crack tip process zone. Cracking in the 7075/NaCl system is adequately described for life prediction by linear superposition for prolonged load-cycle periods, and by a time-dependent upper bound relationship between da/dN and delta K for moderate loading times.

  14. Visual simulation of fatigue crack growth

    NASA Astrophysics Data System (ADS)

    Wang, Shuanzhu; Margolin, Harold; Lin, Fengbao

    1998-07-01

    An attempt has been made to visually simulate fatigue crack propagation from a precrack. An integrated program was developed for this purpose. The crack-tip shape was determined at four load positions in the first load cycle. The final shape was a blunt front with an “ear” profile at the precrack tip. A more general model, schematically illustrating the mechanism of fatigue crack growth and striation formation in a ductile material, was proposed based on this simulation. According to the present model, fatigue crack growth is an intermittent process; cyclic plastic shear strain is the driving force applied to both state I and II crack growth. No fracture mode transition occurs between the two stages in the present study. The crack growth direction alternates, moving up and down successively, producing fatigue striations. A brief examination has been made of the crack growth path in a ductile two-phase material.

  15. The effect of fatigue cracks on fastener flexibility, load distribution, and fatigue crack growth

    NASA Astrophysics Data System (ADS)

    Whitman, Zachary Layne

    Fatigue cracks typically occur at stress risers such as geometry changes and holes. This type of failure has serious safety and economic repercussions affecting structures such as aircraft. The need to prevent catastrophic failure due to fatigue cracks and other discontinuities has led to durability and damage tolerant methodologies influencing the design of aircraft structures. Holes in a plate or sheet filled with a fastener are common fatigue critical locations in aircraft structure requiring damage tolerance analysis (DTA). Often, the fastener is transferring load which leads to a loading condition involving both far-field stresses such as tension and bending, and localized bearing at the hole. The difference between the bearing stress and the tensile field at the hole is known as load transfer. The ratio of load transfer as well as the magnitude of the stresses plays a significant part in how quickly a crack will progress to failure. Unfortunately, the determination of load transfer in a complex joint is far from trivial. Many methods exist in the open literature regarding the analysis of splices, doublers and attachment joints to determine individual fastener loads. These methods work well for static analyses but greater refinement is needed for crack growth analysis. The first fastener in a splice or joint is typically the most critical but different fastener flexibility equations will all give different results. The constraint of the fastener head and shop end, along with the type of fastener, affects the stiffness or flexibility of the fastener. This in turn will determine the load that the fastener will transfer within a given fastener pattern. However, current methods do not account for the change in flexibility at a fastener as the crack develops. It is put forth that a crack does indeed reduce the stiffness of a fastener by changing its constraint, thus lessening the load transfer. A crack growth analysis utilizing reduced load transfer will result in a slower growing crack versus an analysis that ignores the effect.

  16. Corrosion-Fatigue Cracking in HY-80 and HY-130 Steels

    DTIC Science & Technology

    2015-01-22

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6355--15-9584 Corrosion- Fatigue Cracking in HY-80 and HY-130 Steels January 22, 2015 P.S...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Corrosion- Fatigue ...including [NaCl] concentration) and load ratio on fatigue crack growth kinetics of HY-80 and HY-130 steels. Fracture mechanics wedge-opening-load

  17. Fatigue crack growth in fiber reinforced plastics

    NASA Technical Reports Server (NTRS)

    Mandell, J. F.

    1979-01-01

    Fatigue crack growth in fiber composites occurs by such complex modes as to frustrate efforts at developing comprehensive theories and models. Under certain loading conditions and with certain types of reinforcement, simpler modes of fatigue crack growth are observed. These modes are more amenable to modeling efforts, and the fatigue crack growth rate can be predicted in some cases. Thus, a formula for prediction of ligamented mode fatigue crack growth rate is available.

  18. The Effect of Fatigue Cracks on Fastener Flexibility, Load Distribution and Fatigue Crack Growth

    DTIC Science & Technology

    2012-05-01

    fastener will transfer within a given fastener pattern. iv iv However, current methods do not account for the change in flexibility at a fastener...affects the growth of the crack. Thus, as the effect of the crack starts to impact the load transfer of the joint there is a need to account for...not account for spectrum loading but typically were cycled from 1g to limit or maximum flight load and then correlated to measured usage using

  19. Understanding and Exploiting the Effects of Loading on Ultrasonic Sensing Systems for Structural Health Monitoring

    DTIC Science & Technology

    2012-02-01

    method to image fatigue cracks without requiring damage-free baseline measurements. Load-differential imaging maps changes in ultrasonic signals...caused by a small increase in applied load to an image, which enables detecting and locating fatigue cracks that open under load and thus distinguishing...them from other load-dependent effects. This method was successfully demonstrated in the laboratory during fatigue tests on a variety of aluminum

  20. Advances in Fatigue and Fracture Mechanics Analyses for Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1999-01-01

    This paper reviews some of the advances that have been made in stress analyses of cracked aircraft components, in the understanding of the fatigue and fatigue-crack growth process, and in the prediction of residual strength of complex aircraft structures with widespread fatigue damage. Finite-element analyses of cracked structures are now used to determine accurate stress-intensity factors for cracks at structural details. Observations of small-crack behavior at open and rivet-loaded holes and the development of small-crack theory has lead to the prediction of stress-life behavior for components with stress concentrations under aircraft spectrum loading. Fatigue-crack growth under simulated aircraft spectra can now be predicted with the crack-closure concept. Residual strength of cracked panels with severe out-of-plane deformations (buckling) in the presence of stiffeners and multiple-site damage can be predicted with advanced elastic-plastic finite-element analyses and the critical crack-tip-opening angle (CTOA) fracture criterion. These advances are helping to assure continued safety of aircraft structures.

  1. Advances in Fatigue and Fracture Mechanics Analyses for Metallic Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    2000-01-01

    This paper reviews some of the advances that have been made in stress analyses of cracked aircraft components, in the understanding of the fatigue and fatigue-crack growth process, and in the prediction of residual strength of complex aircraft structures with widespread fatigue damage. Finite-element analyses of cracked metallic structures are now used to determine accurate stress-intensity factors for cracks at structural details. Observations of small-crack behavior at open and rivet-loaded holes and the development of small-crack theory has lead to the prediction of stress-life behavior for components with stress concentrations under aircraft spectrum loading. Fatigue-crack growth under simulated aircraft spectra can now be predicted with the crack-closure concept. Residual strength of cracked panels with severe out-of-plane deformations (buckling) in the presence of stiffeners and multiple-site damage can be predicted with advanced elastic-plastic finite-element analyses and the critical crack-tip-opening angle (CTOA) fracture criterion. These advances are helping to assure continued safety of aircraft structures.

  2. Small Crack Growth and Fatigue Life Predictions for High-Strength Aluminium Alloys. Part 1; Experimental and Fracture Mechanics Analysis

    NASA Technical Reports Server (NTRS)

    Wu, X. R.; Newman, J. C.; Zhao, W.; Swain, M. H.; Ding, C. F.; Phillips, E. P.

    1998-01-01

    The small crack effect was investigated in two high-strength aluminium alloys: 7075-T6 bare and LC9cs clad alloy. Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks. In the experimental program, fatigue tests, small crack and large crack tests A,ere conducted under constant amplitude and Mini-TWIST spectrum loading conditions. A pronounced small crack effect was observed in both materials, especially for the negative stress ratios. For all loading conditions, most of the fatigue life of the SENT specimens was shown to be crack propagation from initial material defects or from the cladding layer. In the analysis program, three-dimensional finite element and A weight function methods were used to determine stress intensity factors and to develop SIF equations for surface and corner cracks at the notch in the SENT specimens. A plastisity-induced crack-closure model was used to correlate small and large crack data, and to make fatigue life predictions, Predicted crack-growth rates and fatigue lives agreed well with experiments. A total fatigue life prediction method for the aluminum alloys was developed and demonstrated using the crack-closure model.

  3. Measurement and analysis of critical crack tip processes during fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Davidson, D. L.; Hudak, S. J.; Dexter, R. J.

    1985-01-01

    The mechanics of fatigue crack growth under constant-amplitudes and variable-amplitude loading were examined. Critical loading histories involving relatively simple overload and overload/underload cycles were studied to provide a basic understanding of the underlying physical processes controlling crack growth. The material used for this study was 7091-T7E69, a powder metallurgy aluminum alloy. Local crack-tip parameters were measured at various times before, during, and after the overloads, these include crack-tip opening loads and displacements, and crack-tip strain fields. The latter were useed, in combination with the materials cyclic and monotonic stress-strain properties, to compute crack-tip residual stresses. The experimental results are also compared with analytical predictions obtained using the FAST-2 computer code. The sensitivity of the analytical model to constant-amplitude fatigue crack growth rate properties and to through-thickness constrain are studied.

  4. Prediction of Fatigue Crack Growth in Rail Steels.

    DOT National Transportation Integrated Search

    1981-10-01

    Measures to prevent derailments due to fatigue failures of rails require adequate knowledge of the rate of propagation of fatigue cracks under service loading. The report presents a computational model for the prediction of crack growth in rails. The...

  5. Crystallographic Analysis of Fatigue Crack Initiation Behavior in Coarse-Grained Magnesium Alloy Under Tension-Tension Loading Cycles

    NASA Astrophysics Data System (ADS)

    Tamada, Kazuhiro; Kakiuchi, Toshifumi; Uematsu, Yoshihiko

    2017-07-01

    Plane bending fatigue tests are conducted to investigate fatigue crack initiation mechanisms in coarse-grained magnesium alloy, AZ31, under the stress ratios R = -1 and 0.1. The initial crystallographic structures are analyzed by an electron backscatter diffraction method. The slip or twin operation during fatigue tests is identified from the line angle analyses based on Euler angles of the grains. Under the stress ratio R = -1, relatively thick tension twin bands are formed in coarse grains. Subsequently, compression twin or secondary pyramidal slip operates within the tension twin band, resulting in the fatigue crack initiation. On the other hand, under R = 0.1 with tension-tension loading cycles, twin bands are formed on the specimen surface, but the angles of those bands do not correspond to tension twins. Misorientation analyses of c-axes in the matrix grain and twin band reveal that double twins are activated. Under R = 0.1, fatigue crack initiates along the double twin boundaries. The different manners of fatigue crack initiation at R = -1 and 0.1 are related to the asymmetricity of twining under tension and compression loadings. The fatigue strengths under different stress ratios cannot be estimated by the modified Goodman diagram due to the effect of stress ratio on crack initiation mechanisms.

  6. Overload and Underload Effects on the Fatigue Crack Growth Behavior of the 2024-T3 Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Dawicke, David S.

    1997-01-01

    Fatigue crack growth tests were conducted on 0.09 inch thick, 3.0 inch wide middle-crack tension specimens cut from sheets of 2024-T3 aluminum alloy. The tests were conducted using a load sequence that consisted of a single block of 2,500 cycles of constant amplitude loading followed by an overload/underload combination. The largest fatigue crack growth life occurred for the tests with the overload stress equal to 2 times the constant amplitude stress and the underload stress equal to the constant amplitude minimum stress. For the tests with compressive underloads, the fatigue crack growth life decreased with increasing compressive underload stress.

  7. Investigation of Low-Cycle Bending Fatigue of AISI 9310 Steel Spur Gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Krantz, Timothy L.; Lerch, Bradley A.; Burke, Christopher S.

    2007-01-01

    An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semi-logarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.

  8. Investigation of Low-Cycle Bending Fatigue of AISI 9310 Steel Spur Gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Krantz, Timothy L.; Lerch, Bradley A.; Burke, Christopher S.

    2007-01-01

    An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semilogarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.

  9. Elevated temperature biaxial fatigue

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.

    1985-01-01

    A 3 year experimental program for studying elevated temperature biaxial fatigue of a nickel based alloy Hastelloy-X has been completed. A new high temperature fatigue test facility with unique capabilities has been developed. Effort was directed toward understanding multiaxial fatigue and correlating the experimental data to the existing theories of fatigue failure. The difficult task of predicting fatigue lives for nonproportional loading was used as an ultimate test for various life prediction methods being considered. The primary means of reaching improved understanding were through several critical nonproportional loading experiments. The direction of cracking observed on failed specimens was also recorded and used to guide the development of the theory. Cyclic deformation responses were permanently recorded digitally during each test. It was discovered that the cracking mode switched from primarily cracking on the maximum shear planes at room temperature to cracking on the maximum normal strain planes at 649 C. In contrast to some other metals, loading path in nonproportional loading had little effect on fatigue lives. Strain rate had a small effect on fatigue lives at 649 C. Of the various correlating parameters the modified plastic work and octahedral shear stress were the most successful.

  10. The effect of plasma electrolytic oxidation on the mean stress sensitivity of the fatigue life of the 6082 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Winter, L.; Morgenstern, R.; Hockauf, K.; Lampke, T.

    2016-03-01

    In this work the mean stress influence on the high cycle fatigue behavior of the plasma electrolytic oxidized (PEO) 6082 aluminum alloy (AlSi1MgMn) is investigated. The present study is focused on the fatigue life time and the susceptibility of fatigue-induced cracking of the oxide coating and their dependence on the applied mean stress. Systematic work is done comparing conditions with and without PEO treatment, which have been tested using three different load ratios. For the uncoated substrate the cycles to failure show a significant dependence on the mean stress, which is typical for aluminum alloys. With increased load ratio and therefore increased mean stress, the fatigue strength decreases. The investigation confirms the well-known effect of PEO treatment on the fatigue life: The fatigue strength is significantly reduced by the PEO process, compared to the uncoated substrate. However, also the mean stress sensitivity of the fatigue performance is reduced. The fatigue limit is not influenced by an increasing mean stress for the PEO treated conditions. This effect is firstly shown in these findings and no explanation for this effect can be found in literature. Supposedly the internal compressive stresses and the micro-cracks in the oxide film have a direct influence on the crack initiation and growth from the oxide film through the interface and in the substrate. Contrary to these findings, the susceptibility of fatigue-induced cracking of the oxide coating is influenced by the load ratio. At tension-tension loading a large number of cracks, which grow partially just in the aluminum substrate, are present. With decreasing load ratio to alternating tension-compression stresses, the crack number and length increases and shattering of the oxide film is more pronounced due to the additional effective compressive part of the load cycle.

  11. Advanced Flaw Manufacturing and Crack Growth Control

    NASA Astrophysics Data System (ADS)

    Kemppainen, M.; Pitkänen, J.; Virkkunen, I.; Hänninen, H.

    2004-02-01

    Advanced artificial flaw manufacturing method has become available. The method produces true fatigue cracks, which are representative of most service-induced cracks. These cracks can be used to simulate behaviour of realistic cracks under service conditions. This paper introduces studies of the effects of different thermal loading cycles to crack opening and residual stress state as seen at the surface of the sample and in the ultrasonic signal. In-situ measurements were performed under dynamic thermal fatigue loading of a 20 mm long artificial crack.

  12. Assessment of Crack Path Prediction in Non-Proportional Mixed-Mode Fatigue

    NASA Technical Reports Server (NTRS)

    Highsmith, Shelby, Jr.; Johnson, Steve; Swanson, Gregory; Sayyah, Tarek; Pettit, Richard

    2008-01-01

    Non-proportional mixed-mode loading is present in many systems and a growing crack can experience any manner of mixed-mode loading. Prediction of the resulting crack path is important when assessing potential failure modes or when performing a failure investigation. Current crack path selection criteria are presented along with data for Inconel 718 under non-proportional mixed-mode loading. Mixed-mode crack growth can transition between path deflection mechanisms with very different orientations. Non-proportional fatigue loadings lack a single parameter for input to current crack path criteria. Crack growth transitions were observed in proportional and non-proportional FCG tests. Different paths displayed distinct fracture surface morphologies. New crack path drivers & transition criteria must be developed.

  13. In situ fatigue loading stage inside scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Telesman, Jack; Kantzos, Peter; Brewer, David

    1988-01-01

    A fatigue loading stage inside a scanning electron microscopy (SEM) was developed. The stage allows dynamic and static high-magnification and high-resolution viewing of the fatigue crack initiation and crack propagation processes. The loading stage is controlled by a closed-loop servohydraulic system. Maximum load is 1000 lb (4450 N) with test frequencies ranging up to 30 Hz. The stage accommodates specimens up to 2 inches (50 mm) in length and tolerates substantial specimen translation to view the propagating crack. At room temperature, acceptable working resolution is obtainable for magnifications ranging up to 10,000X. The system is equipped with a high-temperature setup designed for temperatures up to 2000 F (1100 C). The signal can be videotaped for further analysis of the pertinent fatigue damage mechanisms. The design allows for quick and easy interchange and conversion of the SEM from a loading stage configuration to its normal operational configuration and vice versa. Tests are performed entirely in the in-situ mode. In contrast to other designs, the NASA design has greatly extended the life of the loading stage by not exposing the bellows to cyclic loading. The loading stage was used to investigate the fatigue crack growth mechanisms in the (100)-oriented PWA 1480 single-crystal, nickel-based supperalloy. The high-magnification observations revealed the details of the crack growth processes.

  14. Biaxial fatigue crack propagation behavior of perfluorosulfonic-acid membranes

    NASA Astrophysics Data System (ADS)

    Lin, Qiang; Shi, Shouwen; Wang, Lei; Chen, Xu; Chen, Gang

    2018-04-01

    Perfluorosulfonic-acid membranes have long been used as the typical electrolyte for polymer-electrolyte fuel cells, which not only transport proton and water but also serve as barriers to prevent reactants mixing. However, too often the structural integrity of perfluorosulfonic-acid membranes is impaired by membrane thinning or cracks/pinholes formation induced by mechanical and chemical degradations. Despite the increasing number of studies that report crack formation, such as crack size and shape, the underlying mechanism and driving forces have not been well explored. In this paper, the fatigue crack propagation behaviors of Nafion membranes subjected to biaxial loading conditions have been investigated. In particular, the fatigue crack growth rates of flat cracks in responses to different loading conditions are compared, and the impact of transverse stress on fatigue crack growth rate is clarified. In addition, the crack paths for slant cracks under both uniaxial and biaxial loading conditions are discussed, which are similar in geometry to those found after accelerated stress testing of fuel cells. The directions of initial crack propagation are calculated theoretically and compared with experimental observations, which are in good agreement. The findings reported here lays the foundation for understanding of mechanical failure of membranes.

  15. Fundamental Investigation of Fatigue Crack Growth Retardation in Aluminum Alloys

    DTIC Science & Technology

    1976-09-01

    Fatigue Crack Propagation in 2024 -T3 Aluminum Alloy , " ASTM STP 536, p. 115, 1973. 9. J. Schijve, " Effect of Load Sequences...Hertzberg, " Effect of Multiple Over- loads on Fatigue Crack Propagation in 2024 -T3 Aluminum Alloy , " ASTM STP-536, p. 115, 1973. 9. J. Schijve... Effect of Thickness on Retardation Behavior of 7075 and 2024 Aluminum Alloys .......... 185 vi LIST OF ILLUSTRATIONS FIGURE PAGE 1 SEN

  16. Effect of Compressive Mode I on the Mixed Mode I/II Fatigue Crack Growth Rate of 42CrMo4

    NASA Astrophysics Data System (ADS)

    Heirani, Hasan; Farhangdoost, Khalil

    2018-01-01

    Subsurface cracks in mechanical contact loading components are subjected to mixed mode I/II, so it is necessary to evaluate the fatigue behavior of materials under mixed mode loading. For this purpose, fatigue crack propagation tests are performed with compact tension shear specimens for several stress intensity factor (SIF) ratios of mode I and mode II. The effect of compressive mode I loading on mixed mode I/II crack growth rate and fracture surface is investigated. Tests are carried out for the pure mode I, pure mode II, and two different mixed mode loading angles. On the basis of the experimental results, mixed mode crack growth rate parameters are proposed according to Tanaka and Richard with Paris' law. Results show neither Richard's nor Tanaka's equivalent SIFs are very useful because these SIFs depend strongly on the loading angle, but Richard's equivalent SIF formula is more suitable than Tanaka's formula. The compressive mode I causes the crack closure, and the friction force between the crack surfaces resists against the crack growth. In compressive loading with 45° angle, d a/d N increases as K eq decreases.

  17. Simulating Fatigue Crack Growth in Spiral Bevel Pinion

    NASA Technical Reports Server (NTRS)

    Ural, Ani; Wawrzynek, Paul A.; Ingraffe, Anthony R.

    2003-01-01

    This project investigates computational modeling of fatigue crack growth in spiral bevel gears. Current work is a continuation of the previous efforts made to use the Boundary Element Method (BEM) to simulate tooth-bending fatigue failure in spiral bevel gears. This report summarizes new results predicting crack trajectory and fatigue life for a spiral bevel pinion using the Finite Element Method (FEM). Predicting crack trajectories is important in determining the failure mode of a gear. Cracks propagating through the rim may result in catastrophic failure, whereas the gear may remain intact if one tooth fails and this may allow for early detection of failure. Being able to predict crack trajectories is insightful for the designer. However, predicting growth of three-dimensional arbitrary cracks is complicated due to the difficulty of creating three-dimensional models, the computing power required, and absence of closed- form solutions of the problem. Another focus of this project was performing three-dimensional contact analysis of a spiral bevel gear set incorporating cracks. These analyses were significant in determining the influence of change of tooth flexibility due to crack growth on the magnitude and location of contact loads. This is an important concern since change in contact loads might lead to differences in SIFs and therefore result in alteration of the crack trajectory. Contact analyses performed in this report showed the expected trend of decreasing tooth loads carried by the cracked tooth with increasing crack length. Decrease in tooth loads lead to differences between SIFs extracted from finite element contact analysis and finite element analysis with Hertz contact loads. This effect became more pronounced as the crack grew.

  18. [Cyclic fatigue of Vita mark II machinable ceramics under Hertzian's contact].

    PubMed

    Liu, Wei-Cai; Zhang, Zhi-Shen; Huang, Cheng-Min; Chao, Yong-Lie; Wan, Qian-Bing

    2006-08-01

    To investigate the cyclic fatigue modes of Vita mark II machinable ceramics under Hertzian's contact. Hertzian's contact technique (WC spheres r = 3.18 mm) was used to investigate the cyclic fatigue of Vita mark II machinable ceramic. All specimens were fatigued by cyclic loading in moist environment, furthermore, surviving strength was examined by three point test and morphology damage observation. In homogeneous Vita mark II machinable ceramics, two fatigue damage modes existed after cyclic loading with spheres under moist environment, including conventional tensile-driven cone cracking (brittle mode) and shear-driven microdamage accumulation (quasi-plastic mode). The latter generated radial cracks and deeply penetrating secondary cone crack. Initial strength degradation were caused by the cone cracks, subsequent and much more deleterious loss was caused by radial cracks. Cyclic fatigue modes of Vita mark II machinable ceramics includes brittle and quasi-plastic mode.

  19. Consolidation of fatigue and fatigue-crack-propagation data for design use

    NASA Technical Reports Server (NTRS)

    Rice, R. C.; Davies, K. B.; Jaske, C. E.; Feddersen, C. E.

    1975-01-01

    Analytical methods developed for consolidation of fatigue and fatigue-crack-propagation data for use in design of metallic aerospace structural components are evaluated. A comprehensive file of data on 2024 and 7075 aluminums, Ti-6Al-4V alloy, and 300M steel was established by obtaining information from both published literature and reports furnished by aerospace companies. Analyses are restricted to information obtained from constant-amplitude load or strain cycling of specimens in air at room temperature. Both fatigue and fatigue-crack-propagation data are analyzed on a statistical basis using a least-squares regression approach. For fatigue, an equivalent strain parameter is used to account for mean stress or stress ratio effects and is treated as the independent variable; cyclic fatigue life is considered to be the dependent variable. An effective stress-intensity factor is used to account for the effect of load ratio on fatigue-crack-propagation and treated as the independent variable. In this latter case, crack-growth rate is considered to be the dependent variable. A two term power function is used to relate equivalent strain to fatigue life, and an arc-hyperbolic-tangent function is used to relate effective stress intensity to crack-growth rate.

  20. Influence of dental restorations and mastication loadings on dentine fatigue behaviour: Image-based modelling approach.

    PubMed

    Vukicevic, Arso M; Zelic, Ksenija; Jovicic, Gordana; Djuric, Marija; Filipovic, Nenad

    2015-05-01

    The aim of this study was to use Finite Element Analysis (FEA) to estimate the influence of various mastication loads and different tooth treatments (composite restoration and endodontic treatment) on dentine fatigue. The analysis of fatigue behaviour of human dentine in intact and composite restored teeth with root-canal-treatment using FEA and fatigue theory was performed. Dentine fatigue behaviour was analysed in three virtual models: intact, composite-restored and endodontically-treated tooth. Volumetric change during the polymerization of composite was modelled by thermal expansion in a heat transfer analysis. Low and high shrinkage stresses were obtained by varying the linear shrinkage of composite. Mastication forces were applied occlusally with the load of 100, 150 and 200N. Assuming one million cycles, Fatigue Failure Index (FFI) was determined using Goodman's criterion while residual fatigue lifetime assessment was performed using Paris-power law. The analysis of the Goodman diagram gave both maximal allowed crack size and maximal number of cycles for the given stress ratio. The size of cracks was measured on virtual models. For the given conditions, fatigue-failure is not likely to happen neither in the intact tooth nor in treated teeth with low shrinkage stress. In the cases of high shrinkage stress, crack length was much larger than the maximal allowed crack and failure occurred with 150 and 200N loads. The maximal allowed crack size was slightly lower in the tooth with root canal treatment which induced somewhat higher FFI than in the case of tooth with only composite restoration. Main factors that lead to dentine fatigue are levels of occlusal load and polymerization stress. However, root canal treatment has small influence on dentine fatigue. The methodology proposed in this study provides a new insight into the fatigue behaviour of teeth after dental treatments. Furthermore, it estimates maximal allowed crack size and maximal number of cycles for a specific case. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Methodology for Evaluation of Fatigue Crack-Growth Resistance of Aluminum Alloys under Spectrum Loading.

    DTIC Science & Technology

    1982-04-01

    fatigue life , except for the 2024 - T351 alloy which had a significantly longer spectrum fatigue life than the other alloys and 2) for...OF FATIGUE CRACK GROWTH OF ALUMINUM ALLOYS UNDER SPECTRUM LOADING MATERIALS PRESENT EFFORT FUTURE EFFORT 2024 - T351 2020-T651 2024 -T851 TMT2020-T6X51...the same spectrum fatigue life . The 2024 - T351 alloy had a significantly longer spectrum

  2. Fatigue of graphite/epoxy buffer strip panels with center cracks

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1985-01-01

    The effects of fatigue loading on the behavior of graphite/epoxy panels with either S-Glass or Kevlar-49 buffer strips is studied. Buffer strip panels are fatigued and tested in tension to measure their residual strength with crack-like damage. Panels are made with 45/0/-45/90 sub 2s layup with either S-Glass or Kevlar-49 buffer strip material. The buffer strips are parallel to the loading direction and made by replacing narrow strips of the 0-degree graphite plies with strips of either 0-degree S-Glass/epoxy or Kevlar-49/epoxy on a one-for-one basis. The panels are subjected to a fatigue loading spectrum MINITWIST, the shortened version of the standardized load program for the wing lower surface of a transport aircraft. Two levels of maximum strain are used in the spectrum with three durations of the fatigue spectrum. One group of panels is preloaded prior to the application of the fatigue cycling. The preload consists of statistically loading the spectrum in tension until the crack-tip damage zone reaches the ajacent buffer strips. After fatigue loading, all specimens are statistically loaded in tension to failure to determine their residual strengths.

  3. Crack deflection: Implications for the growth of long and short fatigue cracks

    NASA Astrophysics Data System (ADS)

    Suresh, S.

    1983-11-01

    The influences of crack deflection on the growth rates of nominally Mode I fatigue cracks are examined. Previous theoretical analyses of stress intensity solutions for kinked elastic cracks are reviewed. Simple elastic deflection models are developed to estimate the growth rates of nonlinear fatigue cracks subjected to various degrees of deflection, by incorporating changes in the effective driving force and in the apparent propagation rates. Experimental data are presented for intermediate-quenched and step-quenched conditions of Fe/2Si/0.1C ferrite-martensite dual phase steel, where variations in crack morphology alone influence considerably the fatigue crack propagation rates and threshold stress intensity range values. Such results are found to be in good quantitative agreement with the deflection model predictions of propagation rates for nonlinear cracks. Experimental information on crack deflection, induced by variable amplitude loading, is also provided for 2020-T651 aluminum alloy. It is demonstrated with the aid of elastic analyses and experiments that crack deflection models offer a physically-appealing rationale for the apparently slower growth rates of long fatigue cracks subjected to constant and variable amplitude loading and for the apparent deceleration and/or arrest of short cracks. The changes in the propagation rates of deflected fatigue cracks are discussed in terms of the local mode of crack advance, microstructure, effective driving force, growth mechanisms, mean stress, slip characteristics, and crack closure.

  4. Substrate Creep on The Fatigue Life of A Model Dental Multilayer Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, J; Huang, M; Niu, X

    In this paper, we investigated the effects of substrate creep on the fatigue behavior of a model dental multilayer structure, in which a top glass layer was bonded to a polycarbonate substrate through a dental adhesive. The top glass layers were ground using 120 grit or 600 grit sand papers before bonding to create different sub-surface crack sizes and morphologies. The multilayer structures were tested under cyclic Hertzian contact loading to study crack growth and obtain fatigue life curves. The experiment results showed that the fatigue lives of the multilayer structures were impaired by increasing crack sizes in the sub-surfaces.more » They were also significantly reduced by the substrate creep when tested at relatively low load levels i.e. P{sub m} < 60 N (Pm is the maximum magnitude of cyclic load). But at relatively high load levels i.e. P{sub m} > 65 N, slow crack growth (SCG) was the major failure mechanisms. A modeling study was then carried out to explore the possible failure mechanisms over a range of load levels. It is found that fatigue life at relatively low load levels can be better estimated by considering the substrate creep effect (SCE).« less

  5. Crack Detection Using Combinations of Acoustic Emission and Guided Wave Signals from Bonded Piezoelectric Transducers

    DTIC Science & Technology

    2011-09-01

    and bond integrity. Lastly, the PZT transducers are also utilized to track the lower frequency mechanical strains created during fatigue loading...face of the coupon and on either side of the gage section. Each coupon undergoes cyclic tensile loading to initiate and grow fatigue cracks. At...various intervals, the fatigue cycling is paused and the coupon is visually inspected for crack initiation and growth. While the cycling is paused

  6. Feasibility of fatigue crack detection and tracking with a multi-sensor in-situ monitoring system

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoliang; Qi, Kevin; Qian, Tao; Mei, Gang

    2014-02-01

    Fatigue crack is a common problem for steel bridges. A cost effective and reliable method for detecting and verifying growth of a crack is desired. In this work, feasibilities of fatigue crack monitoring with acoustic emission sensors and strain gauges were studied on an A36 steel compact-tension coupon under cyclic tensile loading. By examining the ultrasonic signal time-of-arrival and frequency spectrum, acoustic emissions from a crack growth can be distinguished from other structural borne noises such as those from the interaction of loading bolts with the bolt holes on the plate. Strain sensor and clip gauge sensor data were also correlated well with the growth of the crack.

  7. Simulating Fatigue Crack Growth in Spiral Bevel Gears

    NASA Technical Reports Server (NTRS)

    Spievak, Lisa E.; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    2000-01-01

    The majority of helicopter transmission systems utilize spiral bevel gears to convert the horizontal power from the engine into vertical power for the rotor. Due to the cyclical loading on a gear's tooth, fatigue crack propagation can occur. In rotorcraft applications, a crack's trajectory determines whether the gear failure will be benign or catastrophic for the aircraft. As a result, the capability to predict crack growth in gears is significant. A spiral bevel gear's complex shape requires a three dimensional model of the geometry and cracks. The boundary element method in conjunction with linear elastic fracture mechanics theories is used to predict arbitrarily shaped three dimensional fatigue crack trajectories in a spiral bevel pinion under moving load conditions. The predictions are validated by comparison to experimental results. The sensitivity of the predictions to variations in loading conditions and crack growth rate model parameters is explored. Critical areas that must be understood in greater detail prior to predicting more accurate crack trajectories and crack growth rates in three dimensions are identified.

  8. Analysis and prediction of Multiple-Site Damage (MSD) fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Newman, J. C., Jr.

    1992-01-01

    A technique was developed to calculate the stress intensity factor for multiple interacting cracks. The analysis was verified through comparison with accepted methods of calculating stress intensity factors. The technique was incorporated into a fatigue crack growth prediction model and used to predict the fatigue crack growth life for multiple-site damage (MSD). The analysis was verified through comparison with experiments conducted on uniaxially loaded flat panels with multiple cracks. Configuration with nearly equal and unequal crack distribution were examined. The fatigue crack growth predictions agreed within 20 percent of the experimental lives for all crack configurations considered.

  9. Nonlinear ultrasonic imaging method for closed cracks using subtraction of responses at different external loads.

    PubMed

    Ohara, Yoshikazu; Horinouchi, Satoshi; Hashimoto, Makoto; Shintaku, Yohei; Yamanaka, Kazushi

    2011-08-01

    To improve the selectivity of closed cracks for objects other than cracks in ultrasonic imaging, we propose an extension of a novel imaging method, namely, subharmonic phased array for crack evaluation (SPACE) as well as another approach using the subtraction of responses at different external loads. By applying external static or dynamic loads to closed cracks, the contact state in the cracks varies, resulting in an intensity change of responses at cracks. In contrast, objects other than cracks are independent of external load. Therefore, only cracks can be extracted by subtracting responses at different loads. In this study, we performed fundamental experiments on a closed fatigue crack formed in an aluminum alloy compact tension (CT) specimen using the proposed method. We examined the static load dependence of SPACE images and the dynamic load dependence of linear phased array (PA) images by simulating the external loads with a servohydraulic fatigue testing machine. By subtracting the images at different external loads, we show that this method is useful in extracting only the intensity change of responses related to closed cracks, while canceling the responses of objects other than cracks. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Elevated temperature biaxial fatigue

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.

    1984-01-01

    A three year experimental program for studying elevated temperature biaxial fatigue of a nickel based alloy Hastelloy-X has been completed. A new high temperature fatigue test facility with unique capabilities has been developed. Effort was directed toward understanding multiaxial fatigue and correlating the experimental data to the existing theories of fatigue failure. The difficult task of predicting fatigue lives for non-proportional loading was used as an ultimate test for various life prediction methods being considered. The primary means of reaching improved undertanding were through several critical non-proportional loading experiments. It was discovered that the cracking mode switched from primarily cracking on the maximum shear planes at room temperature to cracking on the maximum normal strain planes at 649 C.

  11. Tensile strength of composite sheets with unidirectional stringers and crack-like damage

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1984-01-01

    The damage tolerance characteristics of metal tension panels with riveted and bonded stringers are well known. The stringers arrest unstable cracks and retard propagation of fatigue cracks. Residual strengths and fatigue lives are considerably greater than those of unstiffened or integrally stiffened sheets. The damage tolerance of composite sheets with bonded composite stringers loaded in tension was determined. Cracks in composites do not readily propagate in fatigue, at least not through fibers. Moreover, the residual strength of notched composites is sometimes even increased by fatigue loading. Therefore, the residual strength aspect of damage tolerance, and not fatigue crack propagation, was investigated. About 50 graphite/epoxy composite panels were made with two sheet layups and several stringer configurations. Crack-like slots were cut in the middle of the panels to simulate damage. The panels were instrumented and monotonically loaded in tension to failure. The tests indicate that the composite panels have considerable damage tolerance, much like metal panels. The stringers arrested cracks that ran from the crack-like slots, and the residual strengths were considerably greater than those of unstiffened composite sheets. A stress intensity factor analysis was developed to predict the failing strains of the stiffened panels. Using the analysis, a single design curve was produced for composite sheets with bonded stringers of any configuration.

  12. The Rehbinder effect in iron during giga-cycle fatigue loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannikov, M. V., E-mail: mbannikov@icmm.ru; Naimark, O. B.

    The influence of the adsorptive strength reduction effect (the Rehbinder effect) on the fatigue life of pure iron under the giga-cycle loading regime was investigated. Specimens were loaded by an ultrasonic testing machine with a frequency of 20 kHz in air and in contact with eutectic alloy of gallium with tin and indium. A significant (by several orders of magnitude) worsening of the life-time of iron in contact with a molten metal as compared with tests in air was established. The liquid metal penetrates into the material to a depth of 200 μm to the center of a fatigue crack. Themore » mechanism of the fatigue crack initiation in the giga-cycle regime of loading in contact with a surfactant is differing: the crack is formed on the surface of the specimen rather than within it as is the case for air. Based on the electron and optical microscopy data for the fracture surface, it can be concluded that exactly the change in the crack initiation mechanism reduces the fatigue life of iron in contact with a liquid metal because the initiated crack propagates regardless of the surfactant.« less

  13. The Rehbinder effect in iron during giga-cycle fatigue loading

    NASA Astrophysics Data System (ADS)

    Bannikov, M. V.; Naimark, O. B.

    2015-10-01

    The influence of the adsorptive strength reduction effect (the Rehbinder effect) on the fatigue life of pure iron under the giga-cycle loading regime was investigated. Specimens were loaded by an ultrasonic testing machine with a frequency of 20 kHz in air and in contact with eutectic alloy of gallium with tin and indium. A significant (by several orders of magnitude) worsening of the life-time of iron in contact with a molten metal as compared with tests in air was established. The liquid metal penetrates into the material to a depth of 200 μm to the center of a fatigue crack. The mechanism of the fatigue crack initiation in the giga-cycle regime of loading in contact with a surfactant is differing: the crack is formed on the surface of the specimen rather than within it as is the case for air. Based on the electron and optical microscopy data for the fracture surface, it can be concluded that exactly the change in the crack initiation mechanism reduces the fatigue life of iron in contact with a liquid metal because the initiated crack propagates regardless of the surfactant.

  14. Experimental Investigation of the Influence of Joint Geometric Configurations on the Mechanical Properties of Intermittent Jointed Rock Models Under Cyclic Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Dai, Feng; Fan, Pengxian; Xu, Nuwen; Dong, Lu

    2017-06-01

    Intermittent joints in rock mass are quite sensitive to cyclic loading conditions. Understanding the fatigue mechanical properties of jointed rocks is beneficial for rational design and stability analysis of rock engineering projects. This study experimentally investigated the influences of joint geometry (i.e., dip angle, persistency, density and spacing) on the fatigue mechanism of synthetic jointed rock models. Our results revealed that the stress-strain curve of jointed rock under cyclic loadings is dominated by its curve under monotonic uniaxial loadings; the terminal strain in fatigue curve is equal to the post-peak strain corresponding to the maximum cyclic stress in the monotonic stress-strain curve. The four joint geometrical parameters studied significantly affect the fatigue properties of jointed rocks, including the irreversible strains, the fatigue deformation modulus, the energy evolution, the damage variable and the crack coalescence patterns. The higher the values of the geometrical parameters, the lower the elastic energy stores in this jointed rock, the higher the fatigue damage accumulates in the first few cycles, and the lower the fatigue life. The elastic energy has certain storage limitation, at which the fatigue failure occurs. Two basic micro-cracks, i.e., tensile wing crack and shear crack, are observed in cyclic loading and unloading tests, which are controlled principally by joint dip angle and persistency. In general, shear cracks only occur in the jointed rock with higher dip angle or higher persistency, and the jointed rock is characterized by lower fatigue strength, larger damage variable and lower fatigue life.

  15. Sensing sheets based on large area electronics for fatigue crack detection

    NASA Astrophysics Data System (ADS)

    Yao, Yao; Glisic, Branko

    2015-03-01

    Reliable early-stage damage detection requires continuous structural health monitoring (SHM) over large areas of structure, and with high spatial resolution of sensors. This paper presents the development stage of prototype strain sensing sheets based on Large Area Electronics (LAE), in which thin-film strain gauges and control circuits are integrated on the flexible electronics and deposited on a polyimide sheet that can cover large areas. These sensing sheets were applied for fatigue crack detection on small-scale steel plates. Two types of sensing-sheet interconnects were designed and manufactured, and dense arrays of strain gauge sensors were assembled onto the interconnects. In total, four (two for each design type) strain sensing sheets were created and tested, which were sensitive to strain at virtually every point over the whole sensing sheet area. The sensing sheets were bonded to small-scale steel plates, which had a notch on the boundary so that fatigue cracks could be generated under cyclic loading. The fatigue tests were carried out at the Carleton Laboratory of Columbia University, and the steel plates were attached through a fixture to the loading machine that applied cyclic fatigue load. Fatigue cracks then occurred and propagated across the steel plates, leading to the failure of these test samples. The strain sensor that was close to the notch successfully detected the initialization of fatigue crack and localized the damage on the plate. The strain sensor that was away from the crack successfully detected the propagation of fatigue crack based on the time history of measured strain. Overall, the results of the fatigue tests validated general principles of the strain sensing sheets for crack detection.

  16. Corrosion Effects on the Fatigue Crack Propagation of Giga-Grade Steel and its Heat Affected Zone in pH Buffer Solutions for Automotive Application

    NASA Astrophysics Data System (ADS)

    Lee, H. S.

    2018-03-01

    Corrosion fatigue crack propagation test was conducted of giga-grade steel and its heat affected zone in pH buffer solutions, and the results were compared with model predictions. Pure corrosion effect on fatigue crack propagation, particularly, in corrosive environment was evaluated by means of the modified Forman equation. As shown in results, the average corrosion rate determined from the ratio of pure corrosion induced crack length to entire crack length under a cycle load were 0.11 and 0.37 for base metal and heat affected zone, respectively, with load ratio of 0.5, frequency of 0.5 and pH 10.0 environment. These results demonstrate new interpretation methodology for corrosion fatigue crack propagation enabling the pure corrosion effects on the behavior to be determined.

  17. Three Dimensional Constraint Effects on the Estimated (Delta)CTOD during the Numerical Simulation of Different Fatigue Threshold Testing Techniques

    NASA Technical Reports Server (NTRS)

    Seshadri, Banavara R.; Smith, Stephen W.

    2007-01-01

    Variation in constraint through the thickness of a specimen effects the cyclic crack-tip-opening displacement (DELTA CTOD). DELTA CTOD is a valuable measure of crack growth behavior, indicating closure development, constraint variations and load history effects. Fatigue loading with a continual load reduction was used to simulate the load history associated with fatigue crack growth threshold measurements. The constraint effect on the estimated DELTA CTOD is studied by carrying out three-dimensional elastic-plastic finite element simulations. The analysis involves numerical simulation of different standard fatigue threshold test schemes to determine how each test scheme affects DELTA CTOD. The American Society for Testing and Materials (ASTM) prescribes standard load reduction procedures for threshold testing using either the constant stress ratio (R) or constant maximum stress intensity (K(sub max)) methods. Different specimen types defined in the standard, namely the compact tension, C(T), and middle cracked tension, M(T), specimens were used in this simulation. The threshold simulations were conducted with different initial K(sub max) values to study its effect on estimated DELTA CTOD. During each simulation, the DELTA CTOD was estimated at every load increment during the load reduction procedure. Previous numerical simulation results indicate that the constant R load reduction method generates a plastic wake resulting in remote crack closure during unloading. Upon reloading, this remote contact location was observed to remain in contact well after the crack tip was fully open. The final region to open is located at the point at which the load reduction was initiated and at the free surface of the specimen. However, simulations carried out using the constant Kmax load reduction procedure did not indicate remote crack closure. Previous analysis results using various starting K(sub max) values and different load reduction rates have indicated DELTA CTOD is independent of specimen size. A study of the effect of specimen thickness and geometry on the measured DELTA CTOD for various load reduction procedures and its implication in the estimation of fatigue crack growth threshold values is discussed.

  18. Cyclic fatigue damage characteristics observed for simple loadings extended to multiaxial life prediction

    NASA Technical Reports Server (NTRS)

    Jones, David J.; Kurath, Peter

    1988-01-01

    Fully reversed uniaxial strain controlled fatigue tests were performed on smooth cylindrical specimens made of 304 stainless steel. Fatigue life data and cracking observations for uniaxial tests were compared with life data and cracking behavior observed in fully reversed torsional tests. It was determined that the product of maximum principle strain amplitude and maximum principle stress provided the best correlation of fatigue lives for these two loading conditions. Implementation of this parameter is in agreement with observed physical damage and it accounts for the variation of stress-strain response, which is unique to specific loading conditions. Biaxial fatigue tests were conducted on tubular specimens employing both in-phase and out-of-phase tension torsion cyclic strain paths. Cracking observations indicated that the physical damage which occurred in the biaxial tests was similar to the damage observed in uniaxial and torsional tests. The Smith, Watson, and Topper parameter was then extended to predict the fatigue lives resulting from the more complex loading conditions.

  19. Behavior of a centrally notched cross-ply and unidirectional ceramic matrix composite in tension-compression fatigue. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weidenaar, W.A.

    1992-12-01

    Centrally notched (hole), cross-ply, ((0/90) sub 2) sub s, and unidirectional, (0) sub 8 laminates of Silicon Carbide fiber-reinforced Aluminosilicate glass, SiC/1723, were fatigue tested under tension-compression loading with a load ratio of -1. Damage accumulated continuously for both lay-ups, leading to eventual failure and a reduced fatigue life. Critical damage in the cross-ply consisted of longitudinal cracks in the 90 deg plies growing and combining with transverse cracks to effectively eliminate the 90 deg plies' load carrying capability and allowing the specimen to buckle. Critical damage in the unidirectional lay-up consisted of longitudinal cracks which initiated at the shearmore » stress concentration points on the hole periphery. Reversed cyclic loading caused continued crack growth at maximum stresses below the tension-tension fatigue limit. The cross-ply lay-up appeared insensitive to the hole, while critical damage in the unidirectional lay-up was dependent on the shear stress concentrations at the hole.... Ceramic matrix composite, Tension-compression fatigue, Notched specimen.« less

  20. Low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Solomon, H. D. (Editor); Kaisand, L. R. (Editor); Halford, G. R. (Editor); Leis, B. N. (Editor)

    1988-01-01

    The papers contained in this volume focus on various aspects of low cycle fatigue, including cyclic deformation, crack propagation, high-temperature low cycle fatigue, microstructural defects, multiaxial and variable amplitude loading, and life prediction. Papers are presented on the low cycle fatigue of some aluminum alloys, prediction of crack growth under creep-fatigue loading conditions, high-temperature low cycle fatigue behavior and lifetime prediction of a nickel-base ODS alloy, and an integrated approach to creep-fatigue life prediction. Other topics discussed include thermal fatigue testing of coated monocrystalline superalloys, low cycle fatigue of Al-Mg-Si alloys, and the effect of superimposed stresses at high frequency on low cycle fatigue.

  1. Short-crack growth behaviour in an aluminum alloy: An AGARD cooperative test program

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Edwards, P. R.

    1988-01-01

    An AGARD Cooperative Test Program on the growth of short fatigue cracks was conducted to define the significance of the short-crack effect, to compare test results from various laboratories, and to evaluate an existing analytical crack-growth prediction model. The initiation and growth of short fatigue cracks (5 micrometer to 2 mm) from the surface of a semi-circular notch in 2024-T3 aluminum alloy sheet material were monitored under various load histories. The cracks initiated from inclusion particle clusters or voids on the notch surface and generally grew as surface cracks. Tests were conducted under several constant-amplitude (stress ratios of -2, -1, 0, and 0.5) and spectrum (FALSTAFF and Gaussian) loading conditions at 3 stress levels each. Short crack growth was recorded using a plastic-replica technique. Over 250 edge-notched specimens were fatigue tested and nearly 950 cracks monitored by 12 participants from 9 countries. Long crack-growth rate data for cracks greater than 2 mm in length were obtained over a wide range in rates (10 to the -8 to 10 to the -1 mm/cycle) for all constant-amplitude loading conditions. Long crack-growth rate data for the FALSTAFF and Gaussian load sequences were also obtained.

  2. Deformation fields near a steady fatigue crack with anisotropic plasticity

    DOE PAGES

    Gao, Yanfei

    2015-11-30

    In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth andmore » the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.« less

  3. Deformation fields near a steady fatigue crack with anisotropic plasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yanfei

    In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth andmore » the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.« less

  4. Mapping and load response of overload strain fields: Synchrotron X-ray measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, V; Jisrawi, N M; Sadangi, R K

    High energy synchrotron X-ray diffraction measurements have been performed to provide quantitative microscopic guidance for modeling of fatigue crack growth. Specifically we report local strain mapping, along with in situ loading strain response, results on 4140 steel fatigue specimens exhibiting the crack growth retardation 'overload effect'. Detailed, 2D, {epsilon}{gamma}{gamma}-strain field mapping shows that a single overload (OL) cycle creates a compressive strain field extending millimeters above and below the crack plane. The OL strain field structures are shown to persist after the crack tip has grown well beyond the OL position. The specimen exhibiting the maximal crack growth rate retardationmore » following overload exhibits a tensile residual strain region at the crack tip. Strain field results, on in situ tensile loaded specimens, show a striking critical threshold load, F{sub c}, phenomenon in their strain response. At loads below F{sub c} the strain response is dominated by a rapid suppression of the compressive OL feature with modest response at the crack tip. At loads above F{sub c} the strain response at the OL position terminates and the response at the crack tip becomes large. This threshold load response behavior is shown to exhibit lower F{sub c} values, and dramatically enhanced rates of strain change with load as the crack tip propagates farther beyond the OL position. The OL strain feature behind the crack tip also is shown to be suppressed by removing the opposing crack faces via an electron discharge cut passing through the crack tip. Finally unique 2D strain field mapping (imaging) results, through the depth of the specimen, of the fatigue crack front and the OL feature in the wake are also presented.« less

  5. Corrosion fatigue characterization of reactor pressure vessel steels. [PWR; BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Der Sluys, W.A.

    1982-12-01

    During routine operation, light water reactor (LWR) pressure vessels are subjected to a variety of transients that result in time-varying stresses. Consequently, fatigue and environmentally-assisted fatigue are mechanisms of growth relevant to flaws in these pressure vessels. To provide a better understanding of the resistance of nuclear pressure vessel steels to these flaw growth processes, fracture mechanics data were generated on the rates of fatigue crack growth for SA508-2 and SA533B-1 steels in both room temperature air and 288/sup 0/C water. Areas investigated were: the relationship of crack growth rate to prior loading history; the effects of loading frequency andmore » R ratio (K/sub min//K/sub max/) on crack growth rate as a function of the stress intensity factor range (..delta..K); transient aspects of the fatigue crack growth behavior; the effect of material chemistry (sulphur content) on fatigue crack; and growth rate; water chemistry effects (high-purity water versus simulated pressurized water reactotr (PWR) primary coolant).« less

  6. Fatigue pre-cracking and fracture toughness in polycrystalline tungsten and molybdenum

    NASA Astrophysics Data System (ADS)

    Taguchi, Katsuya; Nakadate, Kazuhito; Matsuo, Satoru; Tokunaga, Kazutoshi; Kurishita, Hiroaki

    2018-01-01

    Fatigue pre-cracking performance and fracture toughness in polycrystalline tungsten (W) and molybdenum (Mo) have been investigated in relation to grain boundary (GB) configuration with respect to the crack advance direction. Sub-sized, single edge notched bend (SENB) specimens with three different orientations, R-L (ASTM notation) for a forged Mo rod and L-S and T-S for a rolled W plate, were pre-cracked in two steps: fully uniaxial compression fatigue loading to provoke crack initiation and its stable growth from the notch root, and subsequent 3-point bend (3PB) fatigue loading to extend the crack. The latter step intends to minimize the influence of the residual tensile stresses generated during compression fatigue by moving the crack tip away from the plastic zone. It is shown that fatigue pre-cracking performance, especially pre-crack extension behavior, is significantly affected by the specimen orientation. The R-L orientation, giving the easiest cracking path, permitted crack extension completely beyond the plastic zone, while the L-S and T-S orientations with the thickness cracking direction of the rolled plate sustained the crack lengths around or possibly within the plastic zone size due to difficulty in crack advance through an aligned grain structure. Room temperature fracture toughness tests revealed that the 3PB fatigued specimens exhibited appreciably higher fracture toughness by about 30% for R-L, 40% for L-S and 60% for T-S than the specimens of each orientation pre-cracked by compression fatigue only. This indicates that 3PB fatigue provides the crack tip front out of the residual tensile stress zone by crack extension or leads to reduction in the residual stresses at the crack tip front. Strong dependence of fracture toughness on GB configuration was evident. The obtained fracture toughness values are compared with those in the literature and its strong GB configuration dependence is discussed in connection with the appearance of pop-in.

  7. Prediction of thermal cycling induced matrix cracking

    NASA Technical Reports Server (NTRS)

    Mcmanus, Hugh L.

    1992-01-01

    Thermal fatigue has been observed to cause matrix cracking in laminated composite materials. A method is presented to predict transverse matrix cracks in composite laminates subjected to cyclic thermal load. Shear lag stress approximations and a simple energy-based fracture criteria are used to predict crack densities as a function of temperature. Prediction of crack densities as a function of thermal cycling is accomplished by assuming that fatigue degrades the material's inherent resistance to cracking. The method is implemented as a computer program. A simple experiment provides data on progressive cracking of a laminate with decreasing temperature. Existing data on thermal fatigue is also used. Correlations of the analytical predictions to the data are very good. A parametric study using the analytical method is presented which provides insight into material behavior under cyclical thermal loads.

  8. Effect of Stress Ratio and Loading Frequency on the Corrosion Fatigue Behavior of Smooth Steel Wire in Different Solutions

    PubMed Central

    Wang, Songquan; Zhang, Dekun; Hu, Ningning; Zhang, Jialu

    2016-01-01

    In this work, the effects of loading condition and corrosion solution on the corrosion fatigue behavior of smooth steel wire were discussed. The results of polarization curves and weight loss curves showed that the corrosion of steel wire in acid solution was more severe than that in neutral and alkaline solutions. With the extension of immersion time in acid solution, the cathodic reaction of steel wire gradually changed from the reduction of hydrogen ion to the reduction of oxygen, but was always the reduction of hydrogen ion in neutral and alkaline solutions. The corrosion kinetic parameters and equivalent circuits of steel wires were also obtained by simulating the Nyquist diagrams. In corrosion fatigue test, the effect of stress ratio and loading frequency on the crack initiation mechanism was emphasized. The strong corrosivity of acid solution could accelerate the nucleation of crack tip. The initiation mechanism of crack under different conditions was summarized according to the side and fracture surface morphologies. For the crack initiation mechanism of anodic dissolution, the stronger the corrosivity of solution was, the more easily the fatigue crack source formed, while, for the crack initiation mechanism of deformation activation, the lower stress ratio and higher frequency would accelerate the generation of corrosion fatigue crack source. PMID:28773869

  9. Fatigue life estimation of a 1D aluminum beam under mode-I loading using the electromechanical impedance technique

    NASA Astrophysics Data System (ADS)

    Lim, Yee Yan; Kiong Soh, Chee

    2011-12-01

    Structures in service are often subjected to fatigue loads. Cracks would develop and lead to failure if left unnoticed after a large number of cyclic loadings. Monitoring the process of fatigue crack propagation as well as estimating the remaining useful life of a structure is thus essential to prevent catastrophe while minimizing earlier-than-required replacement. The advent of smart materials such as piezo-impedance transducers (lead zirconate titanate, PZT) has ushered in a new era of structural health monitoring (SHM) based on non-destructive evaluation (NDE). This paper presents a series of investigative studies to evaluate the feasibility of fatigue crack monitoring and estimation of remaining useful life using the electromechanical impedance (EMI) technique employing a PZT transducer. Experimental tests were conducted to study the ability of the EMI technique in monitoring fatigue crack in 1D lab-sized aluminum beams. The experimental results prove that the EMI technique is very sensitive to fatigue crack propagation. A proof-of-concept semi-analytical damage model for fatigue life estimation has been developed by incorporating the linear elastic fracture mechanics (LEFM) theory into the finite element (FE) model. The prediction of the model matches closely with the experiment, suggesting the possibility of replacing costly experiments in future.

  10. Fatigue crack growth and life prediction under mixed-mode loading

    NASA Astrophysics Data System (ADS)

    Sajith, S.; Murthy, K. S. R. K.; Robi, P. S.

    2018-04-01

    Fatigue crack growth life as a function of crack length is essential for the prevention of catastrophic failures from damage tolerance perspective. In damage tolerance design approach, principles of fracture mechanics are usually applied to predict the fatigue life of structural components. Numerical prediction of crack growth versus number of cycles is essential in damage tolerance design. For cracks under mixed mode I/II loading, modified Paris law (d/a d N =C (ΔKe q ) m ) along with different equivalent stress intensity factor (ΔKeq) model is used for fatigue crack growth rate prediction. There are a large number of ΔKeq models available for the mixed mode I/II loading, the selection of proper ΔKeq model has significant impact on fatigue life prediction. In the present investigation, the performance of ΔKeq models in fatigue life prediction is compared with respect to the experimental findings as there are no guidelines/suggestions available on the selection of these models for accurate and/or conservative predictions of fatigue life. Within the limitations of availability of experimental data and currently available numerical simulation techniques, the results of present study attempt to outline models that would provide accurate and conservative life predictions. Such a study aid the numerical analysts or engineers in the proper selection of the model for numerical simulation of the fatigue life. Moreover, the present investigation also suggests a procedure to enhance the accuracy of life prediction using Paris law.

  11. Multiaxial and thermomechanical fatigue considerations in damage tolerant design

    NASA Technical Reports Server (NTRS)

    Leese, G. E.; Bill, R. C.

    1985-01-01

    In considering damage tolerant design concepts for gas turbine hot section components, several challenging concerns arise: Complex multiaxial loading situations are encountered; Thermomechanical fatigue loading involving very wide temperature ranges is imposed on components; Some hot section materials are extremely anisotropic; and coatings and environmental interactions play an important role in crack propagation. The effects of multiaxiality and thermomechanical fatigue are considered from the standpoint of their impact on damage tolerant design concepts. Recently obtained research results as well as results from the open literature are examined and their implications for damage tolerant design are discussed. Three important needs required to advance analytical capabilities in support of damage tolerant design become readily apparent: (1) a theoretical basis to account for the effect of nonproportional loading (mechanical and mechanical/thermal); (2) the development of practical crack growth parameters that are applicable to thermomechanical fatigue situations; and (3) the development of crack growth models that address multiple crack failures.

  12. Research on fatigue cracking growth parameters in asphaltic mixtures using computed tomography

    NASA Astrophysics Data System (ADS)

    Braz, D.; Lopes, R. T.; Motta, L. M. G.

    2004-01-01

    Distress of asphalt concrete pavement due to repeated bending from traffic loads has been a well-recognized problem in Brazil. If it is assumed that fatigue cracking growth is governed by the conditions at the crack tip, and that the crack tip conditions can be characterized by the stress intensity factor, then fatigue cracking growth as a function of stress intensity range Δ K can be determined. Computed tomography technique is used to detect crack evolution in asphaltic mixtures which were submitted to fatigue tests. Fatigue tests under conditions of controlled stress were carried out using diametral compression equipment and repeat loading. The aim of this work is imaging several specimens at different stages of the fatigue tests. In preliminary studies it was noted that the trajectory of a crack was influenced by the existence of voids in the originally unloaded specimens. Cracks would first be observed in the central region of a specimen, propagating in the direction of the extremities. Analyzing the graphics, that represent the fatigue cracking growth (d c/d N) as a function of stress intensity factor (Δ K), it is noticed that the curve has practically shown the same behavior for all specimens at the same level of the static tension rupture stress. The experimental values obtained for the constants A and n (of the Paris-Erdogan Law) present good agreement with the results obtained by Liang and Zhou.

  13. An Artificial Neural Network-Based Algorithm for Evaluation of Fatigue Crack Propagation Considering Nonlinear Damage Accumulation

    PubMed Central

    Zhang, Wei; Bao, Zhangmin; Jiang, Shan; He, Jingjing

    2016-01-01

    In the aerospace and aviation sectors, the damage tolerance concept has been applied widely so that the modeling analysis of fatigue crack growth has become more and more significant. Since the process of crack propagation is highly nonlinear and determined by many factors, such as applied stress, plastic zone in the crack tip, length of the crack, etc., it is difficult to build up a general and flexible explicit function to accurately quantify this complicated relationship. Fortunately, the artificial neural network (ANN) is considered a powerful tool for establishing the nonlinear multivariate projection which shows potential in handling the fatigue crack problem. In this paper, a novel fatigue crack calculation algorithm based on a radial basis function (RBF)-ANN is proposed to study this relationship from the experimental data. In addition, a parameter called the equivalent stress intensity factor is also employed as training data to account for loading interaction effects. The testing data is then placed under constant amplitude loading with different stress ratios or overloads used for model validation. Moreover, the Forman and Wheeler equations are also adopted to compare with our proposed algorithm. The current investigation shows that the ANN-based approach can deliver a better agreement with the experimental data than the other two models, which supports that the RBF-ANN has nontrivial advantages in handling the fatigue crack growth problem. Furthermore, it implies that the proposed algorithm is possibly a sophisticated and promising method to compute fatigue crack growth in terms of loading interaction effects. PMID:28773606

  14. An Artificial Neural Network-Based Algorithm for Evaluation of Fatigue Crack Propagation Considering Nonlinear Damage Accumulation.

    PubMed

    Zhang, Wei; Bao, Zhangmin; Jiang, Shan; He, Jingjing

    2016-06-17

    In the aerospace and aviation sectors, the damage tolerance concept has been applied widely so that the modeling analysis of fatigue crack growth has become more and more significant. Since the process of crack propagation is highly nonlinear and determined by many factors, such as applied stress, plastic zone in the crack tip, length of the crack, etc. , it is difficult to build up a general and flexible explicit function to accurately quantify this complicated relationship. Fortunately, the artificial neural network (ANN) is considered a powerful tool for establishing the nonlinear multivariate projection which shows potential in handling the fatigue crack problem. In this paper, a novel fatigue crack calculation algorithm based on a radial basis function (RBF)-ANN is proposed to study this relationship from the experimental data. In addition, a parameter called the equivalent stress intensity factor is also employed as training data to account for loading interaction effects. The testing data is then placed under constant amplitude loading with different stress ratios or overloads used for model validation. Moreover, the Forman and Wheeler equations are also adopted to compare with our proposed algorithm. The current investigation shows that the ANN-based approach can deliver a better agreement with the experimental data than the other two models, which supports that the RBF-ANN has nontrivial advantages in handling the fatigue crack growth problem. Furthermore, it implies that the proposed algorithm is possibly a sophisticated and promising method to compute fatigue crack growth in terms of loading interaction effects.

  15. A Fatigue Life Prediction Method Based on Strain Intensity Factor

    PubMed Central

    Zhang, Wei; Liu, Huili; Wang, Qiang; He, Jingjing

    2017-01-01

    In this paper, a strain-intensity-factor-based method is proposed to calculate the fatigue crack growth under the fully reversed loading condition. A theoretical analysis is conducted in detail to demonstrate that the strain intensity factor is likely to be a better driving parameter correlated with the fatigue crack growth rate than the stress intensity factor (SIF), especially for some metallic materials (such as 316 austenitic stainless steel) in the low cycle fatigue region with negative stress ratios R (typically R = −1). For fully reversed cyclic loading, the constitutive relation between stress and strain should follow the cyclic stress-strain curve rather than the monotonic one (it is a nonlinear function even within the elastic region). Based on that, a transformation algorithm between the SIF and the strain intensity factor is developed, and the fatigue crack growth rate testing data of 316 austenitic stainless steel and AZ31 magnesium alloy are employed to validate the proposed model. It is clearly observed that the scatter band width of crack growth rate vs. strain intensity factor is narrower than that vs. the SIF for different load ranges (which indicates that the strain intensity factor is a better parameter than the stress intensity factor under the fully reversed load condition). It is also shown that the crack growth rate is not uniquely determined by the SIF range even under the same R, but is also influenced by the maximum loading. Additionally, the fatigue life data (strain-life curve) of smooth cylindrical specimens are also used for further comparison, where a modified Paris equation and the equivalent initial flaw size (EIFS) are involved. The results of the proposed method have a better agreement with the experimental data compared to the stress intensity factor based method. Overall, the strain intensity factor method shows a fairly good ability in calculating the fatigue crack propagation, especially for the fully reversed cyclic loading condition. PMID:28773049

  16. A root-mean-square approach for predicting fatigue crack growth under random loading

    NASA Technical Reports Server (NTRS)

    Hudson, C. M.

    1981-01-01

    A method for predicting fatigue crack growth under random loading which employs the concept of Barsom (1976) is presented. In accordance with this method, the loading history for each specimen is analyzed to determine the root-mean-square maximum and minimum stresses, and the predictions are made by assuming the tests have been conducted under constant-amplitude loading at the root-mean-square maximum and minimum levels. The procedure requires a simple computer program and a desk-top computer. For the eleven predictions made, the ratios of the predicted lives to the test lives ranged from 2.13 to 0.82, which is a good result, considering that the normal scatter in the fatigue-crack-growth rates may range from a factor of two to four under identical loading conditions.

  17. Development and field application of a nonlinear ultrasonic modulation technique for fatigue crack detection without reference data from an intact condition

    NASA Astrophysics Data System (ADS)

    Lim, Hyung Jin; Kim, Yongtak; Koo, Gunhee; Yang, Suyoung; Sohn, Hoon; Bae, In-hwan; Jang, Jeong-Hwan

    2016-09-01

    In this study, a fatigue crack detection technique, which detects a fatigue crack without relying on any reference data obtained from the intact condition of a target structure, is developed using nonlinear ultrasonic modulation and applied to a real bridge structure. Using two wafer-type lead zirconate titanate (PZT) transducers, ultrasonic excitations at two distinctive frequencies are applied to a target inspection spot and the corresponding ultrasonic response is measured by another PZT transducer. Then, the nonlinear modulation components produced by a breathing-crack are extracted from the measured ultrasonic response, and a statistical classifier, which can determine if the nonlinear modulation components are statistically significant in comparison with the background noise level, is proposed. The effectiveness of the proposed fatigue crack detection technique is experimentally validated using the data obtained from aluminum plates and aircraft fitting-lug specimens under varying temperature and loading conditions, and through a field testing of Yeongjong Grand Bridge in South Korea. The uniqueness of this study lies in that (1) detection of a micro fatigue crack with less than 1 μm width and fatigue cracks in the range of 10-20 μm in width using nonlinear ultrasonic modulation, (2) automated detection of fatigue crack formation without using reference data obtained from an intact condition, (3) reliable and robust diagnosis under varying temperature and loading conditions, (4) application of a local fatigue crack detection technique to online monitoring of a real bridge.

  18. Fatigue 󈨛. Papers presented at the International Conference on Fatigue and Fatigue Threshold (3rd) Held in Charlottesville, Virginia on June 28-July 3, 1987. Volume 3.

    DTIC Science & Technology

    1987-10-15

    cracks and loss of fiber-matrix bond, leadin, to nonuniform loading (tensile overload) of composite structure. Figures 13 through 15 show the micro...propagation within the matrix, and alon- the interface, leading to a nonuniform load transfer from matrix to fibers, and causing tensile overload failure...long cracks, were attributed to high cyclic strains at crack tips within grains of maximum crystallographic orientation. Ma and Laire (4) studying the

  19. Damage assessment, characterization, and modeling for enhanced design of concrete bridge decks in cold regions : [project brief].

    DOT National Transportation Integrated Search

    2015-07-01

    Freeze-thaw and fatigue-type loading processes degrade concrete materials and reduce the load carrying capacity of concrete decks. Damage to concrete decks is caused by the formation of cracks and micro-cracks during fatigue and freeze-thaw cycles. T...

  20. Crack Initiation and Growth Behavior at Corrosion Pit in 7075-T6 High Strength Aluminum Alloy

    DTIC Science & Technology

    2013-06-01

    Corrosion Fatigue Corrosion fatigue is defined as the failure of metal due to a cyclical load in combination with exposure to a caustic environment...lifetime is spent creating the crack while the actual crack growth makes up a smaller portion of the total lifetime. With corrosion fatigue however

  1. Characterization of fatigue crack initiation and propagation in Ti-6Al-4V with electrical potential drop technique

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Telesman, Jack

    1988-01-01

    Electrical potential methods have been used in the past primarily to monitor crack length in long crack specimens subjected to fatigue loading. An attempt was made to develop test procedures for monitoring the fatigue crack initiation and the growth of short fatigue cracks in a turbine disk alloy with the electrical potential drop technique (EPDT). In addition, the EPDT was also applied to monitor the fatigue crack growth in long crack specimens of the same alloy. The resolution of the EPDT for different specimen geometries was determined. Factors influencing the EPDT are identified and the applicability of EPDT in implementing damage tolerant design concepts for turbine disk materials is discussed. The experimental procedure adopted and the results obtained is discussed. No substantial differences were observed between the fatigue crack growth data of short and long crack specimens.

  2. Hot-Spot Fatigue and Impact Damage Detection on a Helicopter Tailboom

    DTIC Science & Technology

    2011-09-01

    other 14 PZT disks were used as sensors. Among the 28 PZT disks, 16 PZT disks were placed in the two fatigue hot-spot areas to detect cracks initiated...more efficient and effective airframe maintenance, fatigue cracking and impact damage detection technologies were developed and demonstrated on a...SHM system in successfully monitoring fatigue cracks initiated from cyclical loading conditions; detecting, locating and quantifying ballistic

  3. Fatigue damage in cross-ply titanium metal matrix composites containing center holes

    NASA Technical Reports Server (NTRS)

    Bakuckas, J. G., Jr.; Johnson, W. S.; Bigelow, C. A.

    1992-01-01

    The development of fatigue damage in (0/90) sub SCS-6/TI-15-3 laminates containing center holes was studied. Stress levels required for crack initiation in the matrix were predicted using an effective strain parameter and compared to experimental results. Damage progression was monitored at various stages of fatigue loading. In general, a saturated state of damage consisting of matrix cracks and fiber matrix debonding was obtained which reduced the composite modulus. Matrix cracks were bridged by the 0 deg fibers. The fatigue limit (stress causing catastrophic fracture of the laminates) was also determined. The static and post fatigue residual strengths were accurately predicted using a three dimensional elastic-plastic finite element analysis. The matrix damage that occurred during fatigue loading significantly reduced the notched strength.

  4. Fracture mechanics approach to estimate fatigue lives of welded lap-shear specimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Poh -Sang; Pan, Jwo

    A full range of stress intensity factor solutions for a kinked crack with finite length is developed as a function of weld width and the sheet thickness. When used with the main crack solutions (global stress intensity factors) in terms of the applied load and the specimen geometric parameters, the fatigue lived of the kinked crack can be estimated for the laser-welded lap-shear specimens. The predicted curve for the load range-fatigue life passes through the cluster of experimental data and is in good agreement. A classical solution associated with an infinitesimal kink is also employed. Furthermore, its life prediction tendsmore » to overestimate the actual fatigue life. In addition, the traditional fatigue life estimation based on structural stress is performed for completeness. As a result, this non-fracture mechanics approach only agrees well with the experimental data under high cyclic load conditions.« less

  5. Fracture mechanics approach to estimate fatigue lives of welded lap-shear specimens

    DOE PAGES

    Lam, Poh -Sang; Pan, Jwo

    2015-06-29

    A full range of stress intensity factor solutions for a kinked crack with finite length is developed as a function of weld width and the sheet thickness. When used with the main crack solutions (global stress intensity factors) in terms of the applied load and the specimen geometric parameters, the fatigue lived of the kinked crack can be estimated for the laser-welded lap-shear specimens. The predicted curve for the load range-fatigue life passes through the cluster of experimental data and is in good agreement. A classical solution associated with an infinitesimal kink is also employed. Furthermore, its life prediction tendsmore » to overestimate the actual fatigue life. In addition, the traditional fatigue life estimation based on structural stress is performed for completeness. As a result, this non-fracture mechanics approach only agrees well with the experimental data under high cyclic load conditions.« less

  6. Initiation and growth of multiple-site damage in the riveted lap joint of a curved stiffened fuselage panel: An experimental and analytical study

    NASA Astrophysics Data System (ADS)

    Ahmed, Abubaker Ali

    As part of the structural integrity research of the National Aging Aircraft Research Program, a comprehensive study on multiple-site damage (MSD) initiation and growth in a pristine lap-joint fuselage panel has been conducted. The curved stiffened fuselage panel was tested at the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration William J. Hughes Technical Center. A strain survey test was conducted to verify proper load application. The panel was then subjected to a fatigue test with constant-amplitude cyclic loading. The applied loading spectrum included underload marker cycles so that crack growth history could be reconstructed from post-test fractographic examinations. Crack formation and growth were monitored via nondestructive and high-magnification visual inspections. Strain gage measurements recorded during the strain survey tests indicated that the inner surface of the skin along the upper rivet row of the lap joint experienced high tensile stresses due to local bending. During the fatigue loading, cracks were detected by eddy-current inspections at multiple rivet holes along the upper rivet row. Through-thickness cracks were detected visually after about 80% of the fatigue life. Once MSD cracks from two adjacent rivet holes linked up, there was a quick deterioration in the structural integrity of the lap joint. The linkup resulted in a 2.87" (72.9-mm) lead fatigue crack that rapidly propagated across 12 rivet holes and crossed over into the next skin bay, at which stage the fatigue test was terminated. A post-fatigue residual strength test was then conducted by loading the panel quasi-statically up to final failure. The panel failed catastrophically when the crack extended instantaneously across three additional bays. Post-test fractographic examinations of the fracture surfaces in the lap joint of the fuselage panel were conducted to characterize subsurface crack initiation and growth. Results showed evidence of fretting damage and crack initiation at multiple locations near the rivet holes along the faying surface of the skin. The subsurface cracks grew significantly along the faying surface before reaching the outer surface of the skin, forming elliptical crack fronts. A finite element model (FE) of the panel was constructed and geometrically-nonlinear analyses conducted to determine strain distribution under the applied loads. The FE model was validated by comparing the analysis results with the strain gage measurements recorded during the strain survey test. The validated FE model was then used to determine stress-intensity factors at the crack tips. Stress-intensity factor results indicated that crack growth in the lap joint was under mixed-mode; however, the opening-mode stress intensity factor was dominant. The stress-intensity factors computed from the FE analysis were used to conduct cycle-by-cycle integration of fatigue crack growth. In the cycle-by-cycle integration, the NASGRO crack growth model was used with its parameters selected to account for the effects of plasticity-induced crack closure and the test environment on crack growth rate. Fatigue crack growth predictions from cycle-by-cycle computation were in good agreement with the experimental measured crack growth data. The results of the study provide key insights into the natural development and growth of MSD cracks in the pristine lap joint. The data provided by the study represent a valuable source for the evaluation and validation of analytical methodologies used for predicting MSD crack initiation and growth.

  7. Fatigue creep damage at the cement-bone interface: an experimental and a micro-mechanical finite element study

    PubMed Central

    Waanders, Daan; Janssen, Dennis; Miller, Mark A.; Mann, Kenneth A.; Verdonschot, Nico

    2009-01-01

    The goal of this study was to quantify the micromechanics of the cement-bone interface under tensile fatigue loading using finite element analysis (FEA) and to understand the underlying mechanisms that play a role in the fatigue behavior of this interface. Laboratory cement-bone specimens were subjected to a tensile fatigue load, while local displacements and crack growth on the specimen's surface were monitored. FEA models were created from these specimens based upon micro-computed tomography data. To accurately model interfacial gaps at the interface between the bone and cement, a custom-written erosion algorithm was applied to the bone model. A fatigue load was simulated in the FEA models while monitoring the local displacements and crack propagation. The results showed the FEA models were able to capture the general experimental creep damage behavior and creep stages of the interface. Consistent with the experiments, the majority of the deformation took place at the contact interface. Additionally, the FEA models predicted fatigue crack patterns similar to experimental findings. Experimental surface cracks correlated moderately with FEA surface cracks (r2=0.43), but did not correlate with the simulated crack volume fraction (r2=0.06). Although there was no relationship between experimental surface cracks and experimental creep damage displacement (r2=0.07), there was a strong relationship between the FEA crack volume fraction and the FEA creep damage displacement (r2=0.76). This study shows the additional value of FEA of the cement-bone interface relative to experimental studies and can therefore be used to optimize its mechanical properties. PMID:19682690

  8. Reliability analysis of structures under periodic proof tests in service

    NASA Technical Reports Server (NTRS)

    Yang, J.-N.

    1976-01-01

    A reliability analysis of structures subjected to random service loads and periodic proof tests treats gust loads and maneuver loads as random processes. Crack initiation, crack propagation, and strength degradation are treated as the fatigue process. The time to fatigue crack initiation and ultimate strength are random variables. Residual strength decreases during crack propagation, so that failure rate increases with time. When a structure fails under periodic proof testing, a new structure is built and proof-tested. The probability of structural failure in service is derived from treatment of all the random variables, strength degradations, service loads, proof tests, and the renewal of failed structures. Some numerical examples are worked out.

  9. Prediction of corrosion fatigue crack initiation behavior of A7N01P-T4 aluminum alloy welded joints

    NASA Astrophysics Data System (ADS)

    An, J.; Chen, J.; Gou, G.; Chen, H.; Wang, W.

    2017-07-01

    Through investigating the corrosion fatigue crack initiation behavior of A7N01P-T4 aluminum alloy welded joints in 3.5 wt.% NaCl solution, corrosion fatigue crack initiation life is formulated as Ni = 6.97 × 1012[Δσeqv1.739 - 491.739]-2 and the mechanism of corrosion fatigue crack initiation is proposed. SEM and TEM tests revealed that several corrosion fatigue cracks formed asynchronously and the first crack does not necessarily develop into the leading crack. The uneven reticular dislocations produced by fatigue loading are prone to piling up and tangling near the grain boundaries or the second phases and form the “high dislocation-density region” (HDDR), which acts as an anode in microbatteries and dissolved to form small crack. Thus the etching pits, HDDR near the grain boundaries and second phases are confirmed as the main causes inducing the initiation of fatigue crack.

  10. Residual strength and crack propagation tests on C-130 airplane center wings with service-imposed fatigue damage

    NASA Technical Reports Server (NTRS)

    Snider, H. L.; Reeder, F. L.; Dirkin, W. J.

    1972-01-01

    Fourteen C-130 airplane center wings, each containing service-imposed fatigue damage resulting from 4000 to 13,000 accumulated flight hours, were tested to determine their fatigue crack propagation and static residual strength characteristics. Eight wings were subjected to a two-step constant amplitude fatigue test prior to static testing. Cracks up to 30 inches long were generated in these tests. Residual static strengths of these wings ranged from 56 to 87 percent of limit load. The remaining six wings containing cracks up to 4 inches long were statically tested as received from field service. Residual static strengths of these wings ranged from 98 to 117 percent of limit load. Damage-tolerant structural design features such as fastener holes, stringers, doublers around door cutouts, and spanwise panel splices proved to be effective in retarding crack propagation.

  11. Experimental Investigation and Finite Element Analysis on Fatigue Behavior of Aluminum Alloy 7050 Single-Lap Joints

    NASA Astrophysics Data System (ADS)

    Zhou, Bing; Cui, Hao; Liu, Haibo; Li, Yang; Liu, Gaofeng; Li, Shujun; Zhang, Shangzhou

    2018-03-01

    The fatigue behavior of single-lap four-riveted aluminum alloy 7050 joints was investigated by using high-frequency fatigue test and scanning electron microscope (SEM). Stress distributions obtained by finite element (FE) analysis help explain the fatigue performance. The fatigue test results showed that the fatigue lives of the joints depend on cold expansion and applied cyclic loads. FE analysis and fractography indicated that the improved fatigue lives can be attributed to the reduction in maximum stress and evolution of fatigue damage at the critical location. The beneficial effects of strengthening techniques result in tearing ridges or lamellar structure on fracture surface, decrease in fatigue striations spacing, delay of fatigue crack initiation, crack deflection in fatigue crack propagation and plasticity-induced crack closure.

  12. The influence of temperature on fatigue-crack growth in a mill annealed Ti-6Al-4V alloy

    NASA Technical Reports Server (NTRS)

    Wei, R. P.; Ritter, D. L.

    1972-01-01

    To understand the influence temperature on the rate of fatigue crack growth in high strength metal alloys, constant load amplitude, fatigue crack growth experiments were carried out using a 1/4-inch-thick (6.35 mm) mill annealed Ti-6Al-4V alloy plate as a model material. The rates of fatigue crack growth were determined as a function of temperature, ranging from room temperature to about 290 C (or, about 550 F/563K) and as a function of the crack tip stress intensity factor in a dehumidified high purity argon environment. Limited correlative experiments indicate that dehumidified oxygen and hydrogen have no effect on the rate of fatigue crack growth in this alloy, while distilled water increased the rate of crack growth slightly in the range tested. Companion fractographic examinations suggest that the mechanisms for fatigue crack growth in the various environments are essentially the same.

  13. Spectrum Fatigue of 7075-T651 Aluminum Alloy under Overloading and Underloading

    DTIC Science & Technology

    2016-03-15

    underload, stress ratio, and environment on fatigue crack growth. Fatigue crack growth tests were conducted with a 7075-T651 aluminum alloy under constant...the UniGrow equation, the variation of crack length with number of loading cycle was predicted. The prediction and the fatigue test life were found to...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18 REPORT NO. NAWCADPAX/TIM-2015/282 ii SUMMARY Fatigue tests of 7075-T651

  14. Crack tip field and fatigue crack growth in general yielding and low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Minzhong, Z.; Liu, H. W.

    1984-01-01

    Fatigue life consists of crack nucleation and crack propagation periods. Fatigue crack nucleation period is shorter relative to the propagation period at higher stresses. Crack nucleation period of low cycle fatigue might even be shortened by material and fabrication defects and by environmental attack. In these cases, fatigue life is largely crack propagation period. The characteristic crack tip field was studied by the finite element method, and the crack tip field is related to the far field parameters: the deformation work density, and the product of applied stress and applied strain. The cyclic carck growth rates in specimens in general yielding as measured by Solomon are analyzed in terms of J-integral. A generalized crack behavior in terms of delta is developed. The relations between J and the far field parameters and the relation for the general cyclic crack growth behavior are used to analyze fatigue lives of specimens under general-yielding cyclic-load. Fatigue life is related to the applied stress and strain ranges, the deformation work density, crack nucleus size, fracture toughness, fatigue crack growth threshold, Young's modulus, and the cyclic yield stress and strain. The fatigue lives of two aluminum alloys correlate well with the deformation work density as depicted by the derived theory. The general relation is reduced to Coffin-Manson low cycle fatigue law in the high strain region.

  15. Intermittent crack growth in fatigue

    NASA Astrophysics Data System (ADS)

    Kokkoniemi, R.; Miksic, A.; Ovaska, M.; Laurson, L.; Alava, M. J.

    2017-07-01

    Fatigue occurs under cyclic loading at stresses below a material’s static strength limit. We consider fatigue crack growth as a stochastic process and perform crack growth experiments in a metal (copper). We follow optically cracks propagating from initial edge notches. The main interest is in the dynamics of the crack growth—the Paris’ law and the initiation phase prior to that—and especially the intermittency this is discovered to display. How the sampling of the crack advancement, performed at regular intervals, influences such measurement results is analysed by the analogy of planar crack dynamics in slow, driven growth.

  16. Energy Approach-Based Simulation of Structural Materials High-Cycle Fatigue

    NASA Astrophysics Data System (ADS)

    Balayev, A. F.; Korolev, A. V.; Kochetkov, A. V.; Sklyarova, A. I.; Zakharov, O. V.

    2016-02-01

    The paper describes the mechanism of micro-cracks development in solid structural materials based on the theory of brittle fracture. A probability function of material cracks energy distribution is obtained using a probabilistic approach. The paper states energy conditions for cracks growth at material high-cycle loading. A formula allowing to calculate the amount of energy absorbed during the cracks growth is given. The paper proposes a high- cycle fatigue evaluation criterion allowing to determine the maximum permissible number of solid body loading cycles, at which micro-cracks start growing rapidly up to destruction.

  17. Analysis of fatigue, fatique-crack propagation, and fracture data. [design of metallic aerospace structural components

    NASA Technical Reports Server (NTRS)

    Jaske, C. E.; Feddersen, C. E.; Davies, K. B.; Rice, R. C.

    1973-01-01

    Analytical methods have been developed for consolidation of fatigue, fatigue-crack propagation, and fracture data for use in design of metallic aerospace structural components. To evaluate these methods, a comprehensive file of data on 2024 and 7075 aluminums, Ti-6A1-4V, and 300M and D6Ac steels was established. Data were obtained from both published literature and unpublished reports furnished by aerospace companies. Fatigue and fatigue-crack-propagation analyses were restricted to information obtained from constant-amplitude load or strain cycling of specimens in air at room temperature. Fracture toughness data were from tests of center-cracked tension panels, part-through crack specimens, and compact-tension specimens.

  18. Characterization of failure processes in tungsten copper composites under fatigue loading conditions

    NASA Technical Reports Server (NTRS)

    Kim, Yong-Suk; Verrilli, Michael J.; Gabb, Timothy P.

    1989-01-01

    A fractographic and metallographic investigation was performed on specimens of a tungsten fiber reinforced copper matrix composite (9 vol percent), which had experienced fatigue failures at elevated temperatures. Major failure modes and possible failure mechanisms, with an emphasis placed on characterizing fatigue damage accumulation, were determined. Metallography of specimens fatigued under isothermal cyclic loading suggested that fatigue damage initiates in the matrix. Cracks nucleated within the copper matrix at grain boundaries, and they propagated through cavity coalescence. The growing cracks subsequently interacted with the reinforcing tungsten fibers, producing a localized ductile fiber failure. Examinations of interrupted tests before final failure confirmed the suggested fatigue damage processes.

  19. Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review

    NASA Astrophysics Data System (ADS)

    Wang, B. J.; Xu, D. K.; Wang, S. D.; Han, E. H.

    2017-12-01

    The most advantageous property of magnesium (Mg) alloys is their density, which is lower compared with traditional metallic materials. Mg alloys, considered the lightest metallic structural material among others, have great potential for applications as secondary load components in the transportation and aerospace industries. The fatigue evaluation of Mg alloys under elastic stress amplitudes is very important in ensuring their service safety and reliability. Given their hexagonal close packed structure, the fatigue crack initiation of Mg and its alloys is closely related to the deformation mechanisms of twinning and basal slips. However, for Mg alloys with shrinkage porosities and inclusions, fatigue cracks will preferentially initiate at these defects, remarkably reducing the fatigue lifetime. In this paper, some fundamental aspects about the fatigue crack initiation mechanisms of Mg alloys are reviewed, including the 3 followings: 1) Fatigue crack initiation of as-cast Mg alloys, 2) influence of microstructure on fatigue crack initiation of wrought Mg alloys, and 3) the effect of heat treatment on fatigue initiation mechanisms. Moreover, some unresolved issues and future target on the fatigue crack initiation mechanism of Mg alloys are also described.

  20. The influence of temperature on fatigue-crack growth in a mill-annealed Ti-6Al-4V alloy

    NASA Technical Reports Server (NTRS)

    Wei, R. P.; Ritter, D. L.

    1971-01-01

    To understand the influence of temperature on the rate of fatigue crack growth in high strength metal alloys, constant load amplitude fatigue crack growth experiments were carried out using a 1/4 inch thick (6.35 mm) mill-annealed Ti-6Al-4V alloy plate as a model material. The rates of fatigue crack growth were determined as a function of temperature, ranging from room temperature to about 290 C and as a function of the crack tip, stress intensity factor K, in dehumidified high purity argon environment. The dependence of the rate of fatigue crack growth on K appears to be separable into two regions. The transition correlates with changes in both the microscopic and macroscopic appearances of the fracture surfaces, and suggests a change in the mechanism and the influence of microstructure on fatigue crack growth.

  1. The Regularities of Fatigue Crack Growth in Airframes Elements at Real Operation Conditions

    NASA Astrophysics Data System (ADS)

    Pavelko, Igors; Pavelko, Vitalijs

    The results of analytical and experimental researches concerning predicting of fatigue crack growth in the operating conditions are presented. First of all the main factors causing a fatigue damage initiation and growth are analyzed and divided to two groups. Common conditions of fatigue damage precise predicting are established. The problem of fatigue crack growth at the stresses of variable amplitude was analyzed and an approach of description of this process is performed. Two examples present the efficiency of this approach. Theory of fatigue crack growth indication and the crack growth indicator (CGI) are developed. There is planned and executed a flight experiment using CGI located on two aircraft An-24 and An-26. Results of crack growth in CGI at operational load allowed to evaluate the parameters of generalized Paris-Erdogan law and statistical properties of crack increment per flight.

  2. Damage Tolerant Repair Techniques for Pressurized Aircraft Fuselages

    DTIC Science & Technology

    1994-01-01

    2 if20 20 offset 50, fatigue GST, GLARE 2 if20 20 static, no fatigue *Unidirectional SP500 carbon/epoxy tape . "* Fatigue load did not initiate a crack...Et value, so this is a reasonable assumption. It further implies zero crack opening under the patch. The Erdogan solution [51 for two collinear...Cr Figure 6. 11. Idealization of patched crack as unfailed ligament between two collinear cracks (after [5, 6)). The Erdogan solution leads to the AK

  3. Damage Tolerant Repair Techniques for Pressurized Aircraft Fuselages

    DTIC Science & Technology

    1994-06-06

    crack patching effectiveness, long cracks ( Erdogan ) 186 Vii Acknowledgments My three years of Ph.D. work would have been impossible without the...fatigue GST, GLARE 2 " " 20 20 static, no fatigue *Unidirectional SP500 carbon/epoxy tape . *Fatigue load did not initiate a crack. The saw cut was...assurnption It further implies zero crack opening under the pat(:r The Erdogan solutior (51 for two Coiinear Ctacks can be expressed as: %A F -. " (621 F

  4. Influence of Initial Inclined Surface Crack on Estimated Residual Fatigue Lifetime of Railway Axle

    NASA Astrophysics Data System (ADS)

    Náhlík, Luboš; Pokorný, Pavel; Ševčík, Martin; Hutař, Pavel

    2016-11-01

    Railway axles are subjected to cyclic loading which can lead to fatigue failure. For safe operation of railway axles a damage tolerance approach taking into account a possible defect on railway axle surface is often required. The contribution deals with an estimation of residual fatigue lifetime of railway axle with initial inclined surface crack. 3D numerical model of inclined semi-elliptical surface crack in railway axle was developed and its curved propagation through the axle was simulated by finite element method. Presence of press-fitted wheel in the vicinity of initial crack was taken into account. A typical loading spectrum of railway axle was considered and residual fatigue lifetime was estimated by NASGRO approach. Material properties of typical axle steel EA4T were considered in numerical calculations and lifetime estimation.

  5. Double Linear Damage Rule for Fatigue Analysis

    NASA Technical Reports Server (NTRS)

    Halford, G.; Manson, S.

    1985-01-01

    Double Linear Damage Rule (DLDR) method for use by structural designers to determine fatigue-crack-initiation life when structure subjected to unsteady, variable-amplitude cyclic loadings. Method calculates in advance of service how many loading cycles imposed on structural component before macroscopic crack initiates. Approach eventually used in design of high performance systems and incorporated into design handbooks and codes.

  6. Remote monitoring and prognosis of fatigue cracking in steel bridges with acoustic emission

    NASA Astrophysics Data System (ADS)

    Yu, Jianguo Peter; Ziehl, Paul; Pollock, Adrian

    2011-04-01

    Acoustic emission (AE) monitoring is desirable to nondestructively detect fatigue damage in steel bridges. Investigations of the relationship between AE signals and crack growth behavior are of paramount importance prior to the widespread application of passive piezoelectric sensing for monitoring of fatigue crack propagation in steel bridges. Tests have been performed to detect AE from fatigue cracks in A572G50 steel. Noise induced AE signals were filtered based on friction emission tests, loading pattern, and a combined approach involving Swansong II filters and investigation of waveforms. The filtering methods based on friction emission tests and load pattern are of interest to the field evaluation using sparse datasets. The combined approach is suitable for data filtering and interpretation of actual field tests. The pattern recognition program NOESIS (Envirocoustics) was utilized for the evaluation of AE data quality. AE parameters are associated with crack length, crack growth rate, maximum stress intensity and stress intensity range. It is shown that AE hits, counts, absolute energy, and signal strength are able to provide warnings at the critical cracking level where cracking progresses from stage II (stable propagation) to stage III (unstable propagation which may result in failure). Absolute energy rate and signal strength rate may be better than count rate to assess the remaining fatigue life of inservice steel bridges.

  7. Damage in fatigue: A new outlook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, K.J.

    1995-12-01

    This paper concentrates on the difficulties produced by linear elastic fracture mechanics (LEFM) and how recent research has removed many of these difficulties thereby permitting the design engineer to have a much improved basis for solving complex problems of engineering plant subjected to cyclic loading. This paper intends to show that: (1) In polycrystalline materials the period of initiation is in reality, zero and fatigue lifetime is entirely composed of crack propagation. (2) The fatigue limit of a metal, component or structure is related to whether or not a crack can propagate. (3) Elastic Fracture Mechanics is only a beginningmore » in the science of, and application of, fracture mechanics. (4) Fatigue Damage is current crack length and the rate of damage accumulation is the rate of crack growth. (5) Only two basic forms of crack extension occur when any combination of the three loading mode mechanisms (Modes 1, 2, and 3) are applied, namely Stage 1 (shear crack growth) and Stage 2 (tensile crack growth). (6) Three fundamentally different fatigue crack growth thresholds exist. (7) The fatigue resistance of a metal is predominantly concerned with a crack changing its crack-growth direction, ie from Stage 1 to Stage 2, or vice versa. (8) Notches fall into two clearly defined categories; sharp notches where failure is related to the mechanical threshold condition, and shallow notches where failure is related to the material threshold condition. (9) Complex three-dimensional cyclic stress systems should be evaluated with respect to the possible Stage 1 and Stage 2 crack growth planes. (10) Barriers to fatigue crack growth can have origins in the microstructure (eg: grain boundaries) and in the mechanical state (eg: other crack systems). (11) The removal of a fatigue limit by a corrosive environment can be evaluated by the interface conditions between the Elastic-Plastic Fracture Mechanics (EPFM) and Microstructural Fracture Mechanics (MFM) regimes.« less

  8. Surface-crack growth: Models, experiments, and structures; Proceedings of the Symposium, Sparks, NV, Apr. 25, 1988

    NASA Technical Reports Server (NTRS)

    Reuter, Walter G. (Editor); Underwood, John H. (Editor); Newman, James C., Jr. (Editor)

    1990-01-01

    The present volume on surface-crack growth modeling, experimental methods, and structures, discusses elastoplastic behavior, the fracture analysis of three-dimensional bodies with surface cracks, optical measurements of free-surface effects on natural surfaces and through cracks, an optical and finite-element investigation of a plastically deformed surface flaw under tension, fracture behavior prediction for rapidly loaded surface-cracked specimens, and surface cracks in thick laminated fiber composite plates. Also discussed are a novel study procedure for crack initiation and growth in thermal fatigue testing, the growth of surface cracks under fatigue and monotonically increasing load, the subcritical growth of a surface flaw, surface crack propagation in notched and unnotched rods, and theoretical and experimental analyses of surface cracks in weldments.

  9. Stress Ratio Effects on Crack Opening Loads and Crack Growth Rates in Aluminum Alloy 2024

    NASA Technical Reports Server (NTRS)

    Riddell, William T.; Piascik, Robert S.

    1998-01-01

    The effects of stress ratio (R) and crack opening behavior on fatigue crack growth rates (da/dN) for aluminum alloy (AA) 2024-T3 were investigated using constant-delta K testing, closure measurements, and fractography. Fatigue crack growth rates were obtained for a range of delta K and stress ratios. Results show that constant delta K fatigue crack growth for R ranging from near 0 to 1 is divided into three regions. In Region 1, at low R, da/dN increases with increasing R. In Region 2, at intermediate R, fatigue crack growth rates are relatively independent of R. In Region 3, at high R, further increases in da/dN are observed with increasing R.

  10. Proof test and fatigue crack growth modeling on 2024-T3 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Poe, C. C., Jr.; Dawicke, D. S.

    1990-01-01

    Pressure proof testing of aircraft fuselage structures has been suggested as a means of screening critical crack sizes and of extending their useful life. The objective of this paper is to study the proof-test concept and to model the crack-growth process on a ductile material. Simulated proof and operational fatigue life tests have been conducted on cracked panels made of 2024-T3 aluminum alloy sheet material. A fatigue crack-closure model was modified to simulate the proof test and operational fatigue cycling. Using crack-growth rate and resistance-curve data, the model was able to predict crack growth during and after the proof load. These tests and analyses indicate that the proof test increases fatigue life; but the beneficial life, after a 1.33 or 1.5 proof, was less than a few hundred cycles.

  11. Crack detection and fatigue related delamination in FRP composites applied to concrete

    NASA Astrophysics Data System (ADS)

    Brown, Jeff; Baker, Rebecca; Kallemeyn, Lisa; Zendler, Andrew

    2008-03-01

    Reinforced concrete beams are designed to allow minor concrete cracking in the tension zone. The severity of cracking in a beam element is a good indicator of how well a structure is performing and whether or not repairs are needed to prevent structural failure. FRP composites are commonly used to increase the flexural and shear capacity of RC beam elements, but one potential disadvantage of this method is that strengthened surfaces are no longer visible and cracks or delaminations that result from excessive loading or fatigue may go undetected. This research investigated thermal imaging techniques for detecting load induced cracking in the concrete substrate and delamination of FRP strengthening systems applied to reinforced concrete (RC). One small-scale RC beam (5 in. x 6 in. x 60 in.) was strengthened with FRP and loaded to failure monotonically. An infrared thermography inspection was performed after failure. A second strengthened beam was loaded cyclically for 1,750,000 cycles to investigate how fatigue might affect substrate cracking and delamination growth throughout the service-life of a repaired element. No changes were observed in the FRP bond during/after the cyclic loading. The thermal imaging component of this research included pixel normalization to enhance detectability and characterization of this specific type of damage.

  12. Fatigue History and in-situ Loading Studies of the overload Effect Using High Resolution X-ray Strain Profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croft,M.; Jisrawi, N.; Zhong, Z.

    High-energy synchrotron X-ray diffraction experiments are used to perform local crack plane strain profiling of 4140 steel compact tension specimens fatigued at constant amplitude, subjected to a single overload cycle, then fatigued some more at constant amplitude. X-ray strain profiling results on a series of samples employing in-situ load cycling are correlated with the crack growth rate (da/dN) providing insight into the da/dN retardation known as the 'overload effect'. Immediately after the overload, the strain under maximum load is greatly reduced but the range of strain, between zero and maximum load, remains unchanged compared to the pre-overload values. At themore » point of maximum retardation, it is the strain range that is greatly reduced while the maximum-load strain has begun to recover to the pre-overload value. For a sample that has recovered to approximately half of the original da/dN value following the overload, the strain at maximum load is fully recovered while the strain range, though partially recovered, is still substantially reduced. The dominance of the strain range in the overload effect is clearly indicated. Subject to some assumptions, strong quantitative support for a crack growth rate driving force of the suggested form [(K{sub max}){sup -p}({Delta}K){sup p}]{sup {gamma}} is found. A dramatic nonlinear load dependence in the spatial distribution of the strain at maximum retardation is also demonstrated: at low load the response is dominantly at the overload position; whereas at high loads it is dominantly at the crack tip position. This transfer of load response away from the crack tip to the overload position appears fundamental to the overload effect for high R-ratio fatigue as studied here.« less

  13. Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    McClung, R. C.; Chell, G. G.; Lee, Y. -D.; Russell, D. A.; Orient, G. E.

    1999-01-01

    A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, delta J(sub eff) as the governing parameter. The methodology contains original and literature J and delta J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.

  14. Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    McClung, R. C.; Chell, G. G.; Lee, Y.-D.; Russell, D. A.; Orient, G. E.

    1999-01-01

    A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, (Delta)J(sub eff), as the governing parameter. The methodology contains original and literature J and (Delta)J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.

  15. Fatigue crack propagation in additively manufactured porous biomaterials.

    PubMed

    Hedayati, R; Amin Yavari, S; Zadpoor, A A

    2017-07-01

    Additively manufactured porous titanium implants, in addition to preserving the excellent biocompatible properties of titanium, have very small stiffness values comparable to those of natural bones. Although usually loaded in compression, biomedical implants can also be under tensional, shear, and bending loads which leads to crack initiation and propagation in their critical points. In this study, the static and fatigue crack propagation in additively manufactured porous biomaterials with porosities between 66% and 84% is investigated using compact-tension (CT) samples. The samples were made using selective laser melting from Ti-6Al-4V and were loaded in tension (in static study) and tension-tension (in fatigue study) loadings. The results showed that displacement accumulation diagram obtained for different CT samples under cyclic loading had several similarities with the corresponding diagrams obtained for cylindrical samples under compression-compression cyclic loadings (in particular, it showed a two-stage behavior). For a load level equaling 50% of the yield load, both the CT specimens studied here and the cylindrical samples we had tested under compression-compression cyclic loading elsewhere exhibited similar fatigue lives of around 10 4 cycles. The test results also showed that for the same load level of 0.5F y , the lower density porous structures demonstrate relatively longer lives than the higher-density ones. This is because the high bending stresses in high-density porous structures gives rise to local Mode-I crack opening in the rough external surface of the struts which leads to quicker formation and propagation of the cracks. Under both the static and cyclic loading, all the samples showed crack pathways which were not parallel to but made 45 ° angles with respect to the notch direction. This is due to the fact that in the rhombic dodecahedron unit cell, the weakest struts are located in 45 ° direction with respect to the notch direction. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effect of Water Vapor Pressure on Fatigue Crack Growth in Al-Zn-Cu-Mg Alloy Over Wide-Range Stress Intensity Factor Loading

    DTIC Science & Technology

    2014-05-07

    impacts: (a) crack closure, (b) transport of water vapor molecules within the fatigue crack (47], and (c) tensile stress-plastic strain range...sealed stainless steel UHV chamber. Pure water vapor was introduced from a sealed glass flask containing triply distilled water, via a precision leak...lamellar for H1 flow in a fatigue crack in steel ; specifically, flow is dominated by the low dynamic viscosity of a gas (particularly at low pressures) and

  17. Multiaxial Fatigue Life Prediction Based on Short Crack Propagation Model with Equivalent Strain Parameter

    NASA Astrophysics Data System (ADS)

    Zhao, Xiang-Feng; Shang, De-Guang; Sun, Yu-Juan; Song, Ming-Liang; Wang, Xiao-Wei

    2018-01-01

    The maximum shear strain and the normal strain excursion on the critical plane are regarded as the primary parameters of the crack driving force to establish a new short crack model in this paper. An equivalent strain-based intensity factor is proposed to correlate the short crack growth rate under multiaxial loading. According to the short crack model, a new method is proposed for multiaxial fatigue life prediction based on crack growth analysis. It is demonstrated that the method can be used under proportional and non-proportional loadings. The predicted results showed a good agreement with experimental lives in both high-cycle and low-cycle regions.

  18. Calculation of trajectories and the rate of growth of curvilinear fatigue cracks in isotropic and composite plates

    NASA Astrophysics Data System (ADS)

    Pokhmurska, H.; Maksymovych, O.; Dzyubyk, A.; Dzyubyk, L.

    2018-06-01

    The methods of calculating the trajectories and the rate of growth of curvilinear fatigue cracks in isotropic and composite plate structure elements during cyclic loading along straight or curvilinear trajectories are developed. For isotropic and anisotropic materials, the methodes are developed on the basis of the force criterion of destruction with the additional application of the fatigue fracture diagrams. To find the change in the shape of the cracks in the loading process, the step-by-step method was used. At each stage, the direction of the growth of all vertices of cracks and the lengths of their arcs was found on the basis of determining the intensity coefficients of stresses by the method of singular integral equations. The results of calculations of the cracks system growth process are presented.

  19. A Review on Strengthening Steel Beams Using FRP under Fatigue

    PubMed Central

    Jumaat, Mohd Zamin; Ramli Sulong, N. H.

    2014-01-01

    In recent decades, the application of fibre-reinforced polymer (FRP) composites for strengthening structural elements has become an efficient option to meet the increased cyclic loads or repair due to corrosion or fatigue cracking. Hence, the objective of this study is to explore the existing FRP reinforcing techniques to care for fatigue damaged structural steel elements. This study covers the surface treatment techniques, adhesive curing, and support conditions under cyclic loading including fatigue performance, crack propagation, and failure modes with finite element (FE) simulation of the steel bridge girders and structural elements. FRP strengthening composites delay initial cracking, reduce the crack growth rate, extend the fatigue life, and decrease the stiffness decay with residual deflection. Prestressed carbon fibre-reinforced polymer (CFRP) is the best strengthening option. End anchorage prevents debonding of the CRRP strips at the beam ends by reducing the local interfacial shear and peel stresses. Hybrid-joint, nanoadhesive, and carbon-flex can also be attractive for strengthening systems. PMID:25243221

  20. A review on strengthening steel beams using FRP under fatigue.

    PubMed

    Kamruzzaman, Mohamed; Jumaat, Mohd Zamin; Sulong, N H Ramli; Islam, A B M Saiful

    2014-01-01

    In recent decades, the application of fibre-reinforced polymer (FRP) composites for strengthening structural elements has become an efficient option to meet the increased cyclic loads or repair due to corrosion or fatigue cracking. Hence, the objective of this study is to explore the existing FRP reinforcing techniques to care for fatigue damaged structural steel elements. This study covers the surface treatment techniques, adhesive curing, and support conditions under cyclic loading including fatigue performance, crack propagation, and failure modes with finite element (FE) simulation of the steel bridge girders and structural elements. FRP strengthening composites delay initial cracking, reduce the crack growth rate, extend the fatigue life, and decrease the stiffness decay with residual deflection. Prestressed carbon fibre-reinforced polymer (CFRP) is the best strengthening option. End anchorage prevents debonding of the CRRP strips at the beam ends by reducing the local interfacial shear and peel stresses. Hybrid-joint, nanoadhesive, and carbon-flex can also be attractive for strengthening systems.

  1. Ae Behavior of Smart Stress Memory Patch after Variable Amplitude Loading

    NASA Astrophysics Data System (ADS)

    Fujino, Y.; Nambu, S.; Enoki, M.

    Recently, the structural health monitoring becomes increasingly great important to assure the ease and safety of our life, and it is required significantly to develop non-destructive evaluation for structures such as bridges and tunnels. Some sacrificed specimens have been developed to evaluate the fatigue damage of structures such as fatigue cycles and residual lifetime, but it can be applied only when the stress history is known beforehand. These fatigue sensors need no cable and can be used at low cost in contrast to strain gage. In previous study, a smart stress memory patch was developed as a new fatigue sensor. The patch can measure simultaneously the maximum stress, stress amplitude and the number of fatigue cycles by crack length measurement and Kaiser effect of Acoustic Emission (AE). The crack growth behavior under constant amplitude (CA) loading has been investigated, and AE behavior also has been evaluated only after CA loading. However, AE characteristics after variable amplitude (VA) loading in service are extremely important. Moreover, it is very important to control AE behavior of the smart patch in order to evaluate the applied stress using Kaiser effect. In this study, fatigue test with single overload was investigated to evaluate its influence. Moreover, effect of crack length and heat treatment on AE behavior was also investigated. Finally, AE behavior of the patch was evaluated after fatigue CA loading with overload or VA loading with log-normal distribution and overload.

  2. Application of Self Nulling Eddy Current Probe Technique to the Detection of Fatigue Crack Initiation and Control of Test Procedures

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Nath, S.; Wincheski, B.; Fulton, J. P.

    1994-01-01

    A major part of fracture mechanics is concerned with studying the initiation and propagation of fatigue cracks. This typically requires constant monitoring of crack growth during fatigue cycles and the knowledge of the precise location of the crack tip at any given time. One technique currently available for measuring fatigue crack length is the Potential Drop method. The method, however, may be inaccurate if the direction of crack growth deviates considerably from what was assumed initially or the curvature of the crack becomes significant. Another popular approach is to optically view the crack using a high magnification microscope, but this entails a person constantly monitoring it. The present proposed technique uses an automated scheme, in order to eliminate the need for a person to constantly monitor the experiment. Another technique under development elsewhere is to digitize an optical image of the test specimen surface and then apply a pattern recognition algorithm to locate the crack tip. A previous publication showed that the self nulling eddy current probe successfully tracked a simulated crack in an aluminum sample. This was the impetus to develop an online real time crack monitoring system. An automated system has been developed which includes a two axis scanner mounted on the tensile testing machine, the probe and its instrumentation and a personal computer (PC) to communicate and control all the parameters. The system software controls the testing parameters as well as monitoring the fatigue crack as it propagates. This paper will discuss the experimental setup in detail and demonstrate its capabilities. A three dimensional finite element model is utilized to model the magnetic field distribution due to the probe and how the probe voltage changes as it scans the crack. Experimental data of the probe for different samples under zero load, static load and high cycle fatigue load will be discussed. The final section summarizes the major accomplishments of the present work, the elements of the future R&D needs and the advantages and disadvantages of using this system in the laboratory and field.

  3. The effectiveness of an adhesively bonded composite patch repair as applied to a transport aircraft lower wing skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruschau, J.J.; Coate, J.E.

    1996-12-31

    Specimens were machined from lower wing skin extrusions of a transport aircraft, precracked under fatigue loading, repaired with a boron/epoxy patch, and subsequently fatigue tested under simulated flight loading conditions to evaluate the effectiveness of an adhesively bonded repair patch. Testing was performed at RT and -54{degrees}C for two configurations: one with the crack running up the integral stiffener (riser), the other running down the riser towards the outer skin surface. Cracks were initiated from a single 6.35 mm diameter hole located in the riser portion of the 7075-T6 wing skin material. Ultrasonic inspections were performed during fatigue loading tomore » determine crack growth and damage underneath the patch. Limited results show the adhesively bonded patch was successful in stopping or greatly reducing any further crack growth. Under laboratory air conditions, no crack growth occurred following 30,000 equivalent flight hours, double the expected life of the patched structure. Similarly at -54{degrees}C, no crack growth was observed for a patched crack growing up the riser following 15,000 EFH. For the case of a crack growing down the riser at the lower test temperature, some crack growth was measured, though at a greatly reduced rate.« less

  4. Fatigue crack growth and low cycle fatigue of two nickel base superalloys

    NASA Technical Reports Server (NTRS)

    Stoloff, N. S.; Duquette, D. J.; Choe, S. J.; Golwalkar, S.

    1983-01-01

    The fatigue crack growth and low cycle fatigue behavior of two P/M superalloys, Rene 95 and Astroloy, in the hot isostatically pressed (HIP) condition, was determined. Test variables included frequency, temperature, environment, and hold times at peak tensile loads (or strains). Crack initiation sites were identified in both alloys. Crack growth rates were shown to increase in argon with decreasing frequency or with the imposition of hold times. This behavior was attributed to the effect of oxygen in the argon. Auger analyses were performed on oxide films formed in argon. Low cycle fatigue lives also were degraded by tensile hold, contrary to previous reports in the literature. The role of environment in low cycle fatigue behavior is discussed.

  5. Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics

    NASA Astrophysics Data System (ADS)

    Li, C. James; Lee, Hyungdae

    2005-07-01

    This paper presents a model-based method that predicts remaining useful life of a gear with a fatigue crack. The method consists of an embedded model to identify gear meshing stiffness from measured gear torsional vibration, an inverse method to estimate crack size from the estimated meshing stiffness; a gear dynamic model to simulate gear meshing dynamics and determine the dynamic load on the cracked tooth; and a fast crack propagation model to forecast the remaining useful life based on the estimated crack size and dynamic load. The fast crack propagation model was established to avoid repeated calculations of FEM and facilitate field deployment of the proposed method. Experimental studies were conducted to validate and demonstrate the feasibility of the proposed method for prognosis of a cracked gear.

  6. A discrete element model for damage and fracture of geomaterials under fatigue loading

    NASA Astrophysics Data System (ADS)

    Gao, Xiaofeng; Koval, Georg; Chazallon, Cyrille

    2017-06-01

    Failure processes in geomaterials (concrete, asphalt concrete, masonry, etc.) under fatigue loading (repeated moving loads, cycles of temperature, etc.) are responsible for most of the dysfunctions in pavements, brick structures, etc. In the beginning of the lifetime of a structure, the material presents only inner defects (micro cracks, voids, etc.). Due to the effect of the cyclic loading, these small defects tend to grow in size and quantity which damage the material, reducing its stiffness. With a relatively high number of cycles, these growing micro cracks become large cracks, which characterizes the fracture behavior. From a theoretical point of view, both mechanisms are treated differently. Fracture is usually described locally, with the propagation of cracks defined by the energy release rate at the crack tip; damage is usually associated to non-local approaches. In the present work, damage and fracture mechanics are combined in a local discrete element approach.

  7. Fatigue crack growth in an aluminum alloy-fractographic study

    NASA Astrophysics Data System (ADS)

    Salam, I.; Muhammad, W.; Ejaz, N.

    2016-08-01

    A two-fold approach was adopted to understand the fatigue crack growth process in an Aluminum alloy; fatigue crack growth test of samples and analysis of fractured surfaces. Fatigue crack growth tests were conducted on middle tension M(T) samples prepared from an Aluminum alloy cylinder. The tests were conducted under constant amplitude loading at R ratio 0.1. The stress applied was from 20,30 and 40 per cent of the yield stress of the material. The fatigue crack growth data was recorded. After fatigue testing, the samples were subjected to detailed scanning electron microscopic (SEM) analysis. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of crack growth rate (CGR) in different regions. The effect of the microstructural features on fatigue crack growth was examined. It was observed that in stage II (crack growth region), the failure mode changes from intergranular to transgranular as the stress level increases. In the region of intergranular failure the localized brittle failure was observed and fatigue striations are difficult to reveal. However, in the region of transgranular failure the crack path is independent of the microstructural features. In this region, localized ductile failure mode was observed and well defined fatigue striations were present in the wake of fatigue crack. The effect of interaction of growing fatigue crack with microstructural features was not substantial. The final fracture (stage III) was ductile in all the cases.

  8. Performance evaluation of high-strength steel pipelines for high-pressure gaseous hydrogen transportation.

    DOT National Transportation Integrated Search

    2009-01-01

    Pipeline steels suffer significant degradation of their mechanical properties in high-pressure : gaseous hydrogen, including their fatigue cracking resistances to cyclic loading. The current : project work was conducted to produce fatigue crack growt...

  9. A path-dependent fatigue crack propagation model under non-proportional modes I and III loading conditions

    DOE PAGES

    Mei, J.; Dong, P.; Kalnaus, S.; ...

    2017-07-21

    It has been well established that fatigue damage process is load-path dependent under non-proportional multi-axial loading conditions. Most of studies to date have been focusing on interpretation of S-N based test data by constructing a path-dependent fatigue damage model. Our paper presents a two-parameter mixed-mode fatigue crack growth model which takes into account of crack growth dependency on both load path traversed and a maximum effective stress intensity attained in a stress intensity factor plane (e.g.,KI-KIII plane). Furthermore, by taking advantage of a path-dependent maximum range (PDMR) cycle definition (Dong et al., 2010; Wei and Dong, 2010), the two parametersmore » are formulated by introducing a moment of load path (MLP) based equivalent stress intensity factor range (ΔKNP) and a maximum effective stress intensity parameter KMax incorporating an interaction term KI·KIII. To examine the effectiveness of the proposed model, two sets of crack growth rate test data are considered. The first set is obtained as a part of this study using 304 stainless steel disk specimens subjected to three combined non-proportional modes I and III loading conditions (i.e., with a phase angle of 0°, 90°, and 180°). The second set was obtained by Feng et al. (2007) using 1070 steel disk specimens subjected to similar types of non-proportional mixed-mode conditions. Once the proposed two-parameter non-proportional mixed-mode crack growth model is used, it is shown that a good correlation can be achieved for both sets of the crack growth rate test data.« less

  10. A path-dependent fatigue crack propagation model under non-proportional modes I and III loading conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, J.; Dong, P.; Kalnaus, S.

    It has been well established that fatigue damage process is load-path dependent under non-proportional multi-axial loading conditions. Most of studies to date have been focusing on interpretation of S-N based test data by constructing a path-dependent fatigue damage model. Our paper presents a two-parameter mixed-mode fatigue crack growth model which takes into account of crack growth dependency on both load path traversed and a maximum effective stress intensity attained in a stress intensity factor plane (e.g.,KI-KIII plane). Furthermore, by taking advantage of a path-dependent maximum range (PDMR) cycle definition (Dong et al., 2010; Wei and Dong, 2010), the two parametersmore » are formulated by introducing a moment of load path (MLP) based equivalent stress intensity factor range (ΔKNP) and a maximum effective stress intensity parameter KMax incorporating an interaction term KI·KIII. To examine the effectiveness of the proposed model, two sets of crack growth rate test data are considered. The first set is obtained as a part of this study using 304 stainless steel disk specimens subjected to three combined non-proportional modes I and III loading conditions (i.e., with a phase angle of 0°, 90°, and 180°). The second set was obtained by Feng et al. (2007) using 1070 steel disk specimens subjected to similar types of non-proportional mixed-mode conditions. Once the proposed two-parameter non-proportional mixed-mode crack growth model is used, it is shown that a good correlation can be achieved for both sets of the crack growth rate test data.« less

  11. Computational micromechanics of fatigue of microstructures in the HCF–VHCF regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castelluccio, Gustavo M.; Musinski, William D.; McDowell, David L.

    Advances in higher resolution experimental techniques have shown that metallic materials can develop fatigue cracks under cyclic loading levels significantly below the yield stress. Indeed, the traditional notion of a fatigue limit can be recast in terms of limits associated with nucleation and arrest of fatigue cracks at the microstructural scale. Though fatigue damage characteristically emerges from irreversible dislocation processes at sub-grain scales, the specific microstructure attributes, environment, and loading conditions can strongly affect the apparent failure mode and surface to subsurface transitions. This paper discusses multiple mechanisms that occur during fatigue loading in the high cycle fatigue (HCF) tomore » very high cycle fatigue (VHCF) regimes. We compare these regimes, focusing on strategies to bridge experimental and modeling approaches exercised at multiple length scales and discussing particular challenges to modeling and simulation regarding microstructure-sensitive fatigue driving forces and thresholds. Finally, we discuss some of the challenges in predicting the transition of failure mechanisms at different stress and strain amplitudes.« less

  12. Computational micromechanics of fatigue of microstructures in the HCF–VHCF regimes

    DOE PAGES

    Castelluccio, Gustavo M.; Musinski, William D.; McDowell, David L.

    2016-05-19

    Advances in higher resolution experimental techniques have shown that metallic materials can develop fatigue cracks under cyclic loading levels significantly below the yield stress. Indeed, the traditional notion of a fatigue limit can be recast in terms of limits associated with nucleation and arrest of fatigue cracks at the microstructural scale. Though fatigue damage characteristically emerges from irreversible dislocation processes at sub-grain scales, the specific microstructure attributes, environment, and loading conditions can strongly affect the apparent failure mode and surface to subsurface transitions. This paper discusses multiple mechanisms that occur during fatigue loading in the high cycle fatigue (HCF) tomore » very high cycle fatigue (VHCF) regimes. We compare these regimes, focusing on strategies to bridge experimental and modeling approaches exercised at multiple length scales and discussing particular challenges to modeling and simulation regarding microstructure-sensitive fatigue driving forces and thresholds. Finally, we discuss some of the challenges in predicting the transition of failure mechanisms at different stress and strain amplitudes.« less

  13. An Experimental Investigation of the Effects of Vacuum Environment on the Fatigue Life, Fatigue-Crack-Growth Behavior, and Fracture Toughness of 7075-T6 Aluminum Alloy. Ph.D. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Hudson, C. M.

    1972-01-01

    Axial load fatigue life, fatigue-crack propagation, and fracture toughness tests were conducted on 0.090-inch thick specimens made of 7075-T6 aluminum alloy. The fatigue life and fatigue-crack propagation experiments were conducted at a stress ratio of 0.02. Maximum stresses ranged from 33 to 60 ksi in the fatigue life experiments, and from 10 to 40 ksi in the fatigue-crack propagation experiments, and fatigue life experiments were conducted at gas pressures of 760, 0.5, 0.05, and 0.00000005 torr. Fatigue-crack-growth and fracture toughness experiments were conducted at gas pressures of 760 and 5 x 10 to the minus 8th power torr. Residual stress measurements were made on selected fatigue life specimens to determine the effect of such stresses on fatigue life. Analysis of the results from the fatigue life experiments indicated that fatigue life progressively increased as the gas pressure decreased. Analysis of the results from the fatigue-crack-growth experiments indicates that at low values of stress-intensity range, the fatigue crack growth rates were approximately twice as high in air as in vacuum. Fracture toughness data showed there was essentially no difference in the fracture toughness of 7075-T6 in vacuum and in air.

  14. Elastic-Plastic Finite Element Analysis of Fatigue Crack Growth in Mode 1 and Mode 2 Conditions

    NASA Technical Reports Server (NTRS)

    Nakagaki, M.; Atluri, S. N.

    1978-01-01

    Presented is an alternate cost-efficient and accurate elastic-plastic finite element procedure to analyze fatigue crack closure and its effects under general spectrum loading. Both Modes 1 and 2 type cycling loadings are considered. Also presented are the results of an investigation, using the newly developed procedure, of various factors that cause crack growth acceleration or retardation and delay effects under high-to-low, low-to-high, single overload, and constant amplitude type cyclic loading in a Mode 1 situation. Further, the results of an investigation of a centercracked panel under external pure shear (Mode 2) cyclic loading, of constant amplitude, are reported.

  15. Influence of residual welding stresses, overload and specimen preparation on fatigue crack growth under axial compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greasley, A.

    1995-02-01

    Double edge notched axial compression specimens taken from thick welded steel joints have been used to grow fatigue cracks under pulsating compressive loads at mean stresses up to 55% of that needed for general yielding. The redistribution of residual stresses during specimen preparation and during crack growth influences the nucleation, growth rate and extent of fatigue cracks. Crack growth rates which are comparable to the equivalent tensile situation have been observed in as-welded, welded plus overloaded and stress relieved plus overloaded joints. Multiple nucleation and curved crack profiles have been observed in all cases. 5 refs.

  16. Factors Influencing Dwell Fatigue Cracking in Notches of Powder Metallurgy Superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Telesman, J.; Ghosn, L.; Garg, A.; Gayda, J.

    2011-01-01

    The influences of heat treatment and cyclic dwells on the notch fatigue resistance of powder metallurgy disk superalloys were investigated for low solvus high refractory (LSHR) and ME3 disk alloys. Disks were processed to produce material conditions with varied microstructures and associated mechanical properties. Notched specimens were first subjected to baseline dwell fatigue cycles having a dwell at maximum load, as well as tensile, stress relaxation, creep rupture, and dwell fatigue crack growth tests at 704 C. Several material heat treatments displayed a bimodal distribution of fatigue life with the lives varying by two orders-of-magnitude, while others had more consistent fatigue lives. This response was compared to other mechanical properties, in search of correlations. The wide scatter in baseline dwell fatigue life was observed only for material conditions resistant to stress relaxation. For selected materials and conditions, additional tests were then performed with the dwells shifted in part or in total to minimum tensile load. The tests performed with dwells at minimum load exhibited lower fatigue lives than max dwell tests, and also exhibited early crack initiation and a substantial increase in the number of initiation sites. These results could be explained in part by modeling evolution of peak stresses in the notch with continued dwell fatigue cycling. Fatigue-environment interactions were determined to limit life for the fatigue cycles with dwells.

  17. Intrinsically higher fatigue cracking resistance of the penetrable and movable incoherent twin boundary

    NASA Astrophysics Data System (ADS)

    Li, L. L.; Zhang, P.; Zhang, Z. J.; Zhang, Z. F.

    2014-01-01

    Incoherent twin boundaries (ITBs) are widespread and play a crucial role in unidirectional deformation behavior of materials, however, the intrinsic role of individual ITB under cyclic loading remains elusive. Here we show the fatigue cracking behavior of Cu bicrystal with an ITB as its sole interface for the first time. The slip bands (SBs) could transfer through the ITB; meanwhile, the ITB could migrate with the motion of partial dislocations. Both the penetrability and mobility contribute to the higher fatigue cracking resistance of the ITB and hence the fatigue crack nucleates along the SBs preferentially. These new findings not only shed light on the fatigue cracking mechanisms of a penetrable boundary with direct evidence but also could provide important implications for future interfacial optimization of metallic materials.

  18. A test procedure for determining the influence of stress ratio on fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J. H.; Wei, R. P.

    1974-01-01

    A test procedure is outlined by which the rate of fatigue crack growth over a range of stress ratios and stress intensities can be determined expeditiously using a small number of specimens. This procedure was developed to avoid or circumvent the effects of load interactions on fatigue crack growth, and was used to develop data on a mill annealed Ti-6Al-4V alloy plate. Experimental data suggest that the rates of fatigue crack growth among the various stress ratios may be correlated in terms of an effective stress intensity range at given values of K max. This procedure is not to be used, however, for determining the corrosion fatigue crack growth characteristics of alloys when nonsteady-state effects are significant.

  19. Three-dimensional elastic-plastic finite-element analysis of fatigue crack propagation

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.; Chermahini, R. G.

    1985-01-01

    Fatigue cracks are a major problem in designing structures subjected to cyclic loading. Cracks frequently occur in structures such as aircraft and spacecraft. The inspection intervals of many aircraft structures are based on crack-propagation lives. Therefore, improved prediction of propagation lives under flight-load conditions (variable-amplitude loading) are needed to provide more realistic design criteria for these structures. The main thrust was to develop a three-dimensional, nonlinear, elastic-plastic, finite element program capable of extending a crack and changing boundary conditions for the model under consideration. The finite-element model is composed of 8-noded (linear-strain) isoparametric elements. In the analysis, the material is assumed to be elastic-perfectly plastic. The cycle stress-strain curve for the material is shown Zienkiewicz's initial-stress method, von Mises's yield criterion, and Drucker's normality condition under small-strain assumptions are used to account for plasticity. The three-dimensional analysis is capable of extending the crack and changing boundary conditions under cyclic loading.

  20. Reference-free fatigue crack detection using nonlinear ultrasonic modulation under various temperature and loading conditions

    NASA Astrophysics Data System (ADS)

    Lim, Hyung Jin; Sohn, Hoon; DeSimio, Martin P.; Brown, Kevin

    2014-04-01

    This study presents a reference-free fatigue crack detection technique using nonlinear ultrasonic modulation. When low frequency (LF) and high frequency (HF) inputs generated by two surface-mounted lead zirconate titanate (PZT) transducers are applied to a structure, the presence of a fatigue crack can provide a mechanism for nonlinear ultrasonic modulation and create spectral sidebands around the frequency of the HF signal. The crack-induced spectral sidebands are isolated using a combination of linear response subtraction (LRS), synchronous demodulation (SD) and continuous wavelet transform (CWT) filtering. Then, a sequential outlier analysis is performed on the extracted sidebands to identify the crack presence without referring any baseline data obtained from the intact condition of the structure. Finally, the robustness of the proposed technique is demonstrated using actual test data obtained from simple aluminum plate and complex aircraft fitting-lug specimens under varying temperature and loading variations.

  1. Small-crack effects in high-strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Wu, X. R.; Venneri, S. L.; Li, C. G.

    1994-01-01

    The National Aeronautics and Space Administration and the Chinese Aeronautical Establishment participated in a Fatigue and Fracture Mechanics Cooperative Program. The program objectives were to identify and characterize crack initiation and growth of small cracks (10 microns to 2 mm long) in commonly used US and PRC aluminum alloys, to improve fracture mechanics analyses of surface- and corner-crack configurations, and to develop improved life-prediction methods. Fatigue and small-crack tests were performed on single-edgenotch tension (SENT) specimens and large-crack tests were conducted on center-crack tension specimens for constant-amplitude (stress ratios of -1, 0, and 0.5) and Mini-TWIST spectrum loading. The plastic replica method was used to monitor the initiation and growth of small fatigue cracks at the semicircular notch. Crack growth results from each laboratory on 7075-T6 bare and LC9cs clad aluminum alloys agreed well and showed that fatigue life was mostly crack propagation from a material defect (inclusion particles or void) or from the cladding layer. Finite-element and weight-function methods were used to determine stress intensity factors for surface and corner cracks in the SENT specimens. Equations were then developed and used in a crack growth and crack-closure model to correlate small- and large-crack data and to make life predictions for various load histories. The cooperative program produced useful experimental data and efficient analysis methods for improving life predictions. The results should ultimately improve aircraft structural reliability and safety.

  2. Hydrogen Assisted Cracking in Pearlitic Steel Rods: The Role of Residual Stresses Generated by Fatigue Precracking

    PubMed Central

    Toribio, Jesús; Aguado, Leticia; Lorenzo, Miguel; Kharin, Viktor

    2017-01-01

    Stress corrosion cracking (SCC) of metals is an issue of major concern in engineering since this phenomenon causes many catastrophic failures of structural components in aggressive environments. SCC is even more harmful under cathodic conditions promoting the phenomenon known as hydrogen assisted cracking (HAC), hydrogen assisted fracture (HAF) or hydrogen embrittlement (HE). A common way to assess the susceptibility of a given material to HAC, HAF or HE is to subject a cracked rod to a constant extension rate tension (CERT) test until it fractures in this harsh environment. This paper analyzes the influence of a residual stress field generated by fatigue precracking on the sample’s posterior susceptibility to HAC. To achieve this goal, numerical simulations were carried out of hydrogen diffusion assisted by the stress field. Firstly, a mechanical simulation of the fatigue precracking was developed for revealing the residual stress field after diverse cyclic loading scenarios and posterior stress field evolution during CERT loading. Afterwards, a simulation of hydrogen diffusion assisted by stress was carried out considering the residual stresses after fatigue and the superposed rising stresses caused by CERT loading. Results reveal the key role of the residual stress field after fatigue precracking in the HAC phenomena in cracked steel rods as well as the beneficial effect of compressive residual stress. PMID:28772845

  3. Fractographic Observations on the Mechanism of Fatigue Crack Growth in Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    Alderliesten, R. C.; Schijve, J.; Krkoska, M.

    Special load histories are adopted to obtain information about the behavior of the moving crack tip during the increasing and decreasing part of a load cycle. It is associated with the crack opening and closure of the crack tip. Secondly, modern SEM techniques are applied for observations on the morphology of the fractures surfaces of a fatigue crack. Information about the cross section profiles of striations are obtained. Corresponding locations of the upper and the lower fracture surface are also explored in view of the crack extension mechanism. Most experiments are carried out on sheet specimens of aluminum alloys 2024-T3, but 7050-T7451 specimens are also tested in view of a different ductility of the two alloys.

  4. Fatigue crack closure: a review of the physical phenomena

    PubMed Central

    Pippan, R.

    2017-01-01

    Abstract Plasticity‐induced, roughness‐induced and oxide‐induced crack closures are reviewed. Special attention is devoted to the physical origin, the consequences for the experimental determination and the prediction of the effective crack driving force for fatigue crack propagation. Plasticity‐induced crack closure under plane stress and plane strain conditions require, in principle, a different explanation; however, both types are predictable. This is even the case in the transition region from the plane strain to the plane stress state and all types of loading conditions including constant and variable amplitude loading, the short crack case or the transition from small‐scale to large‐scale yielding. In contrast, the prediction of roughness‐induced and oxide‐induced closures is not as straightforward. PMID:28616624

  5. On fatigue crack growth under random loading

    NASA Astrophysics Data System (ADS)

    Zhu, W. Q.; Lin, Y. K.; Lei, Y.

    1992-09-01

    A probabilistic analysis of the fatigue crack growth, fatigue life and reliability of a structural or mechanical component is presented on the basis of fracture mechanics and theory of random processes. The material resistance to fatigue crack growth and the time-history of the stress are assumed to be random. Analytical expressions are obtained for the special case in which the random stress is a stationary narrow-band Gaussian random process, and a randomized Paris-Erdogan law is applicable. As an example, the analytical method is applied to a plate with a central crack, and the results are compared with those obtained from digital Monte Carlo simulations.

  6. Fatigue Crack Growth Behavior and Microstructural Mechanisms in Ti-6Al-4V Manufactured by Laser Engineered Net Shaping

    DTIC Science & Technology

    2015-12-01

    hardening heat treatment were the controlling factors of the fatigue resistance, while testing directions have the least impact. Leuders et al. [16...radius. The microstructurally-small fatigue crack growth test was run under load control at constant stress ratio R=0.1 and a cyclic frequency of 20 Hz...not been thoroughly investigated. In this study, long fatigue crack growth tests were conducted at two stress ratios (R=0.1 and 0.8), using Ti-6Al

  7. Effect of Measured Welding Residual Stresses on Crack Growth

    NASA Technical Reports Server (NTRS)

    Hampton, Roy W.; Nelson, Drew; Doty, Laura W. (Technical Monitor)

    1998-01-01

    Welding residual stresses in thin plate A516-70 steel and 2219-T87 aluminum butt weldments were measured by the strain-gage hole drilling and X-ray diffraction methods. The residual stress data were used to construct 3D strain fields which were modeled as thermally induced strains. These 3D strain fields were then analyzed with the WARP31) FEM fracture analysis code in order to predict their effect on fatigue and on fracture. For analyses of fatigue crack advance and subsequent verification testing, fatigue crack growth increments were simulated by successive saw-cuts and incremental loading to generate, as a function of crack length, effects on crack growth of the interaction between residual stresses and load induced stresses. The specimen experimental response was characterized and compared to the WARM linear elastic and elastic-plastic fracture mechanics analysis predictions. To perform the fracture analysis, the plate material's crack tearing resistance was determined by tests of thin plate M(T) specimens. Fracture analyses of these specimen were performed using WARP31D to determine the critical Crack Tip Opening Angle [CTOA] of each material. These critical CTOA values were used to predict crack tearing and fracture in the weldments. To verify the fracture predictions, weldment M(T) specimen were tested in monotonic loading to fracture while characterizing the fracture process.

  8. Fatigue damage assessment of high-usage in-service aircraft fuselage structure

    NASA Astrophysics Data System (ADS)

    Mosinyi, Bao Rasebolai

    As the commercial and military aircraft fleets continue to age, there is a growing concern that multiple-site damage (MSD) can compromise structural integrity. Multiple site damage is the simultaneous occurrence of many small cracks at independent structural locations, and is the natural result of fatigue, corrosion, fretting and other possible damage mechanisms. These MSD cracks may linkup and form a fatigue lead crack of critical length. The presence of MSD also reduces the structure's ability to withstand longer cracks. The objective of the current study is to assess, both experimentally and analytically, MSD formation and growth in the lap joint of curved panels removed from a retired aircraft. A Boeing 727-232 airplane owned and operated by Delta Air Lines, and retired at its design service goal, was selected for the study. Two panels removed from the left-hand side of the fuselage crown, near stringer 4L, were subjected to extended fatigue testing using the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration (FAA) William J. Hughes Technical Center. The state of MSD was continuously assessed using several nondestructive inspection (NDI) methods. Damage to the load attachment points of the first panel resulted in termination of the fatigue test at 43,500 fatigue cycles, before cracks had developed in the lap joint. The fatigue test for the second panel was initially conducted under simulated in-service loading conditions for 120,000 cycles, and no cracks were detected in the skin of the panel test section. Artificial damage was then introduced into the panel at selected rivets in the critical (lower) rivet row, and the fatigue loads were increased. Visually detectable crack growth from the artificial notches was first seen after 133,000 cycles. The resulting lead crack grew along the lower rivet row, eventually forming an 11.8" long unstable crack after 141,771 cycles, at which point the test was terminated. Posttest fractograpic examinations of the crack surfaces were conducted, revealing the presence of subsurface MSD at the critical rivet row of the lap joint. Special attention was also given to the stringer clips that attach the fuselage frames to the stringers, since they also experienced cracking during the fatigue tests. The performance of the different conventional and emerging NDI methods was also assessed, and some of the emerging NDI methods were quite effective in detecting and measuring the length of subsurface cracks. Delta Air Lines conducted a separate destructive investigation on the state of damage along the right-hand side of the fuselage, near stringer 4R. A comparison of these two studies showed that the lap joint on the left hand-side of the aircraft, along stringer 4L, had better fatigue life than the one on the opposite side, along stringer 4R. The cause of the difference in fatigue life was investigated by close examination of the rivet installation qualities, and was found to be a result of better rivet installation along the lap joint at stringer 4L. Finite element models for both the skin and substructures of the panels were developed and geometrically nonlinear finite element analyses were conducted to verify the loading conditions and to determine near-field parameters governing MSD initiation and growth. Fatigue crack growth predictions based on the NASGRO equation were in good agreement with the experimental crack growth data for through-the-thickness cracks. For subsurface cracks, simulation of crack growth was found to correlate better with fractography data when an empirical crack growth model was used. The results of the study contribute to the understanding of the initiation and growth of MSD in the inner skin layer of a lap joint, and provide valuable data for the evaluation and validation of analytical methodologies to predict MSD initiation and growth and a better understanding on the effect of manufacturing quality on damage accumulation along the lap joint.

  9. Estimation of fatigue life using electromechanical impedance technique

    NASA Astrophysics Data System (ADS)

    Lim, Yee Yan; Soh, Chee Kiong

    2010-04-01

    Fatigue induced damage is often progressive and gradual in nature. Structures subjected to large number of fatigue load cycles will encounter the process of progressive crack initiation, propagation and finally fracture. Monitoring of structural health, especially for the critical components, is therefore essential for early detection of potential harmful crack. Recent advent of smart materials such as piezo-impedance transducer adopting the electromechanical impedance (EMI) technique and wave propagation technique are well proven to be effective in incipient damage detection and characterization. Exceptional advantages such as autonomous, real-time and online, remote monitoring may provide a cost-effective alternative to the conventional structural health monitoring (SHM) techniques. In this study, the main focus is to investigate the feasibility of characterizing a propagating fatigue crack in a structure using the EMI technique as well as estimating its remaining fatigue life using the linear elastic fracture mechanics (LEFM) approach. Uniaxial cyclic tensile load is applied on a lab-sized aluminum beam up to failure. Progressive shift in admittance signatures measured by the piezo-impedance transducer (PZT patch) corresponding to increase of loading cycles reflects effectiveness of the EMI technique in tracing the process of fatigue damage progression. With the use of LEFM, prediction of the remaining life of the structure at different cycles of loading is possible.

  10. FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (UNIX VERSION)

    NASA Technical Reports Server (NTRS)

    Newman, J. C.

    1994-01-01

    Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied loads may be either tensile or compressive. Several standardized aircraft flight-load histories, such as TWIST, Mini-TWIST, FALSTAFF, Inverted FALSTAFF, Felix and Gaussian, are included as options. FASTRAN II also includes two other methods that will help the user input spectrum load histories. The two methods are: (1) a list of stress points, and (2) a flight-by-flight history of stress points. Examples are provided in the user manual. Developed as a research program, FASTRAN II has successfully predicted crack growth in many metallic materials under various aircraft spectrum loading. A computer program DKEFF which is a part of the FASTRAN II package was also developed to analyze crack growth rate data from laboratory specimens to obtain the effective stress-intensity factor against crack growth rate relations used in FASTRAN II. FASTRAN II is written in standard FORTRAN 77. It has been successfully compiled and implemented on Sun4 series computers running SunOS and on IBM PC compatibles running MS-DOS using the Lahey F77L FORTRAN compiler. Sample input and output data are included with the FASTRAN II package. The UNIX version requires 660K of RAM for execution. The standard distribution medium for the UNIX version (LAR-14865) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 3.5 inch diskette in UNIX tar format. The standard distribution medium for the MS-DOS version (LAR-14944) is a 5.25 inch 360K MS-DOS format diskette. The contents of the diskette are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. The program was developed in 1984 and revised in 1992. Sun4 and SunOS are trademarks of Sun Microsystems, Inc. IBM PC is a trademark of International Business Machines Corp. MS-DOS is a trademark of Microsoft, Inc. F77L is a trademark of the Lahey Computer Systems, Inc. UNIX is a registered trademark of AT&T Bell Laboratories. PKWARE and PKUNZIP are trademarks of PKWare, Inc.

  11. FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (IBM PC VERSION)

    NASA Technical Reports Server (NTRS)

    Newman, J. C.

    1994-01-01

    Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied loads may be either tensile or compressive. Several standardized aircraft flight-load histories, such as TWIST, Mini-TWIST, FALSTAFF, Inverted FALSTAFF, Felix and Gaussian, are included as options. FASTRAN II also includes two other methods that will help the user input spectrum load histories. The two methods are: (1) a list of stress points, and (2) a flight-by-flight history of stress points. Examples are provided in the user manual. Developed as a research program, FASTRAN II has successfully predicted crack growth in many metallic materials under various aircraft spectrum loading. A computer program DKEFF which is a part of the FASTRAN II package was also developed to analyze crack growth rate data from laboratory specimens to obtain the effective stress-intensity factor against crack growth rate relations used in FASTRAN II. FASTRAN II is written in standard FORTRAN 77. It has been successfully compiled and implemented on Sun4 series computers running SunOS and on IBM PC compatibles running MS-DOS using the Lahey F77L FORTRAN compiler. Sample input and output data are included with the FASTRAN II package. The UNIX version requires 660K of RAM for execution. The standard distribution medium for the UNIX version (LAR-14865) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 3.5 inch diskette in UNIX tar format. The standard distribution medium for the MS-DOS version (LAR-14944) is a 5.25 inch 360K MS-DOS format diskette. The contents of the diskette are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. The program was developed in 1984 and revised in 1992. Sun4 and SunOS are trademarks of Sun Microsystems, Inc. IBM PC is a trademark of International Business Machines Corp. MS-DOS is a trademark of Microsoft, Inc. F77L is a trademark of the Lahey Computer Systems, Inc. UNIX is a registered trademark of AT&T Bell Laboratories. PKWARE and PKUNZIP are trademarks of PKWare, Inc.

  12. Empirical modeling of environment-enhanced fatigue crack propagation in structural alloys for component life prediction

    NASA Technical Reports Server (NTRS)

    Richey, Edward, III

    1995-01-01

    This research aims to develop the methods and understanding needed to incorporate time and loading variable dependent environmental effects on fatigue crack propagation (FCP) into computerized fatigue life prediction codes such as NASA FLAGRO (NASGRO). In particular, the effect of loading frequency on FCP rates in alpha + beta titanium alloys exposed to an aqueous chloride solution is investigated. The approach couples empirical modeling of environmental FCP with corrosion fatigue experiments. Three different computer models have been developed and incorporated in the DOS executable program. UVAFAS. A multiple power law model is available, and can fit a set of fatigue data to a multiple power law equation. A model has also been developed which implements the Wei and Landes linear superposition model, as well as an interpolative model which can be utilized to interpolate trends in fatigue behavior based on changes in loading characteristics (stress ratio, frequency, and hold times).

  13. Effects of Cyclic Loading on the Deformation and Elastic-Plastic Fracture Behavior of a Cast Stainless Steel

    DTIC Science & Technology

    1991-10-01

    23 8. High Cycle Fatigue Crack Growth Data for Cast Stainless Steel Showing Comparison with Rolfe and Barsom Fit .......... 24 9. Cyclic Load...compared to the Rolfe /Barsom4 fatigue crack propagation equation for austenitic stainless steels in Fig. 8. ELASTIC-PLASTIC Cyclic J-testing was...place during both the compression and tensile loadings. The J-integral was calculated on each cycle using the Merkle -Corten 9 J equation as modified by

  14. Fatigue crack propagation behavior of ultrahigh molecular weight polyethylene.

    PubMed

    Connelly, G M; Rimnac, C M; Wright, T M; Hertzberg, R W; Manson, J A

    1984-01-01

    The relative fatigue crack propagation resistance of plain and carbon fiber-reinforced ultrahigh molecular weight polyethylene (UHMWPE) was determined from cyclic loading tests performed on compact tension specimens machined from the tibial components of total knee prostheses. Both materials were characterized by dynamic mechanical spectroscopy, X-ray diffraction, and differential scanning calorimetry. The cyclic tests used loading in laboratory air at 5 Hz using a sinusoidal wave form. Dynamic mechanical spectroscopy showed that the reinforced UHMWPE had a higher elastic storage modulus than the plain UHMWPE, whereas X-ray diffraction and differential scanning calorimetry showed that the percent crystallinity and degree of order in the crystalline regions were similar for the two materials. Fatigue crack propagation in both materials proved to be very sensitive to small changes in the applied cyclic stress intensity range. A 10% increase in stress intensity resulted in approximately an order of magnitude increase in fatigue crack growth rate. The fatigue crack propagation resistance of the reinforced UHMWPE was found to be significantly worse than that of the plain UHMWPE. This result was attributed to poor bonding between the carbon fibers and the UHMWPE matrix and the ductile nature of the matrix itself.

  15. Fatigue crack growth behavior of pressure vessel steels and submerged arc weldments in a high-temperature pressurized water environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liaw, P.K.; Logsdon, W.A.; Begley, J.A.

    1989-10-01

    The fatigue crack growth rate (FCGR) properties of SA508 Cl 2a and SA533 Gr A Cl 2 pressure vessel steels and the corresponding automatic submerged arc weldments were developed in a high-temperature pressurized water (HPW) environment at 288{degrees} C (550{degrees} F) and 7.2 MPa (1044 psi) at load ratios of 0.20 and 0.50. The properties were generally conservative compared to American Society of Mechanical Engineers Section XI water environment reference curve. The growth rate of fatigue cracks in the base materials, however, was faster in the HPW environment than in a 288{degrees} C (550{degrees} F) base line air environment. Themore » growth rate of fatigue cracks in the two submerged arc weldments was also accelerated in the HPW environment but to a lesser degree than that demonstrated by the base materials. In the air environment, fatigue striations were observed, independent of material and load ratio, while in the HPW environment, some intergranular facets were present. The greater environmental effect on crack growth rates displayed by the base materials compared the weldments attributed to a different sulfide composition and morphology.« less

  16. A crack-closure model for predicting fatigue-crack growth under aircraft spectrum loading

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1981-01-01

    The development and application of an analytical model of cycle crack growth is presented that includes the effects of crack closure. The model was used to correlate crack growth rates under constant amplitude loading and to predict crack growth under aircraft spectrum loading on 2219-T851 aluminum alloy sheet material. The predicted crack growth lives agreed well with experimental data. The ratio of predicted to experimental lives ranged from 0.66 to 1.48. These predictions were made using data from an ASTM E24.06.01 Round Robin.

  17. Fundamental mechanisms of fatigue and fracture.

    PubMed

    Christ, Hans-Jürgen

    2008-01-01

    A brief overview is given in this article on the main design philosophies and the resulting description concepts used for components which undergo monotonic and cyclic loading. Emphasis is put on a mechanistic approach avoiding a plain reproduction of empirical laws. After a short consideration of fracture as a result of monotonic loading using fracture mechanics basics, the phenomena taking place as a consequence of cyclic plasticity are introduced. The development of fatigue damage is treated by introducing the physical processes which (i) are responsible for microstructural changes, (ii) lead to crack initiation and (iii) determine crack propagation. From the current research topics within the area of metal fatigue, two aspects are dealt with in more detail because of their relevance to biomechanics. The first one is the growth behaviour of microstructural short cracks, which controls cyclic life of smooth parts at low stress amplitudes. The second issue addresses the question of the existence of a true fatigue limit and is of particular interest for components which must sustain a very high number of loading cycles (very high cycle fatigue).

  18. Variable amplitude fatigue crack growth characteristics of railroad tank car steel volume III

    DOT National Transportation Integrated Search

    2006-12-01

    The load history that railroad tank cars experience has a significant variable amplitude characteristic. Although previous efforts have been directed toward understanding baseline fatigue crack growth behavior of TC-128B steel as a function of materi...

  19. Cyclic fatigue-crack propagation, stress-corrosion, and fracture-toughness behavior in pyrolytic carbon-coated graphite for prosthetic heart valve applications.

    PubMed

    Ritchie, R O; Dauskardt, R H; Yu, W K; Brendzel, A M

    1990-02-01

    Fracture-mechanics tests were performed to characterize the cyclic fatigue, stress-corrosion cracking, and fracture-toughness behavior of a pyrolytic carbon-coated graphite composite material used in the manufacture of cardiac valve prostheses. Testing was carried out using compact tension C(T) samples containing "atomically" sharp precracks, both in room-temperature air and principally in a simulated physiological environment of 37 degrees C Ringer's lactate solution. Under sustained (monotonic) loads, the composite exhibited resistance-curve behavior, with a fracture toughness (KIc) between 1.1 and 1.9 MPa square root of m, and subcritical stress-corrosion crack velocities (da/dt) which were a function of the stress intensity K raised to the 74th power (over the range approximately 10(-9) to over 10(-5) m/s). More importantly, contrary to common perception, under cyclic loading conditions the composite was found to display true (cyclic) fatigue failure in both environments; fatigue-crack growth rates (da/dN) were seen to be a function of the 19th power of the stress-intensity range delta K (over the range approximately 10(-11) to over 10(-8) m/cycle). As subcritical crack velocities under cyclic loading were found to be many orders of magnitude faster than those measured under equivalent monotonic loads and to occur at typically 45% lower stress-intensity levels, cyclic fatigue in pyrolytic carbon-coated graphite is reasoned to be a vital consideration in the design and life-prediction procedures of prosthetic devices manufactured from this material.

  20. Results of the Round Robin on opening-load measurement conducted by ASTM Task Group E24.04.04 on Crack Closure Measurement and Analysis

    NASA Technical Reports Server (NTRS)

    Phillips, Edward P.

    1989-01-01

    An experimental Round Robin on the measurement of the opening load in fatigue crack growth tests was conducted on Crack Closure Measurement and Analysis. The Round Robin evaluated the current level of consistency of opening load measurements among laboratories and to identify causes for observed inconsistency. Eleven laboratories participated in the testing of compact and middle-crack specimens. Opening-load measurements were made for crack growth at two stress-intensity factor levels, three crack lengths, and following an overload. All opening-load measurements were based on the analysis of specimen compliance data. When all of the results reported (from all participants, all measurement methods, and all data analysis methods) for a given test condition were pooled, the range of opening loads was very large--typically spanning the lower half of the fatigue loading cycle. Part of the large scatter in the reported opening-load results was ascribed to consistent differences in results produced by the various methods used to measure specimen compliance and to evaluate the opening load from the compliance data. Another significant portion of the scatter was ascribed to lab-to-lab differences in producing the compliance data when using nominally the same method of measurement.

  1. Investigation into the Fatigue Crack Initiation Process in Metals.

    DTIC Science & Technology

    1985-12-01

    fatigue crack initiation in metals under spectrum loading is described. The work focuses on the microplastic deformation properties of a surface...behavior is then controlled by the external load spectra, but is greatly influenced by the reaction stresses within a microplastic grain generated when its...49 4.7 Example values of strain just outside microplastic grains indicating an elastic matrix and deformation depths around 10 n - the typical

  2. Isothermal Damage and Fatigue Behavior of SCS-6/Timetal 21S [0/90](Sub S) Composite at 650 Deg C

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.

    1994-01-01

    The isothermal fatigue damage and life behaviors of SCS-6/Timetal 21S (0/90)s were investigated at 650 C. Strain ratcheting and degradation of the composite's static elastic modulus were carefully monitored as functions of cycles to indicate damage progression. Extensive fractographic and metallographic analyses were conducted to determine damage/failure mechanisms. Resulting fatigue lives show considerable reductions in comparison to (0) reinforced titanium matrix composites subjected to comparable conditions. Notable stiffness degradations were found to occur after the first cycle of loading, even at relatively low maximum stress levels, where cyclic lives are greater than 25,000 cycles. This was attributed to the extremely weak fiber/matrix bond which fails under relatively low transverse loads. Stiffness degradations incurred on first cycle loadings and degradations thereafter were found to increase with increasing maximum stress. Environmental effects associated with oxidation of the (90) fiber interfaces clearly played a role in the damage mechanisms as fracture surfaces revealed environment assisted matrix cracking along the (90) fibers. Metallographic analysis indicated that all observable matrix fatigue cracks initiated at the (90) fiber/matrix interfaces. Global de-bonding in the loading direction was found along the (90) fibers. No surface initiated cracks were evident and minimal if any (0) fiber cracking was visible.

  3. Microstructural examination of fatigue crack tip in high strength steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuoka, C.; Yoshizawa, H.; Nakagawa, Y.G.

    1993-10-01

    Fatigue tests were performed to examine how microstructural conditioning influences crack initiation and propagation in SA508 class 3 low-carbon steel. A 3-mm-long crack was introduced in compact tension (CT) fatigue test specimens under four different loads in order to obtain crack tip plastic zones at different stress intensity factor ranges, [Delta]K = 18, 36, 54, and 72 MPa[radical]m. The microstructure of the plastic zones around the crack tip were examined by transmission electron microscopy (TEM) and selected area electron diffraction (SAD). Micro-orientation of the dislocation cells in the plastic zones of all of the CT samples increased to 4 degmore » from the level of an as-received sample. Four-point bending fatigue tests were performed for plate shape samples with a large cyclic strain range. The SAD value of the bending samples was also 4 deg in the damaged area where cracks already initiated at an early stage of the fatigue process. These test results indicate that the microstructural conditioning is a prerequisite for the fatigue crack initiation and propagation in SA508. These observations may lead to better understanding of how fatigue initiation processes transit to cracks.« less

  4. Effects of friction and high torque on fatigue crack propagation in Mode III

    NASA Astrophysics Data System (ADS)

    Nayeb-Hashemi, H.; McClintock, F. A.; Ritchie, R. O.

    1982-12-01

    Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (RB88, 590 MN/m2 tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) IIIcan be related to the alternating stress intensity factor ΔKIII for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (˜10-6 to 10-2 mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) III and ΔKIII is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity Γ III, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces. The latter effect is found to be dependent upon the mode of applied loading (i.e., the presence of superimposed axial loads) and the crack length and torque level. Mechanistically, high-torque surfaces were transverse, macroscopically flat, and smeared. Lower torques showed additional axial cracks (longitudinal shear cracking) perpendicular to the main transverse surface. A micro-mechanical model for the main radi l Mode III growth, based on the premise that crack advance results from Mode II coalescence of microcracks initiated at inclusions ahead of the main crack front, is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (ΔΓIII if local Mode II growth rates are proportional to the displacements. Such predictions are shown to be in agreement with measured growth rates in AISI {dy4140} steel from 10-6 to 10-2 mm per cycle.

  5. Engineering Evaluation of International Low Impact Docking System Latch Hooks

    NASA Technical Reports Server (NTRS)

    Martinez, J.; Patin, R.; Figert, J.

    2013-01-01

    The international Low Impact Docking System (iLIDS) provides a structural arrangement that allows for visiting vehicles to dock with the International Space Station (ISS) (Fig 1). The iLIDS docking units are mechanically joined together by a series of active and passive latch hooks. In order to preserve docking capability at the existing Russian docking interfaces, the iLIDS latch hooks are required to conform to the existing Russian design. The latch hooks are classified as being fail-safe. Since the latch hooks are fail-safe, the hooks are not fracture critical and a fatigue based service life assessment will satisfy the structural integrity requirements. Constant amplitude fatigue testing to failure on four sets of active/passive iLIDS latch hooks was performed at load magnitudes of 10, 11, and 12 kips. Failure analysis of the hook fatigue failures identified multi-site fatigue initiation that was effectively centered about the hook mid-plane (consistent with the 3D model results). The fatigue crack initiation distribution implies that the fatigue damage accumulation effectively results in a very low aspect ratio surface crack (which can be simulated as thru-thickness crack). Fatigue damage progression resulted in numerous close proximity fatigue crack initiation sites. It was not possible to determine if fatigue crack coalescence occurs during cyclic loading or as result of the fast fracture response. The presence of multiple fatigue crack initiation sites on different planes will result in the formation of ratchet marks as the cracks coalesce. Once the stable fatigue crack becomes unstable and the fast fracture advances across the remaining ligament and the plane stress condition at a free-surface will result in failure along a 45 deg. shear plane (slant fracture) and the resulting inclined edge is called a shear lip. The hook thickness on the plane of fatigue crack initiation is 0.787". The distance between the shear lips on this plane was on the order of 0.48" and it was effectively centered about the mid-plane of the section. The numerous ratchet marks between the shear lips on the fracture initiation plane are indicative of multiple fatigue initiation sites within this region. The distribution of the fatigue damage about the centerline of the hook is consistent with the analytical results that demonstrate peak stress/strain response at the mid-plane that decreases in the direction of the hook outer surfaces. Scanning electron microscope images of the failed sections detected fatigue crack striations in close proximity to the free surface of the hook radius. These findings were documented at three locations on the fracture surface : 1) adjacent to the left shear lip, 2) adjacent to the right shear lip, and 3) near the centerline of the section. The features of the titanium fracture surface did not allow for a determination of a critical crack size via identification of the region where the fatigue crack propagation became unstable. The fracture based service life projections where benchmarked with strain-life analyses. The strainrange response in the hook radius was defined via the correlated finite element models and the modified method of universal slopes was incorporated to define the strain-life equation for the titanium alloy. The strain-life assessment confirmed that the fracture based projections were reasonable for the loading range of interest. Based upon the analysis and component level fatigue test data a preliminary service life capability for the iLIDS active and passive hooks of 2 lifetimes is projected (includes a scatter factor of 4).

  6. Fatigue Resistance of CAD/CAM Resin Composite Molar Crowns

    PubMed Central

    Shembish, Fatma A.; Tong, Hui; Kaizer, Marina; Janal, Malvin N.; Thompson, Van P.; Opdam, Niek J.; Zhang, Yu

    2016-01-01

    Objective To demonstrate the fatigue behavior of CAD/CAM resin composite molar crowns using a mouth-motion step-stress fatigue test. Monolithic leucite-reinforced glass-ceramic crowns were used as a reference. Methods Fully anatomically shaped monolithic resin composite molar crowns (Lava Ultimate, n = 24) and leucite reinforced glass-ceramic crowns (IPS Empress CAD, n = 24) were fabricated using CAD/CAM systems. Crowns were cemented on aged dentin-like resin composite tooth replicas (Filtek Z100) with resin-based cements (RelyX Ultimate for Lava Ultimate or Multilink Automix for IPS Empress). Three step-stress profiles (aggressive, moderate and mild) were employed for the accelerated sliding-contact mouth-motion fatigue test. Twenty one crowns from each group were randomly distributed among these three profiles (1:2:4). Failure was designated as chip-off or bulk fracture. Optical and electronic microscopes were used to examine the occlusal surface and subsurface damages, as well as the material microstructures. Results The resin composite crowns showed only minor occlusal damage during mouth-motion step-stress fatigue loading up to 1700 N. Cross-sectional views revealed contact-induced cone cracks in all specimens, and flexural radial cracks in 2 crowns. Both cone and radial cracks were relatively small compared to the crown thickness. Extending these cracks to the threshold for catastrophic failure would require much higher indentation loads or more loading cycles. In contrast, all of the glass-ceramic crowns fractured, starting at loads of approximately 450 N. Significance Monolithic CAD/CAM resin composite crowns endure, with only superficial damage, fatigue loads 3 – 4 times higher than those causing catastrophic failure in glass-ceramic CAD crowns. PMID:26777092

  7. On the Crack Bifurcation and Fanning of Crack Growth Data

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Zanganeh, Mohammad

    2015-01-01

    Crack growth data obtained from ASTM load shedding method for different R values show some fanning especially for aluminum alloys. It is believed by the authors and it has been shown before that the observed fanning is due to the crack bifurcation occurs in the near threshold region which is a function of intrinsic properties of the alloy. Therefore, validity of the ASTM load shedding test procedure and results is confirmed. However, this position has been argued by some experimentalists who believe the fanning is an artifact of the test procedure and thus the obtained results are invalid. It has been shown that using a special test procedure such as using compressively pre-cracked specimens will eliminate the fanning effect. Since not using the fanned data fit can result in a significantly lower calculated cyclic life, design of a component, particularly for rotorcraft and propeller systems will considerably be impacted and therefore this study is of paramount importance. In this effort both test procedures i.e. ASTM load shedding and the proposed compressive pre-cracking have been used to study the fatigue crack growth behavior of compact tension specimens made of aluminum alloy 2524-T3. Fatigue crack growth paths have been closely observed using SEM machines to investigate the effects of compression pre-cracking on the crack bifurcation behavior. The results of this study will shed a light on resolving the existing argument by better understanding of near threshold fatigue crack growth behavior.

  8. Fatigue flaw growth and NDI evaluation for preventing through cracks in spacecraft tankage structures

    NASA Technical Reports Server (NTRS)

    Pettit, D. E.; Hoeppner, D. W.

    1972-01-01

    A program was conducted to determine the fatigue-crack propagation behavior of parent and welded 2219-T87 aluminum alloy sheet under controlled cyclic stress conditions in room temperature air and 300 F air. Specimens possessing an initial surface defect of controlled dimensions were cycled under constant load amplitude until the propagating fatigue crack penetrated the back surface of the specimen. A series of precracked specimens were prepared to determine optimum penetrant, X-ray, ultrasonic, and eddy current nondestructive inspection procedures.

  9. A Three-Parameter Model for Predicting Fatigue Life of Ductile Metals Under Constant Amplitude Multiaxial Loading

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Li, Jing; Zhang, Zhong-ping

    2013-04-01

    In this article, a fatigue damage parameter is proposed to assess the multiaxial fatigue lives of ductile metals based on the critical plane concept: Fatigue crack initiation is controlled by the maximum shear strain, and the other important effect in the fatigue damage process is the normal strain and stress. This fatigue damage parameter introduces a stress-correlated factor, which describes the degree of the non-proportional cyclic hardening. Besides, a three-parameter multiaxial fatigue criterion is used to correlate the fatigue lifetime of metallic materials with the proposed damage parameter. Under the uniaxial loading, this three-parameter model reduces to the recently developed Zhang's model for predicting the uniaxial fatigue crack initiation life. The accuracy and reliability of this three-parameter model are checked against the experimental data found in literature through testing six different ductile metals under various strain paths with zero/non-zero mean stress.

  10. Investigation of the effect of vacuum environment on the fatigue and fracture behavior of 7075-T6.

    NASA Technical Reports Server (NTRS)

    Hudson, C. M.

    1972-01-01

    Axial-load fatigue-life, fatigue-crack propagation, and fracture-toughness experiments were conducted on sheet specimens made of 7075-T6 aluminum alloy. These experiments were conducted at air pressures ranging from 101 kN/sq m to 7 micronewtons/sq m to determine the effect of air pressure on fatigue behavior. Analysis of the results from the fatigue-life experiments indicated that for a given stress level, the lower the air pressure was the longer the fatigue life. At a pressure of 7 micronewtons/sq m, fatigue lives were 15 to 30 times longer than at 101 kN/sq m. Analysis of the results from the fatigue-crack-growth experiments indicates that at low values of stress-intensity range, the fatigue-crack-growth rates were approximately twice as high at atmospheric pressure as in vacuum. However, at higher values of stress-intensity range, the fatigue-crack-growth rates were nominally the same in vacuum and at atmospheric pressure.

  11. Full-Scale Fatigue Testing of a Wind Turbine Blade in Flapwise Direction and Examining the Effect of Crack Propagation on the Blade Performance.

    PubMed

    Al-Khudairi, Othman; Hadavinia, Homayoun; Little, Christian; Gillmore, Gavin; Greaves, Peter; Dyer, Kirsten

    2017-10-03

    In this paper, the sensitivity of the structural integrity of wind turbine blades to debonding of the shear web from the spar cap was investigated. In this regard, modal analysis, static and fatigue testing were performed on a 45.7 m blade for three states of the blade: (i) as received blade (ii) when a crack of 200 mm was introduced between the web and the spar cap and (iii) when the crack was extended to 1000 mm. Calibration pull-tests for all three states of the blade were performed to obtain the strain-bending moment relationship of the blade according to the estimated target bending moment (BM) which the blade is expected to experience in its service life. The resultant data was used to apply appropriate load in the fatigue tests. The blade natural frequencies in flapwise and edgewise directions over a range of frequency domain were found by modal testing for all three states of the blade. The blade first natural frequency for each state was used for the flapwise fatigue tests. These were performed in accordance with technical specification IEC TS 61400-23. The fatigue results showed that, for a 200 mm crack between the web and spar cap at 9 m from the blade root, the crack did not propagate at 50% of the target BM up to 62,110 cycles. However, when the load was increased to 70% of target BM, some damages were detected on the pressure side of the blade. When the 200 mm crack was extended to 1000 mm, the crack began to propagate when the applied load exceeded 100% of target BM and the blade experienced delaminations, adhesive joint failure, compression failure and sandwich core failure.

  12. Full-Scale Fatigue Testing of a Wind Turbine Blade in Flapwise Direction and Examining the Effect of Crack Propagation on the Blade Performance

    PubMed Central

    Al-Khudairi, Othman; Little, Christian; Gillmore, Gavin; Greaves, Peter; Dyer, Kirsten

    2017-01-01

    In this paper, the sensitivity of the structural integrity of wind turbine blades to debonding of the shear web from the spar cap was investigated. In this regard, modal analysis, static and fatigue testing were performed on a 45.7 m blade for three states of the blade: (i) as received blade (ii) when a crack of 200 mm was introduced between the web and the spar cap and (iii) when the crack was extended to 1000 mm. Calibration pull-tests for all three states of the blade were performed to obtain the strain-bending moment relationship of the blade according to the estimated target bending moment (BM) which the blade is expected to experience in its service life. The resultant data was used to apply appropriate load in the fatigue tests. The blade natural frequencies in flapwise and edgewise directions over a range of frequency domain were found by modal testing for all three states of the blade. The blade first natural frequency for each state was used for the flapwise fatigue tests. These were performed in accordance with technical specification IEC TS 61400-23. The fatigue results showed that, for a 200 mm crack between the web and spar cap at 9 m from the blade root, the crack did not propagate at 50% of the target BM up to 62,110 cycles. However, when the load was increased to 70% of target BM, some damages were detected on the pressure side of the blade. When the 200 mm crack was extended to 1000 mm, the crack began to propagate when the applied load exceeded 100% of target BM and the blade experienced delaminations, adhesive joint failure, compression failure and sandwich core failure. PMID:28972548

  13. Correlation of eddy current responses between fatigue cracks and electrical-discharge-machining notches

    NASA Astrophysics Data System (ADS)

    Seo, Sukho; Choi, Gyudong; Eom, Tae Jhoun; Lee, Bokwon; Lee, Soo Yeol

    2017-07-01

    The eddy current responses of Electrical Discharge Machining (EDM) notches and fatigue cracks are directly compared to verify the reliability of eddy current inspection. The fatigue crack growth tests using a constant load range control mode were conducted to obtain a variety of edge crack sizes, ranging from 0.9 to 6.6 mm for Al alloy and from 0.1 to 3 mm for Ti alloy. EDM notch specimens of Al and Ti alloys were accordingly prepared in lengths similar to that of the fatigued specimen. The crack length was determined by optical microscope and scanning electron microscope. The eddy current responses between the EDM and fatigued specimens with varying notch/crack length were examined using probe sensors at (100-500) kHz and (1-2) MHz for Al and Ti alloys, respectively. The results show a significant difference in the eddy current signal between the two specimens, based on the correlation between the eddy current response and notch/crack length. This suggests that eddy current inspection using the EDM reference specimen is inaccurate in determining the precise crack size, unless the eddy current response data base is obtained from a fatigue-cracked specimen.

  14. Effect of water vapor on fatigue crack growth in 7475-T651 aluminum alloy plate. [for aerospace applications

    NASA Technical Reports Server (NTRS)

    Dicus, D. L.

    1984-01-01

    The effects of water vapor on fatigue crack growth in 7475-T651 aluminum alloy plate at frequencies of 1 Hz and 10 Hz were investigated. Twenty-five mm thick compact specimens were subjected to constant amplitude fatigue testing at a load ratio of 0.2. Fatigue crack growth rates were calculated from effective crack lengths determined using a compliance method. Tests were conducted in hard vacuum and at water vapor partial pressures ranging from 94 Pa to 3.8 kPa. Fatigue crack growth rates were frequency insensitive under all environment conditions tested. For constant stress intensity factor ranges crack growth rate transitions occurred at low and high water vapor pressures. Crack growth rates at intermediate pressures were relatively constant and showed reasonable agreement with published data for two Al-Cu-Mg alloys. The existence of two crack growth rate transitions suggests either a change in rate controlling kinetics or a change in corrosion fatigue mechanism as a function of water vapor pressure. Reduced residual deformation and transverse cracking specimens tested in water vapor versus vacuum may be evidence of embrittlement within the plastic zone due to environmental interaction.

  15. The effect of water vapor on fatigue crack Growth in 7475-t651 aluminum alloy plate. [for aerospace applications

    NASA Technical Reports Server (NTRS)

    Dicus, D. L.

    1982-01-01

    The effects of water vapor on fatigue crack growth in 7475-T651 aluminum alloy plate at frequencies of 1 Hz and 10 Hz were investigated. Twenty-five mm thick compact specimens were subjected to constant amplitude fatigue testing at a load ratio of 0.2. Fatigue crack growth rates were calculated from effective crack lengths determined using a compliance method. Tests were conducted in hard vacuum and at water vapor partial pressures ranging from 94 Pa to 3.8 kPa. Fatigue crack growth rates were frequency insensitive under all environment conditions tested. For constant stress intensity factor ranges crack growth rate transitions occurred at low and high water vapor pressures. Crack growth rates at intermediate pressures were relatively constant and showed reasonable agreement with published data for two Al-Cu-Mg alloys. The existence of two crack growth rate transitions suggests either a change in rate controlling kinetics or a change in corrosion fatigue mechanism as a function of water vapor pressure. Reduced residual deformation and transverse cracking specimens tested in water vapor versus vacuum may be evidence of embrittlement within the plastic zone due to environmental interaction.

  16. Environment enhanced fatigue crack propagation in metals: Inputs to fracture mechanics life prediction models

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Kim, Sang-Shik

    1993-01-01

    This report is a critical review of both environment-enhanced fatigue crack propagation data and the predictive capabilities of crack growth rate models. This information provides the necessary foundation for incorporating environmental effects in NASA FLAGRO and will better enable predictions of aerospace component fatigue lives. The review presents extensive literature data on 'stress corrosion cracking and corrosion fatigue.' The linear elastic fracture mechanics approach, based on stress intensity range (Delta(K)) similitude with microscopic crack propagation threshold and growth rates, provides a basis for these data. Results are presented showing enhanced growth rates for gases (viz., H2 and H2O) and electrolytes (e.g. NaCl and H2O) in aerospace alloys including: C-Mn and heat treated alloy steels, aluminum alloys, nickel-based superalloys, and titanium alloys. Environment causes purely time-dependent accelerated fatigue crack growth above the monotonic load cracking threshold (KIEAC) and promotes cycle-time dependent cracking below (KIEAC). These phenomenon are discussed in terms of hydrogen embrittlement, dissolution, and film rupture crack tip damage mechanisms.

  17. Conditioning monitoring by microstructural evaluation of cumulative fatigue damage

    NASA Astrophysics Data System (ADS)

    Fukuoka, C.; Nakagawa, Y. G.; Lance, J. J.; Pangborn, R. N.

    1996-12-01

    The objective of this work is to evaluate the damage induced below and above the fatigue limit (Δ σ t =360 MPa) in pressure vessel steels, such as SA508. Fatigue damage was induced in samples taken from an SA508 steel plate by various loading histories in order to examine the influence of prior cyclic loading below the fatigue limit. Cell-to-cell misorientation differences were measured by the selected area diffraction (SAD) method. Surface cracking was also studied by the replication method. Small cracks were observed after precycling both below and above the fatigue limit. It was, however, found that fatigue test bars had a longer lifetime after precycling below the fatigue limit, while precycling above the fatigue limit caused other specimens to fail even when subsequently cycled below the fatigue limit. Cell-to-cell misorientation usually increases with accumulation of fatigue damage, but it was found that the misorientations measured after precycling below the fatigue limit decreased again at the beginning of the subsequent cycling above the fatigue limit. It should be noted that the misorientation at failure was always about 4 to 5 deg, regardless of loading histories. Misorientation showed good correlation with the fatigue lifetime of the samples.

  18. Effect of load ratio on fatigue crack propagation behavior of solid-solution-strengthened Ni-based superalloys at elevated temperature

    NASA Astrophysics Data System (ADS)

    Ma, Longzhou; Roy, Shawoon K.

    2013-04-01

    The fatigue crack propagation (FCP) behavior of two solid-solution-strengthened Ni-based superalloys, INCONEL 617 and HAYNES 230, were studied simultaneously in laboratory air using a constant stress intensity factor (K)-controlled mode with different load ratios (R-ratio) at 700 °C. The FCP tests were performed in both cycle and time-dependent FCP domains to examine the effect of R-ratio on the FCP rate, da/dn. For cycle-dependent FCP test, a 1-s sinusoidal fatigue was applied for a compact tension (CT) specimen of INCONEL 617 and HAYNES 230 to measure their FCP rates. For time-dependent FCP test, a 3-s sinusoidal fatigue with a hold time of 300 s at maximum load was applied. Both cycle/time-dependent FCP behaviors were characterized and analyzed. The results showed that increasing R-ratio would introduce the fatigue incubation and decrease the FCP rates at cycle-dependent FCP tests. On the contrary, fatigue incubation was not observed at time-dependent FCP tests for both INCONEL 617 and HAYNES 230 at each tested R-ratio, suggesting that association of maximum load (Kmax) with crack tip open displacement (CTOD) and environmental factor governed the FCP process. Also, for time-dependent FCP, HAYNES 230 showed lower FCP rates than INCONEL 617 regardless of R-ratio. However, for cycle-dependent FCP, HAYNES 230 showed the lower FCP rates only at high R-ratios. Fracture surface of specimens were examined using SEM to investigate the cracking mechanism under cycle/time-dependent FCP condition with various R-ratios.

  19. Microstructural examination of

    NASA Astrophysics Data System (ADS)

    Fukuoka, C.; Yoshizawa, H.; Nakagawa, Y. G.; Lapides, M. E.

    1993-10-01

    Fatigue tests were performed to examine how microstructural conditioning influences crack initiation and propagation in SA508 class 3 low-carbon steel. A 3-mm-long crack was introduced in compact tension (CT) fatigue test specimens under four different loads in order to obtain crack tip plastic zones at different stress intensity factor ranges, ΔK = 18, 36, 54, and 72 MPa√m. The microstructure of the plastic zones around the crack tip were examined by trans- mission electron microscopy (TEM) and selected area electron diffraction (SAD). Micro- orientation of the dislocation cells in the plastic zones of all of the CT samples increased to 4 deg from the level of an as-received sample. Four-point bending fatigue tests were performed for plate shape samples with a large cyclic strain range. The SAD value of the bending samples was also 4 deg in the damaged area where cracks already initiated at an early stage of the fatigue process. These test results indicate that the microstructural conditioning is a prerequisite for the fatigue crack initiation and propagation in SA508. These observations may lead to better under- standing of how fatigue initiation processes transit to cracks.

  20. Some observations on loss of static strength due to fatigue cracks

    NASA Technical Reports Server (NTRS)

    Illg, Walter; Hardrath, Herbert F

    1955-01-01

    Static tensile tests were performed on simple notched specimens containing fatigue cracks. Four types of aluminum alloys were investigated: 2024-T3(formerly 24S-T3) and 7075-T6(formerly 75S-T6) in sheet form, and 2024-T4(formerly 24S-T4) and 7075-T6(formerly 75S-T6) in extruded form. The cracked specimens were tested statically under four conditions: unmodified and with reduced eccentricity of loading by three methods. Results of static tests on C-46 wings containing fatigue cracks are also reported.

  1. Acoustic emission characteristics of copper alloys under low-cycle fatigue conditions

    NASA Technical Reports Server (NTRS)

    Krampfner, Y.; Kawamoto, A.; Ono, K.; Green, A.

    1975-01-01

    The acoustic emission (AE) characteristics of pure copper, zirconium-copper, and several copper alloys were determined to develop nondestructive evaluation schemes of thrust chambers through AE techniques. The AE counts rms voltages, frequency spectrum, and amplitude distribution analysis evaluated AE behavior under fatigue loading conditions. The results were interpreted with the evaluation of wave forms, crack propagation characteristics, as well as scanning electron fractographs of fatigue-tested samples. AE signals at the beginning of a fatigue test were produced by a sample of annealed alloys. A sample of zirconium-containing alloys annealed repeatedly after each fatigue loading cycle showed numerous surface cracks during the subsequent fatigue cycle, emitting strong-burst AE signals. Amplitude distribution analysis exhibits responses that are characteristic of certain types of AE signals.

  2. Fatigue crack growth in unidirectional and cross-ply SCS-6/Timetal 21S titanium matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, D.J.

    1994-01-01

    Fatigue crack growth in unidirectional and cross-ply SCS-6/ Timetal(R) 21S titanium matrix composite was investigated. Fatigue crack growth tests were performed on (0){sub 4}, (90){sub 4}, and (0/90){sub s} center notch specimens. The (0){sub 4} and (0/90){sub s} fatigue crack growth rates decreased initially. Specimens removed prior to failure were polished to the first row of fibers and intact fibers in the wake of the matrix crack were observed. These bridging fibers reduced the stress intensity range that the matrix material was subjected to, thus reducing the crack growth rate. The crack growth rate eventually increased as fibers failed inmore » the crack wake but the fatigue crack growth rate was still much slower than that of unreinforced Timetal(R) 21S. A model was developed to study the mechanics of a cracked unidirectional composite with any combination of intact and broken fibers in the wake of a matrix crack. The model was correlated to fatigue crack growth rate tests. The model was verified by comparing predicted displacements near the crack surface with Elber gage (1.5 mm gage length extensometer) measurements. The fatigue crack growth rate for the (90){sub 4} specimens was faster than that of unreinforced Timetal(registered trademark) 21S. Elber gage displacement measurements were in agreement with linear elastic fracture mechanics predictions, suggesting that linear elastic fracture mechanics may be applicable to transversely loaded titanium matrix composites.« less

  3. Reliability-based optimization of maintenance scheduling of mechanical components under fatigue

    PubMed Central

    Beaurepaire, P.; Valdebenito, M.A.; Schuëller, G.I.; Jensen, H.A.

    2012-01-01

    This study presents the optimization of the maintenance scheduling of mechanical components under fatigue loading. The cracks of damaged structures may be detected during non-destructive inspection and subsequently repaired. Fatigue crack initiation and growth show inherent variability, and as well the outcome of inspection activities. The problem is addressed under the framework of reliability based optimization. The initiation and propagation of fatigue cracks are efficiently modeled using cohesive zone elements. The applicability of the method is demonstrated by a numerical example, which involves a plate with two holes subject to alternating stress. PMID:23564979

  4. Fatigue resistance and crack propensity of large MOD composite resin restorations: direct versus CAD/CAM inlays.

    PubMed

    Batalha-Silva, Silvana; de Andrada, Mauro Amaral Caldeira; Maia, Hamilton Pires; Magne, Pascal

    2013-03-01

    To assess the influence of material/technique selection (direct vs. CAD/CAM inlays) for large MOD composite adhesive restorations and its effect on the crack propensity and in vitro accelerated fatigue resistance. A standardized MOD slot-type tooth preparation was applied to 32 extracted maxillary molars (5mm depth and 5mm bucco-palatal width) including immediately sealed dentin for the inlay group. Fifteen teeth were restored with direct composite resin restoration (Miris2) and 17 teeth received milled inlays using Paradigm MZ100 block in the CEREC machine. All inlays were adhesively luted with a light curing composite resin (Filtek Z100). Enamel shrinkage-induced cracks were tracked with photography and transillumination. Cyclic isometric chewing (5 Hz) was simulated, starting with a load of 200 N (5000 cycles), followed by stages of 400, 600, 800, 1000, 1200 and 1400 N at a maximum of 30,000 cycles each. Samples were loaded until fracture or to a maximum of 185,000 cycles. Teeth restored with the direct technique fractured at an average load of 1213 N and two of them withstood all loading cycles (survival=13%); with inlays, the survival rate was 100%. Most failures with Miris2 occurred above the CEJ and were re-restorable (67%), but generated more shrinkage-induced cracks (47% of the specimen vs. 7% for inlays). CAD/CAM MZ100 inlays increased the accelerated fatigue resistance and decreased the crack propensity of large MOD restorations when compared to direct restorations. While both restorative techniques yielded excellent fatigue results at physiological masticatory loads, CAD/CAM inlays seem more indicated for high-load patients. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Development of a Fatigue Crack Growth Coupon for Highly Plastic Stress Conditions

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Aggarwal, Pravin K.; Swanson, Gregory R.

    2003-01-01

    The analytical approach used to develop a novel fatigue crack growth coupon for highly plastic stress field condition is presented in this paper. The flight hardware investigated is a large separation bolt that has a deep notch, which produces a large plastic zone at the notch root when highly loaded. Four test specimen configurations are analyzed in an attempt to match the elastic-plastic stress field and crack constraint conditions present in the separation bolt. Elastic-plastic finite element analysis is used to compare the stress fields and critical fracture parameters. Of the four test specimens analyzed, the modified double-edge notch tension - 3 (MDENT-3) most closely approximates the stress field, J values, and crack constraint conditions found in the flight hardware. The MDENT-3 is also most insensitive to load misalignment and/or load redistribution during crack growth.

  6. Distribution of Inclusion-Initiated Fatigue Cracking in Powder Metallurgy Udimet 720 Characterized

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kantzos, Pete T.; Barrie, Robert; Telesman, Jack; Ghosn, Louis J.; Gabb, Timothy P.

    2004-01-01

    In the absence of extrinsic surface damage, the fatigue life of metals is often dictated by the distribution of intrinsic defects. In powder metallurgy (PM) alloys, relatively large defects occur rarely enough that a typical characterization with a limited number of small volume fatigue test specimens will not adequately sample inclusion-initiated damage. Counterintuitively, inclusion-initiated failure has a greater impact on the distribution in PM alloy fatigue lives because they tend to have fewer defects than their cast and wrought counterparts. Although the relative paucity of defects in PM alloys leads to higher mean fatigue lives, the distribution in observed lives tends to be broader. In order to study this important failure initiation mechanism without expending an inordinate number of specimens, a study was undertaken at the NASA Glenn Research Center where known populations of artificial inclusions (seeds) were introduced to production powder. Fatigue specimens were machined from forgings produced from the seeded powder. Considerable effort has been expended in characterizing the crack growth rate from inclusion-initiated cracks in seeded PM alloys. A rotating and translating positioning system, with associated software, was devised to map the surface inclusions in low-cycle fatigue (LCF) test bars and to monitor the crack growth from these inclusions. The preceding graph illustrates the measured extension in fatigue cracks from inclusions on a seeded LCF test bar subjected to cyclic loading at a strain range of 0.8 percent and a strain ratio (max/min) of zero. Notice that the observed inclusions fall into three categories: some do not propagate at all (arrest), some propagate with a decreasing crack growth rate, and a few propagate at increasing rates that can be modeled by fracture mechanics. The following graph shows the measured inclusion-initiated crack growth rates from 10 interrupted LCF tests plotted against stress intensities calculated for semi-elliptical cracks with the observed surface lengths. The expected scatter in the crack growth rates for stress intensity ranges near threshold is observed. These data will be used to help determine the distribution in growth rates of cracks emanating from inclusions as well as the proportion of cracks that arrest under various loading conditions.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dag, Serkan; Yildirim, Bora; Sabuncuoglu, Baris

    The objective of this study is to develop crack growth analysis methods for functionally graded materials (FGMs) subjected to mode I cyclic loading. The study presents finite elements based computational procedures for both two and three dimensional problems to examine fatigue crack growth in functionally graded materials. Developed methods allow the computation of crack length and generation of crack front profile for a graded medium subjected to fluctuating stresses. The results presented for an elliptical crack embedded in a functionally graded medium, illustrate the competing effects of ellipse aspect ratio and material property gradation on the fatigue crack growth behavior.

  8. Thermo-elastic-plastic analysis for elastic component under high temperature fatigue crack growth rate

    NASA Astrophysics Data System (ADS)

    Ali, Mohammed Ali Nasser

    The research project presents a fundamental understanding of the fatigue crack growth mechanisms of AISI 420 martensitic stainless steel, based on the comparison analysis between the theoretical and numerical modelling, incorporating research findings under isothermal fatigue loading for solid cylindrical specimen and the theoretical modelling with the numerical simulation for tubular specimen when subjected to cyclic mechanical loading superimposed by cyclic thermal shock.The experimental part of this research programme studied the fatigue stress-life data for three types of surface conditions specimen and the isothermal stress-controlled fatigue testing at 300 °C - 600 °C temperature range. It is observed that the highest strength is obtained for the polished specimen, while the machined specimen shows lower strength, and the lowest strength is the notched specimen due to the high effect of the stress concentration. The material behaviour at room and high temperatures shows an initial hardening, followed by slow extension until fully plastic saturation then followed by crack initiation and growth eventually reaching the failure of the specimen, resulting from the dynamic strain ageing occurred from the transformation of austenitic microstructure to martensite and also, the nucleation of precipitation at grain boundaries and the incremental temperature increase the fatigue crack growth rate with stress intensity factor however, the crack growth rate at 600 °C test temperature is less than 500 °C because of the creep-fatigue taking place.The theoretical modelling presents the crack growth analysis and stress and strain intensity factor approaches analysed in two case studies based on the addition of thermo-elastic-plastic stresses to the experimental fatigue applied loading. Case study one estimates the thermal stresses superimposed sinusoidal cyclic mechanical stress results in solid cylinder under isothermal fatigue simulation. Case study two estimates the transient thermal stresses superimposed on cyclic mechanical loading results in hollow cylinder under thermal shock in heating case and down shock cooling case. The combination of stress and strain intensity factor theoretical calculations with the experimental output recorded data shows a similar behaviour with increasing temperature, and there is a fair correlation between the profiles at the beginning and then divergence with increasing the crack length. The transient influence of high temperature in case two, giving a very high thermal shock stress as a heating or cooling effects, shifting up the combined stress, when applied a cyclic mechanical load in fraction of seconds, and the reputations of these shocks, causing a fast failure under high thermal shock stress superimposed with mechanical loading.Finally, the numerical modelling analyses three cases studied were solved due to the types of loading and types of specimen geometry by using finite element models constructed through the ANSYS Workbench version 13.0. The first case is a low cyclic fatigue case for a solid cylinder specimen simulated by applying a cyclic mechanical loading. The second is an isothermal fatigue case for solid cylinder specimen simulated by supplying different constant temperatures on the outer surface with cyclic mechanical loading, where the two cases are similar to the experimental tests and the third case, is a thermo-mechanical fatigue for a hollow cylinder model by simulating a thermal up-shock generated due to transient heating on the outer surface of the model or down shock cooling on the inner surface with the cyclic mechanical loading. The results show a good agreement with the experimental data in terms of alternative stress and life in the first case. In case two results show the strain intensity factor is increases with increasing temperature similar to the theoretical solution due to the influence of the modulus of elasticity and the difference in life estimation with the experimental output record is related to the input data made of theoretical physical properties and the experimental stress-life data.

  9. A finite element model on effects of impact load and cavitation on fatigue crack propagation in mechanical bileaflet aortic heart valve.

    PubMed

    Mohammadi, H; Klassen, R J; Wan, W-K

    2008-10-01

    Pyrolytic carbon mechanical heart valves (MHVs) are widely used to replace dysfunctional and failed heart valves. As the human heart beats around 40 million times per year, fatigue is the prime mechanism of mechanical failure. In this study, a finite element approach is implemented to develop a model for fatigue analysis of MHVs due to the impact force between the leaflet and the stent and cavitation in the aortic position. A two-step method to predict crack propagation in the leaflets of MHVs has been developed. Stress intensity factors (SIFs) are computed at a small initiated crack located on the leaflet edge (the worst case) using the boundary element method (BEM). Static analysis of the crack is performed to analyse the stress distribution around the front crack zone when the crack is opened; this is followed by a dynamic crack analysis to consider crack propagation using the finite element approach. Two factors are taken into account in the calculation of the SIFs: first, the effect of microjet formation due to cavitation in the vicinity of leaflets, resulting in water hammer pressure; second, the effect of the impact force between the leaflet and the stent of the MHVs, both in the closing phase. The critical initial crack length, the SIFs, the water hammer pressure, and the maximum jet velocity due to cavitation have been calculated. With an initial crack length of 35 microm, the fatigue life of the heart valve is greater than 60 years (i.e. about 2.2 x 10(9) cycles) and, with an initial crack length of 170 microm, the fatigue life of the heart valve would be around 2.5 years (i.e. about 9.1 x 10(7) cycles). For an initial crack length greater than 170 microm, there is catastrophic failure and fatigue cracking no longer occurs. A finite element model of fatigue analysis using Patran command language (PCL custom code) in MSC software can be used to evaluate the useful lifespan of MHVs. Similar methodologies can be extended to other medical devices under cyclic loads.

  10. Quantitative understanding of the role of grain boundaries in polycrystalline deformation via multiscale digital image correlation

    NASA Astrophysics Data System (ADS)

    Abuzaid, Wael Z. M.

    In this study, high resolution ex situ digital image correlation (DIC) was used to measure plastic strain accumulation in polycrystalline Hastelloy X, a nickel-based superalloy, subjected to monotonic and cyclic loading conditions. In addition, the underlying microstructure was characterized with similar spatial resolution using electron backscatter diffraction (EBSD). The experimental results were utilized to investigate the localization of plastic strains in the vicinity of grain boundaries (GBs). Particularly we address the interaction of slip with GBs which can result in slip blockage or slip transmission and investigate how these two possible outcomes of slip-GB interaction influence the plastic strain magnitudes and fatigue crack formation in GB regions. In the first part of this work, we focus on slip transmission across GBs. Strain measurements with sub-grain level spatial resolution were acquired for Hastelloy X deformed plastically in uniaxial tension. The full field DIC measurements show a high level of heterogeneity in the plastic response with large variations in strain magnitudes within grains and across GBs. We used the experimental results to study these variations in strains, focusing specifically on the role of slip transmission across GBs in the development of strain heterogeneities. For every GB in the polycrystalline aggregate, we have established the most likely dislocation reaction and used that information to calculate the residual Burgers vector and plastic strain magnitudes due to slip transmission across each interface. From our analysis, we show an inverse relation between the magnitudes of the residual Burgers vector and the plastic strains across GBs. We therefore emphasize the importance of considering the magnitude of the residual Burgers vector to obtain a better description of the GB resistance to slip transmission, which in turn influences the local plastic strains in the vicinity of grain boundaries. In the second part of this work, we consider fatigue micro-crack formation. It is widely accepted that the localization in plastic strains is a necessary condition and a precursor for the nucleation of fatigue cracks. However a clear and quantitative assessment of the correlation between strain localization and fatigue micro-crack lengths requires further investigation. To address this point, high resolution deformation measurements using DIC were conducted on polycrystalline Hastelloy X subjected to fatigue loading. The sub-grain level strain measurements were made prior to the formation of micro-cracks. The correlation between the localization of plastic strains, very early on during the loading (e.g., less than 1,000 cycles), and the micro-cracks which were detected later in the life of the sample ( e.g., around 10,000 cycles) is discussed in this thesis. Particular focus is given to the difference in grain boundary response, either blocking or transmitting slip, and the associated fatigue micro-crack lengths generated in the vicinity of these boundaries. The results show a clear correlation between both the locations and lengths of fatigue micro-cracks and the localization of plastic strains very early in the loading process. In addition, we observed that for the same number of cycles, the transmission of slip across grain boundaries resulted in longer transgranular cracks compared to cracks near grains surrounded by blocking grain boundaries which were shorter cracks and confined within single grains. In the last part of this study, experiments were conducted on Hastelloy X subjected to fatigue loading. The purpose of the experiments was to investigate the scatter in fatigue lives under similar loading conditions. We also used a recent novel fatigue model based on persistent slip band (PSB) -- GB interaction to investigate the scatter in fatigue lives and shed light into the critical types of GBs which nucleate cracks. The implementation of this model provides simulation results of the scatter in fatigue life, which are consistent with the scatter observed from experiments. Finally, with the use of high resolution strain measurements, we provide a critical evaluation of some aspects of the modeling approach, for example the formation of grain clusters and their influence on fatigue life. Also the role of special GBs, mainly annealing twin boundaries (Sigma3 GBs), was evaluated.

  11. Experimental study on fatigue crack propagation rate of RC beam strengthened with carbon fiber laminate

    NASA Astrophysics Data System (ADS)

    Huang, Peiyan; Liu, Guangwan; Guo, Xinyan; Huang, Man

    2008-11-01

    The experimental research on fatigue crack propagation rate of reinforced concrete (RC) beams strengthened with carbon fiber laminate (CFL) is carried out by MTS system in this paper. The experimental results show that, the main crack propagation on strengthened beam can be summarized into three phases: 1) fast propagation phase; 2) steady propagation and rest phase; 3) unsteady propagation phase. The phase 2-i.e. steady propagation and rest stage makes up about 95% of fatigue life of the strengthened beam. The propagation rate of the main crack, da/dN, in phase 2 can be described by Paris formula, and the constant C and m can be confirmed by the fatigue crack propagation experiments of the RC beams strengthened with CFL under three-point bending loads.

  12. Effect of Understress on Fretting Fatigue Crack Initiation of Press-Fitted Axle

    NASA Astrophysics Data System (ADS)

    Kubota, Masanobu; Niho, Sotaro; Sakae, Chu; Kondo, Yoshiyuki

    Axles are one of the most important components in railway vehicles with regard to safety, since a fail-safe design is not available. The problems of fretting fatigue crack initiation in a press-fitted axle have not been completely solved even though up-to-date fatigue design methods are employed. The objective of the present study is to clarify the effect of understress on fretting fatigue crack initiation behavior in the press-fitted axle. Most of the stress amplitude given to the axle in service is smaller than the fretting fatigue limit based on the stress to initiate cracks under a constant load σwf1. Rotating bending fatigue tests were performed using a 40mm-diameter press-fitted axle assembly. Two-step variable stresses consisting of σwf1 and half or one-third of σwf1 were used in the experiment. Crack initiation life was defined as the number of cycles when a fretting fatigue crack, which is longer than 30µm, was found using a metallurgical microscope. Fretting fatigue cracks were initiated even when the variable stress did not contain the stress above the fretting fatigue crack initiation limit. The crack initiation life varied from 4.0×107 to 1.2×108 depending on the stress frequency ratio nL/nH. The sum of the number of cycles of higher stress at crack initiation NH was much smaller than the number of cycles to initiate cracks estimated from the modified Miner's rule. The value of the modified Miner's damage ranged from 0.013 to 0.185. To clarify the effect of variable amplitude on the fretting fatigue crack initiation, a comprehensive investigation related to relative slip, tangential force and fretting wear is necessary.

  13. Dependence of Microelastic-plastic Nonlinearity of Martensitic Stainless Steel on Fatigue Damage Accumulation

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.

    2006-01-01

    Self-organized substructural arrangements of dislocations formed in wavy slip metals during cyclic stress-induced fatigue produce substantial changes in the material microelastic-plastic nonlinearity, a quantitative measure of which is the nonlinearity parameter Beta extracted from acoustic harmonic generation measurements. The contributions to Beta from the substructural evolution of dislocations and crack growth for fatigued martensitic 410Cb stainless steel are calculated from the Cantrell model as a function of percent full fatigue life to fracture. A wave interaction factor f(sub WI) is introduced into the model to account experimentally for the relative volume of material fatigue damage included in the volume of material swept out by an interrogating acoustic wave. For cyclic stress-controlled loading at 551 MPa and f(sub WI) = 0.013 the model predicts a monotonic increase in Beta from dislocation substructures of almost 100 percent from the virgin state to roughly 95 percent full life. Negligible contributions from cracks are predicted in this range of fatigue life. However, over the last five percent of fatigue life the model predicts a rapid monotonic increase of Beta by several thousand percent that is dominated by crack growth. The theoretical predictions are in good agreement with experimental measurements of 410Cb stainless steel samples fatigued in uniaxial, stress-controlled cyclic loading at 551 MPa from zero to full tensile load with a measured f(sub WI) of 0.013.

  14. Experimental Investigation on the Fatigue Mechanical Properties of Intermittently Jointed Rock Models Under Cyclic Uniaxial Compression with Different Loading Parameters

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Dai, Feng; Dong, Lu; Xu, Nuwen; Feng, Peng

    2018-01-01

    Intermittently jointed rocks, widely existing in many mining and civil engineering structures, are quite susceptible to cyclic loading. Understanding the fatigue mechanism of jointed rocks is vital to the rational design and the long-term stability analysis of rock structures. In this study, the fatigue mechanical properties of synthetic jointed rock models under different cyclic conditions are systematically investigated in the laboratory, including four loading frequencies, four maximum stresses, and four amplitudes. Our experimental results reveal the influence of the three cyclic loading parameters on the mechanical properties of jointed rock models, regarding the fatigue deformation characteristics, the fatigue energy and damage evolution, and the fatigue failure and progressive failure behavior. Under lower loading frequency or higher maximum stress and amplitude, the jointed specimen is characterized by higher fatigue deformation moduli and higher dissipated hysteresis energy, resulting in higher cumulative damage and lower fatigue life. However, the fatigue failure modes of jointed specimens are independent of cyclic loading parameters; all tested jointed specimens exhibit a prominent tensile splitting failure mode. Three different crack coalescence patterns are classified between two adjacent joints. Furthermore, different from the progressive failure under static monotonic loading, the jointed rock specimens under cyclic compression fail more abruptly without evident preceding signs. The tensile cracks on the front surface of jointed specimens always initiate from the joint tips and then propagate at a certain angle with the joints toward the direction of maximum compression.

  15. Examination of ceramic restorative material interfacial debonding using acoustic emission and optical coherence tomography.

    PubMed

    Lin, Chun-Li; Kuo, Wen-Chuan; Yu, Jin-Jie; Huang, Shao-Fu

    2013-04-01

    CAD/CAM ceramic restorative material is routinely bonded to tooth substrates using adhesive cement. This study investigates micro-crack growth and damage in the ceramic/dentin adhesive interface under fatigue shear testing monitored using the acoustic emission (AE) technique with optical coherence tomography (OCT). Ceramic/dentin adhesive samples were prepared to measure the shear bond strength (SBS) under static load. Fatigue shear testing was performed using a modified ISO14801 method. Loads in the fatigue tests were applied at 80%, 70%, and 60% of the SBS to monitor interface debonding. The AE technique was used to detect micro-crack signals in static and fatigue shear bond tests. The results showed that the average SBS value in the static tests was 10.61±2.23MPa (mean±standard deviation). The average number of fatigue cycles in which ceramic/dentin interface damage was detected in 80%, 70% and 60% of the SBS were 152, 1962 and 9646, respectively. The acoustic behavior varied according to the applied load level. Events were emitted during 60% and 70% fatigue tests. A good correlation was observed between crack location in OCT images and the number of AE signal hits. The AE technique and OCT images employed in this study could potentially be used as a pre-clinical assessment tool to determine the integrity of cemented load bearing restored ceramic material. Sustainable cyclic load stresses in ceramic/dentin-bonded specimens were substantially lower than the measured SBS. Predicted S-N curve showed that the maximum endured load was 4.18MPa passing 10(6) fatigue cyclic. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Fatigue crack growth under variable amplitude loading

    NASA Astrophysics Data System (ADS)

    Sidawi, Jihad A.

    1994-09-01

    Fatigue crack growth tests were conducted on an Fe 510 E C-Mn steel and a submerged arc welded joint from the same material under constant, variable, and random loading amplitudes. Paris-Erdogan's crack growth rate law was tested for the evaluation of m and C using the stress intensity factor K, the J-integral, the effective stress intensity factor K(sub eff), and the root mean square stress intensity factor K(sub rms) fracture mechanics concepts. The effect of retardation and residual stresses resulting from welding was also considered. It was found that all concepts gave good life predictions in all cases.

  17. Crack Nucleation in β Titanium Alloys under High Cycle Fatigue Conditions - A Review

    NASA Astrophysics Data System (ADS)

    Benjamin, Rohit; Nageswara Rao, M.

    2017-05-01

    Beta titanium (β-Ti) alloys have emerged over the last 3 to 4 decades as an important class of titanium alloys. Many of the applications that they found, particularly in aerospace sector, are such that their high cycle fatigue (HCF) behavior becomes critical. In HCF regime, crack nucleation accounts for major part of the life. Consequently it becomes important to understand the mechanisms underlying the nucleation of cracks under HCF type loading conditions. The purpose of this review is to document the best understanding we have on date on crack nucleation in β-Ti alloys under HCF conditions. Role of various microstructural features encountered in β-Ti alloys in influencing the crack nucleation under HCF conditions has been reviewed. It has been brought out that changes in processing can result in changes in microstructure which in turn influence the time for crack nucleation/fatigue life and fatigue limit. While majority of fatigue failures originate at the surface, subsurface cracking is not uncommon with β-Ti alloys and the factors leading to subsurface cracking have been discussed in this review.

  18. Microstructurally-sensitive fatigue crack nucleation in Ni-based single and oligo crystals

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Jiang, Jun; Dunne, Fionn P. E.

    2017-09-01

    An integrated experimental, characterisation and computational crystal plasticity study of cyclic plastic beam loading has been carried out for nickel single crystal (CMSX4) and oligocrystal (MAR002) alloys in order to assess quantitatively the mechanistic drivers for fatigue crack nucleation. The experimentally validated modelling provides knowledge of key microstructural quantities (accumulated slip, stress and GND density) at experimentally observed fatigue crack nucleation sites and it is shown that while each of these quantities is potentially important in crack nucleation, none of them in its own right is sufficient to be predictive. However, the local (elastic) stored energy density, measured over a length scale determined by the density of SSDs and GNDs, has been shown to predict crack nucleation sites in the single and oligocrystals tests. In addition, once primary nucleated cracks develop and are represented in the crystal model using XFEM, the stored energy correctly identifies where secondary fatigue cracks are observed to nucleate in experiments. This (Griffith-Stroh type) quantity also correctly differentiates and explains intergranular and transgranular fatigue crack nucleation.

  19. Review of the Effects of Microstructure on Fatigue in Aluminum Alloys. Ph.D. Thesis - Cincinnati Univ.

    NASA Technical Reports Server (NTRS)

    Telesman, J.

    1984-01-01

    Literature survey was conducted to determine the effects of different microstructural features and different load histories on fatigue crack initiation and propagation of aluminum alloys. Comparison of microstructure and monotonic and cyclic properties between powder metallurgy (P/M) and ingot metallurgy (I/M) alloys is presented. The two alloys that are representative of each process on which the comparison is focused are X7091 and 7050. Included is a detailed description of the microstructure produced through the P/M and I/M proesses. The effect of each pertinent microstructural feature on monotonic and cyclic properties, such as yield strength, toughness, crack initiation and propagation is discussed. Also discussed are the proposed mechanisms for crack initiation and propagation, as well as the effects of aggressive environments on these cyclic properties. The effects of variable amplitude loadin on fatigue crack propagation and the various models proposed to predict load interaction effects are discussed.

  20. Analysis of fatigue on surface course using dissipated energy approach

    NASA Astrophysics Data System (ADS)

    Michael; Setyawan, A.; Pramesti, F. P.

    2018-03-01

    As an important transportation infrastructure, pavement is subjected to repeated vehicle loads that may cause fatigue, which often leads to cracking. The point when this cracking initiates can be determined from the energy dissipated during the loading. This research investigates fatigue in Adi Soemarmo Airport mix-design using bitumen Pen 60/70 + EVA (Ethyl Vinyl Acetate) polymer. An Indirect Tensile Fatigue Test (ITFT) was conducted using stress-controlled loading mode to determine its fatigue life. The stress levels were 500, 600, and 700 kPa, while the loading frequency and the temperature were 10 Hz and 20°C, respectively. The test exhibits strain levels for each loading cycle, which were used to determine the dissipated energy (DE). The result indicates that the DE increases when the number of loading cycles increases, due to progress of the strain levels. The values of DE are 7122.8, 8614.3, and 2654.9 J/m3 for loading levels of 500, 600, and 700 kPa, respectively, whereas the failure points for stress levels of 500, 600, and 700 kPa are 8171, 5161, and 841 cycles, respectively. Thus, the longer the time until the pavement failure point is reached (fatigue life), the greater the amount of energy that is dissipated.

  1. Investigation of the ElectroPuls E3000 Test Machine for Fatigue Testing of Structural Materials

    DTIC Science & Technology

    2016-12-01

    sharpening of the crack tip and deformation of a portion of the newly formed surface (the surface created during loading portion of the cycle) during...cracking process is that the size of the final plastic zone formed by pre-cracking can affect the crack growth rate in subsequent testing. To...similar. In other structural materials, such as aluminium , striations are often well-defined. Typically, fatigue striations on an aluminium fracture

  2. Constant and variable amplitude ultrasonic fatigue of 2024-T351 aluminium alloy at different load ratios.

    PubMed

    Mayer, H; Fitzka, M; Schuller, R

    2013-12-01

    Ultrasonic fatigue testing equipment is presented that is capable of performing constant amplitude (CA) and variable amplitude (VA) experiments at different constant load ratios. This equipment is used to study cyclic properties of aluminium alloy 2024-T351 in the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) regime at load ratios R=-1 and R=0.5. CA loading does not reveal a fatigue limit below 10¹⁰ cycles. Cracks leading to VHCF failure start at broken constituent particles. Specimens that survived more than 10¹⁰ cycles at R=-1 contain non-propagating cracks of lengths below grain size. Resonance frequency and nonlinearity parameter β(rel) show changes of vibration properties of specimens at low fractions of their VHCF lifetime. VA lifetimes are measured in the HCF and VHCF regime and compared with Miner calculations. Damage sums decrease with decreasing load (and increasing mean lifetimes) and are lower for R=0.5 than R=-1. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Data-Driven Correlation Analysis Between Observed 3D Fatigue-Crack Path and Computed Fields from High-Fidelity, Crystal-Plasticity, Finite-Element Simulations

    NASA Astrophysics Data System (ADS)

    Pierson, Kyle D.; Hochhalter, Jacob D.; Spear, Ashley D.

    2018-05-01

    Systematic correlation analysis was performed between simulated micromechanical fields in an uncracked polycrystal and the known path of an eventual fatigue-crack surface based on experimental observation. Concurrent multiscale finite-element simulation of cyclic loading was performed using a high-fidelity representation of grain structure obtained from near-field high-energy x-ray diffraction microscopy measurements. An algorithm was developed to parameterize and systematically correlate the three-dimensional (3D) micromechanical fields from simulation with the 3D fatigue-failure surface from experiment. For comparison, correlation coefficients were also computed between the micromechanical fields and hypothetical, alternative surfaces. The correlation of the fields with hypothetical surfaces was found to be consistently weaker than that with the known crack surface, suggesting that the micromechanical fields of the cyclically loaded, uncracked microstructure might provide some degree of predictiveness for microstructurally small fatigue-crack paths, although the extent of such predictiveness remains to be tested. In general, gradients of the field variables exhibit stronger correlations with crack path than the field variables themselves. Results from the data-driven approach implemented here can be leveraged in future model development for prediction of fatigue-failure surfaces (for example, to facilitate univariate feature selection required by convolution-based models).

  4. A multi-feature integration method for fatigue crack detection and crack length estimation in riveted lap joints using Lamb waves

    NASA Astrophysics Data System (ADS)

    He, Jingjing; Guan, Xuefei; Peng, Tishun; Liu, Yongming; Saxena, Abhinav; Celaya, Jose; Goebel, Kai

    2013-10-01

    This paper presents an experimental study of damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic wafer-type sensors are employed to perform in situ non-destructive evaluation (NDE) during fatigue cyclical loading. PZT wafers are used to monitor the wave reflection from the boundaries of the fatigue crack at the edge of bolt joints. The group velocity of the guided wave is calculated to select a proper time window in which the received signal contains the damage information. It is found that the fatigue crack lengths are correlated with three main features of the signal, i.e., correlation coefficient, amplitude change, and phase change. It was also observed that a single feature cannot be used to quantify the damage among different specimens since a considerable variability was observed in the response from different specimens. A multi-feature integration method based on a second-order multivariate regression analysis is proposed for the prediction of fatigue crack lengths using sensor measurements. The model parameters are obtained using training datasets from five specimens. The effectiveness of the proposed methodology is demonstrated using several lap joint specimens from different manufactures and under different loading conditions.

  5. Corrosion fatigue crack propagation in metals

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1990-01-01

    This review assesses fracture mechanics data and mechanistic models for corrosion fatigue crack propagation in structural alloys exposed to ambient temperature gases and electrolytes. Extensive stress intensity-crack growth rate data exist for ferrous, aluminum and nickel based alloys in a variety of environments. Interactive variables (viz., stress intensity range, mean stress, alloy composition and microstructure, loading frequency, temperature, gas pressure and electrode potential) strongly affect crack growth kinetics and complicate fatigue control. Mechanistic models to predict crack growth rates were formulated by coupling crack tip mechanics with occluded crack chemistry, and from both the hydrogen embrittlement and anodic dissolution/film rupture perspectives. Research is required to better define: (1) environmental effects near threshold and on crack closure; (2) damage tolerant life prediction codes and the validity of similitude; (3) the behavior of microcrack; (4) probes and improved models of crack tip damage; and (5) the cracking performance of advanced alloys and composites.

  6. Examination of ceramic/enamel interfacial debonding using acoustic emission and optical coherence tomography.

    PubMed

    Lin, Chun-Li; Kuo, Wen-Chuan; Chang, Yen-Hsiang; Yu, Jin-Jie; Lin, Yun-Chu

    2014-08-01

    This study investigates monitored micro-crack growth and damage in the ceramic/enamel adhesive interface using the acoustic emission (AE) technique with optical coherence tomography (OCT) under fatigue shear testing. Shear bond strength (SBS) was measured first with eight prepared ceramic/enamel adhesive specimens under static loads. The fatigue shear testing was performed with three specimens at each cyclic load according to a modified ISO14801 method, applying at 80%, 75%, 70%, and 65% of the SBS to monitor interface debonding. The number of cycles at each load was recorded until ceramic/enamel adhesive interface debonding occurred. The AE technique was used to detect micro-crack signals in static and fatigue shear bond tests. The results showed that the average SBS value in the static tests was 18.07 ± 1.72 MPa (mean ± standard deviation), expressed in Newton's at 56.77 ± 5.40N. The average number of fatigue cycles in which ceramic/enamel interface damage was detected in 80%, 75%, 70% and 65% of the SBS were 41, 410, 8141 and 76,541, respectively. The acoustic behavior varied according to the applied load level. Events were emitted during 65% and 70% fatigue tests. A good correlation was observed between the crack location in OCT images and the number of AE signal hits. The AE technique combined with OCT images as a pre-clinical assessment tool to determine the integrity of cemented load bearing restored ceramic material. Sustainable cyclic load stresses in ceramic/enamel bonded specimens were substantially lower than the measured SBS. Predicted S-N curve showed that the maximum endured load was 10.98 MPa (about 34.48 N) passing 10(6) fatigue cyclic. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. On the measurement of the crack tip stress field as a means of determining Delta K(sub eff) under conditions of fatigue crack closure

    NASA Technical Reports Server (NTRS)

    Wallhead, Ian R.; Edwards, Lyndon; Poole, Peter

    1994-01-01

    The optical method of caustics has been successfully extended to enable stress intensity factors as low as 1MPa square root of m to be determined accurately for central fatigue cracks in 2024-T3 aluminium alloy test panels. The feasibility of using this technique to study crack closure, and to determine the effective stress intensity factor range, Delta K(sub eff), has been investigated. Comparisons have been made between the measured values of stress intensity factor, K(sub caus), and corresponding theoretical values, K(sub theo), for a range of fatigue cracks grown under different loading conditions. The values of K(sub caus) and K(sub theo) were in good agreement at maximum stress, where the cracks are fully open, while K(sub caus) exceeded K(sub theo) at minimum stress, due to crack closure. However, the levels of crack closure and values of Delta K(sub eff) obtained could not account for the variations of crack growth rate with loading conditions. It is concluded that the values of Delta K(sub eff), based on caustic measurements in a 1/square root of r stress field well outside the plastic zone, do not fully reflect local conditions which control crack tip behavior.

  8. Fatigue crack propagation in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Rao, K. T. V.; Ritchie, R. O.; Piascik, R. S.; Gangloff, R. P.

    1989-01-01

    The principal mechanisms which govern the fatigue crack propagation resistance of aluminum-lithium alloys are investigated, with emphasis on their behavior in controlled gaseous and aqueous environments. Extensive data describe the growth kinetics of fatigue cracks in ingot metallurgy Al-Li alloys 2090, 2091, 8090, and 8091 and in powder metallurgy alloys exposed to moist air. Results are compared with data for traditional aluminum alloys 2024, 2124, 2618, 7075, and 7150. Crack growth is found to be dominated by shielding from tortuous crack paths and resultant asperity wedging. Beneficial shielding is minimized for small cracks, for high stress ratios, and for certain loading spectra. While water vapor and aqueous chloride environments enhance crack propagation, Al-Li-Cu alloys behave similarly to 2000-series aluminum alloys. Cracking in water vapor is controlled by hydrogen embrittlement, with surface films having little influence on cyclic plasticity.

  9. Microstructure and Mechanical Properties of an Ultrasonic Spot Welded Aluminum Alloy: The Effect of Welding Energy

    PubMed Central

    Peng, He; Chen, Daolun; Jiang, Xianquan

    2017-01-01

    The aim of this study is to evaluate the microstructures, tensile lap shear strength, and fatigue resistance of 6022-T43 aluminum alloy joints welded via a solid-state welding technique–ultrasonic spot welding (USW)–at different energy levels. An ultra-fine necklace-like equiaxed grain structure is observed along the weld line due to the occurrence of dynamic crystallization, with smaller grain sizes at lower levels of welding energy. The tensile lap shear strength, failure energy, and critical stress intensity of the welded joints first increase, reach their maximum values, and then decrease with increasing welding energy. The tensile lap shear failure mode changes from interfacial fracture at lower energy levels, to nugget pull-out at intermediate optimal energy levels, and to transverse through-thickness (TTT) crack growth at higher energy levels. The fatigue life is longer for the joints welded at an energy of 1400 J than 2000 J at higher cyclic loading levels. The fatigue failure mode changes from nugget pull-out to TTT crack growth with decreasing cyclic loading for the joints welded at 1400 J, while TTT crack growth mode remains at all cyclic loading levels for the joints welded at 2000 J. Fatigue crack basically initiates from the nugget edge, and propagates with “river-flow” patterns and characteristic fatigue striations. PMID:28772809

  10. Microstructure and Mechanical Properties of an Ultrasonic Spot Welded Aluminum Alloy: The Effect of Welding Energy.

    PubMed

    Peng, He; Chen, Daolun; Jiang, Xianquan

    2017-04-25

    The aim of this study is to evaluate the microstructures, tensile lap shear strength, and fatigue resistance of 6022-T43 aluminum alloy joints welded via a solid-state welding technique-ultrasonic spot welding (USW)-at different energy levels. An ultra-fine necklace-like equiaxed grain structure is observed along the weld line due to the occurrence of dynamic crystallization, with smaller grain sizes at lower levels of welding energy. The tensile lap shear strength, failure energy, and critical stress intensity of the welded joints first increase, reach their maximum values, and then decrease with increasing welding energy. The tensile lap shear failure mode changes from interfacial fracture at lower energy levels, to nugget pull-out at intermediate optimal energy levels, and to transverse through-thickness (TTT) crack growth at higher energy levels. The fatigue life is longer for the joints welded at an energy of 1400 J than 2000 J at higher cyclic loading levels. The fatigue failure mode changes from nugget pull-out to TTT crack growth with decreasing cyclic loading for the joints welded at 1400 J, while TTT crack growth mode remains at all cyclic loading levels for the joints welded at 2000 J. Fatigue crack basically initiates from the nugget edge, and propagates with "river-flow" patterns and characteristic fatigue striations.

  11. Corrosion and corrosion fatigue of airframe aluminum alloys

    NASA Technical Reports Server (NTRS)

    Chen, G. S.; Gao, M.; Harlow, D. G.; Wei, R. P.

    1994-01-01

    Localized corrosion and corrosion fatigue crack nucleation and growth are recognized as degradation mechanisms that effect the durability and integrity of commercial transport aircraft. Mechanically based understanding is needed to aid the development of effective methodologies for assessing durability and integrity of airframe components. As a part of the methodology development, experiments on pitting corrosion, and on corrosion fatigue crack nucleation and early growth from these pits were conducted. Pitting was found to be associated with constituent particles in the alloys and pit growth often involved coalescence of individual particle-nucleated pits, both laterally and in depth. Fatigue cracks typically nucleated from one of the larger pits that formed by a cluster of particles. The size of pit at which fatigue crack nucleates is a function of stress level and fatigue loading frequency. The experimental results are summarized, and their implications on service performance and life prediction are discussed.

  12. Fatigue cracking in road pavement

    NASA Astrophysics Data System (ADS)

    Mackiewicz, P.

    2018-05-01

    The article presents the problem of modelling fatigue phenomena occurring in the road pavement. The example of two selected pavements shows the changes occurring under the influence of the load in different places of the pavement layers. Attention is paid to various values of longitudinal and transverse strains generated at the moment of passing the wheel on the pavement. It was found that the key element in the crack propagation analysis is the method of transferring the load to the pavement by the tire and the strain distribution in the pavement. During the passage of the wheel in the lower layers of the pavement, a complex stress state arises. Then vertical, horizontal and tangent stresses with various values appear. The numerical analyses carried out with the use of finite element methods allowed to assess the strain and stress changes occurring in the process of cracking road pavement. It has been shown that low-thickness pavements are susceptible to fatigue cracks arising "bottom to top", while pavements thicker are susceptible to "top to bottom" cracks. The analysis of the type of stress allowed to determine the cracking mechanism.

  13. Influence of dissolved hydrogen on the fatigue crack growth behaviour of AISI 4140 steel

    NASA Astrophysics Data System (ADS)

    Ramasagara Nagarajan, Varun

    Many metallic structural components come into contact with hydrogen during manufacturing processes or forming operations such as hot stamping of auto body frames and while in service. This interaction of metallic parts with hydrogen can occur due to various reasons such as water molecule dissociation during plating operations, interaction with atmospheric hydrogen due to the moisture present in air during stamping operations or due to prevailing conditions in service (e.g.: acidic or marine environments). Hydrogen, being much smaller in size compared to other metallic elements such as Iron in steels, can enter the material and become dissolved in the matrix. It can lodge itself in interstitials locations of the metal atoms, at vacancies or dislocations in the metallic matrix or at grain boundaries or inclusions (impurities) in the alloy. This dissolved hydrogen can affect the functional life of these structural components leading to catastrophic failures in mission critical applications resulting in loss of lives and structural component. Therefore, it is very important to understand the influence of the dissolved hydrogen on the failure of these structural materials due to cyclic loading (fatigue). For the next generation of hydrogen based fuel cell vehicles and energy systems, it is very crucial to develop structural materials for hydrogen storage and containment which are highly resistant to hydrogen embrittlement. These materials should also be able to provide good long term life in cyclic loading, without undergoing degradation, even when exposed to hydrogen rich environments for extended periods of time. The primary focus of this investigation was to examine the influence of dissolved hydrogen on the fatigue crack growth behaviour of a commercially available high strength medium carbon low alloy (AISI 4140) steel. The secondary objective was to examine the influence of microstructure on the fatigue crack growth behaviour of this material and to determine the hydrogen induced failure mechanism in this material during cyclic loading. The secondary objective of this investigation was to determine the role of inclusions and their influence in affecting the fatigue crack growth rate of this material. Compact tension and tensile specimens were prepared as per ASTM E-647, E-399 and E-8 standards. The specimens were tested in three different heat treated conditions i.e. annealed (as received) as well as two austempered conditions. These specimens were precharged with hydrogen (ex situ) using cathodic charging method at a constant current density at three different time periods ranging from 150 to 250 hours before conducting fatigue crack growth tests. Mode 1 type fatigue tests were then performed in ambient atmosphere at constant amplitude using load ratio R of 0.1. The near threshold fatigue crack growth rate, fatigue threshold and the fatigue crack growth rate in the linear region were determined. Fatigue crack growth behaviour of specimens without any dissolve hydrogen were then compared with the specimens with different concentration of dissolved hydrogen. The test results show that the dissolved hydrogen concentration increases with the increase in charging time in all three heat treated conditions and the hydrogen uptake shows a strong dependence on the microstructure of the alloy. It was also observed that the microstructure has a significant influence of on the fatigue crack growth and SCC behaviour of the alloy with dissolved hydrogen. As the dissolved hydrogen concentration increases, the fatigue threshold was found to decrease and the near threshold crack growth rate increases in all three heat treated conditions showing the deleterious effect of hydrogen, but to a different extent in each condition. Current test results also indicate that the fatigue crack growth rates in the linear region increases as the dissolved hydrogen content increases in all three heat treated conditions. It is also observed that increasing the austempering temperature decreases the resistance to hydrogen embrittlement. An interesting phenomenon was also observed in annealed specimen charged with hydrogen for 250 h which had an unusually high fatigue threshold (DeltaKth).

  14. Fatigue Crack-Growth Resistance of Aluminum Alloys Under Spectrum Loading. Volume 2. Aluminum Lithium Alloys.

    DTIC Science & Technology

    1985-12-01

    Effects on Fatigue Crack Propagation in 2024 -T3 Aluminum Alloy ," Eng. Frac. Mech, * Vol. 8, 1976, p. 657...Retardation Behavior of 7075 * and 2024 Aluminum Alloys ," ASTNI STP 631, 1977. 89 hill". .A•, - . 34. Chanani, G.R., "Investigation of Effects of Saltwater...1.0 9,අ &M Ma ki-L6 &Ŗ &- La 06 lin "Ll Ull 1.25 "A Lm Wit Rtlc()FIV WtklLl’-"- ll*A FATIGUE CRACK-GROWTH RESISTANCE OF ALUMINUM ALLOYS

  15. Comparative study of electromechanical impedance and Lamb wave techniques for fatigue crack detection and monitoring in metallic structures

    NASA Astrophysics Data System (ADS)

    Lim, Say Ian; Liu, Yu; Soh, Chee Kiong

    2012-04-01

    Fatigue cracks often initiate at the weld toes of welded steel connections. Usually, these cracks cannot be identified by the naked eyes. Existing identification methods like dye-penetration test and alternating current potential drop (ACPD) may be useful for detecting fatigue cracks at the weld toes. To apply these non-destructive evaluation (NDE) techniques, the potential sites have to be accessible during inspection. Therefore, there is a need to explore other detection and monitoring techniques for fatigue cracks especially when their locations are inaccessible or cost of access is uneconomical. Electro-mechanical Impedance (EMI) and Lamb wave techniques are two fast growing techniques in the Structural Health Monitoring (SHM) community. These techniques use piezoelectric ceramics (PZT) for actuation and sensing. Since the monitoring site is only needed to be accessed once for the instrumentation of the transducers, remote monitoring is made possible. The permanent locations of these transducers also translate to having consistent measurement for monitoring. The main focus of this study is to conduct a comparative investigation on the effectiveness and efficiency of the EMI technique and the Lamb wave technique for successful fatigue crack identification and monitoring of welded steel connections using piezoelectric transducers. A laboratory-sized non-load carrying fillet weld specimen is used in this study. The specimen is subjected to cyclic tensile load and data for both techniques are acquired at stipulated intervals. It can be concluded that the EMI technique is sensitive to the crack initiation phase while the Lamb wave technique correlates well with the crack propagation phase.

  16. Comparisons of Damage Evolution between 2D C/SiC and SiC/SiC Ceramic-Matrix Composites under Tension-Tension Cyclic Fatigue Loading at Room and Elevated Temperatures

    PubMed Central

    Li, Longbiao

    2016-01-01

    In this paper, comparisons of damage evolution between 2D C/SiC and SiC/SiC ceramic-matrix composites (CMCs) under tension–tension cyclic fatigue loading at room and elevated temperatures have been investigated. Fatigue hysteresis loops models considering multiple matrix cracking modes in 2D CMCs have been developed based on the damage mechanism of fiber sliding relative to the matrix in the interface debonded region. The relationships between the fatigue hysteresis loops, fatigue hysteresis dissipated energy, fatigue peak stress, matrix multiple cracking modes, and interface shear stress have been established. The effects of fiber volume fraction, fatigue peak stress and matrix cracking mode proportion on fatigue hysteresis dissipated energy and interface debonding and sliding have been analyzed. The experimental fatigue hysteresis dissipated energy of 2D C/SiC and SiC/SiC composites at room temperature, 550 °C, 800 °C, and 1100 °C in air, and 1200 °C in vacuum corresponding to different fatigue peak stresses and cycle numbers have been analyzed. The interface shear stress degradation rate has been obtained through comparing the experimental fatigue hysteresis dissipated energy with theoretical values. Fatigue damage evolution in C/SiC and SiC/SiC composites has been compared using damage parameters of fatigue hysteresis dissipated energy and interface shear stress degradation rate. It was found that the interface shear stress degradation rate increases at elevated temperature in air compared with that at room temperature, decreases with increasing loading frequency at room temperature, and increases with increasing fatigue peak stress at room and elevated temperatures. PMID:28773966

  17. Fracture Mechanics Analysis of LH2 Feed Line Flow Liners

    NASA Technical Reports Server (NTRS)

    James, Mark A.; Dawicke, David S.; Brzowski, Matthew B.; Raju, Ivatury S.; Elliott, Kenny B.; Harris, Charles E.

    2006-01-01

    Inspections of the Space Shuttle Main Engine revealed fatigue cracks growing from slots in the flow liner of the liquid hydrogen (LH2) feed lines. During flight, the flow liners experience complex loading induced by flow of LH2 and the resonance characteristics of the structure. The flow liners are made of Inconel 718 and had previously not been considered a fracture critical component. However, fatigue failure of a flow liner could have catastrophic effect on the Shuttle engines. A fracture mechanics study was performed to determine if a damage tolerance approach to life management was possible and to determine the sensitivity to the load spectra, material properties, and crack size. The load spectra were derived separately from ground tests and material properties were obtained from coupon tests. The stress-intensity factors for the fatigue cracks were determined from a shell-dynamics approach that simulated the dominant resonant frequencies. Life predictions were obtained using the NASGRO life prediction code. The results indicated that adequate life could not be demonstrated for initial crack lengths of the size that could be detected by traditional NDE techniques.

  18. Fatigue crack sizing in rail steel using crack closure-induced acoustic emission waves

    NASA Astrophysics Data System (ADS)

    Li, Dan; Kuang, Kevin Sze Chiang; Ghee Koh, Chan

    2017-06-01

    The acoustic emission (AE) technique is a promising approach for detecting and locating fatigue cracks in metallic structures such as rail tracks. However, it is still a challenge to quantify the crack size accurately using this technique. AE waves can be generated by either crack propagation (CP) or crack closure (CC) processes and classification of these two types of AE waves is necessary to obtain more reliable crack sizing results. As the pre-processing step, an index based on wavelet power (WP) of AE signal is initially established in this paper in order to distinguish between the CC-induced AE waves and their CP-induced counterparts. Here, information embedded within the AE signal was used to perform the AE wave classification, which is preferred to the use of real-time load information, typically adopted in other studies. With the proposed approach, it renders the AE technique more amenable to practical implementation. Following the AE wave classification, a novel method to quantify the fatigue crack length was developed by taking advantage of the CC-induced AE waves, the count rate of which was observed to be positively correlated with the crack length. The crack length was subsequently determined using an empirical model derived from the AE data acquired during the fatigue tests of the rail steel specimens. The performance of the proposed method was validated by experimental data and compared with that of the traditional crack sizing method, which is based on CP-induced AE waves. As a significant advantage over other AE crack sizing methods, the proposed novel method is able to estimate the crack length without prior knowledge of the initial crack length, integration of AE data or real-time load amplitude. It is thus applicable to the health monitoring of both new and existing structures.

  19. Environmentally assisted cracking in light water reactors : semiannual report, July 2000 - December 2000.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, O. K.; Chung, H. M.; Gruber, E. E.

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from July 2000 to December 2000. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of primary pressure boundary materials, (b) irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels (SSs), and (c) EAC of Alloys 600 and 690. The fatigue strain-vs.-life data are summarized for the effects of various material, loading, and environmental parameters on the fatigue lives of carbon and low-alloy steels and austenitic SSs. Effects of the reactor coolant environment on themore » mechanism of fatigue crack initiation are discussed. Two methods for incorporating the effects of LWR coolant environments into the ASME Code fatigue evaluations are presented. Slow-strain-rate tensile tests and posttest fractographic analyses were conducted on several model SS alloys irradiated to {approx}0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) in He at 289 C in the Halden reactor. The results were used to determine the influence of alloying and impurity elements on the susceptibility of these steels to IASCC. A fracture toughness J-R curve test was conducted on a commercial heat of Type 304 SS that was irradiated to {approx}2.0 x 10{sup 21} n {center_dot} cm{sup -2} in the Halden reactor. The results were compared with the data obtained earlier on steels irradiated to 0.3 and 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) (0.45 and 1.35 dpa). Neutron irradiation at 288 C was found to decrease the fracture toughness of austenitic SSs. Tests were conducted on compact-tension specimens of Alloy 600 under cyclic loading to evaluate the enhancement of crack growth rates in LWR environments. Then, the existing fatigue crack growth data on Alloys 600 and 690 were analyzed to establish the effects of temperature, load ratio, frequency, and stress intensity range on crack growth rates in air.« less

  20. Fatigue of notched fiber composite laminates. Part 1: Analytical model

    NASA Technical Reports Server (NTRS)

    Mclaughlin, P. V., Jr.; Kulkarni, S. V.; Huang, S. N.; Rosen, B. W.

    1975-01-01

    A description is given of a semi-empirical, deterministic analysis for prediction and correlation of fatigue crack growth, residual strength, and fatigue lifetime for fiber composite laminates containing notches (holes). The failure model used for the analysis is based upon composite heterogeneous behavior and experimentally observed failure modes under both static and fatigue loading. The analysis is consistent with the wearout philosophy. Axial cracking and transverse cracking failure modes are treated together in the analysis. Cracking off-axis is handled by making a modification to the axial cracking analysis. The analysis predicts notched laminate failure from unidirectional material fatique properties using constant strain laminate analysis techniques. For multidirectional laminates, it is necessary to know lamina fatique behavior under axial normal stress, transverse normal stress and axial shear stress. Examples of the analysis method are given.

  1. The Merging of Fatigue and Fracture Mechanics Concepts: A Historical Perspective

    NASA Technical Reports Server (NTRS)

    Newman, James C., Jr.

    1997-01-01

    The seventh Jerry L. Swedlow Memorial Lecture presents a review of some of the technical developments, that have occurred during the past 40 years, which have led to the merger of fatigue and fracture mechanics concepts. This review is made from the viewpoint of 'crack propagation.' As methods to observe the 'fatigue' process have improved, the formation of fatigue micro-cracks have been observed earlier in life and the measured crack sizes have become smaller. These observations suggest that fatigue damage can now be characterized by 'crack size.' In parallel, the crack-growth analysis methods, using stress-intensity factors, have also improved. But the effects of material inhomogeneities, crack-fracture mechanisms, and nonlinear behavior must now be included in these analyses. The discovery of crack-closure mechanisms, such as plasticity, roughness, and oxide/corrosion/fretting product debris, and the use of the effective stress-intensity factor range, has provided an engineering tool to predict small- and large-crack-growth rate behavior under service loading, conditions. These mechanisms have also provided a rationale for developing, new, damage-tolerant materials. This review suggests that small-crack growth behavior should be viewed as typical behavior, whereas large-crack threshold behavior should be viewed as the anomaly. Small-crack theory has unified 'fatigue' and 'fracture mechanics' concepts; and has bridged the cap between safe-life and durability/damage-tolerance design concepts.

  2. Conditioning monitoring by microstructural evaluation of cumulative fatigue damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuoka, C.; Nakagawa, Y.G.; Lance, J.J.

    1996-12-01

    The objective of this work is to evaluate the damage induced below and above the fatigue limit ({Delta}{sigma}{sub t} = 360 MPa) in pressure vessel steels, such as SA508. Fatigue damage was induced in samples taken from an SA508 steel plate by various loading histories in order to examine the influence of prior cyclic loading below the fatigue limit. Cell-to-cell misorientation differences were measured by the selected area diffraction (SAD) method. Surface cracking was also studied by the replication method. Small cracks were observed after precycling both below and above the fatigue limit. It was, however, found that fatigue testmore » bars had a longer lifetime after precycling below the fatigue limit, while precycling above the fatigue limit caused other specimens to fail even when subsequently cycled below the fatigue limit. Cell-to-cell misorientation usually increases with accumulation of fatigue damage, but it was found that the misorientations measured after precycling below the fatigue limit decreased again at the beginning of the subsequent cycling above the fatigue limit. It should be noted that the misorientation at failure was always about 4 to 5 deg, regardless of loading histories. Misorientation showed good correlation with the fatigue lifetime of the samples.« less

  3. FATIGUE OF DENTAL CERAMICS

    PubMed Central

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-01-01

    Objectives Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. Data/sources The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Conclusions Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically-assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Clinical significance Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. PMID:24135295

  4. Fatigue of dental ceramics.

    PubMed

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-12-01

    Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Fatigue behavior of a 2XXX series aluminum alloy reinforced with 15 vol Pct SiCp

    NASA Astrophysics Data System (ADS)

    Bonnen, J. J.; Allison, J. E.; Jones, J. W.

    1991-05-01

    The fatigue behavior of a naturally aged powder metallurgy 2xxx series aluminum alloy (Alcoa MB85) and a composite made of this alloy with 15 vol pct SiCp, has been investigated. Fatigue lives were determined using load-controlled axial testing of unnotched cylindrical samples. The influence of mean stress was determined at stress ratios of -1, 0.1, and 0.7. Mean stress had a significant influence on fatigue life, and this influence was consistent with that normally observed in metals. At each stress ratio, the incorporation of SiC reinforcement led to an increase in fatigue life at low and intermediate stresses. When considered on a strain-life basis, however, the composite materials had a somewhat inferior resistance to fatigue. Fatigue cracks initiated from several different microstructural features or defect types, but fatigue life did not vary significantly with the specific initiation site. As the fatigue crack advanced away from the fatigue crack initiation site, increasing numbers of SiC particles were fractured, in agreement with crack-tip process zone models.

  6. Low-cycle thermal fatigue

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1986-01-01

    A state-of-the-art review is presented of the field of thermal fatigue. Following a brief historical review, the concept is developed that thermal fatigue can be viewed as processes of unbalanced deformation and cracking. The unbalances refer to dissimilar mechanisms occurring in opposing halves of thermal fatigue loading and unloading cycles. Extensive data summaries are presented and results are interpreted in terms of the unbalanced processes involved. Both crack initiation and crack propagation results are summarized. Testing techniques are reviewed, and considerable discussion is given to a technique for thermal fatigue simulation, known as the bithermal fatigue test. Attention is given to the use of isothermal life prediction methods for the prediction of thermal fatigue lives. Shortcomings of isothermally-based life prediction methods are pointed out. Several examples of analyses and thermal fatigue life predictions of high technology structural components are presented. Finally, numerous dos and don'ts relative to design against thermal fatigue are presented.

  7. Minutes of the Conference on the International Committee on Aeronautical Fatigue (10th) Held in Melbourne, Australia on May 1967

    DTIC Science & Technology

    1968-02-01

    Effects A room temperature, axial-loading low-cycle fatigue investigation on 2024 -T4 and 7075--T6 aluminum alloys ...Hudson, C. Michael: Investigation of the Effect of Stress Ratio on Fatigue Crack Growth in 7075-T6 Aluminum Alloy . To be presented at Symposium on...Stress Ratio on Fatigue Crack Growth and Mode of Fracture in 2024 -T4 and 7075-T6 Aluminum Alloys in the Low-Cycle Range. Air Force Materials Laboratory

  8. Fatigue failure of hydrogen embrittled high strength steels

    NASA Technical Reports Server (NTRS)

    Kim, Y. G.; Aleszka, J.

    1975-01-01

    Results of an experimental investigation are presented concerning the fracture behavior of cathodically charged, quenched and tempered martensitic steels under cyclic load conditions. Introduction of H2 by cathodic charging reduced fatigue life by as much as 60%. It is proposed that subsurface transverse fatigue cracks nucleate simultaneously at multiple sites, such as at microcracks, voids, or inclusions. Fatigue crack growth then occurs on planes perpendicular to the major applied stress axis in the presence of the critical combination of applied external stress and hydrogen.

  9. Fatigue life prediction modeling for turbine hot section materials

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.

    1989-01-01

    A major objective of the fatigue and fracture efforts under the NASA Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.

  10. Fatigue life prediction modeling for turbine hot section materials

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.

    1988-01-01

    A major objective of the fatigue and fracture efforts under the Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.

  11. Fatigue crack growth spectrum simplification: Facilitation of on-board damage prognosis systems

    NASA Astrophysics Data System (ADS)

    Adler, Matthew Adam

    2009-12-01

    Better lifetime predictions of systems subjected to fatigue loading are needed in support of the optimization of the costs of life-cycle engineering. In particular, the climate is especially encouraging for the development of safer aircraft. One issue is that aircraft experience complex fatigue loading and current methods for the prediction of fatigue damage accumulation rely on intensive computational tools that are not currently carried onboard during flight. These tools rely on complex models that are made more difficult by the complicated load spectra themselves. This presents an overhead burden as offline analysis must be performed at an offsite facility. This architecture is thus unable to provide online, timely information for on-board use. The direct objective of this research was to facilitate the real-time fatigue damage assessments of on-board systems with a particular emphasis on aging aircraft. To achieve the objective, the goal of this research was to simplify flight spectra. Variable-amplitude spectra, in which the load changes on a cycle-by-cycle basis, cannot readily be supported by an onboard system because the models required to predict fatigue crack growth during variable-amplitude loading are too complicated. They are too complicated because variable-amplitude fatigue crack growth analysis must be performed on a cycle-by-cycle basis as no closed-form solution exists. This makes these calculations too time-consuming and requires impractical, heavy onboard systems or offsite facilities. The hypothesis is to replace a variable-amplitude spectrum with an equivalent constant-amplitude spectrum. The advantage is a dramatic reduction in the complexity of the problem so that damage predictions can be made onboard by simple, fast calculations in real-time without the need to add additional weight to the aircraft. The intent is to reduce the computational burden and facilitate on-board projection of damage evolution and prediction for the accurate monitoring and management of aircraft. A spectrum reduction method was proposed and experimentally validated that reduces a variable-amplitude spectrum to a constant-amplitude equivalent. The reduction from a variable-amplitude (VA) spectrum to a constant-amplitude equivalent (CAE) was proposed as a two-part process. Preliminary spectrum reduction is first performed by elimination of those loading events shown to be too negligible to significantly contribute to fatigue crack growth. This is accomplished by rainflow counting. The next step is to calculate the appropriate, equivalent maximum and minimum loads by means of a root-mean-square average. This reduced spectrum defines the CAE and replaces the original spectrum. The simplified model was experimentally shown to provide the approximately same fatigue crack growth as the original spectrum. Fatigue crack growth experiments for two dissimilar aircraft spectra across a wide-range of stress-intensity levels validated the proposed spectrum reduction procedure. Irrespective of the initial K-level, the constant-amplitude equivalent spectra were always conservative in crack growth rate, and were so by an average of 50% over the full range tested. This corresponds to a maximum 15% overestimation in driving force Delta K. Given other typical sources of scatter that occur during fatigue crack growth, a consistent 50% conservative prediction on crack growth rate is very satisfying. This is especially attractive given the reduction in cost gained by the simplification. We now have a seamless system that gives an acceptably good approximation of damage occurring in the aircraft. This contribution is significant because in a very simple way we now have given a path to bypass the current infrastructure and ground-support requirements. The decision-making is now a lot simpler. In managing an entire fleet we now have a workable system where the strength is in no need for a massive, isolated computational center. The fidelity of the model gives credence because experimental data show that the approximate spectrum model captures the essential spectrum response. The discrepancy between the models is such that an experimental parameter is sufficient to converge the models. The proposed spectrum reduction procedure significantly mitigates the computational burden and allows for the probabilistic assessment of fatigue in real-time. This, in turn, provides support for crack-growth monitoring systems in facilitation of aircraft prognosis and fleet management.

  12. Fracture toughness of hot-pressed beryllium

    NASA Technical Reports Server (NTRS)

    Lemon, D. D.; Brown, W. F., Jr.

    1985-01-01

    This paper presents the results of an investigation into the fracture toughness, sustained-load flaw growth, and fatigue-crack propagation resistance of S200E hot-pressed beryllium at room temperature. It also reviews the literature pertaining to the influence of various factors on the fracture toughness of hot-pressed beryllium determined using fatigue-cracked specimens.

  13. Fatigue crack growth behavior of railroad tank car steel TC-128B subjected to various environments. Volume 1

    DOT National Transportation Integrated Search

    2006-12-01

    As part of an effort to apply damage tolerance concepts to railroad tank cars, the fatigue crack growth (FCG) behavior of two lots of TC-128B steel was investigated. In addition to the material lot difference, variables assessed include: load ratio, ...

  14. Fatigue damage behavior of a surface-mount electronic package under different cyclic applied loads

    NASA Astrophysics Data System (ADS)

    Ren, Huai-Hui; Wang, Xi-Shu

    2014-04-01

    This paper studies and compares the effects of pull-pull and 3-point bending cyclic loadings on the mechanical fatigue damage behaviors of a solder joint in a surface-mount electronic package. The comparisons are based on experimental investigations using scanning electron microscopy (SEM) in-situ technology and nonlinear finite element modeling, respectively. The compared results indicate that there are different threshold levels of plastic strain for the initial damage of solder joints under two cyclic applied loads; meanwhile, fatigue crack initiation occurs at different locations, and the accumulation of equivalent plastic strain determines the trend and direction of fatigue crack propagation. In addition, simulation results of the fatigue damage process of solder joints considering a constitutive model of damage initiation criteria for ductile materials and damage evolution based on accumulating inelastic hysteresis energy are identical to the experimental results. The actual fatigue life of the solder joint is almost the same and demonstrates that the FE modeling used in this study can provide an accurate prediction of solder joint fatigue failure.

  15. An Application of a New Electromagnetic Sensor to Real-Time Monitoring of Fatigue Crack Growth in Thin Metal Plates

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Fulton, J. P.; Wincheski, B.; Clendenin, C. G.

    1993-01-01

    A major part of fracture mechanics is concerned with studying the initiation and propagation of fatigue cracks. This typically requires constant monitoring of crack growth during fatigue cycles which necessitates automation of the whole process. If the rate of crack growth can be determined the experimenter can vary externally controlled parameters such as load level, load cycle frequency and so on. Hence, knowledge of the precise location of the crack tip at any given time is very valuable. One technique currently available for measuring fatigue crack length is the DC potential drop method. The method, however, may be inaccurate if the direction of crack growth deviates considerably from what was assumed initially or the curvature of the crack becomes significant. Another approach is to digitize an optical image of the test specimen surface and then apply a pattern recognition technique to locate the crack tip, but this method is still under development. The present work is an initial study on applying eddy current-type probes to monitoring fatigue crack growth. The performance of two types of electromagnetic probes, a conventional eddy current probe and a newly developed self-nulling probe, was evaluated for the detection characteristics at and near the tips of fatigue cracks. The scan results show that the latter probe provides a very well defined local maximum in its output in the crack tip region suggesting the definite possibility of precisely locating the tip, while the former provides a somewhat ambiguous distribution of the sensor output in the same region. The paper is organized as follows: We start by reviewing the design and performance characteristics of the self-nulling probe and then describe the scan results which demonstrate the basic properties of the self-nulling probe. Next, we provide a brief description of the software developed for tracing a simulated crack and give a brief discussion of the main results of the test. The final section summarizes the major accomplishments of the present work and the elements of the future R&D needs.

  16. The influence of modifications of a fatigue loading history program on fatigue lifetime

    NASA Technical Reports Server (NTRS)

    Branger, J.

    1972-01-01

    Rectangular specimens of 7075 and 2014 aluminum alloys with two holes (stress concentration factor of 3.24) have been tested under axial fatigue loading on a six-rod test bed with modifications of the loading program, the surface particulars, and the frequency. The length of the precrack stage was investigated by use of a new crack detector. In most cases the two alloys behaved similarly, with similar life to crack start under the same loading. Some overloads lengthened the life. Truncation by omission of the lowest peak loads should be limited to about 20 percent of the ultimate load. Simplifying counting methods gave misleading results. Very thin surface layers of anodizing, protection by vinyl, dry nitrogen atmosphere, as well as stepwise reaming or grinding the surface of the holes, lengthened the life; thick anodized layers shortened the life. Compressing the hole surface by rolling had no influence. Frequencies at about 210 to 240 cpm produced shorter lives than those at 40 cpm. At 5.4 cpm the life was considerably longer. A model to better understand the precrack-stage fatigue mechanism is discussed.

  17. A procedure for utilization of a damage-dependent constitutive model for laminated composites

    NASA Technical Reports Server (NTRS)

    Lo, David C.; Allen, David H.; Harris, Charles E.

    1992-01-01

    Described here is the procedure for utilizing a damage constitutive model to predict progressive damage growth in laminated composites. In this model, the effects of the internal damage are represented by strain-like second order tensorial damage variables and enter the analysis through damage dependent ply level and laminate level constitutive equations. The growth of matrix cracks due to fatigue loading is predicted by an experimentally based damage evolutionary relationship. This model is incorporated into a computer code called FLAMSTR. This code is capable of predicting the constitutive response and matrix crack damage accumulation in fatigue loaded laminated composites. The structure and usage of FLAMSTR are presented along with sample input and output files to assist the code user. As an example problem, an analysis of crossply laminates subjected to two stage fatigue loading was conducted and the resulting damage accumulation and stress redistribution were examined to determine the effect of variations in fatigue load amplitude applied during the first stage of the load history. It was found that the model predicts a significant loading history effect on damage evolution.

  18. Crack Closure and Fatigue Crack Growth in 2219-T851 Aluminum Alloy

    DTIC Science & Technology

    1976-08-01

    assumes the length of the crack perimeter to remain es - ’I sentially constant. At the maximum load, the crack is ap- proximately parabolic (or ellipical...for center cracked j specimens) in shape. With unloading, the parabola (or el- lipse) is collapsed. The resulting change in shape produces an apparent...reloading process, the electrical potential remained es - j sentially constant initially and was less than that at the corresponding load during unloading

  19. Computational predictive methods for fracture and fatigue

    NASA Technical Reports Server (NTRS)

    Cordes, J.; Chang, A. T.; Nelson, N.; Kim, Y.

    1994-01-01

    The damage-tolerant design philosophy as used by aircraft industries enables aircraft components and aircraft structures to operate safely with minor damage, small cracks, and flaws. Maintenance and inspection procedures insure that damages developed during service remain below design values. When damage is found, repairs or design modifications are implemented and flight is resumed. Design and redesign guidelines, such as military specifications MIL-A-83444, have successfully reduced the incidence of damage and cracks. However, fatigue cracks continue to appear in aircraft well before the design life has expired. The F16 airplane, for instance, developed small cracks in the engine mount, wing support, bulk heads, the fuselage upper skin, the fuel shelf joints, and along the upper wings. Some cracks were found after 600 hours of the 8000 hour design service life and design modifications were required. Tests on the F16 plane showed that the design loading conditions were close to the predicted loading conditions. Improvements to analytic methods for predicting fatigue crack growth adjacent to holes, when multiple damage sites are present, and in corrosive environments would result in more cost-effective designs, fewer repairs, and fewer redesigns. The overall objective of the research described in this paper is to develop, verify, and extend the computational efficiency of analysis procedures necessary for damage tolerant design. This paper describes an elastic/plastic fracture method and an associated fatigue analysis method for damage tolerant design. Both methods are unique in that material parameters such as fracture toughness, R-curve data, and fatigue constants are not required. The methods are implemented with a general-purpose finite element package. Several proof-of-concept examples are given. With further development, the methods could be extended for analysis of multi-site damage, creep-fatigue, and corrosion fatigue problems.

  20. Computational predictive methods for fracture and fatigue

    NASA Astrophysics Data System (ADS)

    Cordes, J.; Chang, A. T.; Nelson, N.; Kim, Y.

    1994-09-01

    The damage-tolerant design philosophy as used by aircraft industries enables aircraft components and aircraft structures to operate safely with minor damage, small cracks, and flaws. Maintenance and inspection procedures insure that damages developed during service remain below design values. When damage is found, repairs or design modifications are implemented and flight is resumed. Design and redesign guidelines, such as military specifications MIL-A-83444, have successfully reduced the incidence of damage and cracks. However, fatigue cracks continue to appear in aircraft well before the design life has expired. The F16 airplane, for instance, developed small cracks in the engine mount, wing support, bulk heads, the fuselage upper skin, the fuel shelf joints, and along the upper wings. Some cracks were found after 600 hours of the 8000 hour design service life and design modifications were required. Tests on the F16 plane showed that the design loading conditions were close to the predicted loading conditions. Improvements to analytic methods for predicting fatigue crack growth adjacent to holes, when multiple damage sites are present, and in corrosive environments would result in more cost-effective designs, fewer repairs, and fewer redesigns. The overall objective of the research described in this paper is to develop, verify, and extend the computational efficiency of analysis procedures necessary for damage tolerant design. This paper describes an elastic/plastic fracture method and an associated fatigue analysis method for damage tolerant design. Both methods are unique in that material parameters such as fracture toughness, R-curve data, and fatigue constants are not required. The methods are implemented with a general-purpose finite element package. Several proof-of-concept examples are given. With further development, the methods could be extended for analysis of multi-site damage, creep-fatigue, and corrosion fatigue problems.

  1. Cyclic plasticity models and application in fatigue analysis

    NASA Technical Reports Server (NTRS)

    Kalev, I.

    1981-01-01

    An analytical procedure for prediction of the cyclic plasticity effects on both the structural fatigue life to crack initiation and the rate of crack growth is presented. The crack initiation criterion is based on the Coffin-Manson formulae extended for multiaxial stress state and for inclusion of the mean stress effect. This criterion is also applied for the accumulated damage ahead of the existing crack tip which is assumed to be related to the crack growth rate. Three cyclic plasticity models, based on the concept of combination of several yield surfaces, are employed for computing the crack growth rate of a crack plane stress panel under several cyclic loading conditions.

  2. Development of a numerical procedure for mixed mode K-solutions and fatigue crack growth in FCC single crystal superalloys

    NASA Astrophysics Data System (ADS)

    Ranjan, Srikant

    2005-11-01

    Fatigue-induced failures in aircraft gas turbine and rocket engine turbopump blades and vanes are a pervasive problem. Turbine blades and vanes represent perhaps the most demanding structural applications due to the combination of high operating temperature, corrosive environment, high monotonic and cyclic stresses, long expected component lifetimes and the enormous consequence of structural failure. Single crystal nickel-base superalloy turbine blades are being utilized in rocket engine turbopumps and jet engines because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. These materials have orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. Computation of stress intensity factors (SIFs) and the ability to model fatigue crack growth rate at single crystal cracks subject to mixed-mode loading conditions are important parts of developing a mechanistically based life prediction for these complex alloys. A general numerical procedure has been developed to calculate SIFs for a crack in a general anisotropic linear elastic material subject to mixed-mode loading conditions, using three-dimensional finite element analysis (FEA). The procedure does not require an a priori assumption of plane stress or plane strain conditions. The SIFs KI, KII, and KIII are shown to be a complex function of the coupled 3D crack tip displacement field. A comprehensive study of variation of SIFs as a function of crystallographic orientation, crack length, and mode-mixity ratios is presented, based on the 3D elastic orthotropic finite element modeling of tensile and Brazilian Disc (BD) specimens in specific crystal orientations. Variation of SIF through the thickness of the specimens is also analyzed. The resolved shear stress intensity coefficient or effective SIF, Krss, can be computed as a function of crack tip SIFs and the resolved shear stress on primary slip planes. The maximum value of Krss and DeltaKrss was found to determine the crack growth direction and the fatigue crack growth rate respectively. The fatigue crack driving force parameter, DeltaK rss, forms an important multiaxial fatigue damage parameter that can be used to predict life in superalloy components.

  3. Fatigue crack growth at elevated temperature 316 stainless steel and H-13 steel

    NASA Technical Reports Server (NTRS)

    Chen, W. C.; Liu, H. W.

    1976-01-01

    Crack growths were measured at elevated temperatures under four types of loading: pp, pc, cp, and cc. In H-13 steel, all these four types of loading gave nearly the same crack growth rates, and the length of hold time had negligible effects. In AISI 316 stainless steel, the hold time effects on crack growth rate were negligible if the loading was tension-tension type; however, these effects were significant in reversed bending load, and the crack growth rates under these four types of loading varied considerably. Both tensile and compressive hold times caused increased crack growth rate, but the compressive hold period was more deleterious than the tensile one. Metallographic examination showed that all the crack paths under different types of loading were largely transgranular for both CTS tension-tension specimens and SEN reversed cantilever bending specimens. In addition, an electric potential technique was used to monitor crack growth at elevated temperature.

  4. Fatigue and fracture assessment of cracks in steel elements using acoustic emission

    NASA Astrophysics Data System (ADS)

    Nemati, Navid; Metrovich, Brian; Nanni, Antonio

    2011-04-01

    Single edge notches provide a very well defined load and fatigue crack size and shape environment for estimation of the stress intensity factor K, which is not found in welded elements. ASTM SE(T) specimens do not appear to provide ideal boundary conditions for proper recording of acoustic wave propagation and crack growth behavior observed in steel bridges, but do provide standard fatigue crack growth rate data. A modified versions of the SE(T) specimen has been examined to provide small scale specimens with improved acoustic emission(AE) characteristics while still maintaining accuracy of fatigue crack growth rate (da/dN) versus stress intensity factor (ΔK). The specimens intend to represent a steel beam flange subjected to pure tension, with a surface crack growing transverse to a uniform stress field. Fatigue test is conducted at low R ratio. Analytical and numerical studies of stress intensity factor are developed for single edge notch test specimens consistent with the experimental program. ABAQUS finite element software is utilized for stress analysis of crack tips. Analytical, experimental and numerical analysis were compared to assess the abilities of AE to capture a growing crack.

  5. Effects of fatigue and environment on residual strengths of center-cracked graphite/epoxy buffer strip panels

    NASA Technical Reports Server (NTRS)

    Bigelow, Catherine A.

    1989-01-01

    The effects of fatigue, moisture conditioning, and heating on the residual tension strengths of center-cracked graphite/epoxy buffer strip panels were evaluated using specimens made with T300/5208 graphite epoxy in a 16-ply quasi-isotropic layup, with two different buffer strip materials, Kevlar-49 or S-glass. It was found that, for panels subjected to fatigue loading, the residual strengths were not significantly affected by the fatigue loading, the number of repetitions of the loading spectrum, or the maximum strain level. The moisture conditioning reduced the residual strengths of the S-glass buffer strip panels by 10 to 15 percent below the ambient results, but increased the residual strengths of the Kevlar-49 buffer strip panels slightly. For both buffer strip materials, the heat increased the residual strengths of the buffer strip panels slightly over the ambient results.

  6. Mode 2 fatigue crack growth specimen development

    NASA Technical Reports Server (NTRS)

    Buzzard, R. J.; Gross, B.; Srawley, J. E.

    1983-01-01

    A Mode II test specimen was developed which has potential application in understanding phemonena associated with mixed mode fatigue failures in high performance aircraft engine bearing races. The attributes of the specimen are: it contains one single ended notch, which simplifiers data gathering and reduction; the fatigue crack grous in-line with the direction of load application; a single axis test machine is sufficient to perform testing; and the Mode I component is vanishingly small.

  7. Stress Analysis and Fatigue Behaviour of PTFE-Bronze Layered Journal Bearing under Real-Time Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Duman, M. S.; Kaplan, E.; Cuvalcı, O.

    2018-01-01

    The present paper is based on experimental studies and numerical simulations on the surface fatigue failure of the PTFE-bronze layered journal bearings under real-time loading. ‘Permaglide Plain Bearings P10’ type journal bearings were experimentally tested under different real time dynamic loadings by using real time journal bearing test system in our laboratory. The journal bearing consists of a PTFE-bronze layer approximately 0.32 mm thick on the steel support layer with 2.18 mm thick. Two different approaches have been considered with in experiments: (i) under real- time constant loading with varying bearing widths, (ii) under different real-time loadings at constant bearing widths. Fatigue regions, micro-crack dispersion and stress distributions occurred at the journal bearing were experimentally and theoretically investigated. The relation between fatigue region and pressure distributions were investigated by determining the circumferential pressure distribution under real-time dynamic loadings for the position of every 10° crank angles. In the theoretical part; stress and deformation distributions at the surface of the journal bearing analysed by using finite element methods to determine the relationship between stress and fatigue behaviour. As a result of this study, the maximum oil pressure and fatigue cracks were observed in the most heavily loaded regions of the bearing surface. Experimental results show that PTFE-Bronze layered journal bearings fatigue behaviour is better than the bearings include white metal alloy.

  8. Fatigue crack growth behavior of pressure vessel steels and submerged arc weldments in a high-temperature pressurized water environment

    NASA Astrophysics Data System (ADS)

    Liaw, P. K.; Logsdon, W. A.; Begley, J. A.

    1989-10-01

    The fatigue crack growth rate (FCGR) properties of SA508 C1 2a and SA533 Gr A C1 2 pressure vessel steels and the corresponding automatic submerged are weldments were developed in a high-temperature pressurized water (HPW) environment at 288 °C (550°F) and 7.2 MPa (1044 psi) at load ratios of 0.02 and 0.50. The HPW enviromment FCGR properties of these pressure vessel steels and submerged arc weldments were generally conservative, compared with the approrpriate American Society of Mechanical Engineers (ASME) Section XI water environmental reference curve. The growth rate of fatigue cracks in the base materials, however, was considerably faster in the HPW environment than in a corresponding 288°C (550°F) base line air environment. The growth rate of fatigue cracks in the two submerged are weldments was also accelerated in the HPW environment but to a significantly lesser degree than that demonstrated by the corresponding base materials. In the air environment, fatigue striations were observed, independent of material and load ratio, while in the HPW environment, some intergranular facets were present. The greater environmental effect on crack growth rates displayed by the base materials, as compared with the weldments, was attributed to a different sulfide composition and morphology.

  9. Corrosion fatigue studies on a bulk glassy Zr-based alloy under three-point bending

    NASA Astrophysics Data System (ADS)

    Grell, Daniel; Wilkin, Yannic; Gostin, Petre F.; Gebert, Annett; Kerscher, Eberhard

    2016-12-01

    Corrosion fatigue (CF) tests were carried out on bulk glassy Zr52.5Cu17.9Al10Ni14.6Ti5 (Vitreloy 105) samples under load-controlled three-point bending conditions with a load ratio of R = 0.1 in 0.01 M Na2SO4 + 0.01 M NaCl electrolyte. During cyclic testing, the bar-shaped specimens were polarized in situ at constant potentials and the current was monitored. Three different anodic potentials within the interval between the pitting potential EP and the repassivation potential ER, and three different load amplitudes were applied. In some cases, in situ microscopic observations revealed the formation of black corrosion products in the vicinity of the crack tip during anodic polarization. Fractographic analysis revealed a clear distinction between two modes of crack growth characterized by smooth dissolution induced regions on the one hand and slim fast fracture areas on the other hand. Both alternating features contributed to a broad striated corrosion fatigue fracture surface. Moreover, further fatigue tests were carried out under free corrosion conditions yielding additional information on crack initiation and crack propagation period by means of the open circuit potential (OCP) changes. Thereby, a slight increase in OCP was detected after rupture of the passive layer due to bare metal exposed to the electrolyte. The electrochemical response increased continuously according to stable crack propagation until fracture occurred. Finally, the fracture surfaces of the corrosion fatigue samples were investigated by energy dispersive X-ray with the objective of analyzing the elemental distribution after anodic dissolution. Interestingly, anodic polarization at a near repassivation potential of -50 mV vs. SCE (Saturated Calomel Electrode, E = 0.241 V vs. SHE, Standard Hydrogen Electrode) led to favorable effects on the fatigue lifetime. In conclusion, all results are conflated to a corrosion fatigue model for bulk glassy Vitreloy 105 under anodic polarization in chloride-containing electrolyte and compared to the previously proposed stress corrosion mechanisms under similar conditions.

  10. Brittleness Effect on Rock Fatigue Damage Evolution

    NASA Astrophysics Data System (ADS)

    Nejati, Hamid Reza; Ghazvinian, Abdolhadi

    2014-09-01

    The damage evolution mechanism of rocks is one of the most important aspects in studying of rock fatigue behavior. Fatigue damage evolution of three rock types (onyx marble, sandstone and soft limestone) with different brittleness were considered in the present study. Intensive experimental tests were conducted on the chosen rock samples and acoustic emission (AE) sensors were used in some of them to monitor the fracturing process. Experimental tests indicated that brittleness strongly influences damage evolution of rocks in the course of static and dynamic loading. AE monitoring revealed that micro-crack density induced by the applied loads during different stages of the failure processes increases as rock brittleness increases. Also, results of fatigue tests on the three rock types indicated that the rock with the most induced micro-cracks during loading cycles has the least fatigue life. Furthermore, the condition of failure surfaces of the studied rocks samples, subjected to dynamic and static loading, were evaluated and it was concluded that the roughness of failure surfaces is influenced by loading types and rock brittleness. Dynamic failure surfaces were rougher than static ones and low brittle rock demonstrate a smoother failure surface compared to high brittle rock.

  11. Fatigue Crack Growth and Retardation Due to Overloads in Metal-matrix Composites Volume I. Fatigue Crack Growth In Boron-Aluminum Metal-Matrix Composites

    DTIC Science & Technology

    1986-08-01

    respectively ...... ......................... . 61 3.4 Fatigue specimen design curves for 90, 45, and 15 degree orientations in (a), (b), and (c... 61 0.n.500’~~~ .’ 0 * IN lo .00. is 7I=. 2000. Figure 2.12 Strain history from gages along a line 90 degrees to the loading. Notice the high...remover (# SKD -NF/ZC-7B). A developer (# SKD -NF/ZP-9B) was then sprayed on to draw the remaining dye out of the crack, leaving behind a bright red mark where

  12. Near-threshold fatigue behavior of copper alloys in air and aqueous environments: A high cyclic frequency study

    NASA Astrophysics Data System (ADS)

    Ahmed, Tawfik M.

    The near-threshold fatigue crack propagation behavior of alpha-phase copper alloys in desiccated air and several aqueous environments has been investigated. Three commercial alloys of nominal composition Cu-30Ni (Cu-Ni), Cu-30Zn (Cu-Zn) and 90Cu-7Al-3Fe (Cu-Al) were tested. Fatigue tests were conducted using standard prefatigued single edged notched (SEN) specimens loaded in tension at a high frequency of ˜100 Hz. Different R-ratios were employed, mostly at R-ratios of 0.5. Low loading levels were used that corresponded to the threshold and near-threshold regions where Delta Kth ≤ DeltaK ≤ 11 MPa√m. Fatigue tests in the aqueous solutions showed that the effect of different corrosive environments during high frequency testing (˜100 Hz) was not as pronounced as was expected when compared relative to air. Further testing revealed that environmental effects were present and fatigue crack growth rates were influenced by the fluid-induced closure effects which are generally reported in the fatigue literature to be operative only in viscous liquids, not in aqueous solutions. It was concluded that high frequency testing in aqueous environments consistently decreased crack growth rates in a manner similar to crack retardation effects in viscous fluids. Several theoretical models reported in the literature have underestimated, if not failed, to adequately predict the fluid induced closure in aqueous solutions. Results from the desiccated air tests confirmed that, under closure-free conditions (high R-ratios), both threshold values and fatigue crack growth rate of stage II can be related to Young's modulus, in agreement with results from the literature. The role of different mechanical and environmental variables on fatigue behavior becomes most visible in the low R -ratio regime, and contribute to various closure processes.

  13. Influence of crack opening and incident wave angle on second harmonic generation of Lamb waves

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Ng, Ching-Tai; Kotousov, Andrei

    2018-05-01

    Techniques utilising second harmonic generation (SHG) have proven their great potential in detecting contact-type damage. However, the gap between the practical applications and laboratory studies is still quite large. The current work is aimed to bridge this gap by investigating the effects of the applied load and incident wave angle on the detectability of fatigue cracks at various lengths. Both effects are critical for practical implementations of these techniques. The present experimental study supported by three-dimensional (3D) finite element (FE) modelling has demonstrated that the applied load, which changes the crack opening and, subsequently, the contact nonlinearity, significantly affects the amplitude of the second harmonic generated by the fundamental symmetric mode (S0) of Lamb wave. This amplitude is also dependent on the length of the fatigue crack as well as the incident wave angle. The experimental and FE results correlate well, so the modelling approach can be implemented for practical design of damage monitoring systems as well as for the evaluation of the severity of the fatigue cracks.

  14. Characteristics of solder joints under fatigue loads using piezomechanical actuation

    NASA Astrophysics Data System (ADS)

    Shim, Dong-Jin; Spearing, S. Mark

    2003-07-01

    Crack initiation and growth characteristics of solder joints under fatigue loads are investigated using piezomechanical actuation. Cracks in solder joints, which can cause failure in microelectronics components, are induced via piezoelectricity in piezo-ceramic bonded joints. Lead-zirconate-titanate ceramic plates and eutectic Sn-Pb solder bonded in a double-lap shear configuration are used in the investigation. Electric field across each piezo-ceramic plate is applied such that shear stresses/strains are induced in the solder joints. The experiments show that cracks initiate in the solder joints around defects such as voids and grow in length until they coalesce with other cracks from adjacent voids. These observations are compared with the similar thermal cycling tests from the literature to show feasibility and validity of the current method in investigating the fatigue characteristics of solder joints. In some specimens, cracks in the piezo-ceramic plates are observed, and failure in the specimens generally occurred due to piezo-ceramic plate fracture. The issues encountered in implementing this methodology such as low actuation and high processing temperatures are further discussed.

  15. Study of fatigue crack propagation in Ti-1Al-1Mn based on the calculation of cold work evolution

    NASA Astrophysics Data System (ADS)

    Plekhov, O. A.; Kostina, A. A.

    2017-05-01

    The work proposes a numerical method for lifetime assessment for metallic materials based on consideration of energy balance at crack tip. This method is based on the evaluation of the stored energy value per loading cycle. To calculate the stored and dissipated parts of deformation energy an elasto-plastic phenomenological model of energy balance in metals under the deformation and failure processes was proposed. The key point of the model is strain-type internal variable describing the stored energy process. This parameter is introduced based of the statistical description of defect evolution in metals as a second-order tensor and has a meaning of an additional strain due to the initiation and growth of the defects. The fatigue crack rate was calculated in a framework of a stationary crack approach (several loading cycles for every crack length was considered to estimate the energy balance at crack tip). The application of the proposed algorithm is illustrated by the calculation of the lifetime of the Ti-1Al-1Mn compact tension specimen under cyclic loading.

  16. Transient Reliability Analysis Capability Developed for CARES/Life

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    2001-01-01

    The CARES/Life software developed at the NASA Glenn Research Center provides a general-purpose design tool that predicts the probability of the failure of a ceramic component as a function of its time in service. This award-winning software has been widely used by U.S. industry to establish the reliability and life of a brittle material (e.g., ceramic, intermetallic, and graphite) structures in a wide variety of 21st century applications.Present capabilities of the NASA CARES/Life code include probabilistic life prediction of ceramic components subjected to fast fracture, slow crack growth (stress corrosion), and cyclic fatigue failure modes. Currently, this code can compute the time-dependent reliability of ceramic structures subjected to simple time-dependent loading. For example, in slow crack growth failure conditions CARES/Life can handle sustained and linearly increasing time-dependent loads, whereas in cyclic fatigue applications various types of repetitive constant-amplitude loads can be accounted for. However, in real applications applied loads are rarely that simple but vary with time in more complex ways such as engine startup, shutdown, and dynamic and vibrational loads. In addition, when a given component is subjected to transient environmental and or thermal conditions, the material properties also vary with time. A methodology has now been developed to allow the CARES/Life computer code to perform reliability analysis of ceramic components undergoing transient thermal and mechanical loading. This means that CARES/Life will be able to analyze finite element models of ceramic components that simulate dynamic engine operating conditions. The methodology developed is generalized to account for material property variation (on strength distribution and fatigue) as a function of temperature. This allows CARES/Life to analyze components undergoing rapid temperature change in other words, components undergoing thermal shock. In addition, the capability has been developed to perform reliability analysis for components that undergo proof testing involving transient loads. This methodology was developed for environmentally assisted crack growth (crack growth as a function of time and loading), but it will be extended to account for cyclic fatigue (crack growth as a function of load cycles) as well.

  17. Influence of High Cycle Thermal Loads on Thermal Fatigue Behavior of Thick Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1997-01-01

    Thick thermal barrier coating systems in a diesel engine experience severe thermal Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF) during engine operation. In the present study, the mechanisms of fatigue crack initiation and propagation, as well as of coating failure, under thermal loads which simulate engine conditions, are investigated using a high power CO2 laser. In general, surface vertical cracks initiate early and grow continuously under LCF and HCF cyclic stresses. It is found that in the absence of interfacial oxidation, the failure associated with LCF is closely related to coating sintering and creep at high temperatures, which induce tensile stresses in the coating after cooling. Experiments show that the HCF cycles are very damaging to the coating systems. The combined LCF and HCF tests produced more severe coating surface cracking, microspallation and accelerated crack growth, as compared to the pure LCF test. It is suggested that the HCF component cannot only accelerate the surface crack initiation, but also interact with the LCF by contributing to the crack growth at high temperatures. The increased LCF stress intensity at the crack tip due to the HCF component enhances the subsequent LCF crack growth. Conversely, since a faster HCF crack growth rate will be expected with lower effective compressive stresses in the coating, the LCF cycles also facilitate the HCF crack growth at high temperatures by stress relaxation process. A surface wedging model has been proposed to account for the HCF crack growth in the coating system. This mechanism predicts that HCF damage effect increases with increasing temperature swing, the thermal expansion coefficient and the elastic modulus of the ceramic coating, as well as the HCF interacting depth. A good agreement has been found between the analysis and experimental evidence.

  18. Influence of load interactions on crack growth as related to state of stress and crack closure

    NASA Technical Reports Server (NTRS)

    Telesman, J.

    1985-01-01

    Fatigue crack propagation (FCP) after an application of a low-high loading sequence was investigated as a function of specimen thickness and crack closure. No load interaction effects were detected for specimens in a predominant plane strain state. However, for the plane stress specimens, initially high FCP rates after transition to a higher stress intensity range were observed. The difference in observed behavior was explained by examining the effect of the resulting closure stress intensity values on the effective stress intensity range.

  19. Enhanced fatigue endurance of metallic glasses through a staircase-like fracture mechanism.

    PubMed

    Gludovatz, Bernd; Demetriou, Marios D; Floyd, Michael; Hohenwarter, Anton; Johnson, William L; Ritchie, Robert O

    2013-11-12

    Bulk-metallic glasses (BMGs) are now candidate materials for structural applications due to their exceptional strength and toughness. However, their fatigue resistance can be poor and inconsistent, severely limiting their potential as reliable structural materials. As fatigue limits are invariably governed by the local arrest of microscopically small cracks at microstructural features, the lack of microstructure in monolithic glasses, often coupled with other factors, such as the ease of crack formation in shear bands or a high susceptibility to corrosion, can lead to low fatigue limits (some ~1/20 of their tensile strengths) and highly variable fatigue lives. BMG-matrix composites can provide a solution here as their duplex microstructures can arrest shear bands at a second phase to prevent cracks from exceeding critical size; under these conditions, fatigue limits become comparable with those of crystalline alloys. Here, we report on a Pd-based glass that similarly has high fatigue resistance but without a second phase. This monolithic glass displays high intrinsic toughness from extensive shear-band proliferation with cavitation and cracking effectively obstructed. We find that this property can further promote fatigue resistance through extrinsic crack-tip shielding, a mechanism well known in crystalline metals but not previously reported in BMGs, whereby cyclically loaded cracks propagate in a highly "zig-zag" manner, creating a rough "staircase-like" profile. The resulting crack-surface contact (roughness-induced crack closure) elevates fatigue properties to those comparable to crystalline alloys, and the accompanying plasticity helps to reduce flaw sensitivity in the glass, thereby promoting structural reliability.

  20. Enhanced fatigue endurance of metallic glasses through a staircase-like fracture mechanism

    PubMed Central

    Gludovatz, Bernd; Demetriou, Marios D.; Floyd, Michael; Hohenwarter, Anton; Johnson, William L.; Ritchie, Robert O.

    2013-01-01

    Bulk-metallic glasses (BMGs) are now candidate materials for structural applications due to their exceptional strength and toughness. However, their fatigue resistance can be poor and inconsistent, severely limiting their potential as reliable structural materials. As fatigue limits are invariably governed by the local arrest of microscopically small cracks at microstructural features, the lack of microstructure in monolithic glasses, often coupled with other factors, such as the ease of crack formation in shear bands or a high susceptibility to corrosion, can lead to low fatigue limits (some ∼1/20 of their tensile strengths) and highly variable fatigue lives. BMG-matrix composites can provide a solution here as their duplex microstructures can arrest shear bands at a second phase to prevent cracks from exceeding critical size; under these conditions, fatigue limits become comparable with those of crystalline alloys. Here, we report on a Pd-based glass that similarly has high fatigue resistance but without a second phase. This monolithic glass displays high intrinsic toughness from extensive shear-band proliferation with cavitation and cracking effectively obstructed. We find that this property can further promote fatigue resistance through extrinsic crack-tip shielding, a mechanism well known in crystalline metals but not previously reported in BMGs, whereby cyclically loaded cracks propagate in a highly “zig-zag” manner, creating a rough “staircase-like” profile. The resulting crack-surface contact (roughness-induced crack closure) elevates fatigue properties to those comparable to crystalline alloys, and the accompanying plasticity helps to reduce flaw sensitivity in the glass, thereby promoting structural reliability. PMID:24167284

  1. USAF Damage Tolerant Design Handbook: Guidelines for the analysis and Design of Damage Tolerant Aircraft Structures. Revision A

    DTIC Science & Technology

    1979-03-01

    Fatigue Crack Growth (Schr~matic) 5.12 Sustained Load Crack Growth Rate Data for 7075-f651,7079- T651, and 2024 - T351 Aluminum Plate (Ref...Block Programming and Block Size on Crack Growth Life (All histories Have Same Cycle Content) Alloy : 2024 -T3 Aluminum (Ref. 38) 5.21 Yield Zone Due to...4340 Steel in Humid Air," ASM Trans 58, 46-53 (1965). 20. Meyn, D.A., "Frequency and Amplitude Effects on Corrosion Fatigue Cracks in a Titanium Alloy

  2. Corrosion Fatigue Crack Growth Behavior at Notched Hole in 7075 T6 Under Different Biaxial Stress Ratios

    DTIC Science & Technology

    2016-08-18

    structure [24]. 4 Researchers have already started studying crack propagation and the affect of environments on the crack growth behavior [24]. In this...saltwater environment have been started to be conducted [24, 25]. Many of these studies have focused on positive biaxial loading cases . No conclusive...between positive biaxial loading cases and negative biaxial loading cases having the same experimental setup, to study the effect of negative

  3. Fatigue Crack Growth Threshold Testing of Metallic Rotorcraft Materials

    NASA Technical Reports Server (NTRS)

    Newman, John A.; James, Mark A.; Johnson, William M.; Le, Dy D.

    2008-01-01

    Results are presented for a program to determine the near-threshold fatigue crack growth behavior appropriate for metallic rotorcraft alloys. Four alloys, all commonly used in the manufacture of rotorcraft, were selected for study: Aluminum alloy 7050, 4340 steel, AZ91E Magnesium, and Titanium alloy Ti-6Al-4V (beta-STOA). The Federal Aviation Administration (FAA) sponsored this research to advance efforts to incorporate damage tolerance design and analysis as requirements for rotorcraft certification. Rotorcraft components are subjected to high cycle fatigue and are typically subjected to higher stresses and more stress cycles per flight hour than fixed-wing aircraft components. Fatigue lives of rotorcraft components are generally spent initiating small fatigue cracks that propagate slowly under near-threshold cracktip loading conditions. For these components, the fatigue life is very sensitive to the near-threshold characteristics of the material.

  4. Creep-fatigue interaction at high temperature; Proceedings of the Symposium, 112th ASME Winter Annual Meeting, Atlanta, GA, Dec. 1-6, 1991

    NASA Astrophysics Data System (ADS)

    Haritos, George K.; Ochoa, O. O.

    Various papers on creep-fatigue interaction at high temperature are presented. Individual topics addressed include: analysis of elevated temperature fatigue crack growth mechanisms in Alloy 718, physically based microcrack propagation laws for creep-fatigue-environment interaction, in situ SEM observation of short fatigue crack growth in Waspaloy at 700 C under cyclic and dwell conditions, evolution of creep-fatigue life prediction models, TMF design considerations in turbine airfoils of advanced turbine engines. Also discussed are: high temperature fatigue life prediction computer code based on the total strain version of strainrange partitioning, atomic theory of thermodynamics of internal variables, geometrically nonlinear analysis of interlaminar stresses in unsymmetrically laminated plates subjected to uniform thermal loading, experimental investigation of creep crack tip deformation using moire interferometry. (For individual items see A93-31336 to A93-31344)

  5. A study of spectrum fatigue crack propagation in two aluminum alloys. 1: Spectrum simplification

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Antolovich, S. D.

    1985-01-01

    The fatigue crack propagation behavior of two commercial Al alloys was studied using spectrum loading conditions characteristics of those encountered at critical locations in high performance fighter aircraft. A tension dominated (TD) and tension compression (TC) spectrum were employed for each alloy. Using a mechanics-based analysis, it was suggested that negative loads could be eliminated for the TC spectrum for low to intermediate maximum stress intensities. The suggestion was verified by subsequent testing. Using fractographic evidence, it was suggested that a further similification in the spectra could be accomplished by eliminating low and intermediate peak load points resulting in near or below threshold maximum peak stress intensity values. It is concluded that load interactions become more important at higher stress intensities and more plasticity at the crack tip. These results suggest that a combined mechanics/fractographic mechanisms approach can be used to simplify other complex spectra.

  6. Accelerated Aging Experiments for Prognostics of Damage Growth in Composite Materials

    DTIC Science & Technology

    2011-09-01

    possible resource to collect such data is an accelerated aging platform. To that end this paper describes a fatigue cycling experiment with the goal to...possible resource to collect such data is an accelerated aging platform. To that end this paper describes a fatigue cycling experiment with the goal to...suffer from two damage types: matrix micro-cracks and inter- laminar delamination. When subject to fatigue loading matrix micro-cracks develop in the

  7. Crack Initiation and Growth Behavior at Corrosion Pit in 7075-T6 Under Biaxial and Uniaxial Fatigue

    DTIC Science & Technology

    2014-06-19

    al. examined the effect of biaxial loading on the fatigue crack growth [52]. They conducted their fatigue tests on SUS 304 stainless steel using a...specimens. Their experiments were carried out on cruciform test coupons using a digitally controlled four actuator biaxial testing system. Steel ...as shown in Figure 3.7. The test specimen was placed between two stainless steel chambers. These chambers were connected together using screws, and

  8. Fatigue-Crack-Growth Behavior of Two Pipeline Steels

    DOE PAGES

    Chen, Bilin; Wang, Gongyao; Chen, Shuying; ...

    2016-10-17

    This paper focuses on studying the fatigue-crack-growth behavior of two types of pipeline steels, and investigating their microstructural differences, which could influence the fatigue behavior. For fatigue experiments, compact-tension (CT) specimens are employed. These two kinds of base pipeline steels are Alloy B [Fe-0.05C-1.52Mn-0.12Si-0.092Nb, weight percent (wt.%)] and Alloy C [(Fe- 0.04C-1.61Mn-0.14Si-0.096Nb, wt.%)]. They have been tested at various frequencies (10 Hz, 1 Hz, and 0.1 Hz) and different R ratios (0.1 and 0.5, R = P min./P max. where P min. is the minimum applied load, and P max. is the maximum applied load) in air. The effects ofmore » frequencies and R ratios on crackpropagation behavior are compared. The microstructures of fracture surfaces are investigated, using both scanning-electron microscopy (SEM) and transmission-electron microscopy (TEM). It is concluded that higher R ratios lead to faster crack-growth rates, while frequency does not have much influence on the fatigue-crack-growth rates. Moreover, Alloy B (Fe-0.05C-1.52Mn-0.12Si-0.092Nb, wt.%) tends to have better fatigue resistance than Alloy C (Fe-0.04C-1.61Mn-0.14Si-0.096Nb, wt.%) under various test conditions in air.« less

  9. Fatigue-Crack-Growth Behavior of Two Pipeline Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bilin; Wang, Gongyao; Chen, Shuying

    This paper focuses on studying the fatigue-crack-growth behavior of two types of pipeline steels, and investigating their microstructural differences, which could influence the fatigue behavior. For fatigue experiments, compact-tension (CT) specimens are employed. These two kinds of base pipeline steels are Alloy B [Fe-0.05C-1.52Mn-0.12Si-0.092Nb, weight percent (wt.%)] and Alloy C [(Fe- 0.04C-1.61Mn-0.14Si-0.096Nb, wt.%)]. They have been tested at various frequencies (10 Hz, 1 Hz, and 0.1 Hz) and different R ratios (0.1 and 0.5, R = P min./P max. where P min. is the minimum applied load, and P max. is the maximum applied load) in air. The effects ofmore » frequencies and R ratios on crackpropagation behavior are compared. The microstructures of fracture surfaces are investigated, using both scanning-electron microscopy (SEM) and transmission-electron microscopy (TEM). It is concluded that higher R ratios lead to faster crack-growth rates, while frequency does not have much influence on the fatigue-crack-growth rates. Moreover, Alloy B (Fe-0.05C-1.52Mn-0.12Si-0.092Nb, wt.%) tends to have better fatigue resistance than Alloy C (Fe-0.04C-1.61Mn-0.14Si-0.096Nb, wt.%) under various test conditions in air.« less

  10. Implementation and Validation of the Viscoelastic Continuum Damage Theory for Asphalt Mixture and Pavement Analysis in Brazil

    NASA Astrophysics Data System (ADS)

    Nascimento, Luis Alberto Herrmann do

    This dissertation presents the implementation and validation of the viscoelastic continuum damage (VECD) model for asphalt mixture and pavement analysis in Brazil. It proposes a simulated damage-to-fatigue cracked area transfer function for the layered viscoelastic continuum damage (LVECD) program framework and defines the model framework's fatigue cracking prediction error for asphalt pavement reliability-based design solutions in Brazil. The research is divided into three main steps: (i) implementation of the simplified viscoelastic continuum damage (S-VECD) model in Brazil (Petrobras) for asphalt mixture characterization, (ii) validation of the LVECD model approach for pavement analysis based on field performance observations, and defining a local simulated damage-to-cracked area transfer function for the Fundao Project's pavement test sections in Rio de Janeiro, RJ, and (iii) validation of the Fundao project local transfer function to be used throughout Brazil for asphalt pavement fatigue cracking predictions, based on field performance observations of the National MEPDG Project's pavement test sections, thereby validating the proposed framework's prediction capability. For the first step, the S-VECD test protocol, which uses controlled-on-specimen strain mode-of-loading, was successfully implemented at the Petrobras and used to characterize Brazilian asphalt mixtures that are composed of a wide range of asphalt binders. This research verified that the S-VECD model coupled with the GR failure criterion is accurate for fatigue life predictions of Brazilian asphalt mixtures, even when very different asphalt binders are used. Also, the applicability of the load amplitude sweep (LAS) test for the fatigue characterization of the asphalt binders was checked, and the effects of different asphalt binders on the fatigue damage properties of the asphalt mixtures was investigated. The LAS test results, modeled according to VECD theory, presented a strong correlation with the asphalt mixtures' fatigue performance. In the second step, the S-VECD test protocol was used to characterize the asphalt mixtures used in the 27 selected Fundao project test sections and subjected to real traffic loading. Thus, the asphalt mixture properties, pavement structure data, traffic loading, and climate were input into the LVECD program for pavement fatigue cracking performance simulations. The simulation results showed good agreement with the field-observed distresses. Then, a damage shift approach, based on the initial simulated damage growth rate, was introduced in order to obtain a unique relationship between the LVECD-simulated shifted damage and the pavement-observed fatigue cracked areas. This correlation was fitted to a power form function and defined as the averaged reduced damage-to-cracked area transfer function. The last step consisted of using the averaged reduced damage-to-cracked area transfer function that was developed in the Fundao project to predict pavement fatigue cracking in 17 National MEPDG project test sections. The procedures for the material characterization and pavement data gathering adopted in this step are similar to those used for the Fundao project simulations. This research verified that the transfer function defined for the Fundao project sections can be used for the fatigue performance predictions of a wide range of pavements all over Brazil, as the predicted and observed cracked areas for the National MEPDG pavements presented good agreement, following the same trends found for the Fundao project pavement sites. Based on the prediction errors determined for all 44 pavement test sections (Fundao and National MEPDG test sections), the proposed framework's prediction capability was determined so that reliability-based solutions can be applied for flexible pavement design. It was concluded that the proposed LVECD program framework has very good fatigue cracking prediction capability.

  11. Creep-Fatigue Failure Diagnosis

    PubMed Central

    Holdsworth, Stuart

    2015-01-01

    Failure diagnosis invariably involves consideration of both associated material condition and the results of a mechanical analysis of prior operating history. This Review focuses on these aspects with particular reference to creep-fatigue failure diagnosis. Creep-fatigue cracking can be due to a spectrum of loading conditions ranging from pure cyclic to mainly steady loading with infrequent off-load transients. These require a range of mechanical analysis approaches, a number of which are reviewed. The microstructural information revealing material condition can vary with alloy class. In practice, the detail of the consequent cracking mechanism(s) can be camouflaged by oxidation at high temperatures, although the presence of oxide on fracture surfaces can be used to date events leading to failure. Routine laboratory specimen post-test examination is strongly recommended to characterise the detail of deformation and damage accumulation under known and well-controlled loading conditions to improve the effectiveness and efficiency of failure diagnosis. PMID:28793676

  12. Environmental fatigue of an Al-Li-Cu alloy. Part 3: Modeling of crack tip hydrogen damage

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Gangloff, Richard P.

    1992-01-01

    Environmental fatigue crack propagation rates and microscopic damage modes in Al-Li-Cu alloy 2090 (Parts 1 and 2) are described by a crack tip process zone model based on hydrogen embrittlement. Da/dN sub ENV equates to discontinuous crack advance over a distance, delta a, determined by dislocation transport of dissolved hydrogen at plastic strains above a critical value; and to the number of load cycles, delta N, required to hydrogenate process zone trap sites that fracture according to a local hydrogen concentration-tensile stress criterion. Transgranular (100) cracking occurs for process zones smaller than the subgrain size, and due to lattice decohesion or hydride formation. Intersubgranular cracking dominates when the process zone encompasses one or more subgrains so that dislocation transport provides hydrogen to strong boundary trapping sites. Multi-sloped log da/dN-log delta K behavior is produced by process zone plastic strain-hydrogen-microstructure interactions, and is determined by the DK dependent rates and proportions of each parallel cracking mode. Absolute values of the exponents and the preexponential coefficients are not predictable; however, fractographic measurements theta sub i coupled with fatigue crack propagation data for alloy 2090 established that the process zone model correctly describes fatigue crack propagation kinetics. Crack surface films hinder hydrogen uptake and reduce da/dN and alter the proportions of each fatigue crack propagation mode.

  13. The onset and evolution of fatigue-induced abnormal grain growth in nanocrystalline Ni–Fe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furnish, T. A.; Mehta, A.; Van Campen, D.

    Conventional structural metals suffer from fatigue-crack initiation through dislocation activity which forms persistent slip bands leading to notch-like extrusions and intrusions. Ultrafine-grained and nanocrystalline metals can potentially exhibit superior fatigue-crack initiation resistance by suppressing these cumulative dislocation activities. Prior studies on these metals have confirmed improved high-cycle fatigue performance. In the case of nano-grained metals, analyses of subsurface crack initiation sites have indicated that the crack nucleation is associated with abnormally large grains. But, these post-mortem analyses have led to only speculation about when abnormal grain growth occurs (e.g., during fatigue, after crack initiation, or during crack growth). In thismore » study, a recently developed synchrotron X-ray diffraction technique was used to detect the onset and progression of abnormal grain growth during stress-controlled fatigue loading. Our study provides the first direct evidence that the grain coarsening is cyclically induced and occurs well before final fatigue failure—our results indicate that the first half of the fatigue life was spent prior to the detectable onset of abnormal grain growth, while the second half was spent coarsening the nanocrystalline structure and cyclically deforming the abnormally large grains until crack initiation. Post-mortem fractography, coupled with cycle-dependent diffraction data, provides the first details regarding the kinetics of this abnormal grain growth process during high-cycle fatigue testing. Finally, precession electron diffraction images collected in a transmission electron microscope after the in situ fatigue experiment also confirm the X-ray evidence that the abnormally large grains contain substantial misorientation gradients and sub-grain boundaries.« less

  14. The onset and evolution of fatigue-induced abnormal grain growth in nanocrystalline Ni–Fe

    DOE PAGES

    Furnish, T. A.; Mehta, A.; Van Campen, D.; ...

    2016-10-11

    Conventional structural metals suffer from fatigue-crack initiation through dislocation activity which forms persistent slip bands leading to notch-like extrusions and intrusions. Ultrafine-grained and nanocrystalline metals can potentially exhibit superior fatigue-crack initiation resistance by suppressing these cumulative dislocation activities. Prior studies on these metals have confirmed improved high-cycle fatigue performance. In the case of nano-grained metals, analyses of subsurface crack initiation sites have indicated that the crack nucleation is associated with abnormally large grains. But, these post-mortem analyses have led to only speculation about when abnormal grain growth occurs (e.g., during fatigue, after crack initiation, or during crack growth). In thismore » study, a recently developed synchrotron X-ray diffraction technique was used to detect the onset and progression of abnormal grain growth during stress-controlled fatigue loading. Our study provides the first direct evidence that the grain coarsening is cyclically induced and occurs well before final fatigue failure—our results indicate that the first half of the fatigue life was spent prior to the detectable onset of abnormal grain growth, while the second half was spent coarsening the nanocrystalline structure and cyclically deforming the abnormally large grains until crack initiation. Post-mortem fractography, coupled with cycle-dependent diffraction data, provides the first details regarding the kinetics of this abnormal grain growth process during high-cycle fatigue testing. Finally, precession electron diffraction images collected in a transmission electron microscope after the in situ fatigue experiment also confirm the X-ray evidence that the abnormally large grains contain substantial misorientation gradients and sub-grain boundaries.« less

  15. Experimental and analytical study of fatigue damage in notched graphite/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Whitcomb, J. D.

    1979-01-01

    Both tension and compression fatigue behaviors were investigated in four notched graphite/epoxy laminates. After fatigue loading, specimens were examined for damage type and location using visual inspection, light microscopy, scanning electron microscopy, ultrasonic C-scans, and X-radiography. Delamination and ply cracking were found to be the dominant types of fatigue damage. In general, ply cracks did not propagate into adjacent plies of differing fiber orientation. To help understand the varied fatigue observations, the interlaminar stress distribution was calculated with finite element analysis for the regions around the hole and along the straight free edge. Comparison of observed delamination locations with the calculated stresses indicated that both interlaminar shear and peel stresses must be considered when predicting delamination. The effects of the fatigue cycling on residual strength and stiffness were measured for some specimens of each laminate type. Fatigue loading generally caused only small stiffness losses. In all cases, residual strengths were greater than or equal to the virgin strengths.

  16. Simulation of Delamination Propagation in Composites Under High-Cycle Fatigue by Means of Cohesive-Zone Models

    NASA Technical Reports Server (NTRS)

    Turon, Albert; Costa, Josep; Camanho, Pedro P.; Davila, Carlos G.

    2006-01-01

    A damage model for the simulation of delamination propagation under high-cycle fatigue loading is proposed. The basis for the formulation is a cohesive law that links fracture and damage mechanics to establish the evolution of the damage variable in terms of the crack growth rate dA/dN. The damage state is obtained as a function of the loading conditions as well as the experimentally-determined coefficients of the Paris Law crack propagation rates for the material. It is shown that by using the constitutive fatigue damage model in a structural analysis, experimental results can be reproduced without the need of additional model-specific curve-fitting parameters.

  17. Investigation of tension-compression fatigue behavior of a cross-ply metal matrix composite at room and elevated temperatures. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyum, E.A.

    1993-12-01

    This research, the first load-controlled tension-compression fatigue testing to be performed on a MMC, extends the existing knowledge of MMC fatigue damage mechanisms to include the tension compression loading condition. To accomplish this, a (0/90)2, SCS-6/Ti-15-3 laminate was subjected to tension-tension fatigue at room temperature, and tension-compression fatigue at both room temperature and 427 deg C. Stress and strain data was taken to evaluate the macro-mechanic behavior of the material. Microscopy and fractography were performed to characterize the damage on a micro-mechanic level. On a maximum applied stress basis, the room temperature tension-tension specimens had longer fatigue lives than themore » room temperature tension-compression specimens. The room and high temperature tension-compression fatigue lives were nearly identical in the fiber-dominated high stress region of the SN curve. However, the increased ductility and diffused plasticity of the titanium matrix at 427 deg C delayed the onset and severity of matrix cracking, and thus increased the elevated temperature fatigue lives in the matrix dominated region of the SN curve. In all cases, matrix damage initiated at reaction zone cracks which nucleated both matrix plasticity and matrix cracking. Metal matrix composite, Elevated temperature, Fatigue testing, Compression, Fully-reversed, Titanium, Silicon carbide.« less

  18. Improvement on the Fatigue Performance of 2024-T4 Alloy by Synergistic Coating Technology

    PubMed Central

    Wang, Xi-Shu; Guo, Xing-Wu; Li, Xu-Dong; Ge, Dong-Yun

    2014-01-01

    In this paper, rotating bending fatigue tests of 2024-T4 Al alloy with different oxide coatings were carried out. Compared to the uncoated and previously reported oxide coatings of aluminum alloys, the fatigue strength is able to be enhanced by using a novel oxide coating with sealing pore technology. These results indicate that the better the coating surface quality is, the more excellent the fatigue performance under rotating bending fatigue loading is. The improvement on the fatigue performance is mainly because the fatigue crack initiation and the early stage of fatigue crack growth at the coating layer can be delayed after PEO coating with pore sealing. Therefore, it is a so-called synergistic coating technology for various uses, including welding thermal cracks and filling micro-pores. The effects of different oxide coatings on surface hardness, compressive residual stress, morphology and fatigue fracture morphology are discussed. A critical compressive residual stress of about 95–100 MPa is proposed. PMID:28788634

  19. A study of fatigue and fracture in 7075-T6 aluminum alloy in vacuum and air environments

    NASA Technical Reports Server (NTRS)

    Hudson, C. M.

    1973-01-01

    Axial load fatigue life, fatigue-crack propagation, and fracture toughness experiments were conducted on sheet specimens made of 7075-T6 aluminum alloy. These experiments were conducted at pressures ranging from atmospheric to 5 x 10 to the minus 8th torr. Analysis of the results from the fatigue life experiments indicated that for a given stress level, lower air pressures produced longer fatigue lives. At a pressure of 5 x 10 to the minus 8th torr fatigue lives were 15 or more times as long as at atmospheric pressure. Analysis of the results from the fatigue crack propagation experiments indicated that for small stress intensity factor ranges the fatigue crack propagation rates were up to twice as high at atmospheric pressure as in vacuum. The fracture toughness of 7075-T6 was unaffected by the vacuum environment. Fractographic examination showed that specimens tested in both vacuum and air developed fatigue striations. Considerably more striations developed on specimens tested at atmospheric pressure, however.

  20. Fatigue Crack Topography.

    DTIC Science & Technology

    1984-01-01

    nominal cycle frequency of 15 Hz. Buckling of the specimens during compression loading was prevented by felt-lined aluminium alloy antibuckling guides...evaluating ciack initiation time and crack propagation, prgram I was used for performing the major fatigue test with the aircraft structure. In...direction of the notch to prevent scratches in the through-the-thickness direction. Prior to testing, the notch surfaces were lightly etched to reveal

  1. Fatigue and fail-safe design features of the DC-10 airplane

    NASA Technical Reports Server (NTRS)

    Stone, M. E.

    1972-01-01

    The philosophy and methods used in the design of the DC-10 aircraft to assure structural reliability against cracks under repeated service loads are described in detail. The approach consists of three complementary parts: (1) the structure is designed to be fatigue resistant for a crack-free life of 60,000 flight hours; (2) inasmuch as small undetected cracks could develop from other sources, such as material flaws and manufacturing preloads, the structure also is designed to arrest and control cracks within a reasonable service-inspection interval; and (3) a meaningful service-inspection program has been defined on the basis of analysis and test experience from the design development program. This service-inspection program closes the loop to assure the structural integrity of the DC-10 airframe. Selected materials, fasteners, and structural arrangements are used to achieve these design features with minimum structural weight and with economy in manufacturing and maintenance. Extensive analyses and testing were performed to develop and verify the design. The basic design considerations for fatigue-resistant structure are illustrated in terms of material selection, design loads spectra, methods for accurate stress and fatigue damage analysis, and proven concepts for efficient detail design.

  2. Degradation in the fatigue crack growth resistance of human dentin by lactic acid

    PubMed Central

    Orrego, Santiago; Xu, Huakun; Arola, Dwayne

    2017-01-01

    The oral cavity frequently undergoes localized changes in chemistry and level of acidity, which threatens the integrity of the restorative material and supporting hard tissue. The focus of this study was to evaluate the changes in fatigue crack growth resistance of dentin and toughening mechanisms caused by lactic acid exposure. Compact tension specimens of human dentin were prepared from unrestored molars and subjected to Mode I opening mode cyclic loads. Fatigue crack growth was achieved in samples from mid- and outer-coronal dentin immersed in either a lactic acid solution or neutral conditions. An additional evaluation of the influence of sealing the lumens by dental adhesive was also conducted. A hybrid analysis combining experimental results and finite element modeling quantified the contribution of the toughening mechanisms for both environments. The fatigue crack growth responses showed that exposure to lactic acid caused a significant reduction (p≤0.05) of the stress intensity threshold for cyclic crack extension, and a significant increase (p≤0.05) in the incremental fatigue crack growth rate for both regions of coronal dentin. Sealing the lumens had negligible influence on the fatigue resistance. The hybrid analysis showed that the acidic solution was most detrimental to the extrinsic toughening mechanisms, and the magnitude of crack closure stresses operating in the crack wake. Exposing dentin to acidic environments contributes to the development of caries, but it also increases the chance of tooth fractures via fatigue-related failure and at lower mastication forces. PMID:28183665

  3. Modeling Fatigue Damage Onset and Progression in Composites Using an Element-Based Virtual Crack Closure Technique Combined With the Floating Node Method

    NASA Technical Reports Server (NTRS)

    De Carvalho, Nelson V.; Krueger, Ronald

    2016-01-01

    A new methodology is proposed to model the onset and propagation of matrix cracks and delaminations in carbon-epoxy composites subject to fatigue loading. An extended interface element, based on the Floating Node Method, is developed to represent delaminations and matrix cracks explicitly in a mesh independent fashion. Crack propagation is determined using an element-based Virtual Crack Closure Technique approach to determine mixed-mode energy release rates, and the Paris-Law relationship to obtain crack growth rate. Crack onset is determined using a stressbased onset criterion coupled with a stress vs. cycle curve and Palmgren-Miner rule to account for fatigue damage accumulation. The approach is implemented in Abaqus/Standard® via the user subroutine functionality. Verification exercises are performed to assess the accuracy and correct implementation of the approach. Finally, it was demonstrated that this approach captured the differences in failure morphology in fatigue for two laminates of identical stiffness, but with layups containing ?deg plies that were either stacked in a single group, or distributed through the laminate thickness.

  4. Relation of cyclic loading pattern to microstructural fracture in creep fatigue

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Halford, G. R.; Oldrieve, R. E.

    1983-01-01

    Creep-fatigue-environment interaction is discussed using the 'strainrange partitioning' (SRP) framework as a basis. The four generic SRP strainrange types are studied with a view of revealing differences in micromechanisms of deformation and fatigue degradation. Each combines in a different manner the degradation associated with slip-plane sliding, grain-boundary sliding, migration, cavitation, void development and environmental interaction; hence the approch is useful in delineating the relative importance of these mechanisms in the different loadings. Micromechanistic results are shown for a number of materials, including 316 SS, wrought heat resistant alloys, several nickel-base superalloys, and a tantalum base alloy, T-111. Although there is a commonality of basic behavior, the differences are useful in delineation several important principles of interpretation. Some quantitative results are presented for 316 SS, involving crack initiation and early crack growth, as well as the interaction of low-cycle fatigue with high-cycle fatigue.

  5. Durability of polymer/metal interfaces under cyclic loading

    NASA Astrophysics Data System (ADS)

    Du, Tianbao

    Fatigue crack growth along metal/epoxy interface was examined in an aqueous environment and under mixed-mode conditions. A stress corrosion cracking mechanism was identified in this process. The fatigue crack growth rate in an aqueous environment was increased by several orders of magnitude and the fatigue threshold decreased by a factor of 10. The loss of adhesion in the aqueous environment was induced by the hydration of the surface oxide which resulted in a hydroxide with poor adhesion to the substrate metal. Self-assembled monolayer of long chain alkyl phosphonic acid and amino phosphonic acid were synthesized to enhance the adhesion and improve the durability of Al/epoxy interfacial bonding system. The same approach was taken to promote adhesion between copper and epoxy, where a two-component coupling system of 11-mercapto-1-undercanol and 3-aminopropyltriethoxysilane provided the most significant improvement in the copper/epoxy adhesion. The mixed-mode was applied by a piezoelectric actuator. Subcritical crack growth was observed along the epoxy/aluminum interface and the growth rate was found to depend on the magnitude of the applied electric field. Kinetics of the crack growth was correlated with the piezoelectric driving force. The resulting crack growth behavior was compared with the results from the conventional mechanical testing technique. Large differences were found between these two methods. Using this newly developed technique, effects of loading mode and frequency were studied. The fatigue resistance was found to increase with the mode II component and was expressed as a function of the KII/K I ratio. A strong frequency effect was observed for the subcritical crack growth along the Al/Epoxy interface, their fatigue resistance increased with the testing frequency.

  6. Fatigue Crack Propagation from Notched Specimens of 304 SS in elevated Temperature Aqueous Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wire, G. L.; Mills, W. J.

    2002-08-01

    Fatigue crack propagation (FCP) rates for 304 stainless steel (304SS) were determined in 24 degree C and 288 degree C air and 288 degree C water using double-edged notch (DEN) specimens of 304 stainless steel (304 SS). Test performed at matched loading conditions in air and water at 288 degree C with 20-6- cc h[sub]2/kg h[sub]2O provided a direct comparison of the relative crack growth rates in air and water over a wide range of crack growth rates. The DEN crack extension ranged from short cracks (0.03-0.25 mm) to long cracks up to 4.06 mm, which are consistent with conventionalmore » deep crack tests. Crack growth rates of 304 SS in water were about 12 times the air rate. This 12X environmental enhancement persisted to crack extensions up to 4.06 mm, far outside the range associated with short crack effects. The large environmental degradation for 304 SS crack growth is consistent with the strong reduction of fatigue life in high hydrogen water. Further, very similar environmental effects w ere reported in fatigue crack growth tests in hydrogen water chemistry (HWC). Most literature data in high hydrogen water show only a mild environmental effect for 304 SS, of order 2.5 times air or less, but the tests were predominantly performed at high cyclic stress intensity or equivalently, high air rates. The environmental effect in low oxygen environments at low stress intensity depends strongly on both the stress ratio, R, and the load rise time, T[sub]r, as recently reported for austenitic stainless steel in BWR water. Fractography was performed for both tests in air and water. At 288 degree C in water, the fracture surfaces were crisply faceted with a crystallographic appearance, and showed striations under high magnification. The cleavage-like facets on the fracture surfaces suggest that hydrogen embrittlement is the primary cause of accelerated cracking.« less

  7. Very High Cycle Fatigue Behavior of a Directionally Solidified Ni-Base Superalloy DZ4

    PubMed Central

    Nie, Baohua; Zhao, Zihua; Liu, Shu; Chen, Dongchu; Ouyang, Yongzhong; Hu, Zhudong; Fan, Touwen; Sun, Haibo

    2018-01-01

    The effect of casting pores on the very high cycle fatigue (VHCF) behavior of a directionally solidified (DS) Ni-base superalloy DZ4 is investigated. Casting and hot isostatic pressing (HIP) specimens were subjected to very high cycle fatigue loading in an ambient atmosphere. The results demonstrated that the continuously descending S-N curves were exhibited for both the casting and HIP specimens. Due to the elimination of the casting pores, the HIP samples had better fatigue properties than the casting samples. The subsurface crack initiated from the casting pore in the casting specimens at low stress amplitudes, whereas fatigue crack initiated from crystallographic facet decohesion for the HIP specimens. When considering the casting pores as initial cracks, there exists a critical stress intensity threshold ranged from 1.1 to 1.3 MPam, below which fatigue cracks may not initiate from the casting pores. Furthermore, the effect of the casting pores on the fatigue limit is estimated based on a modified El Haddad model, which is in good agreement with the experimental results. Fatigue life for both the casting and HIP specimens is well predicted using the Fatigue Indicator Parameter (FIP) model. PMID:29320429

  8. Fatigue testing of a NiTi rotary instrument. Part 2: Fractographic analysis.

    PubMed

    Cheung, G S P; Darvell, B W

    2007-08-01

    To examine the topographic features of the fracture surface of a NiTi instrument after fatigue failure, and to correlate the measurements of some features with the cyclic load. A total of 212 ProFile rotary instruments were subjected to a rotational-bending test at various curvatures until broken. The fracture surface of all fragments was examined by SEM to identify the crack origins. The crack radius, i.e. extent of the fatigue-crack growth towards the centroid of the cross-section, was also measured, and correlated with the strain amplitude for each instrument. All fracture surfaces revealed the presence of one or more crack origins, a region occupied by microscopic striations, and an area with microscopic dimples. The number of specimens showing multiple crack origins was significantly greater in the group fatigued under water than in air (P < 0.05). A linear relationship between the reciprocal of the square root of the crack radius and the strain amplitude was discernible (P < 0.001), the slopes of which were not significantly different for instruments fatigued in air and water. The fractographic appearance of NiTi engine-files that had failed because of fatigue is typical of that for other metals. The fatigue behaviour of NiTi instruments is adversely affected by water, not only for the low-cycle fatigue life, but also the number of crack origins. There appears to be a critical extent of crack propagation for various strain amplitudes leading to final rupture (akin to the Griffith's criterion for brittle materials).

  9. The effects of pitting on fatigue crack nucleation in 7075-T6 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Ma, LI; Hoeppner, David W.

    1994-01-01

    A high-strength aluminum alloy, 7075-T6, was studied to quantitatively evaluate chemical pitting effects of its corrosion fatigue life. The study focused on pit nucleation, pit growth, and fatigue crack nucleation. Pitting corrosion fatigue experiments were conducted in 3.5 percent NaCl aqueous solution under constant amplitude sinusoidal loading at two frequencies, 5 and 20 Hz. Smooth and unnotched specimens were used in this investigation. A video recording system was developed to allow in situ observation of the surface changes of the specimens during testing. The results indicated that pitting corrosion considerably reduces the fatigue strength by accelerating fatigue crack nucleation. A metallographic examination was conducted on the specimens to evaluate the nature of corrosion pits. First, the actual shapes of the corrosion pits were evaluated by cross-sectioning the pits. Secondly, the relation between corrosion pits and microstructure was also investigated. Finally, the possibility of another corrosion mechanism that might be involved in pitting was explored in this investigation. The fractography of the tested specimens showed that corner corrosion pits were responsible for fatigue crack nucleation in the material due to the associated stress concentration. The pits exhibited variance of morphology. Fatigue life for the experimental conditions appeared to be strongly dependent on pitting kinetics and the crack nucleation stage.

  10. Fatigue Crack Initiation Mechanics of Metal Aircraft Structures

    DTIC Science & Technology

    1988-08-01

    Thresholds) (Ref. 6) and are included as Appendix A. In summary, two flow stresses were identified. Microplastic flow takes place in all grains at fully...R.O. Ritchie and E.A. Starke, EMAS, 93-101 (1987). 7. M.R. James and W.L. Morris, "Load Sequence Effects on the Deformation of Isolated Microplastic ...417 (1980). 17. M.R. James and W.L. Morris, "The Effect of Microplastic Surface Deformation on the Growth of Small Cracks," Small Fatigue Cracks, R.O

  11. [A microstructural approach to fatigue crack processes in poly crystalline BCC materials]. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerberich, W.W.

    1992-12-31

    Objective was to study fatigue where a combination of low temperature and cyclic loading produced cyclic cleavage in bcc Fe-base systems. Both dislocation dynamics and quasi-statics of crack growth were probed. This document reviews progress over the past 6 years: hydrogen embrittlement and cleavage, computations (stress near crack tip), dislocation emission from grain boundaries, fracture process zones, and understanding brittle fracture at the atomistic/dislocation scales and at the microscopic/macroscopic scale.

  12. Investigation of Fatigue Crack-Growth Resistance of Aluminum Alloys under Spectrum Loading.

    DTIC Science & Technology

    1983-04-01

    Effects on Fatigue Crack Progation in 2024 -T3 Aluminum Alloy ," Eng. Frac. Mech, Vol...results ("a" from 6 to 13 mm) can be made (Figure 20a): 1. The 2XXX alloys 2020-T651, 2324-T39, and 2024 - T351 had longer spectrum fatigue lives than the...strength and spectrum life exists at all three maximum peak stress levels for the 2024 alloy , with the lower yield strength T351 condition having

  13. Analysis of surface cracks in finite plates under tension or bending loads

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Raju, I. S.

    1979-01-01

    Stress-intensity factors calculated with a three-dimensional, finite-element analysis for shallow and deep semielliptical surface cracks in finite elastic isotropic plates subjected to tension or bending loads are presented. A wide range of configuration parameters was investigated. The ratio of crack depth to plate thickness ranged from 0.2 to 0.8 and the ratio of crack depth to crack length ranged from 0.2 to 2.0. The effects of plate width on stress-intensity variations along the crack front was also investigated. A wide-range equation for stress-intensity factors along the crack front as a function of crack depth, crack length, plate thickness, and plate width was developed for tension and bending loads. The equation was used to predict patterns of surface-crack growth under tension or bending fatigue loads. A modified form of the equation was also used to correlate surface-crack fracture data for a brittle epoxy material within + or - 10 percent for a wide range of crack shapes and crack sizes.

  14. Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Figert, J.; Beek, J.; Ventura, J.; Martinez, J.; Samonski, F.

    2011-01-01

    This presentation describes results obtained from a research project conducted at the NASA Johnson Space Center (JSC) that was jointly supported by the FAA Technical Center and JSC. The JSC effort was part of a multi-task FAA program involving several U.S. laboratories and initiated for the purpose of developing enhanced analysis tools to assess damage tolerance of rotorcraft and aircraft propeller systems. The research results to be covered in this presentation include a new understanding of the behavior of fatigue crack growth in the threshold region. This behavior is important for structural life analysis of aircraft propeller systems and certain rotorcraft structural components (e.g., the mast). These components are often designed to not allow fatigue crack propagation to exceed an experimentally determined fatigue crack growth threshold value. During the FAA review meetings for the program, disagreements occurred between the researchers regarding the observed fanning (spread between the da/dN curves of constant R) in the threshold region at low stress ratios, R. Some participants believed that the fanning was a result of the ASTM load shedding test method for threshold testing, and thus did not represent the true characteristics of the material. If the fanning portion of the threshold value is deleted or not included in a life analysis, a significant penalty in the calculated life and design of the component would occur. The crack growth threshold behavior was previously studied and reported by several research investigators in the time period: 1970-1980. Those investigators used electron microscopes to view the crack morphology of the fatigue fracture surfaces. Their results showed that just before reaching threshold, the crack morphology often changed from a striated to a faceted or cleavage-like morphology. This change was reported to have been caused by particular dislocation properties of the material. Based on the results of these early investigations, a program was initiated at JSC to repeat these examinations on a number of aircraft structural alloys that were currently being tested for obtaining fatigue crack growth properties. These new scanning electron microscope (SEM) examinations of the fatigue fracture faces confirmed the change in crack morphology in the threshold crack tip region. In addition, SEM examinations were further performed in the threshold crack-tip region before breaking the specimens open (not done in the earlier published studies). In these examinations, extensive crack forking and even 90-degree crack bifurcations were found to have occurred in the final threshold crack-tip region. The forking and bifurcations caused numerous closure points to occur that prevented full crack closure in the threshold region, and thus were the cause of the fanning at low-R values. Therefore, we have shown that the fanning behavior was caused by intrinsic dislocation properties of the different alloy materials and were not the result of a plastic wake that remains from the load-shedding test phase. Also, to accommodate the use of da/dN data which includes fanning at low R-values, an updated fanning factor term has been developed and will be implemented into the NASGRO fatigue crack growth software. The term can be set to zero if it is desired that the fanning behavior is not be modeled for particular cases, such as when fanning is not a result of the intrinsic properties of a material.

  15. Fatigue of DIN 1.4914 martensitic stainless steel in a hydrogen environment

    NASA Astrophysics Data System (ADS)

    Shakib, J. I.; Ullmaier, H.; Little, E. A.; Faulkner, R. G.; Schmilz, W.; Chung, T. E.

    1994-09-01

    Fatigue tests at room temperature in vacuum, air and hydrogen have been carried out on specimens of DIN 1.4914 martensitic stainless steel in load-controlled, push-pull type experiments. Fatigue lifetimes in hydrogen are significantly lower than in both vacuum and air and the degradation is enhanced by lowering the test frequency or introducing hold times into the tension half-cycle. Fractographic examinations reveal hydrogen embrittlement effects in the form of internal cracking between fatigue striations together with surface modifications, particularly at low stress amplitudes. It is suggested that gaseous hydrogen can influence both fatigue crack initiation and propagation events in martensitic steels.

  16. Matrix Fatigue Cracking Mechanisms of Alpha(2) TMC for Hypersonic Applications

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John

    1994-01-01

    The objective of this work was to understand matrix cracking mechanisms in a unidirectional alpha(sub 2) TMC in possible hypersonic applications. A (0)(sub 8) SCS-6/Ti-24Al-11Nb (at. percent) TMC was first subjected to a variety of simple isothermal and nonisothermal fatigue cycles to evaluate the damage mechanisms in simple conditions. A modified ascent mission cycle test was then performed to evaluate the combined effects of loading modes. This cycle mixes mechanical cycling at 150 and 483 C, sustained loads, and a slow thermal cycle to 815 C. At low cyclic stresses and strains more common in hypersonic applications, environment-assisted surface cracking limited fatigue resistance. This damage mechanism was most acute for out-of-phase nonisothermal cycles having extended cycle periods and the ascent mission cycle. A simple linear fraction damage model was employed to help understand this damage mechanism. Time-dependent environmental damage was found to strongly influence out-of-phase and mission life, with mechanical cycling damage due to the combination of external loading and CTE mismatch stresses playing a smaller role. The mechanical cycling and sustained loads in the mission cycle also had a smaller role.

  17. Modeling the Interactions Between Multiple Crack Closure Mechanisms at Threshold

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Riddell, William T.; Piascik, Robert S.

    2003-01-01

    A fatigue crack closure model is developed that includes interactions between the three closure mechanisms most likely to occur at threshold; plasticity, roughness, and oxide. This model, herein referred to as the CROP model (for Closure, Roughness, Oxide, and Plasticity), also includes the effects of out-of plane cracking and multi-axial loading. These features make the CROP closure model uniquely suited for, but not limited to, threshold applications. Rough cracks are idealized here as two-dimensional sawtooths, whose geometry induces mixed-mode crack- tip stresses. Continuum mechanics and crack-tip dislocation concepts are combined to relate crack face displacements to crack-tip loads. Geometric criteria are used to determine closure loads from crack-face displacements. Finite element results, used to verify model predictions, provide critical information about the locations where crack closure occurs.

  18. Experimental Constraints on the Fatigue of Icy Satellite Lithospheres by Tidal Forces

    NASA Astrophysics Data System (ADS)

    Hammond, Noah P.; Barr, Amy C.; Cooper, Reid F.; Caswell, Tess E.; Hirth, Greg

    2018-02-01

    Fatigue can cause materials that undergo cyclic loading to experience brittle failure at much lower stresses than under monotonic loading. We propose that the lithospheres of icy satellites could become fatigued and thus weakened by cyclical tidal stresses. To test this hypothesis, we performed a series of laboratory experiments to measure the fatigue of water ice at temperatures of 198 K and 233 K and at a loading frequency of 1 Hz. We find that ice is not susceptible to fatigue at our experimental conditions and that the brittle failure stress does not decrease with increasing number of loading cycles. Even though fatigue was not observed at our experimental conditions, colder temperatures, lower loading frequencies, and impurities in the ice shells of icy satellites may increase the likelihood of fatigue crack growth. We also explore other mechanisms that may explain the weak behavior of the lithospheres of some icy satellites.

  19. Damage development in titanium metal matrix composites subjected to cyclic loading

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1992-01-01

    Several layups of SCS-6/Ti-15-3 composites were investigated. Fatigue tests were conducted and analyzed for both notched and unnotched specimens at room temperature and elevated temperatures. Thermo-mechanical fatigue results were analyzed. Test results indicated that the stress in the 0 degree fibers is the controlling factor in fatigue life. The static and fatigue strength of these materials is shown to be strongly dependent on the level of residual stresses and the fiber/matrix interfacial strength. Fatigue tests of notched specimens showed that cracks can initiate and grow many fiber spacings in the matrix materials without breaking fibers. Fiber bridging models were applied to characterize the crack growth behavior. The matrix cracks are shown to significantly reduce the residual strength of notched composites. The notch strength of these composites was accurately predicted using a micromechanics based methodology.

  20. Damage development in titanium metal-matrix composites subjected to cyclic loading

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1993-01-01

    Several layups of SCS-6/Ti-15-3 composites were investigated. Fatigue tests were conducted and analyzed for both notched and unnotched specimens at room temperature and elevated temperatures. Thermo-mechanical fatigue results were analyzed. Test results indicated that the stress in the 0 degree fibers is the controlling factor in fatigue life. The static and fatigue strength of these materials is shown to be strongly dependent on the level of residual stresses and the fiber/matrix interfacial strength. Fatigue tests of notched specimens showed that cracks can initiate and grow many fiber spacings in the matrix materials without breaking fibers. Fiber bridging models were applied to characterize the crack growth behavior. The matrix cracks are shown to significantly reduce the residual strength of notched composites. The notch strength of these composites was accurately predicted using a micromechanics based methodology.

  1. Fracture Test Methods for Plastically Responding COPV Liners

    NASA Technical Reports Server (NTRS)

    Dawicke, David S.; Lewis, Joseph C.

    2009-01-01

    An experimental procedure for evaluating the validity of using uniaxial tests to provide a conservative bound on the fatigue crack growth rate behavior small cracks in bi-axially loaded Composite Overwrapped Pressure Vessel (COPV) liners is described. The experimental procedure included the use of a laser notch to quickly generate small surface fatigue cracks with the desired size and aspect ratios. An out-of-plane constraint system was designed to allow fully reversed, fully plastic testing of thin sheet uniaxial coupons. Finally, a method was developed to determine to initiate small cracks in the liner of COPVs.

  2. Grainex Mar-M 247 Turbine Disk Life Study for NASA's High Temperature High Speed Turbine Seal Test Facility

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.

    2015-01-01

    An experimental and analytical fatigue life study was performed on the Grainex Mar-M 247 disk used in NASA s Turbine Seal Test Facility. To preclude fatigue cracks from growing to critical size in the NASA disk bolt holes due to cyclic loading at severe test conditions, a retirement-for-cause methodology was adopted to detect and monitor cracks within the bolt holes using eddy-current inspection. For the NASA disk material that was tested, the fatigue strain-life to crack initiation at a total strain of 0.5 percent, a minimum to maximum strain ratio of 0, and a bolt hole temperature of 649 C was calculated to be 665 cycles using -99.95 percent prediction intervals. The fatigue crack propagation life was calculated to be 367 cycles after implementing a safety factor of 2 on life. Thus, the NASA disk bolt hole total life or retirement life was determined to be 1032 cycles at a crack depth of 0.501 mm. An initial NASA disk bolt hole inspection at 665 cycles is suggested with 50 cycle inspection intervals thereafter to monitor fatigue crack growth.

  3. The effect of cathodic polarization on the corrosion fatigue behavior of a precipitation hardened aluminum alloy

    NASA Astrophysics Data System (ADS)

    Smith, E. F.; Duquette, D. J.

    1986-02-01

    Fatigue experiments were conducted on polycrystalline and monocrystalline samples of a high purity Al, 5.5 wt pct Zn, 2.5 wt pct Mg, 1.5 wt pct Cu alloy in the peak-hardened heat treatment condition. These experiments were conducted in dry laboratory air and in 0.5 N NaCl solutions at the corrosion potential and at applied potentials cathodic to the corrosion potential. It has been shown that saline solutions severely reduce the fatigue resistance of the alloy, resulting in considerable amounts of intergranular crack initiation and propagation under freely corroding conditions for polycrystalline samples. Applied cathodic potentials resulted in still larger decreases in fatigue resistance and, for poly crystals, increases in the degree of transgranular crack initiation and propagation. Increasing amounts of intergranular cracking were observed when applied cyclic stresses were reduced (longer test times). The characteristics of cracking, combined with results obtained on tensile tests of deformed and hydrogen charged samples, suggest that environmental cracking of these alloys is associated with a form of hydrogen embrittlement of the process zones of growing cracks. Further, it is suggested that stress corrosion cracking and corrosion fatigue of these alloys occurs by essentially the same mechanism, but that the often observed transgranular cracking under cyclic loading conditions occurs due to enhanced hydrogen transport and/or concentrations associated with mobile dislocations at growing crack tips.

  4. Microscopic Observation of the Side Surface of Dynamically-Tensile-Fractured 6061-T6 and 2219-T87 Aluminum Alloys with Pre-Fatigue

    NASA Astrophysics Data System (ADS)

    Itabashi, Masaaki; Nakajima, Shigeru; Fukuda, Hiroshi

    After unexpected failure of metallic structure, microscopic investigation will be performed. Generally, such an investigation is limited to search striation pattern with a SEM (scanning electron microscope). But, when the cause of the failure was not severe repeated stress, this investigation is ineffective. In this paper, new microscopic observation technique is proposed to detect low cycle fatigue-impact tensile loading history. Al alloys, 6061-T6 and 2219-T87, were fractured in dynamic tension, after severe pre-fatigue. The side surface of the fractured specimens was observed with a SEM. Neighboring fractured surface, many opened cracks on the side surface have been generated. For each specimen, the number of the cracks was counted together with information of individual sizes and geometric features. For 6061-T6 alloy specimen with the pre-fatigue, the number of the cracks is greater than that for the specimen without the pre-fatigue. For 2219-T87 alloy, the same tendency can be found after a certain screening of the crack counting. Therefore, the crack counting technique may be useful to detect the existence of the pre-fatigue from the dynamically fractured specimen surface.

  5. Peak Stress Intensity Factor Governs Crack Propagation Velocity In Crosslinked UHMWPE

    PubMed Central

    Sirimamilla, P. Abhiram; Furmanski, Jevan; Rimnac, Clare

    2013-01-01

    Ultra high molecular weight polyethylene (UHMWPE) has been successfully used as a bearing material in total joint replacement components. However, these bearing materials can fail as a result of in vivo static and cyclic loads. Crack propagation behavior in this material has been considered using the Paris relationship which relates fatigue crack growth rate, da/dN (mm/cycle) versus the stress intensity factor range, ΔK (Kmax-Kmin, MPa√m). However, recent work suggests that the crack propagation velocity of conventional UHMWPE is driven by the peak stress intensity (Kmax), not ΔK. The hypothesis of this study is that the crack propagation velocity of highly crosslinked and remelted UHMWPE is also driven by the peak stress intensity, Kmax, during cyclic loading, rather than by ΔK. To test this hypothesis, two highly crosslinked (65 kGy and 100 kGy) and remelted UHMWPE materials were examined. Frequency, waveform and R-ratio were varied between test conditions to determine the governing factor for fatigue crack propagation. It was found that the crack propagation velocity in crosslinked UHMWPE is also driven by Kmax and not ΔK, and is dependent on loading waveform and frequency in a predictable quasi-static manner. The current study supports that crack growth in crosslinked UHMWPE materials, even under cyclic loading conditions, can be described by a relationship between the velocity of crack growth, da/dt and the peak stress intensity, Kmax. The findings suggest that stable crack propagation can occur as a result of static loading only and this should be taken into consideration in design of UHMWPE total joint replacement components. PMID:23165898

  6. The effect of an overload on the rate of fatigue crack propagation under plane stress conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, H.; McEvily, A.J.

    1995-07-01

    It has been shown that the retardation in the rate of fatigue crack growth following an overload is largely the result of surface-related, plane-stress deformation. In the present article, in order to isolate the plane-stress behavior, the effect of an overload on the subsequent rate of fatigue crack growth of 0.3-mm-thick specimens of 9Cr-1Mo steel has been investigated and compared to results obtained using 6.35-mm-thick specimens. It was found that for the 0.3-mm thickness, as with thicker specimens, two opening load levels were associated with the overload process. The upper opening load is associated with plane-stress deformation in the overloadmore » plastic zone, and this opening process is more clearly observed with thin as compared to thicker specimens. Based upon the determined level of the upper opening load, a semiempirical analysis is developed for calculating the number of delay cycles due to an overload as a function of thickness.« less

  7. Effects of Defects in Laser Additive Manufactured Ti-6Al-4V on Fatigue Properties

    NASA Astrophysics Data System (ADS)

    Wycisk, Eric; Solbach, Andreas; Siddique, Shafaqat; Herzog, Dirk; Walther, Frank; Emmelmann, Claus

    Laser Additive Manufacturing (LAM) enables economical production of complex lightweight structures as well as patient individual implants. Due to these possibilities the additive manufacturing technology gains increasing importance in the aircraft and the medical industry. Yet these industries obtain high quality standards and demand predictability of material properties for static and dynamic load cases. However, especially fatigue and crack propagation properties are not sufficiently determined. Therefore this paper presents an analysis and simulation of crack propagation behavior considering Laser Additive Manufacturing specific defects, such as porosity and surface roughness. For the mechanical characterization of laser additive manufactured titanium alloy Ti-6Al-4V, crack propagation rates are experimentally determined and used for an analytical modeling and simulation of fatigue. Using experimental results from HCF tests and simulated data, the fatigue and crack resistance performance is analyzed considering material specific defects and surface roughness. The accumulated results enable the reliable prediction of the defects influence on fatigue life of laser additive manufactured titanium components.

  8. The detectability of cracks using sonic IR

    NASA Astrophysics Data System (ADS)

    Morbidini, Marco; Cawley, Peter

    2009-05-01

    This paper proposes a methodology to study the detectability of fatigue cracks in metals using sonic IR (also known as thermosonics). The method relies on the validation of simple finite-element thermal models of the cracks and specimens in which the thermal loads have been defined by means of a priori measurement of the additional damping introduced in the specimens by each crack. This estimate of crack damping is used in conjunction with a local measurement of the vibration strain during ultrasonic excitation to retrieve the power released at the crack; these functions are then input to the thermal model of the specimens to find the resulting temperature rises (sonic IR signals). The method was validated on mild steel beams with two-dimensional cracks obtained in the low-cycle fatigue regime as well as nickel-based superalloy beams with three-dimensional "thumbnail" cracks generated in the high-cycle fatigue regime. The equivalent 40kHz strain necessary to obtain a desired temperature rise was calculated for cracks in the nickel superalloy set, and the detectability of cracks as a function of length in the range of 1-5mm was discussed.

  9. Experimental study of crack initiation and propagation in high- and gigacycle fatigue in titanium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannikov, Mikhail, E-mail: mbannikov@icmm.ru, E-mail: oborin@icmm.ru, E-mail: naimark@icmm.ru; Oborin, Vladimir, E-mail: mbannikov@icmm.ru, E-mail: oborin@icmm.ru, E-mail: naimark@icmm.ru; Naimark, Oleg, E-mail: mbannikov@icmm.ru, E-mail: oborin@icmm.ru, E-mail: naimark@icmm.ru

    Fatigue (high- and gigacycle) crack initiation and its propagation in titanium alloys with coarse and fine grain structure are studied by fractography analysis of fracture surface. Fractured specimens were analyzed by interferometer microscope and SEM to improve methods of monitoring of damage accumulation during fatigue test and to verify the models for fatigue crack kinetics. Fatigue strength was estimated for high cycle fatigue regime using the Luong method [1] by “in-situ” infrared scanning of the sample surface for the step-wise loading history for different grain size metals. Fine grain alloys demonstrated higher fatigue resistance for both high cycle fatigue andmore » gigacycle fatigue regimes. Fracture surface analysis for plane and cylindrical samples was carried out using optical and electronic microscopy method. High resolution profilometry (interferometer-profiler New View 5010) data of fracture surface roughness allowed us to estimate scale invariance (the Hurst exponent) and to establish the existence of two characteristic areas of damage localization (different values of the Hurst exponent). Area 1 with diameter ∼300 μm has the pronounced roughness and is associated with damage localization hotspot. Area 2 shows less amplitude roughness, occupies the rest fracture surface and considered as the trace of the fatigue crack path corresponding to the Paris kinetics.« less

  10. Three-Dimensional BEM and FEM Submodelling in a Cracked FML Full Scale Aeronautic Panel

    NASA Astrophysics Data System (ADS)

    Citarella, R.; Cricrì, G.

    2014-06-01

    This paper concerns the numerical characterization of the fatigue strength of a flat stiffened panel, designed as a fiber metal laminate (FML) and made of Aluminum alloy and Fiber Glass FRP. The panel is full scale and was tested (in a previous work) under fatigue biaxial loads, applied by means of a multi-axial fatigue machine: an initial through the thickness notch was created in the panel and the aforementioned biaxial fatigue load applied, causing a crack initiation and propagation in the Aluminum layers. Moreover, (still in a previous work), the fatigue test was simulated by the Dual Boundary Element Method (DBEM) in a bidimensional approach. Now, in order to validate the assumptions made in the aforementioned DBEM approach and concerning the delamination area size and the fiber integrity during crack propagation, three-dimensional BEM and FEM submodelling analyses are realized. Due to the lack of experimental data on the delamination area size (normally increasing as the crack propagates), such area is calculated by iterative three-dimensional BEM or FEM analyses, considering the inter-laminar stresses and a delamination criterion. Such three-dimensional analyses, but in particular the FEM proposed model, can also provide insights into the fiber rupture problem. These DBEM-BEM or DBEM-FEM approaches aims at providing a general purpose evaluation tool for a better understanding of the fatigue resistance of FML panels, providing a deeper insight into the role of fiber stiffness and of delamination extension on the stress intensity factors.

  11. Modeling Delamination in Postbuckled Composite Structures Under Static and Fatigue Loads

    NASA Technical Reports Server (NTRS)

    Bisagni, Chiara; Brambilla, Pietro; Bavila, Carlos G.

    2013-01-01

    The ability of the Abaqus progressive Virtual Crack Closure Technique (VCCT) to model delamination in composite structures was investigated for static, postbuckling, and fatigue loads. Preliminary evaluations were performed using simple Double Cantilever Beam (DCB) and Mixed-Mode Bending (MMB) specimens. The nodal release sequences that describe the propagation of the delamination front were investigated. The effect of using a sudden or a gradual nodal release was evaluated by considering meshes aligned with the crack front as well as misaligned meshes. Fatigue simulations were then performed using the Direct Cyclic Fatigue (DCF) algorithm. It was found that in specimens such as the DCB, which are characterized by a nearly linear response and a pure fracture mode, the algorithm correctly predicts the Paris Law rate of propagation. However, the Abaqus DCF algorithm does not consider different fatigue propagation laws in different fracture modes. Finally, skin/stiffener debonding was studied in an aircraft fuselage subcomponent in which debonding occurs deep into post-buckling deformation. VCCT was shown to be a robust tool for estimating the onset propagation. However, difficulties were found with the ability of the current implementation of the Abaqus progressive VCCT to predict delamination propagation within structures subjected to postbuckling deformations or fatigue loads.

  12. A review of fracture mechanics life technology

    NASA Technical Reports Server (NTRS)

    Besuner, P. M.; Harris, D. O.; Thomas, J. M.

    1986-01-01

    Lifetime prediction technology for structural components subjected to cyclic loads is examined. The central objectives of the project are: (1) to report the current state of the art, and (2) recommend future development of fracture mechanics-based analytical tools for modeling subcritical fatigue crack growth in structures. Of special interest is the ability to apply these tools to practical engineering problems and the developmental steps necessary to bring vital technologies to this stage. The authors conducted a survey of published literature and numerous discussions with experts in the field of fracture mechanics life technology. One of the key points made is that fracture mechanics analyses of crack growth often involve consideration of fatigue and fracture under extreme conditions. Therefore, inaccuracies in predicting component lifetime will be dominated by inaccuracies in environment and fatigue crack growth relations, stress intensity factor solutions, and methods used to model given loads and stresses. Suggestions made for reducing these inaccuracies include development of improved models of subcritical crack growth, research efforts aimed at better characterizing residual and assembly stresses that can be introduced during fabrication, and more widespread and uniform use of the best existing methods.

  13. A review of fracture mechanics life technology

    NASA Technical Reports Server (NTRS)

    Thomas, J. M.; Besuner, P. M.; Harris, D. O.

    1985-01-01

    Current lifetime prediction technology for structural components subjected to cyclic loads was reviewed. The central objectives of the project were to report the current state of and recommend future development of fracture mechanics-based analytical tools for modeling and forecasting subcritical fatigue crack growth in structures. Of special interest to NASA was the ability to apply these tools to practical engineering problems and the developmental steps necessary to bring vital technologies to this stage. A survey of published literature and numerous discussions with experts in the field of fracture mechanics life technology were conducted. One of the key points made is that fracture mechanics analyses of crack growth often involve consideration of fatigue and fracture under extreme conditions. Therefore, inaccuracies in predicting component lifetime will be dominated by inaccuracies in environment and fatigue crack growth relations, stress intensity factor solutions, and methods used to model given loads and stresses. Suggestions made for reducing these inaccuracies include: development of improved models of subcritical crack growth, research efforts aimed at better characterizing residual and assembly stresses that can be introduced during fabrication, and more widespread and uniform use of the best existing methods.

  14. Thermal-Mechanical Stress Analysis of PWR Pressure Vessel and Nozzles under Grid Load-Following Mode: Interim Report on the Effect of Cyclic Hardening Material Properties and Pre-existing Cracks on Stress Analysis Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Soppet, William; Majumdar, Saurin

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable under the work package for environmentally assisted fatigue as part of DOE’s Light Water Reactor Sustainability Program. In a previous report (September 2015), we presented tensile and fatigue test data and related hardening material properties for 508 low-alloys steel base metal and other reactor metals. In this report, we present thermal-mechanical stress analysis of the reactor pressure vessel and its hot-leg and cold-leg nozzles based on estimated material properties. We also present results frommore » thermal and thermal-mechanical stress analysis under reactor heat-up, cool-down, and grid load-following conditions. Analysis results are given with and without the presence of preexisting cracks in the reactor nozzles (axial or circumferential crack). In addition, results from validation stress analysis based on tensile and fatigue experiments are reported.« less

  15. Resolved shear stress intensity coefficient and fatigue crack growth in large crystals

    NASA Technical Reports Server (NTRS)

    Chen, QI; Liu, Hao-Wen

    1988-01-01

    Fatigue crack growth in large grain Al alloy was studied. Fatigue crack growth is caused primarily by shear decohesion due to dislocation motion in the crack tip region. The crack paths in the large crystals are very irregular and zigzag. The crack planes are often inclined to the loading axis both in the inplane direction and the thickness direction. The stress intensity factors of such inclined cracks are approximated from the two dimensional finite element calculations. The plastic deformation in a large crystal is highly anisotropic, and dislocation motion in such crystals are driven by the resolved shear stress. The resolved shear stress intensity coefficient in a crack solid, RSSIC, is defined, and the coefficients for the slip systems at a crack tip are evaluated from the calculated stress intensity factors. The orientations of the crack planes are closely related to the slip planes with the high RSSIC values. If a single slip system has a much higher RSSIC than all the others, the crack will follow the slip plane, and the slip plane becomes the crack plane. If two or more slip systems have a high RSSIC, the crack plane is the result of the decohesion processes on these active slip planes.

  16. The Characteristics of Fatigue Damage in the Fuselage Riveted Lap Splice Joint

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Willard, Scott A.

    1997-01-01

    An extensive data base has been developed to form the physical basis for new analytical methodology to predict the onset of widespread fatigue damage in the fuselage lap splice joint. The results of detailed destructive examinations have been cataloged to describe the physical nature of MSD in the lap splice joint. ne catalog includes a detailed description, e.g., crack initiation, growth rates, size, location, and fracture morphology, of fatigue damage in the fuselage lap splice joint structure. Detailed examinations were conducted on a lap splice joint panel removed from a full scale fuselage test article after completing a 60,000 cycle pressure test. The panel contained a four bay region that exhibited visible outer skin cracks and regions of crack link-up along the upper rivet row. Destructive examinations revealed undetected fatigue damage in the outer skin, inner skin, and tear strap regions. Outer skin fatigue cracks were found to initiate by fretting damage along the faying surface. The cracks grew along the faying surface to a length equivalent to two to three skin thicknesses before penetrating the outboard surface of the outer skin. Analysis of fracture surface marker bands produced during full scale testing revealed that all upper rivet row fatigue cracks contained in a dim bay region grow at similar rates; this important result suggests that fracture mechanics based methods can be used to predict the growth of outer skin fatigue cracks in lap splice structure. Results are presented showing the affects of MSD and out-of-plane pressure loads on outer skin crack link-up.

  17. Microstructure and Fatigue Properties of Ultrasonic Spot Welded Joints of Aluminum 5754 Alloy

    NASA Astrophysics Data System (ADS)

    Mirza, F. A.; Macwan, A.; Bhole, S. D.; Chen, D. L.

    2016-05-01

    The purpose of this investigation was to evaluate the microstructural change, lap shear tensile load, and fatigue resistance of ultrasonic spot welded joints of aluminum 5754 alloy for automotive applications. A unique "necklace"-type structure with very fine equiaxed grains was observed to form along the weld line due to the mechanical interlocking coupled with the occurrence of dynamic recrystallization. The maximum lap shear tensile strength of 85 MPa and the fatigue limit of about 0.5 kN (at 1 × 107 cycles) were achieved. The tensile fracture occurred at the Al/Al interface in the case of lower energy inputs, and at the edge of nugget zone in the case of higher energy inputs. The maximum cyclic stress for the transition of fatigue fracture mode from the transverse through-thickness crack growth to the interfacial failure increased with increasing energy input. Fatigue crack propagation was mainly characterized by the formation of fatigue striations, which usually appeared perpendicular to the fatigue crack propagation.

  18. Effects of Changing Stress Amplitude on the Rate of Fatigue-Crack Propagation in Two Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Hudson, C. Michael; Hardrath, Herbert F.

    1961-01-01

    A series of fatigue tests with specimens subjected to constant amplitude and two-step axial loads were conducted on 12-inch-wide sheet specimens of 2024-T3 and 7075-T6 aluminum alloy to study the effects of a change in stress level on fatigue-crack propagation. Comparison of the results of the tests in which the specimens were tested at first a high and then a low stress level with those of the constant-stress- amplitude tests indicated that crack propagation was generally delayed after the transition to the lower stress level. In the tests in which the specimens were tested at first a low and then a high stress level, crack propagation continued at the expected rate after the change in stress levels.

  19. Advances in Structural Integrity Analysis Methods for Aging Metallic Airframe Structures with Local Damage

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Newman, James C., Jr.; Harris, Charles E.; Piascik, Robert S.; Young, Richard D.; Rose, Cheryl A.

    2003-01-01

    Analysis methodologies for predicting fatigue-crack growth from rivet holes in panels subjected to cyclic loads and for predicting the residual strength of aluminum fuselage structures with cracks and subjected to combined internal pressure and mechanical loads are described. The fatigue-crack growth analysis methodology is based on small-crack theory and a plasticity induced crack-closure model, and the effect of a corrosive environment on crack-growth rate is included. The residual strength analysis methodology is based on the critical crack-tip-opening-angle fracture criterion that characterizes the fracture behavior of a material of interest, and a geometric and material nonlinear finite element shell analysis code that performs the structural analysis of the fuselage structure of interest. The methodologies have been verified experimentally for structures ranging from laboratory coupons to full-scale structural components. Analytical and experimental results based on these methodologies are described and compared for laboratory coupons and flat panels, small-scale pressurized shells, and full-scale curved stiffened panels. The residual strength analysis methodology is sufficiently general to include the effects of multiple-site damage on structural behavior.

  20. Influence of fatigue crack wake length and state of stress on crack closure

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Fisher, D. M.

    1986-01-01

    The location of crack closure with respect to crack wake and specimen thickness under different loading conditions was determined. The rate of increase of K sub CL in the crack wake was found to be significantly higher for plasticity induced closure in comparison to roughness induced closure. Roughness induced closure was uniform throughout the thickness of the specimen while plasticity induced closure levels were 50 percent higher in the near surface region than in the midthickness. The influence of state of stress on low-high load interaction effects was also examined. Load interaction effects differed depending upon the state of stress and were explained in terms of delta K sub eff.

  1. Influence of fatigue crack wake length and state of stress on crack closure

    NASA Technical Reports Server (NTRS)

    Telesman, Jack; Fisher, Douglas M.

    1988-01-01

    The location of crack closure with respect to crack wake and specimen thickness under different loading conditions was determined. The rate of increase of K sub CL in the crack wake was found to be significantly higher for plasticity induced closure in comparison to roughness induced closure. Roughness induced closure was uniform throughout the thickness of the specimen while plasticity induced closure levels were 50 percent higher in the near surface region than in the midthickness. The influence of state of stress on low-high load interaction effects was also examined. Load interaction effects differed depending upon the state of stress and were explained in terms of delta K sub eff.

  2. Interim Report on Fatigue Characteristics of a Typical Metal Wing

    NASA Technical Reports Server (NTRS)

    Kepert, J L; Payne, A O

    1956-01-01

    Constant amplitude fatigue tests of seventy-two P-51D "Mustang" wings are reported. The tests were performed by a vibrational loading system and by an hydraulic loading device for conditions with and without varying amounts of pre-load. The results indicate that: (a) the frequency of occurrence of fatigue at any one location is related to the range of the loads applied, (b) the rate of propagation of visible cracks is more or less constant for a large portion of the life of the specimen, (c) the fatigue strength of the structure is similar to that of notched material having a theoretical stress concentration factor of more than 3.0, (d) the frequency distribution of fatigue life is approximately logarithmic normal, (e) the relative increase in fatigue life for a given pre-load depends on the maximum load of the loading cycle only, while the optimum pre-load value is approximately 85 percent of the ultimate failing load, and (f) that normal design procedure will not permit the determination of local stress levels with sufficient accuracy to determine the fatigue strength of an element of a redundant structure.

  3. Spectrum fatigue testing of T-shaped tension clips

    NASA Astrophysics Data System (ADS)

    Palmberg, Bjoern; Wallstenius, Bengt

    1992-12-01

    An investigation of strain distributions during static loading and crack propagation and fatigue lives under spectrum loading of T-shaped tension clips was carried out. Three slightly different, with respect to geometry, T shaped tension clips made of aluminum alloy 7010-T73651 were studied. The type 1 and 4 test specimens were different only with respect to the web thickness of the clamping end. The type 1 and 2 test specimens were different with repect to milled flat circular countersink around the holes in the type 2 specimens and with respect to the radius between the web and foot. The spectrum fatigue loading consisted of a load sequence representative for the wing root, lower side, of a fighter aircraft. Tests were made at two different load levels for each specimen type. The strain measurements show that the countersink in the type 2 specimens increases the stresses in the fatigue critical region. This is also manifested in the spectrum fatigue life results, where type 2 specimens show the shortest fatigue lives. The strain measurements show that the torque used for the bolts in joining two test specimens or one test specimen and a dummy has a rather large impact on the strain in the fatigue region. The strains decrease with increasing torque. The spectrum fatigue loading resulted in approximately an equal number of flights to obtain a 10.0 mm crack for specimens of type 1 and 4. This suggests that the type 1 configuration is superior since the web thickness is smaller for this type as compared to the type 4 specimens. In other words, the type 4 specimens have an unnecessary oversize of the clamping end web thickness.

  4. Crack branching in cross-ply composites

    NASA Astrophysics Data System (ADS)

    La Saponara, Valeria

    2001-10-01

    The purpose of this research work is to examine the behavior of an interface crack in a cross-ply laminate which is subject to static and fatigue loading. The failure mechanism analyzed here is crack branching (or crack kinking or intra-layer crack): the delamination located between two different plies starts growing as an interface crack and then may branch into the less tough ply. The specimens were manufactured from different types of Glass/Epoxy and Graphite/Epoxy, by hand lay-up, vacuum bagging and cure in autoclave. Each specimen had a delamination starter. Static mixed mode tests and compressive fatigue tests were performed. Experiments showed the scale of the problem, one ply thickness, and some significant features, like contact in the branched crack. The amount of scatter in the experiments required use of statistics. Exploratory Data Analysis and a factorial design of experiments based on a 8 x 8 Hadamard matrix were used. Experiments and statistics show that there is a critical branching angle above which crack growth is greatly accelerated. This angle seems: (1) not to be affected by the specimens' life; (2) not to depend on the specimen geometry and loading conditions; (3) to strongly depend on the amount of contact in the branched crack. Numerical analysis was conducted to predict crack propagation based on the actual displacement/load curves for static tests. This method allows us to predict the total crack propagation in 2D conditions, while neglecting branching. Finally, the existence of a solution based on analytic continuation is discussed.

  5. Kinetic studies of the stress corrosion cracking of D6AC steel

    NASA Technical Reports Server (NTRS)

    Noronha, P. J.

    1975-01-01

    The effect of load interactions on the crack growth velocity of D6AC steel under stress corrosion cracking conditions was determined. The environment was a 3.5 percent salt solution. The modified-wedge opening load specimens were fatigue precracked and subjected to a deadweight loading in creep machines. The effects of load shedding on incubation times and crack growth rates were measured using high-sensitivity compliance measurement techniques. Load shedding results in an incubation time, the length of which depends on the amount of load shed and the baseline stress intensity. The sequence of unloading the specimen also controls the subsequent incubation period. The incubation period is shorter when load shedding passes through zero load than when it does not if the specimen initially had the same baseline stress intensity. The crack growth rates following the incubation period are also different from the steady-state crack growth rate at the operating stress intensity. These data show that the susceptibility of this alloy system to stress corrosion cracking depends on the plane-strain fracture toughness and on the yield strength of the material.

  6. Modelling and measurement of crack closure and crack growth following overloads and underloads

    NASA Technical Reports Server (NTRS)

    Dexter, R. J.; Hudak, S. J.; Davidson, D. L.

    1989-01-01

    Ignoring crack growth retardation following overloads can result in overly conservative life predictions in structures subjected to variable amplitude fatigue loading. Crack closure is believed to contribute to the crack growth retardation, although the specific closure mechanism is dabatable. The delay period and corresponding crack growth rate transients following overload and overload/underload cycles were systematically measured as a function of load ratio and overload magnitude. These responses are correlated in terms of the local 'driving force' for crack growth, i.e. the effective stress intensity factor range. Experimental results are compared with the predictions of a Dugdale-type (1960) crack closure model, and improvements in the model are suggested.

  7. Contact fatigue of human enamel: Experiments, mechanisms and modeling.

    PubMed

    Gao, S S; An, B B; Yahyazadehfar, M; Zhang, D; Arola, D D

    2016-07-01

    Cyclic contact between natural tooth structure and engineered ceramics is increasingly common. Fatigue of the enamel due to cyclic contact is rarely considered. The objectives of this investigation were to evaluate the fatigue behavior of human enamel by cyclic contact, and to assess the extent of damage over clinically relevant conditions. Cyclic contact experiments were conducted using the crowns of caries-free molars obtained from young donors. The cuspal locations were polished flat and subjected to cyclic contact with a spherical indenter of alumina at 2Hz. The progression of damage was monitored through the evolution in contact displacement, changes in the contact hysteresis and characteristics of the fracture pattern. The contact fatigue life diagram exhibited a decrease in cycles to failure with increasing cyclic load magnitude. Two distinct trends were identified, which corresponded to the development and propagation of a combination of cylindrical and radial cracks. Under contact loads of less than 400N, enamel rod decussation resisted the growth of subsurface cracks. However, at greater loads the damage progressed rapidly and accelerated fatigue failure. Overall, cyclic contact between ceramic appliances and natural tooth structure causes fatigue of the enamel. The extent of damage is dependent on the magnitude of cyclic stress and the ability of the decussation to arrest the fatigue damage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Kinetics and microscopic processes of long term fracture in polyethylene piping materials

    NASA Astrophysics Data System (ADS)

    Brown, N.; Lu, X.

    1992-07-01

    The report contains 9 completed works as follows: The Dependence of Slow Crack Growth in a Polyethylene Copolymer on Testing Temperature and Morphology; A Test of Slow Crack Growth Failure of PE Under Constant Load; Effect of Annealing on Slow Crack Growth in an Ethylene-Hexene Copolymer; The Fundamental Material Parameters that Govern Slow Crack Growth in Linear Polyethylene; Slow Crack Growth in Blends of HDPE and UHMWPE; The Mechanism of Fatigue Failure in a Polyethylene Copolymer; PENT Quality Control Test for PE Gas Pipes and Resins; International Round Robin Study of a Fatigue Test Approach to the Ranking of Polyethylene Pipe Material; and Proposed ASTM Specification for ASTM F17.40 Test Methods Committee.

  9. Thermal fatigue behaviour for a 316 L type steel

    NASA Astrophysics Data System (ADS)

    Fissolo, A.; Marini, B.; Nais, G.; Wident, P.

    1996-10-01

    This paper deals with initiation and growth of cracks produced by thermal fatigue loadings on 316 L steel, which is a reference material for the first wall of the next fusion reactor ITER. Two types of facilities have been built. As for true components, thermal cycles have been repeatedly applied on the surface of the specimen. The first is mainly concerned with initiation, which is detected with a light microscope. The second allows one to determine the propagation of a single crack. Crack initiation is analyzed using the French RCC-MR code procedure, and the strain-controlled isothermal fatigue curves. To predict crack growth, a model previously proposed by Haigh and Skelton is applied. This is based on determination of effective stress intensity factors, which takes into account both plastic strain and crack closure phenomena. It is shown that estimations obtained with such methodologies are in good agreement with experimental data.

  10. High-temperature tensile-hold crack-growth behavior of HASTELLOY® X alloy compared to HAYNES® 188 and HAYNES® 230® alloys

    NASA Astrophysics Data System (ADS)

    Lee, S. Y.; Lu, Y. L.; Liaw, P. K.; Choo, H.; Thompson, S. A.; Blust, J. W.; Browning, P. F.; Bhattacharya, A. K.; Aurrecoechea, J. M.; Klarstrom, D. L.

    2008-03-01

    The creep-fatigue crack-growth tests of HASTELLOY® X alloy were carried out at the temperatures of 649°C, 816°C, and 927°C in laboratory air. The experiments were conducted under a constant stress-intensity-factor-range (Δ K) control mode with a R-ratio of 0.05. In the constant Δ K tests, a Δ K of 27.5 MPa sqrt{m} and a triangular waveform with a frequency of 0.333 Hz were used. Various tensile hold times at the maximum load were imposed to study fatigue and creep-fatigue interactions. Crack lengths were measured by a direct current potential drop method. In this paper, effects of hold time and temperature on the crack-growth rates are discussed. Furthermore, the crack-growth rates of the HASTELLOY® X alloy are compared to those of the HAYNES® 188 and HAYNES® 230® superalloys.

  11. Automated predesign of aircraft

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.; Kruse, G. S.; Tanner, C. J.; Wilson, P. J.

    1978-01-01

    Program uses multistation structural-synthesis to size and design box-beam structures for transport aircraft. Program optimizes static strength and scales up to satisfy fatigue and fracture criteria. It has multimaterial capability and library of materials properties, including advanced composites. Program can be used to evaluate impact on weight of variables such as materials, types of construction, structural configurations, minimum gage limits, applied loads, fatigue lives, crack-growth lives, initial crack sizes, and residual strengths.

  12. Comparison of fatigue analysis approaches for hot-mix asphalt to ensure a state of good repair.

    DOT National Transportation Integrated Search

    2013-10-01

    Fatigue cracking is a primary form of distress in hot-mix asphalt. The long-term nature of fatigue due to repeated : loading and aging and its required tie to pavement structure present challenges in terms of evaluating mixture : resistance. This pro...

  13. The merging of fatigue and fracture mechanics concepts: a historical perspective

    NASA Astrophysics Data System (ADS)

    Newman, J. C.

    1998-07-01

    In this review, some of the technical developments that have occurred during the past 40 years are presented which have led to the merger of fatigue and fracture mechanics concepts. This review is made from the viewpoint of “crack propagation”. As methods to observe the “fatigue” process have improved, the formation of fatigue micro-cracks have been observed earlier in life and the measured crack sizes have become smaller. These observations suggest that fatigue damage can now be characterized by “crack size”. In parallel, the crack-growth analysis methods, using stress-intensity factors, have also improved. But the effects of material inhomogeneities, crack-fracture mechanisms, and nonlinear behavior must now be included in these analyses. The discovery of crack-closure mechanisms, such as plasticity, roughness, and oxide/corrosion/fretting product debris, and the use of the effective stress-intensity factor range, has provided an engineering tool to predict small- and large-crack-growth rate behavior under service loading conditions. These mechanisms have also provided a rationale for developing new, damage-tolerant materials. This review suggests that small-crack growth behavior should be viewed as typical behavior, whereas large-crack threshold behavior should be viewed as the anomaly. Small-crack theory has unified “fatigue” and “fracture mechanics” concepts; and has bridged the gap between safe-life and durability/damage-tolerance design concepts.

  14. Boundary element methods for the analysis of crack growth in the presence of residual stress fields

    NASA Astrophysics Data System (ADS)

    Leitao, V. M. A.; Aliabadi, M. H.; Rooke, D. P.; Cook, R.

    1998-06-01

    Two boundary element methods of simulating crack growth in the presence of residual stress fields are presented, and the results are compared to experimental measurements. The first method utilizes linear elastic fracture mechanics (LEFM) and superimposes the solutions due to the applied load and the residual stress field. In this method, the residual stress fields are obtained from an elastoplastic BEM analysis, and numerical weight functions are used to obtain the stress intensity factors due to the fatigue loading. The second method presented is an elastoplastic fracture mechanics (EPFM) approach for crack growth simulation. A nonlinear J-integral is used in the fatigue life calculations. The methods are shown to agree well with experimental measurements of crack growth in prestressed open hole specimens. Results are also presented for the case where the prestress is applied to specimens that have been precracked.

  15. Tensile and compressive failure modes of laminated composites loaded by fatigue with different mean stress

    NASA Technical Reports Server (NTRS)

    Rotem, Assa

    1990-01-01

    Laminated composite materials tend to fail differently under tensile or compressive load. Under tension, the material accumulates cracks and fiber fractures, while under compression, the material delaminates and buckles. Tensile-compressive fatigue may cause either of these failure modes depending on the specific damage occurring in the laminate. This damage depends on the stress ratio of the fatigue loading. Analysis of the fatigue behavior of the composite laminate under tension-tension, compression-compression, and tension-compression had led to the development of a fatigue envelope presentation of the failure behavior. This envelope indicates the specific failure mode for any stress ratio and number of loading cycles. The construction of the fatigue envelope is based on the applied stress-cycles to failure (S-N) curves of both tensile-tensile and compressive-compressive fatigue. Test results are presented to verify the theoretical analysis.

  16. Fracture analysis of stiffened panels under biaxial loading with widespread cracking

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Dawicke, D. S.

    1995-01-01

    An elastic-plastic finite-element analysis with a critical crack-tip-opening angle (CTOA) fracture criterion was used to model stable crack growth and fracture of 2024-T3 aluminum alloy (bare and clad) panels for several thicknesses. The panels had either single or multiple-site damage (MSD) cracks subjected to uniaxial or biaxial loading. Analyses were also conducted on cracked stiffened panels with single or MSD cracks. The critical CTOA value for each thickness was determined by matching the failure load on a middle-crack tension specimen. Comparisons were made between the critical angles determined from the finite-element analyses and those measured with photographic methods. Predicted load-against-crack extension and failure loads for panels under biaxial loading, panels with MSD cracks, and panels with various number of stiffeners were compared with test data, whenever possible. The predicted results agreed well with the test data even for large-scale plastic deformations. The analyses were also able to predict stable tearing behavior of a large lead crack in the presence of MSD cracks. The analyses were then used to study the influence of stiffeners on residual strength in the presence of widespread fatigue cracking. Small MSD cracks were found to greatly reduce the residual strength for large lead cracks even for stiffened panels.

  17. Fracture analysis of stiffened panels under biaxial loading with widespread cracking

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1995-01-01

    An elastic-plastic finite-element analysis with a critical crack-tip opening angle (CTOA) fracture criterion was used to model stable crack growth and fracture of 2024-T3 aluminum alloy (bare and clad) panels for several thicknesses. The panels had either single or multiple-site damage (MSD) cracks subjected to uniaxial or biaxial loading. Analyses were also conducted on cracked stiffened panels with single or MSD cracks. The critical CTOA value for each thickness was determined by matching the failure load on a middle-crack tension specimen. Comparisons were made between the critical angles determined from the finite-element analyses and those measured with photographic methods. Predicted load-against-crack extension and failure loads for panels under biaxial loading, panels with MSD cracks, and panels with various numbers of stiffeners were compared with test data whenever possible. The predicted results agreed well with the test data even for large-scale plastic deformations. The analyses were also able to predict stable tearing behavior of a large lead crack in the presence of MSD cracks. The analyses were then used to study the influence of stiffeners on residual strength in the presence of widespread fatigue cracking. Small MSD cracks were found to greatly reduce the residual strength for large lead cracks even for stiffened panels.

  18. Slow crack growth in spinel in water

    NASA Technical Reports Server (NTRS)

    Schwantes, S.; Elber, W.

    1983-01-01

    Magnesium aluminate spinel was tested in a water environment at room temperature to establish its slow crack-growth behavior. Ring specimens with artificial flaws on the outside surface were loaded hydraulically on the inside surface. The time to failure was measured. Various precracking techniques were evaluated and multiple precracks were used to minimize the scatter in the static fatigue tests. Statistical analysis techniques were developed to determine the strength and crack velocities for a single flaw. Slow crack-growth rupture was observed at stress intensities as low as 70 percent of K sub c. A strengthening effect was observed in specimens that had survived long-time static fatigue tests.

  19. Fatigue, Creep-Fatigue, and Thermomechanical Fatigue Life Testing of Alloys

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Lerch, Bradley A.; McGaw, Michael A.

    2000-01-01

    The fatigue crack initiation resistance of an alloy is determined by conducting a series of tests over a range of values of stress amplitude or strain range. The observed number of cycles to failure is plotted against the stress amplitude or strain range to obtain a fatigue curve. The fatigue properties quoted for an alloy are typically the constants used in the equation(s) that describe the fatigue curve. Fatigue lives of interest may be as low as 10(exp 2) or higher than 10(exp 9) cycles. Because of the enormous scatter associated with fatigue, dozens of tests may be needed to confidently establish a fatigue curve, and the cost may run into several thousands of dollars. To further establish the effects on fatigue life of the test temperature, environment, alloy condition, mean stress effects, creep-fatigue effects, thermomechanical cycling, etc. requires an extraordinarily large and usually very costly test matrix. The total effort required to establish the fatigue resistance of an alloy should not be taken lightly. Fatigue crack initiation tests are conducted on relatively small and presumed to be initially crack-free, samples of an alloy that are intended to be representative of the alloy's metallurgical and physical condition. Generally, samples are smooth and have uniformly polished surfaces within the test section. Some may have intentionally machined notches of well-controlled geometry, but the surface at the root of the notch is usually not polished. The purpose of polishing is to attain a reproducible surface finish. This is to eliminate surface finish as an uncontrolled variable. Representative test specimen geometries will be discussed later. Test specimens are cyclically loaded until macroscopically observable cracks initiate and eventually grow to failure. Normally, the fatigue failure life of a specimen is defined as the number of cycles to separation of the specimen into two pieces. Alternative definitions are becoming more common, particularly for low-cycle fatigue testing, wherein some prescribed indication of impending failure due to cracking is adopted. Specific criteria will be described later. As a rule, cracks that develop during testing are not measured nor are the test parameters intentionally altered owing to the presence of cracking.

  20. Analytical and experimental investigation of fatigue in lap joints

    NASA Astrophysics Data System (ADS)

    Swenson, Daniel V.; Chih-Chien, Chia; Derber, Thomas G.

    A finite element model is presented that can simulate crack growth in layered structures such as lap joints. The layers can be joined either by rivets or adhesives. The crack is represented discretely in the mesh, and automatic remeshing is performed as the crack grows. Because of the connections between the layers, load is transferred to the uncracked layer as the crack grows. This reduces the stress intensity and slows the crack growth rate. The model is used to analyze tests performed on a section of a wing spanwise lap joint. The crack was initiated at a rivet and grown under constant amplitude cyclic loads. Both experimentally observed crack growth rates and the analysis show the retardation that occurs as a result of load transfer between layers. A good correlation is obtained between predicted and observed crack growth rates for the fullly developed through-thickness crack.

  1. On the variation in crack-opening stresses at different locations in a three-dimensional body

    NASA Technical Reports Server (NTRS)

    Chermahini, R. G.; Blom, Anders F.

    1990-01-01

    Crack propagation and closure behavior of thin, and thick middle crack tension specimens under constant amplitude loading were investigated using a three dimensional elastic plastic finite element analysis of fatigue crack propagation and closure. In the thin specimens the crack front closed first on the exterior (free) surface and closed last in the interior during the unloading portion of cyclic loading; a load reduced displacement technique was used to determine crack opening stresses at specified locations in the plate from the displacements calculated after the seven cycle. All the locations were on the plate external surface and were located near the crack tip, behind the crack tip, at the centerline of the crack. With this technique, the opening stresses at the specified points were found to be 0.52, 0.42, and 0.39 times the maximum applied stress.

  2. Structural and mechanical defects of materials of offshore and onshore main gas pipelines after long-term operation

    NASA Astrophysics Data System (ADS)

    Maruschak, Pavlo; Panin, Sergey; Danyliuk, Iryna; Poberezhnyi, Lyubomyr; Pyrig, Taras; Bishchak, Roman; Vlasov, Ilya

    2015-10-01

    The study has established the main regularities of a fatigue failure of offshore gas steel pipes installed using S-lay and J-lay methods.We have numerically analyzed the influence of preliminary deformation on the fatigue life of 09Mn2Si steel at different amplitudes of cyclic loading. The results have revealed the regularities of formation and development of a fatigue crack in 17Mn1Si steel after 40 years of underground operation. The quantitative analysis describes the regularities of occurrence and growth of fatigue cracks in the presence of a stress concentration.

  3. Differences and similarities in fatigue behaviour and its influences on critical current and residual strength between Ti-Nb and Nb3Al superconducting composite wires

    NASA Astrophysics Data System (ADS)

    Ochiai, Shojiro; Oki, Yuichiro; Sekino, Fumiaki; Ohno, Hiroaki; Hojo, Masaki; Moriai, Hidezumi; Sakai, Shuji; Koganeya, Masanobu; Hayashi, Kazuhiko; Yamada, Yuichi; Ayai, Naoki; Watanabe, Kazuo

    2000-04-01

    The influences of fatigue damage introduced at room temperature on critical current at 4.2 K and residual strength at room temperature of Ti-Nb superconducting composite wire with a low copper ratio (1.04) were studied. The experimental results were compared with those of Nb3 Al composite. The following differences between the composites were found: the fracture surface of the Ti-Nb filaments in the composite varies from a ductile pattern under static loading to a brittle one under cyclic loading, while the Nb3 Al compound always shows a brittle pattern under both loadings; the fracture strength of the Ti-Nb composite is given by the net stress criterion but that of Nb3 Al by the stress intensity factor criterion; in the Ti-Nb composite the critical current Ic decreases with increasing number of stress cycles simultaneously with the residual strength icons/Journals/Common/sigma" ALT="sigma" ALIGN="TOP"/> c ,r , while in the Nb3 Al composite Ic decreases later than icons/Journals/Common/sigma" ALT="sigma" ALIGN="TOP"/> c ,r . On the other hand, both composites have the following similarities: the filaments are fractured due to the propagation of the fatigue crack nucleated in the copper; with increasing number of stress cycles, the damage progresses in the order of stage I (formation of cracks in the clad copper), stage II (stable propagation of the fatigue crack into the inner core) and stage III (overall fracture), among which stage II occurs in the late stage beyond 85 to 90% of the fatigue life; at intermediate maximum stress, many large cracks grow into the core portion at different cross sections but not at high and low maximum stresses; accordingly, the critical current and residual strength of the portion apart from the main crack are low for the intermediate maximum stress but not for low and high maximum stresses.

  4. Signal Processing and Imaging with Ultrasonic Guided Waves: Goals, Challenges and Recent Progress (Preprint)

    DTIC Science & Technology

    2012-07-01

    SHM). 3 Approved for public release; distribution unlimited. The transducers, which are Lead Zirconate Titanate ( PZT ) discs, are permanently... fatigued . Data were recorded as a function of load before the hole was drilled, after the hole was drilled, and at intervals thereafter as a function...of fatigue life. Figure 7 illustrates the effects of matched loads on a fatigue crack about 5 mm in length. Figures 7(a), (b) and (c) correspond

  5. Quantitative methods in fractography; Proceedings of the Symposium on Evaluation and Techniques in Fractography, Atlanta, GA, Nov. 10, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, B.M.; Putatunda, S.K.

    1990-01-01

    Papers are presented on the application of quantitative fractography and computed tomography to fracture processes in materials, the relationships between fractographic features and material toughness, the quantitative analysis of fracture surfaces using fractals, and the analysis and interpretation of aircraft component defects by means of quantitative fractography. Also discussed are the characteristics of hydrogen-assisted cracking measured by the holding-load and fractographic method, a fractographic study of isolated cleavage regions in nuclear pressure vessel steels and their weld metals, a fractographic and metallographic study of the initiation of brittle fracture in weldments, cracking mechanisms for mean stress/strain low-cycle multiaxial fatigue loadings,more » and corrosion fatigue crack arrest in Al alloys.« less

  6. Post-impact fatigue of cross-plied, through-the-thickness reinforced carbon/epoxy composites

    NASA Astrophysics Data System (ADS)

    Serdinak, Thomas E.

    1994-05-01

    An experimental investigation of the post-impact fatigue response of integrally woven carbon/epoxy composites was conducted. Five different through-the-thickness (TTT) reinforcing fibers were used in an experimental textile process that produced an integrally woven (0/90/0/90/0/90/0/90/0)(sub T) ply layup with 21K AS4 carbon tow fiber. The resin was Hercules 3501-6, and the five TTT reinforcing fibers were Kevlar, Toray carbon, AS4 carbon, glass, and IM6 carbon. The purpose of this investigation was to study the post-impact fatigue response of these material systems and to identify the optimum TTT fiber. Samples were impacted with one half inch diameter aluminum balls with an average velocity of 543 ft/sec. Post-impact static compression and constant amplitude tension-compression fatigue tests were conducted. Fatigue tests were conducted with a loading ratio of R=-5, and frequency of 4 Hz. Damage growth was monitored using x-radiographic and sectioning techniques and by examining the stress-strain response (across the impact site) throughout the fatigue tests. The static compressive stress versus far-field strain response was nearly linear for all material groups. All the samples had a transverse shear failure mode. The average compressive modulus (from far-field strain) was about 10 Msi. The average post-impact static compressive strength was about 35.5 Ksi. The IM6 carbon sample had a strength of over 40 Ksi, more than 16 percent stronger than average. There was considerable scatter in the S-N data. However, the IM6 carbon samples clearly had the best fatigue response. The response of the other materials, while worse than IM6 carbon, could not be ranked definitively. The initial damage zones caused by the impact loading and damage growth from fatigue loading were similar for all five TTT reinforcing materials. The initial damage zones were circular and consisted of delaminations, matrix cracks and ply cracks.

  7. Post-impact fatigue of cross-plied, through-the-thickness reinforced carbon/epoxy composites. M.S. Thesis - Clemson Univ.

    NASA Technical Reports Server (NTRS)

    Serdinak, Thomas E.

    1994-01-01

    An experimental investigation of the post-impact fatigue response of integrally woven carbon/epoxy composites was conducted. Five different through-the-thickness (TTT) reinforcing fibers were used in an experimental textile process that produced an integrally woven (0/90/0/90/0/90/0/90/0)(sub T) ply layup with 21K AS4 carbon tow fiber. The resin was Hercules 3501-6, and the five TTT reinforcing fibers were Kevlar, Toray carbon, AS4 carbon, glass, and IM6 carbon. The purpose of this investigation was to study the post-impact fatigue response of these material systems and to identify the optimum TTT fiber. Samples were impacted with one half inch diameter aluminum balls with an average velocity of 543 ft/sec. Post-impact static compression and constant amplitude tension-compression fatigue tests were conducted. Fatigue tests were conducted with a loading ratio of R=-5, and frequency of 4 Hz. Damage growth was monitored using x-radiographic and sectioning techniques and by examining the stress-strain response (across the impact site) throughout the fatigue tests. The static compressive stress versus far-field strain response was nearly linear for all material groups. All the samples had a transverse shear failure mode. The average compressive modulus (from far-field strain) was about 10 Msi. The average post-impact static compressive strength was about 35.5 Ksi. The IM6 carbon sample had a strength of over 40 Ksi, more than 16 percent stronger than average. There was considerable scatter in the S-N data. However, the IM6 carbon samples clearly had the best fatigue response. The response of the other materials, while worse than IM6 carbon, could not be ranked definitively. The initial damage zones caused by the impact loading and damage growth from fatigue loading were similar for all five TTT reinforcing materials. The initial damage zones were circular and consisted of delaminations, matrix cracks and ply cracks. Post-impact fatigue loading caused delamination growth, ply cracking and fiber bundle failures, typically 45 deg from impact load direction. During the initial 97 percent of fatigue life, delaminations, ply cracks and fiber bundle failures primarily grew at and near the impact site. During the final 3 percent of life, damage grew rapidly transverse to the loading direction as a through-the-thickness transverse shear failure. The stress-strain response was typically linear during the initial 50 percent of life, and stiffness dropped about 20 percent during this period. During the next 47 percent of life, stiffness dropped about 34 percent, and the stress-strain response was no longer linear. The stiffness decreased about 23 percent during the final 3 percent of life. These trends were typical of all the materials tested. Therefore, by monitoring stiffness loss, fatigue failure could be accurately anticipated.

  8. Rotorcraft fatigue life-prediction: Past, present, and future

    NASA Technical Reports Server (NTRS)

    Everett, Richard A., Jr.; Elber, W.

    1994-01-01

    In this paper the methods used for calculating the fatigue life of metallic dynamic components in rotorcraft is reviewed. In the past, rotorcraft fatigue design has combined constant amplitude tests of full-scale parts with flight loads and usage data in a conservative manner to provide 'safe life' component replacement times. This is in contrast to other industries, such as the automobile industry, where spectrum loading in fatigue testing is a part of the design procedure. Traditionally, the linear cumulative damage rule has been used in a deterministic manner using a conservative value for fatigue strength based on a one in a thousand probability of failure. Conservatism on load and usage are also often employed. This procedure will be discussed along with the current U.S. Army fatigue life specification for new rotorcraft which is the so-called 'six nines' reliability requirement. In order to achieve the six nines reliability requirement the exploration and adoption of new approaches in design and fleet management may also be necessary if this requirement is to be met with a minimum impact on structural weight. To this end a fracture mechanics approach to fatigue life design may be required in order to provide a more accurate estimate of damage progression. Also reviewed in this paper is a fracture mechanics approach for calculating total fatigue life which is based on a crack-closure small crack considerations.

  9. The detection of tightly closed flaws by nondestructive testing (NDT) methods. [fatigue crack formation in aluminum alloy test specimens

    NASA Technical Reports Server (NTRS)

    Rummel, W. D.; Rathke, R. A.; Todd, P. H., Jr.; Mullen, S. J.

    1975-01-01

    Liquid penetrant, ultrasonic, eddy current and X-radiographic techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens in integrally stiffened panel, and weld panel configurations. Fatigue cracks in integrally stiffened panels, lack-of-fusion in weld panels, and fatigue cracks in weld panels were the flaw types used for evaluation. A 2319 aluminum alloy weld filler rod was used for all welding to produce the test specimens. Forty seven integrally stiffened panels containing a total of 146 fatigue cracks, ninety three lack-of-penetration (LOP) specimens containing a total of 239 LOP flaws, and one-hundred seventeen welded specimens containing a total of 293 fatigue cracks were evaluated. Nondestructive test detection reliability enhancement was evaluated during separate inspection sequences in the specimens in the 'as-machined or as-welded', post etched and post proof loaded conditions. Results of the nondestructive test evaluations were compared to the actual flaw size obtained by measurement of the fracture specimens after completing all inspection sequences. Inspection data were then analyzed to provide a statistical basis for determining the flaw detection reliability.

  10. A reliability-based cost effective fail-safe design procedure

    NASA Technical Reports Server (NTRS)

    Hanagud, S.; Uppaluri, B.

    1976-01-01

    The authors have developed a methodology for cost-effective fatigue design of structures subject to random fatigue loading. A stochastic model for fatigue crack propagation under random loading has been discussed. Fracture mechanics is then used to estimate the parameters of the model and the residual strength of structures with cracks. The stochastic model and residual strength variations have been used to develop procedures for estimating the probability of failure and its changes with inspection frequency. This information on reliability is then used to construct an objective function in terms of either a total weight function or cost function. A procedure for selecting the design variables, subject to constraints, by optimizing the objective function has been illustrated by examples. In particular, optimum design of stiffened panel has been discussed.

  11. Fatigue crack growth rates in a pressure vessel steel under various conditions of loading and the environment

    NASA Astrophysics Data System (ADS)

    Hicks, P. D.; Robinson, F. P. A.

    1986-10-01

    Corrosion fatigue (CF) tests have been carried out on SA508 Cl 3 pressure vessel steel, in simulated P.W.R. environments. The test variables investigated included air and P.W.R. water environments, frequency variation over the range 1 Hz to 10 Hz, transverse and longitudinal crack growth directions, temperatures of 20 °C and 50 °C, and R-ratios of 0.2 and 0.7. It was found that decreasing the test frequency increased fatigue crack growth rates (FCGR) in P.W.R. environments, P.W.R. environment testing gave enhanced crack growth (vs air tests), FCGRs were greater for cracks growing in the longitudinal direction, slight increases in temperature gave noticeable accelerations in FCGR, and several air tests gave FCGR greater than those predicted by the existing ASME codes. Fractographic evidence indicates that FCGRs were accelerated by a hydrogen embrittlement mechanism. The presence of elongated MnS inclusions aided both mechanical fatigue and hydrogen embrittlement processes, thus producing synergistically fast FCGRs. Both anodic dissolution and hydrogen embrittlement mechanisms have been proposed for the environmental enhancement of crack growth rates. Electrochemical potential measurements and potentiostatic tests have shown that sample isolation of the test specimens from the clevises in the apparatus is not essential during low temperature corrosion fatigue testing.

  12. Effects of fatigue induced damage on the longitudinal fracture resistance of cortical bone.

    PubMed

    Fletcher, Lloyd; Codrington, John; Parkinson, Ian

    2014-07-01

    As a composite material, cortical bone accumulates fatigue microdamage through the repetitive loading of everyday activity (e.g. walking). The accumulation of fatigue microdamage is thought to contribute to the occurrence of fragility fractures in older people. Therefore it is beneficial to understand the relationship between microcrack accumulation and the fracture resistance of cortical bone. Twenty longitudinally orientated compact tension fracture specimens were machined from a single bovine femur, ten specimens were assigned to both the control and fatigue damaged groups. The damaged group underwent a fatigue loading protocol to induce microdamage which was assessed via fluorescent microscopy. Following fatigue loading, non-linear fracture resistance tests were undertaken on both the control and damaged groups using the J-integral method. The interaction of the crack path with the fatigue induced damage and inherent toughening mechanisms were then observed using fluorescent microscopy. The results of this study show that fatigue induced damage reduces the initiation toughness of cortical bone and the growth toughness within the damage zone by three distinct mechanisms of fatigue-fracture interaction. Further analysis of the J-integral fracture resistance showed both the elastic and plastic component were reduced in the damaged group. For the elastic component this was attributed to a decreased number of ligament bridges in the crack wake while for the plastic component this was attributed to the presence of pre-existing fatigue microcracks preventing energy absorption by the formation of new microcracks.

  13. Advanced aircraft service life monitoring method via flight-by-flight load spectra

    NASA Astrophysics Data System (ADS)

    Lee, Hongchul

    This research is an effort to understand current method and to propose an advanced method for Damage Tolerance Analysis (DTA) for the purpose of monitoring the aircraft service life. As one of tasks in the DTA, the current indirect Individual Aircraft Tracking (IAT) method for the F-16C/D Block 32 does not properly represent changes in flight usage severity affecting structural fatigue life. Therefore, an advanced aircraft service life monitoring method based on flight-by-flight load spectra is proposed and recommended for IAT program to track consumed fatigue life as an alternative to the current method which is based on the crack severity index (CSI) value. Damage Tolerance is one of aircraft design philosophies to ensure that aging aircrafts satisfy structural reliability in terms of fatigue failures throughout their service periods. IAT program, one of the most important tasks of DTA, is able to track potential structural crack growth at critical areas in the major airframe structural components of individual aircraft. The F-16C/D aircraft is equipped with a flight data recorder to monitor flight usage and provide the data to support structural load analysis. However, limited memory of flight data recorder allows user to monitor individual aircraft fatigue usage in terms of only the vertical inertia (NzW) data for calculating Crack Severity Index (CSI) value which defines the relative maneuver severity. Current IAT method for the F-16C/D Block 32 based on CSI value calculated from NzW is shown to be not accurate enough to monitor individual aircraft fatigue usage due to several problems. The proposed advanced aircraft service life monitoring method based on flight-by-flight load spectra is recommended as an improved method for the F-16C/D Block 32 aircraft. Flight-by-flight load spectra was generated from downloaded Crash Survival Flight Data Recorder (CSFDR) data by calculating loads for each time hack in selected flight data utilizing loads equations. From the comparison of interpolated fatigue life using CSI value and fatigue test results, it is obvious that proposed advanced IAT method via flight-by-flight load spectra is more reliable and accurate than current IAT method. Therefore, the advanced aircraft service life monitoring method based on flight-by-flight load spectra not only monitors the individual aircraft consumed fatigue life for inspection but also ensures the structural reliability of aging aircrafts throughout their service periods.

  14. Fracture Toughness and Fatigue Crack Growth Behavior of As-Cast High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Seifi, Mohsen; Li, Dongyue; Yong, Zhang; Liaw, Peter K.; Lewandowski, John J.

    2015-08-01

    The fracture toughness and fatigue crack growth behavior of two as-vacuum arc cast high-entropy alloys (HEAs) (Al0.2CrFeNiTi0.2 and AlCrFeNi2Cu) were determined. A microstructure examination of both HEA alloys revealed a two-phase structure consisting of body-centered cubic (bcc) and face-centered cubic (fcc) phases. The notched and fatigue precracked toughness values were in the range of those reported in the literature for two-phase alloys but significantly less than recent reports on a single phase fcc-HEA that was deformation processed. Fatigue crack growth experiments revealed high fatigue thresholds that decreased significantly with an increase in load ratio, while Paris law slopes exhibited metallic-like behavior at low R with significant increases at high R. Fracture surface examinations revealed combinations of brittle and ductile/dimpled regions at overload, with some evidence of fatigue striations in the Paris law regime.

  15. Addendum to the User Manual for NASGRO Elastic-Plastic Fracture Mechanics Software Module

    NASA Technical Reports Server (NTRS)

    Gregg, M. Wayne (Technical Monitor); Chell, Graham; Gardner, Brian

    2003-01-01

    The elastic-plastic fracture mechanics modules in NASGRO have been enhanced by the addition of of the following: new J-integral solutions based on the reference stress method and finite element solutions; the extension of the critical crack and critical load modules for cracks with two degrees of freedom that tear and failure by ductile instability; the addition of a proof test analysis module that includes safe life analysis, calculates proof loads, and determines the flaw screening 1 capability for a given proof load; the addition of a tear-fatigue module for ductile materials that simultaneously tear and extend by fatigue; and a multiple cycle proof test module for estimating service reliability following a proof test.

  16. Simulation model of fatigue crack opening/closing phenomena for predicting RPG load under arbitrary stress distribution field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toyosada, M.; Niwa, T.

    1995-12-31

    In this paper, Newman`s calculation model is modified to solve his neglected effect of the change of stress distribution ahead of a crack, and to leave elastic plastic materials along the crack surface because of the compatibility of Dugdale model. In addition to above treatment, the authors introduce plastic shrinkage at an immediate generation of new crack surfaces due to emancipation of internal force with the magnitude of yield stress level during unloading process in the model. Moreover, the model is expanded to arbitrary stress distribution field. By using the model, RPG load is simulated for a center notched specimenmore » under constant amplitude loading with various stress ratios and decreased maximum load while keeping minimum load.« less

  17. Energy-based fatigue model for shape memory alloys including thermomechanical coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Van Herpen, Alain; Zhang, Weihong

    2016-03-01

    This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well.

  18. Interference-Fit-Fastener Investigation

    DTIC Science & Technology

    1975-09-01

    Crack Initiation . .*. . . .* e . . .*. . . .*. 20 Figure 9. Actual and Predicted Fatigue Life Behavior of Notched Open Hole Plates for 2024 - T351 ... Aluminum (Reference 19) * .. . . . . . . . .. . 22 Figure 10. Gage I Strain Response With Cycles . . . . . . . . 24 Figure 11. Fatigue Damage - Life ... Fatigue Behavior", Effect of Environment and Complex Load History on Fatigue Life , ASTM STP 462, pp 74-91 (1970). (7) Grosskreutz, J. C., and Shaw, G. G

  19. A method for evaluating the fatigue crack growth in spiral notch torsion fracture toughness test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy -An John; Tan, Ting

    The spiral notch torsion test (SNTT) has been a recent breakthrough in measuring fracture toughness for different materials, including metals, ceramics, concrete, and polymers composites. Due to its high geometry constraint and unique loading condition, SNTT can be used to measure the fracture toughness with smaller specimens without concern of size effects. The application of SNTT to brittle materials has been proved to be successful. The micro-cracks induced by original notches in brittle materials could ensure crack growth in SNTT samples. Therefore, no fatigue pre-cracks are needed. The application of SNTT to the ductile material to generate valid toughness datamore » will require a test sample with sufficient crack length. Fatigue pre-crack growth techniques are employed to introduce sharp crack front into the sample. Previously, only rough calculations were applied to estimate the compliance evolution in the SNTT crack growth process, while accurate quantitative descriptions have never been attempted. This generates an urgent need to understand the crack evolution during the SNTT fracture testing process of ductile materials. Here, the newly developed governing equations for SNTT crack growth estimate are discussed in the paper.« less

  20. A method for evaluating the fatigue crack growth in spiral notch torsion fracture toughness test

    DOE PAGES

    Wang, Jy -An John; Tan, Ting

    2018-05-21

    The spiral notch torsion test (SNTT) has been a recent breakthrough in measuring fracture toughness for different materials, including metals, ceramics, concrete, and polymers composites. Due to its high geometry constraint and unique loading condition, SNTT can be used to measure the fracture toughness with smaller specimens without concern of size effects. The application of SNTT to brittle materials has been proved to be successful. The micro-cracks induced by original notches in brittle materials could ensure crack growth in SNTT samples. Therefore, no fatigue pre-cracks are needed. The application of SNTT to the ductile material to generate valid toughness datamore » will require a test sample with sufficient crack length. Fatigue pre-crack growth techniques are employed to introduce sharp crack front into the sample. Previously, only rough calculations were applied to estimate the compliance evolution in the SNTT crack growth process, while accurate quantitative descriptions have never been attempted. This generates an urgent need to understand the crack evolution during the SNTT fracture testing process of ductile materials. Here, the newly developed governing equations for SNTT crack growth estimate are discussed in the paper.« less

  1. Investigation of Thermal High Cycle and Low Cycle Fatigue Mechanisms of Thick Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1998-01-01

    Thick thermal barrier coating systems in a diesel engine experience severe thermal low cycle fatigue (LCF) and high cycle fatigue (HCF) during engine operation. In this paper, the mechanisms of fatigue crack initiation and propagation in a ZrO2-8wt.% Y2O3 thermal barrier coating, under simulated engine thermal LCF and HCF conditions, are investigated using a high power CO2 laser. Experiments showed that the combined LCF/HCF tests induced more severe coating surface cracking, microspallation and accelerated crack growth, as compared to the pure LCF test. Lateral crack branching and the ceramic/bond coat interface delaminations were also facilitated by HCF thermal loads, even in the absence of severe interfacial oxidation. Fatigue damages at crack wake surfaces, due to such phenomena as asperity/debris contact induced cracking and splat pull-out bending during cycling, were observed especially for the combined LCF/HCF tests. It is found that the failure associated with LCF is closely related to coating sintering and creep at high temperatures, which induce tensile stresses in the coating after cooling. The failure associated with HCF process, however, is mainly associated with a surface wedging mechanism. The interaction between the LCF, HCF and ceramic coating creep, and the relative importance of LCF and HCF in crack propagation are also discussed based on the experimental evidence.

  2. Fatigue crack growth in fiber-metal laminates

    NASA Astrophysics Data System (ADS)

    Ma, YuE; Xia, ZhongChun; Xiong, XiaoFeng

    2014-01-01

    Fiber-metal laminates (FMLs) consist of three layers of aluminum alloy 2024-T3 and two layers of glass/epoxy prepreg, and it (it means FMLs) is laminated by Al alloy and fiber alternatively. Fatigue crack growth rates in notched fiber-metal laminates under constant amplitude fatigue loading were studied experimentally and numerically and were compared with them in monolithic 2024-T3 Al alloy plates. It is shown that the fatigue life of FMLs is about 17 times longer than monolithic 2024-T3 Al alloy plate; and crack growth rates in FMLs panels remain constant mostly even when the crack is long, unlike in the monolithic 2024-T3 Al alloy plates. The formula to calculate bridge stress profiles of FMLs was derived based on the fracture theory. A program by Matlab was developed to calculate the distribution of bridge stress in FMLs, and then fatigue growth lives were obtained. Finite element models of FMLs were built and meshed finely to analyze the stress distributions. Both results were compared with the experimental results. They agree well with each other.

  3. Detection of Fatigue Crack in Basalt FRP Laminate Composite Pipe using Electrical Potential Change Method

    NASA Astrophysics Data System (ADS)

    Altabey, Wael A.; Noori, Mohammed

    2017-05-01

    Novel modulation electrical potential change (EPC) method for fatigue crack detection in a basalt fibre reinforced polymer (FRP) laminate composite pipe is carried out in this paper. The technique is applied to a laminate pipe with an embedded crack in three layers [0º/90º/0º]s. EPC is applied for evaluating the dielectric properties of basalt FRP pipe by using an electrical capacitance sensor (ECS) to discern damages in the pipe. Twelve electrodes are mounted on the outer surface of the pipe and the changes in the modulation dielectric properties of the piping system are analyzed to detect damages in the pipe. An embedded crack is created by a fatigue internal pressure test. The capacitance values, capacitance change and node potential distribution of ECS electrodes are calculated before and after crack initiates using a finite element method (FEM) by ANSYS and MATLAB, which are combined to simulate sensor characteristics and fatigue behaviour. The crack lengths of the basalt FRP are investigated for various number of cycles to failure for determining crack growth rate. Response surfaces are adopted as a tool for solving inverse problems to estimate crack lengths from the measured electric potential differences of all segments between electrodes to validate the FEM results. The results show that, the good convergence between the FEM and estimated results. Also the results of this study show that the electrical potential difference of the basalt FRP laminate increases during cyclic loading, caused by matrix cracking. The results indicate that the proposed method successfully provides fatigue crack detection for basalt FRP laminate composite pipes.

  4. Fatigue life calculation of desuperheater for solving pipe cracking issue using finite element method (FEM) software

    NASA Astrophysics Data System (ADS)

    Kumar, Aravinda; Singh, Jeetendra Kumar; Mohan, K.

    2012-06-01

    Desuperheater assembly experiences thermal cycling in operation by design. During power plant's start up, load change and shut down, thermal gradient is highest. Desuperheater should be able to handle rapid ramp up or ramp down of temperature in these operations. With "hump style" two nozzle desuperheater, cracks were appearing in the pipe after only few cycles of operation. From the field data, it was clear that desuperheater is not able to handle disproportionate thermal expansion happening in the assembly during temperature ramp up and ramp down in operation and leading to cracks appearing in the piping. Growth of thermal fatigue crack is influenced by several factors including geometry, severity of thermal stress and applied mechanical load. This paper seeks to determine cause of failure of two nozzle "hump style" desuperheater using Finite Element Method (FEM) simulation technique. Thermal stress simulation and fatigue life calculation were performed using commercial FEA software "ANSYS" [from Ansys Inc, USA]. Simulation result showed that very high thermal stress is developing in the region where cracks are seen in the field. From simulation results, it is also clear that variable thermal expansion of two nozzle studs is creating high stress at the water manifold junction. A simple and viable solution is suggested by increasing the length of the manifold which solved the cracking issues in the pipe.

  5. Characterization of Fatigue Damage for Bonded Composite Skin/Stringer Configurations

    NASA Technical Reports Server (NTRS)

    Paris, Isabelle; Cvitkovich, Michael; Krueger, Ronald

    2008-01-01

    The fatigue damage was characterized in specimens which consisted of a tapered composite flange bonded onto a composite skin. Quasi-static tension tests were performed first to determine the failure load. Subsequently, tension fatigue tests were performed at 40%, 50%, 60% and 70% of the failure load to evaluate the debonding mechanisms. For four specimens, the cycling loading was stopped at intervals. Photographs of the polished specimen edges were taken under a light microscope to document the damage. At two diagonally opposite corners of the flange, a delamination appeared to initiate at the flange tip from a matrix crack in the top 45deg skin ply and propagated at the top 45deg/-45deg skin ply interface. At the other two diagonally opposite corners, a delamination running in the bondline initiated from a matrix crack in the adhesive pocket. In addition, two specimens were cut longitudinally into several sections. Micrographs revealed a more complex pattern inside the specimen where the two delamination patterns observed at the edges are present simultaneously across most of the width of the specimen. The observations suggest that a more sophisticated nondestructive evaluation technique is required to capture the complex damage pattern of matrix cracking and multi-level delaminations.

  6. Fatigue properties of type 316LN stainless steel in air and mercury

    NASA Astrophysics Data System (ADS)

    Strizak, J. P.; Tian, H.; Liaw, P. K.; Mansur, L. K.

    2005-08-01

    An extensive fatigue testing program on 316LN stainless steel was recently carried out to support the design of the mercury target container for the spallation neutron source (SNS) that is currently under construction at the Oak Ridge National Laboratory in the United States. The major objective was to determine the effects of mercury on fatigue behavior. The S- N fatigue behavior of 316LN stainless steel is characterized by a family of bilinear fatigue curves which are dependent on frequency, environment, mean stress and cold work. Generally, fatigue life increases with decreasing stress and levels off in the high cycle region to an endurance limit below which the material will not fail. For fully reversed loading as well as tensile mean stress loading conditions mercury had no effect on endurance limit. However, at higher stresses a synergistic relationship between mercury and cyclic loading frequency was observed at low frequencies. As expected, fatigue life decreased with decreasing frequency, but the response was more pronounced in mercury compared with air. As a result of liquid metal embrittlement (LME), fracture surfaces of specimens tested in mercury showed widespread brittle intergranular cracking as opposed to typical transgranular cracking for specimens tested in air. For fully reversed loading (zero mean stress) the effect of mercury disappeared as frequency increased to 10 Hz. For mean stress conditions with R-ratios of 0.1 and 0.3, LME was still evident at 10 Hz, but at 700 Hz the effect of mercury had disappeared ( R = 0.1). Further, for higher R-ratios (0.5 and 0.75) fatigue curves for 10 Hz showed no environmental effect. Finally, cold working (20%) increased tensile strength and hardness, and improved fatigue resistance. Fatigue behavior at 10 and 700 Hz was similar and no environmental effect was observed.

  7. Comparison of Mode II and III Monotonic and Fatigue Delamination Onset Behavior for Carbon/Toughened Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Li, Jian; OBrien, T. Kevin; Lee, Shaw Ming

    1997-01-01

    Monotonic and fatigue tests were performed to compare the Mode II and III interlaminar fracture toughness and fatigue delamination onset for Tenax-HTA/R6376 carbon/toughened epoxy composites. The Mode II interlaminar fracture toughness and fatigue delamination onset were characterized using the end-notched flexure (ENF) test while the Mode III interlaminar fracture toughness and fatigue delamination onset were characterized by using the edge crack torsion (ECT) test. Monotonic tests show that the Mode III fracture toughness is higher than the Mode II fracture toughness. Both Mode II and III cyclic loading greatly increases the tendency for a delamination to grow relative to a single monotonically increasing load. Under fatigue loading, the Mode III specimen also has a longer life than the Mode II specimen.

  8. Thermal Fatigue and Fracture Behavior of Ceramic Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, Sung R.; Miller, Robert A.

    2001-01-01

    Thermal fatigue and fracture behavior of plasma-sprayed ceramic thermal barrier coatings has been investigated under high heat flux and thermal cyclic conditions. The coating crack propagation is studied under laser heat flux cyclic thermal loading, and is correlated with dynamic fatigue and strength test results. The coating stress response and inelasticity, fatigue and creep interactions, and interface damage mechanisms during dynamic thermal fatigue processes are emphasized.

  9. Control Design Strategies to Enhance Long-Term Aircraft Structural Integrity

    NASA Technical Reports Server (NTRS)

    Newman, Brett A.

    1999-01-01

    Over the operational lifetime of both military and civil aircraft, structural components are exposed to hundreds of thousands of low-stress repetitive load cycles and less frequent but higher-stress transient loads originating from maneuvering flight and atmospheric gusts. Micro-material imperfections in the structure, such as cracks and debonded laminates, expand and grow in this environment, reducing the structural integrity and shortening the life of the airframe. Extreme costs associated with refurbishment of critical load-bearing structural components in a large fleet, or altogether reinventoring the fleet with newer models, indicate alternative solutions for life extension of the airframe structure are highly desirable. Increased levels of operational safety and reliability are also important factors influencing the desirability of such solutions. One area having significant potential for impacting crack growth/fatigue damage reduction and structural life extension is flight control. To modify the airframe response dynamics arising from command inputs and gust disturbances, feedback loops are routinely applied to vehicles. A dexterous flight control system architecture senses key vehicle motions and generates critical forces/moments at multiple points distributed throughout the airframe to elicit the desired motion characteristics. In principle, these same control loops can be utilized to influence the level of exposure to harmful loads during flight on structural components. Project objectives are to investigate and/or assess the leverage control has on reducing fatigue damage and enhancing long-term structural integrity, without degrading attitude control and trajectory guidance performance levels. In particular, efforts have focused on the effects inner loop control parameters and architectures have on fatigue damage rate. To complete this research, an actively controlled flexible aircraft model and a new state space modeling procedure for crack growth have been utilized. Analysis of the analytical state space model for crack growth revealed the critical mathematical factors, and hence the physical mechanism they represent, that influenced high rates of airframe crack growth. The crack model was then exercised with simple load inputs to uncover and expose key crack growth behavior. To characterize crack growth behavior, both "short-term" laboratory specimen test type inputs and "long-term" operational flight type inputs were considered. Harmonic loading with a single overload revealed typical exponential crack growth behavior until the overload application, after which time the crack growth was retarded for a period of time depending on the overload strength. An optimum overload strength was identified which leads to maximum retardation of crack growth. Harmonic loading with a repeated overload of varying strength and frequency again revealed an optimum overload trait for maximizing growth retardation. The optimum overload strength ratio lies near the range of 2 to 3 with dependency on frequency. Experimental data was found to correlate well with the analytical predictions.

  10. Early detection of materials degradation

    NASA Astrophysics Data System (ADS)

    Meyendorf, Norbert

    2017-02-01

    Lightweight components for transportation and aerospace applications are designed for an estimated lifecycle, taking expected mechanical and environmental loads into account. The main reason for catastrophic failure of components within the expected lifecycle are material inhomogeneities, like pores and inclusions as origin for fatigue cracks, that have not been detected by NDE. However, material degradation by designed or unexpected loading conditions or environmental impacts can accelerate the crack initiation or growth. Conventional NDE methods are usually able to detect cracks that are formed at the end of the degradation process, but methods for early detection of fatigue, creep, and corrosion are still a matter of research. For conventional materials ultrasonic, electromagnetic, or thermographic methods have been demonstrated as promising. Other approaches are focused to surface damage by using optical methods or characterization of the residual surface stresses that can significantly affect the creation of fatigue cracks. For conventional metallic materials, material models for nucleation and propagation of damage have been successfully applied for several years. Material microstructure/property relations are well established and the effect of loading conditions on the component life can be simulated. For advanced materials, for example carbon matrix composites or ceramic matrix composites, the processes of nucleation and propagation of damage is still not fully understood. For these materials NDE methods can not only be used for the periodic inspections, but can significantly contribute to the material scientific knowledge to understand and model the behavior of composite materials.

  11. How oral environment simulation affects ceramic failure behavior.

    PubMed

    Lodi, Ediléia; Weber, Kátia R; Benetti, Paula; Corazza, Pedro H; Della Bona, Álvaro; Borba, Márcia

    2018-05-01

    Investigating the mechanical behavior of ceramics in a clinically simulated scenario contributes to the development of new and tougher materials, improving the clinical performance of restorations. The optimal in vitro environment for testing is unclear. The purpose of this in vitro study was to investigate the failure behavior of a leucite-reinforced glass-ceramic under compression loading and fatigue in different simulated oral environment conditions. Fifty-three plate-shaped ceramic specimens were produced from computer-aided design and computer-aided manufactured (CAD-CAM) blocks and adhesively cemented onto a dentin analog substrate. For the monotonic test (n=23), a gradual compressive load (0.5 mm/min) was applied to the center of the specimens, immersed in 37ºC water, using a universal testing machine. The initial crack was detected with an acoustic system. The fatigue test was performed in a mechanical cycling machine (37ºC water, 2 Hz) using the boundary technique (n=30). Two lifetimes were evaluated (1×10 6 and 2×10 6 cycles). Failure analysis was performed using transillumination. Weibull distribution was used to evaluate compressive load data. A cumulative damage model with an inverse power law (IPL) lifetime-stress relationship was used to fit the fatigue data. A characteristic failure load of 1615 N and a Weibull modulus of 5 were obtained with the monotonic test. The estimated probability of failure (P f ) for 1×10 6 cycles at 100 N was 31%, at 150 N it was 55%, and at 200 N it was 75%. For 2×10 6 cycles, the P f increased approximately 20% in comparison with the values predicted for 1×10 6 cycles, which was not significant. The most frequent failure mode was a radial crack from the intaglio surface. For fatigue, combined failure modes were also found (radial crack combined with cone crack or chipping). Fatigue affects the fracture load and failure mode of leucite-reinforced glass-ceramic. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. A proposal for unification of fatigue crack growth law

    NASA Astrophysics Data System (ADS)

    Kobelev, V.

    2017-05-01

    In the present paper, the new fractional-differential dependences of cycles to failure for a given initial crack length upon the stress amplitude in the linear fracture approach are proposed. The anticipated unified propagation function describes the infinitesimal crack length growths per increasing number of load cycles, supposing that the load ratio remains constant over the load history. Two unification fractional-differential functions with different number of fitting parameters are proposed. An alternative, threshold formulations for the fractional-differential propagation functions are suggested. The mean stress dependence is the immediate consequence from the considered laws. The corresponding formulas for crack length over the number of cycles are derived in closed form.

  13. Fatigue crack monitoring with coupled piezoelectric film acoustic emission sensors

    NASA Astrophysics Data System (ADS)

    Zhou, Changjiang

    Fatigue-induced cracking is a commonly seen problem in civil infrastructures reaching their original design life. A number of high-profile accidents have been reported in the past that involved fatigue damage in structures. Such incidences often happen without prior warnings due to lack of proper crack monitoring technique. In order to detect and monitor the fatigue crack, acoustic emission (AE) technique, has been receiving growing interests recently. AE can provide continuous and real-time monitoring data on damage progression in structures. Piezoelectric film AE sensor measures stress-wave induced strain in ultrasonic frequency range and its feasibility for AE signal monitoring has been demonstrated recently. However, extensive work in AE monitoring system development based on piezoelectric film AE sensor and sensor characterization on full-scale structures with fatigue cracks, have not been done. A lack of theoretical formulations for understanding the AE signals also hinders the use of piezoelectric film AE sensors. Additionally, crack detection and source localization with AE signals is a very important area yet to be explored for this new type of AE sensor. This dissertation presents the results of both analytical and experimental study on the signal characteristics of surface stress-wave induced AE strain signals measured by piezoelectric film AE sensors in near-field and an AE source localization method based on sensor couple theory. Based on moment tensor theory, generalized expression for AE strain signal is formulated. A special case involving the response of piezoelectric film AE sensor to surface load is also studied, which could potentially be used for sensor calibration of this type of sensor. A new concept of sensor couple theory based AE source localization technique is proposed and validated with both simulated and experimental data from fatigue test and field monitoring. Two series of fatigue tests were conducted to perform fatigue crack monitoring on large-scale steel test specimens using piezoelectric film AE sensors. Continuous monitoring of fatigue crack growth in steel structures is demonstrated in these fatigue test specimens. The use of piezoelectric film AE sensor for field monitoring of existing fatigue crack is also demonstrated in a real steel I-girder bridge located in Maryland. The sensor couple theory based AE source localization is validated using a limited number of piezoelectric film AE sensor data from both fatigue test specimens and field monitoring bridge. Through both laboratory fatigue test and field monitoring of steel structures with active fatigue cracks, the signal characteristics of piezoelectric film AE sensor have been studied in real-world environment.

  14. A comparison of fatigue crack growth in human enamel and hydroxyapatite.

    PubMed

    Bajaj, Devendra; Nazari, Ahmad; Eidelman, Naomi; Arola, Dwayne D

    2008-12-01

    Cracks and craze lines are often observed in the enamel of human teeth, but they rarely cause tooth fracture. The present study evaluates fatigue crack growth in human enamel, and compares that to the fatigue response of sintered hydroxyapatite (HAp) with similar crystallinity, chemistry and density. Miniature inset compact tension (CT) specimens were prepared that embodied a small piece of enamel (N=8) or HAp (N=6). The specimens were subjected to mode I cyclic loads and the steady state crack growth responses were modeled using the Paris Law. Results showed that the fatigue crack growth exponent (m) for enamel (m=7.7+/-1.0) was similar to that for HAp (m=7.9+/-1.4), whereas the crack growth coefficient (C) for enamel (C=8.7 E-04 (mm/cycle)x(MPa m(0.5))(-m)) was significantly lower (p<0.0001) than that for HAp (C=2.0 E+00 (mm/cycle)x(MPa m(0.5))(-m)). Micrographs of the fracture surfaces showed that crack growth in the enamel occurred primarily along the prism boundaries. In regions of decussation, the microstructure promoted microcracking, crack bridging, crack deflection and crack bifurcation. Working in concert, these mechanisms increased the crack growth resistance and resulted in a sensitivity to crack growth (m) similar to bone and lower than that of human dentin. These mechanisms of toughening were not observed in the crack growth response of the sintered HAp. While enamel is the most highly mineralized tissue of the human body, the microstructural arrangement of the prisms promotes exceptional resistance to crack growth.

  15. A Comparison of Fatigue Crack Growth in Human Enamel and Hydroxyapatite

    PubMed Central

    Bajaj, Devendra; Nazari, Ahmad; Eidelman, Naomi; Arola, Dwayne

    2008-01-01

    Cracks and craze lines are often observed in the enamel of human teeth, but they rarely cause tooth fracture. The present study evaluates fatigue crack growth in human enamel, and compares that to the fatigue response of sintered hydroxyapatite (HAp) with similar crystallinity, chemistry and density. Miniature inset compact tension (CT) specimens were prepared that embodied a small piece of enamel (N=8) or HAp (N=6). The specimens were subjected to mode I cyclic loads and the steady state crack growth responses were modeled using the Paris Law. Results showed that the fatigue crack growth exponent (m) for enamel (m = 7.7±1.0) was similar to that for HAp (m = 7.9±1.4), whereas the crack growth coefficient (C) for enamel (C=8.7E-04 (mm/cycle)·(MPa·m0.5)-m) was significantly lower (p<0.0001) than that for HAp (C = 2.0E+00 (mm/cycle)·(MPa·m0.5)-m). Micrographs of the fracture surfaces showed that crack growth in the enamel occurred primarily along the prism boundaries. In regions of decussation, the microstructure promoted microcracking, crack bridging, crack deflection and crack bifurcation. Working in concert, these mechanisms increased the crack growth resistance and resulted in a sensitivity to crack growth (m) similar to bone and lower than that of human dentin. These mechanisms of toughening were not observed in the crack growth response of the sintered HAp. While enamel is the most highly mineralized tissue of the human body, the microstructural arrangement of the prisms promotes exceptional resistance to crack growth. PMID:18804277

  16. Damage Tolerant Analysis of Cracked Al 2024-T3 Panels repaired with Single Boron/Epoxy Patch

    NASA Astrophysics Data System (ADS)

    Mahajan, Akshay D.; Murthy, A. Ramachandra; Nanda Kumar, M. R.; Gopinath, Smitha

    2018-06-01

    It is known that damage tolerant analysis has two objectives, namely, remaining life prediction and residual strength evaluation. To achieve the these objectives, determination of accurate and reliable fracture parameter is very important. XFEM methodologies for fatigue and fracture analysis of cracked aluminium panels repaired with different patch shapes made of single boron/epoxy have been developed. Heaviside and asymptotic crack tip enrichment functions are employed to model the crack. XFEM formulations such as displacement field formulation and element stiffness matrix formulation are presented. Domain form of interaction integral is employed to determine Stress Intensity Factor of repaired cracked panels. Computed SIFs are incorporated in Paris crack growth model to predict the remaining fatigue life. The residual strength has been computed by using the remaining life approach, which accounts for both crack growth constants and no. of cycles to failure. From the various studies conducted, it is observed that repaired panels have significant effect on reduction of the SIF at the crack tip and hence residual strength as well as remaining life of the patched cracked panels are improved significantly. The predicted remaining life and residual strength will be useful for design of structures/components under fatigue loading.

  17. Creep crack growth by grain boundary cavitation under monotonic and cyclic loading

    NASA Astrophysics Data System (ADS)

    Wen, Jian-Feng; Srivastava, Ankit; Benzerga, Amine; Tu, Shan-Tung; Needleman, Alan

    2017-11-01

    Plane strain finite deformation finite element calculations of mode I crack growth under small scale creep conditions are carried out. Attention is confined to isothermal conditions and two time histories of the applied stress intensity factor: (i) a monononic increase to a plateau value subsequently held fixed; and (ii) a cyclic time variation. The crack growth calculations are based on a micromechanics constitutive relation that couples creep deformation and damage due to grain boundary cavitation. Grain boundary cavitation, with cavity growth due to both creep and diffusion, is taken as the sole failure mechanism contributing to crack growth. The influence on the crack growth rate of loading history parameters, such as the magnitude of the applied stress intensity factor, the ratio of the applied minimum to maximum stress intensity factors, the loading rate, the hold time and the cyclic loading frequency, are explored. The crack growth rate under cyclic loading conditions is found to be greater than under monotonic creep loading with the plateau applied stress intensity factor equal to its maximum value under cyclic loading conditions. Several features of the crack growth behavior observed in creep-fatigue tests naturally emerge, for example, a Paris law type relation is obtained for cyclic loading.

  18. Evaluation of the cyclic behavior of aircraft turbine disk alloys

    NASA Technical Reports Server (NTRS)

    Cowles, B. A.; Sims, D. L.; Warren, J. R.

    1978-01-01

    Five aircraft turbine disk alloys representing various strength and processing histories were evaluated at 650 C to determine if recent strength advances in powder metallurgy have resulted in corresponding increases in low cycle fatigue (LCF) capability. Controlled strain LCF tests and controlled load crack propagation tests were performed. Results were used for direct material comparisons and in the analysis of an advanced aircraft turbine disk, having a fixed design and operating cycle. Crack initiation lives were found to increase with increasing tensile yield strength, while resistance to fatigue crack propagation generally decreased with increasing strength.

  19. Simulation of Delamination Under High Cycle Fatigue in Composite Materials Using Cohesive Models

    NASA Technical Reports Server (NTRS)

    Camanho, Pedro P.; Turon, Albert; Costa, Josep; Davila, Carlos G.

    2006-01-01

    A new thermodynamically consistent damage model is proposed for the simulation of high-cycle fatigue crack growth. The basis for the formulation is an interfacial degradation law that links Fracture Mechanics and Damage Mechanics to relate the evolution of the damage variable, d, with the crack growth rate da/dN. The damage state is a function of the loading conditions (R and (Delta)G) as well as the experimentally-determined crack growth rates for the material. The formulation ensures that the experimental results can be reproduced by the analysis without the need of additional adjustment parameters.

  20. Crack Propagation Calculations for Optical Fibers under Static Bending and Tensile Loads Using Continuum Damage Mechanics

    PubMed Central

    Chen, Yunxia; Cui, Yuxuan; Gong, Wenjun

    2017-01-01

    Static fatigue behavior is the main failure mode of optical fibers applied in sensors. In this paper, a computational framework based on continuum damage mechanics (CDM) is presented to calculate the crack propagation process and failure time of optical fibers subjected to static bending and tensile loads. For this purpose, the static fatigue crack propagation in the glass core of the optical fiber is studied. Combining a finite element method (FEM), we use the continuum damage mechanics for the glass core to calculate the crack propagation path and corresponding failure time. In addition, three factors including bending radius, tensile force and optical fiber diameter are investigated to find their impacts on the crack propagation process and failure time of the optical fiber under concerned situations. Finally, experiments are conducted and the results verify the correctness of the simulation calculation. It is believed that the proposed method could give a straightforward description of the crack propagation path in the inner glass core. Additionally, the predicted crack propagation time of the optical fiber with different factors can provide effective suggestions for improving the long-term usage of optical fibers. PMID:29140284

  1. Crack Propagation Calculations for Optical Fibers under Static Bending and Tensile Loads Using Continuum Damage Mechanics.

    PubMed

    Chen, Yunxia; Cui, Yuxuan; Gong, Wenjun

    2017-11-15

    Static fatigue behavior is the main failure mode of optical fibers applied in sensors. In this paper, a computational framework based on continuum damage mechanics (CDM) is presented to calculate the crack propagation process and failure time of optical fibers subjected to static bending and tensile loads. For this purpose, the static fatigue crack propagation in the glass core of the optical fiber is studied. Combining a finite element method (FEM), we use the continuum damage mechanics for the glass core to calculate the crack propagation path and corresponding failure time. In addition, three factors including bending radius, tensile force and optical fiber diameter are investigated to find their impacts on the crack propagation process and failure time of the optical fiber under concerned situations. Finally, experiments are conducted and the results verify the correctness of the simulation calculation. It is believed that the proposed method could give a straightforward description of the crack propagation path in the inner glass core. Additionally, the predicted crack propagation time of the optical fiber with different factors can provide effective suggestions for improving the long-term usage of optical fibers.

  2. Time-dependent crack growth behavior of alloy 617 and alloy 230 at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Roy, Shawoon Kumar

    2011-12-01

    Two Ni-base solid-solution-strengthened superalloys: INCONEL 617 and HAYNES 230 were studied to check sustained loading crack growth (SLCG) behavior at elevated temperatures appropriate for Next Generation Nuclear Plant (NGNP) applictaions with constant stress intensity factor (Kmax= 27.75 MPa✓m) in air. The results indicate a time-dependent rate controlling process which can be characterized by a linear elastic fracture mechanics (LEFM) parameter -- stress intensity factor (K). At elevated temperatures, the crack growth mechanism was best described using a damage zone concept. Based on results and study, SAGBOE (stress accelerated grain boundary oxidation embrittlement) is considered the primary reason for time-dependent SLCG. A thermodynamic equation was considered to correlate all the SLCG results to determine the thermal activation energy in the process. A phenomenological model based on a time-dependent factor was developed considering the previous researcher's time-dependent fatigue crack propagation (FCP) results and current SLCG results to relate cycle-dependent and time-dependent FCP for both alloys. Further study includes hold time (3+300s) fatigue testing and no hold (1s) fatigue testing with various load ratios (R) at 700°C with a Kmax of 27.75 MPa✓m. Study results suggest an interesting point: crack growth behavior is significantly affected with the change in R value in cycle-dependent process whereas in time-dependent process, change in R does not have any significant effect. Fractography study showed intergranular cracking mode for all time-dependent processes and transgranular cracking mode for cycle-dependent processes. In Alloy 230, SEM images display intergranular cracking with carbide particles, dense oxides and dimple mixed secondary cracks for time-dependent 3+300s FCP and SLCG test. In all cases, Alloy 230 shows better crack growth resistance compared to Alloy 617.

  3. Predicting the 3D fatigue crack growth rate of small cracks using multimodal data via Bayesian networks: In-situ experiments and crystal plasticity simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rovinelli, Andrea; Sangid, Michael D.; Proudhon, Henry

    Small crack propagation accounts for most of the fatigue life of engineering structures subject to high cycle fatigue loading conditions. Determining the fatigue crack growth rate of small cracks propagating into polycrystalline engineering alloys is critical to improving fatigue life predictions, thus lowering cost and increasing safety. In this work, cycle-by-cycle data of a small crack propagating in a beta metastable titanium alloy is available via phase and diffraction contrast tomography. Crystal plasticity simulations are used to supplement experimental data regarding the micromechanical fields ahead of the crack tip. Experimental and numerical results are combined into a multimodal dataset andmore » sampled utilizing a non-local data mining procedure. Furthermore, to capture the propensity of body-centered cubic metals to deform according to the pencil-glide model, a non-local driving force is postulated. The proposed driving force serves as the basis to construct a data-driven probabilistic crack propagation framework using Bayesian networks as building blocks. The spatial correlation between the postulated driving force and experimental observations is obtained by analyzing the results of the proposed framework. Results show that the above correlation increases proportionally to the distance from the crack front until the edge of the plastic zone. Moreover, the predictions of the propagation framework show good agreement with experimental observations. Finally, we studied the interaction of a small crack with grain boundaries (GBs) utilizing various slip transmission criteria, revealing the tendency of a crack to cross a GB by propagating along the slip directions minimizing the residual Burgers vector within the GB.« less

  4. Predicting the 3D fatigue crack growth rate of small cracks using multimodal data via Bayesian networks: In-situ experiments and crystal plasticity simulations

    NASA Astrophysics Data System (ADS)

    Rovinelli, Andrea; Sangid, Michael D.; Proudhon, Henry; Guilhem, Yoann; Lebensohn, Ricardo A.; Ludwig, Wolfgang

    2018-06-01

    Small crack propagation accounts for most of the fatigue life of engineering structures subject to high cycle fatigue loading conditions. Determining the fatigue crack growth rate of small cracks propagating into polycrystalline engineering alloys is critical to improving fatigue life predictions, thus lowering cost and increasing safety. In this work, cycle-by-cycle data of a small crack propagating in a beta metastable titanium alloy is available via phase and diffraction contrast tomography. Crystal plasticity simulations are used to supplement experimental data regarding the micromechanical fields ahead of the crack tip. Experimental and numerical results are combined into a multimodal dataset and sampled utilizing a non-local data mining procedure. Furthermore, to capture the propensity of body-centered cubic metals to deform according to the pencil-glide model, a non-local driving force is postulated. The proposed driving force serves as the basis to construct a data-driven probabilistic crack propagation framework using Bayesian networks as building blocks. The spatial correlation between the postulated driving force and experimental observations is obtained by analyzing the results of the proposed framework. Results show that the above correlation increases proportionally to the distance from the crack front until the edge of the plastic zone. Moreover, the predictions of the propagation framework show good agreement with experimental observations. Finally, we studied the interaction of a small crack with grain boundaries (GBs) utilizing various slip transmission criteria, revealing the tendency of a crack to cross a GB by propagating along the slip directions minimizing the residual Burgers vector within the GB.

  5. Predicting the 3D fatigue crack growth rate of small cracks using multimodal data via Bayesian networks: In-situ experiments and crystal plasticity simulations

    DOE PAGES

    Rovinelli, Andrea; Sangid, Michael D.; Proudhon, Henry; ...

    2018-03-11

    Small crack propagation accounts for most of the fatigue life of engineering structures subject to high cycle fatigue loading conditions. Determining the fatigue crack growth rate of small cracks propagating into polycrystalline engineering alloys is critical to improving fatigue life predictions, thus lowering cost and increasing safety. In this work, cycle-by-cycle data of a small crack propagating in a beta metastable titanium alloy is available via phase and diffraction contrast tomography. Crystal plasticity simulations are used to supplement experimental data regarding the micromechanical fields ahead of the crack tip. Experimental and numerical results are combined into a multimodal dataset andmore » sampled utilizing a non-local data mining procedure. Furthermore, to capture the propensity of body-centered cubic metals to deform according to the pencil-glide model, a non-local driving force is postulated. The proposed driving force serves as the basis to construct a data-driven probabilistic crack propagation framework using Bayesian networks as building blocks. The spatial correlation between the postulated driving force and experimental observations is obtained by analyzing the results of the proposed framework. Results show that the above correlation increases proportionally to the distance from the crack front until the edge of the plastic zone. Moreover, the predictions of the propagation framework show good agreement with experimental observations. Finally, we studied the interaction of a small crack with grain boundaries (GBs) utilizing various slip transmission criteria, revealing the tendency of a crack to cross a GB by propagating along the slip directions minimizing the residual Burgers vector within the GB.« less

  6. Crack nucleation using combined crystal plasticity modelling, high-resolution digital image correlation and high-resolution electron backscatter diffraction in a superalloy containing non-metallic inclusions under fatigue

    PubMed Central

    Zhang, Tiantian; Britton, Ben; Shollock, Barbara; Dunne, Fionn

    2016-01-01

    A crystal plasticity finite-element model, which explicitly and directly represents the complex microstructures of a non-metallic agglomerate inclusion within polycrystal nickel alloy, has been developed to study the mechanistic basis of fatigue crack nucleation. The methodology is to use the crystal plasticity model in conjunction with direct measurement at the microscale using high (angular) resolution-electron backscatter diffraction (HR-EBSD) and high (spatial) resolution-digital image correlation (HR-DIC) strain measurement techniques. Experimentally, this sample has been subjected to heat treatment leading to the establishment of residual (elastic) strains local to the agglomerate and subsequently loaded under conditions of low cyclic fatigue. The full thermal and mechanical loading history was reproduced within the model. HR-EBSD and HR-DIC elastic and total strain measurements demonstrate qualitative and quantitative agreement with crystal plasticity results. Crack nucleation by interfacial decohesion at the nickel matrix/agglomerate inclusion boundaries is observed experimentally, and systematic modelling studies enable the mechanistic basis of the nucleation to be established. A number of fatigue crack nucleation indicators are also assessed against the experimental results. Decohesion was found to be driven by interface tensile normal stress alone, and the interfacial strength was determined to be in the range of 1270–1480 MPa. PMID:27279765

  7. Crack nucleation using combined crystal plasticity modelling, high-resolution digital image correlation and high-resolution electron backscatter diffraction in a superalloy containing non-metallic inclusions under fatigue

    NASA Astrophysics Data System (ADS)

    Zhang, Tiantian; Jiang, Jun; Britton, Ben; Shollock, Barbara; Dunne, Fionn

    2016-05-01

    A crystal plasticity finite-element model, which explicitly and directly represents the complex microstructures of a non-metallic agglomerate inclusion within polycrystal nickel alloy, has been developed to study the mechanistic basis of fatigue crack nucleation. The methodology is to use the crystal plasticity model in conjunction with direct measurement at the microscale using high (angular) resolution-electron backscatter diffraction (HR-EBSD) and high (spatial) resolution-digital image correlation (HR-DIC) strain measurement techniques. Experimentally, this sample has been subjected to heat treatment leading to the establishment of residual (elastic) strains local to the agglomerate and subsequently loaded under conditions of low cyclic fatigue. The full thermal and mechanical loading history was reproduced within the model. HR-EBSD and HR-DIC elastic and total strain measurements demonstrate qualitative and quantitative agreement with crystal plasticity results. Crack nucleation by interfacial decohesion at the nickel matrix/agglomerate inclusion boundaries is observed experimentally, and systematic modelling studies enable the mechanistic basis of the nucleation to be established. A number of fatigue crack nucleation indicators are also assessed against the experimental results. Decohesion was found to be driven by interface tensile normal stress alone, and the interfacial strength was determined to be in the range of 1270-1480 MPa.

  8. Environmentally assisted cracking in light water reactors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, O. K.; Chung, H. M.; Clark, R. W.

    2007-11-06

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from January to December 2002. Topics that have been investigated include: (a) environmental effects on fatigue crack initiation in carbon and low-alloy steels and austenitic stainless steels (SSs), (b) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs in BWRs, (c) evaluation of causes and mechanisms of irradiation-assisted cracking of austenitic SS in PWRs, and (d) cracking in Ni-alloys and welds. A critical review of the ASME Code fatigue design margins and an assessment of the conservation in the currentmore » choice of design margins are presented. The existing fatigue {var_epsilon}-N data have been evaluated to define the effects of key material, loading, and environmental parameters on the fatigue lives of carbon and low-alloy steels and austenitic SSs. Experimental data are presented on the effects of surface roughness on fatigue crack initiation in these materials in air and LWR environments. Crack growth tests were performed in BWR environments on SSs irradiated to 0.9 and 2.0 x 10{sup 21} n x cm{sup -2}. The crack growth rates (CGRs) of the irradiated steels are a factor of {approx}5 higher than the disposition curve proposed in NUREG-0313 for thermally sensitized materials. The CGRs decreased by an order of magnitude in low-dissolved oxygen (DO) environments. Slow-strain-rate tensile (SSRT) tests were conducted in high-purity 289 C water on steels irradiated to {approx}3 dpa. The bulk S content correlated well with the susceptibility to intergranular SCC in 289 C water. The IASCC susceptibility of SSs that contain >0.003 wt. % S increased drastically. bend tests in inert environments at 23 C were conducted on broken pieces of SSRT specimens and on unirradiated specimens of the same materials after hydrogen charging. The results of the tests and a review of other data in the literature indicate that IASCC in 289 C water is dominated by a crack-tip grain-boundary process that involves S. An initial IASCC model has been proposed. A crack growth test was completed on mill annealed Alloy 600 in high-purity water at 289 C and 320 C under various environmental and loading conditions. The results from this test are compared with data obtained earlier on several other heats of Alloy 600.« less

  9. Eddy-current testing of fatigue degradation upon contact fatigue loading of gas powder laser clad NiCrBSi-Cr3C2 composite coating

    NASA Astrophysics Data System (ADS)

    Savrai, R. A.; Makarov, A. V.; Gorkunov, E. S.; Soboleva, N. N.; Kogan, L. Kh.; Malygina, I. Yu.; Osintseva, A. L.; Davydova, N. A.

    2017-12-01

    The possibilities of the eddy-current method for testing the fatigue degradation under contact loading of gas powder laser clad NiCrBSi-Cr3C2 composite coating with 15 wt.% of Cr3C2 additive have been investigated. It is shown that the eddy-current testing of the fatigue degradation under contact loading of the NiCrBSi-15%Cr3C2 composite coating can be performed at high excitation frequencies 72-120 kHz of the eddy-current transducer. At that, the dependences of the eddy-current instrument readings on the number of loading cycles have both downward and upward branches, with the boundary between the branches being 3×105 cycles in the given loading conditions. This is caused, on the one hand, by cracking, and, on the other hand, by cohesive spalling and compaction of the composite coating, which affect oppositely the material resistivity and, correspondingly, the eddy-current instrument readings. The downward branch can be used to monitor the processes of crack formation and growth, the upward branch - to monitor the degree of cohesive spalling, while taking into account in the testing methodology an ambiguous character of the dependences of the eddy-current instrument readings on the number of loading cycles.

  10. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.

    1992-01-01

    The purpose of this program was to extend the work performed in the base program (CR 182247) into the regime of time-dependent crack growth under isothermal and thermal mechanical fatigue (TMF) loading, where creep deformation also influences the crack growth behavior. The investigation was performed in a two-year, six-task, combined experimental and analytical program. The path-independent integrals for application to time-dependent crack growth were critically reviewed. The crack growth was simulated using a finite element method. The path-independent integrals were computed from the results of finite-element analyses. The ability of these integrals to correlate experimental crack growth data were evaluated under various loading and temperature conditions. The results indicate that some of these integrals are viable parameters for crack growth prediction at elevated temperatures.

  11. Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Zanganehgheshlaghi, Mohannad

    2014-01-01

    The research results described in this paper presents a new understanding of the behavior of fatigue crack growth in the threshold region. It is believed by some crack growth experts that the ASTM load shedding test method does not produce true or valid threshold properties. The concern involves the observed fanning of threshold region da/dN data plots for some materials in which the low R-ratio data fans out or away from the high R-ratio data. This data fanning or elevation of threshold values is obviously caused by an increase in crack closure in the low R-ratio tested specimens. This increase in crack closure is assumed by some investigators to be caused by a plastic wake on the crack surfaces that was created during the load shedding test phase. This study shows that the increase in crack closure is the result of an extensive occurrence of crack bifurcation behavior in some materials, particularly in aluminum alloys, when the crack tip cyclic yield zone size becomes less than the grain size of the alloy. This behavior is related to the high stacking fault energy (SFE) property of aluminum alloys which results in easier slip characteristics. Therefore, the particular fanning behavior in aluminum alloys is a function of intrinsic dislocation property of the materials and that the fanned data represents valid material properties. However, for corrosion sensitive steel alloys used in this study the fanning was caused by a build-up of iron oxide at the crack tip from fretting corrosion.

  12. Lamb wave-based damage quantification and probability of detection modeling for fatigue life assessment of riveted lap joint

    NASA Astrophysics Data System (ADS)

    He, Jingjing; Wang, Dengjiang; Zhang, Weifang

    2015-03-01

    This study presents an experimental and modeling study for damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic wafer-type sensors are employed to perform in-situ non-destructive testing during fatigue cyclical loading. A multi-feature integration method is developed to quantify the crack size using signal features of correlation coefficient, amplitude change, and phase change. In addition, probability of detection (POD) model is constructed to quantify the reliability of the developed sizing method. Using the developed crack size quantification method and the resulting POD curve, probabilistic fatigue life prediction can be performed to provide comprehensive information for decision-making. The effectiveness of the overall methodology is demonstrated and validated using several aircraft lap joint specimens from different manufactures and under different loading conditions.

  13. Correlating Scatter in Fatigue Life with Fracture Mechanisms in Forged Ti-6242Si Alloy

    NASA Astrophysics Data System (ADS)

    Sinha, V.; Pilchak, A. L.; Jha, S. K.; Porter, W. J.; John, R.; Larsen, J. M.

    2018-04-01

    Unlike the quasi-static mechanical properties, such as strength and ductility, fatigue life can vary significantly (by an order of magnitude or more) for nominally identical material and test conditions in many materials, including Ti-alloys. This makes life prediction and management more challenging for components that are subjected to cyclic loading in service. The differences in fracture mechanisms can cause the scatter in fatigue life. In this study, the fatigue fracture mechanisms were investigated in a forged near- α titanium alloy, Ti-6Al-2Sn-4Zr-2Mo-0.1Si, which had been tested under a condition that resulted in life variations by more than an order of magnitude. The crack-initiation and small crack growth processes, including their contributions to fatigue life variability, were elucidated via quantitative characterization of fatigue fracture surfaces. Combining the results from quantitative tilt fractography and electron backscatter diffraction, crystallography of crack-initiating and neighboring facets on the fracture surface was determined. Cracks initiated on the surface for both the shortest and the longest life specimens. The facet plane in the crack-initiating grain was aligned with the basal plane of a primary α grain for both the specimens. The facet planes in grains neighboring the crack-initiating grain were also closely aligned with the basal plane for the shortest life specimen, whereas the facet planes in the neighboring grains were significantly misoriented from the basal plane for the longest life specimen. The difference in the extent of cracking along the basal plane can explain the difference in fatigue life of specimens at the opposite ends of scatter band.

  14. High cycle fatigue crack modeling and analysis for deck truss flooring connection details : final report.

    DOT National Transportation Integrated Search

    1997-07-01

    The Oregon Department of Transportation is responsible for many steel deck truss bridges containing connection details that are fatigue prone. A typical bridge, the Winchester Bridge in Roseburg, Oregon, was analyzed to assess the loading conditions,...

  15. Fatigue Life Analysis of Tapered Hybrid Composite Flexbeams

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.; Schaff, Jeffery R.; Dobyns, Alan L.

    2002-01-01

    Nonlinear-tapered flexbeam laminates from a full-size composite helicopter rotor hub flexbeam were tested under combined constant axial tension and cyclic bending loads. The two different graphite/glass hybrid configurations tested under cyclic loading failed by delamination in the tapered region. A 2-D finite element model was developed which closely approximated the flexbeam geometry, boundary conditions, and loading. The analysis results from two geometrically nonlinear finite element codes, ANSYS and ABAQUS, are presented and compared. Strain energy release rates (G) obtained from the above codes using the virtual crack closure technique (VCCT) at a resin crack location in the flexbeams are presented for both hybrid material types. These results compare well with each other and suggest that the initial delamination growth from the resin crack toward the thick region of the flexbeam is strongly mode II. The peak calculated G values were used with material characterization data to calculate fatigue life curves and compared with test data. A curve relating maximum surface strain to number of loading cycles at delamination onset compared reasonably well with the test results.

  16. Modeling Cyclic Fatigue Hysteresis Loops of 2D Woven Ceramic Matrix Composites at Elevated Temperatures in Steam

    PubMed Central

    Li, Longbiao

    2016-01-01

    In this paper, the cyclic fatigue hysteresis loops of 2D woven SiC/SiC ceramic matrix composites (CMCs) at elevated temperatures in steam have been investigated. The interface slip between fibers and the matrix existing in matrix cracking modes 3 and 5, in which matrix cracking and interface debonding occurred in longitudinal yarns, is considered as the major reason for hysteresis loops of 2D woven CMCs. The hysteresis loops of 2D SiC/SiC composites corresponding to different peak stresses, test conditions, and loading frequencies have been predicted using the present analysis. The damage parameter, i.e., the proportion of matrix cracking mode 3 in the entire matrix cracking modes of the composite, and the hysteresis dissipated energy increase with increasing fatigue peak stress. With increasing cycle number, the interface shear stress in the longitudinal yarns decreases, leading to transition of interface slip types of matrix cracking modes 3 and 5. PMID:28773544

  17. Detection of fatigue cracks by nondestructive testing methods

    NASA Technical Reports Server (NTRS)

    Anderson, R. T.; Delacy, T. J.; Stewart, R. C.

    1973-01-01

    The effectiveness was assessed of various NDT methods to detect small tight cracks by randomly introducing fatigue cracks into aluminum sheets. The study included optimizing NDT methods calibrating NDT equipment with fatigue cracked standards, and evaluating a number of cracked specimens by the optimized NDT methods. The evaluations were conducted by highly trained personnel, provided with detailed procedures, in order to minimize the effects of human variability. These personnel performed the NDT on the test specimens without knowledge of the flaw locations and reported on the flaws detected. The performance of these tests was measured by comparing the flaws detected against the flaws present. The principal NDT methods utilized were radiographic, ultrasonic, penetrant, and eddy current. Holographic interferometry, acoustic emission monitoring, and replication methods were also applied on a reduced number of specimens. Generally, the best performance was shown by eddy current, ultrasonic, penetrant and holographic tests. Etching provided no measurable improvement, while proof loading improved flaw detectability. Data are shown that quantify the performances of the NDT methods applied.

  18. Ratcheting Strain and Microstructure Evolution of AZ31B Magnesium Alloy under a Tensile-Tensile Cyclic Loading

    PubMed Central

    Wang, Denghui; Wang, Wenxian; Zhou, Jun; He, Xiuli; Dong, Peng; Zhang, Hongxia; Sun, Liyong

    2018-01-01

    In this paper, studies were conducted to investigate the deformation behavior and microstructure change in a hot-rolled AZ31B magnesium alloy during a tensile-tensile cyclic loading. The relationship between ratcheting effect and microstructure change was discussed. The ratcheting effect in the material during current tensile-tensile fatigue loading exceeds the material’s fatigue limit and the development of ratcheting strain in the material experienced three stages: initial sharp increase stage (Stage I); steady stage (Stage II); and final abrupt increase stage (Stage III). Microstructure changes in Stage I and Stage II are mainly caused by activation of basal slip system. The Extra Geometrically Necessary Dislocations (GNDs) were also calculated to discuss the relationship between the dislocation caused by the basal slip system and the ratcheting strain during the cyclic loading. In Stage III, both the basal slip and the {11−20} twins are found active during the crack propagation. The fatigue crack initiation in the AZ31B magnesium alloy is found due to the basal slip and the {11−20} tensile twins. PMID:29597278

  19. Ratcheting Strain and Microstructure Evolution of AZ31B Magnesium Alloy under a Tensile-Tensile Cyclic Loading.

    PubMed

    Yan, Zhifeng; Wang, Denghui; Wang, Wenxian; Zhou, Jun; He, Xiuli; Dong, Peng; Zhang, Hongxia; Sun, Liyong

    2018-03-28

    In this paper, studies were conducted to investigate the deformation behavior and microstructure change in a hot-rolled AZ31B magnesium alloy during a tensile-tensile cyclic loading. The relationship between ratcheting effect and microstructure change was discussed. The ratcheting effect in the material during current tensile-tensile fatigue loading exceeds the material's fatigue limit and the development of ratcheting strain in the material experienced three stages: initial sharp increase stage (Stage I); steady stage (Stage II); and final abrupt increase stage (Stage III). Microstructure changes in Stage I and Stage II are mainly caused by activation of basal slip system. The Extra Geometrically Necessary Dislocations (GNDs) were also calculated to discuss the relationship between the dislocation caused by the basal slip system and the ratcheting strain during the cyclic loading. In Stage III, both the basal slip and the {11-20} twins are found active during the crack propagation. The fatigue crack initiation in the AZ31B magnesium alloy is found due to the basal slip and the {11-20} tensile twins.

  20. Damage mechanisms in PBT-GF30 under thermo-mechanical cyclic loading

    NASA Astrophysics Data System (ADS)

    Schaaf, A.; De Monte, M.; Hoffmann, C.; Vormwald, M.; Quaresimin, M.

    2014-05-01

    The scope of this paper is the investigation of damage mechanisms at microscopic scale on a short glass fiber reinforced polybutylene terephthalate (PBT-GF30) under thermo-mechanical cyclic loading. In addition the principal mechanisms are verified through micro mechanical FE models. In order to investigate the fatigue behavior of the material both isothermal strain controlled fatigue (ISCF) tests at three different temperatures and thermo-mechanical fatigue (TMF) tests were conducted on plain and notched specimens, manufactured by injection molding. The goal of the work is to determine the damage mechanisms occurring under TMF conditions and to compare them with the mechanisms occurring under ISCF. For this reason fracture surfaces of TMF and ISCF samples loaded at different temperature levels were analyzed using scanning electron microscopy. Furthermore, specimens that failed under TMF were examined on microsections revealing insight into both crack initiation and crack propagation. The findings of this investigation give valuable information about the main damage mechanisms of PBT-GF30 under TMF loading and serve as basis for the development of a TMF life estimation methodology.

  1. Development and characterization of fatigue resistant Aramid reinforced aluminium laminates (ARALL) for fatigue Critical aircraft components

    NASA Astrophysics Data System (ADS)

    Qaiser, M. H.; Umar, S.; Nauman, S.

    2014-06-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced ALuminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft.

  2. Slow Crack Growth and Fatigue Life Prediction of Ceramic Components Subjected to Variable Load History

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama

    2001-01-01

    Present capabilities of the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code include probabilistic life prediction of ceramic components subjected to fast fracture, slow crack growth (stress corrosion), and cyclic fatigue failure modes. Currently, this code has the capability to compute the time-dependent reliability of ceramic structures subjected to simple time-dependent loading. For example, in slow crack growth (SCG) type failure conditions CARES/Life can handle the cases of sustained and linearly increasing time-dependent loads, while for cyclic fatigue applications various types of repetitive constant amplitude loads can be accounted for. In real applications applied loads are rarely that simple, but rather vary with time in more complex ways such as, for example, engine start up, shut down, and dynamic and vibrational loads. In addition, when a given component is subjected to transient environmental and or thermal conditions, the material properties also vary with time. The objective of this paper is to demonstrate a methodology capable of predicting the time-dependent reliability of components subjected to transient thermomechanical loads that takes into account the change in material response with time. In this paper, the dominant delayed failure mechanism is assumed to be SCG. This capability has been added to the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code, which has also been modified to have the ability of interfacing with commercially available FEA codes executed for transient load histories. An example involving a ceramic exhaust valve subjected to combustion cycle loads is presented to demonstrate the viability of this methodology and the CARES/Life program.

  3. Modelling of a Francis Turbine Runner Fatigue Failure Process Caused by Fluid-Structure Interaction

    NASA Astrophysics Data System (ADS)

    Lyutov, A.; Kryukov, A.; Cherny, S.; Chirkov, D.; Salienko, A.; Skorospelov, V.; Turuk, P.

    2016-11-01

    In the present paper considered is the problem of the numerical simulation of Francis turbine runner fatigue failure caused by fluid-structure interaction. The unsteady 3D flow is modeled simultaneously in the spiral chamber, each wicket gate and runner channels and in the draft tube using the Euler equations. Based on the unsteady runner loadings at each time step stresses in the whole runner are calculated using the elastic equilibrium equations solved with boundary element method. Set of static stress-strain states provides quasi-dynamics of runner cyclic loading. It is assumed that equivalent stresses in the runner are below the critical value after which irreversible plastic processes happen in the runner material. Therefore runner is subjected to the fatigue damage caused by high-cycle fatigue, in which the loads are generally low compared with the limit stress of the material. As a consequence, the stress state around the crack front can be fully characterized by linear elastic fracture mechanics. The place of runner cracking is determined as a point with maximal amplitude of stress oscillations. Stress pulsations amplitude is used to estimate the number of cycles until the moment of fatigue failure, number of loading cycles and oscillation frequency are used to calculate runner service time. Example of the real Francis runner which has encountered premature fatigue failure as a result of incorrect durability estimation is used to verify the developed numerical model.

  4. Thermal Fatigue Testing of ZrO2-Y2O3 Thermal Barrier Coating Systems using a High Power CO2 Laser

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1997-01-01

    In the present study, the mechanisms of fatigue crack initiation and propagation, and of coating failure, under thermal loads that simulate diesel engine conditions, are investigated. The surface cracks initiate early and grow continuously under thermal Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF) stresses. It is found that, in the absence of interfacial oxidation, the failure associated with LCF is closely related to coating sintering and creep at high temperatures. Significant LCF and HCF interactions have been observed in the thermal fatigue tests. The fatigue crack growth rate in the ceramic coating strongly depends on the characteristic HCF cycle number, N*(sub NCF), which is defined as the number of HCF cycles per LCF cycle. The crack growth rate is increased from 0.36 microns/LCF cycle for a pure LCF test to 2.8 microns/LCF cycle for a combined LCF and HCF test at N*(sub NCF) about 20,000. A surface wedging model has been proposed to account for the HCF crack growth in the coating systems. This mechanism predicts that HCF damage effect increases with increasing surface temperature swing, the thermal expansion coefficient and the elastic modulus of the ceramic coating, as well as with the HCF interacting depth. A good agreement has been found between the analysis and experimental evidence.

  5. Thermal-mechanical fatigue crack growth in Inconel X-750

    NASA Technical Reports Server (NTRS)

    Marchand, N.; Pelloux, R. M.

    1984-01-01

    Thermal-mechanical fatigue crack growth (TMFCG) was studied in a gamma-gamma' nickel base superalloy Inconel X-750 under controlled load amplitude in the temperature range from 300 to 650 C. In-phase (T sub max at sigma sub max), out-of-phase (T sub min at sigma sub max), and isothermal tests at 650 C were performed on single-edge notch bars under fully reversed cyclic conditions. A dc electrical potential method was used to measure crack length. The electrical potential response obtained for each cycle of a given wave form and R value yields information on crack closure and crack extension per cycle. The macroscopic crack growth rates are reported as a function of delta k and the relative magnitude of the TMFCG are discussed in the light of the potential drop information and of the fractographic observations.

  6. The effect of matrix mechanical properties on (0)8 unidirectional SiC/Ti composite fatigue resistance

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Gayda, J.; Lerch, B. A.; Halford, G. R.

    1991-01-01

    The relationship between constituent and MMC properties in fatigue loading is investigated with low-cycle fatigue-resistance testing of an alloy Ti-15-3 matrix reinforced with SiC SCS-6 fibers. The fabrication of the composite is described, and specimens are generated that are weak and ductile (WD), strong and moderately ductile (SM), or strong and brittle (SB). Strain is measured during MMC fatigue tests at a constant load amplitude with a load-controlled waveform and during matrix-alloy fatigue tests at a constant strain amplitude using a strain-controlled waveform. The fatigue resistance of the (0)8 SiC/Ti-15-3 composite is found to be slightly influenced by matrix mechanical properties, and the composite- and matrix-alloy fatigue lives are not correlated. This finding is suggested to relate to the different crack-initiation and -growth processes in MMCs and matrix alloys.

  7. Approximate stresses in 2-D flat elastic contact fretting problems

    NASA Astrophysics Data System (ADS)

    Urban, Michael Rene

    Fatigue results from the cyclic loading of a solid body. If the body subject to fatigue is in contact with another body and relative sliding motion occurs between these two bodies, then rubbing surface damage can accelerate fatigue failure. The acceleration of fatigue failure is especially important if the relative motion between the two bodies results in surface damage without excessive surface removal via wear. The situation just described is referred to as fretting fatigue. Understanding of fretting fatigue is greatly enhanced if the stress state associated with fretting can be characterized. For Hertzian contact, this can readily be done. Unfortunately, simple stress formulae are not available for flat body contact. The primary result of the present research is the development of a new, reasonably accurate, approximate closed form expression for 2-dimensional contact stresses which has been verified using finite element modeling. This expression is also combined with fracture mechanics to provide a simple method of determining when a crack is long enough to no longer be affected by the contact stress field. Lower bounds on fatigue life can then easily be calculated using fracture mechanics. This closed form expression can also be used to calculate crack propagation within the contact stress field. The problem of determining the cycles required to generate an initial crack and what to choose as an initial crack size is unresolved as it is in non-fretting fatigue.

  8. Very High Cycle Fatigue Failure Analysis and Life Prediction of Cr-Ni-W Gear Steel Based on Crack Initiation and Growth Behaviors.

    PubMed

    Deng, Hailong; Li, Wei; Sakai, Tatsuo; Sun, Zhenduo

    2015-12-02

    The unexpected failures of structural materials in very high cycle fatigue (VHCF) regime have been a critical issue in modern engineering design. In this study, the VHCF property of a Cr-Ni-W gear steel was experimentally investigated under axial loading with the stress ratio of R = -1, and a life prediction model associated with crack initiation and growth behaviors was proposed. Results show that the Cr-Ni-W gear steel exhibits the constantly decreasing S-N property without traditional fatigue limit, and the fatigue strength corresponding to 10⁸ cycles is around 485 MPa. The inclusion-fine granular area (FGA)-fisheye induced failure becomes the main failure mechanism in the VHCF regime, and the local stress around the inclusion play a key role. By using the finite element analysis of representative volume element, the local stress tends to increase with the increase of elastic modulus difference between inclusion and matrix. The predicted crack initiation life occupies the majority of total fatigue life, while the predicted crack growth life is only accounts for a tiny fraction. In view of the good agreement between the predicted and experimental results, the proposed VHCF life prediction model involving crack initiation and growth can be acceptable for inclusion-FGA-fisheye induced failure.

  9. Quantitative Assessment of Fatigue Damage Accumulation in Wavy Slip Metals from Acoustic Harmonic Generation

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.

    2006-01-01

    A comprehensive, analytical treatment is presented of the microelastic-plastic nonlinearities resulting from the interaction of a stress perturbation with dislocation substructures (veins and persistent slip bands) and cracks that evolve during high-cycle fatigue of wavy slip metals. The nonlinear interaction is quantified by a material (acoustic) nonlinearity parameter beta extracted from acoustic harmonic generation measurements. The contribution to beta from the substructures is obtained from the analysis of Cantrell [Cantrell, J. H., 2004, Proc. R. Soc. London A, 460, 757]. The contribution to beta from cracks is obtained by applying the Paris law for crack propagation to the Nazarov-Sutin crack nonlinearity equation [Nazarov, V. E., and Sutin, A. M., 1997, J. Acoust. Soc. Am. 102, 3349]. The nonlinearity parameter resulting from the two contributions is predicted to increase monotonically by hundreds of percent during fatigue from the virgin state to fracture. The increase in beta during the first 80-90 percent of fatigue life is dominated by the evolution of dislocation substructures, while the last 10-20 percent is dominated by crack growth. The model is applied to the fatigue of aluminium alloy 2024-T4 in stress-controlled loading at 276MPa for which experimental data are reported. The agreement between theory and experiment is excellent.

  10. The effect of thickness on fatigue crack propagation in 7475-T731 aluminum alloy sheet

    NASA Technical Reports Server (NTRS)

    Daiuto, R. A.; Hillberry, B. M.

    1984-01-01

    Tests were conducted on three thicknesses of 7475-T731 aluminum alloy sheet to investigate the effect of thickness on fatigue crack propagation under constant amplitude loading conditions and on retardation following a single peak overload. Constant amplitude loading tests were performed at stress ratios of 0.05 and 0.75 to obtain data for conditions with crack closure and without crack closure, respectively. At both stress ratios a thickness effect was clearly evident, with thicker specimens exhibiting higher growth rates in the transition from plane strain to plane stress region. The effect of thickness for a stress ratio of 0.05 corresponded well with the fracturing mode transitions observed on the specimens. A model based on the strain energy release rate which accounted for the fracture mode transition was found to correlate the thickness effects well. The specimens tested at the stress ratio of 0.75 did not make the transition from tensile mode to shear mode, indicating that another mechanism besides crack closure or fracture mode transition was active.

  11. Predicting overload-affected fatigue crack growth in steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skorupa, M.; Skorupa, A.; Ladecki, B.

    1996-12-01

    The ability of semi-empirical crack closure models to predict the effect of overloads on fatigue crack growth in low-alloy steels has been investigated. With this purpose, the CORPUS model developed for aircraft metals and spectra has been checked first through comparisons between the simulated and observed results for a low-alloy steel. The CORPUS predictions of crack growth under several types of simple load histories containing overloads appeared generally unconservative which prompted the authors to formulate a new model, more suitable for steels. With the latter approach, the assumed evolution of the crack opening stress during the delayed retardation stage hasmore » been based on experimental results reported for various steels. For all the load sequences considered, the predictions from the proposed model appeared to be by far more accurate than those from CORPUS. Based on the analysis results, the capability of semi-empirical prediction concepts to cover experimentally observed trends that have been reported for sequences with overloads is discussed. Finally, possibilities of improving the model performance are considered.« less

  12. Fracture strength and fatigue resistance of all-ceramic molar crowns manufactured with CAD/CAM technology.

    PubMed

    Zahran, Mohammed; El-Mowafy, Omar; Tam, Laura; Watson, Philip A; Finer, Yoav

    2008-07-01

    All-ceramic crowns are subject to fracture during function, especially in the posterior area. The use of yttrium-stabilized zirconium-oxide ceramic as a substructure for all-ceramic crowns to improve fracture resistance is unproven. The aim of this study was to compare fracture strength and fatigue resistance of new zirconium-oxide and feldspathic all-ceramic crowns made with computer-aided design/computer-aided manufacturing (CAD/CAM). An ivorine molar was prepared to receive an all-ceramic crown. Using epoxy resin, 40 replication dies were made of the prepared tooth. Twenty feldspathic all-ceramic crowns (Vita Mark II) (VMII) and 20 zirconium-oxide crown copings (In-Ceram YZ) (YZ) were made using CAD/CAM technique (CEREC-3D). The YZ copings were sintered and veneered manually with a fine-particle ceramic (VM9). All crowns were cemented to their respective dies using resin cement (Panavia F 2.0). Ten crowns in each group were subjected to compressive fatigue loading in a universal testing machine (instron). The other ten crowns from each group were loaded to fracture at a crosshead speed of 1 mm/min. Data were statistically analyzed using independent t-test and Fisher's exact test at alpha= 0.05. There was a significant difference between the survival rates of the two materials during the fatigue test (p < 0.001). All VMII crowns survived without any crack formation, while all YZ crowns fractured (40%) or developed cracks (60%). All the YZ crown fractures occurred within the veneering layer during the fatigue test. There was no significant difference in mean fracture load between the two materials (p= 0.268). Mean fracture loads (standard deviation) in N were: 1459 (492) for YZ crowns and 1272 (109) for VMII crowns. The performance of VMII crowns was superior to YZ crowns in the fatigue test. The premature fractures and cracks of the YZ crowns were attributed to weakness in the YZ veneer layer or in the core/veneer bond.

  13. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1994-01-01

    International technical experts in durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The symposium focused on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure, criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and advanced approaches to resist corrosion and environmentally assisted fatigue.

  14. Development of a Novel Approach for Fatigue Life Prediction of Structural Materials

    DTIC Science & Technology

    2008-12-01

    applied when the crack length was 8.45 mm and 14.96 mm, respectively, on these two specimens. A third specimen was subjected to a constant amplitude...The crack growth rate at the middle point (the third point) was determined from the derivative of the parabola. The stress intensity factor for...minimum load was identical in the two loading steps (Fig. 32(b)). The third specimen experienced two-step loading with identical /?-ratio in the two

  15. Influence of Microstructural and Load Wave Form Control on Fatigue Crack Growth behavior of Precipitation Hardening Stainless Steels

    DTIC Science & Technology

    1976-07-01

    heating to temperatures below the Acl precipitates a copper -rich phase within the martensite increasing hardness and strength. The stress relieving effect...experimental approach varied the heat treatment of two precipitation hardening martensitic alloys , 17-4 PH1 and 15-b PH. Fatigue-crack growth data was...hardenable by precipitation hardening. Alloys that do harden by this mechanism have only one thing in common, this is, a decreasing solubility for one phase

  16. Cold Expansion Effects on Cracked Fastener Holes Under Constant Amplitude and Spectrum Loading in the 2024-T351 Aluminum Alloy

    DTIC Science & Technology

    2012-05-01

    1 1.2. History of Fatigue Designs ................................................................................... 2 1.3...of design . 1.2. History of Fatigue Designs 1.2.1. Safe Life Design The United States Air Force (USAF) has primarily used two design paradigms...for fatigue thus far. These paradigms are the Safe Life, and the Damage Tolerance fatigue designs . The American Society for Metals (ASM) Handbook

  17. Results of the second Round Robin on opening-load measurement conducted by ASTM Task Group E24.04.04 on crack closure measurement and analysis

    NASA Technical Reports Server (NTRS)

    Phillips, E. P.

    1993-01-01

    A second experimental Round Robin on the measurement of the crack opening load in fatigue crack growth tests has been completed by the ASTM Task Group E24.04.04 on Crack Closure Measurement and Analysis. Fourteen laboratories participated in the testing of aluminum alloy compact tension specimens. Opening-load measurements were made at three crack lengths during constant Delta K, constant stress ratio tests by most of the participants. Four participants made opening-load measurements during threshold tests. All opening-load measurements were based on the analysis of specimens compliance behavior, where the displacement/strain was measured either at the crack mouth or the mid-height back face location. The Round Robin data were analyzed for opening load using two non-subjective analysis methods: the compliance offset and the correlation coefficient methods. The scatter in the opening load results was significantly reduced when some of the results were excluded from the analysis population based on an accept/reject criterion for raw data quality. The compliance offset and correlation coefficient opening load analysis methods produced similar results for data populations that had been screened to eliminate poor quality data.

  18. Theoretical investigation of crack formation in tungsten after heat loads

    NASA Astrophysics Data System (ADS)

    Arakcheev, A. S.; Huber, A.; Wirtz, M.; Sergienko, G.; Steudel, I.; Burdakov, A. V.; Coenen, J. W.; Kreter, A.; Linke, J.; Mertens, Ph.; Shoshin, A. A.; Unterberg, B.; Vasilyev, A. A.

    2015-08-01

    Transient events such as ELMs in large plasma devices lead to significant heat load on plasma-facing components (PFCs). ELMs cause mechanical damage of PFCs (e.g. cracks). The cracks appear due to stresses caused by thermal extension. Analytical calculations of the stresses are carried out for tungsten. The model only takes into account the basic features of solid body mechanics without material modifications (e.g. fatigue or recrystallization). The numerical results of the model demonstrate good agreement with experimental data obtained at the JUDITH-1, PSI-2 and GOL-3 facilities.

  19. Fatigue failure of dental implants in simulated intraoral media.

    PubMed

    Shemtov-Yona, K; Rittel, D

    2016-09-01

    Metallic dental implants are exposed to various intraoral environments and repetitive loads during service. Relatively few studies have systematically addressed the potential influence of the environment on the mechanical integrity of the implants, which is therefore the subject of this study. Four media (groups) were selected for room temperature testing, namely dry air, saliva substitute, same with 250ppm of fluoride, and saline solution (0.9%). Monolithic Ti-6Al-4V implants were loaded until fracture, using random spectrum loading. The study reveals that the only aggressive medium of all is the saline solution, as it shortens significantly the spectrum fatigue life of the implants. The quantitative scanning electron fractographic analysis indicates that all the tested implants grew fatigue cracks of similar lengths prior to catastrophic fracture. However, the average crack growth rate in the saline medium was found to largely exceed that in other media, suggesting a decreased fracture toughness. The notion of a characteristic timescale for environmental degradation was proposed to explain the results of our spectrum tests that blend randomly low and high cycle fatigue. Random spectrum fatigue testing is powerful technique to assess and compare the mechanical performance of dental implants for various designs and/or environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Fatigue Lifespan of Engine Box Influenced by Fan Blade Out

    NASA Astrophysics Data System (ADS)

    Qiu, Ju; Shi, Jingwei; Su, Huaizhong; Zhang, Jinling; Feng, Juan; Shi, Qian; Tian, Xiaoyu

    2017-11-01

    This provides precious experience and reliable reference data for future design. This paper introduces the analysis process of Fan-blade-out, and considers the effect of windmill load on the fatigue lifespan of the case. According to Extended Operations (ETOPS) in the airworthiness regulations, the fatigue crack of it is analyzed by the unbalanced rotor load, during FBO. Compared with the lifespan in normal work of the engine, this research provides valuable design experience and reliable reference data for the case design in the near future.

  1. Neutron and X-ray Microbeam Diffraction Studies around a Fatigue-Crack Tip after Overload

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sooyeol; Barabash, Rozaliya; Chung, Jin-Seok

    2008-01-01

    An in-situ neutron diffraction technique was used to investigate the lattice-strain distributions and plastic deformation around a crack tip after overload. The lattice-strain profiles around a crack tip were measured as a function of the applied load during the tensile loading cycles after overload. Dislocation densities calculated from the diffraction peak broadening were presented as a function of the distance from the crack tip. Furthermore, the crystallographic orientation variations were examined near a crack tip using polychromatic X-ray microdiffraction combined with differential aperture microscopy. Crystallographic tilts are considerably observed beneath the surface around a crack tip, and these are consistentmore » with the high dislocation densities near the crack tip measured by neutron peak broadening.« less

  2. The fatigue growth of internal delaminations under compressive loading of cross-ply composite plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelegri, A.A.; Kardomateas, G.A.; Malik, B.U.

    1997-12-31

    This study focuses on the mode dependence of delamination growth under cyclic compressive loads in cross-ply composite plates. The model proposed makes use of an initial postbuckling solution derived from a perturbation procedure. A mode-dependent crack growth criterion is introduced. Expressions describing the fatigue crack growth are derived in terms of the distribution of the mode adjusted energy release rate. The resulting crack growth laws are numerically integrated to produce delamination growth versus number of cycles diagrams. The model does not impose any restrictive assumptions on the relative thickness of the delaminated and the base plates, although transverse shear stressmore » effects are not considered. Experimental results are presented for cross-ply graphite/epoxy specimens, and the results are compared with experimental results for unidirectional specimens. The test data are obtained for different delamination locations and for different values of applied compressive strain.« less

  3. Dynamic fatigue performance of implant-abutment assemblies with different tightening torque values.

    PubMed

    Xia, Dandan; Lin, Hong; Yuan, Shenpo; Bai, Wei; Zheng, Gang

    2014-01-01

    Implant-abutment assemblies are usually subject to long-term cyclic loading. To evaluate the dynamic fatigue performance of implant-abutment assemblies with different tightening torque values, thirty implant-abutment assemblies (Zimmer Dental, Carlsbad, CA, USA) were randomly assigned to three tightening groups (24 Ncm; 30 Ncm; 36 Ncm), each consisted of 10 implants. Five specimens from each group were unscrewed, and their reverse torque values recorded. The remaining specimens were subjected to a load between 30 N~300 N at a loading frequency of 15 Hz for 5 × 10(6) cycles. After fatigue tests, residual reverse torque values were recorded if available. In the 24 Ncm tightening group, all the implants fractured at the first outer thread of the implant after fatigue loading, with fatigue crack propagation at the fractured surface showed by SEM observation. For the 30 Ncm and 36 Ncm tightening groups, a statistical significant difference (p<0.05) between the unloaded and loaded groups was revealed. Compared with the unloaded specimens, the specimens went through fatigue loading had decreased reverse torque values. It was demonstrated that insufficient torque will lead to poor fatigue performance of dental implant-abutment assemblies and abutment screws should be tightened to the torque recommended by the manufacturer. It was also concluded that fatigue loading would lead to preload loss.

  4. The application of Newman crack-closure model to predicting fatigue crack growth

    NASA Astrophysics Data System (ADS)

    Si, Erjian

    1994-09-01

    Newman crack-closure model and the relevant crack growth program were applied to the analysis of crack growth under constant amplitude and aircraft spectrum loading on a number of aluminum alloy materials. The analysis was performed for available test data of 2219-T851, 2024-T3, 2024-T351, 7075-T651, 2324-T39, and 7150-T651 aluminum materials. The results showed that the constraint factor is a significant factor in the method. The determination of the constraint factor is discussed. For constant amplitude loading, satisfactory crack growth lives could be predicted. For the above aluminum specimens, the ratio of predicted to experimental lives, Np/Nt, ranged from 0.74 to 1.36. The mean value of Np/Nt was 0.97. For a specified complex spectrum loading, predicted crack growth lives are not in very good agreement with the test data. Further effort is needed to correctly simulate the transition between plane strain and plane stress conditions, existing near the crack tip.

  5. Real-time sensing of fatigue crack damage for information-based decision and control

    NASA Astrophysics Data System (ADS)

    Keller, Eric Evans

    Information-based decision and control for structures that are subject to failure by fatigue cracking is based on the following notion: Maintenance, usage scheduling, and control parameter tuning can be optimized through real time knowledge of the current state of fatigue crack damage. Additionally, if the material properties of a mechanical structure can be identified within a smaller range, then the remaining life prediction of that structure will be substantially more accurate. Information-based decision systems can rely one physical models, estimation of material properties, exact knowledge of usage history, and sensor data to synthesize an accurate snapshot of the current state of damage and the likely remaining life of a structure under given assumed loading. The work outlined in this thesis is structured to enhance the development of information-based decision and control systems. This is achieved by constructing a test facility for laboratory experiments on real-time damage sensing. This test facility makes use of a methodology that has been formulated for fatigue crack model parameter estimation and significantly improves the quality of predictions of remaining life. Specifically, the thesis focuses on development of an on-line fatigue crack damage sensing and life prediction system that is built upon the disciplines of Systems Sciences and Mechanics of Materials. A major part of the research effort has been expended to design and fabricate a test apparatus which allows: (i) measurement and recording of statistical data for fatigue crack growth in metallic materials via different sensing techniques; and (ii) identification of stochastic model parameters for prediction of fatigue crack damage. To this end, this thesis describes the test apparatus and the associated instrumentation based on four different sensing techniques, namely, traveling optical microscopy, ultrasonic flaw detection, Alternating Current Potential Drop (ACPD), and fiber-optic extensometry-based compliance, for crack length measurements.

  6. Stress Corrosion Cracking of Annealed and Cold Worked Titanium Grade 7 and Alloy 22 in 110 C Concentrated Salt Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Andresen

    2000-11-08

    Stress corrosion crack growth studies have been performed on annealed and cold worked Titanium Grade 7 and Alloy 22 in 110 C, aerated, concentrated, high pH salt environments characteristic of concentrated ground water. Following a very careful transition from fatigue precracking conditions to SCC conditions, the long term behavior under very stable conditions was monitored using reversing dc potential drop. Titanium Grade 7 exhibited continuous crack growth under both near-static and complete static loading conditions. Alloy 22 exhibited similar growth rates, but was less prone to maintain stable crack growth as conditions approached fully static loading.

  7. The effect of heat treatment and test parameters on the aqueous stress corrosion cracking of D6AC steel

    NASA Technical Reports Server (NTRS)

    Gilbreath, W. P.; Adamson, M. J.

    1974-01-01

    The crack growth behavior of D6AC steel as a function of stress intensity, stress and corrosion history and test technique, under sustained load in natural seawater, 3.3 percent NaCl solution, distilled water, and high humidity air was investigated. Reported investigations of D6AC were considered with emphasis on thermal treatment, specimen configuration, fracture toughness, crack-growth rates, initiation period, threshold, and the extension of corrosion fatigue data to sustained load conditions. Stress history effects were found to be most important in that they controlled incubation period, initial crack growth rates, and apparent threshold.

  8. A Relationship Between Constraint and the Critical Crack Tip Opening Angle

    NASA Technical Reports Server (NTRS)

    Johnston, William M.; James, Mark A.

    2009-01-01

    Of the various approaches used to model and predict fracture, the Crack Tip Opening Angle (CTOA) fracture criterion has been successfully used for a wide range of two-dimensional thin-sheet and thin plate applications. As thicker structure is considered, modeling the full three-dimensional fracture process will become essential. This paper investigates relationships between the local CTOA evaluated along a three-dimensional crack front and the corresponding local constraint. Previously reported tunneling crack front shapes were measured during fracture by pausing each test and fatigue cycling the specimens to mark the crack surface. Finite element analyses were run to model the tunneling shape during fracture, with the analysis loading conditions duplicating those tests. The results show an inverse relationship between the critical fracture value and constraint which is valid both before maximum load and after maximum load.

  9. Evaluation of Orientation Dependence of Fracture Toughness and Fatigue Crack Propagation Behavior of As-Deposited ARCAM EBM Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Seifi, Mohsen; Dahar, Matthew; Aman, Ron; Harrysson, Ola; Beuth, Jack; Lewandowski, John J.

    2015-03-01

    This preliminary work documents the effects of test orientation with respect to build and beam raster directions on the fracture toughness and fatigue crack growth behavior of as-deposited EBM Ti-6Al-4V. Although ASTM/ISO standards exist for determining the orientation dependence of various mechanical properties in both cast and wrought materials, these standards are evolving for materials produced via additive manufacturing (AM) techniques. The current work was conducted as part of a larger America Makes funded project to begin to examine the effects of process variables on the microstructure and fracture and fatigue behavior of AM Ti-6Al-4V. In the fatigue crack growth tests, the fatigue threshold, Paris law slope, and overload toughness were determined at different load ratios, R, whereas fatigue precracked samples were tested to determine the fracture toughness. The as-deposited material exhibited a fine-scale basket-weave microstructure throughout the build, and although fracture surface examination revealed the presence of unmelted powders, disbonded regions, and isolated porosity, the resulting mechanical properties were in the range of those reported for cast and wrought Ti-6Al-4V. Remote access and control of testing was also developed at Case Western Reserve University to improve efficiency of fatigue crack growth testing.

  10. Investigation into Z-Pin Reinforced Composite Skin/Stiffener Debond under Monotonic and Cyclic Bending

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyang; Li, Yong; Van Hoa, Suong; Xiao, Jun; Chu, Qiyi

    2018-02-01

    Skin/stiffener debonding has been a longstanding concern for the users of stiffened composite panels in long-term service. Z-pinning technology is an emerging solution to reinforce the composite assembly joints. This work experimentally characterizes the progressive debonding of Z-pinned skin/stiffener interface with the skin under static bend loading. The three-stage failure process is identified as: flange edge debonding, pin/laminate debonding, and ultimate structural failure. Three different distribution patterns were compared in terms of the static debonding properties revealed the affirmative fact that locating pins in high normal stress regions, that is close to the flange edges in skin/stiffener structures, is more beneficial to utilize the full potential of Z-pinning reinforcement. The unit strip FE model was developed and demonstrated effective to analysis the effect of Z-pin distribution on the ultimate debond load. On the other hand, the evolution of fatigue cracks at Z-pinned skin/flange interface was investigated with a series of displacement-controlled fatigue bending tests and microscopic observations. Results show that Z-pinning postpones crack initiations at low displacement levels, and the remarkable crack-arresting function of pins enables the structure a prolonged fatigue life. However, pins become less effective when the maximum displacement exceeds the crack initiation level due to gradually pullout of pins.

  11. Crack propagation monitoring in a full-scale aircraft fatigue test based on guided wave-Gaussian mixture model

    NASA Astrophysics Data System (ADS)

    Qiu, Lei; Yuan, Shenfang; Bao, Qiao; Mei, Hanfei; Ren, Yuanqiang

    2016-05-01

    For aerospace application of structural health monitoring (SHM) technology, the problem of reliable damage monitoring under time-varying conditions must be addressed and the SHM technology has to be fully validated on real aircraft structures under realistic load conditions on ground before it can reach the status of flight test. In this paper, the guided wave (GW) based SHM method is applied to a full-scale aircraft fatigue test which is one of the most similar test status to the flight test. To deal with the time-varying problem, a GW-Gaussian mixture model (GW-GMM) is proposed. The probability characteristic of GW features, which is introduced by time-varying conditions is modeled by GW-GMM. The weak cumulative variation trend of the crack propagation, which is mixed in time-varying influence can be tracked by the GW-GMM migration during on-line damage monitoring process. A best match based Kullback-Leibler divergence is proposed to measure the GW-GMM migration degree to reveal the crack propagation. The method is validated in the full-scale aircraft fatigue test. The validation results indicate that the reliable crack propagation monitoring of the left landing gear spar and the right wing panel under realistic load conditions are achieved.

  12. Fretting Fatigue of Single Crystal/Polycrystalline Nickel Subjected to Blade/Disk Contact Loading

    NASA Astrophysics Data System (ADS)

    Matlik, J. F.; Murthy, H.; Farris, T. N.

    2002-01-01

    Fretting fatigue describes the formation and growth of cracks at the edge-of-contact of nominally clamped components subjected to cyclic loading. Components that are known to be subject to fretting fatigue include riveted lap joints and blade/disk contacts in launch vehicle turbomachinery. Recent efforts have shown that conventional mechanics tools, both fatigue and fracture based, can be used to model fretting fatigue experiments leading to successful life predictions. In particular, experiments involving contact load configurations similar to those that occur in the blade/disk connection of gas turbine engines have been performed extensively. Predictions of fretting fatigue life have been compared favorably to experimental observations [1]. Recent efforts are aimed at performing experiments at higher temperatures as shown in the photograph below along with a sample fracture surface. The talk will describe the status of these experiments as will as model developments relevant to the single crystal material properties.

  13. Effect of Surface Impulsive Thermal Loads on Fatigue Behavior of Constant Volume Propulsion Engine Combustor Materials

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Miller, Robert A.; Ghosn, Louis J.; Kalluri, Sreeramesh

    2004-01-01

    The development of advanced high performance constant-volume-combustion-cycle engines (CVCCE) requires robust design of the engine components that are capable of enduring harsh combustion environments under high frequency thermal and mechanical fatigue conditions. In this study, a simulated engine test rig has been established to evaluate thermal fatigue behavior of a candidate engine combustor material, Haynes 188, under superimposed CO2 laser surface impulsive thermal loads (30 to 100 Hz) in conjunction with the mechanical fatigue loads (10 Hz). The mechanical high cycle fatigue (HCF) testing of some laser pre-exposed specimens has also been conducted under a frequency of 100 Hz to determine the laser surface damage effect. The test results have indicated that material surface oxidation and creep-enhanced fatigue is an important mechanism for the surface crack initiation and propagation under the simulated CVCCE engine conditions.

  14. Diffraction-based study of fatigue crack initiation and propagation in aerospace aluminum alloys

    NASA Astrophysics Data System (ADS)

    Gupta, Vipul K.

    The crack initiation sites and microstructure-sensitive growth of small fatigue cracks are experimentally characterized in two precipitation-hardened aluminum alloys, 7075-T651 and 7050-T7451, stressed in ambient temperature moist-air (warm-humid) and -50°C dry N2 (cold-dry) environmental conditions. Backscattered electron imaging (BSE) and energy dispersive spectroscopy (EDS) of the fracture surfaces showed that Fe-Cu rich constituent particle clusters are the most common initiation sites within both alloys stressed in either environment. The crack growth within each alloy, on average, was observed to be slowed in the cold-dry environment than in the warm-humid environment, but only at longer crack lengths. Although no overwhelming effects of grain boundaries and grain orientations on small-crack growth were observed, crack growth data showed local fluctuations within individual grains. These observations are understood as crack propagation through the underlying substructure at the crack surface and frequent interaction with low/high-angle grain and subgrain boundaries, during cyclic loading, and, are further attributed to periodic changes in crack propagation path and multiple occurrences of crack-branching observed in the current study. SEM-based stereology in combination with electron backscattered diffraction (EBSD) established fatigue crack surface crystallography within the region from ˜1 to 50 mum of crack initiating particle clusters. Fatigue crack facets were parallel to a wide variety of crystallographic planes, with pole orientations distributed broadly across the irreducible stereographic triangle between the {001} and {101}-poles within both warm-humid and cold-dry environments. The results indicate environmentally affected fatigue cracking in both cases, given the similarity between the observed morphology and crystallography with that of a variety of aerospace aluminum alloys cracked in the presence of moist-air. There was no evidence of crystallographic {111} slip-plane cracking typical of the Stage I crack growth mode observed in single crystals and high purity polycrystals of face centered cubic metals, and which has presently been assumed for the present materials within fatigue crack initiation models. Rather, the facets tend to have near-Mode I spatial orientation, which is another indicator of the importance of environmentally affected fatigue damage. The results provide a physical basis to develop microstructurally-based next generation multi-stage fatigue (MSF) models that should include a new crack decohesion criteria based upon environmental fatigue cracking mechanisms. EBSD study of small-cracks in alloy 7050-T7451, stressed in warm-humid environment, showed that crack-path orientation changes and crack-branching occurred at both low/high-angle grain and subgrain boundaries. Single surface trace analysis suggests that the crack-path differs substantially from crystallographic slip-planes. EBSD-based observations of small-crack propagation through subgrain structure, either formed by cyclic plastic strain accumulation or pre-existing (typical of unrecrystallized grain structure in the present materials), suggest that subgrain structure plays a crucial role in small fatigue crack propagation. As mentioned earlier, local fluctuations in small-crack growth rates appear to be caused by frequent interaction with subgrain boundaries, and multiple occurrences of crack-branching and crack-path orientation changes at low/high-angle grain and subgrain boundaries. The aforementioned deviation from low-index {001}/{101}-planes and the occurrence of high-index cracking planes observed by EBSD/Stereology, in this study and others, are interpreted as trans-subgranular decohesion or inter-subgranular cracking, due to trapped hydrogen. In summary, the results provide a firmer experimental foundation for, and clearer understanding of, the mechanisms of environmental fatigue cracking of aluminum alloys, especially the role of inter-subgranular cracking, which had previously been advanced based upon fracture surface observations alone.

  15. Fatigue Life Methodology for Bonded Composite Skin/Stringer Configurations

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Paris, Isabelle L.; OBrien, T. Kevin; Minguet, Pierre J.

    2001-01-01

    A methodology is presented for determining the fatigue life of composite structures based on fatigue characterization data and geometric nonlinear finite element (FE) analyses. To demonstrate the approach, predicted results were compared to fatigue tests performed on specimens which represented a tapered composite flange bonded onto a composite skin. In a first step, tension tests were performed to evaluate the debonding mechanisms between the flange and the skin. In a second step, a 2D FE model was developed to analyze the tests. To predict matrix cracking onset, the relationship between the tension load and the maximum principal stresses transverse to the fiber direction was determined through FE analysis. Transverse tension fatigue life data were used to -enerate an onset fatigue life P-N curve for matrix cracking. The resulting prediction was in good agreement with data from the fatigue tests. In a third step, a fracture mechanics approach based on FE analysis was used to determine the relationship between the tension load and the critical energy release rate. Mixed mode energy release rate fatigue life data were used to create a fatigue life onset G-N curve for delamination. The resulting prediction was in good agreement with data from the fatigue tests. Further, the prediction curve for cumulative life to failure was generated from the previous onset fatigue life curves. The results showed that the methodology offers a significant potential to Predict cumulative fatigue life of composite structures.

  16. Fracture mechanics life analytical methods verification testing

    NASA Technical Reports Server (NTRS)

    Favenesi, J. A.; Clemons, T. G.; Riddell, W. T.; Ingraffea, A. R.; Wawrzynek, P. A.

    1994-01-01

    The objective was to evaluate NASCRAC (trademark) version 2.0, a second generation fracture analysis code, for verification and validity. NASCRAC was evaluated using a combination of comparisons to the literature, closed-form solutions, numerical analyses, and tests. Several limitations and minor errors were detected. Additionally, a number of major flaws were discovered. These major flaws were generally due to application of a specific method or theory, not due to programming logic. Results are presented for the following program capabilities: K versus a, J versus a, crack opening area, life calculation due to fatigue crack growth, tolerable crack size, proof test logic, tearing instability, creep crack growth, crack transitioning, crack retardation due to overloads, and elastic-plastic stress redistribution. It is concluded that the code is an acceptable fracture tool for K solutions of simplified geometries, for a limited number of J and crack opening area solutions, and for fatigue crack propagation with the Paris equation and constant amplitude loads when the Paris equation is applicable.

  17. Evaluation of the fuselage lap joint fatigue and terminating action repair

    NASA Technical Reports Server (NTRS)

    Samavedam, Gopal; Thomson, Douglas; Jeong, David Y.

    1994-01-01

    Terminating action is a remedial repair which entails the replacement of shear head countersunk rivets with universal head rivets which have a larger shank diameter. The procedure was developed to eliminate the risk of widespread fatigue damage (WFD) in the upper rivet row of a fuselage lap joint. A test and evaluation program has been conducted by Foster-Miller, Inc. (FMI) to evaluate the terminating action repair of the upper rivet row of a commercial aircraft fuselage lap splice. Two full scale fatigue tests were conducted on fuselage panels using the growth of fatigue cracks in the lap joint. The second test was performed to evaluate the effectiveness of the terminating action repair. In both tests, cyclic pressurization loading was applied to the panels while crack propagation was recorded at all rivet locations at regular intervals to generate detailed data on conditions of fatigue crack initiation, ligament link-up, and fuselage fracture. This program demonstrated that the terminating action repair substantially increases the fatigue life of a fuselage panel structure and effectively eliminates the occurrence of cracking in the upper rivet row of the lap joint. While high cycle crack growth was recorded in the middle rivet row during the second test, failure was not imminent when the test was terminated after cycling to well beyond the service life. The program also demonstrated that the initiation, propagation, and linkup of WFD in full-scale fuselage structures can be simulated and quantitatively studied in the laboratory. This paper presents an overview of the testing program and provides a detailed discussion of the data analysis and results. Crack distribution and propagation rates and directions as well as frequency of cracking are presented for both tests. The progression of damage to linkup of adjacent cracks and to eventual overall panel failure is discussed. In addition, an assessment of the effectiveness of the terminating action repair and the occurrence of cracking in the middle rivet row is provided, and conclusions of practical interest are drawn.

  18. NASA/FLAGRO - FATIGUE CRACK GROWTH COMPUTER PROGRAM

    NASA Technical Reports Server (NTRS)

    Forman, R. G.

    1994-01-01

    Structural flaws and cracks may grow under fatigue inducing loads and, upon reaching a critical size, cause structural failure to occur. The growth of these flaws and cracks may occur at load levels well below the ultimate load bearing capability of the structure. The Fatigue Crack Growth Computer Program, NASA/FLAGRO, was developed as an aid in predicting the growth of pre-existing flaws and cracks in structural components of space systems. The earlier version of the program, FLAGRO4, was the primary analysis tool used by Rockwell International and the Shuttle subcontractors for fracture control analysis on the Space Shuttle. NASA/FLAGRO is an enhanced version of the program and incorporates state-of-the-art improvements in both fracture mechanics and computer technology. NASA/FLAGRO provides the fracture mechanics analyst with a computerized method of evaluating the "safe crack growth life" capabilities of structural components. NASA/FLAGRO could also be used to evaluate the damage tolerance aspects of a given structural design. The propagation of an existing crack is governed by the stress field in the vicinity of the crack tip. The stress intensity factor is defined in terms of the relationship between the stress field magnitude and the crack size. The propagation of the crack becomes catastrophic when the local stress intensity factor reaches the fracture toughness of the material. NASA/FLAGRO predicts crack growth using a two-dimensional model which predicts growth independently in two directions based on the calculation of stress intensity factors. The analyst can choose to use either a crack growth rate equation or a nonlinear interpolation routine based on tabular data. The growth rate equation is a modified Forman equation which can be converted to a Paris or Walker equation by substituting different values into the exponent. This equation provides accuracy and versatility and can be fit to data using standard least squares methods. Stress-intensity factor numerical values can be computed for making comparisons or checks of solutions. NASA/FLAGRO can check for failure of a part-through crack in the mode of a through crack when net ligament yielding occurs. NASA/FLAGRO has a number of special subroutines and files which provide enhanced capabilities and easy entry of data. These include crack case solutions, cyclic load spectrums, nondestructive examination initial flaw sizes, table interpolation, and material properties. The materials properties files are divided into two types, a user defined file and a fixed file. Data is entered and stored in the user defined file during program execution, while the fixed file contains already coded-in property value data for many different materials. Prompted input from CRT terminals consists of initial crack definition (which can be defined automatically), rate solution type, flaw type and geometry, material properties (if they are not in the built-in tables of material data), load spectrum data (if not included in the loads spectrum file), and design limit stress levels. NASA/FLAGRO output includes an echo of the input with any error or warning messages, the final crack size, whether or not critical crack size has been reached for the specified stress level, and a life history profile of the crack propagation. NASA/FLAGRO is modularly designed to facilitate revisions and operation on minicomputers. The program was implemented on a DEC VAX 11/780 with the VMS operating system. NASA/FLAGRO is written in FORTRAN77 and has a memory requirement of 1.4 MB. The program was developed in 1986.

  19. Dynamic Torsional and Cyclic Fracture Behavior of ProFile Rotary Instruments at Continuous or Reciprocating Rotation as Visualized with High-speed Digital Video Imaging.

    PubMed

    Tokita, Daisuke; Ebihara, Arata; Miyara, Kana; Okiji, Takashi

    2017-08-01

    This study examined the dynamic fracture behavior of nickel-titanium rotary instruments in torsional or cyclic loading at continuous or reciprocating rotation by means of high-speed digital video imaging. The ProFile instruments (size 30, 0.06 taper; Dentsply Maillefer, Ballaigues, Switzerland) were categorized into 4 groups (n = 7 in each group) as follows: torsional/continuous (TC), torsional/reciprocating (TR), cyclic/continuous (CC), and cyclic/reciprocating (CR). Torsional loading was performed by rotating the instruments by holding the tip with a vise. For cyclic loading, a custom-made device with a 38° curvature was used. Dynamic fracture behavior was observed with a high-speed camera. The time to fracture was recorded, and the fractured surface was examined with scanning electron microscopy. The TC group initially exhibited necking of the file followed by the development of an initial crack line. The TR group demonstrated opening and closing of a crack according to its rotation in the cutting and noncutting directions, respectively. The CC group separated without any detectable signs of deformation. In the CR group, initial crack formation was recognized in 5 of 7 samples. The reciprocating rotation exhibited a longer time to fracture in both torsional and cyclic fatigue testing (P < .05). The scanning electron microscopic images showed a severely deformed surface in the TR group. The dynamic fracture behavior of NiTi rotary instruments, as visualized with high-speed digital video imaging, varied between the different modes of rotation and different fatigue testing. Reciprocating rotation induced a slower crack propagation and conferred higher fatigue resistance than continuous rotation in both torsional and cyclic loads. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Analysis of Global Ultrasonic Sensor Data from a Full Scale Wing Panel Test

    NASA Astrophysics Data System (ADS)

    Michaels, Jennifer E.; Michaels, Thomas E.; Martin, Ramaldo S.

    2009-03-01

    A full scale wing panel fatigue test was undertaken in 2007 as a part of the DARPA Structural Integrity Prognosis System (SIPS) program. Both local and global ultrasonic sensors were installed on the wing panel and data were recorded periodically over a period of about seven weeks. The local ultrasonic sensors interrogated a small number of selected fastener holes, and the global ultrasonic sensors were arranged in a spatially distributed array surrounding an area encompassing multiple fastener holes of interest. The global ultrasonic sensor data is the focus of the work reported here. Waveforms were recorded from all pitch-catch sensor pairs as a function of static load while fatiguing was paused. The time windows over which the waveforms were recorded were long enough to include most of the reverberating energy. Partway through the test simulated defects were temporarily introduced by gluing masses onto the surface of the wing panel, and waveforms were recorded immediately before their attachment and after their removal. The overall fatigue test was terminated while cracks originating from the fastener holes were still relatively small and before they reached the surface of the wing panel. Both detection and localization results are shown for the artificial damage, and the overall repeatability and stability of the signals are analyzed. Also shown is an analysis of how the reverberating signals change as a function of applied load. The fastener hole fatigue cracks were not detected by the global transducer array, which is not surprising given the final sizes of the cracks as determined by later destructive analysis. However, signals were stable throughout the entire fatigue test, and effects of load on the received signals were significant, both in the short-time and long-time signal regimes.

  1. Structural analysis of a reflux pool-boiler solar receiver

    NASA Astrophysics Data System (ADS)

    Hoffman, E. L.; Stone, C. M.

    1991-06-01

    Coupled thermal-structural finite element calculations of a reflux pool-boiler solar receiver were performed to characterize the operating stresses and to address issues affecting the service life of the receiver. Analyses performed using shell elements provided information for receiver material selection and design optimization. Calculations based on linear elastic fracture mechanics principles were performed using continuum elements to assess the vulnerability of a seam-weld to fatigue crack growth. All calculations were performed using ABAQUS, a general purpose finite element code, and elements specifically formulated for coupled thermal-structural analysis. Two materials were evaluated: 316L SS and Haynes 230 alloys. The receiver response was simulated for a combination of structural and thermal loads that represent the startup and operating conditions of the receiver. For both materials, maximum stresses in the receiver developed shortly after startup due to uneven temperature distribution across the receiver surface. The largest effective stress was near yield in the 316L SS receiver and below 39 percent of yield in the Haynes 230 receiver. The calculations demonstrated that stress reductions of over 25 percent could be obtained by reducing the aft dome thickness to one closer to the absorber. The fatigue calculations demonstrated that the stress distribution near the seam-weld notch depends primarily on the structural load created by internal pressurization of the receiver rather than the thermal, indicating that the thermal loads can be neglected when assessing the stress intensity near the seam-weld notch. The stress intensity factor, computed using the J-integral method and crack opening-displacement field equations, was significantly below the fatigue threshold for most steels. The calculations indicated that the weld notch was always loaded in compression, a condition which is not conducive to fatigue crack growth.

  2. Phase-contrast x-ray imaging of microstructure and fatigue-crack propagation in single-crystal nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Husseini, Naji Sami

    Single-crystal nickel-base superalloys are ubiquitous in demanding turbine-blade applications, and they owe their remarkable resilience to their dendritic, hierarchical microstructure and complex composition. During normal operations, they endure rapid low-stress vibrations that may initiate fatigue cracks. This failure mode in the very high-cycle regime is poorly understood, in part due to inadequate testing and diagnostic equipment. Phase-contrast imaging with coherent synchrotron x rays, however, is an emergent technique ideally suited for dynamic processes such as crack initiation and propagation. A specially designed portable ultrasonic-fatigue apparatus, coupled with x-ray radiography, allows real-time, in situ imaging while simulating service conditions. Three contrast mechanisms - absorption, diffraction, and phase contrast - span the immense breadth of microstructural features in superalloys. Absorption contrast is sensitive to composition and crack displacements, and diffraction contrast illuminates dislocation aggregates and crystallographic misorientations. Phase contrast enhances electron-density gradients and is particularly useful for fatigue-crack studies, sensitive to internal crack tips and openings less than one micrometer. Superalloy samples were imaged without external stresses to study microstructure and mosaicity. Maps of rhenium and tungsten concentrations revealed strong segregation to the center of dendrites, as manifested by absorption contrast. Though nominally single crystals, dendrites were misoriented from the bulk by a few degrees, as revealed by diffraction contrast. For dynamic studies of cyclic fatigue, superalloys were mounted in the portable ultrasonic-fatigue apparatus, subjected to a mean tensile stress of ˜50-150 MPa, and cycled in tension to initiate and propagate fatigue cracks. Radiographs were recorded every thousand cycles over the multimillion-cycle lifetime to measure micron-scale crack growth. Crack openings were very small, as determined by absorption and phase contrast, and suggested multiple fracture modes for propagation along {111} planes at room temperature, which was verified by finite element analysis. With increasing temperature, cracks became Mode I (perpendicular to the loading axis) in character and more sensitive to the microstructure. Advancing plastic zones ahead of crack tips altered the crystallographic quality, from which diffraction contrast anticipated initiation and propagation. These studies demonstrate the extreme sensitivity of x-ray radiography for detailed studies of superalloys and crack growth processes.

  3. A modified PMMA cement (Sub-cement) for accelerated fatigue testing of cemented implant constructs using cadaveric bone.

    PubMed

    Race, Amos; Miller, Mark A; Mann, Kenneth A

    2008-10-20

    Pre-clinical screening of cemented implant systems could be improved by modeling the longer-term response of the implant/cement/bone construct to cyclic loading. We formulated bone cement with degraded fatigue fracture properties (Sub-cement) such that long-term fatigue could be simulated in short-term cadaver tests. Sub-cement was made by adding a chain-transfer agent to standard polymethylmethacrylate (PMMA) cement. This reduced the molecular weight of the inter-bead matrix without changing reaction-rate or handling characteristics. Static mechanical properties were approximately equivalent to normal cement. Over a physiologically reasonable range of stress-intensity factor, fatigue crack propagation rates for Sub-cement were higher by a factor of 25+/-19. When tested in a simplified 2 1/2-D physical model of a stem-cement-bone system, crack growth from the stem was accelerated by a factor of 100. Sub-cement accelerated both crack initiation and growth rate. Sub-cement is now being evaluated in full stem/cement/femur models.

  4. Modeling Quasi-Static and Fatigue-Driven Delamination Migration

    NASA Technical Reports Server (NTRS)

    De Carvalho, N. V.; Ratcliffe, J. G.; Chen, B. Y.; Pinho, S. T.; Baiz, P. M.; Tay, T. E.

    2014-01-01

    An approach was proposed and assessed for the high-fidelity modeling of progressive damage and failure in composite materials. It combines the Floating Node Method (FNM) and the Virtual Crack Closure Technique (VCCT) to represent multiple interacting failure mechanisms in a mesh-independent fashion. Delamination, matrix cracking, and migration were captured failure and migration criteria based on fracture mechanics. Quasi-static and fatigue loading were modeled within the same overall framework. The methodology proposed was illustrated by simulating the delamination migration test, showing good agreement with the available experimental data.

  5. Effects of environmental variables on the crack initiation stages of corrosion fatigue of high strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Poteat, L. E.

    1981-01-01

    Fatigue initiation in six aluminum alloys used in the aircraft industry was investigated. Cyclic loading superimposed on a constant stress was alternated with atmospheric corrosion. Tests made at different stress levels revealed that a residual stress as low as 39% of the yield strength caused stress corrosion cracking in some of the alloys. An atmospheric corrosion rate meter developed to measure the corrosivity of the atmosphere is described. An easily duplicated hole in the square test specimen with a self-induced residual stress was developed.

  6. Development of an improved method of consolidating fatigue life data

    NASA Technical Reports Server (NTRS)

    Leis, B. N.; Sampath, S. G.

    1978-01-01

    A fatigue data consolidation model that incorporates recent advances in life prediction methodology was developed. A combined analytic and experimental study of fatigue of notched 2024-T3 aluminum alloy under constant amplitude loading was carried out. Because few systematic and complete data sets for 2024-T3 were available in the program generated data for fatigue crack initiation and separation failure for both zero and nonzero mean stresses. Consolidations of these data are presented.

  7. Contact fatigue mechanisms as a function of crystal aspect ratio in baria-silicate glass ceramics

    NASA Astrophysics Data System (ADS)

    Suputtamongkol, Kallaya

    2003-10-01

    Ceramic materials are potentially useful for dental applications because of their esthetic potential and biocompatibility. However, the existence of fatigue damage in ceramics raises considerable concern regarding its effect on the life prediction of dental prostheses. During normal mastication, dental restorations are subjected to repeated loading more than a thousand times per day and relatively high clinical failure rates for ceramic prostheses have been reported. To simulate the intraoral loads, Hertzian indentation loading was used in this study to characterize the fatigue failure mechanisms of ceramic materials using clinically relevant parameters. The baria-silicate system was chosen because of the nearly identical composition between the crystal and the glass matrix. Little or no residual stress is expected from the elastic modulus and thermal expansion mismatches between the two phases. Crystallites with different aspect ratios can also be produced by controlled heat treatment schedules. The objective of this study was to characterize the effect of crystal morphology on the fatigue mechanisms of bariasilicate glass-ceramics under clinically relevant conditions. The results show that the failure of materials with a low toughness such as baria-silicate glass (0.7 MPa•m1/2) and glass-ceramic with an aspect ratio of 3/1 (1.3 MPa•m1/2) initiated from a cone crack developed during cyclic loading for 103 to 105 cycles. The mean strength values of baria-silicate glass and glass-ceramic with an aspect ratio of 3/1 decreased significantly as a result of the presence of a cone crack. Failure of baria-silicate glass-ceramics with an aspect ratio of 8/1 (Kc = 2.1 MPa•m1/2) was initiated from surface flaws caused by either polishing or cyclic loading. The gradual decrease of fracture stress was observed in specimens with an aspect ratio of 8/1 after loading in air for 103 to 10 5 cycles. A reduction of approximately 50% in fracture stress levels was found for specimens with an aspect ratio of 8/1 after loading for 10 5 cycles in deionized water. The mechanisms for cyclic fatigue crack propagation in baria-silicate glass-ceramics are similar to those observed under quasi-static loading conditions. An intergranular fracture path was observed in glass-ceramics with an aspect ratio of 3/1. For an aspect ratio of 8/1, a transgranular fracture mode was dominant.

  8. Determination of babbit mechanical properties based on tin under static and cyclic loading

    NASA Astrophysics Data System (ADS)

    Zernin, M. V.

    2018-03-01

    Based on the results of studies of babbitt on the basis of tin under static loading under three types of stress state, the parameters of the criterion for the equivalence of stressed states were refined and a single diagram of the babbitt deformation was obtained. It is shown that the criterion of equivalence for static loading should contain the first principal stress and stress intensity. With cyclic loading, the first main voltage can be used as a criterion. The stages of development of fatigue cracks are described and it is logical to use a statistical approach to reveal the boundary of the transition from short cracks to macrocracks, based on a significant difference in the characteristics of the dispersion of the crack speeds at these two stages. The results of experimental studies of the cyclic crack resistance of babbitt are presented and the parameters of this boundary are obtained.

  9. Damage Evolution and Life Prediction of Cross-Ply C/SiC Ceramic-Matrix Composite under Cyclic Fatigue Loading at Room Temperature and 800 °C in Air

    PubMed Central

    Li, Longbiao

    2015-01-01

    The damage evolution and life prediction of cross-ply C/SiC ceramic-matrix composite (CMC) under cyclic-fatigue loading at room temperature and 800 °C in air have been investigated using damage parameters derived from fatigue hysteresis loops, i.e., fatigue hysteresis modulus and fatigue hysteresis loss energy. The experimental fatigue hysteresis modulus and fatigue hysteresis loss energy degrade with increasing applied cycles attributed to transverse cracks in the 90° plies, matrix cracks and fiber/matrix interface debonding in the 0° plies, interface wear at room temperature, and interface and carbon fibers oxidation at 800 °C in air. The relationships between fatigue hysteresis loops, fatigue hysteresis modulus and fatigue hysteresis loss energy have been established. Comparing experimental fatigue hysteresis loss energy with theoretical computational values, the fiber/matrix interface shear stress corresponding to different cycle numbers has been estimated. It was found that the degradation rate at 800 °C in air is much faster than that at room temperature due to serious oxidation in the pyrolytic carbon (PyC) interphase and carbon fibers. Combining the fiber fracture model with the interface shear stress degradation model and the fibers strength degradation model, the fraction of broken fibers versus the cycle number can be determined for different fatigue peak stresses. The fatigue life S-N curves of cross-ply C/SiC composite at room temperature and 800 °C in air have been predicted. PMID:28793728

  10. Damage Evolution and Life Prediction of Cross-Ply C/SiC Ceramic-Matrix Composite under Cyclic Fatigue Loading at Room Temperature and 800 °C in Air.

    PubMed

    Li, Longbiao

    2015-12-09

    The damage evolution and life prediction of cross-ply C/SiC ceramic-matrix composite (CMC) under cyclic-fatigue loading at room temperature and 800 °C in air have been investigated using damage parameters derived from fatigue hysteresis loops, i.e. , fatigue hysteresis modulus and fatigue hysteresis loss energy. The experimental fatigue hysteresis modulus and fatigue hysteresis loss energy degrade with increasing applied cycles attributed to transverse cracks in the 90° plies, matrix cracks and fiber/matrix interface debonding in the 0° plies, interface wear at room temperature, and interface and carbon fibers oxidation at 800 °C in air. The relationships between fatigue hysteresis loops, fatigue hysteresis modulus and fatigue hysteresis loss energy have been established. Comparing experimental fatigue hysteresis loss energy with theoretical computational values, the fiber/matrix interface shear stress corresponding to different cycle numbers has been estimated. It was found that the degradation rate at 800 °C in air is much faster than that at room temperature due to serious oxidation in the pyrolytic carbon (PyC) interphase and carbon fibers. Combining the fiber fracture model with the interface shear stress degradation model and the fibers strength degradation model, the fraction of broken fibers versus the cycle number can be determined for different fatigue peak stresses. The fatigue life S-N curves of cross-ply C/SiC composite at room temperature and 800 °C in air have been predicted.

  11. The effect of broken stringers on the stress intensity factor for a uniformly stiffened sheet containing a crack

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1973-01-01

    A linear elastic stress analysis was made of a centrally cracked sheet stiffened by riveted, uniformly spaced and sized stringers. The stress intensity factor for the sheet and the load concentration factor for the most highly loaded stringer were determined for various numbers of broken stringers. A broken stringer causes the stress intensity factor to be very high when the crack tip is near the broken stringer, but causes little effect when the crack tip extends beyond several intact stringers. A broken stringer also causes an increase in the load concentration factor of the adjacent stringers. The calculated residual strengths and fatigue-crack-growth lives of a stiffened aluminum sheet with a broken stringer were only slightly less than a sheet with all intact stringers, and were still much higher than those of an unstiffened sheet.

  12. On-line prognosis of fatigue crack propagation based on Gaussian weight-mixture proposal particle filter.

    PubMed

    Chen, Jian; Yuan, Shenfang; Qiu, Lei; Wang, Hui; Yang, Weibo

    2018-01-01

    Accurate on-line prognosis of fatigue crack propagation is of great meaning for prognostics and health management (PHM) technologies to ensure structural integrity, which is a challenging task because of uncertainties which arise from sources such as intrinsic material properties, loading, and environmental factors. The particle filter algorithm has been proved to be a powerful tool to deal with prognostic problems those are affected by uncertainties. However, most studies adopted the basic particle filter algorithm, which uses the transition probability density function as the importance density and may suffer from serious particle degeneracy problem. This paper proposes an on-line fatigue crack propagation prognosis method based on a novel Gaussian weight-mixture proposal particle filter and the active guided wave based on-line crack monitoring. Based on the on-line crack measurement, the mixture of the measurement probability density function and the transition probability density function is proposed to be the importance density. In addition, an on-line dynamic update procedure is proposed to adjust the parameter of the state equation. The proposed method is verified on the fatigue test of attachment lugs which are a kind of important joint components in aircraft structures. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Fatigue crack detection by nonlinear spectral correlation with a wideband input

    NASA Astrophysics Data System (ADS)

    Liu, Peipei; Sohn, Hoon

    2017-04-01

    Due to crack-induced nonlinearity, ultrasonic wave can distort, create accompanying harmonics, multiply waves of different frequencies, and, under resonance conditions, change resonance frequencies as a function of driving amplitude. All these nonlinear ultrasonic features have been widely studied and proved capable of detecting fatigue crack at its very early stage. However, in noisy environment, the nonlinear features might be drown in the noise, therefore it is difficult to extract those features using a conventional spectral density function. In this study, nonlinear spectral correlation is defined as a new nonlinear feature, which considers not only nonlinear modulations in ultrasonic waves but also spectral correlation between the nonlinear modulations. The proposed nonlinear feature is associated with the following two advantages: (1) stationary noise in the ultrasonic waves has little effect on nonlinear spectral correlation; and (2) the contrast of nonlinear spectral correlation between damage and intact conditions can be enhanced simply by using a wideband input. To validate the proposed nonlinear feature, micro fatigue cracks are introduced to aluminum plates by repeated tensile loading, and the experiment is conducted using surface-mounted piezoelectric transducers for ultrasonic wave generation and measurement. The experimental results confirm that the nonlinear spectral correlation can successfully detect fatigue crack with a higher sensitivity than the classical nonlinear coefficient.

  14. A novel anatomical short glass fiber reinforced post in an endodontically treated premolar mechanical resistance evaluation using acoustic emission under fatigue testing.

    PubMed

    Wang, Hsuan-Wen; Chang, Yen-Hsiang; Lin, Chun-Li

    2017-01-01

    This study evaluates the fracture resistance in an endodontically treated tooth using circular fiber-reinforced composite (FRC) and innovated anatomical short glass fiber reinforced (SGFR) posts under fatigue testing, monitored using the acoustic emission (AE) technique. An anatomical SGFR fiber post with an oval shape and slot/notch design was manufactured using an injection-molding machine. Crown/core maxillary second premolar restorations were executed using the anatomical SGFR and commercial cylindrical fiber posts under fatigue test to understand the mechanical resistances. The load versus AE signals in the fracture and fatigue tests were recorded to evaluate the restored tooth failure resistance. The static fracture resistance results showed that teeth restored using the anatomical SGFR post presented higher resistance than teeth restored using the commercial FRC post. The fatigue test endurance limitation (1.2×10 6 cycles) was 207.1N for the anatomical SGFR fiber post, higher than the 185.3N found with the commercial FRC post. The average accumulated number of AE signals and corresponding micro cracks for the anatomical SGFR fiber post (153.0 hits and 2.44 cracks) were significantly lower than those for the commercial FRC post (194.7 hits and 4.78 cracks) under 40% of the static maximum resistance fatigue test load (pass 1.2×10 6 cycles). This study concluded that the anatomical SGFR fiber post with surface slot/notch design made using precise injection molding presented superior static fracture resistance and fatigue endurance limitation than those for the commercial FRC post in an endodontically treated premolar. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Cyclic crack growth behavior of reactor pressure vessel steels in light water reactor environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Der Sluys, W.A.; Emanuelson, R.H.

    1986-01-01

    During normal operation light water reactor (LWR) pressure vessels are subjected to a variety of transients resulting in time varying stresses. Consequently, fatigue and environmentally assisted fatigue are growth mechanisms relevant to flaws in these pressure vessels. In order to provide a better understanding of the resistance of nuclear pressure vessel steels to flaw growth process, a series of fracture mechanics experiments were conducted to generate data on the rate of cyclic crack growth in SA508-2 and SA533b-1 steels in simulated 550/sup 0/F boiling water reactor (BWR) and 550/sup 0/F pressurized water reactor (PWR) environments. Areas investigated over the coursemore » of the test program included the effects of loading frequency and r ratio (Kmin-Kmax) on crack growth rate as a function of the stress intensity factor (deltaK) range. In addition, the effect of sulfur content of the test material on the cyclic crack growth rate was studied. Cyclic crack growth rates were found to be controlled by deltaK, R ratio, and loading frequency. The sulfur impurity content of the reactor pressure vessel steels studied had a significant effect on the cyclic crack growth rates. The higher growth rates were always associated with materials of higher sulfur content. For a given level of sulfur, growth rates were in a 550/sup 0/F simulated BWR environment than in a 550/sup 0/F simulated PWR environment. In both environments cyclic crack growth rates were a strong function of the loading frequency.« less

  16. Interactive Effects of High- and Low-Frequency Loading on Fatigue.

    DTIC Science & Technology

    1985-05-01

    were observed for an air environment between frequencies of 100 and 375 Hz . In dry argon, however, the results for 100 Hz were slightly higher than...those at 375 Hz . A very extensive study of fatigue crack growth properties of titanium alloys usPd in aircraft engine compressors was performed by

  17. Fatigue-propagation du melange polymere polystyrene/polyethylene

    NASA Astrophysics Data System (ADS)

    Bureau, Martin N.

    The interrelations between the morphology of PS/HDPE and PS/SEBS/HDPE immiscible polymer blends and their mechanical behavior, namely in monotonic loading and in cyclic loading, were studied. As predicted by theory, high shear rates encountered during extrusion blending led to efficient minor phase emulsification in PS/HDPE blends for which the viscosity ratio approaches unity. Consequently, the emulsifying effect of an SEBS triblock copolymer employed as a compatibilizer was found to be negligible. In subsequent molding process, disintegration, shape relaxation and coarsening of the minor phase domains were responsible for the morphological evolution of the blends. In the compression molding process, morphological observations showed that the rate of minor phase coarsening followed the predictions of the Ostwald ripening theory, in agreement with the rheological analysis. In the injection molding process, minor phase coarsening was attributed to shear coalescence. The fatigue crack propagation behavior of injection-molded specimens of pure PS as well as of 95/5, 85/15 and 70/30 PS/HDPE blends and of 95/(0.5/4.5), 85/(1.5/13.5) and 70/(3/27) PS/(SEBS/HDPE) blends was then studied. The fatigue fracture surface features of specimens of pure PS as well as of PS/HDPE and PS/SEBS/HDPE blends were analyzed in detail in order to interpret their fatigue crack propagation behavior. In pure PS specimens, discontinuous growth bands, associated with the fracture of crazes in the plastic zone, formed at low fatigue crack growth rates, large dimple-like features at intermediate fatigue crack growth rates and fatigue striations at high fatigue crack growth rates. The fracture toughness of injection-molded specimens of pure PS as well as of 95/5, 85/15 and 70/30 PS/HDPE blends and of 95/(0.5/4.5) PS/(SEBS/HDPE), 85/(1.5/13.5) and 70/(3/27) PS/(SEBS/HDPE) was finally studied. The results showed that the addition of HDPE to PS led to a reduction of the fracture toughness KQ following ASTM E-399 when compared to that of pure PS. This effect was attributed to the very fine minor phase morphology of the blends obtained after extrusion blending and injection molding. (Abstract shortened by UMI.)

  18. Detection of Steel Fatigue Cracks with Strain Sensing Sheets Based on Large Area Electronics

    PubMed Central

    Yao, Yao; Glisic, Branko

    2015-01-01

    Reliable early-stage damage detection requires continuous monitoring over large areas of structure, and with sensors of high spatial resolution. Technologies based on Large Area Electronics (LAE) can enable direct sensing and can be scaled to the level required for Structural Health Monitoring (SHM) of civil structures and infrastructure. Sensing sheets based on LAE contain dense arrangements of thin-film strain sensors, associated electronics and various control circuits deposited and integrated on a flexible polyimide substrate that can cover large areas of structures. This paper presents the development stage of a prototype strain sensing sheet based on LAE for crack detection and localization. Two types of sensing-sheet arrangements with size 6 × 6 inch (152 × 152 mm) were designed and manufactured, one with a very dense arrangement of sensors and the other with a less dense arrangement of sensors. The sensing sheets were bonded to steel plates, which had a notch on the boundary, so the fatigue cracks could be generated under cyclic loading. The sensors within the sensing sheet that were close to the notch tip successfully detected the initialization of fatigue crack and localized the damage on the plate. The sensors that were away from the crack successfully detected the propagation of fatigue cracks based on the time history of the measured strain. The results of the tests have validated the general principles of the proposed sensing sheets for crack detection and identified advantages and challenges of the two tested designs. PMID:25853407

  19. An evaluation of the pressure proof test concept for 2024-T3 aluminium alloy sheet

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Poe, C. C., Jr.; Newman, J. C.; Harris, C. E.

    1991-01-01

    The concept of pressure proof testing of fuselage structures with fatigue cracks to insure structural integrity was evaluated from a fracture mechanics viewpoint. A generic analytical and experimental investigation was conducted on uniaxially loaded flat panels with crack configurations and stress levels typical of longitudinal lap splice joints in commercial transport aircraft fuselages. The results revealed that the remaining fatigue life after a proof cycle was longer than that without the proof cycle because of crack growth retardation due to increased crack closure. However, based on a crack length that is slightly less than the critical value at the maximum proof stress, the minimum assured life or proof test interval must be no more than 550 pressure cycles for a 1.33 proof factor and 1530 pressure cycles for a 1.5 proof factor to prevent in-flight failures.

  20. An evaluation of the pressure proof test concept for thin sheet 2024-T3

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Poe, C. C., Jr.; Newman, J. C., Jr.; Harris, C. E.

    1990-01-01

    The concept of pressure proof testing of fuselage structures with fatigue cracks to insure structural integrity was evaluated from a fracture mechanics viewpoint. A generic analytical and experimental investigation was conducted on uniaxially loaded flat panels with crack configurations and stress levels typical of longitudinal lap-splice joints in commercial transport aircraft fuselage. The results revealed that the remaining fatigue life after a proof test was longer than that without the proof test because of crack growth retardation due to increased crack closure. However, based on a crack length that is slightly less than the critical value at the maximum proof test stress, the minimum assured life or proof test interval must be no more than 550 pressure cycles for a 1.33 proof factor and 1530 pressure cycles for a 1.5 proof factor to prevent in-flight failures.

  1. An evaluation of the pressure proof test concept for thin sheet 2024-T3

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Poe, C. C., Jr.; Newman, James C., Jr.; Harris, Charles E.

    1990-01-01

    The concept of pressure proof testing of fuselage structures with fatigue cracks to insure structural integrity was evaluated from a fracture mechanics viewpoint. A generic analytical and experimental investigation was conducted on uniaxially loaded flat panels with crack configurations and stress levels typical of longitudinal lap splice joints in commercial transport aircraft fuselages. The results revealed that the remaining fatigue life after a proof test was longer than that without the proof test because of crack growth retardation due to increased crack closure. However, based on a crack length that is slightly less than the critical value at the maximum proof test stress, the minimum assured life or proof test interval must be no more than 550 pressure cycles for a 1.33 proof factor and 1530 pressure cycles for a 1.5 proof factor to prevent in-flight failures.

  2. Creep fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Moreno, Vito; Nissley, David; Lin, Li-Sen Jim

    1985-01-01

    The first two years of a two-phase program aimed at improving the high temperature crack initiation life prediction technology for gas turbine hot section components are discussed. In Phase 1 (baseline) effort, low cycle fatigue (LCF) models, using a data base generated for a cast nickel base gas turbine hot section alloy (B1900+Hf), were evaluated for their ability to predict the crack initiation life for relevant creep-fatigue loading conditions and to define data required for determination of model constants. The variables included strain range and rate, mean strain, strain hold times and temperature. None of the models predicted all of the life trends within reasonable data requirements. A Cycle Damage Accumulation (CDA) was therefore developed which follows an exhaustion of material ductility approach. Material ductility is estimated based on observed similarities of deformation structure between fatigue, tensile and creep tests. The cycle damage function is based on total strain range, maximum stress and stress amplitude and includes both time independent and time dependent components. The CDA model accurately predicts all of the trends in creep-fatigue life with loading conditions. In addition, all of the CDA model constants are determinable from rapid cycle, fully reversed fatigue tests and monotonic tensile and/or creep data.

  3. Ply cracking in composite laminates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Youngmyong.

    1989-01-01

    Ply cracking behavior and accompanying stiffness changes in thermoset as well as thermoplastic matrix composites under various loading conditions are investigated. Specific topics addressed are: analytical model development for property degradations due to ply cracking under general in-plane loading; crack initiation and multiplication under static loading; and crack multiplication under cyclic loading. A model was developed to calculate the energy released due to ply cracking in a composite laminate subjected to general in-plane loading. The method is based on the use of a second order polynomial to represent the crack opening displacement and the concept of a through-the-thickness inherent flaw.more » The model is then used in conjunction with linear elastic fracture mechanics to predict the progressive ply cracking as well as first ply cracking. A resistance curve for crack multiplication is proposed as a means of characterizing the resistance to ply cracking in composite laminates. A methodology of utilizing the resistance curve to assess the crack density or overloading is also discussed. The method was applied to the graphite/thermoplastic polyimide composite to predict progressive ply cracking. However, unlike the thermoset matrix composites, a strength model is found to fit the experimental results better than the fracture mechanics based model. A set of closed form equations is also developed to calculate the accompanying stiffness changes due to the ply cracking. The effect of thermal residual stress is included in the analysis. A new method is proposed to characterize transverse ply cracking of symmetric balanced laminates under cyclic loading. The method is based on the concept of a through-the-thickness inherent flaw, the Paris law, and the resistance curve. Only two constants are needed to predict the crack density as a function of fatigue cycles.« less

  4. Fatigue crack growth in SA508-CL2 steel in a high temperature, high purity water environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, T.L.; Heald, J.D.; Kiss, E.

    1974-10-01

    Fatigue crack growth tests were conducted with 1 in. plate specimens of SA508-CL 2 steel in room temperature air, 550$sup 0$F air and in a 550$sup 0$F, high purity, water environment. Zero-tension load controlled tests were run at cyclic frequencies as low as 0.037 CPM. Results show that growth rates in the simulated Boiling Water Reactor (BWR) water environment are faster than growth rates observed in 550$sup 0$F air and these rates are faster than the room temperature rate. In the BWR water environment, lowering the cyclic frequency from 0.37 to 0.037 CPM caused only a slight increase in themore » fatigue crack growth rate. All growth rates measured in these tests were below the upper bound design curve presented in Section XI of the ASME Code. (auth)« less

  5. Mitigation of Crack Damage in Metallic Materials

    NASA Technical Reports Server (NTRS)

    Leser, Patrick E.; Newman, John A.; Smith, Stephen W.; Leser, William P.; Wincheski, Russell A.; Wallace, Terryl A.; Glaessgen, Edward H.; Piascik, Robert S.

    2014-01-01

    A system designed to mitigate or heal crack damage in metallic materials has been developed where the protected material or component is coated with a low-melting temperature film. After a crack is formed, the material is heated, melting the film which then infiltrates the crack opening through capillary action. Upon solidification, the healing material inhibits further crack damage in two ways. While the crack healing material is intact, it acts like an adhesive that bonds or bridges the crack faces together. After fatigue loading damages, the healing material in the crack mouth inhibits further crack growth by creating artificially-high crack closure levels. Mechanical test data show that this method sucessfully arrests or retards crack growth in laboratory specimens.

  6. Intrinsic Impact and Fatigue Property Degradation of Composite Materials in Sea Water

    DTIC Science & Technology

    2010-05-26

    Erdogan and G. Sih. On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering. 85, 1963. 519-527. L. B...using a thin tape . The adhesive was then applied to the other half and the specimen was bonded using a special fixture to guarantee dimensionality...a pure mode II crack is needed, rather than a kinked mode I crack. The angle of the crack kinking can be calculated theoretically ( Erdogan and Sih

  7. An Evaluation of the Effective Block Approach Using P-3C and F-111 Crack Growth Data

    DTIC Science & Technology

    2008-09-01

    the end of 2006 where his research interests included, modelling of fatigue crack growth, infrared NDT technologies and fibre optic corrosion...2006). It was claimed that the growth of these cracks in structures made of 7050 aluminium alloy could not be adequately predicted using classical...the crack growth behaviour of 7050 aluminium alloy subjected to the service load of the F/A-18 fighter planes. To make the matter worse, the

  8. Probabilistic Description of Fatigue Crack Growth Under Constant-and Variable-Amplitude Loading

    DTIC Science & Technology

    1989-03-01

    plane, see figure 14. The length of the defected crack component and its angle, b and q, respectively, in Figure 15 were found to depend on the crack...length at which the defection occurs; as the crack length increases, b increases while q decreases. Due to the orientation of the deflected component...Breakpoint Voltage to Fun. Generator Output Setpoint Voltage Take Function Generator Gate High Start Test LNext page 153 Q! ~From last ag lastr DMAe 70

  9. Fatigue crack growth in 7475-T651 aluminum alloy plate in hard vacuum and water vapor. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Dicus, D. L.

    1981-01-01

    Compact specimens of 25 mm thick aluminum alloy plate were subjected to constant amplitude fatigue testing at a load ratio of 0.2. Crack growth rates were determined at frequencies of 1 Hz and 10 Hz in hard vacuum and laboratory air, and in mixtures of water vapor and nitrogen at water vapor partial pressures ranging from 94 Pa to 3.8 kPa. A significant effect of water vapor on fatigue crack growth rates was observed at the lowest water vapor pressure tested. Crack rates changed little for pressures up to 1.03 kPa, but abruptly accelerated at higher pressures. At low stress intensity factor ranges, cracking rates at the lowest and highest water vapor pressure tested were, respectively, two and five times higher than rates in vacuum. Although a frequency was observed in laboratory air, cracking rates in water vapor and vacuum are insensitive to a ten-fold change in frequency. Surfaces of specimens tested in water vapor and vacuum exhibited different amounts of residual deformation. Reduced deformation on the fracture surfaces of the specimens tested in water vapor suggests embrittlement of the plastic zone ahead of the crack tip as a result of environmental interaction.

  10. High-temperature, high-frequency fretting fatigue of a single crystal nickel alloy

    NASA Astrophysics Data System (ADS)

    Matlik, John Frederick

    Fretting is a structural damage mechanism arising from a combination of wear, corrosion, and fatigue between two nominally clamped surfaces subjected to an oscillatory loading. A critical location for fretting induced damage has been identified at the blade/disk and blade/damper interfaces of gas turbine engine turbomachinery and space propulsion components. The high-temperature, high-frequency loading environment seen by these components lead to severe stress gradients at the edge-of-contact that could potentially foster crack growth leading to component failure. These contact stresses drive crack nucleation in fretting and are very sensitive to the geometry of the contacting bodies, the contact loads, materials, temperature, and contact surface tribology (friction). To diagnose the threat that small and relatively undetectable fretting fatigue cracks pose to damage tolerance and the ensuing structural integrity of aerospace components, a strong motivation exists to develop a quantitative mechanics based understanding of fretting crack nucleation in advanced aerospace alloys. In response to this need, the objective of this work is to characterize the fretting behavior exhibited by a polycrystalline/single crystal nickel contact subjected to elevated frequency and temperature. The effort to meet this objective is two fold: (1) to develop a well-characterized experimental fretting rig to investigate fretting behavior of advanced aerospace alloys at high frequency and high temperature, and (2) to develop the associated contact modeling tools for calculating contact stresses given in-situ experimentally measured remote contact loads. By coupling the experimental results and stress analysis, this effort aims to correlate the fretting crack nucleation behavior with the local contact stresses calculated from the devised three dimensional, anisotropic, dissimilar material contact model. The experimental effort is first motivated by a survey of recent fretting issues and investigations of aerospace components. A detailed description of the high-frequency, high-temperature fretting rig to be used in this investigation follows. Finally, development of a numerical submodeling technique for calculating the experimental contact traction and near-surface stresses is presented and correlated to the experimental fretting crack nucleation observations.

  11. Corrosion and Corrosion-Fatigue Behavior of 7075 Aluminum Alloys Studied by In Situ X-Ray Tomography

    NASA Astrophysics Data System (ADS)

    Stannard, Tyler

    7XXX Aluminum alloys have high strength to weight ratio and low cost. They are used in many critical structural applications including automotive and aerospace components. These applications frequently subject the alloys to static and cyclic loading in service. Additionally, the alloys are often subjected to aggressive corrosive environments such as saltwater spray. These chemical and mechanical exposures have been known to cause premature failure in critical applications. Hence, the microstructural behavior of the alloys under combined chemical attack and mechanical loading must be characterized further. Most studies to date have analyzed the microstructure of the 7XXX alloys using two dimensional (2D) techniques. While 2D studies yield valuable insights about the properties of the alloys, they do not provide sufficiently accurate results because the microstructure is three dimensional and hence its response to external stimuli is also three dimensional (3D). Relevant features of the alloys include the grains, subgrains, intermetallic inclusion particles, and intermetallic precipitate particles. The effects of microstructural features on corrosion pitting and corrosion fatigue of aluminum alloys has primarily been studied using 2D techniques such as scanning electron microscopy (SEM) surface analysis along with post-mortem SEM fracture surface analysis to estimate the corrosion pit size and fatigue crack initiation site. These studies often limited the corrosion-fatigue testing to samples in air or specialized solutions, because samples tested in NaCl solution typically have fracture surfaces covered in corrosion product. Recent technological advancements allow observation of the microstructure, corrosion and crack behavior of aluminum alloys in solution in three dimensions over time (4D). In situ synchrotron X-Ray microtomography was used to analyze the corrosion and cracking behavior of the alloy in four dimensions to elucidate crack initiation at corrosion pits for samples of multiple aging conditions and impurity concentrations. Additionally, chemical reactions between the 3.5 wt% NaCl solution and the crack surfaces were quantified by observing the evolution of hydrogen bubbles from the crack. The effects of the impurity particles and age-hardening particles on the corrosion and fatigue properties were examined in 4D.

  12. Three-dimensional finite element analyses of the local mechanical behavior of riveted lap joints

    NASA Astrophysics Data System (ADS)

    Iyer, Kaushik Arjunan

    Three-dimensional elastic-plastic finite element models of single and double rivet-row lap joints have been developed to evaluate local distortions and the mechanics of airframe-type 7075-T6 aluminum alloy riveted assemblies. Loading induced distortion features such as the excess assembly compliance, rivet tilt, local in- and out-of-plane slips and stress concentration factors are evaluated as functions of rivet countersinking, rivet material and friction coefficient. Computed features are examined to identify alterations in the proportions of in-plane and out-of-plane load transmission across rivet-panel interfaces and isolate global and lower-order effects present in the complex response of these multi-body assemblies. Analytical procedures are validated by comparing calculated and measured values of excess assembly compliance and local panel bending. Direct out-of-plane load transmission between the rivet heads and panels affects global deformation features such as remote panel bending and local features such as the panel stress concentration factor. The increase in stress concentration due to panel bending is self-limiting owing to decreasing in-plane load bearing with increasing rivet tilt, which is a composite reflection of the basic rivet deformation modes of shear and rotation. Calculations have also been performed to define approximate steady-state fretting fatigue conditions that lead to crack initiation at a panel hole surface in single and double rivet-row assemblies for countersunk and non-countersunk rivets. These account for and isolate effects of interference and clamping forces on fatigue performance by comparing computed circumferential variations of bulk residual stresses, cyclic stress range and mean stress. With interference, a non-countersunk assembly is shown to be as prone to crack initiation as a countersunk assembly. Frictional work due to fretting is evaluated and the physical location of fretting fatigue crack initiation is predicted by interpreting combined effects of primary fretting fatigue parameters such as contact pressure and slip amplitude. Angular shifts in the peaks of conventional fatigue and fretting fatigue parameters caused by interference may be exploited to optimize the residual life of aging airframes.

  13. Environmentally assisted cracking in light water reactors. Semiannual report, July 1998-December 1998.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, O. K.; Chung, H. M.; Gruber, E. E.

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors from July 1998 to December 1998. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of primary pressure boundary materials, (b) irradiation-assisted stress corrosion cracking of austenitic stainless steels (SSs), and (c) EAC of Alloys 600 and 690. Fatigue tests have been conducted to determine the crack initiation and crack growth characteristics of austenitic SSs in LWR environments. Procedures are presented for incorporating the effects of reactor coolant environments on the fatigue life of pressure vesselmore » and piping steels. Slow-strain-rate tensile tests and posttest fractographic analyses were conducted on several model SS alloys irradiated to {approx}0.3 and 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) in helium at 289 C in the Halden reactor. The results have been used to determine the influence of alloying and impurity elements on the susceptibility of these steels to irradiation-assisted stress corrosion cracking. Fracture toughness J-R curve tests were also conducted on two heats of Type 304 SS that were irradiated to {approx}0.3 x 10{sup 21} n {center_dot} cm{sup -2} in the Halden reactor. Crack-growth-rate tests have been conducted on compact-tension specimens of Alloys 600 and 690 under constant load to evaluate the resistance of these alloys to stress corrosion cracking in LWR environments.« less

  14. Multiple Fatigue Failure Behaviors and Long-Life Prediction Approach of Carburized Cr-Ni Steel with Variable Stress Ratio

    PubMed Central

    Deng, Hailong; Li, Wei; Zhao, Hongqiao; Sakai, Tatsuo

    2017-01-01

    Axial loading tests with stress ratios R of −1, 0 and 0.3 were performed to examine the fatigue failure behavior of a carburized Cr-Ni steel in the long-life regime from 104 to 108 cycles. Results show that this steel represents continuously descending S-N characteristics with interior inclusion-induced failure under R = −1, whereas it shows duplex S-N characteristics with surface defect-induced failure and interior inclusion-induced failure under R = 0 and 0.3. The increasing tension eliminates the effect of compressive residual stress and promotes crack initiation from the surface or interior defects in the carburized layer. The FGA (fine granular area) formation greatly depends on the number of loading cycles, but can be inhibited by decreasing the compressive stress. Based on the evaluation of the stress intensity factor at the crack tip, the surface and interior failures in the short life regime can be characterized by the crack growth process, while the interior failure with the FGA in the long life regime can be characterized by the crack initiation process. In view of the good agreement between predicted and experimental results, the proposed approach can be well utilized to predict fatigue lives associated with interior inclusion-FGA-fisheye induced failure, interior inclusion-fisheye induced failure, and surface defect induced failure. PMID:28906454

  15. US/Australia Collaborative Research Project on Corrosion Fatigue in D6AC Steel Joints

    DTIC Science & Technology

    1978-12-01

    Life of Exposure Groups at 80,000 psi Max Load Level (R=0.1) 77 10 Location of Observable Fatigue Cracks on Failed D6AC Steel Specimen Surfaces 78 11...ing the machining and assembly process. Such liquids might have a serious deleterious effect on the fatigue life of the aircraft. Further, there was...control tests were to provide a base for determining the various corrosion effects on fatigue life , and to deter- mine any differences in laboratory

  16. Fatigue Behavior under Multiaxial Stress States Including Notch Effects and Variable Amplitude Loading

    NASA Astrophysics Data System (ADS)

    Gates, Nicholas R.

    The central objective of the research performed in this study was to be able to better understand and predict fatigue crack initiation and growth from stress concentrations subjected to complex service loading histories. As such, major areas of focus were related to the understanding and modeling of material deformation behavior, fatigue damage quantification, notch effects, cycle counting, damage accumulation, and crack growth behavior under multiaxial nominal loading conditions. To support the analytical work, a wide variety of deformation and fatigue tests were also performed using tubular and plate specimens made from 2024-T3 aluminum alloy, with and without the inclusion of a circular through-thickness hole. However, the analysis procedures implemented were meant to be general in nature, and applicable to a wide variety of materials and component geometries. As a result, experimental data from literature were also used, when appropriate, to supplement the findings of various analyses. Popular approaches currently used for multiaxial fatigue life analysis are based on the idea of computing an equivalent stress/strain quantity through the extension of static yield criteria. This equivalent stress/strain is then considered to be equal, in terms of fatigue damage, to a uniaxial loading of the same magnitude. However, it has often been shown, and was shown again in this study, that although equivalent stress- and strain-based analysis approaches may work well in certain situations, they lack a general robustness and offer little room for improvement. More advanced analysis techniques, on the other hand, provide an opportunity to more accurately account for various aspects of the fatigue failure process under both constant and variable amplitude loading conditions. As a result, such techniques were of primary interest in the investigations performed. By implementing more advanced life prediction methodologies, both the overall accuracy and the correlation of fatigue life predictions were found to improve for all loading conditions considered in this study. The quantification of multiaxial fatigue damage was identified as being a key area of improvement, where the shear-based Fatemi-Socie (FS) critical plane damage parameter was shown to correlate all fully-reversed constant amplitude fatigue data relatively well. Additionally, a proposed modification to the FS parameter was found to result in improved life predictions in the presence of high tensile mean stress and for different ratios of nominal shear to axial stress. For notched specimens, improvements were also gained through the use of more robust notch deformation and stress gradient models. Theory of Critical Distances (TCD) approaches, together with pseudo stress-based plasticity modeling techniques for local stress-strain estimation, resulted in better correlation of multiaxial fatigue data when compared to traditional approaches such as Neuber's rule with fatigue notch factor. Since damage parameters containing both stress and strain terms, such as the FS parameter, are able to reflect changes in fatigue damage due to transient material hardening behavior, this issue was also investigated with respect to its impact on variable amplitude life predictions. In order to ensure that material deformation behavior was properly accounted for, stress-strain predictions based on an Armstrong-Frederick-Chaboche style cyclic plasticity model were first compared to results from deformation tests performed under a variety of complex multiaxial loading conditions. The model was simplified based on the assumption of Masing material behavior, and a new transient hardening formulation was proposed so that all modeling parameters could be determined from a relatively limited amount of experimental data. Overall, model predictions were found to agree fairly well with experimental results for all loading histories considered. Finally, in order to evaluate life prediction procedures under realistic loading conditions, variable amplitude fatigue tests were performed using axial, torsion, and combined axial-torsion loading histories derived from recorded flight test data on the lower wing skin area of a military patrol aircraft (tension-dominated). While negligible improvements in life predictions were obtained through the consideration of transient material deformation behavior for these histories, crack initiation definition was found to have a slightly larger impact on prediction accuracy. As a result, when performing analyses using the modified FS damage parameter, transient stress-strain response, and a 0.2 mm crack initiation definition, nearly all variable amplitude fatigue lives, for un-notched and notched specimens, were predicted within a factor of 3 of experimental results. However, variable amplitude life predictions were still more non-conservative than those observed for constant amplitude loading conditions.

  17. The Effect of Weld Reinforcement and Post-Welding Cooling Cycles on Fatigue Strength of Butt-Welded Joints under Cyclic Tensile Loading.

    PubMed

    Araque, Oscar; Arzola, Nelson; Hernández, Edgar

    2018-04-12

    This research deals with the fatigue behavior of butt-welded joints, by considering the geometry and post-welding cooling cycles, as a result of cooling in quiet air and immersed in water. ASTM A-36 HR structural steel was used as the base metal for the shielded metal arc welding (SMAW) process with welding electrode E6013. The welding reinforcement was 1 mm and 3 mm, respectively; axial fatigue tests were carried out to determine the life and behavior in cracks propagation of the tested welded joints, mechanical characterization tests of properties in welded joints such as microhardness, Charpy impact test and metallographic analysis were carried out. The latter were used as input for the analysis by finite elements which influence the initiation and propagation of cracks and the evaluation of stress intensity factors (SIF). The latter led to obtaining the crack propagation rate and the geometric factor. The tested specimens were analyzed, by taking photographs of the cracks at its beginning in order to make a count of the marks at the origin of the crack. From the results obtained and the marks count, the fatigue crack growth rate and the influence of the cooling media on the life of the welded joint are validated, according to the experimental results. It can be concluded that the welded joints with a higher weld reinforcement have a shorter fatigue life. This is due to the stress concentration that occurs in the vicinity of the weld toe.

  18. The Effect of Weld Reinforcement and Post-Welding Cooling Cycles on Fatigue Strength of Butt-Welded Joints under Cyclic Tensile Loading

    PubMed Central

    Arzola, Nelson; Hernández, Edgar

    2018-01-01

    This research deals with the fatigue behavior of butt-welded joints, by considering the geometry and post-welding cooling cycles, as a result of cooling in quiet air and immersed in water. ASTM A-36 HR structural steel was used as the base metal for the shielded metal arc welding (SMAW) process with welding electrode E6013. The welding reinforcement was 1 mm and 3 mm, respectively; axial fatigue tests were carried out to determine the life and behavior in cracks propagation of the tested welded joints, mechanical characterization tests of properties in welded joints such as microhardness, Charpy impact test and metallographic analysis were carried out. The latter were used as input for the analysis by finite elements which influence the initiation and propagation of cracks and the evaluation of stress intensity factors (SIF). The latter led to obtaining the crack propagation rate and the geometric factor. The tested specimens were analyzed, by taking photographs of the cracks at its beginning in order to make a count of the marks at the origin of the crack. From the results obtained and the marks count, the fatigue crack growth rate and the influence of the cooling media on the life of the welded joint are validated, according to the experimental results. It can be concluded that the welded joints with a higher weld reinforcement have a shorter fatigue life. This is due to the stress concentration that occurs in the vicinity of the weld toe. PMID:29649117

  19. Interior Fracture Mechanism Analysis and Fatigue Life Prediction of Surface-Hardened Gear Steel under Axial Loading.

    PubMed

    Li, Wei; Deng, Hailong; Liu, Pengfei

    2016-10-18

    The interior defect-induced fracture of surface-hardened metallic materials in the long life region has become a key issue on engineering design. In the present study, the axial loading test with fully reversed condition was performed to examine the fatigue property of a surface-carburized low alloy gear steel in the long life region. Results show that this steel represents the duplex S-N (stress-number of cycles) characteristics without conventional fatigue limit related to 10⁷ cycles. Fatigue cracks are all originated from the interior inclusions in the matrix region due to the inhabitation effect of carburized layer. The inclusion induced fracture with fisheye occurs in the short life region below 5 × 10⁵ cycles, whereas the inclusion induced fracture with fine granular area (FGA) and fisheye occurs in the long life region beyond 10⁶ cycles. The stress intensity factor range at the front of FGA can be regarded as the threshold value controlling stable growth of interior long crack. The evaluated maximum inclusion size in the effective damage volume of specimen is about 27.29 μm. Considering the size relationships between fisheye and FGA, and inclusion, the developed life prediction method involving crack growth can be acceptable on the basis of the good agreement between the predicted and experimental results.

  20. Acoustic emission during fatigue of porous-coated Ti-6Al-4V implant alloy.

    PubMed

    Kohn, D H; Ducheyne, P; Awerbuch, J

    1992-01-01

    Acoustic emission (AE) events and event intensities (e.g., event amplitude, counts, duration, and energy counts) were recorded and analyzed during fatigue loading of uncoated and porous-coated Ti-6Al-4V. AE source location, spatial filtering, event, and event intensity distributions were used to detect, monitor, analyze, and predict failures. AE provides the ability to spatially and temporally locate multiple fatigue cracks, in real time. Fatigue of porous-coated Ti-6Al-4V is governed by a sequential, multimode fracture process of: transverse fracture in the porous coating; sphere/sphere and sphere/substrate debonding; substrate fatigue crack initiation; slow and rapid substrate fatigue crack propagation. Because of the porosity of the coating, the different stages of fracture within the coating occur in a discontinuous fashion. Therefore, the AE events generated are intermittent and the onset of each mode of fracture in the porous coating can be detected by increases in AE event rate. Changes in AE event rate also correspond to changes in crack extension rate, and may therefore be used to predict failure. AE offers two distinct advantages over conventional optical and microscopic methods of analyzing fatigue cracks--it is more sensitive and it can determine the time history of damage progression. The magnitude of the AE event intensities increased with increasing stress. Failure mechanisms are best differentiated by analyzing AE event amplitudes. Intergranular fracture and microvoid coalescence generated the highest AE event amplitudes (100 dB), whereas, plastic flow and friction generated the lowest AE event amplitudes (55-65 dB). Fractures in the porous coating were characterized by AE event amplitudes of less than 80 dB.

Top