Sample records for loading pattern design

  1. Walking in simulated Martian gravity: influence of the portable life support system's design on dynamic stability.

    PubMed

    Scott-Pandorf, Melissa M; O'Connor, Daniel P; Layne, Charles S; Josić, Kresimir; Kurz, Max J

    2009-09-01

    With human exploration of the moon and Mars on the horizon, research considerations for space suit redesign have surfaced. The portable life support system (PLSS) used in conjunction with the space suit during the Apollo missions may have influenced the dynamic balance of the gait pattern. This investigation explored potential issues with the PLSS design that may arise during the Mars exploration. A better understanding of how the location of the PLSS load influences the dynamic stability of the gait pattern may provide insight, such that space missions may have more productive missions with a smaller risk of injury and damaging equipment while falling. We explored the influence the PLSS load position had on the dynamic stability of the walking pattern. While walking, participants wore a device built to simulate possible PLSS load configurations. Floquet and Lyapunov analysis techniques were used to quantify the dynamic stability of the gait pattern. The dynamic stability of the gait pattern was influenced by the position of load. PLSS loads that are placed high and forward on the torso resulted in less dynamically stable walking patterns than loads placed evenly and low on the torso. Furthermore, the kinematic results demonstrated that all joints of the lower extremity may be important for adjusting to different load placements and maintaining dynamic stability. Space scientists and engineers may want to consider PLSS designs that distribute loads evenly and low, and space suit designs that will not limit the sagittal plane range of motion at the lower extremity joints.

  2. PIV measurements in a compact return diffuser under multi-conditions

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Lu, W. G.; Shi, W. D.

    2013-12-01

    Due to the complex three-dimensional geometries of impellers and diffusers, their design is a delicate and difficult task. Slight change could lead to significant changes in hydraulic performance and internal flow structure. Conversely, the grasp of the pump's internal flow pattern could benefit from pump design improvement. The internal flow fields in a compact return diffuser have been investigated experimentally under multi-conditions. A special Particle Image Velocimetry (PIV) test rig is designed, and the two-dimensional PIV measurements are successfully conducted in the diffuser mid-plane to capture the complex flow patterns. The analysis of the obtained results has been focused on the flow structure in diffuser, especially under part-load conditions. The vortex and recirculation flow patterns in diffuser are captured and analysed accordingly. Strong flow separation and back flow appeared at the part-load flow rates. Under the design and over-load conditions, the flow fields in diffuser are uniform, and the flow separation and back flow appear at the part-load flow rates, strong back flow is captured at one diffuser passage under 0.2Qdes.

  3. Tailored magnetoelastic sensor geometry for advanced functionality in wireless biliary stent monitoring systems

    NASA Astrophysics Data System (ADS)

    Green, Scott R.; Gianchandani, Yogesh B.

    2010-07-01

    This paper presents three types of wireless magnetoelastic resonant sensors with specific functionalities for monitoring sludge accumulation within biliary stents. The first design uses a geometry with a repeated cell shape that provides two well-separated resonant mode shapes and associated frequencies to permit spatial localization of mass loading. The second design implements a pattern with specific variation in feature densities to improve sensitivity to mass loading. The third design uses narrow ribbons joined by flexible couplers; this design adopts the advantages in flexibility and expandability of the other designs while maintaining the robust longitudinal mode shapes of a ribbon-shaped sensor. The sensors are batch patterned using photochemical machining from 25 µm thick 2605SA1 Metglas™, an amorphous Fe-Si alloy. Accumulation of biliary sludge is simulated with paraffin or gelatin, and the effects of viscous bile are simulated with a range of silicone fluids. Results from the first design show that the location of mass loads can be resolved within ~5 mm along the length of the sensor. The second design offers twice the sensitivity to mass loads (3000-36 000 ppm mg-1) of other designs. The third design provides a wide range of loading (sensitive to at least 10× the mass of the sensor) and survives compression into a 2 mm diameter tube as would be required for catheter-based delivery.

  4. Load estimation from photoelastic fringe patterns under combined normal and shear forces

    NASA Astrophysics Data System (ADS)

    Dubey, V. N.; Grewal, G. S.

    2009-08-01

    Recently there has been some spurt of interests to use photoelastic materials for sensing applications. This has been successfully applied for designing a number of signal-based sensors, however, there have been limited efforts to design image-based sensors on photoelasticity which can have wider applications in term of actual loading and visualisation. The main difficulty in achieving this is the infinite loading conditions that may generate same image on the material surface. This, however, can be useful for known loading situations as this can provide dynamic and actual conditions of loading in real time. This is particularly useful for separating components of forces in and out of the loading plane. One such application is the separation of normal and shear forces acting on the plantar surface of foot of diabetic patients for predicting ulceration. In our earlier work we have used neural networks to extract normal force information from the fringe patterns using image intensity. This paper considers geometric and various other statistical parameters in addition to the image intensity to extract normal as well as shear force information from the fringe pattern in a controlled experimental environment. The results of neural network output with the above parameters and their combinations are compared and discussed. The aim is to generalise the technique for a range of loading conditions that can be exploited for whole-field load visualisation and sensing applications in biomedical field.

  5. Environmental Effects on Long Term Displacement Data of Woven Fabric Webbings Under Constant Load for Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Kenner, WInfred S.; Jones, Thomas C.; Doggett, William R.; Duncan, Quinton; Plant, James

    2015-01-01

    An experimental study of the effects of environmental temperature and humidity conditions on long-term creep displacement data of high strength Kevlar and VectranTM woven fabric webbings under constant load for inflatable structures is presented. The restraint layer of an inflatable structure for long-duration space exploration missions is designed to bear load and consists of an assembly of high strength webbings. Long-term creep displacement data of webbings can be utilized by designers to validate service life parameters of restraint layers of inflatable structures. Five groups of high-strength webbings were researched over a two year period. Each group had a unique webbing length, load rating, applied load, and test period. The five groups consisted of 1.) 6K Vectran webbings loaded to 49% ultimate tensile strength (UTS), 2.) 6K Vectran webbings loaded to 55% UTS, 3.) 12.5K Vectran webbings loaded to 22% UTS, 4.) 6K Kevlar webbings loaded to 40% and 43% UTS, and 5.) 6K Kevlar webbings loaded to 48% UTS. Results show that all webbing groups exhibit the initial two stages of three of a typical creep curve of an elastic material. Results also show that webbings exhibit unique local wave patterns over the duration of the test period. Data indicate that the local pattern is primarily generated by daily variations in relative humidity values within the test facility. Data indicate that after a three to six month period, where webbings reach a steady-state creep condition, an annual sinusoidal displacement pattern is exhibited, primarily due to variations in annual mean temperature values. Data indicates that variations in daily temperature values and annual mean humidity values have limited secondary effects on creep displacement behavior. Results show that webbings in groups 2 and 5 do not exhibit well defined annual displacement patterns because the magnitude of the applied loads cause large deformations, and data indicate that material yielding within a webbing tends to neutralize the annual sinusoidal displacement pattern. Study indicates that applied load, environmental effects, mechanical strength, coefficient of thermal expansion, and hygroscopic properties of webbings are fundamental requirements for quantifying accurate creep displacements and behaviors over multiple year time periods. Results from a study of the environmental effects on long-term creep displacement data of Kevlar and Vectran woven webbings are presented to increase the knowledge base of webbing materials and to enhance designs of inflatable space structures for long-duration space missions.

  6. Improving the detectability and imaging capability of ground penetrating radar using novel antenna concepts

    NASA Astrophysics Data System (ADS)

    Koyadan Koroth, Ajith; Bhattacharya, Amitabha

    2017-04-01

    Antennas are key components of Ground Penetrating Radar (GPR) instrumentation. A carefully designed antenna can improve the detectability and imaging capability of a GPR to a great extent without changing the other instrumentations. In this work, we propose four different types of antennas for GPR. They are modifications of a conventional bowtie antenna with great improvement in performance parameters. The designed antennas has also been tested in a stepped frequency type GPR and two dimensional scan images of various targets are presented. Bowtie antennas have been traditionally employed in GPR for its wide impedance bandwidth and radiation properties. The researchers proposed resistive loading to improve the bandwidth of the bowtie antenna and for low ringing pulse radiation. But this method was detrimental for antenna gain and efficiency. Bowtie antennas have a very wide impedance bandwidth. But the useful bandwidth of the antenna has been limited by the radiation pattern bandwidth. The boresight gain of bowtie antennas are found to be unstable beyond a 4:1 bandwidth. In this work, these problems have been addressed and maximum usable bandwidth for the bowtie antennas has been achieved. In this work, four antennas have been designed: namely, 1.) RC loaded bowtie antennas, 2.) RC loaded bowtie with metamaterial lens, 3.) Loop loaded bowtie, 4.) Loop loaded bowtie with directors. The designed antennas were characterized for different parameters like impedance bandwidth, radiation pattern and, gain. In antenna 1, a combined resistive-capacitive loading has been applied by periodic slot cut on the arms of the bowtie and pasting a planar graphite sheet over it. Graphite having a less conductance compared to copper acts as resistive loading. This would minimize the losses compared to lumped resistive loading. The antenna had a 10:1 impedance bandwidth and, a 5:1 pattern bandwidth. In antenna 2, a metamaterial lens has been designed to augment the antenna 1, to improve the forward gain. This antenna had the same impedance bandwidth of 10:1 while pattern bandwidth has been raised to 7:1. In antenna 3, a loop loaded bowtie antenna has been designed. This antenna do not employ any kind of resistive loading, yet achieves an impedance bandwidth of 11:1 and also a usable bandwidth of 11:1. The antenna 4 employs concentric offset loops which acts as directors to improve the directivity. This antenna achieved an impedance bandwidth and a pattern bandwidth of 13:1. All the antennas have a maximum size of about 0.3λ at lowest operating frequency. An experimental stepped frequency type GPR has been constructed to study the suitability of the fabricated antennas in detecting buried targets. Four experiments have been conducted viz. 1.) To detect a metallic pipe of 1in diameter, 2.) To detect a metallic pipe of 2in diameter 3.) To detect dry bamboo, 3.) To detect rebar in concrete. The detectability and imaging capability of GPR has been found to be improving from antenna 1 to 4.

  7. A neural network approach for determining gait modifications to reduce the contact force in knee joint implant.

    PubMed

    Ardestani, Marzieh Mostafavizadeh; Chen, Zhenxian; Wang, Ling; Lian, Qin; Liu, Yaxiong; He, Jiankang; Li, Dichen; Jin, Zhongmin

    2014-10-01

    There is a growing interest in non-surgical gait rehabilitation treatments to reduce the loading in the knee joint. In particular, synergetic kinematic changes required for joint offloading should be determined individually for each subject. Previous studies for gait rehabilitation designs are typically relied on a "trial-and-error" approach, using multi-body dynamic (MBD) analysis. However MBD is fairly time demanding which prevents it to be used iteratively for each subject. This study employed an artificial neural network to develop a cost-effective computational framework for designing gait rehabilitation patterns. A feed forward artificial neural network (FFANN) was trained based on a number of experimental gait trials obtained from literature. The trained network was then hired to calculate the appropriate kinematic waveforms (output) needed to achieve desired knee joint loading patterns (input). An auxiliary neural network was also developed to update the ground reaction force and moment profiles with respect to the predicted kinematic waveforms. The feasibility and efficiency of the predicted kinematic patterns were then evaluated through MBD analysis. Results showed that FFANN-based predicted kinematics could effectively decrease the total knee joint reaction forces. Peak values of the resultant knee joint forces, with respect to the bodyweight (BW), were reduced by 20% BW and 25% BW in the midstance and the terminal stance phases. Impulse values of the knee joint loading patterns were also decreased by 17% BW*s and 24%BW*s in the corresponding phases. The FFANN-based framework suggested a cost-effective forward solution which directly calculated the kinematic variations needed to implement a given desired knee joint loading pattern. It is therefore expected that this approach provides potential advantages and further insights into knee rehabilitation designs. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. Three-dimensional analyses of ultrasonic scaler oscillations.

    PubMed

    Lea, Simon C; Felver, Bernhard; Landini, Gabriel; Walmsley, A Damien

    2009-01-01

    It is stated that the oscillation patterns of dental ultrasonic scalers are dependent upon whether the instrument is of a magnetostrictive or piezoelectric design. These patterns are then linked to differences in root surface debridement in vitro. Piezoelectric (A, P) and magnetostrictive (Slimline, TFI-3) ultrasonic scalers (three of each) were evaluated, loaded (100 g/200 g) and unloaded with a 3D laser vibrometer. Loads were applied to the probe tips via teeth mounted in a load-measuring device. Elliptical motion was demonstrated for all probes under loaded and unloaded conditions. Loading flattened the elliptical motion along the length of the probe. Unloaded, Slimline tip 1 was significantly different to tips 2 and 3 (p<0.0001). There were no differences between the A-tips (p>0.207). All TFI-3 tips were different to each other (p<0.0001). P-tips 1 and 2 were different to each other (p=0.046). Loaded, Slimline tips were different to each other (p<0.001). There were no differences between the P probes (p>0.867). Generator power increased all Slimline and P tip vibrations (p<0.0001). Probe oscillation patterns are independent of ultrasound production mechanism and are dependent upon probe shape and generator power. Loaded probes oscillated with an elliptical pattern.

  9. Modifiers: Increasing Richness and Nuance of Design Pattern Languages

    NASA Astrophysics Data System (ADS)

    Kolfschoten, Gwendolyn L.; Briggs, Robert O.; Lukosch, Stephan

    One of the challenges when establishing and maintaining a pattern language is to balance richness with simplicity. On the one hand, designers need a variety of useful design patterns to increase the speed of their design efforts and to reduce design risk. On the other hand, the greater the variety of design patterns in a language, the higher the cognitive load to remember and select among them. One solution to this problem is the concept of a modifier design pattern, a design pattern for pattern languages. A modifier pattern is a named, documented variation that can be applied to some set of other design patterns. They create similar, useful changes and refinements to the solutions derived from any pattern to which they are applied. The modifier concept, described in this paper emerged in a relatively new design pattern language for collaborative work practices in which the design patterns are called thinkLets. When analyzing the thinkLet pattern language, we found that many of the patterns we knew were variations and refinements of other patterns. However, we also found patterns in these variations; we found variations that could be applied to different patterns, with similar effects. We document these variations as modifiers. In this paper, we introduce the concept of modifier design patterns and illustrate the use of modifiers with two case studies.

  10. Computerized Modeling and Loaded Tooth Contact Analysis of Hypoid Gears Manufactured by Face Hobbing Process

    NASA Astrophysics Data System (ADS)

    Nishino, Takayuki

    The face hobbing process has been widely applied in automotive industry. But so far few analytical tools have been developed. This makes it difficult for us to optimize gear design. To settle this situation, this study aims at developing a computerized tool to predict the running performances such as loaded tooth contact pattern, static transmission error and so on. First, based upon kinematical analysis of a cutting machine, a mathematical description of tooth surface generation is given. Second, based upon the theory of gearing and differential geometry, conjugate tooth surfaces are studied. Then contact lines are generated. Third, load distribution along contact lines is formulated. Last, the numerical model is validated by measuring loaded transmission error and loaded tooth contact pattern.

  11. Principal locations of major-ion, trace-element, nitrate, and Escherichia coli loading to Emigration Creek, Salt Lake County, Utah, October 2005

    USGS Publications Warehouse

    Kimball, Briant A.; Runkel, Robert L.; Walton-Day, Katherine

    2008-01-01

    Housing development and recreational activity in Emigration Canyon have increased substantially since 1980, perhaps causing an observed decrease in water quality of this northern Utah stream located near Salt Lake City. To identify reaches of the stream that contribute to water-quality degradation, a tracer-injection and synoptic-sampling study was done to quantify mass loading of major ions, trace elements, nitrate, and Escherichia coli (E. coli) to the stream. The resulting mass-loading profiles for major ions and trace elements indicate both geologic and anthropogenic inputs to the stream, principally from tributary and spring inflows to the stream at Brigham Fork, Burr Fork, Wagner Spring, Emigration Tunnel Spring, Blacksmith Hollow, and Killyon Canyon. The pattern of nitrate loading does not correspond to the major-ion and trace-element loading patterns. Nitrate levels in the stream did not exceed water-quality standards at the time of synoptic sampling. The majority of nitrate mass loading can be considered related to anthropogenic input, based on the field settings and trends in stable isotope ratios of nitrogen. The pattern of E. coli loading does not correspond to the major-ion, trace-element, or nitrate loading patterns. The majority of E. coli loading was related to anthropogenic sources based on field setting, but a considerable part of the loading also comes from possible animal sources in Killyon Canyon, in Perkins Flat, and in Rotary Park. In this late summer sampling, E. coli concentrations only exceeded water-quality standards in limited sections of the study reach. The mass-loading approach used in this study provides a means to design future studies and to evaluate the loading on a catchment scale.

  12. Multi-band Monopole Antennas Loaded with Metamaterial TL

    NASA Astrophysics Data System (ADS)

    Song, Zhi-jie; Liang, Jian-gang

    2015-05-01

    A novel metamaterial transmission line (TL) by loading complementary single Archimedean spiral resonator pair (CSASRP) is investigated and used to design a set of multi-frequency monopole antennas. The particularity is that the CSASRP which features dual-shunt branches in the equivalent circuit model is directly etched in the signal strip. By smartly controlling the element parameters, three antennas are designed and one of them covering UMTS and Bluetooth bands is fabricated and measured. The antenna exhibits impedance matching better than -10 dB and normal monopolar radiation patterns at working bands of 1.9-2.22 and 2.38-2.5 GHz. Moreover, the loaded element also contributes to the radiation, which is the major advantage of this prescription over previous lumped-element loadings. The proposed antenna is also more compact over previous designs.

  13. 10 CFR 60.21 - Content of application.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... accordance with § 73.51 of this chapter. This plan must include the design for physical protection, the... might affect geologic repository operations area design and performance. The description of the site... geomechanical, hydrogeologic, and geochemical systems to the maximum design thermal loading, given the pattern...

  14. 10 CFR 60.21 - Content of application.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... accordance with § 73.51 of this chapter. This plan must include the design for physical protection, the... might affect geologic repository operations area design and performance. The description of the site... geomechanical, hydrogeologic, and geochemical systems to the maximum design thermal loading, given the pattern...

  15. 10 CFR 60.21 - Content of application.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... accordance with § 73.51 of this chapter. This plan must include the design for physical protection, the... might affect geologic repository operations area design and performance. The description of the site... geomechanical, hydrogeologic, and geochemical systems to the maximum design thermal loading, given the pattern...

  16. 10 CFR 60.21 - Content of application.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... accordance with § 73.51 of this chapter. This plan must include the design for physical protection, the... might affect geologic repository operations area design and performance. The description of the site... geomechanical, hydrogeologic, and geochemical systems to the maximum design thermal loading, given the pattern...

  17. 10 CFR 60.21 - Content of application.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... accordance with § 73.51 of this chapter. This plan must include the design for physical protection, the... might affect geologic repository operations area design and performance. The description of the site... geomechanical, hydrogeologic, and geochemical systems to the maximum design thermal loading, given the pattern...

  18. Comparison of three-dimensional orthodontic load systems of different commercial archwires for space closure.

    PubMed

    Gajda, Steven; Chen, Jie

    2012-03-01

    To experimentally quantify the effects of the loop design on three-dimensional orthodontic load systems of two types of commercial closing loop archwires: Teardrop and Keyhole. An orthodontic force tester and custom-made dentoform were used to measure the load systems produced on two teeth during simulated space closure. The system included three force components along and three moment components about three clinically defined axes on two target teeth: the left maxillary canine and the lateral incisor. The archwires were attached to the dentoform and were activated following a standard clinical procedure. The resulting six load components produced by the two archwires were reported and compared. The results were also compared with those of the T-loop archwire published previously. The three designs deliver similar loading patterns; however, the component magnitudes are dependent on the design. All of the designs result in lingual tipping of the teeth, canine lingual-mesial displacement, canine crown-mesial-in rotation, and incisor crown-distal-in rotation.

  19. Seasonal sediment and nutrients transport patterns

    USDA-ARS?s Scientific Manuscript database

    It is essential to understand sediment and nutrient sources and their spatial and temporal patterns in order to design effective mitigation strategies. However, long-term data sets to determine sediment and nutrient loadings are scarce and expensive to collect. The goal of this study was to determin...

  20. Applications of MICP source for next-generation photomask process

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk-Joo; Chang, Byung-Soo; Choi, Boo-Yeon; Park, Kyung H.; Jeong, Soo-Hong

    2000-07-01

    As critical dimensions of photomask extends into submicron range, critical dimension uniformity, edge roughness, macro loading effect, and pattern slope become tighter than before. Fabrication of photomask relies on the ability to pattern features with anisotropic profile. To improve critical dimension uniformity, dry etcher is one of the solution and inductively coupled plasma (ICP) sources have become one of promising high density plasma sources for dry etcher. In this paper, we have utilized dry etcher system with multi-pole ICP source for Cr etch and MoSi etch and have investigated critical dimension uniformity, slope, and defects. We will present dry etch process data by process optimization of newly designed dry etcher system. The designed pattern area is 132 by 132 mm2 with 23 by 23 matrix test patterns. 3 (sigma) of critical dimension uniformity is below 12 nm at 0.8 - 3.0 micrometers . In most cases, we can obtain zero defect masks which is operated by face- down loading.

  1. Laterally Loaded Partially Prestressed Concrete Piles

    DTIC Science & Technology

    1989-09-01

    of an extensive test program onl laterali y ioadeu. partially pr- estressed concrete fender piles. The study Included service load range as well ats...12,000-psi design strength). Configura- tion G utilized 14 r:- estress strand, in an unsymmetric pattern. To provide a uniform concrete prestress of 540...sudden loss in load carrying capacity directly related to the loss of concrete area. The compression concrete fractured longitudinally and along the

  2. Effect of cyclic and static tensile loading on water content and solute diffusion in canine flexor tendons: an in vitro study.

    PubMed

    Hannafin, J A; Arnoczky, S P

    1994-05-01

    This study was designed to determine the effects of various loading conditions (no load and static and cyclic tensile load) on the water content and pattern of nutrient diffusion of canine flexor tendons in vitro. Region D (designated by Okuda et al.) of the flexor digitorum profundus was subjected to a cyclic or static tensile load of 100 g for times ranging from 5 minutes to 24 hours. The results demonstrated a statistically significant loss of water in tendons subjected to both types of load as compared with the controls (no load). This loss appeared to progress with time. However, neither static nor cyclic loading appeared to alter the diffusion of 3H-glucose into the tendon over a 24-hour period compared with the controls. These results suggest that any benefit in tendon repair derived from intermittent passive motion is probably not a result of an increase in the diffusion of small nutrients in response to intermittent tensile load.

  3. Evaluation of load carriage systems used by active duty police officers: Relative effects on walking patterns and perceived comfort.

    PubMed

    Ramstrand, Nerrolyn; Zügner, Roland; Larsen, Louise Bæk; Tranberg, Roy

    2016-03-01

    This study aimed to examine the effects of two different load carriage systems on gait kinematics, temporospatial gait parameters and self-reported comfort in Swedish police. 21 active duty police officers were recruited for this crossover study design. Biomechanical and self-report data was collected on two testing occasions. On occasion 1, three dimensional kinematic data was collected while police wore a/no equipment (control), b/their standard issues belt and ballistic protection vest and c/a load bearing vest with ballistic protection vest. Police then wore the load bearing vest for a minimum of 3 months before the second testing occasion. The load bearing vest was associated with a significant reduction in range of motion of the trunk, pelvis and hip joints. Biomechanical changes associated with the load bearing vest appeared to reduce with increased wear time. In both the standard issue belt condition and the load bearing vest condition, police walked with the arms held in a significantly greater degree of abduction. Self-report data indicated a preference for the load bearing vest. The two load carriage designs tested in this study were found to significantly alter gait kinematics. The load bearing vest design was associated with the greatest number of kinematic compensations however these reduced over time as police became more accustomed to the design. Results from this study do not support selection of one load carriage design over the other and providing individuals with the option to choose a load carriage design is considered appropriate. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  4. Compensation of long-range process effects on photomasks by design data correction

    NASA Astrophysics Data System (ADS)

    Schneider, Jens; Bloecker, Martin; Ballhorn, Gerd; Belic, Nikola; Eisenmann, Hans; Keogan, Danny

    2002-12-01

    CD requirements for advanced photomasks are getting very demanding for the 100 nm-node and below; the ITRS roadmap requires CD uniformities below 10 nm for the most critical layers. To reach this goal, statistical as well as systematic CD contributions must be minimized. Here, we focus on the reduction of systematic CD variations across the masks that may be caused by process effects, e.g. dry etch loading. We address this topic by compensating such effects via design data correction analogous to proximity correction. Dry etch loading is modeled by gaussian convolution of pattern densities. Data correction is done geometrically by edge shifting. As the effect amplitude has an order of magnitude of 10 nm this can only be done on e-beam writers with small address grids to reduce big CD steps in the design data. We present modeling and correction results for special mask patterns with very strong pattern density variations showing that the compensation method is able to reduce CD uniformity by 50-70% depending on pattern details. The data correction itself is done with a new module developed especially to compensate long-range effects and fits nicely into the common data flow environment.

  5. The Development of a Conical Composite Energy Absorber for Use in the Attenuation of Crash/Impact Loads

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2014-01-01

    A design for a novel light-weight conical shaped energy absorbing (EA) composite subfloor structure is proposed. This composite EA is fabricated using repeated alternating patterns of a conical geometry to form long beam structures which can be implemented as aircraft subfloor keel beams or frame sections. The geometrical features of this conical design, along with the hybrid composite materials used in the manufacturing process give a strength tailored to achieve a constant 25-40 g sustained crush load, small peak crush loads and long stroke limits. This report will discuss the geometrical design and fabrication methods, along with results from static and dynamic crush testing of 12-in. long subcomponents.

  6. Comparison of three-dimensional orthodontic load systems of different commercial archwires for space closure

    PubMed Central

    Gajda, Steven; Chen, Jie

    2014-01-01

    Objective To experimentally quantify the effects of the loop design on three-dimensional orthodontic load systems of two types of commercial closing loop archwires: Teardrop and Keyhole. Materials and Methods An orthodontic force tester and custom-made dentoform were used to measure the load systems produced on two teeth during simulated space closure. The system included three force components along and three moment components about three clinically defined axes on two target teeth: the left maxillary canine and the lateral incisor. The archwires were attached to the dentoform and were activated following a standard clinical procedure. Results The resulting six load components produced by the two archwires were reported and compared. The results were also compared with those of the T-loop archwire published previously. Conclusions The three designs deliver similar loading patterns; however, the component magnitudes are dependent on the design. All of the designs result in lingual tipping of the teeth, canine lingual-mesial displacement, canine crown-mesial-in rotation, and incisor crown-distal-in rotation. PMID:21879793

  7. Kinetics of transfemoral amputees with osseointegrated fixation performing common activities of daily living.

    PubMed

    Lee, Winson C C; Frossard, Laurent A; Hagberg, Kerstin; Haggstrom, Eva; Brånemark, Rickard; Evans, John H; Pearcy, Mark J

    2007-07-01

    Direct anchorage of a lower-limb prosthesis to the bone through an implanted fixation (osseointegration) has been suggested as an excellent alternative for amputees experiencing complications from use of a conventional socket-type prosthesis. However, an attempt needs to be made to optimize the mechanical design of the fixation and refine the rehabilitation program. Understanding the load applied on the fixation is a crucial step towards this goal. The load applied on the osseointegrated fixation of nine transfemoral amputees was measured using a load transducer, when the amputees performed activities which included straight-line level walking, ascending and descending stairs and a ramp as well as walking around a circle. Force and moment patterns along each gait cycle, magnitudes and time of occurrence of the local extrema of the load, as well as impulses were analysed. Managing a ramp and stairs, and walking around a circle did not produce a significant increase (P>0.05) in load compared to straight-line level walking. The patterns of the moment about the medio-lateral axis were different among the six activities which may reflect the different strategies used in controlling the prosthetic knee joint. This study increases the understanding of biomechanics of bone-anchored osseointegrated prostheses. The loading data provided will be useful in designing the osseointegrated fixation to increase the fatigue life and to refine the rehabilitation protocol.

  8. Nonlinear Buckling Analysis of Functionally Graded Graphene Reinforced Composite Shallow Arches with Elastic Rotational Constraints under Uniform Radial Load.

    PubMed

    Huang, Yonghui; Yang, Zhicheng; Liu, Airong; Fu, Jiyang

    2018-05-28

    The buckling behavior of functionally graded graphene platelet-reinforced composite (FG-GPLRC) shallow arches with elastic rotational constraints under uniform radial load is investigated in this paper. The nonlinear equilibrium equation of the FG-GPLRC shallow arch with elastic rotational constraints under uniform radial load is established using the Halpin-Tsai micromechanics model and the principle of virtual work, from which the critical buckling load of FG-GPLRC shallow arches with elastic rotational constraints can be obtained. This paper gives special attention to the effect of the GPL distribution pattern, weight fraction, geometric parameters, and the constraint stiffness on the buckling load. The numerical results show that all of the FG-GPLRC shallow arches with elastic rotational constraints have a higher buckling load-carrying capacity compared to the pure epoxy arch, and arches of the distribution pattern X have the highest buckling load among four distribution patterns. When the GPL weight fraction is constant, the thinner and larger GPL can provide the better reinforcing effect to the FG-GPLRC shallow arch. However, when the value of the aspect ratio is greater than 4, the flakiness ratio is greater than 103, and the effect of GPL's dimensions on the buckling load of the FG-GPLRC shallow arch is less significant. In addition, the buckling model of FG-GPLRC shallow arch with elastic rotational constraints is changed as the GPL distribution patterns or the constraint stiffness changes. It is expected that the method and the results that are presented in this paper will be useful as a reference for the stability design of this type of arch in the future.

  9. Demographic, socioeconomic and nutritional determinants of daily versus non-daily sugar-sweetened and artificially sweetened beverage consumption.

    PubMed

    Mullie, P; Aerenhouts, D; Clarys, P

    2012-02-01

    The aim of this study was to determine the impact of demographic, socioeconomic and nutritional determinants on daily versus non-daily sugar-sweetened and artificially sweetened beverage consumption. Cross-sectional design in 1852 military men. Using mailed questionnaires, sugar-sweetened and artificially sweetened beverage consumption was recorded. Principal component analysis was used for dietary pattern analysis. Sugar-sweetened and artificially sweetened beverages were consumed daily by 36.3% and 33.2% of the participants, respectively. Age, body mass index (BMI), non-smoking and income were negatively related to sugar-sweetened beverage consumption. High BMI and trying to lose weight were related to artificially sweetened beverages consumption. Three major patterns were obtained from principal component analysis: first, the 'meat pattern', was loaded for red meats and processed meats; second, the 'healthy pattern', was loaded for tomatoes, fruit, whole grain, vegetables, fruit, fish, tea and nuts; finally, the 'sweet pattern' was loaded for sweets, desserts, snacks, high-energy drinks, high-fat dairy products and refined grains. The sugar-sweetened beverage consumption was strongly related with both the meat and sweet dietary patterns and inversely related to the healthy dietary pattern. The artificially sweetened beverage consumption was strongly related with the sweet and healthy dietary pattern. Daily consumption of sugar-sweetened beverages was inversely associated with a healthy dietary pattern. Daily consumption of artificially sweetened beverages was clearly associated with weight-loss intention.

  10. Periprosthetic bone remodelling of short-stem total hip arthroplasty: a systematic review.

    PubMed

    Yan, Shuang G; Weber, Patrick; Steinbrück, Arnd; Hua, Xingyi; Jansson, Volkmar; Schmidutz, Florian

    2017-11-27

    Short-stem hip arthroplasty (SHA) was designed to preserve bone stock and provide an improved load transfer. To gain more evidence regarding the load transfer, this review analysed the periprosthetic bone remodelling of SHA in comparison to standard hip arthroplasty (THA). PubMed and ScienceDirect were screened to extract dual-energy X-ray absorptiometry (DXA) studies evaluating the periprosthetic bone remodelling of SHA and two proven THA designs. From the studies included, the postoperative change in periprosthetic bone mineral density (BMD) after one year and the trend over two years was determined. Fifteen studies with four SHAs (CFP, Metha, Nanos, Fitmore) and two THAs (CLS and Bicontact) designs were included. All SHA and THA stems revealed an initial decrease at the calcar and major trochanter (Gruen 1 and 7) with the Metha, Nanos and Fitmore showing a smaller and more balanced remodelling compared to THA. The pattern after one year and the trend over two years argue for a methaphyseal anchorage of the Metha and Nanos, whereas the Fitmore and CFP seem to anchor metha-diaphyseal. Clearly different pattern of bone remodelling were observed between all four SHAs. Periprosthetic bone remodelling is also present in SHA, with the main bone reduction observed proximally. However, certain SHA stems show a more balanced remodelling compared to THA, arguing for a favourable load transfer. Also, the femoral length where bone remodelling occurs is clearly shorter in SHA. As distinctively different pattern between the SHA designs were observed, they should not be judged as a single implant group.

  11. Specimen-specific modeling of hip fracture pattern and repair.

    PubMed

    Ali, Azhar A; Cristofolini, Luca; Schileo, Enrico; Hu, Haixiang; Taddei, Fulvia; Kim, Raymond H; Rullkoetter, Paul J; Laz, Peter J

    2014-01-22

    Hip fracture remains a major health problem for the elderly. Clinical studies have assessed fracture risk based on bone quality in the aging population and cadaveric testing has quantified bone strength and fracture loads. Prior modeling has primarily focused on quantifying the strain distribution in bone as an indicator of fracture risk. Recent advances in the extended finite element method (XFEM) enable prediction of the initiation and propagation of cracks without requiring a priori knowledge of the crack path. Accordingly, the objectives of this study were to predict femoral fracture in specimen-specific models using the XFEM approach, to perform one-to-one comparisons of predicted and in vitro fracture patterns, and to develop a framework to assess the mechanics and load transfer in the fractured femur when it is repaired with an osteosynthesis implant. Five specimen-specific femur models were developed from in vitro experiments under a simulated stance loading condition. Predicted fracture patterns closely matched the in vitro patterns; however, predictions of fracture load differed by approximately 50% due to sensitivity to local material properties. Specimen-specific intertrochanteric fractures were induced by subjecting the femur models to a sideways fall and repaired with a contemporary implant. Under a post-surgical stance loading, model-predicted load sharing between the implant and bone across the fracture surface varied from 59%:41% to 89%:11%, underscoring the importance of considering anatomic and fracture variability in the evaluation of implants. XFEM modeling shows potential as a macro-level analysis enabling fracture investigations of clinical cohorts, including at-risk groups, and the design of robust implants. © 2013 Published by Elsevier Ltd.

  12. Impact of ballistic body armour and load carriage on walking patterns and perceived comfort.

    PubMed

    Park, Huiju; Branson, Donna; Petrova, Adriana; Peksoz, Semra; Jacobson, Bert; Warren, Aric; Goad, Carla; Kamenidis, Panagiotis

    2013-01-01

    This study investigated the impact of weight magnitude and distribution of body armour and carrying loads on military personnel's walking patterns and comfort perceptions. Spatio-temporal parameters of walking, plantar pressure and contact area were measured while seven healthy male right-handed military students wore seven different garments of varying weight (0.06, 9, 18 and 27 kg) and load distribution (balanced and unbalanced, on the front and back torso). Higher weight increased the foot contact time with the floor. In particular, weight placement on the non-dominant side of the front torso resulted in the greatest stance phase and double support. Increased plantar pressure and contact area observed during heavier loads entail increased impact forces, which can cause overuse injuries and foot blisters. Participants reported increasingly disagreeable pressure and strain in the shoulder, neck and lower back during heavier weight conditions and unnatural walking while wearing unbalanced weight distributed loads. This study shows the potentially synergistic impact of wearing body armour vest with differential loads on body movement and comfort perception. This study found that soldiers should balance loads, avoiding load placement on the non-dominant side front torso, thus minimising mobility restriction and potential injury risk. Implications for armour vest design modifications can also be found in the results.

  13. T-Pattern Analysis and Cognitive Load Manipulation to Detect Low-Stake Lies: An Exploratory Study.

    PubMed

    Diana, Barbara; Zurloni, Valentino; Elia, Massimiliano; Cavalera, Cesare; Realdon, Olivia; Jonsson, Gudberg K; Anguera, M Teresa

    2018-01-01

    Deception has evolved to become a fundamental aspect of human interaction. Despite the prolonged efforts in many disciplines, there has been no definite finding of a univocally "deceptive" signal. This work proposes an approach to deception detection combining cognitive load manipulation and T-pattern methodology with the objective of: (a) testing the efficacy of dual task-procedure in enhancing differences between truth tellers and liars in a low-stakes situation; (b) exploring the efficacy of T-pattern methodology in discriminating truthful reports from deceitful ones in a low-stakes situation; (c) setting the experimental design and procedure for following research. We manipulated cognitive load to enhance differences between truth tellers and liars, because of the low-stakes lies involved in our experiment. We conducted an experimental study with a convenience sample of 40 students. We carried out a first analysis on the behaviors' frequencies coded through the observation software, using SPSS (22). The aim was to describe shape and characteristics of behavior's distributions and explore differences between groups. Datasets were then analyzed with Theme 6.0 software which detects repeated patterns (T-patterns) of coded events (non-verbal behaviors) that regularly or irregularly occur within a period of observation. A descriptive analysis on T-pattern frequencies was carried out to explore differences between groups. An in-depth analysis on more complex patterns was performed to get qualitative information on the behavior structure expressed by the participants. Results show that the dual-task procedure enhances differences observed between liars and truth tellers with T-pattern methodology; moreover, T-pattern detection reveals a higher variety and complexity of behavior in truth tellers than in liars. These findings support the combination of cognitive load manipulation and T-pattern methodology for deception detection in low-stakes situations, suggesting the testing of directional hypothesis on a larger probabilistic sample of population.

  14. T-Pattern Analysis and Cognitive Load Manipulation to Detect Low-Stake Lies: An Exploratory Study

    PubMed Central

    Diana, Barbara; Zurloni, Valentino; Elia, Massimiliano; Cavalera, Cesare; Realdon, Olivia; Jonsson, Gudberg K.; Anguera, M. Teresa

    2018-01-01

    Deception has evolved to become a fundamental aspect of human interaction. Despite the prolonged efforts in many disciplines, there has been no definite finding of a univocally “deceptive” signal. This work proposes an approach to deception detection combining cognitive load manipulation and T-pattern methodology with the objective of: (a) testing the efficacy of dual task-procedure in enhancing differences between truth tellers and liars in a low-stakes situation; (b) exploring the efficacy of T-pattern methodology in discriminating truthful reports from deceitful ones in a low-stakes situation; (c) setting the experimental design and procedure for following research. We manipulated cognitive load to enhance differences between truth tellers and liars, because of the low-stakes lies involved in our experiment. We conducted an experimental study with a convenience sample of 40 students. We carried out a first analysis on the behaviors’ frequencies coded through the observation software, using SPSS (22). The aim was to describe shape and characteristics of behavior’s distributions and explore differences between groups. Datasets were then analyzed with Theme 6.0 software which detects repeated patterns (T-patterns) of coded events (non-verbal behaviors) that regularly or irregularly occur within a period of observation. A descriptive analysis on T-pattern frequencies was carried out to explore differences between groups. An in-depth analysis on more complex patterns was performed to get qualitative information on the behavior structure expressed by the participants. Results show that the dual-task procedure enhances differences observed between liars and truth tellers with T-pattern methodology; moreover, T-pattern detection reveals a higher variety and complexity of behavior in truth tellers than in liars. These findings support the combination of cognitive load manipulation and T-pattern methodology for deception detection in low-stakes situations, suggesting the testing of directional hypothesis on a larger probabilistic sample of population. PMID:29551986

  15. Interface-designed Membranes with Shape-controlled Patterns for High-performance Polymer Electrolyte Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Jeon, Yukwon; Kim, Dong Jun; Koh, Jong Kwan; Ji, Yunseong; Kim, Jong Hak; Shul, Yong-Gun

    2015-11-01

    Polymer electrolyte membrane fuel cell is a promising zero-emission power generator for stationary/automotive applications. However, key issues, such as performance and costs, are still remained for an economical commercialization. Here, we fabricated a high-performance membrane electrode assembly (MEA) using an interfacial design based on well-arrayed micro-patterned membranes including circles, squares and hexagons with different sizes, which are produced by a facile elastomeric mold method. The best MEA performance is achieved using patterned Nafion membrane with a circle 2 μm in size, which exhibited a very high power density of 1906 mW/cm2 at 75 °C and Pt loading of 0.4 mg/cm2 with 73% improvement compared to the commercial membrane. The improved performance are attributed to the decreased MEA resistances and increased surface area for higher Pt utilization of over 80%. From these enhanced properties, it is possible to operate at lower Pt loading of 0.2 mg/cm2 with an outstanding performance of 1555 mW/cm2 and even at air/low humidity operations.

  16. Global-Local Analysis and Optimization of a Composite Civil Tilt-Rotor Wing

    NASA Technical Reports Server (NTRS)

    Rais-Rohani, Masound

    1999-01-01

    This report gives highlights of an investigation on the design and optimization of a thin composite wing box structure for a civil tilt-rotor aircraft. Two different concepts are considered for the cantilever wing: (a) a thin monolithic skin design, and (b) a thick sandwich skin design. Each concept is examined with three different skin ply patterns based on various combinations of 0, +/-45, and 90 degree plies. The global-local technique is used in the analysis and optimization of the six design models. The global analysis is based on a finite element model of the wing-pylon configuration while the local analysis uses a uniformly supported plate representing a wing panel. Design allowables include those on vibration frequencies, panel buckling, and material strength. The design optimization problem is formulated as one of minimizing the structural weight subject to strength, stiffness, and d,vnamic constraints. Six different loading conditions based on three different flight modes are considered in the design optimization. The results of this investigation reveal that of all the loading conditions the one corresponding to the rolling pull-out in the airplane mode is the most stringent. Also the frequency constraints are found to drive the skin thickness limits, rendering the buckling constraints inactive. The optimum skin ply pattern for the monolithic skin concept is found to be (((0/+/-45/90/(0/90)(sub 2))(sub s))(sub s), while for the sandwich skin concept the optimal ply pattern is found to be ((0/+/-45/90)(sub 2s))(sub s).

  17. The study on the effect of pattern density distribution on the STI CMP process

    NASA Astrophysics Data System (ADS)

    Sub, Yoon Myung; Hian, Bernard Yap Tzen; Fong, Lee It; Anak, Philip Menit; Minhar, Ariffin Bin; Wui, Tan Kim; Kim, Melvin Phua Twang; Jin, Looi Hui; Min, Foo Thai

    2017-08-01

    The effects of pattern density on CMP characteristics were investigated using specially designed wafer for the characterization of pattern-dependencies in STI CMP [1]. The purpose of this study is to investigate the planarization behavior based on a direct STI CMP used in cerium (CeO2) based slurry system in terms of pattern density variation. The minimal design rule (DR) of 180nm generation technology node was adopted for the mask layout. The mask was successfully applied for evaluation of a cerium (CeO2) abrasive based direct STI CMP process. In this study, we described a planarization behavior of the loading-effects of pattern density variation which were characterized with layout pattern density and pitch variations using masks mentioned above. Furthermore, the characterizing pattern dependent on the variations of the dimensions and spacing features, in thickness remaining after CMP, were analyzed and evaluated. The goal was to establish a concept of library method which will be used to generate design rules reducing the probability of CMP-related failures. Details of the characterization were measured in various layouts showing different pattern density ranges and the effects of pattern density on STI CMP has been discussed in this paper.

  18. An Update on the Mechanical and EM Performance of the Composite Dish Verification Antenna (DVA-1) for the SKA

    NASA Technical Reports Server (NTRS)

    Lacy, G. E.; Fleming, M.; Baker, L.; Imbriale, W.; Cortes-Medellin, G.; Veidt, B.; Hovey, G. J.; DeBoer, D.

    2012-01-01

    This paper will give an overview of the unique mechanical and optical design of the DVA-1 telescope. The rim supported carbon fibre reflector surfaces are designed to be both low cost and have high performance under wind, gravity, and thermal loads. The shaped offset Gregorian optics offer low and stable side lobes along with a large area at the secondary focus for multiple feeds with no aperture blockage. Telescope performance under ideal conditions as well as performance under gravity, wind, and thermal loads will be compared directly using calculated radiation patterns for each of these operating conditions.

  19. Cycle time reduction by Html report in mask checking flow

    NASA Astrophysics Data System (ADS)

    Chen, Jian-Cheng; Lu, Min-Ying; Fang, Xiang; Shen, Ming-Feng; Ma, Shou-Yuan; Yang, Chuen-Huei; Tsai, Joe; Lee, Rachel; Deng, Erwin; Lin, Ling-Chieh; Liao, Hung-Yueh; Tsai, Jenny; Bowhill, Amanda; Vu, Hien; Russell, Gordon

    2017-07-01

    The Mask Data Correctness Check (MDCC) is a reticle-level, multi-layer DRC-like check evolved from mask rule check (MRC). The MDCC uses extended job deck (EJB) to achieve mask composition and to perform a detailed check for positioning and integrity of each component of the reticle. Different design patterns on the mask will be mapped to different layers. Therefore, users may be able to review the whole reticle and check the interactions between different designs before the final mask pattern file is available. However, many types of MDCC check results, such as errors from overlapping patterns usually have very large and complex-shaped highlighted areas covering the boundary of the design. Users have to load the result OASIS file and overlap it to the original database that was assembled in MDCC process on a layout viewer, then search for the details of the check results. We introduce a quick result-reviewing method based on an html format report generated by Calibre® RVE. In the report generation process, we analyze and extract the essential part of result OASIS file to a result database (RDB) file by standard verification rule format (SVRF) commands. Calibre® RVE automatically loads the assembled reticle pattern and generates screen shots of these check results. All the processes are automatically triggered just after the MDCC process finishes. Users just have to open the html report to get the information they need: for example, check summary, captured images of results and their coordinates.

  20. Normalized spectral damage of a linear system over different spectral loading patterns

    NASA Astrophysics Data System (ADS)

    Kim, Chan-Jung

    2017-08-01

    Spectral fatigue damage is affected by different loading patterns; the damage may be accumulated in a different manner because the spectral pattern has an influence on stresses or strains. The normalization of spectral damage with respect to spectral loading acceleration is a novel solution to compare the accumulated fatigue damage over different spectral loading patterns. To evaluate the sensitivity of fatigue damage over different spectral loading cases, a simple notched specimen is used to conduct a uniaxial vibration test for two representative spectral patterns-random and harmonic-between 30 and 3000 Hz. The fatigue damage to the simple specimen is analyzed for different spectral loading cases using the normalized spectral damage from the measured response data for both acceleration and strain. The influence of spectral loading patterns is discussed based on these analyses.

  1. Failure modes of Y-TZP abutments with external hex implant-abutment connection determined by fractographic analysis.

    PubMed

    Basílio, Mariana de Almeida; Delben, Juliana Aparecida; Cesar, Paulo Francisco; Rizkalla, Amin Sami; Santos Junior, Gildo Coelho; Arioli Filho, João Neudenir

    2016-07-01

    Yttria-stabilized tetragonal zirconia (Y-TZP) was introduced as ceramic implant abutments due to its excellent mechanical properties. However, the damage patterns for Y-TZP abutments are limited in the literature. Fractographic analyses can provide insights as to the failure origin and related mechanisms. The purpose of this study was to analyze fractured Y-TZP abutments to establish fractographic patterns and then possible reasons for failure. Thirty two prefabricated Y-TZP abutments on external hex implants were retrieved from a single-load-to failure test according to the ISO 14801. Fractographic analyses were conducted under polarized-light estereo and scanning electro microscopy. The predominant fracture pattern was abutment fracture at the connecting region. Classic fractographic features such as arrest lines, hackle, and twist hackle established that failure started where Y-TZP abutments were in contact with the retention screw edges. The abutment screw design and the loading point were the reasons for localized stress concentration and fracture patterns. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A dual-band reconfigurable Yagi-Uda antenna with diverse radiation patterns

    NASA Astrophysics Data System (ADS)

    Saurav, Kushmanda; Sarkar, Debdeep; Srivastava, Kumar Vaibhav

    2017-07-01

    In this paper, a dual-band pattern reconfigurable antenna is proposed. The antenna comprises of a dual-band complementary split ring resonators (CSRRs) loaded dipole as the driven element and two copper strips with varying lengths as parasitic segments on both sides of the driven dipole. PIN diodes are used with the parasitic elements to control their electrical length. The CSRRs loading provide a lower order mode in addition to the reference dipole mode, while the parasitic elements along with the PIN diodes are capable of switching the omni-directional radiation of the dual-band driven element to nine different configurations of radiation patterns which include bi-directional end-fire, broadside, and uni-directional end-fire in both the operating bands. A prototype of the designed antenna together with the PIN diodes and DC bias lines is fabricated to validate the concept of dual-band radiation pattern diversity. The simulation and measurement results are in good agreement. The proposed antenna can be used in wireless access points for PCS and WLAN applications.

  3. Patterning of alloy precipitation through external pressure

    NASA Astrophysics Data System (ADS)

    Franklin, Jack A.

    Due to the nature of their microstructure, alloyed components have the benefit of meeting specific design goals across a wide range of electrical, thermal, and mechanical properties. In general by selecting the correct alloy system and applying a proper heat treatment it is possible to create a metallic sample whose properties achieve a unique set of design requirements. This dissertation presents an innovative processing technique intended to control both the location of formation and the growth rates of precipitates within metallic alloys in order to create multiple patterned areas of unique microstructure within a single sample. Specific experimental results for the Al-Cu alloy system will be shown. The control over precipitation is achieved by altering the conventional heat treatment process with an external surface load applied to selected locations during the quench and anneal. It is shown that the applied pressures affect both the rate and directionality of the atomic diffusion in regions close to the loaded surfaces. The control over growth rates is achieved by altering the enthalpic energy required for successful diffusion between lattice sites. Changes in the local chemical free energy required to direct the diffusion of atoms are established by introducing a non-uniform elastic strain energy field within the samples created by the patterned surface pressures. Either diffusion rates or atomic mobility can be selected as the dominating control process by varying the quench rate; with slower quenches having greater control over the mobility of the alloying elements. Results have shown control of Al2Cu precipitation over 100 microns on mechanically polished surfaces. Further experimental considerations presented will address consistency across sample ensembles. This includes repeatable pressure loading conditions and the chemical interaction between any furnace environments and both the alloy sample and metallic pressure loading devices.

  4. Analysis of Ares Crew Launch Vehicle Transonic Alternating Flow Phenomenon

    NASA Technical Reports Server (NTRS)

    Sekula, Martin K.; Piatak, David J.; Rausch, Russ D.

    2012-01-01

    A transonic wind tunnel test of the Ares I-X Rigid Buffet Model (RBM) identified a Mach number regime where unusually large buffet loads are present. A subsequent investigation identified the cause of these loads to be an alternating flow phenomenon at the Crew Module-Service Module junction. The conical design of the Ares I-X Crew Module and the cylindrical design of the Service Module exposes the vehicle to unsteady pressure loads due to the sudden transition between a subsonic separated and a supersonic attached flow about the cone-cylinder junction as the local flow randomly fluctuates back and forth between the two flow states. These fluctuations produce a square-wave like pattern in the pressure time histories resulting in large amplitude, impulsive buffet loads. Subsequent testing of the Ares I RBM found much lower buffet loads since the evolved Ares I design includes an ogive fairing that covers the Crew Module-Service Module junction, thereby making the vehicle less susceptible to the onset of alternating flow. An analysis of the alternating flow separation and attachment phenomenon indicates that the phenomenon is most severe at low angles of attack and exacerbated by the presence of vehicle protuberances. A launch vehicle may experience either a single or, at most, a few impulsive loads since it is constantly accelerating during ascent rather than dwelling at constant flow conditions in a wind tunnel. A comparison of a windtunnel- test-data-derived impulsive load to flight-test-data-derived load indicates a significant over-prediction in the magnitude and duration of the buffet load. I. Introduction One

  5. In-shoe loading in rearfoot and non-rearfoot strikers during running using minimalist footwear.

    PubMed

    Kernozek, T W; Meardon, S; Vannatta, C N

    2014-12-01

    Recent trends promote a "barefoot" running style to reduce injury. "Minimalist" shoes are designed to mimic the barefoot running with some foot protection. However, it is unknown how "minimalist" shoes alter plantar loading. Our purpose was to compare plantar loads between rearfoot strikers and non-rearfoot strikers after 4 weeks of running in minimalist footwear. 30 females were provided Vibram(®) Bikila shoes and instructed to gradually transition to running in these shoes. Plantar loading was measured using an in-shoe pressure sensor after the 4 weeks. Multivariate analysis was performed to detect differences in loading between rearfoot and non-rearfoot strikers in different plantar regions. Differences in plantar loading occurred between foot strike patterns running in minimalist footwear. Pressure and force variables were greater in the metatarsals and lower in the heel region in non-rearfoot strikers. Peak pressure for the whole foot was greater in non-rearfoot strikers while no difference was observed in maximum force or contact time for the whole foot between strike types. Allowing time for accommodation and adaptation to different stresses on the foot may be warranted when using minimalist footwear depending on foot strike pattern of the -runner. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Masonry Vaults Subjected To Horizontal Loads: Experimental and Numerical Investigations to Evaluate the Effectiveness of A GFRM Reinforcement

    NASA Astrophysics Data System (ADS)

    Gattesco, Natalino; Boem, Ingrid

    2017-10-01

    The paper investigates the effectiveness of a modern reinforcement technique based on a Glass Fiber-Reinforced Mortar (GFRM) for the enhancement of the performances of existing masonry vaults subjected to horizontal seismic actions. In fact, the authors recently evidenced, through numerical simulations, that the typical simplified loading patterns generally adopted in the literature for the experimental tests, based on concentrated vertical loads at 1/4 of the span, are not reliable for such a purpose, due to an unrealistic stress distribution. Thus, experimental quasi-static cyclic tests on full-scale masonry vaults based on a specific setup, designed to apply a horizontal load pattern proportional to the mass, were performed. Three samples were tested: an unreinforced vault, a vault reinforced at the extrados and a vault reinforced at the intrados. The experimental results demonstrated the technique effectiveness in both strength and ductility. Moreover, numerical simulations were performed by adopting a simplified FE, smear-crack model, evidencing the good reliability of the prediction by comparison with the experimental results.

  7. Finite element based contact analysis of radio frequency MEMs switch membrane surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Jin-Ya; Chalivendra, Vijaya; Huang, Wenzhen

    2017-10-01

    Finite element simulations were performed to determine the contact behavior of radio frequency (RF) micro-electro-mechanical (MEM) switch contact surfaces under monotonic and cyclic loading conditions. Atomic force microscopy (AFM) was used to capture the topography of RF-MEM switch membranes and later they were analyzed for multi-scale regular as well as fractal structures. Frictionless, non-adhesive contact 3D finite element analysis was carried out at different length scales to investigate the contact behavior of the regular-fractal surface using an elasto-plastic material model. Dominant micro-scale regular patterns were found to significantly change the contact behavior. Contact areas mainly cluster around the regular pattern. The contribution from the fractal structure is not significant. Under cyclic loading conditions, plastic deformation in the 1st loading/unloading cycle smooth the surface. The subsequent repetitive loading/unloading cycles undergo elastic contact without changing the morphology of the contacting surfaces. The work is expected to shed light on the quality of the switch surface contact as well as the optimum design of RF MEM switch surfaces.

  8. The Parametric Study and Fine-Tuning of Bow-Tie Slot Antenna with Loaded Stub

    PubMed Central

    2017-01-01

    A printed Bow-Tie slot antenna with loaded stub is proposed and the effects of changing the dimensions of the slot area, the stub and load sizes are considered in this paper. These parameters have a considerable effect on the antenna characteristics as well as its performance. An in-depth parametric study of these dimensions is presented. This paper proposes the necessary conditions for initial approximation of dimensions needed to design this antenna. In order to achieve the desired performance of the antenna fine tuning of all sizes of these parameters is required. The parametric studies used in this paper provide proper trends for initiation and tuning the design. A prototype of the antenna for 1.7GHz to 2.6GHz band is fabricated. Measurements conducted verify that the designed antenna has wideband characteristics with 50% bandwidth around the center frequency of 2.1GHz. Conducted measurements for reflection coefficient (S11) and radiation pattern also validate our simulation results. PMID:28114354

  9. The Parametric Study and Fine-Tuning of Bow-Tie Slot Antenna with Loaded Stub.

    PubMed

    Shafiei, M M; Moghavvemi, Mahmoud; Wan Mahadi, Wan Nor Liza

    2017-01-01

    A printed Bow-Tie slot antenna with loaded stub is proposed and the effects of changing the dimensions of the slot area, the stub and load sizes are considered in this paper. These parameters have a considerable effect on the antenna characteristics as well as its performance. An in-depth parametric study of these dimensions is presented. This paper proposes the necessary conditions for initial approximation of dimensions needed to design this antenna. In order to achieve the desired performance of the antenna fine tuning of all sizes of these parameters is required. The parametric studies used in this paper provide proper trends for initiation and tuning the design. A prototype of the antenna for 1.7GHz to 2.6GHz band is fabricated. Measurements conducted verify that the designed antenna has wideband characteristics with 50% bandwidth around the center frequency of 2.1GHz. Conducted measurements for reflection coefficient (S11) and radiation pattern also validate our simulation results.

  10. Interface-designed Membranes with Shape-controlled Patterns for High-performance Polymer Electrolyte Membrane Fuel Cells

    PubMed Central

    Jeon, Yukwon; Kim, Dong Jun; Koh, Jong Kwan; Ji, Yunseong; Kim, Jong Hak; Shul, Yong-Gun

    2015-01-01

    Polymer electrolyte membrane fuel cell is a promising zero-emission power generator for stationary/automotive applications. However, key issues, such as performance and costs, are still remained for an economical commercialization. Here, we fabricated a high-performance membrane electrode assembly (MEA) using an interfacial design based on well-arrayed micro-patterned membranes including circles, squares and hexagons with different sizes, which are produced by a facile elastomeric mold method. The best MEA performance is achieved using patterned Nafion membrane with a circle 2 μm in size, which exhibited a very high power density of 1906 mW/cm2 at 75 °C and Pt loading of 0.4 mg/cm2 with 73% improvement compared to the commercial membrane. The improved performance are attributed to the decreased MEA resistances and increased surface area for higher Pt utilization of over 80%. From these enhanced properties, it is possible to operate at lower Pt loading of 0.2 mg/cm2 with an outstanding performance of 1555 mW/cm2 and even at air/low humidity operations. PMID:26552839

  11. The dynamic natures of implant loading.

    PubMed

    Wang, Rui-Feng; Kang, Byungsik; Lang, Lisa A; Razzoog, Michael E

    2009-06-01

    A fundamental problem in fully understanding the dynamic nature of implant loading is the confusion that exists regarding the torque load delivered to the implant complex, the initial force transformation/stress/strain developed within the system during the implant complex assembly, and how the clamping forces at the interfaces and the preload stress impact the implant prior to any external loading. The purpose of this study was to create an accurately dimensioned finite element model with spiral threads and threaded bores included in the implant complex, positioned in a bone model, and to determine the magnitude and distribution of the force transformation/stress/strain patterns developed in the modeled implant system and bone and, thus, provide the foundational data for the study of the dynamic loading of dental implants prior to any external loading. An implant (Brånemark Mark III), abutment (CeraOne), abutment screw (Unigrip), and the bone surrounding the implant were modeled using HyperMesh software. The threaded interfaces between screw/implant and implant/bone were designed as a spiral thread helix assigned with specific coefficient of friction values. Assembly simulation using ABAQUS and LS-DYNA was accomplished by applying a 32-Ncm horizontal torque load on the abutment screw (Step 1), then decreasing the torque load to 0 Ncm to simulate the wrench removal (Step 2). The postscript data were collected and reviewed by HyperMesh. A regression analysis was used to depict the relationships between the torque load and the mechanical parameters. During the 32-Ncm tightening sequence, the abutment screw elongated 13.3 mum. The tightening torque generated a 554-N clamping force at the abutment/implant interface and a 522-N preload. The von Mises stress values were 248 MPa in the abutment at the abutment-implant interface, 765 MPa at the top of the screw shaft, 694 MPa at the bottom of the screw shaft, 1365 MPa in the top screw thread, and 21 MPa in the bone at the top of the implant-bone interface. This study also identified various characteristic isosurface stress patterns. The maximum stress magnitude to complete the von Mises stress joint pattern in the present model was 107 MPa during screw tightening, and was reduced to 104 MPa with removal of the wrench. Various specific stress patterns were identified within all elements of the implant complex during the assembly simulation. During the torque moment application, the abutment screw was elongated, and every 1.0-mum elongation of the screw was equivalent to a 47.9-N increase of the preload in the implant complex. The ideal index to determine the preload amount was the contact force at the interface between the screw threads and the threaded screw bore. The isosurface mode identified various characteristic stress patterns developed within the implant complex at the various interfaces during the assembly simulation. These patterns are the (1) spiral and ying-yang pattern of the XY stress, (2) spring, cap, clamping, and preload pattern of the ZZ stress, and (3) bone holding and joint pattern of the von Mises stress.

  12. Design, Fabrication, and Performance of Foil Gas Thrust Bearings for Microturbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Dykas, Brian; Bruckner, Robert; DellaCorte, Christopher; Edmonds, Brian; Prahl, Joseph

    2008-01-01

    A methodology for the design and construction of simple foil thrust bearings intended for parametric performance testing and low marginal costs is presented. Features drawn from a review of the open literature are discussed as they relate to bearing performance. The design of fixtures and tooling required to fabricate foil thrust bearings is presented, using conventional machining processes where possible. A prototype bearing with dimensions drawn from the literature is constructed, with all fabrication steps described. A load-deflection curve for the bearing is presented to illustrate structural stiffness characteristics. Start-top cycles are performed on the bearing at a temperature of 425 C to demonstrate early-life wear patterns. A test of bearing load capacity demonstrates useful performance when compared with data obtained from the open literature.

  13. A Comparative Finite-Element Analysis of Bone Failure and Load Transfer of Osseointegrated Prostheses Fixations

    PubMed Central

    Tomaszewski, P. K.; Verdonschot, N.; Bulstra, S. K.

    2010-01-01

    An alternative solution to conventional stump–socket prosthetic limb attachment is offered by direct skeletal fixation. This study aimed to assess two percutaneous trans-femoral implants, the OPRA system (Integrum AB, Göteborg, Sweden), and the ISP Endo/Exo prosthesis (ESKA Implants AG, Lübeck, Germany) on bone failure and stem–bone interface mechanics both early post-operative (before bony ingrowth) and after full bone ingrowth. Moreover, mechanical consequences of implantation of those implants in terms of changed loading pattern within the bone and potential consequences on long-term bone remodeling were studied using finite-element models that represent the intact femur and implants fitted in amputated femora. Two experimentally measured loads from the normal walking cycle were applied. The analyses revealed that implantation of percutaneous prostheses had considerable effects on stress and strain energy density levels in bone. This was not only caused by the implant itself, but also by changed loading conditions in the amputated leg. The ISP design promoted slightly more physiological strain energy distribution (favoring long-term bone maintenance), but the OPRA design generated lower bone stresses (reducing bone fracture risk). The safety factor against mechanical failure of the two percutaneous designs was relatively low, which could be improved by design optimization of the implants. PMID:20309731

  14. Lumbopelvic muscle activation patterns in three stances under graded loading conditions: Proposing a tensegrity model for load transfer through the sacroiliac joints.

    PubMed

    Pardehshenas, Hamed; Maroufi, Nader; Sanjari, Mohammad Ali; Parnianpour, Mohamad; Levin, Stephen M

    2014-10-01

    According to the conventional arch model of the pelvis, stability of the sacroiliac joints may require a predominance of form and force closure mechanisms: the greater the vertical shear force at the sacroiliac joints, the greater the reliance on self-bracing by horizontally or obliquely oriented muscles (such as the internal oblique). But what happens to the arch model when a person stands on one leg? In such cases, the pelvis no longer has imposts, leaving both the arch, and the arch model theory, without support. Do lumbopelvic muscle activation patterns in one-legged stances under load suggest compatibility with a different model? This study compares lumbopelvic muscle activation patterns in two-legged and one-legged stances in response to four levels of graded trunk loading in order to further our understanding the stabilization of the sacroiliac joints. Thirty male subjects experienced four levels of trunk loading (0%, 5%, 10% and 15% of body weight) by holding a bucket at one side, at three conditions: 1) two-legged standing with the bucket in the dominant hand, 2) ipsilateral loading: one-legged standing with the bucket in the dominant hand while using the same-side leg, and 3) contralateral loading: one-legged standing using the same leg used in condition 2, but with the bucket in the non-dominant hand. During these tasks, EMG signals from eight lumbopelvic muscles were collected. ANOVA with repeated design was performed on normalized EMG's to test the main effect of load and condition, and interaction effects of load by condition. Latissimus dorsi and erector spinae muscles showed an antagonistic pattern of activity toward the direction of load which may suggest these muscles as lateral trunk stabilizers. Internal oblique muscles showed a co-activation pattern with increasing task demand, which may function to increase lumbopelvic stability (P < 0.05). No unilateral pattern of the internal obliques was observed during all trials. Our results suggest that the lumbopelvic region uses a similar strategy for load transfer in both double and single leg support positions which is not compatible with the arch analogy. Our findings are more consistent with a suspensory system (wire-spoke wheel model). If our proposed model holds true, the pelvic ring can only be integrated by adjusting tension in the spokes and by preserving rim integrity or continuity. Thus, we propose that in order to restore tension integrity throughout the pelvic ring, efforts to unlock restrictions, muscular correction of positional faults and lumbopelvic or even respiratory exercises following sacroiliac joint dysfunctions must be taken into consideration. Our hypothetical model may initiate thinking and act as a guide to future work based on a biomechanical approach to the problem of sacroiliac joint dysfunction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. An Evaluation of Frangible Materials as Veneers on Vented Structural Member Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jameson, Kevin Jay

    2015-10-01

    Literature shows there has been extensive research and testing done in the area of wall panels and frangible materials. There is evidence from past research that shows it is possible to vent a structure that has had an accidental internal explosion [1]. The reviewed literature shows that most designs vent the entire wall panel versus a frangible material attached to the wall panel. The frangible material attachment points are important to determine the overall loading of the wall panel structure [2]. The materials used in the reviewed literature were securely attached as well as strong enough to remain intact duringmore » the pressure loading to move the entire wall panel. Since the vented wall panel was the weakest part of the overall structure, the other walls of the structure were substantially larger. The structure was usually built from concrete and large amounts of steel with dirt and sand over the top of the structure.The study will be conducted at Sandia National Laboratories located in Albuquerque New Mexico. The skeletal structural design for evaluation is a rectangular frame with a square grid pattern constructed from steel. The skeletal structure has been given to the researcher as a design requirement. The grid pattern will be evaluated strictly on plastic deformation and the loading that is applied from the frangible material. The frangible material tested will either fit into the grid or will be a veneer lightly attached to the structure frame. The frangible material may be required on both sides of the structure to adequately represent the application.« less

  16. Facial and ocular deposition of nebulized budesonide: effects of face mask design.

    PubMed

    Harris, Keith W; Smaldone, Gerald C

    2008-02-01

    In vivo case reports and in vitro studies have indicated that aerosol therapy using face masks can result in drug deposition on the face and in the eyes, and that face mask design may affect drug delivery. To test different mask/nebulizer combinations for budesonide, a nebulized steroid used to treat pediatric patients with asthma. Using high-performance liquid chromatography, drug delivery (inhaled mass), facial, and ocular deposition of budesonide aerosols were studied in vitro using a ventilated face facsimile (tidal volume, 50 mL; rate, 25 breaths/min, duty cycle 0.4), a tight-fitting test mask, a standard commercial mask, and a prototype mask designed to optimize delivery by reducing particle inertia. Nebulizer insertion into the mask (front loaded vs bottom loaded) was also tested. Particle size was measured by cascade impaction. Pari LC Plus (PARI Respiratory Equipment; Midlothian, VA) and MistyNeb (Allegiance; McGaw Park, IL) nebulizers were tested. Inhaled mass for tight-fitting and prototype masks was similar (13.2 +/- 1.85% vs 14.4 +/- 0.67% [percentage of nebulizer charge], p = 0.58) and significantly greater than for the commercial mask (3.03 +/- 0.26%, p = 0.005). Mask insertion of nebulizer was a key factor (inhaled mass: front loaded vs bottom loaded, 8.23 +/- 0.18% vs 3.03 +/- 0.26%; p = 0.005). Ocular deposition varied by an order of magnitude and was a strong function of mask design (4.77 +/- 0.24% vs 0.35 +/- 0.05%, p = 0.002, tight fitting vs prototype). Particle sizes (7.3 to 9 microm) were larger than previously reported for budesonide. For pediatric breathing patterns, mask design is a key factor defining budesonide delivery to the lungs, face, and eyes. Front-loaded nebulizer mask combinations are more efficient than bottom-loaded systems.

  17. Mitigating shear lag in tall buildings

    NASA Astrophysics Data System (ADS)

    Gaur, Himanshu; Goliya, Ravindra K.

    2015-09-01

    As the height of building increases, effect of shear lag also becomes considerable in the design of high-rise buildings. In this paper, shear lag effect in tall buildings of heights, i.e., 120, 96, 72, 48 and 36 stories of which aspect ratio ranges from 3 to 10 is studied. Tube-in-tube structural system with façade bracing is used for designing the building of height 120 story. It is found that bracing system considerably reduces the shear lag effect and hence increases the building stiffness to withstand lateral loads. Different geometric patterns of bracing system are considered. The best effective geometric configuration of bracing system is concluded in this study. Lateral force, as wind load is applied on the buildings as it is the most dominating lateral force for such heights. Wind load is set as per Indian standard code of practice IS 875 Part-3. For analysis purpose SAP 2000 software program is used.

  18. Shearography NDE of NASA COPV

    NASA Technical Reports Server (NTRS)

    Newman, John W.; Santos, Fernando; Saulsbury, Regor; Koshti, Ajay; Russell, Rick; Regez, Brad

    2006-01-01

    1. 21 Composite Over-wrapped Pressure Vessels (COPV) consisting of Kevlar Space Shuttle Fleet Leaders and Graphite COPV were inspected at NASA WSTF, NM from Sept. 12 through Sept 16. 2. The inspection technique was Pressurization Shearography, tests designed to image composite material damage, degradation or design flaws leading to stress concentrations in the axial or hoop strain load path. 3. The defect types detected consisted of the following: a) Intentional impact damage with known energy. b) Un-intentional impact damage. c) Manufacturing defects. 4. COPV design features leading to strain concentrations detected include: a) Strain concentrations at bosses due to fiber closure pattern. b) Strain concentrations in body of COPV due to fiber wrap pattern. c) Strain concentrations at equator due to liner weld/fiber lay-up.

  19. Simultaneous optimization of loading pattern and burnable poison placement for PWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alim, F.; Ivanov, K.; Yilmaz, S.

    2006-07-01

    To solve in-core fuel management optimization problem, GARCO-PSU (Genetic Algorithm Reactor Core Optimization - Pennsylvania State Univ.) is developed. This code is applicable for all types and geometry of PWR core structures with unlimited number of fuel assembly (FA) types in the inventory. For this reason an innovative genetic algorithm is developed with modifying the classical representation of the genotype. In-core fuel management heuristic rules are introduced into GARCO. The core re-load design optimization has two parts, loading pattern (LP) optimization and burnable poison (BP) placement optimization. These parts depend on each other, but it is difficult to solve themore » combined problem due to its large size. Separating the problem into two parts provides a practical way to solve the problem. However, the result of this method does not reflect the real optimal solution. GARCO-PSU achieves to solve LP optimization and BP placement optimization simultaneously in an efficient manner. (authors)« less

  20. Forecasting of hourly load by pattern recognition in a small area power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehdashti-Shahrokh, A.

    1982-01-01

    An intuitive, logical, simple and efficient method of forecasting hourly load in a small area power system is presented. A pattern recognition approach is used in developing the forecasting model. Pattern recognition techniques are powerful tools in the field of artificial intelligence (cybernetics) and simulate the way the human brain operates to make decisions. Pattern recognition is generally used in analysis of processes where the total physical nature behind the process variation is unkown but specific kinds of measurements explain their behavior. In this research basic multivariate analyses, in conjunction with pattern recognition techniques, are used to develop a linearmore » deterministic model to forecast hourly load. This method assumes that load patterns in the same geographical area are direct results of climatological changes (weather sensitive load), and have occurred in the past as a result of similar climatic conditions. The algorithm described in here searches for the best possible pattern from a seasonal library of load and weather data in forecasting hourly load. To accommodate the unpredictability of weather and the resulting load, the basic twenty-four load pattern was divided into eight three-hour intervals. This division was made to make the model adaptive to sudden climatic changes. The proposed method offers flexible lead times of one to twenty-four hours. The results of actual data testing had indicated that this proposed method is computationally efficient, highly adaptive, with acceptable data storage size and accuracy that is comparable to many other existing methods.« less

  1. High-uniformity centimeter-wide Si etching method for MEMS devices with large opening elements

    NASA Astrophysics Data System (ADS)

    Okamoto, Yuki; Tohyama, Yukiya; Inagaki, Shunsuke; Takiguchi, Mikio; Ono, Tomoki; Lebrasseur, Eric; Mita, Yoshio

    2018-04-01

    We propose a compensated mesh pattern filling method to achieve highly uniform wafer depth etching (over hundreds of microns) with a large-area opening (over centimeter). The mesh opening diameter is gradually changed between the center and the edge of a large etching area. Using such a design, the etching depth distribution depending on sidewall distance (known as the local loading effect) inversely compensates for the over-centimeter-scale etching depth distribution, known as the global or within-die(chip)-scale loading effect. Only a single DRIE with test structure patterns provides a micro-electromechanical systems (MEMS) designer with the etched depth dependence on the mesh opening size as well as on the distance from the chip edge, and the designer only has to set the opening size so as to obtain a uniform etching depth over the entire chip. This method is useful when process optimization cannot be performed, such as in the cases of using standard conditions for a foundry service and of short turn-around-time prototyping. To demonstrate, a large MEMS mirror that needed over 1 cm2 of backside etching was successfully fabricated using as-is-provided DRIE conditions.

  2. Fatigue testing of energy storing prosthetic feet.

    PubMed

    Toh, S L; Goh, J C; Tan, P H; Tay, T E

    1993-12-01

    This paper describes a simple approach to the fatigue testing of prosthetic feet. A fatigue testing machine for prosthetic feet was designed as part of the programme to develop an energy storing prosthetic foot (ESPF). The fatigue tester does not simulate the loading pattern on the foot during normal walking. However, cyclic vertical loads are applied to the heel and forefoot during heel-strike and toe-off respectively, for 500,000 cycles. The maximum load applied was chosen to be 1.5 times that applied by the bodyweight of the amputee and the test frequency was chosen to be 2 Hz to shorten the test duration. Four prosthetic feet were tested: two Lambda feet (a newly developed ESPF), a Kingsley SACH foot and a Proteor SACH foot. It was found that the Lambda feet have very good fatigue properties. The Kingsley SACH foot performed better than the Proteor model, with no signs of wear at the heel. The results obtained using the simple approach was found to be comparable to the results from more complex fatigue machines which simulate the load pattern during normal walking. This suggests that simple load simulating machines, which are less costly and require less maintenance, are useful substitutes in studying the fatigue properties of prosthetic feet.

  3. Effects of friction reduction of micro-patterned array of rough slider bearing

    NASA Astrophysics Data System (ADS)

    Kim, M.; Lee, D. W.; Jeong, J. H.; Chung, W. S.; Park, J. K.

    2017-08-01

    Complex micro-scale patterns have attracted interest because of the functionality that can be created using this type of patterning. This study evaluates the frictional reduction effects of various micro patterns on a slider bearing surface which is operating under mixed lubrication. Due to the rapid growth of contact area under mixed lubrication, it has become important to study the phenomenon of asperity contact in bearings with a heavy load. New analysis using the modified Reynolds equation with both the average flow model and the contact model of asperities is conducted for the rough slider bearing. A numerical analysis is performed to determine the effects of surface roughness on a lubricated bearing. Several dented patterns such as, dot pattern, dashed line patterns are used to evaluate frictional reduction effects. To verify the analytical results, friction test for the micro-patterned samples are performed. From comparing the frictional reduction effects of patterned arrays, the design of them can control the frictional loss of bearings. Our results showed that the design of pattern array on the bearing surface was important to the friction reduction of bearings. To reduce frictional loss, the longitudinal direction of them was better than the transverse direction.

  4. Development of Pelton turbine using numerical simulation

    NASA Astrophysics Data System (ADS)

    Patel, K.; Patel, B.; Yadav, M.; Foggia, T.

    2010-08-01

    This paper describes recent research and development activities in the field of Pelton turbine design. Flow inside Pelton turbine is most complex due to multiphase (mixture of air and water) and free surface in nature. Numerical calculation is useful to understand flow physics as well as effect of geometry on flow. The optimized design is obtained using in-house special optimization loop. Either single phase or two phase unsteady numerical calculation could be performed. Numerical results are used to visualize the flow pattern in the water passage and to predict performance of Pelton turbine at full load as well as at part load. Model tests are conducted to determine performance of turbine and it shows good agreement with numerically predicted performance.

  5. Continued Water-Based Phase Change Material Heat Exchanger Development

    NASA Technical Reports Server (NTRS)

    Hansen, Scott; Poynot, Joe

    2014-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development two full-scale, Orion sized water-based PCM HX's were constructed by Mezzo Technologies. These HX's were designed by applying prior research and experimentation to the full scale design. Design options considered included bladder restraint and clamping mechanisms, bladder manufacturing, tube patterns, fill/drain methods, manifold dimensions, weight optimization, and midplate designs. Design and construction of these HX's led to successful testing of both PCM HX's.

  6. Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design

    PubMed Central

    Ahsan, Md Rezwanul; Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Ali, Mohd Tarmizi

    2015-01-01

    A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (ε r = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%), 467 to 606 MHz (29%) and 758 MHz to 1062 MHz (40%) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB) and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz) RFID, WiMAX (3.5/5.5 GHz) and WLAN (5.2/5.8 GHz) applications. PMID:26018795

  7. Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design.

    PubMed

    Ahsan, Md Rezwanul; Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Ali, Mohd Tarmizi

    2015-01-01

    A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (εr = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10 dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%), 467 to 606 MHz (29%) and 758 MHz to 1062 MHz (40%) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB) and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz) RFID, WiMAX (3.5/5.5 GHz) and WLAN (5.2/5.8 GHz) applications.

  8. A Hybrid Demand Response Simulator Version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-05-02

    A hybrid demand response simulator is developed to test different control algorithms for centralized and distributed demand response (DR) programs in a small distribution power grid. The HDRS is designed to model a wide variety of DR services such as peak having, load shifting, arbitrage, spinning reserves, load following, regulation, emergency load shedding, etc. The HDRS does not model the dynamic behaviors of the loads, rather, it simulates the load scheduling and dispatch process. The load models include TCAs (water heaters, air conditioners, refrigerators, freezers, etc) and non-TCAs (lighting, washer, dishwasher, etc.) The ambient temperature changes, thermal resistance, capacitance, andmore » the unit control logics can be modeled for TCA loads. The use patterns of the non-TCA can be modeled by probability of use and probabilistic durations. Some of the communication network characteristics, such as delays and errors, can also be modeled. Most importantly, because the simulator is modular and greatly simplified the thermal models for TCA loads, it is very easy and fast to be used to test and validate different control algorithms in a simulated environment.« less

  9. A high-glycemic diet is associated with cerebral amyloid burden in cognitively normal older adults.

    PubMed

    Taylor, Matthew K; Sullivan, Debra K; Swerdlow, Russell H; Vidoni, Eric D; Morris, Jill K; Mahnken, Jonathan D; Burns, Jeffrey M

    2017-12-01

    Background: Little is known about the relation between dietary intake and cerebral amyloid accumulation in aging. Objective: We assessed the association of dietary glycemic measures with cerebral amyloid burden and cognitive performance in cognitively normal older adults. Design: We performed cross-sectional analyses relating dietary glycemic measures [adherence to a high-glycemic-load diet (HGLDiet) pattern, intakes of sugar and carbohydrates, and glycemic load] with cerebral amyloid burden (measured by florbetapir F-18 positron emission tomography) and cognitive performance in 128 cognitively normal older adults who provided eligibility screening data for the University of Kansas's Alzheimer's Prevention through Exercise (APEX) Study. The study began in November 2013 and is currently ongoing. Results: Amyloid was elevated in 26% ( n = 33) of participants. HGLDiet pattern adherence ( P = 0.01), sugar intake ( P = 0.03), and carbohydrate intake ( P = 0.05) were significantly higher in participants with elevated amyloid burden. The HGLDiet pattern was positively associated with amyloid burden both globally and in all regions of interest independently of age, sex, and education (all P ≤ 0.001). Individual dietary glycemic measures (sugar intake, carbohydrate intake, and glycemic load) were also positively associated with global amyloid load and nearly all regions of interest independently of age, sex, and educational level ( P ≤ 0.05). Cognitive performance was associated only with daily sugar intake, with higher sugar consumption associated with poorer global cognitive performance (global composite measure and Mini-Mental State Examination) and performance on subtests of Digit Symbol, Trail Making Test B, and Block Design, controlling for age, sex, and education. Conclusion: A high-glycemic diet was associated with greater cerebral amyloid burden, which suggests diet as a potential modifiable behavior for cerebral amyloid accumulation and subsequent Alzheimer disease risk. This trial was registered at clinicaltrials.gov as NCT02000583. © 2017 American Society for Nutrition.

  10. Balloon Design Software

    NASA Technical Reports Server (NTRS)

    Farley, Rodger

    2007-01-01

    PlanetaryBalloon Version 5.0 is a software package for the design of meridionally lobed planetary balloons. It operates in a Windows environment, and programming was done in Visual Basic 6. By including the effects of circular lobes with load tapes, skin mass, hoop and meridional stress, and elasticity in the structural elements, a more accurate balloon shape of practical construction can be determined as well as the room-temperature cut pattern for the gore shapes. The computer algorithm is formulated for sizing meridionally lobed balloons for any generalized atmosphere or planet. This also covers zero-pressure, over-pressure, and super-pressure balloons. Low circumferential loads with meridionally reinforced load tapes will produce shapes close to what are known as the "natural shape." The software allows for the design of constant angle, constant radius, or constant hoop stress balloons. It uses the desired payload capacity for given atmospheric conditions and determines the required volume, allowing users to design exactly to their requirements. The formulations are generalized to use any lift gas (or mixture of gases), any atmosphere, or any planet as described by the local acceleration of gravity. PlanetaryBalloon software has a comprehensive user manual that covers features ranging from, but not limited to, buoyancy and super-pressure, convenient design equations, shape formulation, and orthotropic stress/strain.

  11. Webulous and the Webulous Google Add-On--a web service and application for ontology building from templates.

    PubMed

    Jupp, Simon; Burdett, Tony; Welter, Danielle; Sarntivijai, Sirarat; Parkinson, Helen; Malone, James

    2016-01-01

    Authoring bio-ontologies is a task that has traditionally been undertaken by skilled experts trained in understanding complex languages such as the Web Ontology Language (OWL), in tools designed for such experts. As requests for new terms are made, the need for expert ontologists represents a bottleneck in the development process. Furthermore, the ability to rigorously enforce ontology design patterns in large, collaboratively developed ontologies is difficult with existing ontology authoring software. We present Webulous, an application suite for supporting ontology creation by design patterns. Webulous provides infrastructure to specify templates for populating ontology design patterns that get transformed into OWL assertions in a target ontology. Webulous provides programmatic access to the template server and a client application has been developed for Google Sheets that allows templates to be loaded, populated and resubmitted to the Webulous server for processing. The development and delivery of ontologies to the community requires software support that goes beyond the ontology editor. Building ontologies by design patterns and providing simple mechanisms for the addition of new content helps reduce the overall cost and effort required to develop an ontology. The Webulous system provides support for this process and is used as part of the development of several ontologies at the European Bioinformatics Institute.

  12. A glasses-type wearable device for monitoring the patterns of food intake and facial activity

    NASA Astrophysics Data System (ADS)

    Chung, Jungman; Chung, Jungmin; Oh, Wonjun; Yoo, Yongkyu; Lee, Won Gu; Bang, Hyunwoo

    2017-01-01

    Here we present a new method for automatic and objective monitoring of ingestive behaviors in comparison with other facial activities through load cells embedded in a pair of glasses, named GlasSense. Typically, activated by subtle contraction and relaxation of a temporalis muscle, there is a cyclic movement of the temporomandibular joint during mastication. However, such muscular signals are, in general, too weak to sense without amplification or an electromyographic analysis. To detect these oscillatory facial signals without any use of obtrusive device, we incorporated a load cell into each hinge which was used as a lever mechanism on both sides of the glasses. Thus, the signal measured at the load cells can detect the force amplified mechanically by the hinge. We demonstrated a proof-of-concept validation of the amplification by differentiating the force signals between the hinge and the temple. A pattern recognition was applied to extract statistical features and classify featured behavioral patterns, such as natural head movement, chewing, talking, and wink. The overall results showed that the average F1 score of the classification was about 94.0% and the accuracy above 89%. We believe this approach will be helpful for designing a non-intrusive and un-obtrusive eyewear-based ingestive behavior monitoring system.

  13. Metal loading levels influence on REE distribution on humic acid: Experimental and Modelling approach

    NASA Astrophysics Data System (ADS)

    Marsac, R.; Davranche, M.; Gruau, G.; Dia, A.

    2009-04-01

    In natural organic-rich waters, rare earth elements (REE) speciation is mainly controlled by organic colloids such as humic acid (HA). Different series of REE-HA complexation experiments performed at several metal loading (REE/C) displayed two pattern shapes (i) at high metal loading, a middle-REE (MREE) downward concavity, and (ii) at low metal loading, a regular increase from La to Lu (e.g. Sonke and Salters, 2006; Pourret et al., 2007). Both REE patterns might be related to REE binding with different surface sites on HA. To understand REE-HA binding, REE-HA complexation experiments at various metals loading were carried out using ultrafiltration combined with ICP-MS measurements, for the 14 REE simultaneously. The patterns of the apparent coefficients of REE partition between HA and the inorganic solution (log Kd) evolved regularly according to the metal loading. The REE patterns presented a MREE downward concavity at low loading and a regular increase from La to Lu at high loading. The dataset was modelled with Model VI by adjusting two specific parameters, log KMA, the apparent complexation constant of HA low affinity sites and DLK2, the parameter increasing high affinity sites binding strength. Experiments and modelling provided evidence that HA high affinity sites controlled the REE binding with HA at low metal loading. The REE-HA complex could be as multidentate complexes with carboxylic or phenolic sites or potentially with sites constituted of N, P or S as donor atoms. Moreover, these high affinity sites could be different for light and heavy REE, because heavy REE have higher affinity for these sites, in low density, and could saturate them. These new Model VI parameter sets allowed the prediction of the REE-HA pattern shape evolution on a large range of pH and metal loading. According to the metal loading, the evolution of the calculated REE patterns was similar to the various REE pattern observed in natural acidic organic-rich waters (pH<7 and DOC>10 mg L-1). As a consequence, the metal loading could be the key parameter controlling the REE pattern in organic-rich waters.

  14. Global-scale tectonic patterns on Pluto

    NASA Astrophysics Data System (ADS)

    Matsuyama, I.; Keane, J. T.; Kamata, S.

    2016-12-01

    The New Horizons spacecraft revealed a global-scale tectonic pattern on the surface of Pluto which is presumably related to its formation and early evolution. Changes in the rotational and tidal potentials, expansion, and loading can generate stresses capable of producing global-scale tectonic patterns. The current alignment of Sputnik Planum with the tidal axis suggests a reorientation of Pluto relative to the rotation and tidal axes, or true polar wander. This reorientation can be driven by mass loading associated with Sputnik Planum. We developed a general theoretical formalism for the calculation of tectonic patterns due to a variety of process including true polar wander, loading, and expansion. The formalism is general enough to be applicable to non-axisymmetric loads. We illustrate that the observed global-scale tectonic pattern can be explained by stresses generated by true polar wander, Sputnik Planum loading, and expansion.

  15. Thermal analysis of the intact mandibular premolar: a finite element analysis.

    PubMed

    Oskui, I Z; Ashtiani, M N; Hashemi, A; Jafarzadeh, H

    2013-09-01

    To obtain temperature distribution data through human teeth focusing on the pulp-dentine junction (PDJ). A three-dimensional tooth model was reconstructed using computer-aided design software from computed tomographic images. Subsequently, temperature distribution was numerically determined through the tooth for three different heat loads. Loading type I was equivalent to a 60° C mouth temperature for 1 s. Loading type II started with a 60° C mouth temperature, decreasing linearly to 37° C over 10 s. Loading type III repeated the pattern of type II in three consecutive cycles, with a 5 s resting time between cycles. The maximum temperatures of the pulp were 37.9° C, 39.0° C and 41.2° C for loading types I, II, and III, respectively. The largest temperature rise occurred with the cyclic loading, that is, type III. For the heat loads considered, the predicted peak temperatures at the PDJ were less than the reported temperature thresholds of irreversible pulpal damage. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  16. Stress Analysis of Boom of Special Mobile Crane for Plain Region in Transmission Line

    NASA Astrophysics Data System (ADS)

    Qin, Jian; Shao, Tao; Chen, Jun; Wan, Jiancheng; Li, Zhonghuan; Jiang, Ming

    2017-10-01

    Basis of the boom force analysis of special mobile crane for plain region in transmission line, the load type of boom design is confirmed. According to the different combinations of boom sections, the composite pattern of the different boom length is obtained to suit the actual conditions of boom overlapping. The large deformation model is employed with FEM to simulate the stress distribution of boom, and the calculation results are checked. The performance curves of rated load with different arm length and different working range are obtained, which ensures the lifting capacity of special mobile crane meeting the requirement of tower erection of transmission line. The proposed FEM of boom of mobile crane would provide certain guiding and reference to the boom design.

  17. Lower Extremity Biomechanics and Self-Reported Foot-Strike Patterns Among Runners in Traditional and Minimalist Shoes

    PubMed Central

    Goss, Donald L.; Lewek, Michael; Yu, Bing; Ware, William B.; Teyhen, Deydre S.; Gross, Michael T.

    2015-01-01

    Context The injury incidence rate among runners is approximately 50%. Some individuals have advocated using an anterior–foot-strike pattern to reduce ground reaction forces and injury rates that they attribute to a rear–foot-strike pattern. The proportion of minimalist shoe wearers who adopt an anterior–foot-strike pattern remains unclear. Objective To evaluate the accuracy of self-reported foot-strike patterns, compare negative ankle- and knee-joint angular work among runners using different foot-strike patterns and wearing traditional or minimalist shoes, and describe average vertical-loading rates. Design Descriptive laboratory study. Setting Research laboratory. Patients or Other Participants A total of 60 healthy volunteers (37 men, 23 women; age = 34.9 ± 8.9 years, height = 1.74 ± 0.08 m, mass = 70.9 ± 13.4 kg) with more than 6 months of experience wearing traditional or minimalist shoes were instructed to classify their foot-strike patterns. Intervention(s) Participants ran in their preferred shoes on an instrumented treadmill with 3-dimensional motion capture. Main Outcome Measure(s) Self-reported foot-strike patterns were compared with 2-dimensional video assessments. Runners were classified into 3 groups based on video assessment: traditional-shoe rear-foot strikers (TSR; n = 22), minimalist-shoe anterior-foot strikers (MSA; n = 21), and minimalist-shoe rear-foot strikers (MSR; n = 17). Ankle and knee negative angular work and average vertical-loading rates during stance phase were compared among groups. Results Only 41 (68.3%) runners reported foot-strike patterns that agreed with the video assessment (κ = 0.42, P < .001). The TSR runners demonstrated greater ankle-dorsiflexion and knee-extension negative work than MSA and MSR runners (P < .05). The MSA (P < .001) and MSR (P = .01) runners demonstrated greater ankle plantar-flexion negative work than TSR runners. The MSR runners demonstrated a greater average vertical-loading rate than MSA and TSR runners (P < .001). Conclusions Runners often cannot report their foot-strike patterns accurately and may not automatically adopt an anterior–foot-strike pattern after transitioning to minimalist running shoes. PMID:26098391

  18. Lower Extremity Biomechanics and Self-Reported Foot-Strike Patterns Among Runners in Traditional and Minimalist Shoes.

    PubMed

    Goss, Donald L; Lewek, Michael; Yu, Bing; Ware, William B; Teyhen, Deydre S; Gross, Michael T

    2015-02-19

    Context :  The injury incidence rate among runners is approximately 50%. Some individuals have advocated using an anterior-foot-strike pattern to reduce ground reaction forces and injury rates that they attribute to a rear-foot-strike pattern. The proportion of minimalist shoe wearers who adopt an anterior-foot-strike pattern remains unclear. Objective :  To evaluate the accuracy of self-reported foot-strike patterns, compare negative ankle- and knee-joint angular work among runners using different foot-strike patterns and wearing traditional or minimalist shoes, and describe average vertical-loading rates. Design :  Descriptive laboratory study. Setting :  Research laboratory. Patients or Other Participants :  A total of 60 healthy volunteers (37 men, 23 women; age = 34.9 ± 8.9 years, height = 1.74 ± 0.08 m, mass = 70.9 ± 13.4 kg) with more than 6 months of experience wearing traditional or minimalist shoes were instructed to classify their foot-strike patterns. Intervention(s) :  Participants ran in their preferred shoes on an instrumented treadmill with 3-dimensional motion capture. Main Outcome Measure(s) :  Self-reported foot-strike patterns were compared with 2-dimensional video assessments. Runners were classified into 3 groups based on video assessment: traditional-shoe rear-foot strikers (TSR; n = 22), minimalist-shoe anterior-foot strikers (MSA; n = 21), and minimalist-shoe rear-foot strikers (MSR; n = 17). Ankle and knee negative angular work and average vertical-loading rates during stance phase were compared among groups. Results :  Only 41 (68.3%) runners reported foot-strike patterns that agreed with the video assessment (κ = 0.42, P < .001). The TSR runners demonstrated greater ankle-dorsiflexion and knee-extension negative work than MSA and MSR runners (P < .05). The MSA (P < .001) and MSR (P = .01) runners demonstrated greater ankle plantar-flexion negative work than TSR runners. The MSR runners demonstrated a greater average vertical-loading rate than MSA and TSR runners (P < .001). Conclusions :  Runners often cannot report their foot-strike patterns accurately and may not automatically adopt an anterior-foot-strike pattern after transitioning to minimalist running shoes.

  19. Identification of dietary patterns associated with obesity in a nationally representative survey of Canadian adults: application of a priori, hybrid, and simplified dietary pattern techniques.

    PubMed

    Jessri, Mahsa; Wolfinger, Russell D; Lou, Wendy Y; L'Abbé, Mary R

    2017-03-01

    Background: Analyzing the effects of dietary patterns is an important approach for examining the complex role of nutrition in the etiology of obesity and chronic diseases. Objectives: The objectives of this study were to characterize the dietary patterns of Canadians with the use of a priori, hybrid, and simplified dietary pattern techniques, and to compare the associations of these patterns with obesity risk in individuals with and without chronic diseases (unhealthy and healthy obesity). Design: Dietary recalls from 11,748 participants (≥18 y of age) in the cross-sectional, nationally representative Canadian Community Health Survey 2.2 were used. A priori dietary pattern was characterized with the use of the previously validated 2015 Dietary Guidelines for Americans Adherence Index (DGAI). Weighted partial least squares (hybrid method) was used to derive an energy-dense (ED), high-fat (HF), low-fiber density (LFD) dietary pattern with the use of 38 food groups. The associations of derived dietary patterns with disease outcomes were then tested with the use of multinomial logistic regression. Results: An ED, HF, and LFD dietary pattern had high positive loadings for fast foods, carbonated drinks, and refined grains, and high negative loadings for whole fruits and vegetables (≥|0.17|). Food groups with a high loading were summed to form a simplified dietary pattern score. Moving from the first (healthiest) to the fourth (least healthy) quartiles of the ED, HF, and LFD pattern and the simplified dietary pattern scores was associated with increasingly elevated ORs for unhealthy obesity, with individuals in quartile 4 having an OR of 2.57 (95% CI: 1.75, 3.76) and 2.73 (95% CI: 1.88, 3.98), respectively ( P -trend < 0.0001). Individuals who adhered the most to the 2015 DGAI recommendations (quartile 4) had a 53% lower OR of unhealthy obesity ( P -trend < 0.0001). The associations of dietary patterns with healthy obesity and unhealthy nonobesity were weaker, albeit significant. Conclusions: Consuming an ED, HF, and LFD dietary pattern and lack of adherence to the recommendations of the 2015 DGAI were associated with a significantly higher risk of obesity with and without accompanying chronic diseases. © 2017 American Society for Nutrition.

  20. Defect tolerant transmission lithography mask

    DOEpatents

    Vernon, Stephen P.

    2000-01-01

    A transmission lithography mask that utilizes a transparent substrate or a partially transparent membrane as the active region of the mask. A reflective single layer or multilayer coating is deposited on the membrane surface facing the illumination system. The coating is selectively patterned (removed) to form transmissive (bright) regions. Structural imperfections and defects in the coating have negligible effect on the aerial image of the mask master pattern since the coating is used to reflect radiation out of the entrance pupil of the imaging system. Similarly, structural imperfections in the clear regions of the membrane have little influence on the amplitude or phase of the transmitted electromagnetic fields. Since the mask "discards," rather than absorbs, unwanted radiation, it has reduced optical absorption and reduced thermal loading as compared to conventional designs. For EUV applications, the mask circumvents the phase defect problem, and is independent of the thermal load during exposure.

  1. Baby Carriage: Infants Walking with Loads

    ERIC Educational Resources Information Center

    Garciaguirre, Jessie S.; Adolph, Karen E.; Shrout, Patrick E.

    2007-01-01

    Maintaining balance is a central problem for new walkers. To examine how infants cope with the additional balance control problems induced by load carriage, 14-month-olds were loaded with 15% of their body weight in shoulder-packs. Both symmetrical and asymmetrical loads disrupted alternating gait patterns and caused less mature footfall patterns.…

  2. Application of Classification Methods for Forecasting Mid-Term Power Load Patterns

    NASA Astrophysics Data System (ADS)

    Piao, Minghao; Lee, Heon Gyu; Park, Jin Hyoung; Ryu, Keun Ho

    Currently an automated methodology based on data mining techniques is presented for the prediction of customer load patterns in long duration load profiles. The proposed approach in this paper consists of three stages: (i) data preprocessing: noise or outlier is removed and the continuous attribute-valued features are transformed to discrete values, (ii) cluster analysis: k-means clustering is used to create load pattern classes and the representative load profiles for each class and (iii) classification: we evaluated several supervised learning methods in order to select a suitable prediction method. According to the proposed methodology, power load measured from AMR (automatic meter reading) system, as well as customer indexes, were used as inputs for clustering. The output of clustering was the classification of representative load profiles (or classes). In order to evaluate the result of forecasting load patterns, the several classification methods were applied on a set of high voltage customers of the Korea power system and derived class labels from clustering and other features are used as input to produce classifiers. Lastly, the result of our experiments was presented.

  3. Development of albumin-based nanoparticles for the delivery of abacavir.

    PubMed

    Wilson, Barnabas; Paladugu, Latishkumar; Priyadarshini, S R Brahmani; Jenita, J Josephine Leno

    2015-11-01

    The study was designed to prepare and evaluate albumin nanoparticles containing antiviral drug abacavir sulphate. Various batches of albumin nanoparticles containing abacavir sulphate were prepared by desolvation method. The abacavir loaded particles were characterized for their yield, percentage of drug loading, surface morphology, particle size, surface charge, pattern of in vitro drug release and release mechanism studies. Drug loading ranged from 1.2 to 5.9%w/w. The mean particle size and the surface charge were 418.2nm and -40.8mV respectively. The in vitro drug release varied between 38.73 and 51.36%w/w for 24h. The n value for Korsmeyer-Peppas was 0.425 indicating Fickian type drug release. The preliminary findings indicated that albumin nanoparticles of abacavir can be prepared by desolvation method with good yield, high drug loading and sustained release. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A comparison of wire- and Kevlar-reinforced provisional restorations.

    PubMed

    Powell, D B; Nicholls, J I; Yuodelis, R A; Strygler, H

    1994-01-01

    Stainless steel wire 0.036 inch in diameter was compared with Kevlar 49 polyaramid fiber as a means of reinforcing a four-unit posterior provisional fixed restoration with 2 pontics. Three reinforcement patterns for wire and two for Kevlar 49 were evaluated and compared with the control, which was an unreinforced provisional restoration. A central tensile load was placed on the cemented provisional restoration and the variables were measured: (1) the initial stiffness; (2) the load at initial fracture; and (3) the unit toughness, or the energy stored in the beam at a point where the load had undergone a 1.0-mm deflection. Statistical analysis showed (1) the bent wire configuration had a significantly higher initial stiffness (P < or = .05), (2) there was no difference between designs for load at initial fracture, and (3) the bent wire had a significantly higher unit toughness value (P < or = .05).

  5. Pupillary response to complex interdependent tasks: A cognitive-load theory perspective.

    PubMed

    Mitra, Ritayan; McNeal, Karen S; Bondell, Howard D

    2017-10-01

    Pupil dilation is known to indicate cognitive load. In this study, we looked at the average pupillary responses of a cohort of 29 undergraduate students during graphical problem solving. Three questions were asked, based on the same graphical input. The questions were interdependent and comprised multiple steps. We propose a novel way of analyzing pupillometry data for such tasks on the basis of eye fixations, a commonly used eyetracking parameter. We found that pupil diameter increased during the solution process. However, pupil diameter did not always reflect the expected cognitive load. This result was studied within a cognitive-load theory model. Higher-performing students showed evidence of germane load and schema creation, indicating use of the interdependent nature of the tasks to inform their problem-solving process. However, lower-performing students did not recognize the interdependent nature of the tasks and solved each problem independently, which was expressed in a markedly different pupillary response pattern. We discuss the import of our findings for instructional design.

  6. Changes in speckle patterns induced by load application onto an optical fiber and its possible application for sensing purpose

    NASA Astrophysics Data System (ADS)

    Hasegawa, Makoto; Okumura, Jyun-ya; Hyuga, Akio

    2015-08-01

    Speckle patterns to be observed in an output light spot from an optical fiber are known to be changed due to external disturbances applied onto the optical fiber. In order to investigate possibilities of utilizing such changes in speckle patterns for sensing application, a certain load was applied onto a jacket-covered communication-grade multi-mode glass optical fiber through which laser beams emitted from a laser diode were propagating, and observed changes in speckle patterns in the output light spot from the optical fiber were investigated both as image data via a CCD camera and as an output voltage from a photovoltaic panel irradiated with the output light spot. The load was applied via a load application mechanism in which several ridges were provided onto opposite flat plates and a certain number of weights were placed there so that corrugated bending of the optical fiber was intentionally induced via load application due to the ridges. The obtained results showed that the number of speckles in the observed pattern in the output light spot as well as the output voltage from the photovoltaic panel irradiated with the output light spot showed decreases upon load application with relatively satisfactory repeatability. When the load was reduced, i.e., the weights were removed, the number of speckles then showed recovery. These results indicate there is a certain possibility of utilizing changes in speckle patterns for sensing of load application onto the optical fiber.

  7. Pretest predictions of the Fast Flux Test Facility Passive Safety Test Phase IIB transients using United States derived computer codes and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heard, F.J.; Harris, R.A.; Padilla, A.

    The SASSYS/SAS4A systems analysis code was used to simulate a series of unprotected loss of flow (ULOF) tests planned at the Fast Flux Test Facility (FFTF). The subject tests were designed to investigate the transient performance of the FFTF during various ULOF scenarios for two different loading patterns designed to produce extremes in the assembly load pad clearance and the direction of the initial assembly bows. The tests are part of an international program designed to extend the existing data base on the performance of liquid metal reactors (LMR). The analyses demonstrate that a wide range of power-to-flow ratios canmore » be reached during the transients and, therefore, will yield valuable data on the dynamic character of the structural feedbacks in LMRS. These analyses will be repeated once the actual FFTF core loadings for the tests are available. These predictions, similar ones obtained by other international participants in the FFTF program, and post-test analyses will be used to upgrade and further verify the computer codes used to predict the behavior of LMRS.« less

  8. Testing and Modeling of a 3-MW Wind Turbine Using Fully Coupled Simulation Codes (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaCava, W.; Guo, Y.; Van Dam, J.

    This poster describes the NREL/Alstom Wind testing and model verification of the Alstom 3-MW wind turbine located at NREL's National Wind Technology Center. NREL,in collaboration with ALSTOM Wind, is studying a 3-MW wind turbine installed at the National Wind Technology Center(NWTC). The project analyzes the turbine design using a state-of-the-art simulation code validated with detailed test data. This poster describes the testing and the model validation effort, and provides conclusions about the performance of the unique drive train configuration used in this wind turbine. The 3-MW machine has been operating at the NWTC since March 2011, and drive train measurementsmore » will be collected through the spring of 2012. The NWTC testing site has particularly turbulent wind patterns that allow for the measurement of large transient loads and the resulting turbine response. This poster describes the 3-MW turbine test project, the instrumentation installed, and the load cases captured. The design of a reliable wind turbine drive train increasingly relies on the use of advanced simulation to predict structural responses in a varying wind field. This poster presents a fully coupled, aero-elastic and dynamic model of the wind turbine. It also shows the methodology used to validate the model, including the use of measured tower modes, model-to-model comparisons of the power curve, and mainshaft bending predictions for various load cases. The drivetrain is designed to only transmit torque to the gearbox, eliminating non-torque moments that are known to cause gear misalignment. Preliminary results show that the drivetrain is able to divert bending loads in extreme loading cases, and that a significantly smaller bending moment is induced on the mainshaft compared to a three-point mounting design.« less

  9. Neighborhood Immigrant Acculturation and Diet among Hispanic Female Residents of NYC

    PubMed Central

    Park, Yoosun; Neckerman, Kathryn; Quinn, James; Weiss, Christopher; Jacobson, Judith; Rundle, Andrew

    2013-01-01

    Objective To identify predominant dietary patterns among Hispanic women and to determine whether adherence to dietary patterns is predicted by neighborhood level factors: linguistic isolation, poverty rate and the retail food environment. Design Cross-sectional analyses of predictors of adherence to dietary patterns identified from principle component analyses of data collected using the Study of Women’s Health Across the Nation (SWAN) food frequency questionnaire. Census data were used to measure poverty rates and the percent of Spanish speaking families in the neighborhood in which no one ≥ 14 years old spoke English very well (linguistic isolation) and the retail food environment was measured using business listings data. Setting New York City. Subjects 345 Hispanic women. Results Two major dietary patterns were identified: a healthy diet pattern loading high for vegetable, legumes, potato, fish, and other seafood which explained 17% of the variance in the FFQ data and an energy dense diet pattern loading high for red meat, poultry, pizza, french fries, and high energy drink, which explained 9% of the variance in the FFQ data. Adherence to the healthy diet pattern was positively associated with neighborhood linguistic isolation and negatively associated with neighborhood poverty. More fast food restaurants per Km2 in the neighborhood was significantly associated with lower adherence to the healthy diet. Adherence to the energy dense diet pattern was inversely, but not significantly, associated with neighborhood linguistic isolation. Conclusions These results are consistent with the hypothesis that living in immigrant enclaves is associated with healthy diet patterns among Hispanics. PMID:21414245

  10. Evaluation of Carburized and Ground Face Gears

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Handschuh, Robert F.; Heath, Gregory F.; Sheth, Vijay

    1999-01-01

    Experimental durability tests were performed on carburized and ground AIS19310 steel face gears. The tests were in support of a Defense Advanced Research Projects Agency (DARPA) Technology Reinvestment Program (TRP) to enhance face-gear technology. The tests were conducted in the NASA Glenn spiral-bevel-gear/face-gear test facility. Tests were run at 2300 rpm face gear speed and at loads of 64, 76, 88, 100, and 112-percent of the design torque of 377 N-m (3340 in-lb). The carburized and ground face gears demonstrated the required durability when run for ten-million cycles at each of the applied loads. Proper installation was critical for the successful operation of the spur pinions and face gears. A large amount of backlash produced tooth contact patterns that approached the inner-diameter edge of the face-gear tooth. Low backlash produced tooth contact patterns that approached the outer-diameter edge of the face-gear tooth. Measured backlashes in the range of 0.178 to 0.254 mm (0.007 to 0.010 in) produced acceptable tooth contact patterns.

  11. Multi level optimization of burnable poison utilization for advanced PWR fuel management

    NASA Astrophysics Data System (ADS)

    Yilmaz, Serkan

    The objective of this study was to develop an unique methodology and a practical tool for designing burnable poison (BP) pattern for a given PWR core. Two techniques were studied in developing this tool. First, the deterministic technique called Modified Power Shape Forced Diffusion (MPSFD) method followed by a fine tuning algorithm, based on some heuristic rules, was developed to achieve this goal. Second, an efficient and a practical genetic algorithm (GA) tool was developed and applied successfully to Burnable Poisons (BPs) placement optimization problem for a reference Three Mile Island-1 (TMI-1) core. This thesis presents the step by step progress in developing such a tool. The developed deterministic method appeared to perform as expected. The GA technique produced excellent BP designs. It was discovered that the Beginning of Cycle (BOC) Kinf of a BP fuel assembly (FA) design is a good filter to eliminate invalid BP designs created during the optimization process. By eliminating all BP designs having BOC Kinf above a set limit, the computational time was greatly reduced since the evaluation process with reactor physics calculations for an invalid solution is canceled. Moreover, the GA was applied to develop the BP loading pattern to minimize the total Gadolinium (Gd) amount in the core together with the residual binding at End-of-Cycle (EOC) and to keep the maximum peak pin power during core depletion and Soluble boron concentration at BOC both less than their limit values. The number of UO2/Gd2O3 pins and Gd 2O3 concentrations for each fresh fuel location in the core are the decision variables and the total amount of the Gd in the core and maximum peak pin power during core depletion are in the fitness functions. The use of different fitness function definition and forcing the solution movement towards to desired region in the solution space accelerated the GA runs. Special emphasize is given to minimizing the residual binding to increase core lifetime as well as minimizing the total Gd amount in the core. The GA code developed many good solutions that satisfy all of the design constraints. For these solutions, the EOC soluble boron concentration changes from 68.9 to 97.2 ppm. It is important to note that the difference of 28.3 ppm between the best and the worst solution in the good solutions region represent the potential of 12.5 Effective-Full-Power-Day (EPFD) savings in cycle length. As a comparison, the best BP loading design has 97.2 ppm soluble boron concentration at EOC while the BP loading with available vendors' U/Gd FA designs has 94.4 ppm SOB at EOC. It was estimated that the difference of 2.8 ppm reflected the potential savings of 1.25 EFPD in cycle length. Moreover, the total Gd amount was reduced by 6.89% in mass that provided extra savings in fuel cost compared to the BP loading pattern with available vendor's U/Gd FA designs. (Abstract shortened by UMI.)

  12. Advanced overlay analysis through design based metrology

    NASA Astrophysics Data System (ADS)

    Ji, Sunkeun; Yoo, Gyun; Jo, Gyoyeon; Kang, Hyunwoo; Park, Minwoo; Kim, Jungchan; Park, Chanha; Yang, Hyunjo; Yim, Donggyu; Maruyama, Kotaro; Park, Byungjun; Yamamoto, Masahiro

    2015-03-01

    As design rule shrink, overlay has been critical factor for semiconductor manufacturing. However, the overlay error which is determined by a conventional measurement with an overlay mark based on IBO and DBO often does not represent the physical placement error in the cell area. The mismatch may arise from the size or pitch difference between the overlay mark and the cell pattern. Pattern distortion caused by etching or CMP also can be a source of the mismatch. In 2014, we have demonstrated that method of overlay measurement in the cell area by using DBM (Design Based Metrology) tool has more accurate overlay value than conventional method by using an overlay mark. We have verified the reproducibility by measuring repeatable patterns in the cell area, and also demonstrated the reliability by comparing with CD-SEM data. We have focused overlay mismatching between overlay mark and cell area until now, further more we have concerned with the cell area having different pattern density and etch loading. There appears a phenomenon which has different overlay values on the cells with diverse patterning environment. In this paper, the overlay error was investigated from cell edge to center. For this experiment, we have verified several critical layers in DRAM by using improved(Better resolution and speed) DBM tool, NGR3520.

  13. Blood Pressure Control in Aging Predicts Cerebral Atrophy Related to Small-Vessel White Matter Lesions.

    PubMed

    Kern, Kyle C; Wright, Clinton B; Bergfield, Kaitlin L; Fitzhugh, Megan C; Chen, Kewei; Moeller, James R; Nabizadeh, Nooshin; Elkind, Mitchell S V; Sacco, Ralph L; Stern, Yaakov; DeCarli, Charles S; Alexander, Gene E

    2017-01-01

    Cerebral small-vessel damage manifests as white matter hyperintensities and cerebral atrophy on brain MRI and is associated with aging, cognitive decline and dementia. We sought to examine the interrelationship of these imaging biomarkers and the influence of hypertension in older individuals. We used a multivariate spatial covariance neuroimaging technique to localize the effects of white matter lesion load on regional gray matter volume and assessed the role of blood pressure control, age and education on this relationship. Using a case-control design matching for age, gender, and educational attainment we selected 64 participants with normal blood pressure, controlled hypertension or uncontrolled hypertension from the Northern Manhattan Study cohort. We applied gray matter voxel-based morphometry with the scaled subprofile model to (1) identify regional covariance patterns of gray matter volume differences associated with white matter lesion load, (2) compare this relationship across blood pressure groups, and (3) relate it to cognitive performance. In this group of participants aged 60-86 years, we identified a pattern of reduced gray matter volume associated with white matter lesion load in bilateral temporal-parietal regions with relative preservation of volume in the basal forebrain, thalami and cingulate cortex. This pattern was expressed most in the uncontrolled hypertension group and least in the normotensives, but was also more evident in older and more educated individuals. Expression of this pattern was associated with worse performance in executive function and memory. In summary, white matter lesions from small-vessel disease are associated with a regional pattern of gray matter atrophy that is mitigated by blood pressure control, exacerbated by aging, and associated with cognitive performance.

  14. Effect of seasonal changes in use patterns and cold inlet water temperature on water-heating loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrams, D.W.; Shedd, A.C.

    This paper presents long-term test data obtained in 20 commercial buildings and 16 residential sites. The information illustrates the effects of variations in hot water load determinants and the effect on energy use. It also is useful as a supplement to the load profiles presented in the ASHRAE Handbooks and other design references. The commercial facilities include supermarkets, fast-food restaurants, full-service restaurants, commercial kitchens, a motel, a nursing home, a hospital, a bakery, and laundry facilities. The residential sites ere selected to provide test sites with higher-than-average hot water use. They include 13 single-family detached residences, one 14-unit apartment building,more » and two apartment laundries. Test data are available at measurement intervals of 1 minute for the residential sites and 15 minutes for the commercial sites. Summary data in tabular and graphical form are presented for average daily volumetric hot water use and cold inlet water temperature. Measured cold inlet water temperature and volumetric hot water use figures are compared to values typically used for design and analysis. Conclusions are offered regarding the effect of cold water inlet temperature and variations in hot water use on water-heating load and energy use. Recommendations for the use of the information presented in water-heating system design, performance optimization, and performance analysis conclude the paper.« less

  15. Cumulative Socioeconomic Status Risk, Allostatic Load, and Adjustment: A Prospective Latent Profile Analysis With Contextual and Genetic Protective Factors

    PubMed Central

    Brody, Gene H.; Yu, Tianyi; Chen, Yi-fu; Kogan, Steven M.; Evans, Gary W.; Beach, Steven R. H.; Windle, Michael; Simons, Ronald L.; Gerrard, Meg; Gibbons, Frederick X.; Philibert, Robert A.

    2012-01-01

    The health disparities literature identified a common pattern among middle-aged African Americans that includes high rates of chronic disease along with low rates of psychiatric disorders despite exposure to high levels of cumulative SES risk. The current study was designed to test hypotheses about the developmental precursors to this pattern. Hypotheses were tested with a representative sample of 443 African American youths living in the rural South. Cumulative SES risk and protective processes were assessed at 11-13 years; psychological adjustment was assessed at ages 14-18 years; genotyping at the 5-HTTLPR was conducted at age 16 years; and allostatic load (AL) was assessed at age 19 years. A Latent Profile Analysis identified 5 profiles that evinced distinct patterns of SES risk, AL, and psychological adjustment, with 2 relatively large profiles designated as focal profiles: a physical health vulnerability profile characterized by high SES risk/high AL/low adjustment problems, and a resilient profile characterized by high SES risk/low AL/low adjustment problems. The physical health vulnerability profile mirrored the pattern found in the adult health disparities literature. Multinomial logistic regression analyses indicated that carrying an s allele at the 5-HTTLPR and receiving less peer support distinguished the physical health vulnerability profile from the resilient profile. Protective parenting and planful self-regulation distinguished both focal profiles from the other 3 profiles. The results suggest the public health importance of preventive interventions that enhance coping and reduce the effects of stress across childhood and adolescence. PMID:22709130

  16. Cumulative socioeconomic status risk, allostatic load, and adjustment: a prospective latent profile analysis with contextual and genetic protective factors.

    PubMed

    Brody, Gene H; Yu, Tianyi; Chen, Yi-fu; Kogan, Steven M; Evans, Gary W; Beach, Steven R H; Windle, Michael; Simons, Ronald L; Gerrard, Meg; Gibbons, Frederick X; Philibert, Robert A

    2013-05-01

    The health disparities literature has identified a common pattern among middle-aged African Americans that includes high rates of chronic disease along with low rates of psychiatric disorders despite exposure to high levels of cumulative socioeconomic status (SES) risk. The current study was designed to test hypotheses about the developmental precursors to this pattern. Hypotheses were tested with a representative sample of 443 African American youths living in the rural South. Cumulative SES risk and protective processes were assessed at ages 11-13 years; psychological adjustment was assessed at ages 14-18 years; genotyping at the 5-HTTLPR was conducted at age 16 years; and allostatic load (AL) was assessed at age 19 years. A latent profile analysis identified 5 profiles that evinced distinct patterns of SES risk, AL, and psychological adjustment, with 2 relatively large profiles designated as focal profiles: a physical health vulnerability profile characterized by high SES risk/high AL/low adjustment problems, and a resilient profile characterized by high SES risk/low AL/low adjustment problems. The physical health vulnerability profile mirrored the pattern found in the adult health disparities literature. Multinomial logistic regression analyses indicated that carrying an s allele at the 5-HTTLPR and receiving less peer support distinguished the physical health vulnerability profile from the resilient profile. Protective parenting and planful self-regulation distinguished both focal profiles from the other 3 profiles. The results suggest the public health importance of preventive interventions that enhance coping and reduce the effects of stress across childhood and adolescence.

  17. Cumulative Socioeconomic Status Risk, Allostatic Load, and Adjustment: A Prospective Latent Profile Analysis with Contextual and Genetic Protective Factors

    ERIC Educational Resources Information Center

    Brody, Gene H.; Yu, Tianyi; Chen, Yi-Fu; Kogan, Steven M.; Evans, Gary W.; Beach, Steven R. H.; Windle, Michael; Simons, Ronald L.; Gerrard, Meg; Gibbons, Frederick X.; Philibert, Robert A.

    2013-01-01

    The health disparities literature has identified a common pattern among middle-aged African Americans that includes high rates of chronic disease along with low rates of psychiatric disorders despite exposure to high levels of cumulative socioeconomic status (SES) risk. The current study was designed to test hypotheses about the developmental…

  18. Mechanical and biomechanical analysis of a linear piston design for angular-velocity-based orthotic control.

    PubMed

    Lemaire, Edward D; Samadi, Reza; Goudreau, Louis; Kofman, Jonathan

    2013-01-01

    A linear piston hydraulic angular-velocity-based control knee joint was designed for people with knee-extensor weakness to engage knee-flexion resistance when knee-flexion angular velocity reaches a preset threshold, such as during a stumble, but to otherwise allow free knee motion. During mechanical testing at the lowest angular-velocity threshold, the device engaged within 2 degrees knee flexion and resisted moment loads of over 150 Nm. The device completed 400,000 loading cycles without mechanical failure or wear that would affect function. Gait patterns of nondisabled participants were similar to normal at walking speeds that produced below-threshold knee angular velocities. Fast walking speeds, employed purposely to attain the angular-velocity threshold and cause knee-flexion resistance, reduced maximum knee flexion by approximately 25 degrees but did not lead to unsafe gait patterns in foot ground clearance during swing. In knee collapse tests, the device successfully engaged knee-flexion resistance and stopped knee flexion with peak knee moments of up to 235.6 Nm. The outcomes from this study support the potential for the linear piston hydraulic knee joint in knee and knee-ankle-foot orthoses for people with lower-limb weakness.

  19. Ground reaction forces on stairs. Part II: knee implant patients versus normals.

    PubMed

    Stacoff, Alex; Kramers-de Quervain, Inès A; Luder, Gerhard; List, Renate; Stüssi, Edgar

    2007-06-01

    The goal of this study was to compare selected parameters of vertical ground reaction forces (GRF) of good outcome patients with different prosthesis designs with a matched control group during level walking, stair ascent and descent. Forty subjects, 29 with three main implant designs (including four subjects with a passive knee flexion restriction), and 11 healthy controls were measured with 8-10 repetitions. Vertical ground reaction forces were measured during two consecutive steps with force plates embedded in the walkway and the staircase. Defined parameters of the force signals were used to compare the results of the test groups. The results show, that, postoperatively, good outcome patients produce gait patterns of the vertical ground reaction force which are comparable to normal healthy subjects with the exception of a few distinct differences: a significant reduction (p<0.05) in the vertical loading on the operated side during level walking at take-off, at weight acceptance and take-off during stair ascent of the normal stair. During stair descent, the patients did not reduce load on the operated side, but increased load variation and side-to-side asymmetry; thus, the mechanical loads on the implants were high, which may be important information with respect to loading protocols of knee implant simulators. No systematic differences in any of the test parameters were found between posterior cruciate-retaining (LCS MB and Innex CR) versus non-retaining (LCS RP and Innex UCOR) implant designs. The restricted group showed significant reductions (p<0.05) of several loading parameters as well as an increased side-to-side asymmetry. About one third of the force parameters of the good outcome patients showed a side-to-side asymmetry between two consecutive steps, which was over a proposed level of acceptance.

  20. Combined Loadings and Cross-Dimensional Loadings Timeliness of Presentation of Financial Statements of Local Government

    NASA Astrophysics Data System (ADS)

    Muda, I.; Dharsuky, A.; Siregar, H. S.; Sadalia, I.

    2017-03-01

    This study examines the pattern of readiness dimensional accuracy of financial statements of local government in North Sumatra with a routine pattern of two (2) months after the fiscal year ends and patterns of at least 3 (three) months after the fiscal year ends. This type of research is explanatory survey with quantitative methods. The population and the sample used is of local government officials serving local government financial reports. Combined Analysis And Cross-Loadings Loadings are used with statistical tools WarpPLS. The results showed that there was a pattern that varies above dimensional accuracy of the financial statements of local government in North Sumatra.

  1. Fatigue induced changes in conical implant-abutment connections.

    PubMed

    Blum, Kai; Wiest, Wolfram; Fella, Christian; Balles, Andreas; Dittmann, Jonas; Rack, Alexander; Maier, Dominik; Thomann, Ralf; Spies, Benedikt Christopher; Kohal, Ralf Joachim; Zabler, Simon; Nelson, Katja

    2015-11-01

    Based on the current lack of data and understanding of the wear behavior of dental two-piece implants, this study aims for evaluating the microgap formation and wear pattern of different implants in the course of cyclic loading. Several implant systems with different conical implant-abutment interfaces were purchased. The implants were first evaluated using synchrotron X-ray high-resolution radiography (SRX) and scanning electron microscopy (SEM). The implant-abutment assemblies were then subjected to cyclic loading at 98N and their microgap was evaluated after 100,000, 200,000 and 1 million cycles using SRX, synchrotron micro-tomography (μCT). Wear mechanisms of the implant-abutment connection (IAC) after 200,000 cycles and 1 million cycles were further characterized using SEM. All implants exhibit a microgap between the implant and abutment prior to loading. The gap size increased with cyclic loading with its changes being significantly higher within the first 200,000 cycles. Wear was seen in all implants regardless of their interface design. The wear pattern comprised adhesive wear and fretting. Wear behavior changed when a different mounting medium was used (brass vs. polymer). A micromotion of the abutment during cyclic loading can induce wear and wear particles in conical dental implant systems. This feature accompanied with the formation of a microgap at the IAC is highly relevant for the longevity of the implants. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Training and cockpit design to promote expert performance

    NASA Technical Reports Server (NTRS)

    Chappell, Sheryl L.

    1991-01-01

    The behavior of expert pilots in familiar situations is explored and the implications for better training programs and cockpit designs are stated. Experts in familiar operational situations performing highly practiced tasks are said to recognize and respond to complex situations using pattern recognition or intuition. For some tasks this class of behaviors is desirable; performance can be improved by reducing cognitive load and increasing speed and accuracy. Part-task training, training for monitoring and techniques for the transfer of knowledge can facilitate the development of these skills. Methods for promoting pattern recognition through pilot-aircraft interface design include the use of spatial presentations of information and providing triggering events. In some instances, the familiar, well-practiced behavior is not appropriate and it is desirable to prevent the response. When prevention is necessary, barriers can be constructed in the interface to remind the pilot of the inappropriateness of the response.

  3. Comparison of load-bearing capacity of direct resin-bonded fiber-reinforced composite FPDs with four framework designs.

    PubMed

    Xie, Qiufei; Lassila, Lippo V J; Vallittu, Pekka K

    2007-07-01

    This in vitro study was aimed to compare the fracture resistance of directly fabricated inlay-retained fiber-reinforced composite (FRC) fixed partial dentures (FPDs) with four types of framework designs. Forty-eight directly fabricated inlay retained FPDs were made of FRC and particulate resin composite (everStick/Tetric flow and Ceram). Extracted human mandibular first premolars and first molars were as abutments. The following framework designs were tested: in the Group A (control group), the framework was made of two prepregs of unidirectional glass FRC; the Group B, two prepregs in pontic portion were covered with one layer of multidirectional fiber veil FRC; the Group C, the FRC prepregs were covered in pontic portion with four short unidirectional FRC pieces along the main prepregs; in Group D, one short unidirectional FRC prepregs were placed on the main prepregs in 90 degrees angle to the main framework. After thermal cycling, FPDs of each group (n=12) were randomly divided into two subgroups (n=6). Fracture test was performed at the universal testing machine (1mm/min) where FPDs were loaded from the occlusal direction to the occlusal fossa or to the buccal cusp. Failure patterns were observed with stereomicroscope. Median and 25%/75% percentile values were calculated and nonparametric analysis was performed. Compared with three other framework designs, the FPDs in Group D showed the highest resistance when loading to the occlusal fossa, with maximum load of 2,353.8N (25%/75%: 2,155.5/2,500.0) (p=0.000, 0.000, and 0.005 for compared with Group A, B, and C). The same group showed also higher resistance when loaded to the buccal cusp (1,416.3N (1,409.2/1,480.8)) if compared to the FPDs of the Group A and Group C (p=0.044, 0.010). In general the FPDs showed higher resistant to loading at the occlusal fossa (p<0.05). This in vitro study showed that inlay-retained FRC FPD constructed with direct technique provided high fracture resistance. The framework design that provided support for the veneering composite of the pontic contributed to the highest load-bearing capacity even when loaded to the buccal cusp.

  4. The influence of gender-specific loading patterns of the stop-jump task on anterior cruciate ligament strain.

    PubMed

    Weinhold, Paul S; Stewart, Jason-Dennis N; Liu, Hsin-Yi; Lin, Cheng-Feng; Garrett, William E; Yu, Bing

    2007-08-01

    Studies have shown that women are at higher risk of sustaining noncontact anterior cruciate ligament (ACL) injuries in specific sports. Recent gait studies of athletic tasks have documented that gender differences in knee movement, muscle activation, and external loading patterns exist. The objective of this study was to determine in a knee cadaver model if application of female-specific loading and movement patterns characterised in vivo for a stop-jump task cause higher ACL strains than male patterns. Gender-specific loading patterns of the landing phase of the vertical stop-jump task were applied to seven cadaver knees using published kinetic/kinematic results for recreational athletes. Loads applied consecutively included: tibial compression, quadriceps, hamstrings, external posterior tibial shear, and tibial torque. Knee flexion was fixed based on the kinematic data. Strain of the ACL was monitored by means of a differential variable reluctance transducer installed on the anterior-medial bundle of the ACL. The ACL strain was significantly increased (P<0.05) for the female loading pattern relative to the male loading pattern after the posterior tibial shear force was applied, and showed a similar trend (P=0.1) to be increased after the final tibial torque was applied. This study suggests that female motor control strategies used during the stop-jump task may place higher strains on the ACL than male strategies, thus putting females at greater risk of ACL injury. We believe these results suggest the potential effectiveness of using training programs to modify motor control strategies and thus modify the risk of injury.

  5. A Quadruped Robot Exhibiting Spontaneous Gait Transitions from Walking to Trotting to Galloping.

    PubMed

    Owaki, Dai; Ishiguro, Akio

    2017-03-21

    The manner in which quadrupeds change their locomotive patterns-walking, trotting, and galloping-with changing speed is poorly understood. In this paper, we provide evidence for interlimb coordination during gait transitions using a quadruped robot for which coordination between the legs can be self-organized through a simple "central pattern generator" (CPG) model. We demonstrate spontaneous gait transitions between energy-efficient patterns by changing only the parameter related to speed. Interlimb coordination was achieved with the use of local load sensing only without any preprogrammed patterns. Our model exploits physical communication through the body, suggesting that knowledge of physical communication is required to understand the leg coordination mechanism in legged animals and to establish design principles for legged robots that can reproduce flexible and efficient locomotion.

  6. Design of Multistable Origami Structures

    NASA Astrophysics Data System (ADS)

    Gillman, Andrew; Fuchi, Kazuko; Bazzan, Giorgio; Reich, Gregory; Alyanak, Edward; Buskohl, Philip

    Origami is being transformed from an art to a mathematically robust method for device design in a variety of scientific applications. These structures often require multiple stable configurations, e.g. efficient well-controlled deployment. However, the discovery of origami structures with mechanical instabilities is challenging given the complex geometric nonlinearities and the large design space to investigate. To address this challenge, we have developed a topology optimization framework for discovering origami fold patterns that realize stable and metastable positions. The objective function targets both the desired stable positions and nonlinear loading profiles of specific vertices in the origami structure. Multistable compliant structures have been shown to offer advantages in their stability and efficiency, and certain origami fold patterns exhibit multistable behavior. Building on this previous work of single vertex multistability analysis, e.g. waterbomb origami pattern, we are expanding the solution set of multistable mechanisms to include multiple vertices and a broader set of reference configurations. Collectively, these results enable an initial classification of geometry-induced mechanical instabilities that can be programmed into active material systems. This work was supported by the Air Force Office of Scientific Research.

  7. Computational Fluid Dynamics (CFD) Analysis for the Reduction of Impeller Discharge Flow Distortion

    NASA Technical Reports Server (NTRS)

    Garcia, R.; McConnaughey, P. K.; Eastland, A.

    1993-01-01

    The use of Computational Fluid Dynamics (CFD) in the design and analysis of high performance rocket engine pumps has increased in recent years. This increase has been aided by the activities of the Marshall Space Flight Center (MSFC) Pump Stage Technology Team (PSTT). The team's goals include assessing the accuracy and efficiency of several methodologies and then applying the appropriate methodology(s) to understand and improve the flow inside a pump. The PSTT's objectives, team membership, and past activities are discussed in Garcia1 and Garcia2. The PSTT is one of three teams that form the NASA/MSFC CFD Consortium for Applications in Propulsion Technology (McConnaughey3). The PSTT first applied CFD in the design of the baseline consortium impeller. This impeller was designed for the Space Transportation Main Engine's (STME) fuel turbopump. The STME fuel pump was designed with three impeller stages because a two-stage design was deemed to pose a high developmental risk. The PSTT used CFD to design an impeller whose performance allowed for a two-stage STME fuel pump design. The availability of this design would have lead to a reduction in parts, weight, and cost had the STME reached production. One sample of the baseline consortium impeller was manufactured and tested in a water rig. The test data showed that the impeller performance was as predicted and that a two-stage design for the STME fuel pump was possible with minimal risk. The test data also verified another CFD predicted characteristic of the design that was not desirable. The classical 'jet-wake' pattern at the impeller discharge was strengthened by two aspects of the design: by the high head coefficient necessary for the required pressure rise and by the relatively few impeller exit blades, 12, necessary to reduce manufacturing cost. This 'jet-wake pattern produces an unsteady loading on the diffuser vanes and has, in past rocket engine programs, lead to diffuser structural failure. In industrial applications, this problem is typically avoided by increasing the space between the impeller and the diffuser to allow the dissipation of this pattern and, hence, the reduction of diffuser vane unsteady loading. This approach leads to small performance losses and, more importantly in rocket engine applications, to significant increases in the pump's size and weight. This latter consideration typically makes this approach unacceptable in high performance rocket engines.

  8. Rationale, principles and experimental evaluation of the concept of soft stabilization.

    PubMed

    Mulholland, Robert C; Sengupta, Dilip K

    2002-10-01

    The apparent clinical success of spinal stabilization methods that restrict rather than abolish movement in relieving mechanical back pain indicates that the concept of the aetiology of back pain should be reviewed. Further understanding of how degeneration affects disc biomechanics, and an understanding of how current soft stabilization systems alters them, may allow us to define more precisely what are the essential requirements of an ideal soft stabilization system. It appears that abnormal patterns of loading rather than abnormal movement are the reason that disc degeneration causes back pain in some patients. Abnormal load transmission is the principal cause of pain in osteoarthritic joints, and both osteotomy and, indeed, joint replacement succeed because they alter the load transmission across the joint. This concept is supported by the fact that abnormal patterns of stress distribution measured across the disc correlate with painful discs on discography. Clinically, it is often noted that back pain is primarily related to position or posture, rather than movement of the lumbar spine. Clinical success after solid fusion is unpredictable because it does not necessarily prevent painful loading across the disc, and also it may interfere with maintenance of sagittal balance in varying postures. The Graf ligament restricted flexion, and was modestly successful. It unfortunately increased the load over the posterior annulus. The Dynesys system reduces movement both in flexion and extension, and appears to be more successful. However, often it also unloads the disc to a degree that is unpredictable. The authors believe that this unloading of the disc is an important feature of a flexible stabilization system. A new a design of a flexible stabilization system has recently been described in an in vitro study, which unloads the disc by introduction of a load-sharing fulcrum near the axis of movement together with an elastic posterior ligament. This design produces maximal unloading of the disc, whilst allowing a restricted range of movement, which serves the important purpose of allowing the patient to maintain sagittal balance in varying postures.

  9. Study on loading coefficient in steam explosion process of corn stalk.

    PubMed

    Sui, Wenjie; Chen, Hongzhang

    2015-03-01

    The object of this work was to evaluate the effect of loading coefficient on steam explosion process and efficacy of corn stalk. Loading coefficient's relation with loading pattern and material property was first revealed, then its effect on transfer process and pretreatment efficacy of steam explosion was assessed by established models and enzymatic hydrolysis tests, respectively, in order to propose its optimization strategy for improving the process economy. Results showed that loading coefficient was mainly determined by loading pattern, moisture content and chip size. Both compact loading pattern and low moisture content improved the energy efficiency of steam explosion pretreatment and overall sugar yield of pretreated materials, indicating that they are desirable to improve the process economy. Pretreatment of small chip size showed opposite effects in pretreatment energy efficiency and enzymatic hydrolysis performance, thus its optimization should be balanced in investigated aspects according to further techno-economical evaluation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Fuel assembly design for APR1400 with low CBC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hah, Chang Joo, E-mail: changhah@kings.ac.kr

    2015-04-29

    APR 1400 is a PWR (Pressurized Water Reactor) with rated power of 3983 MWth and 241 assemblies. Recently, demand for extremely longer cycle up to 24 months is increasing with challenge of higher critical boron concentration (CBC). In this paper, assembly design method of selecting Gd-rods is introduced to reduce CBC. The purpose of the method is to lower the critical boron concentration of the preliminary core loading pattern (PLP), and consequently to achieve more negative or less positive moderator temperature coefficient (MTC). In this method, both the ratio of the number of low-Gd rod to the number of high-Gdmore » rod (r) and assembly average Gd wt% (w) are the decision variables. The target function is the amount of soluble boron concentration reduction, which can be converted to Δk{sub TARGET}. A set of new designed fuel assembly satisfies an objective function, min [f=∑{sub i}(Δk{sub FA}−Δk{sub i})], and enables a final loading pattern to reach a target CBC. The constraints required to determine a set of Δk are physically realizable pair, (r,w), and the sum of Δk of new designed assemblies as close to Δk{sub TARGET} as possible. New Gd-bearing assemblies selected based on valid pairs of (r,w) are replaced with existing assemblies in a PLP. This design methodology is applied to Shin-Kori Unit 3 Cycle 1 used as a reference model. CASMO-3/MASTER code is used for depletion calculation. CASMO-3/MASTER calculations with new designed assemblies produce lower CBC than the expected CBC, proving that the proposed method works successful.« less

  11. Acoustic fatigue: Overview of activities at NASA Langley

    NASA Technical Reports Server (NTRS)

    Mixson, John S.; Roussos, Louis A.

    1987-01-01

    A number of aircraft and spacecraft configurations are being considered for future development. These include high-speed turboprop aircraft, advanced vertical take-off and landing fighter aircraft, and aerospace planes for hypersonic intercontinental cruise or flight to orbit and return. Review of the acoustic environment expected for these vehicles indicates levels high enough that acoustic fatigue must be considered. Unfortunately, the sonic fatique design technology used for current aircraft may not be adequate for these future vehicles. This has resulted in renewed emphasis on acoustic fatigue research at the NASA Langley Research Center. The overall objective of the Langley program is to develop methods and information for design of aerospace vehicles that will resist acoustic fatigue. The program includes definition of the acoustic loads acting on structures due to exhaust jets of boundary layers, and subsequent determination of the stresses within the structure due to these acoustic loads. Material fatigue associated with the high frequency structural stress reversal patterns resulting from acoustic loadings is considered to be an area requiring study, but no activity is currently underway.

  12. Thermo-mechanical toner transfer for high-quality digital image correlation speckle patterns

    NASA Astrophysics Data System (ADS)

    Mazzoleni, Paolo; Zappa, Emanuele; Matta, Fabio; Sutton, Michael A.

    2015-12-01

    The accuracy and spatial resolution of full-field deformation measurements performed through digital image correlation are greatly affected by the frequency content of the speckle pattern, which can be effectively controlled using particles with well-defined and consistent shape, size and spacing. This paper introduces a novel toner-transfer technique to impress a well-defined and repeatable speckle pattern on plane and curved surfaces of metallic and cement composite specimens. The speckle pattern is numerically designed, printed on paper using a standard laser printer, and transferred onto the measurement surface via a thermo-mechanical process. The tuning procedure to compensate for the difference between designed and toner-transferred actual speckle size is presented. Based on this evidence, the applicability of the technique is discussed with respect to surface material, dimensions and geometry. Proof of concept of the proposed toner-transfer technique is then demonstrated for the case of a quenched and partitioned welded steel plate subjected to uniaxial tensile loading, and for an aluminum plate exposed to temperatures up to 70% of the melting point of aluminum and past the melting point of typical printer toner powder.

  13. Direct measurement of hoop strains in the intact and torn human medial meniscus.

    PubMed

    Jones, R Spencer; Keene, G C R; Learmonth, D J A; Bickerstaff, D; Nawana, N S; Costi, J J; Pearcy, M J

    1996-07-01

    OBJECTIVE: To measure the circumferential or hoop strains generated in the medial meniscus during loading of the knee joint and to examine the effect of longitudinal and radial tears in the meniscus on these strain values. DESIGN: An in vitro investigation measuring the circumferential strains in the medial menisci of cadaveric human knees as they were loaded in a materials testing machine. BACKGROUND: The menisci transmit approximately 50% of the load through the knee, the rest being transmitted by direct contact of the articular cartilage. Damage to the menisci will alter the pattern of load transmission as will meniscectomy. This study examined the changes in the mechanics of the meniscus in situ as a result of simulated tears to assess the effect of its load carrying capacity and the implications of surgery to remove part or all of a damaged meniscus. METHODS: Nineteen human cadaveric knees were tested. Windows were made in the joint capsule and strain gauges inserted into the anterior, middle and posterior sections of the medial meniscus. The knees were then loaded to three times body weight at speeds of 50 and 500 mm/min, with the knee joint at 0 degrees and 30 degrees of flexion. The tests were repeated following the creation of a longitudinal or a radial tear in the meniscus. RESULTS: The intact menisci showed significantly less strain in the posterior section compared to the anterior and middle sections (P < 0.003, with strains of 1.54%, 2.86% and 2.65% respectively). With a longitudinal tear this pattern changed with strains decreasing anteriorly and increasing posteriorly. There were also significant differences at different angles of knee joint flexion not seen in the intact meniscus. 50% radial tears reduced the strains anteriorly whilst a complete radial tear completely defunctioned the meniscus. CONCLUSIONS: This study has shown that there are significantly different hoop strains produced in different sections of the medial meniscus under load and the patterns of strain distribution are disturbed by meniscal tears. RELEVANCE: These results provide important data for mathematical models which must include non-uniform behaviour. They also have implications for the surgical management of torn menisci. Undamaged portions should be preserved and the integrity of the circumferential fibres maintained to ensure the menisci retain a load bearing capability.

  14. Effect of core thickness differences on post-fatigue indentation fracture resistance of veneered zirconia crowns.

    PubMed

    Alhasanyah, Abdulrahman; Vaidyanathan, Tritala K; Flinton, Robert J

    2013-07-01

    Despite the excellent esthetics of veneered zirconia crowns, the incidence of chipping and fracture of veneer porcelain on zirconia crowns has been recognized to be higher than in metal ceramic crowns. The objective of this investigation was to study the effect of selected variations in core thickness on the post-fatigue fracture resistance of veneer porcelain on zirconia crowns. Zirconia crowns for veneering were prepared with three thickness designs of (a) uniform 0.6-mm thick core (group A), (b) extra-thick 1.7 mm occlusal core support (group B), and (c) uniform 1.2-mm thick core (group C). The copings were virtually designed and milled by the CAD/CAM technique. Metal ceramic copings (group D) with the same design as in group C were used as controls. A sample size of N = 20 was used for each group. The copings were veneered with compatible porcelain and fatigue tested under a sinusoidal loading regimen. Loading was done with a 200 N maximum force amplitude under Hertzian axial loading conditions at the center of the crowns using a spherical tungsten carbide indenter. After 100,000 fatigue cycles, the crowns were axially loaded to fracture and maximum load levels before fracture was recorded. One-way ANOVA (P < 0.05) and post hoc Tukey tests (α = 0.05) were used to determine significant differences between means. The mean fracture failure load of group B was not significantly different from that of control group D. In contrast, the mean failure loads of groups A and C were significantly lower than that of control group D. Failure patterns also indicated distinct differences in failure mode distributions. The results suggest that proper occlusal core support improves veneer chipping fracture resistance in zirconia crowns. Extra-thick occlusal core support for porcelain veneer may significantly reduce the veneer chipping and fracture of zirconia crowns. This is suggested as an important consideration in the design of copings for zirconia crowns. © 2013 by the American College of Prosthodontists.

  15. Distributed patterns of activity in sensory cortex reflect the precision of multiple items maintained in visual short-term memory.

    PubMed

    Emrich, Stephen M; Riggall, Adam C; Larocque, Joshua J; Postle, Bradley R

    2013-04-10

    Traditionally, load sensitivity of sustained, elevated activity has been taken as an index of storage for a limited number of items in visual short-term memory (VSTM). Recently, studies have demonstrated that the contents of a single item held in VSTM can be decoded from early visual cortex, despite the fact that these areas do not exhibit elevated, sustained activity. It is unknown, however, whether the patterns of neural activity decoded from sensory cortex change as a function of load, as one would expect from a region storing multiple representations. Here, we use multivoxel pattern analysis to examine the neural representations of VSTM in humans across multiple memory loads. In an important extension of previous findings, our results demonstrate that the contents of VSTM can be decoded from areas that exhibit a transient response to visual stimuli, but not from regions that exhibit elevated, sustained load-sensitive delay-period activity. Moreover, the neural information present in these transiently activated areas decreases significantly with increasing load, indicating load sensitivity of the patterns of activity that support VSTM maintenance. Importantly, the decrease in classification performance as a function of load is correlated with within-subject changes in mnemonic resolution. These findings indicate that distributed patterns of neural activity in putatively sensory visual cortex support the representation and precision of information in VSTM.

  16. Development of a prototype commonality analysis tool for use in space programs

    NASA Technical Reports Server (NTRS)

    Yeager, Dorian P.

    1988-01-01

    A software tool to aid in performing commonality analyses, called Commonality Analysis Problem Solver (CAPS), was designed, and a prototype version (CAPS 1.0) was implemented and tested. The CAPS 1.0 runs in an MS-DOS or IBM PC-DOS environment. The CAPS is designed around a simple input language which provides a natural syntax for the description of feasibility constraints. It provides its users with the ability to load a database representing a set of design items, describe the feasibility constraints on items in that database, and do a comprehensive cost analysis to find the most economical substitution pattern.

  17. Design and fabrication of a microstrip patch antenna with a low radar cross section in the X-band

    NASA Astrophysics Data System (ADS)

    Jang, Hong-Kyu; Lee, Won-Jun; Kim, Chun-Gon

    2011-01-01

    In this study, the authors developed a radar absorbing method to reduce the antenna radar cross section (RCS) without any loss of antenna performance. The new method was based upon an electromagnetic bandgap (EBG) absorber using conducting polymer (CP). First, a microstrip patch antenna was made by using a copper film and glass/epoxy composite materials, which are typically used for load-bearing structures, such as aircraft and other vehicles. Then, CP EBG patterns were also designed that had a 90% electromagnetic (EM) wave absorbing performance within the X-band (8.2-12.4 GHz). Finally, the CP EBG patterns were printed on the top surface of the microstrip patch antenna. The measured radar absorbing performance of the fabricated patch antenna showed that the frontal RCS of the antenna declined by nearly 95% at 10 GHz frequency while the CP EBG patterns had almost no effect on the antenna's performance.

  18. [Preparation and in vitro release characteristics of vincristine sulphate loaded poly (butylcyanoacrylate) nanoparticles].

    PubMed

    Tan, Rong; Liu, Ying; Feng, Nianping; Zhao, Jihui

    2011-06-01

    To prepare vincristine sulphate loaded poly (butylcyanoacrylate) nanoparticles (VCR-PBCA-NPs) and to investigate the in vitro release charactersitics. VCR-PBCA-NPs were prepared by emulsion polymerization method, and characterized for morphology, particle size, drug encapsulation efficiency and loading efficiency. The formulation was optimized using central composite design and response surface methodology. In vitro release study of VCR-PBCA-NPs was performed by dialysis technique. Model fitting was used to determine the kinetics and to discuss the mechanism. The nanoparticles were spherical and uniform with a mean diameter of (98.9 +/- 3.05) nm. The drug encapsulation efficiency and loading efficiency were (55.23 +/- 0.96)% and (7.87 +/- 0.11)%, respectively. In vitro release results showed that 63.66% of VCR was released from VCR-PBCA-NPs in 4 h, and the Weibull model fitted VCR release pattern best. The VCR-PBCA-NPs prepared in this study showed sustained release compared with VCR solution.

  19. Knee Joint Loading during Gait in Healthy Controls and Individuals with Knee Osteoarthritis

    PubMed Central

    Kumar, Deepak; Manal, Kurt T.; Rudolph, Katherine S.

    2013-01-01

    Objective People with knee osteoarthritis (OA) are thought to walk with high loads at the knee which are yet to be quantfied using modeling techniques that account for subject specific EMG patterns, kinematics and kinetics. The objective was to estimate medial and lateral loading for people with knee OA and controls using an approach that is sensitive to subject specific muscle activation patterns. Methods 16 OA and 12 control (C) subjects walked while kinematic, kinetic and EMG data were collected. Muscle forces were calculated using an EMG-Driven model and loading was calculated by balancing the external moments with internal muscle and contact forces Results OA subjects walked slower and had greater laxity, static and dynamic varus alignment, less flexion and greater knee adduction moment (KAM). Loading (normalized to body weight) was no different between the groups but OA subjects had greater absolute medial load than controls and maintained a greater %total load on the medial compartment. These patterns were associated with body mass, sagittal and frontal plane moments, static alignment and close to signficance for dynamic alignment. Lateral compartment unloading during mid-late stance was observed in 50% of OA subjects. Conclusions Loading for control subjects was similar to data from instrumented prostheses. Knee OA subjects had high medial contact loads in early stance and half of the OA cohort demonstared lateral compartment lift-off. Results suggest that interventions aimed at reducing body weight and dynamic malalignment might be effective in reducing medial compartment loading and establishing normal medio-lateral load sharing patterns. PMID:23182814

  20. Immediate effects of modified landing pattern on a probabilistic tibial stress fracture model in runners.

    PubMed

    Chen, T L; An, W W; Chan, Z Y S; Au, I P H; Zhang, Z H; Cheung, R T H

    2016-03-01

    Tibial stress fracture is a common injury in runners. This condition has been associated with increased impact loading. Since vertical loading rates are related to the landing pattern, many heelstrike runners attempt to modify their footfalls for a lower risk of tibial stress fracture. Such effect of modified landing pattern remains unknown. This study examined the immediate effects of landing pattern modification on the probability of tibial stress fracture. Fourteen experienced heelstrike runners ran on an instrumented treadmill and they were given augmented feedback for landing pattern switch. We measured their running kinematics and kinetics during different landing patterns. Ankle joint contact force and peak tibial strains were estimated using computational models. We used an established mathematical model to determine the effect of landing pattern on stress fracture probability. Heelstrike runners experienced greater impact loading immediately after landing pattern switch (P<0.004). There was an increase in the longitudinal ankle joint contact force when they landed with forefoot (P=0.003). However, there was no significant difference in both peak tibial strains and the risk of tibial stress fracture in runners with different landing patterns (P>0.986). Immediate transitioning of the landing pattern in heelstrike runners may not offer timely protection against tibial stress fracture, despite a reduction of impact loading. Long-term effects of landing pattern switch remains unknown. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Selective activation of human soleus and medial gastrocnemius muscles during walking in water.

    PubMed

    Miyoshi, T; Satoh, T; Nakazawa, K; Komeda, T; Yano, H

    2000-07-01

    During walking in water (WW) the vertical component of ground reaction forces decreases, while the greater propulsive force is required to move forward against the greater resistance of water. In such reduced gravity environment, Hutchison et al. (1989) have demonstrated that the relative activation of rat medial gastrocnemius (MGAS) increased compared to that of the soleus (SOL) during swimming, suggesting different effects of peripheral information on motoneuron excitability of these muscles. It is conceivable that both buoyancy and resistance of water have different effects on the activation patterns of triceps surae muscles during WW, since the reduced weight in water might decrease the peripheral inflow relating load information while greater volitional command might be needed to propel a body forward against the water resistance. The present study was designed to assess each peripheral inflow and efferent input by adjusting the load and walking speed voluntarily during WW. The aim of this study is to investigate the dissociative activation pattern between the SOL and the MGAS during WW.

  2. Optimization of a Boiling Water Reactor Loading Pattern Using an Improved Genetic Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Yoko; Aiyoshi, Eitaro

    2003-08-15

    A search method based on genetic algorithms (GA) using deterministic operators has been developed to generate optimized boiling water reactor (BWR) loading patterns (LPs). The search method uses an Improved GA operator, that is, crossover, mutation, and selection. The handling of the encoding technique and constraint conditions is designed so that the GA reflects the peculiar characteristics of the BWR. In addition, some strategies such as elitism and self-reproduction are effectively used to improve the search speed. LP evaluations were performed with a three-dimensional diffusion code that coupled neutronic and thermal-hydraulic models. Strong axial heterogeneities and three-dimensional-dependent constraints have alwaysmore » necessitated the use of three-dimensional core simulators for BWRs, so that an optimization method is required for computational efficiency. The proposed algorithm is demonstrated by successfully generating LPs for an actual BWR plant applying the Haling technique. In test calculations, candidates that shuffled fresh and burned fuel assemblies within a reasonable computation time were obtained.« less

  3. Leveraging Terminology Services for Extract-Transform-Load Processes: A User-Centered Approach

    PubMed Central

    Peterson, Kevin J.; Jiang, Guoqian; Brue, Scott M.; Liu, Hongfang

    2016-01-01

    Terminology services serve an important role supporting clinical and research applications, and underpin a diverse set of processes and use cases. Through standardization efforts, terminology service-to-system interactions can leverage well-defined interfaces and predictable integration patterns. Often, however, users interact more directly with terminologies, and no such blueprints are available for describing terminology service-to-user interactions. In this work, we explore the main architecture principles necessary to build a user-centered terminology system, using an Extract-Transform-Load process as our primary usage scenario. To analyze our architecture, we present a prototype implementation based on the Common Terminology Services 2 (CTS2) standard using the Patient-Centered Network of Learning Health Systems (LHSNet) project as a concrete use case. We perform a preliminary evaluation of our prototype architecture using three architectural quality attributes: interoperability, adaptability and usability. We find that a design-time focus on user needs, cognitive models, and existing patterns is essential to maximize system utility. PMID:28269898

  4. Joint contact loading in forefoot and rearfoot strike patterns during running.

    PubMed

    Rooney, Brandon D; Derrick, Timothy R

    2013-09-03

    Research concerning forefoot strike pattern (FFS) versus rearfoot strike pattern (RFS) running has focused on the ground reaction force even though internal joint contact forces are a more direct measure of the loads responsible for injury. The main purpose of this study was to determine the internal loading of the joints for each strike pattern. A secondary purpose was to determine if converted FFS and RFS runners can adequately represent habitual runners with regards to the internal joint loading. Using inverse dynamics to calculate the net joint moments and reaction forces and optimization techniques to estimate muscle forces, we determined the axial compressive loading at the ankle, knee, and hip. Subjects consisted of 15 habitual FFS and 15 habitual RFS competitive runners. Each subject ran at a preferred running velocity with their habitual strike pattern and then converted to the opposite strike pattern. Plantar flexor muscle forces and net ankle joint moments were greater in the FFS running compared to the RFS running during the first half of the stance phase. The average contact forces during this period increased by 41.7% at the ankle and 14.4% at the knee joint during FFS running. Peak ankle joint contact force was 1.5 body weights greater during FFS running (p<0.05). There was no evidence to support a difference between habitual and converted running for joint contact forces. The increased loading at the ankle joint for FFS is an area of concern for individuals considering altering their foot strike pattern. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Finite element analysis of an implant-assisted removable partial denture.

    PubMed

    Shahmiri, Reza; Aarts, John M; Bennani, Vincent; Atieh, Momen A; Swain, Michael V

    2013-10-01

    This study analyzes the effects of loading a Kennedy class I implant-assisted removable partial denture (IARPD) using finite element analysis (FEA). Standard RPDs are not originally designed to accommodate a posterior implant load point. The null hypothesis is that the introduction of posteriorly placed implants into an RPD has no effect on the load distribution. A Faro Arm scan was used to extract the geometrical data of a human partially edentulous mandible. A standard plus regular neck (4.8 × 12 mm) Straumann® implant and titanium matrix, tooth roots, and periodontal ligaments were modeled using a combination of reverse engineering in Rapidform XOR2 and solid modeling in Solidworks 2008 FEA program. The model incorporated an RPD and was loaded with a bilateral force of 120 N. ANSYS Workbench 11.0 was used to analyze deformation in the IARPD and elastic strain in the metal framework. FEA identified that the metal framework developed high strain patterns on the major and minor connectors, and the acrylic was subjected to deformation, which could lead to acrylic fractures. The ideal position of the neutral axis was calculated to be 0.75 mm above the ridge. A potentially destructive mismatch of strain distribution was identified between the acrylic and metal framework, which could be a factor in the failure of the acrylic. The metal framework showed high strain patterns on the major and minor connectors around the teeth, while the implant components transferred the load directly to the acrylic. © 2013 by the American College of Prosthodontists.

  6. Effects of Increased Loading on In Vivo Tendon Properties: A Systematic Review

    PubMed Central

    WIESINGER, HANS-PETER; KÖSTERS, ALEXANDER; MÜLLER, ERICH; SEYNNES, OLIVIER R.

    2015-01-01

    ABSTRACT Introduction In vivo measurements have been used in the past two decades to investigate the effects of increased loading on tendon properties, yet the current understanding of tendon macroscopic changes to training is rather fragmented, limited to reports of tendon stiffening, supported by changes in material properties and/or tendon hypertrophy. The main aim of this review was to analyze the existing literature to gain further insights into tendon adaptations by extracting patterns of dose-response and time-course. Methods PubMed/Medline, SPORTDiscus, and Google Scholar databases were searched for studies examining the effect of training on material, mechanical, and morphological properties via longitudinal or cross-sectional designs. Results Thirty-five of 6440 peer-reviewed articles met the inclusion criteria. The key findings were i) the confirmation of a nearly systematic adaptation of tendon tissue to training, ii) the important variability in the observed changes in tendon properties between and within studies, and iii) the absence of a consistent incremental pattern regarding the dose-response or the time-course relation of tendon adaptation within the first months of training. However, long-term (years) training was associated with a larger tendon cross-sectional area, without any evidence of differences in material properties. Our analysis also highlighted several gaps in the existing literature, which may be addressed in future research. Conclusions In line with some cross-species observations about tendon design, tendon cross-sectional area allegedly constitutes the ultimate adjusting parameter to increased loading. We propose here a theoretical model placing tendon hypertrophy and adjustments in material properties as parts of the same adaptive continuum. PMID:25563908

  7. Evaluation of stress patterns produced by implant-retained overdentures and implant-retained fixed partial denture.

    PubMed

    Mazaro, José Vitor Quinelli; Filho, Humberto Gennari; Vedovatto, Eduardo; Pellizzer, Eduardo Piza; Rezende, Maria Cristina Rosifini Alves; Zavanelli, Adriana Cristina

    2011-11-01

    The purposes of this study were to photoelastically measure the biomechanical behavior of 4 implants retaining different cantilevered bar mandibular overdenture designs and to compare a fixed partial denture (FPD). A photoelastic model of a human edentulous mandible was fabricated, which contained 4 screw-type implants (3.75 × 10 mm) embedded in the parasymphyseal area. An FPD and 3 overdenture designs with the following attachments were evaluated: 3 plastic Hader clips, 1 Hader clip with 2 posterior resilient cap attachments, and 3 ball/O-ring attachments. Vertical occlusal forces of 100 N were applied between the central incisor and unilaterally to the right and left second premolars and second molars. Stresses that developed in the supporting structure were monitored photoelastically and recorded photographically. The results showed that the anterior loading, the overdenture with 3 plastic Hader clips, displayed the largest stress concentration at the medium implant. With premolar loading, the FPD and overdenture with 3 plastic Hader clips displayed the highest stresses to the ipsilateral terminal implant. With molar loading, the overdenture with 3 ball/O-ring attachments displayed the most uniform stress distribution in the posterior edentulous ridge, with less overloading in the terminal implant. It was concluded that vertical forces applied to the bar-clip overdenture and FPD created immediate stress patterns of greater magnitude and concentration on the ipsilateral implants, whereas the ball/O-ring attachments transferred minimal stress to the implants. The increased cantilever in the FPD caused the highest stresses to the terminal implant.

  8. Tool For Driving Many Fasteners Simultaneously

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr.

    1995-01-01

    Proposed tool tightens or loosens several bolts, screws, nuts, or other threaded fasteners arranged in circle on compressor head, automotive wheel, pipe-end flange, or similar object. Enables assembly or disassembly in fraction of time needed to tighten fasteners one at a time. Simultaneously applies same torque to all fasteners, preventing distortion and enhancing reliability. Concept not limited to circular fastener patterns. Adapted to rectangular configurations like on engine intake manifolds, by adding gears to drive train to provide proper spacing. Designed to deliver fixed or adjustable maximum torque. To ensure even seal loading, piston pressure simultaneously ramped from initial to final values to maintain relatively constant torque loading on all fasteners until final specifications limit achieved.

  9. A distributed multichannel demand-adaptive P2P VoD system with optimized caching and neighbor-selection

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Chen, Minghua; Parekh, Abhay; Ramchandran, Kannan

    2011-09-01

    We design a distributed multi-channel P2P Video-on-Demand (VoD) system using "plug-and-play" helpers. Helpers are heterogenous "micro-servers" with limited storage, bandwidth and number of users they can serve simultaneously. Our proposed system has the following salient features: (1) it jointly optimizes over helper-user connection topology, video storage distribution and transmission bandwidth allocation; (2) it minimizes server load, and is adaptable to varying supply and demand patterns across multiple video channels irrespective of video popularity; and (3) it is fully distributed and requires little or no maintenance overhead. The combinatorial nature of the problem and the system demand for distributed algorithms makes the problem uniquely challenging. By utilizing Lagrangian decomposition and Markov chain approximation based arguments, we address this challenge by designing two distributed algorithms running in tandem: a primal-dual storage and bandwidth allocation algorithm and a "soft-worst-neighbor-choking" topology-building algorithm. Our scheme provably converges to a near-optimal solution, and is easy to implement in practice. Packet-level simulation results show that the proposed scheme achieves minimum sever load under highly heterogeneous combinations of supply and demand patterns, and is robust to system dynamics of user/helper churn, user/helper asynchrony, and random delays in the network.

  10. Design of an Adaptive Human-Machine System Based on Dynamical Pattern Recognition of Cognitive Task-Load.

    PubMed

    Zhang, Jianhua; Yin, Zhong; Wang, Rubin

    2017-01-01

    This paper developed a cognitive task-load (CTL) classification algorithm and allocation strategy to sustain the optimal operator CTL levels over time in safety-critical human-machine integrated systems. An adaptive human-machine system is designed based on a non-linear dynamic CTL classifier, which maps a set of electroencephalogram (EEG) and electrocardiogram (ECG) related features to a few CTL classes. The least-squares support vector machine (LSSVM) is used as dynamic pattern classifier. A series of electrophysiological and performance data acquisition experiments were performed on seven volunteer participants under a simulated process control task environment. The participant-specific dynamic LSSVM model is constructed to classify the instantaneous CTL into five classes at each time instant. The initial feature set, comprising 56 EEG and ECG related features, is reduced to a set of 12 salient features (including 11 EEG-related features) by using the locality preserving projection (LPP) technique. An overall correct classification rate of about 80% is achieved for the 5-class CTL classification problem. Then the predicted CTL is used to adaptively allocate the number of process control tasks between operator and computer-based controller. Simulation results showed that the overall performance of the human-machine system can be improved by using the adaptive automation strategy proposed.

  11. Fate of hydrocarbon pollutants in source and non-source control sustainable drainage systems.

    PubMed

    Roinas, Georgios; Mant, Cath; Williams, John B

    2014-01-01

    Sustainable drainage (SuDs) is an established method for managing runoff from developments, and source control is part of accepted design philosophy. However, there are limited studies into the contribution source control makes to pollutant removal, especially for roads. This study examines organic pollutants, total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs), in paired source and non-source control full-scale SuDs systems. Sites were selected to cover local roads, trunk roads and housing developments, with a range of SuDs, including porous asphalt, swales, detention basins and ponds. Soil and water samples were taken bi-monthly over 12 months to assess pollutant loads. Results show first flush patterns in storm events for solids, but not for TPH. The patterns of removal for specific PAHs were also different, reflecting varying physico-chemical properties. The potential of trunk roads for pollution was illustrated by peak runoff for TPH of > 17,000 μg/l. Overall there was no significant difference between pollutant loads from source and non-source control systems, but the dynamic nature of runoff means that longer-term data are required. The outcomes of this project will increase understanding of organic pollutants behaviour in SuDs. This will provide design guidance about the most appropriate systems for treating these pollutants.

  12. Optimal Design of Grid-Stiffened Composite Panels Using Global and Local Buckling Analysis

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Jaunky, Navin; Knight, Norman F., Jr.

    1996-01-01

    A design strategy for optimal design of composite grid-stiffened panels subjected to global and local buckling constraints is developed using a discrete optimizer. An improved smeared stiffener theory is used for the global buckling analysis. Local buckling of skin segments is assessed using a Rayleigh-Ritz method that accounts for material anisotropy and transverse shear flexibility. The local buckling of stiffener segments is also assessed. Design variables are the axial and transverse stiffener spacing, stiffener height and thickness, skin laminate, and stiffening configuration. The design optimization process is adapted to identify the lightest-weight stiffening configuration and pattern for grid stiffened composite panels given the overall panel dimensions, design in-plane loads, material properties, and boundary conditions of the grid-stiffened panel.

  13. Core networks and their reconfiguration patterns across cognitive loads.

    PubMed

    Zuo, Nianming; Yang, Zhengyi; Liu, Yong; Li, Jin; Jiang, Tianzi

    2018-04-20

    Different cognitively demanding tasks recruit globally distributed but functionally specific networks. However, the configuration of core networks and their reconfiguration patterns across cognitive loads remain unclear, as does whether these patterns are indicators for the performance of cognitive tasks. In this study, we analyzed functional magnetic resonance imaging data of a large cohort of 448 subjects, acquired with the brain at resting state and executing N-back working memory (WM) tasks. We discriminated core networks by functional interaction strength and connection flexibility. Results demonstrated that the frontoparietal network (FPN) and default mode network (DMN) were core networks, but each exhibited different patterns across cognitive loads. The FPN and DMN both showed strengthened internal connections at the low demand state (0-back) compared with the resting state (control level); whereas, from the low (0-back) to high demand state (2-back), some connections to the FPN weakened and were rewired to the DMN (whose connections all remained strong). Of note, more intensive reconfiguration of both the whole brain and core networks (but no other networks) across load levels indicated relatively poor cognitive performance. Collectively these findings indicate that the FPN and DMN have distinct roles and reconfiguration patterns across cognitively demanding loads. This study advances our understanding of the core networks and their reconfiguration patterns across cognitive loads and provides a new feature to evaluate and predict cognitive capability (e.g., WM performance) based on brain networks. © 2018 Wiley Periodicals, Inc.

  14. Comparison of DVH parameters and loading patterns of standard loading, manual and inverse optimization for intracavitary brachytherapy on a subset of tandem/ovoid cases.

    PubMed

    Jamema, Swamidas V; Kirisits, Christian; Mahantshetty, Umesh; Trnkova, Petra; Deshpande, Deepak D; Shrivastava, Shyam K; Pötter, Richard

    2010-12-01

    Comparison of inverse planning with the standard clinical plan and with the manually optimized plan based on dose-volume parameters and loading patterns. Twenty-eight patients who underwent MRI based HDR brachytherapy for cervix cancer were selected for this study. Three plans were calculated for each patient: (1) standard loading, (2) manual optimized, and (3) inverse optimized. Dosimetric outcomes from these plans were compared based on dose-volume parameters. The ratio of Total Reference Air Kerma of ovoid to tandem (TRAK(O/T)) was used to compare the loading patterns. The volume of HR CTV ranged from 9-68 cc with a mean of 41(±16.2) cc. Mean V100 for standard, manual optimized and inverse plans was found to be not significant (p=0.35, 0.38, 0.4). Dose to bladder (7.8±1.6 Gy) and sigmoid (5.6±1.4 Gy) was high for standard plans; Manual optimization reduced the dose to bladder (7.1±1.7 Gy p=0.006) and sigmoid (4.5±1.0 Gy p=0.005) without compromising the HR CTV coverage. The inverse plan resulted in a significant reduction to bladder dose (6.5±1.4 Gy, p=0.002). TRAK was found to be 0.49(±0.02), 0.44(±0.04) and 0.40(±0.04) cGy m(-2) for the standard loading, manual optimized and inverse plans, respectively. It was observed that TRAK(O/T) was 0.82(±0.05), 1.7(±1.04) and 1.41(±0.93) for standard loading, manual optimized and inverse plans, respectively, while this ratio was 1 for the traditional loading pattern. Inverse planning offers good sparing of critical structures without compromising the target coverage. The average loading pattern of the whole patient cohort deviates from the standard Fletcher loading pattern. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Contribution of tibiofemoral joint contact to net loads at the knee in gait.

    PubMed

    Walter, Jonathan P; Korkmaz, Nuray; Fregly, Benjamin J; Pandy, Marcus G

    2015-07-01

    Inverse dynamics analysis is commonly used to estimate the net loads at a joint during human motion. Most lower-limb models of movement represent the knee as a simple hinge joint when calculating muscle forces. This approach is limited because it neglects the contributions from tibiofemoral joint contact forces and may therefore lead to errors in estimated muscle forces. The aim of this study was to quantify the contributions of tibiofemoral joint contact loads to the net knee loads calculated from inverse dynamics for multiple subjects and multiple gait patterns. Tibiofemoral joint contact loads were measured in four subjects with instrumented implants as each subject walked at their preferred speed (normal gait) and performed prescribed gait modifications designed to treat medial knee osteoarthritis. Tibiofemoral contact loads contributed substantially to the net knee extension and knee adduction moments in normal gait with mean values of 16% and 54%, respectively. These findings suggest that knee-contact kinematics and loads should be included in lower-limb models of movement for more accurate determination of muscle forces. The results of this study may be used to guide the development of more realistic lower-limb models that account for the effects of tibiofemoral joint contact at the knee. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Stationarity and Inequality from the Mississippi to the Kissimmee: Climatic Control of Temporal Patterns in Catchment Discharge and Solute Export

    NASA Astrophysics Data System (ADS)

    Jawitz, J. W.

    2011-12-01

    What are the relative contributions of climatic variability, land management, and local geomorphology in determining the temporal dynamics of streamflow and the export of solutes from watersheds to receiving water bodies? A simple analytical framework is introduced for characterizing the temporal inequality of stream discharge and solute export from catchments using Lorenz diagrams and the associated Gini coefficient. These descriptors are used to illustrate a broad range of observed flow variability with a synthesis of multi-decadal flow data from 22 rivers in Florida. The analytical framework is extended to comprehensively link variability in flows and loads to climatically-driven inputs in terms of these inequality-based metrics. Further, based on a synthesis of data from the basins of the Baltic Sea, the Mississippi River, the Kissimmee River and other tributaries to Lake Okeechobee, FL, it is shown that inter-annual variations in exported loads for geogenic constituents, and for total N and total P, are dominantly controlled by discharge. Emergence of this consistent pattern across diverse managed catchments is attributed to the anthropogenic legacy of accumulated nutrient sources generating memory, similar to ubiquitously present sources for geogenic constituents. Multi-decadal phosphorus load data from 4 of the primary tributaries to Lake Okeechobee and sodium and nitrate load data from 9 of the Hubbard Brook, NH long-term study site catchments are used to examine the relation between inequality of climatic inputs, river flows and catchment loads. The intra-annual loads to Lake Okeechobee are shown to be highly unequal, such that 90% of annual load is delivered in as little as 15% of the time. Analytic expressions are developed for measures of inequality in terms of parameters of the lognormal distribution under general conditions that include intermittency. In cases where climatic variability is high compared to that of concentrations (chemostatic conditions), such as for P in the Lake Okeechobee basin and Na in Hubbard Brook, the temporal inequality of rainfall and flow are strong surrogates for load inequality. However, in cases where variability of concentrations is high compared to that of flows (chemodynamic conditions), such as for nitrate in the Hubbard Brook catchments, load inequality is greater than rainfall or flow inequality. The measured degree of correspondence between climatic, flow, and load inequality for these data sets are shown to be well described using the general inequality framework introduced here. Important implications are that (1) variations in hydro-climatic or anthropogenic forcing can be used to robustly predict inter-annual variations in flows and loads, (2) water quality problems in receiving inland and coastal waters may persist until the accumulated storages of nutrients have been substantially depleted, and (3) remedial measures designed to intercept or capture exported flows and loads must be designed with consideration of the intra-annual inequality.

  17. Acoustic Signatures of a Model Fan in the NASA-Lewis Anechoic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Dietrich, D. A.; Heidmann, M. F.; Abbott, J. M.

    1977-01-01

    One-third octave band and narrowband spectra and continuous directivity patterns radiated from an inlet are presented over ranges of fan operating conditions, tunnel velocity, and angle of attack. Tunnel flow markedly reduced the unsteadiness and level of the blade passage tone, revealed the cutoff design feature of the blade passage tone, and exposed a lobular directivity pattern for the second harmonic tone. The full effects of tunnel flow are shown to be complete above a tunnel velocity of 20 meters/second. The acoustic signatures are also shown to be strongly affected by fan rotational speed, fan blade loading, and inlet angle of attack.

  18. Nuclear fuel management optimization using genetic algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeChaine, M.D.; Feltus, M.A.

    1995-07-01

    The code independent genetic algorithm reactor optimization (CIGARO) system has been developed to optimize nuclear reactor loading patterns. It uses genetic algorithms (GAs) and a code-independent interface, so any reactor physics code (e.g., CASMO-3/SIMULATE-3) can be used to evaluate the loading patterns. The system is compared to other GA-based loading pattern optimizers. Tests were carried out to maximize the beginning of cycle k{sub eff} for a pressurized water reactor core loading with a penalty function to limit power peaking. The CIGARO system performed well, increasing the k{sub eff} after lowering the peak power. Tests of a prototype parallel evaluation methodmore » showed the potential for a significant speedup.« less

  19. Comparison of Load-Bearing Capacities of 3-Unit Fiber-Reinforced Composite Adhesive Bridges with Different Framework Designs.

    PubMed

    Tacir, Ibrahim H; Dirihan, Roda S; Polat, Zelal Seyfioglu; Salman, Gizem Ön; Vallittu, Pekka; Lassila, Lippo; Ayna, Emrah

    2018-06-28

    BACKGROUND The aim of this study was to investigate and compare the load-bearing capacities of three-unit direct resin-bonded fiber-reinforced composite fixed dental prosthesis with different framework designs. MATERIAL AND METHODS Sixty mandibular premolar and molar teeth without caries were collected and direct glass fiber-resin fixed FDPs were divided into 6 groups (n=10). Each group was restored via direct technique with different designs. In Group 1, the inlay-retained bridges formed 2 unidirectional FRC frameworks and pontic-reinforced transversal FRC. In Group 2, the inlay-retained bridges were supported by unidirectional lingual and occlusal FRC frameworks. Group 3, had buccal and lingual unidirectional FRC frameworks without the inlay cavities. Group 4 had reinforced inlay cavities and buccal-lingual FRC with unidirectional FRC frameworks. Group 5, had a circular form of fiber reinforcement around cusps in addition to buccal-lingual FRC frameworks. Group 6 had a circular form of fiber reinforcement around cusps with 2 bidirectional FRC frameworks into inlay cavities. All groups were loaded until final fracture using a universal testing machine at a crosshead speed of 1 mm/min. RESULTS Mean values of the groups were determined with ANOVA and Tukey HSD. When all data were evaluated, Group 6 had the highest load-bearing capacities and revealed significant differences from Group 3 and Group 4. Group 6 had the highest strain (p>0.05). When the fracture patterns were investigated, Group 6 had the durability to sustain fracture propagation within the restoration. CONCLUSIONS The efficiency of fiber reinforcement of the restorations alters not only the amount of fiber, but also the design of the restoration with fibers.

  20. Social Patterning of Cumulative Biological Risk by Education and Income Among African Americans

    PubMed Central

    Diez Roux, Ana V.; Gebreab, Samson Y.; Wyatt, Sharon B.; Dubbert, Patricia M.; Sarpong, Daniel F.; Sims, Mario; Taylor, Herman A.

    2012-01-01

    Objectives. We examined the social patterning of cumulative dysregulation of multiple systems, or allostatic load, among African Americans adults. Methods. We examined the cross-sectional associations of socioeconomic status (SES) with summary indices of allostatic load and neuroendocrine, metabolic, autonomic, and immune function components in 4048 Jackson Heart Study participants. Results. Lower education and income were associated with higher allostatic load scores in African American adults. Patterns were most consistent for the metabolic and immune dimensions, less consistent for the autonomic dimension, and absent for the neuroendocrine dimension among African American women. Associations of SES with the global allostatic load score and the metabolic and immune domains persisted after adjustment for behavioral factors and were stronger for income than for education. There was some evidence that the neuroendocrine dimension was inversely associated with SES after behavioral adjustment in men, but the immune and autonomic components did not show clear dose–response trends, and we observed no associations for the metabolic component. Conclusions. Findings support our hypothesis that allostatic load is socially patterned in African American women, but this pattern is less consistent in African American men. PMID:22594727

  1. [Influence of different designs of marginal preparation on stress distribution in the mandibular premolar restored with endocrown].

    PubMed

    Guo, Jing; Wang, Xiao-Yu; Li, Xue-Sheng; Sun, Hai-Yang; Liu, Lin; Li, Hong-Bo

    2016-02-01

    To evaluate the effect of different designs of marginal preparation on stress distribution in the mandibular premolar restored with endocrown using three-dimensional finite element method. Four models with different designs of marginal preparation, including the flat margin, 90° shoulder, 135° shoulder and chamfer shoulder, were established to imitate mandibular first premolar restored with endocrown. A load of 100 N was applied to the intersection of the long axis and the occlusal surface, either parallel or with an angle of 45° to the long axis of the tooth. The maximum values of Von Mises stress and the stress distribution around the cervical region of the abutment and the endocrown with different designs of marginal preparation were analyzed. The load parallel to the long axis of the tooth caused obvious stress concentration in the lingual portions of both the cervical region of the tooth tissue and the restoration. The stress distribution characteristics on the cervical region of the models with a flat margin and a 90° shoulder were more uniform than those in the models with a 135° shoulder and chamfer shoulder. Loading at 45° to the long axis caused stress concentration mainly on the buccal portion of the cervical region, and the model with a flat margin showed the most favorable stress distribution patterns with a greater maximum Von Mises stress under this circumstance than that with a parallel loading. Irrespective of the loading direction, the stress value was the lowest in the flat margin model, where the stress value in the cervical region of the endocrown was greater than that in the counterpart of the tooth tissue. The stress level on the enamel was higher than that on the dentin nearby in the flat margin model. From the stress distribution point of view, endocrowns with flat margin followed by a 90° shoulder are recommended.

  2. Gait alterations can reduce the risk of edge loading.

    PubMed

    Wesseling, Mariska; Meyer, Christophe; De Groote, Friedl; Corten, Kristoff; Simon, Jean-Pierre; Desloovere, Kaat; Jonkers, Ilse

    2016-06-01

    Following metal-on-metal hip arthroplasty, edge loading (i.e., loading near the edge of a prosthesis cup) can increase wear and lead to early revision. The position and coverage angle of the prosthesis cup influence the risk of edge loading. This study investigates the effect of altered gait patterns, more specific hip, and pelvis kinematics, on the orientation of hip contact force and the consequent risk of antero-superior edge loading using muscle driven simulations of gait. With a cup orientation of 25° anteversion and 50° inclination and a coverage angle of 168°, many gait patterns presented risk of edge loading. Specifically at terminal double support, 189 out of 405 gait patterns indicated a risk of edge loading. At this time instant, the high hip contact forces and the proximity of the hip contact force to the edge of the cup indicated the likelihood of the occurrence of edge loading. Although the cup position contributed most to edge loading, altering kinematics considerably influenced the risk of edge loading. Increased hip abduction, resulting in decreasing hip contact force magnitude, and decreased hip extension, resulting in decreased risk on edge loading, are gait strategies that could prevent edge loading. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1069-1076, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Critical Joints in Large Composite Primary Aircraft Structures. Volume 3: Ancillary Test Results

    NASA Technical Reports Server (NTRS)

    Bunin, Bruce L.; Sagui, R. L.

    1985-01-01

    A program was conducted to develop the technology for critical structural joints for composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. The results of a comprehensive ancillary test program are summarized, consisting of single-bolt composite joint specimens tested in a variety of configurations. These tests were conducted to characterize the strength and load deflection properties that are required for multirow joint analysis. The composite material was Toray 300 fiber and Ciba-Geigy 914 resin, in the form of 0.005 and 0.01 inch thick unidirectional tape. Tests were conducted in single and double shear for loaded and unloaded hole configurations under both tensile and compressive loading. Two different layup patterns were examined. All tests were conducted at room temperature. In addition, the results of NASA Standard Toughness Test (NASA RP 1092) are reported, which were conducted for several material systems.

  4. Stress analysis for structures with surface cracks

    NASA Technical Reports Server (NTRS)

    Bell, J. C.

    1978-01-01

    Two basic forms of analysis, one treating stresses around arbitrarily loaded circular cracks, the other treating stresses due to loads arbitrarily distributed on the surface of a half space, are united by a boundary-point least squares method to obtain analyses for stresses from surface cracks in places or bars. Calculations were for enough cases to show how effects from the crack vary with the depth-to-length ratio, the fractional penetration ratio, the obliquity of the load, and to some extent the fractional span ratio. The results include plots showing stress intensity factors, stress component distributions near the crack, and crack opening displacement patterns. Favorable comparisons are shown with two kinds of independent experiments, but the main method for confirming the results is by wide checking of overall satisfaction of boundary conditions, so that external confirmation is not essential. Principles involved in designing analyses which promote dependability of the results are proposed and illustrated.

  5. Predicted changes in advanced turboprop noise with shaft angle of attack

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Block, P. J. W.

    1984-01-01

    Advanced turboprop blade designs and new propeller installation schemes motivated an effort to include unsteady loading effects in existing propeller noise prediction computer programs. The present work validates the prediction capability while studing the effects of shaft inclination on the radiated sound field. Classical methods of propeller performance analysis supply the time-dependent blade loading needed to calculate noise. Polar plots of the sound pressure level (SPL) of the first four harmonics and overall SPL are indicative of the change in directivity pattern as a function of propeller angle of attack. Noise predictions are compared with newly available wind tunnel data and the accuracy and applicability of the prediction method are discussed. It is concluded that unsteady blade loading caused by inclining the propeller with respect to the flow changes the directionality and the intensity of the radiated noise. These changes are well modeled by the present quasi-steady prediction method.

  6. Design and application of quadrature compensation patterns in bulk silicon micro-gyroscopes.

    PubMed

    Ni, Yunfang; Li, Hongsheng; Huang, Libin

    2014-10-29

    This paper focuses on the detailed design issues of a peculiar quadrature reduction method named system stiffness matrix diagonalization, whose key technology is the design and application of quadrature compensation patterns. For bulk silicon micro-gyroscopes, a complete design and application case was presented. The compensation principle was described first. In the mechanical design, four types of basic structure units were presented to obtain the basic compensation function. A novel layout design was proposed to eliminate the additional disturbing static forces and torques. Parameter optimization was carried out to maximize the available compensation capability in a limited layout area. Two types of voltage loading methods were presented. Their influences on the sense mode dynamics were analyzed. The proposed design was applied on a dual-mass silicon micro-gyroscope developed in our laboratory. The theoretical compensation capability of a quadrature equivalent angular rate no more than 412 °/s was designed. In experiments, an actual quadrature equivalent angular rate of 357 °/s was compensated successfully. The actual compensation voltages were a little larger than the theoretical ones. The correctness of the design and the theoretical analyses was verified. They can be commonly used in planar linear vibratory silicon micro-gyroscopes for quadrature compensation purpose.

  7. Dietary patterns and changes in body composition in children between 9 and 11 years

    PubMed Central

    Smith, Andrew D. A. C.; Emmett, Pauline M.; Newby, P. K.; Northstone, Kate

    2014-01-01

    Objective Childhood obesity is rising and dietary intake is a potentially modifiable factor that plays an important role in its development. We aim to investigate the association between dietary patterns, obtained through principal components analysis and gains in fat and lean mass in childhood. Design Diet diaries at 10 years of age collected from children taking part in the Avon Longitudinal Study of Parents and Children. Body composition was assessed using dual-energy X-ray absorptiometry at 9 and 11. Setting Longitudinal birth cohort. Subjects 3911 children with complete data. Results There was an association between the Health Aware (positive loadings on high-fiber bread, and fruits and vegetables; negative loadings on chips, crisps, processed meat, and soft drinks) pattern score and decreased fat mass gain in girls. After adjusting for confounders, an increase of 1 standard deviation (sd) in this score led to an estimated 1.2% decrease in fat mass gain in valid-reporters and 2.1% in under-reporters. A similar decrease was found only in under-reporting boys. There was also an association between the Packed Lunch (high consumption of white bread, sandwich fillings, and snacks) pattern score and decreased fat mass gain (1.1% per sd) in valid-reporting but not under-reporting girls. The main association with lean mass gain was an increase with Packed Lunch pattern score in valid-reporting boys only. Conclusions There is a small association between dietary patterns and change in fat mass in mid-childhood. Differences between under- and valid-reporters emphasize the need to consider valid-reporters separately in such studies. PMID:25018688

  8. Plantar loading changes with alterations in foot strike patterns during a single session in habitual rear foot strike female runners.

    PubMed

    Kernozek, Thomas W; Vannatta, Charles N; Gheidi, Naghmeh; Kraus, Sydnie; Aminaka, Naoko

    2016-03-01

    Characterize plantar loading parameters when habitually rear foot strike (RFS) runners change their pattern to a non-rear foot strike (NRFS). Experimental. University biomechanics laboratory. Twenty three healthy female runners (Age: 22.17 ± 1.64 yrs; Height: 168.91 ± 5.46 cm; Mass: 64.29 ± 7.11 kg). Plantar loading was measured using an in-sole pressure sensor while running down a 20-m runway restricted to a range of 3.52-3.89 m/s under two conditions, using the runner's typical RFS, and an adapted NRFS pattern. Repeated measures multivariate analysis of variance was performed to detect differences in loading between these two conditions. Force and pressure variables were greater in the forefoot and phalanx in NRFS and greater in the heel and mid foot in RFS pattern, but the total force imposed upon the whole foot and contact time remained similar between conditions. Total peak pressure was higher and contact area was lower during NRFS running. The primary finding of this investigation is that there are distinctly different plantar loads when changing from a RFS to NRFS during running. So, during a transition from RFS to a NRFS pattern; a period of acclimation should be considered to allow for adaptations to these novel loads incurred on plantar regions of the foot. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Zaleplon loaded bi-layered chronopatch: A novel buccal chronodelivery approach to overcome circadian rhythm related sleep disorder.

    PubMed

    Farag, Michael M; Abd El Malak, Nevine S; Yehia, Soad A

    2018-05-05

    The aim of this study was to develop a novel buccal bi-layered chronopatch capable of eliciting pulsatile release pattern of drugs treating diseases with circadian rhythm related manifestation. Zaleplon (ZLP) was used as a model drug intended to induce sleep and to treat middle of night insomnia. The chronopatch was prepared adopting double casting technique. The first layer was composed of a controlled release patch containing ZLP-Precirol melt granules intended to release ZLP in a sustained manner to maintain sleep and to prevent early morning awakening. The second layer was composed of a fast release lyophilized buccal disc containing ZLP loaded SNEDDS (Z-SNEDDS) intended for rapid sleep induction. Pharmacokinetic parameters of ZLP from the chronopatch were compared to those of the immediate release capsule, Siesta®, as reference in Mongrel dogs using a randomized crossover design. The appearance of two peaks having two C max and T max proved the pulsatile release pattern. The increase in relative bioavailability of ZLP from the chronopatch was 2.63 folds. The results revealed the ability of the developed ZLP loaded bi-layered chronopatch to be a candidate for overcoming early morning awakening without middle of night dose administration. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Reduced-size spiral antenna design using dielectric overlay loading for use in ground penetrating radar and design of alternative antennas using Vivaldi radiators

    NASA Astrophysics Data System (ADS)

    Paolino, Donald D.; Neel, Michael M.; Franck, Charmaine C.

    2002-08-01

    Spiral antennas are one of the common radiators used in ground penetrating radar (GPR). Mine detection is generally performed in a frequency band of interest between 500 MHz to 4 GHz. This paper discusses technical recommendations and R&D performed by Naval Air Warfare Center (NAWC), China Lake, CA , resulting in our best effort spiral design emphasizing highest low band gain while maintaining overall axial ratio purity. This design consisted of a spiral printed on a high dielectric substrate that allowed the antenna to be used at lower frequencies then conventional plastic substrate based two arm spirals of the same diameter. A graded dielectric overlay scheme was employed to facilitate matching to free space on one side, and absorber lined cavity on the other. Test data is given in terms of match and free space patterns using spin linear sources to obtain antenna axial ratios. The low-end gain was improved from -17 dBi to -5 dBi. Two Vivaldi slot antennas (star junction fed and an antipodal construction) are discussed as alternative antennas offering broadband high gain and economical construction. Both designs produced good patterns with a +5 dBi average gain over the band. Patterns for the log spiral and Archimedean spiral, together with recommendations for future improvements are provided.

  11. Dataset on outdoor behavior-system and spatial-pattern in the third place in cold area-based on the perspective of new energy structure.

    PubMed

    Ren, Kai; Wang, Yuan; Liu, Tingxi; Wang, Guanli

    2017-02-01

    The data presented in this paper are related to the research article entitled "Exploration of Outdoor Behavior System and Spatial Pattern in the Third Place in Cold Area- based on the perspective of new energy structure" (Ren, 2016) [1]. The dataset was from a field sub-time extended investigation to residents of Power Home Community in Inner Mongolia of China that belongs to cold region of ID area according to Chinese design code for buildings. This filed data provided descriptive statistics about environment-behavior symbiosis system, environment loading, behavior system, spatial demanding and spatial pattern for all kinds of residents (Older, younger, children). The field data set is made publicly available to enable critical or extended analyzes.

  12. Successful Working Memory Processes and Cerebellum in an Elderly Sample: A Neuropsychological and fMRI Study

    PubMed Central

    Luis, Elkin O.; Arrondo, Gonzalo; Vidorreta, Marta; Martínez, Martin; Loayza, Francis; Fernández-Seara, María A.; Pastor, María A.

    2015-01-01

    Background Imaging studies help to understand the evolution of key cognitive processes related to aging, such as working memory (WM). This study aimed to test three hypotheses in older adults. First, that the brain activation pattern associated to WM processes in elderly during successful low load tasks is located in posterior sensory and associative areas; second, that the prefrontal and parietal cortex and basal ganglia should be more active during high-demand tasks; third, that cerebellar activations are related to high-demand cognitive tasks and have a specific lateralization depending on the condition. Methods We used a neuropsychological assessment with functional magnetic resonance imaging and a core N-back paradigm design that was maintained across the combination of four conditions of stimuli and two memory loads in a sample of twenty elderly subjects. Results During low-loads, activations were located in the visual ventral network. In high loads, there was an involvement of the basal ganglia and cerebellum in addition to the frontal and parietal cortices. Moreover, we detected an executive control role of the cerebellum in a relatively symmetric fronto-parietal network. Nevertheless, this network showed a predominantly left lateralization in parietal regions associated presumably with an overuse of verbal storage strategies. The differential activations between conditions were stimuli-dependent and were located in sensory areas. Conclusion Successful WM processes in the elderly population are accompanied by an activation pattern that involves cerebellar regions working together with a fronto-parietal network. PMID:26132286

  13. 24 CFR 3280.401 - Structural load tests.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... sustaining its dead load plus superimposed live loads equal to 1.75 times the required live loads for a... in 1/4 design live load increments at 10-minute intervals until 1.25 times design live load plus dead... load plus dead load has been reached. Assembly failure shall be considered as design live load...

  14. 24 CFR 3280.401 - Structural load tests.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... sustaining its dead load plus superimposed live loads equal to 1.75 times the required live loads for a... in 1/4 design live load increments at 10-minute intervals until 1.25 times design live load plus dead... load plus dead load has been reached. Assembly failure shall be considered as design live load...

  15. 24 CFR 3280.401 - Structural load tests.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... sustaining its dead load plus superimposed live loads equal to 1.75 times the required live loads for a... in 1/4 design live load increments at 10-minute intervals until 1.25 times design live load plus dead... load plus dead load has been reached. Assembly failure shall be considered as design live load...

  16. 24 CFR 3280.401 - Structural load tests.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... sustaining its dead load plus superimposed live loads equal to 1.75 times the required live loads for a... in 1/4 design live load increments at 10-minute intervals until 1.25 times design live load plus dead... load plus dead load has been reached. Assembly failure shall be considered as design live load...

  17. 24 CFR 3280.401 - Structural load tests.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... sustaining its dead load plus superimposed live loads equal to 1.75 times the required live loads for a... in 1/4 design live load increments at 10-minute intervals until 1.25 times design live load plus dead... load plus dead load has been reached. Assembly failure shall be considered as design live load...

  18. Load-adaptive scaffold architecturing: a bioinspired approach to the design of porous additively manufactured scaffolds with optimized mechanical properties.

    PubMed

    Rainer, Alberto; Giannitelli, Sara M; Accoto, Dino; De Porcellinis, Stefano; Guglielmelli, Eugenio; Trombetta, Marcella

    2012-04-01

    Computer-Aided Tissue Engineering (CATE) is based on a set of additive manufacturing techniques for the fabrication of patient-specific scaffolds, with geometries obtained from medical imaging. One of the main issues regarding the application of CATE concerns the definition of the internal architecture of the fabricated scaffolds, which, in turn, influences their porosity and mechanical strength. The present study envisages an innovative strategy for the fabrication of highly optimized structures, based on the a priori finite element analysis (FEA) of the physiological load set at the implant site. The resulting scaffold micro-architecture does not follow a regular geometrical pattern; on the contrary, it is based on the results of a numerical study. The algorithm was applied to a solid free-form fabrication process, using poly(ε-caprolactone) as the starting material for the processing of additive manufactured structures. A simple and intuitive geometry was chosen as a proof-of-principle application, on which finite element simulations and mechanical testing were performed. Then, to demonstrate the capability in creating mechanically biomimetic structures, the proximal femur subjected to physiological loading conditions was considered and a construct fitting a femur head portion was designed and manufactured.

  19. A Study towards Building An Optimal Graph Theory Based Model For The Design of Tourism Website

    NASA Astrophysics Data System (ADS)

    Panigrahi, Goutam; Das, Anirban; Basu, Kajla

    2010-10-01

    Effective tourism website is a key to attract tourists from different parts of the world. Here we identify the factors of improving the effectiveness of website by considering it as a graph, where web pages including homepage are the nodes and hyperlinks are the edges between the nodes. In this model, the design constraints for building a tourism website are taken into consideration. Our objectives are to build a framework of an effective tourism website providing adequate level of information, service and also to enable the users to reach to the desired page by spending minimal loading time. In this paper an information hierarchy specifying the upper limit of outgoing link of a page has also been proposed. Following the hierarchy, the web developer can prepare an effective tourism website. Here loading time depends on page size and network traffic. We have assumed network traffic as uniform and the loading time is directly proportional with page size. This approach is done by quantifying the link structure of a tourism website. In this approach we also propose a page size distribution pattern of a tourism website.

  20. A method for determination of equine hoof strain patterns using photoelasticity: an in vitro study.

    PubMed

    Dejardin, L M; Arnoczky, S P; Cloud, G L

    1999-05-01

    During impact, equine hooves undergo viscoelastic deformations which may result in potentially harmful strains. Previous hoof strain studies using strain gauges have been inconclusive due to arbitrary gauge placement. Photoelastic stress analysis (PSA) is a full-field technique which visually displays strains over entire loaded surfaces. This in vitro study identifies normal hoof strain patterns using PSA. Custom-made photoelastic plastic sheets were applied to the hoof surface. The hooves were axially loaded (225 kg) under level and varus/valgus conditions. Strain patterns were video-recorded through a polariscope. Strains were concentrated between middle and distal thirds of the hoof wall regardless of the loading conditions. This strain distribution appears to result from the differential expansion of the hoof wall under load. Increasing load resulted in higher strains and asymmetric loading resulted in an ipsilateral increase in strain magnitudes without altering strain locations. This study shows that PSA is a reliable method with which to evaluate hoof strains in vitro and is sensitive enough to reflect subtle load-related strain alterations.

  1. Structural safety evaluation of Gerber Arch Dam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrie, R.E.

    1995-12-31

    Gerber Dam, a variable radius arch structure, has experienced seepage and extensive freeze-thaw damage since its construction. A construction key was found cracked at its crest. A finite element investigation was made to evaluate the safety of the arch structure. Design methods and assumptions are evaluated. Historical performance is used in the evaluation. Stress levels, patterns, and distributions were evaluated for loads the structure has experienced to determine behavior contributing to seepage and cracking.

  2. Fracture analysis of CAD-CAM high-density polymers used for interim implant-supported fixed, cantilevered prostheses.

    PubMed

    Yilmaz, Burak; Alp, Gülce; Seidt, Jeremy; Johnston, William M; Vitter, Roger; McGlumphy, Edwin A

    2018-01-06

    The load-to-fracture performance of computer-assisted design and computer-assisted manufacturing (CAD-CAM) high-density polymer (HDP) materials in cantilevers is unknown. The purposes of this in vitro study were to evaluate the load-to-fracture performance of CAD-CAM-fabricated HDPs and to compare that with performance of autopolymerized and injection-molded acrylic resins. Specimens from 8 different brands of CAD-CAM HDPs, including Brylic Solid (BS); Brylic Gradient (BG); AnaxCAD Temp EZ (AE); AnaxCAD Temp Plus (AP); Zirkonzahn Temp Basic (Z); GDS Tempo-CAD (GD); Polident (Po); Merz M-PM-Disc (MAT); an autopolymerized acrylic resin, Imident (Conv) and an injection-molded acrylic resin, SR-IvoBase High Impact (Inj) were evaluated for load-to-fracture analysis (n=5). CAD-CAM specimens were milled from poly(methyl methacrylate) (PMMA) blocks measuring 7 mm in buccolingual width, 8 mm in occlusocervical thickness, and 30 mm in length. A wax pattern was prepared in the same dimensions used for CAD-CAM specimens, flasked, and boiled out. Autopolymerizing acrylic resin was packed and polymerized in a pressure container for 30 minutes. An identical wax pattern was flasked and boiled out, and premeasured capsules were injected (SR-IvoBase) and polymerized under hydraulic pressure for 35 minutes for the injection-molded PMMA. Specimens were thermocycled 5000 times (5°C to 55°C) and fixed to a universal testing machine to receive static loads on the 10-mm cantilever, vertically at a 1 mm/min crosshead speed until fracture occurred. Maximum load-to-fracture values were recorded. ANOVA was used to analyze the maximum force values. Significant differences among materials were analyzed by using the Ryan-Einot-Gabriel-Welsch multiple range test (α=.05). Statistically significant differences were found among load-to-fracture values of different HDPs (P<.001). GD and Po materials had significantly higher load-to-fracture values than other materials (P<.001), and no statistically significant differences were found between GD and Po. The lowest load-to-fracture values were observed for autopolymerized and BG materials, which were significantly lower than those of GD, Po, AE, AP, Z, MAT, Inj, and BS. The load-to-fracture value of autopolymerized acrylic resin was not significantly different from that of BG CAD-CAM polymer. GD and Po CAD-CAM materials had the highest load-to-fracture values. AE, AP, Z, MAT, and BS CAD-CAM polymers and injection-molded acrylic resin had similar load-to-fracture values, which were higher than those of BG and autopolymerized acrylic resin. Autopolymerized acrylic resin load-to-fracture value was similar to that of BG CAD-CAM polymer, which is colored in a gradient pattern. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  3. Numerical Simulation of the Ground Response to the Tire Load Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Valaskova, Veronika; Vlcek, Jozef

    2017-10-01

    Response of the pavement to the excitation caused by the moving vehicle is one of the actual problems of the civil engineering practice. The load from the vehicle is transferred to the pavement structure through contact area of the tires. Experimental studies show nonuniform distribution of the pressure in the area. This non-uniformity is caused by the flexible nature and the shape of the tire and is influenced by the tire inflation. Several tire load patterns, including uniform distribution and point load, were involved in the numerical modelling using finite element method. Applied tire loads were based on the tire contact forces of the lorry Tatra 815. There were selected two procedures for the calculations. The first one was based on the simplification of the vehicle to the half-part model. The characteristics of the vehicle model were verified by the experiment and by the numerical model in the software ADINA, when vehicle behaviour during the ride was investigated. Second step involved application of the calculated contact forces for the front axle as the load on the multi-layered half space representing the pavement structure. This procedure was realized in the software Plaxis and considered various stress patterns for the load. The response of the ground to the vehicle load was then analyzed. Axisymmetric model was established for this procedure. The paper presents the results of the investigation of the contact pressure distribution and corresponding reaction of the pavement to various load distribution patterns. The results show differences in some calculated quantities for different load patterns, which need to be verified by the experimental way when also ground response should be observed.

  4. Fault detection in reciprocating compressor valves under varying load conditions

    NASA Astrophysics Data System (ADS)

    Pichler, Kurt; Lughofer, Edwin; Pichler, Markus; Buchegger, Thomas; Klement, Erich Peter; Huschenbett, Matthias

    2016-03-01

    This paper presents a novel approach for detecting cracked or broken reciprocating compressor valves under varying load conditions. The main idea is that the time frequency representation of vibration measurement data will show typical patterns depending on the fault state. The problem is to detect these patterns reliably. For the detection task, we make a detour via the two dimensional autocorrelation. The autocorrelation emphasizes the patterns and reduces noise effects. This makes it easier to define appropriate features. After feature extraction, classification is done using logistic regression and support vector machines. The method's performance is validated by analyzing real world measurement data. The results will show a very high detection accuracy while keeping the false alarm rates at a very low level for different compressor loads, thus achieving a load-independent method. The proposed approach is, to our best knowledge, the first automated method for reciprocating compressor valve fault detection that can handle varying load conditions.

  5. Hydroxyapatite implants with designed internal architecture.

    PubMed

    Chu, T M; Halloran, J W; Hollister, S J; Feinberg, S E

    2001-06-01

    Porous hydroxyapatite (HA) has been used as a bone graft material in the clinics for decades. Traditionally, the pores in these HAs are either obtained from the coralline exoskeletal patterns or from the embedded organic particles in the starting HA powder. Both processes offer very limited control on the pore structure. A new method for manufacturing porous HA with designed pore channels has been developed. This method is essentially a lost-mold technique with negative molds made with Stereolithography and a highly loaded curable HA suspension as the ceramic carrier. Implants with designed channels and connection patterns were first generated from a Computer-Aided-Design (CAD) software and Computer Tomography (CT) data. The negative images of the designs were used to build the molds on a stereolithography apparatus with epoxy resins. A 40 vol% HA suspension in propoxylated neopentyl glycol diacrylate (PNPGDA) and iso-bornyl acrylate (IBA) was formulated. HA suspension was cast into the epoxy molds and cured into solid at 85 degrees C. The molds and acrylate binders were removed by pyrolysis, followed by HA green body sintering. With this method, implants with six different channel designs were built successfully and the designed channels were reproduced in the sintered HA implants. The channels created in the sintered HA implants were between 366 microm and 968 microm in diameter with standard deviations of 50 microm or less. The porosity created by the channels were between 26% and 52%. The results show that HA implants with designed connection pattern and well controlled channel size can be built with the technique developed in this study. Copyright 2001 Kluwer Academic Publishers

  6. Simplified two-dimensional microwave imaging scheme using metamaterial-loaded Vivaldi antenna

    NASA Astrophysics Data System (ADS)

    Johari, Esha; Akhter, Zubair; Bhaskar, Manoj; Akhtar, M. Jaleel

    2017-03-01

    In this paper, a highly efficient, low-cost scheme for two-dimensional microwave imaging is proposed. To this end, the AZIM (anisotropic zero index metamaterial) cell-loaded Vivaldi antenna is designed and tested as effective electromagnetic radiation beam source required in the microwave imaging scheme. The designed antenna is first individually tested in the anechoic chamber, and its directivity along with the radiation pattern is obtained. The measurement setup for the imaging here involves a vector network analyzer, the AZIM cell-loaded ultra-wideband Vivaldi antenna, and other associated microwave components. The potential of the designed antenna for the microwave imaging is tested by first obtaining the two-dimensional reflectivity images of metallic samples of different shapes placed in front of the antenna, using the proposed scheme. In the next step, these sets of samples are hidden behind wooden blocks of different thicknesses and the reflectivity image of the test media is reconstructed by using the proposed scheme. Finally, the reflectivity images of various dielectric samples (Teflon, Plexiglas, permanent magnet moving coil) along with the copper sheet placed on a piece of cardboard are reconstructed by using the proposed setup. The images obtained for each case are plotted and compared with the actual objects, and a close match is observed which shows the applicability of the proposed scheme for through-wall imaging and the detection of concealed objects.

  7. Dietary patterns among Norwegian 2-year-olds in 1999 and in 2007 and associations with child and parent characteristics.

    PubMed

    Kristiansen, Anne Lene; Lande, Britt; Sexton, Joseph Andrew; Andersen, Lene Frost

    2013-07-14

    Infant and childhood nutrition influences short- and long-term health. The objective of the present paper has been to explore dietary patterns and their associations with child and parent characteristics at two time points. Parents of Norwegian 2-year-olds were, in 1999 (n 3000) and in 2007 (n 2984), invited to participate in a national dietary survey. At both time points, diet was assessed by a semi-quantitative FFQ that also provided information on several child and parent characteristics. A total of 1373 participants in the 1999 sample and 1472 participants in the 2007 sample were included in the analyses. Dietary patterns were identified by principal components analysis and related to child and parent characteristics using the general linear model. Four dietary patterns were identified at each time point. The 'unhealthy' and 'healthy' patterns in 1999 and 2007 showed similarities with regard to loadings of food groups. Both the 'bread and spread-based' pattern in 1999 and the 'traditional' pattern in 2007 had high positive loadings for bread and spreads; however, the 'traditional' pattern did also include positive associations with a warm meal. The last patterns identified in 1999 and in 2007 were not comparable with regard to loadings of food groups. All dietary patterns were significantly associated with one or several child and parent characteristics. In conclusion, the 'unhealthy' patterns in 1999 and in 2007 showed similarities with regard to loadings of food groups and were, at both time points, associated with sex, breastfeeding at 12 months of age, parity, maternal age and maternal work situation.

  8. Frequency effects on the stability of a journal bearing for periodic loading

    NASA Technical Reports Server (NTRS)

    Vijayaraghavan, D.; Brewe, D. E.

    1992-01-01

    The stability of a journal bearing is numerically predicted when an unidirectional periodic external load is applied. The analysis is performed using a cavitation algorithm, which mimics the JFO theory by accounting for the mass balance through the complete bearing. Hence, the history of the film is taken into consideration. The loading pattern is taken to be sinusoidal and the frequency of the load cycle is varied. The results are compared with the predictions using Reynolds boundary conditions for both film rupture and reformation. With such comparisons, the need for accurately predicting the cavitation regions for complex loading patterns is clearly demonstrated. For a particular frequency of loading, the effects of mass, amplitude of load vibration and frequency of journal speed are also investigated.

  9. Biomechanical analysis of INFINITY rehabilitation method for treatment of low back pain

    PubMed Central

    Daniel, Matej; Tomanová, Michaela; Hornová, Jana; Novotná, Iva; Lhotská, Lenka

    2017-01-01

    [Purpose] Low back pain is a pervasive problem in modern societies. Physical rehabilitation in treatment of low back pain should reduce pain, muscle tension and restore spine stability and balance. The INFINITY® rehabilitation method that is based on a figure of eight movement pattern was proved to be effective in low back pain treatment. The aim of the paper is to estimate the effect of a figure of eight motion on the L5/S1 load and lumbar spine muscle activation in comparison to other motion patterns. [Subjects and Methods] Three-dimensional model of lumbar spine musculoskeletal system is used to simulate effect of various load motion pattern induced by displacement of the center of gravity of the upper body. Four motion patterns were examined: lateral and oblique pendulum-like motion, elliptical motion and figure of eight motion. [Results] The simple pendulum-like and elliptical-like patterns induce harmonic muscle activation and harmonic spinal load. The figure of eight motion pattern creates high-frequency spinal loading that activates remodeling of bones and tendons. The figure of eight pattern also requires muscle activity that differs from harmonic frequency and is more demanding on muscle control and could also improve muscle coordination. [Conclusion] The results of the study indicate that complex motion pattern during INFINITY® rehabilitation might enhance the spine stability by influencing its passive, active and neural components. PMID:28603355

  10. Tunable Microstrip Filters Using Selectively Etched Ferroelectric Thin-Film Varactors for Coupling

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; VanKeuls, Frederick W.; Romanofsky, Robert R.; Subramanyam, Guru; Miranda, Felix A.

    2006-01-01

    We report on the use of patterned ferroelectric films to fabricate proof of concept tunable one-pole microstrip filters with excellent transmission and mismatch/reflection properties at frequencies up to 24 GHz. By controlling the electric field distribution within the coupling region between the resonator and input/output lines, sufficiently high loaded and unloaded Q values are maintained so as to be useful for microstrip filter design, with low mismatch loss. In the 23 - 24 GHz region, the filter was tunable over a 100 MHz range, the loaded and unloaded Q values were 29 and 68, respectively, and the reflection losses were below -16 dB, which demonstrates the suitability of these films for practical microwave applications.

  11. Effects of turf and cleat footwear on plantar load distributions in adolescent American football players during resisted pushing.

    PubMed

    Taylor, Jeffrey B; Nguyen, Anh-Dung; Griffin, Janet R; Ford, Kevin R

    2018-06-01

    Metatarsal and midfoot injuries are common in American football. Footwear design may influence injury rates by altering plantar foot loading patterns in these regions. The purpose of this study was to determine the effect of cleat design on in-shoe plantar foot loading during a football-specific, resisted pushing task. Twenty competitive football players (age 14.7 ± 1.8 years, height 1.72 ± 0.10 m, and mass 71.8 ± 26.9 kg) completed three trials of pushing a weighted sled at maximal effort in a standard shoe (CLEAT) and artificial turf-specific shoe (TURF), with flexible in-shoe force measuring insoles. Repeated measures ANOVAs identified mean differences in maximum force and relative load under all regions of the foot. Results showed higher forces in the CLEAT under the medial (p < 0.001) and lateral (p = 0.004) midfoot, central (p = 0.007) and lateral (p < 0.001) forefoot, and lesser toes (p = 0.01), but lower forces in the hallux (p = 0.02) compared to the TURF shoe. Additionally, relative loading was higher in the CLEAT under the medial (p < 0.001) and lateral (p = 0.002) midfoot and lateral (p < 0.001) forefoot, but lower in the medial forefoot (p = 0.006) and hallux (p < 0.001) compared to the TURF shoe. The two shoes elicited distinct plantar loading profiles and may influence shoe selection decisions during injury prevention or rehabilitation practices.

  12. Structural Dynamic Behavior of Wind Turbines

    NASA Technical Reports Server (NTRS)

    Thresher, Robert W.; Mirandy, Louis P.; Carne, Thomas G.; Lobitz, Donald W.; James, George H. III

    2009-01-01

    The structural dynamicist s areas of responsibility require interaction with most other members of the wind turbine project team. These responsibilities are to predict structural loads and deflections that will occur over the lifetime of the machine, ensure favorable dynamic responses through appropriate design and operational procedures, evaluate potential design improvements for their impact on dynamic loads and stability, and correlate load and control test data with design predictions. Load prediction has been a major concern in wind turbine designs to date, and it is perhaps the single most important task faced by the structural dynamics engineer. However, even if we were able to predict all loads perfectly, this in itself would not lead to an economic system. Reduction of dynamic loads, not merely a "design to loads" policy, is required to achieve a cost-effective design. The two processes of load prediction and structural design are highly interactive: loads and deflections must be known before designers and stress analysts can perform structural sizing, which in turn influences the loads through changes in stiffness and mass. Structural design identifies "hot spots" (local areas of high stress) that would benefit most from dynamic load alleviation. Convergence of this cycle leads to a turbine structure that is neither under-designed (which may result in structural failure), nor over-designed (which will lead to excessive weight and cost).

  13. Methods for combining payload parameter variations with input environment. [calculating design limit loads compatible with probabilistic structural design criteria

    NASA Technical Reports Server (NTRS)

    Merchant, D. H.

    1976-01-01

    Methods are presented for calculating design limit loads compatible with probabilistic structural design criteria. The approach is based on the concept that the desired limit load, defined as the largest load occurring in a mission, is a random variable having a specific probability distribution which may be determined from extreme-value theory. The design limit load, defined as a particular of this random limit load, is the value conventionally used in structural design. Methods are presented for determining the limit load probability distributions from both time-domain and frequency-domain dynamic load simulations. Numerical demonstrations of the method are also presented.

  14. Clonazepam release from poly(DL-lactide-co-glycolide) nanoparticles prepared by dialysis method.

    PubMed

    Nah, J W; Paek, Y W; Jeong, Y I; Kim, D W; Cho, C S; Kim, S H; Kim, M Y

    1998-08-01

    Aim of this work is to prepare poly(DL-lactide-co-glycolide) (PLGA) nanoparticles by dialysis method without surfactant and to investigate drug loading capacity and drug release. The size of PLGA nanoparticles was 269.9 +/- 118.7 nm in intensity average and the morphology of PLGA nanoparticles was spherical shape from the observation of SEM and TEM. In the effect of drug loading contents on the particle size distribution, PLGA nanoparticles were monomodal pattern with narrow size distribution in the empty and lower drug loading nanoparticles whereas bi- or trimodal pattern was showed in the higher drug loading ones. Release of clonazepam from PLGA nanoparticles with higher drug loading contents was slower than that with lower loading contents.

  15. Modeling of plug-in electric vehicle travel patterns and charging load based on trip chain generation

    NASA Astrophysics Data System (ADS)

    Wang, Dai; Gao, Junyu; Li, Pan; Wang, Bin; Zhang, Cong; Saxena, Samveg

    2017-08-01

    Modeling PEV travel and charging behavior is the key to estimate the charging demand and further explore the potential of providing grid services. This paper presents a stochastic simulation methodology to generate itineraries and charging load profiles for a population of PEVs based on real-world vehicle driving data. In order to describe the sequence of daily travel activities, we use the trip chain model which contains the detailed information of each trip, namely start time, end time, trip distance, start location and end location. A trip chain generation method is developed based on the Naive Bayes model to generate a large number of trips which are temporally and spatially coupled. We apply the proposed methodology to investigate the multi-location charging loads in three different scenarios. Simulation results show that home charging can meet the energy demand of the majority of PEVs in an average condition. In addition, we calculate the lower bound of charging load peak on the premise of lowest charging cost. The results are instructive for the design and construction of charging facilities to avoid excessive infrastructure.

  16. Properties of train load frequencies and their applications

    NASA Astrophysics Data System (ADS)

    Milne, D. R. M.; Le Pen, L. M.; Thompson, D. J.; Powrie, W.

    2017-06-01

    A train in motion applies moving steady loads to the railway track as well as dynamic excitation; this causes track deflections, vibration and noise. At low frequency, the spectrum of measured track vibration has been found to have a distinct pattern; with spectral peaks occurring at multiples of the vehicle passing frequency. This pattern can be analysed to quantify aspects of train and track performance as well as to design sensors and systems for trackside condition monitoring. To this end, analytical methods are developed to determine frequency spectra based on known vehicle geometry and track properties. It is shown that the quasi-static wheel loads from a moving train, which are the most significant cause of the track deflections at low frequency, can be understood by considering a loading function representing the train geometry in combination with the response of the track to a single unit load. The Fourier transform of the loading function describes how the passage of repeating vehicles within a train leads to spectral peaks at various multiples of the vehicle passing frequency. When a train consists of a single type of repeating vehicle, these peaks depend on the geometry of that vehicle type as the separation of axles on a bogie and spacing of those bogies on a vehicle cause certain frequencies to be suppressed. Introduction of different vehicle types within a train or coupling of trainsets with a different inter-car length changes the spectrum, although local peaks still occur at multiples of the passing frequency of the primary vehicle. Using data from track-mounted geophones, it is shown that the properties of the train load spectrum, together with a model for track behaviour, allows calculation of the track system support modulus without knowledge of the axle loads, and enables rapid determination of the train speed. For continuous remote condition monitoring, track-mounted transducers are ideally powered using energy harvesting devices. These need to be tuned to optimise energy abstraction; the appropriate energy harvesting frequencies for given vehicle types and line speeds can also be predicted using the models developed.

  17. On the relationship between matched filter theory as applied to gust loads and phased design loads analysis

    NASA Technical Reports Server (NTRS)

    Zeiler, Thomas A.; Pototzky, Anthony S.

    1989-01-01

    A theoretical basis and example calculations are given that demonstrate the relationship between the Matched Filter Theory approach to the calculation of time-correlated gust loads and Phased Design Load Analysis in common use in the aerospace industry. The relationship depends upon the duality between Matched Filter Theory and Random Process Theory and upon the fact that Random Process Theory is used in Phased Design Loads Analysis in determining an equiprobable loads design ellipse. Extensive background information describing the relevant points of Phased Design Loads Analysis, calculating time-correlated gust loads with Matched Filter Theory, and the duality between Matched Filter Theory and Random Process Theory is given. It is then shown that the time histories of two time-correlated gust load responses, determined using the Matched Filter Theory approach, can be plotted as parametric functions of time and that the resulting plot, when superposed upon the design ellipse corresponding to the two loads, is tangent to the ellipse. The question is raised of whether or not it is possible for a parametric load plot to extend outside the associated design ellipse. If it is possible, then the use of the equiprobable loads design ellipse will not be a conservative design practice in some circumstances.

  18. Microscopic full-field three-dimensional strain measurement during the mechanical testing of additively manufactured porous biomaterials.

    PubMed

    Genovese, Katia; Leeflang, Sander; Zadpoor, Amir A

    2017-05-01

    A custom-designed micro-digital image correlation system was used to track the evolution of the full-surface three-dimensional strain field of Ti6Al4V additively manufactured lattice samples under mechanical loading. The high-magnification capabilities of the method allowed to resolve the strain distribution down to the strut level and disclosed a highly heterogeneous mechanical response of the lattice structure with local strain concentrations well above the nominal global strain level. In particular, we quantified that strain heterogeneity appears at a very early stage of the deformation process and increases with load, showing a strain accumulation pattern with a clear correlation to the later onset of the fracture. The obtained results suggest that the unique opportunities offered by the proposed experimental method, in conjunction with analytical and computational models, could serve to provide novel important information for the rational design of additively manufactured porous biomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Horn-coupled, commercially-fabricated aluminum lumped-element kinetic inductance detectors for millimeter wavelengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarrick, H., E-mail: hlm2124@columbia.edu; Flanigan, D.; Jones, G.

    We discuss the design, fabrication, and testing of prototype horn-coupled, lumped-element kinetic inductance detectors (LEKIDs) designed for cosmic microwave background studies. The LEKIDs are made from a thin aluminum film deposited on a silicon wafer and patterned using standard photolithographic techniques at STAR Cryoelectronics, a commercial device foundry. We fabricated 20-element arrays, optimized for a spectral band centered on 150 GHz, to test the sensitivity and yield of the devices as well as the multiplexing scheme. We characterized the detectors in two configurations. First, the detectors were tested in a dark environment with the horn apertures covered, and second, themore » horn apertures were pointed towards a beam-filling cryogenic blackbody load. These tests show that the multiplexing scheme is robust and scalable, the yield across multiple LEKID arrays is 91%, and the measured noise-equivalent temperatures for a 4 K optical load are in the range 26±6 μK√(s)« less

  20. Features of lymphatic dysfunction in compressed skin tissues - Implications in pressure ulcer aetiology.

    PubMed

    Gray, Robert J; Voegeli, David; Bader, Dan L

    2016-02-01

    Impaired lymph formation and clearance has previously been proposed as a contributory factor in the development of pressure ulcers. The present study has been designed to trial fluorescence lymphangiography for establishing how lymphatic function is altered under a clinically relevant form of mechanical loading. Lymph formation and clearance was traced in both forearms by an intradermal injection of indocyanine green (ICG) (50 μl, 0.05%w/v), imaged using a commercial near-infrared fluorescence imaging unit (Fluobeam(®) 800). External uniaxial loading equivalent to a pressure of 60 mmHg was applied for 45 min in one arm using a custom-built indenter. Loading was associated with a decreased frequency of normal directional drainage (DD) of ICG within delineated vessels, both immediately after loading and 45 min thereafter. Loading was also associated with non-directional drainage (NDD) of ICG within the interstitium. Signal intensity within NDD was often greatest at areas of stress concentration, producing a 'halo pattern', corresponding to the rounded edges of the indenter. These results suggest that loading skin with a clinically relevant magnitude of pressure alters both lymph formation and clearance. Further work to quantify impaired clearance under mechanical loading could provide valuable insight into their involvement in the development of pressure ulcers. Copyright © 2016 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  1. The influence of impact direction and axial loading on the bone fracture pattern.

    PubMed

    Cohen, Haim; Kugel, Chen; May, Hila; Medlej, Bahaa; Stein, Dan; Slon, Viviane; Brosh, Tamar; Hershkovitz, Israel

    2017-08-01

    The effect of the direction of the impact and the presence of axial loading on fracture patterns have not yet been established in experimental 3-point bending studies. To reveal the association between the direction of the force and the fracture pattern, with and without axial loading. A Dynatup Model POE 2000 (Instron Co.) low energy pendulum impact machine was utilized to apply impact loading on fresh pig femoral bones (n=50). The bone clamp shaft was adjusted to position the bone for three-point bending with and without additional bone compression. Four different directions of the force were applied: anterior, posterior, lateral, and medial. The impacted aspect can be distinguished from the non-impacted aspects based on the fracture pattern alone (the most fractured one); the impact point can be identified on bare bones (the area from which all oblique lines radiate and/or the presence of a chip fragment). None of our experiments (with and without compression) yielded a "true" butterfly fracture, but instead, oblique radiating lines emerged from the point of impact (also known as "false" butterfly). Impacts on the lateral and anterior aspects of the bones produce more and longer fracture lines than impacts on the contralateral side; bones subjected to an impact with axial loading are significantly more comminuted and fragmented. Under axial loading, the number of fracture lines is independent of the impact direction. Our study presents an experimental model for fracture analysis and shows that the impact direction and the presence of axial loading during impact significantly affect the fracture pattern obtained. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Back pain is associated with changes in loading pattern throughout forward and backward bending.

    PubMed

    Shum, Gary L K; Crosbie, Jack; Lee, Raymond Y W

    2010-12-01

    Experimental study to determine the kinetics of the lumbar spine (LS) and hips during forward and backward bending. To investigate the effects of back pain, with and without a positive straight leg raise (SLR) sign, on the loading patterns in the LS and hip during forward and backward bending. Forward and backward bending are important components of many functional activities and are part of routine clinical examination. However, there is a little information about the loading patterns during forward and backward bending in people with back pain with or without a positive SLR sign. Twenty asymptomatic participants, 20 back pain participants, and 20 participants with back pain and a positive SLR sign performed 3 continuous cycles of forward and backward bending. Electromagnetic sensors were attached to body segments to measure their kinematics while 2 nonconductive force plates gathered ground reaction force data. A biomechanical model was used to determine the loading pattern in LS and hips. Although the loading on the LS at the end of the range decreased significantly, the loading at the early and middle ranges of forward bending actually increased significantly in people with back pain, especially in those with positive SLR sign. This suggests that resistance to movement is significantly increased in people with back pain during this movement. This study suggested that it is not sufficient to study the spine at the end of range only, but a complete description of the loading patterns throughout the range is required. Although the maximum range of motion of the spine is reduced in people with back pain, there is a significant increase in the moment acting through the range, particularly in those with a positive SLR sign.

  3. Evaluation of Amorphous Transformer by Optimum Capacity Selection based on the Load Curve Pattern of Customers

    NASA Astrophysics Data System (ADS)

    Takagi, Masaaki; Yamamoto, Hiromi; Yamaji, Kenji

    Energy loss in transformer is composed of no-load loss and load loss. No-load loss of amorphous transformer (i.e. amorphous metal-based transformer) is less by about 70% compared with traditional transformers (e.g. silicon steel-based transformer). However, amorphous transformers have disadvantages of high cost and high load loss parameter compared with traditional transformers. Furthermore, there are varieties of transformer capacities, and the customers who would buy new transformer have many choices. In this paper, the authors propose an algorithm for optimum transformer selection based on the load curve patterns of customers. It is possible to select the capacity that minimizes the total cost by measuring equivalent load Qe that is the root mean square of load. It becomes clear that amorphous transformer is effective in achieving substantial energy saving compared with traditional transformer.

  4. Impact of Climate Variability and Landscape Patterns on Water Budget and Nutrient Loads in a Peri-urban Watershed: A Coupled Analysis Using Process-based Hydrological Model and Landscape Indices.

    PubMed

    Li, Chongwei; Zhang, Yajuan; Kharel, Gehendra; Zou, Chris B

    2018-06-01

    Nutrient discharge into peri-urban streams and reservoirs constitutes a significant pressure on environmental management, but quantitative assessment of non-point source pollution under climate variability in fast changing peri-urban watersheds is challenging. Soil and Water Assessment Tool (SWAT) was used to simulate water budget and nutrient loads for landscape patterns representing a 30-year progression of urbanization in a peri-urban watershed near Tianjin metropolis, China. A suite of landscape pattern indices was related to nitrogen (N) and phosphorous (P) loads under dry and wet climate using CANOCO redundancy analysis. The calibrated SWAT model was adequate to simulate runoff and nutrient loads for this peri-urban watershed, with Nash-Sutcliffe coefficient (NSE) and coefficient of determination (R 2 ) > 0.70 and percentage bias (PBIAS) between -7 and +18 for calibration and validation periods. With the progression of urbanization, forest remained the main "sink" landscape while cultivated and urban lands remained the main "source" landscapes with the role of orchard and grassland being uncertain and changing with time. Compared to 1984, the landscape use pattern in 2013 increased nutrient discharge by 10%. Nutrient loads modelled under wet climate were 3-4 times higher than that under dry climate for the same landscape pattern. Results indicate that climate change could impose a far greater impact on runoff and nutrient discharge in a peri-urban watershed than landscape pattern change.

  5. Impact of Climate Variability and Landscape Patterns on Water Budget and Nutrient Loads in a Peri-urban Watershed: A Coupled Analysis Using Process-based Hydrological Model and Landscape Indices

    NASA Astrophysics Data System (ADS)

    Li, Chongwei; Zhang, Yajuan; Kharel, Gehendra; Zou, Chris B.

    2018-06-01

    Nutrient discharge into peri-urban streams and reservoirs constitutes a significant pressure on environmental management, but quantitative assessment of non-point source pollution under climate variability in fast changing peri-urban watersheds is challenging. Soil and Water Assessment Tool (SWAT) was used to simulate water budget and nutrient loads for landscape patterns representing a 30-year progression of urbanization in a peri-urban watershed near Tianjin metropolis, China. A suite of landscape pattern indices was related to nitrogen (N) and phosphorous (P) loads under dry and wet climate using CANOCO redundancy analysis. The calibrated SWAT model was adequate to simulate runoff and nutrient loads for this peri-urban watershed, with Nash-Sutcliffe coefficient (NSE) and coefficient of determination ( R 2) > 0.70 and percentage bias (PBIAS) between -7 and +18 for calibration and validation periods. With the progression of urbanization, forest remained the main "sink" landscape while cultivated and urban lands remained the main "source" landscapes with the role of orchard and grassland being uncertain and changing with time. Compared to 1984, the landscape use pattern in 2013 increased nutrient discharge by 10%. Nutrient loads modelled under wet climate were 3-4 times higher than that under dry climate for the same landscape pattern. Results indicate that climate change could impose a far greater impact on runoff and nutrient discharge in a peri-urban watershed than landscape pattern change.

  6. Investigation of Hall Effect Thruster Channel Wall Erosion Mechanisms

    DTIC Science & Technology

    2016-08-02

    pretest height and laser image, c, d) post - test height and laser image. On all the pre-roughened samples, a cell-pattern developed from the random...7.8: Pre and post - test sample microscopy: Fused silica sample SA6 (loaded), 20x, center of exposed surface, a, b) pretest height and laser image, c, d...stress on the surface features developed during plasma erosion. The experiment is also designed specifically to test the SRH. A test fixture is

  7. Variation in the location of the shoe sole flexion point influences plantar loading patterns during gait

    PubMed Central

    2014-01-01

    Background Several footwear design characteristics are known to have detrimental effects on the foot. However, one characteristic that has received relatively little attention is the point where the sole flexes in the sagittal plane. Several footwear assessment forms assume that this should ideally be located directly under the metarsophalangeal joints (MTPJs), but this has not been directly evaluated. The aim of this study was therefore to assess the influence on plantar loading of different locations of the shoe sole flexion point. Method Twenty-one asymptomatic females with normal foot posture participated. Standardised shoes were incised directly underneath the metatarsophalangeal joints, proximal to the MTPJs or underneath the midfoot. The participants walked in a randomised sequence of the three shoes whilst plantar loading patterns were obtained using the Pedar® in-shoe pressure measurement system. The foot was divided into nine anatomically important masks, and peak pressure (PP), contact time (CT) and pressure time integral (PTI) were determined. A ratio of PP and PTI between MTPJ2-3/MTPJ1 was also calculated. Results Wearing the shoe with the sole flexion point located proximal to the MTPJs resulted in increased PP under MTPJ 4–5 (6.2%) and decreased PP under the medial midfoot compared to the sub-MTPJ flexion point (−8.4%). Wearing the shoe with the sole flexion point located under the midfoot resulted in decreased PP, CT and PTI in the medial and lateral hindfoot (PP: −4.2% and −5.1%, CT: −3.4% and −6.6%, PTI: −6.9% and −5.7%) and medial midfoot (PP: −5.9% CT: −2.9% PTI: −12.2%) compared to the other two shoes. Conclusion The findings of this study indicate that the location of the sole flexion point of the shoe influences plantar loading patterns during gait. Specifically, shoes with a sole flexion point located under the midfoot significantly decrease the magnitude and duration of loading under the midfoot and hindfoot, which may be indicative of an earlier heel lift. PMID:24642291

  8. Effects of load carrying on metabolic cost and hindlimb muscle dynamics in guinea fowl (Numida meleagris)

    PubMed Central

    McGowan, C. P.; Duarte, H. A.; Main, J. B.; Biewener, A. A.

    2008-01-01

    The goal of this study was to test whether the contractile patterns of two major hindlimb extensors of guinea fowl are altered by load-carrying exercise. We hypothesized that changes in contractile pattern, specifically a decrease in muscle shortening velocity or enhanced stretch activation, would result in a reduction in locomotor energy cost relative to the load carried. We also anticipated that changes in kinematics would reflect underlying changes in muscle strain. Oxygen consumption, muscle activation intensity, and fascicle strain rate were measured over a range of speeds while animals ran unloaded vs. when they carried a trunk load equal to 22% of their body mass. Our results showed that loading produced no significant (P > 0.05) changes in kinematic patterns at any speed. In vivo muscle contractile strain patterns in the iliotibialis lateralis pars postacetabularis and the medial head of the gastrocnemius showed a significant increase in active stretch early in stance (P < 0.01), but muscle fascicle shortening velocity was not significantly affected by load carrying. The rate of oxygen consumption increased by 17% (P < 0.01) during loaded conditions, equivalent to 77% of the relative increase in mass. Additionally, relative increases in EMG intensity (quantified as mean spike amplitude) indicated less than proportional recruitment, consistent with force enhancement via stretch activation, in the proximal iliotibialis lateralis pars postacetabularis; however, a greater than proportional increase in the medial gastrocnemius was observed. As a result, when averaged for the two muscles, EMG intensity increased in direct proportion to the fractional increase in load carried. PMID:16809624

  9. Pathophysiology of transfusional iron overload: contrasting patterns in thalassemia major and sickle cell disease.

    PubMed

    Porter, John B

    2009-01-01

    The pathophysiological consequences of transfusional iron overload largely reflect the pattern of excess iron distribution and include cardiomyopathy, endocrinopathy, cirrhosis, and hepatocellular carcinoma. Since the introduction of desferrioxamine (DFO) in the late 1970s, these complications have fallen substantially but approximately half of the chelated adult patients with thalassemia major (TM) still show evidence of increased myocardial iron loading by MRI. An understanding of the factors that determine the propensity to extrahepatic iron distribution may be a key to minimizing the pathophysiological consequences of transfusional iron overload. Transfused patients with sickle cell disease (SCD) appear less likely to develop these extrahepatic complications, possibly because plasma nontransferrin-bound iron (NTBI) levels are typically lower than in TM patients at matched levels of iron loading. Other mechanisms that may reduce the extrahepatic iron distribution in SCD include raised plasma hepcidin due to chronic inflammation, lower growth differentiation factor 15 (GDF15) levels because of less ineffective erythropoiesis (IE), and induction of heme oxygenase (HO1) by intravascular hemolysis. Further understanding of these mechanisms may help in designing strategies to decrease extrahepatic iron distribution in TM.

  10. Force Relaxation Characteristics of Medium Force Orthodontic Latex Elastics: A Pilot Study

    PubMed Central

    Fernandes, Daniel J.; Abrahão, Gisele M.; Elias, Carlos N.; Mendes, Alvaro M.

    2011-01-01

    To evaluate force extension relaxation of different brands and diameters of latex elastics subjected to static tensile testing under an apparatus designed to simulate oral environments, sample sizes of 5 elastics from American Orthodontics (AO), Tp, and Morelli Orthodontics (Mo) of equivalent medium force, (3/16, 1/4, and 5/16 inch size) were tested. The forces were read after 1-, 3-, 6-, 12- and 24-hour periods in Emic testing machine with 30 mm/min cross-head speed and load cell of 20 N. Two-way ANOVA and Bonferroni tests were used to identify statistical significance. There were statistically differences among different manufacturers at all observation intervals (P < 0.0001). The relationships among loads at 24-hour time period were as follows: Morelli>AO>Tp for 3/16, 1/4, and 5/16 elastics. The force decay pattern showed a notable drop-off of forces until 3 hours, a slight increase in some groups from 3–6 hours and a more homogeneous force pattern over 6–24 hours. PMID:21991478

  11. Observer-Pattern Modeling and Slow-Scale Bifurcation Analysis of Two-Stage Boost Inverters

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Wan, Xiaojin; Li, Weijie; Ding, Honghui; Yi, Chuanzhi

    2017-06-01

    This paper deals with modeling and bifurcation analysis of two-stage Boost inverters. Since the effect of the nonlinear interactions between source-stage converter and load-stage inverter causes the “hidden” second-harmonic current at the input of the downstream H-bridge inverter, an observer-pattern modeling method is proposed by removing time variance originating from both fundamental frequency and hidden second harmonics in the derived averaged equations. Based on the proposed observer-pattern model, the underlying mechanism of slow-scale instability behavior is uncovered with the help of eigenvalue analysis method. Then eigenvalue sensitivity analysis is used to select some key system parameters of two-stage Boost inverter, and some behavior boundaries are given to provide some design-oriented information for optimizing the circuit. Finally, these theoretical results are verified by numerical simulations and circuit experiment.

  12. Dry etch challenges for CD shrinkage in memory process

    NASA Astrophysics Data System (ADS)

    Matsushita, Takaya; Matsumoto, Takanori; Mukai, Hidefumi; Kyoh, Suigen; Hashimoto, Kohji

    2015-03-01

    Line pattern collapse attracts attention as a new problem of the L&S formation in sub-20nm H.P feature. Line pattern collapse that occurs in a slight non-uniformity of adjacent CD (Critical dimension) space using double patterning process has been studied with focus on micro-loading effect in Si etching. Bias RF pulsing plasma etching process using low duty cycle helped increase of selectivity Si to SiO2. In addition to the effect of Bias RF pulsing process, the thin mask obtained from improvement of selectivity has greatly suppressed micro-loading in Si etching. However it was found that micro-loading effect worsen again in sub-20nm space width. It has been confirmed that by using cycle etch process to remove deposition with CFx based etching micro-loading effect could be suppressed. Finally, Si etching process condition using combination of results above could provide finer line and space without "line pattern collapse" in sub-20nm.

  13. Wrist loading patterns during pommel horse exercises.

    PubMed

    Markolf, K L; Shapiro, M S; Mandelbaum, B R; Teurlings, L

    1990-01-01

    Gymnastics is a sport which involves substantial periods of upper extremity support as well as frequent impacts to the wrist. Not surprisingly, wrist pain is a common finding in gymnasts. Of all events, the pommel horse is the most painful. In order to study the forces of wrist impact, a standard pommel horse was instrumented with a specially designed load cell to record the resultant force of the hand on the pommel during a series of basic skills performed by a group of seventeen elite male gymnasts. The highest mean peak forces were recorded during the front scissors and flair exercises (1.5 BW) with peaks of up to 2.0 BW for some gymnasts. The mean peak force for hip circles at the center or end of the horse was 1.1 BW. The mean overall loading rate (initial contact to first loading peak) ranged from 5.2 BWs-1 (hip circles) to 10.6 BW s-1 (flairs). However, many recordings displayed localized initial loading spikes which occurred during 'hard' landings on the pommel. When front scissors were performed in an aggressive manner, the initial loading spikes averaged 1.0 BW in magnitude (maximum 1.8 BW) with an average rise time of 8.2 ms; calculated localized loading rates averaged 129 BW s-1 (maximum 219 BW s-1). These loading parameters are comparable to those encountered at heel strike during running. These impact forces and loading rates are remarkably high for an upper extremity joint not normally exposed to weight-bearing loads, and may contribute to the pathogenesis of wrist injuries in gymnastics.

  14. Evaluation of Limb Load Asymmetry Using Two New Mathematical Models

    PubMed Central

    Kumar, Senthil NS; Omar, Baharudin; Joseph, Leonard H.; Htwe, Ohnmar; Jagannathan, K.; Hamdan, Nor M Y; Rajalakshmi, D.

    2015-01-01

    Quantitative measurement of limb loading is important in orthopedic and neurological rehabilitation. In current practice, mathematical models such as Symmetry index (SI), Symmetry ratio (SR), and Symmetry angle (SA) are used to quantify limb loading asymmetry. Literatures have identified certain limitations with the above mathematical models. Hence this study presents two new mathematical models Modified symmetry index (MSI) and Limb loading error (LLE) that would address these limitations. Furthermore, the current mathematical models were compared against the new model with the goal of achieving a better model. This study uses hypothetical data to simulate an algorithmic preliminary computational measure to perform with all numerical possibilities of even and uneven limb loading that can occur in human legs. Descriptive statistics are used to interpret the limb loading patterns: symmetry, asymmetry and maximum asymmetry. The five mathematical models were similar in analyzing symmetry between limbs. However, for asymmetry and maximum asymmetry data, the SA and SR values do not give any meaningful interpretation, and SI gives an inflated value. The MSI and LLE are direct, easy to interpret and identify the loading patterns with the side of asymmetry. The new models are notable as they quantify the amount and side of asymmetry under different loading patterns. PMID:25716372

  15. Design and analysis of tilt integral derivative controller with filter for load frequency control of multi-area interconnected power systems.

    PubMed

    Kumar Sahu, Rabindra; Panda, Sidhartha; Biswal, Ashutosh; Chandra Sekhar, G T

    2016-03-01

    In this paper, a novel Tilt Integral Derivative controller with Filter (TIDF) is proposed for Load Frequency Control (LFC) of multi-area power systems. Initially, a two-area power system is considered and the parameters of the TIDF controller are optimized using Differential Evolution (DE) algorithm employing an Integral of Time multiplied Absolute Error (ITAE) criterion. The superiority of the proposed approach is demonstrated by comparing the results with some recently published heuristic approaches such as Firefly Algorithm (FA), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) optimized PID controllers for the same interconnected power system. Investigations reveal that proposed TIDF controllers provide better dynamic response compared to PID controller in terms of minimum undershoots and settling times of frequency as well as tie-line power deviations following a disturbance. The proposed approach is also extended to two widely used three area test systems considering nonlinearities such as Generation Rate Constraint (GRC) and Governor Dead Band (GDB). To improve the performance of the system, a Thyristor Controlled Series Compensator (TCSC) is also considered and the performance of TIDF controller in presence of TCSC is investigated. It is observed that system performance improves with the inclusion of TCSC. Finally, sensitivity analysis is carried out to test the robustness of the proposed controller by varying the system parameters, operating condition and load pattern. It is observed that the proposed controllers are robust and perform satisfactorily with variations in operating condition, system parameters and load pattern. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Plantar loading and foot-strike pattern changes with speed during barefoot running in those with a natural rearfoot strike pattern while shod.

    PubMed

    Cooper, Danielle M; Leissring, Sarah K; Kernozek, Thomas W

    2015-06-01

    Claims of injury reduction related to barefoot running has resulted in interest from the running public; however, its risks are not well understood for those who typically wear cushioned footwear. Examine how plantar loading changes during barefoot running in a group of runners that ordinarily wear cushioned footwear and demonstrate a rearfoot strike pattern (RFSP) without cueing or feedback alter their foot strike pattern and plantar loading when asked to run barefoot at different speeds down a runway. Forty-one subjects ran barefoot at three different speeds across a pedography platform which collected plantar loading variables for 10 regions of the foot; data were analyzed using two-way mixed multivariate analysis of variance (MANOVA). A significant foot strike position (FSP)×speed interaction in each of the foot regions indicated that plantar loading differed based on FSP across the different speeds. The RFSP provided the highest total forces across the foot while the pressures displayed in subjects with a non-rearfoot strike pattern (NRFSP) was more similar between each of the metatarsals. The majority of subjects ran barefoot with a NRFSP and demonstrated lower total forces and more uniform force distribution across the metatarsal regions. This may have an influence in injuries sustained in barefoot running. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Role of optimization criterion in static asymmetric analysis of lumbar spine load.

    PubMed

    Daniel, Matej

    2011-10-01

    A common method for load estimation in biomechanics is the inverse dynamics optimization, where the muscle activation pattern is found by minimizing or maximizing the optimization criterion. It has been shown that various optimization criteria predict remarkably similar muscle activation pattern and intra-articular contact forces during leg motion. The aim of this paper is to study the effect of the choice of optimization criterion on L4/L5 loading during static asymmetric loading. Upright standing with weight in one stretched arm was taken as a representative position. Musculoskeletal model of lumbar spine model was created from CT images of Visible Human Project. Several criteria were tested based on the minimization of muscle forces, muscle stresses, and spinal load. All criteria provide the same level of lumbar spine loading (difference is below 25%), except the criterion of minimum lumbar shear force which predicts unrealistically high spinal load and should not be considered further. Estimated spinal load and predicted muscle force activation pattern are in accordance with the intradiscal pressure measurements and EMG measurements. The L4/L5 spine loads 1312 N, 1674 N, and 1993 N were predicted for mass of weight in hand 2, 5, and 8 kg, respectively using criterion of mininum muscle stress cubed. As the optimization criteria do not considerably affect the spinal load, their choice is not critical in further clinical or ergonomic studies and computationally simpler criterion can be used.

  18. Short term load forecasting of anomalous load using hybrid soft computing methods

    NASA Astrophysics Data System (ADS)

    Rasyid, S. A.; Abdullah, A. G.; Mulyadi, Y.

    2016-04-01

    Load forecast accuracy will have an impact on the generation cost is more economical. The use of electrical energy by consumers on holiday, show the tendency of the load patterns are not identical, it is different from the pattern of the load on a normal day. It is then defined as a anomalous load. In this paper, the method of hybrid ANN-Particle Swarm proposed to improve the accuracy of anomalous load forecasting that often occur on holidays. The proposed methodology has been used to forecast the half-hourly electricity demand for power systems in the Indonesia National Electricity Market in West Java region. Experiments were conducted by testing various of learning rate and learning data input. Performance of this methodology will be validated with real data from the national of electricity company. The result of observations show that the proposed formula is very effective to short-term load forecasting in the case of anomalous load. Hybrid ANN-Swarm Particle relatively simple and easy as a analysis tool by engineers.

  19. Optimal Control Surface Layout for an Aeroservoelastic Wingbox

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.

    2017-01-01

    This paper demonstrates a technique for locating the optimal control surface layout of an aeroservoelastic Common Research Model wingbox, in the context of maneuver load alleviation and active utter suppression. The combinatorial actuator layout design is solved using ideas borrowed from topology optimization, where the effectiveness of a given control surface is tied to a layout design variable, which varies from zero (the actuator is removed) to one (the actuator is retained). These layout design variables are optimized concurrently with a large number of structural wingbox sizing variables and control surface actuation variables, in order to minimize the sum of structural weight and actuator weight. Results are presented that demonstrate interdependencies between structural sizing patterns and optimal control surface layouts, for both static and dynamic aeroelastic physics.

  20. Increase in flood risk resulting from climate change in a developed urban watershed - the role of storm temporal patterns

    NASA Astrophysics Data System (ADS)

    Hettiarachchi, Suresh; Wasko, Conrad; Sharma, Ashish

    2018-03-01

    The effects of climate change are causing more frequent extreme rainfall events and an increased risk of flooding in developed areas. Quantifying this increased risk is of critical importance for the protection of life and property as well as for infrastructure planning and design. The updated National Oceanic and Atmospheric Administration (NOAA) Atlas 14 intensity-duration-frequency (IDF) relationships and temporal patterns are widely used in hydrologic and hydraulic modeling for design and planning in the United States. Current literature shows that rising temperatures as a result of climate change will result in an intensification of rainfall. These impacts are not explicitly included in the NOAA temporal patterns, which can have consequences on the design and planning of adaptation and flood mitigation measures. In addition there is a lack of detailed hydraulic modeling when assessing climate change impacts on flooding. The study presented in this paper uses a comprehensive hydrologic and hydraulic model of a fully developed urban/suburban catchment to explore two primary questions related to climate change impacts on flood risk. (1) How do climate change effects on storm temporal patterns and rainfall volumes impact flooding in a developed complex watershed? (2) Is the storm temporal pattern as critical as the total volume of rainfall when evaluating urban flood risk? We use the NOAA Atlas 14 temporal patterns, along with the expected increase in temperature for the RCP8.5 scenario for 2081-2100, to project temporal patterns and rainfall volumes to reflect future climatic change. The model results show that different rainfall patterns cause variability in flood depths during a storm event. The changes in the projected temporal patterns alone increase the risk of flood magnitude up to 35 %, with the cumulative impacts of temperature rise on temporal patterns and the storm volume increasing flood risk from 10 to 170 %. The results also show that regional storage facilities are sensitive to rainfall patterns that are loaded in the latter part of the storm duration, while extremely intense short-duration storms will cause flooding at all locations. This study shows that changes in temporal patterns will have a significant impact on urban/suburban flooding and need to be carefully considered and adjusted to account for climate change when used for the design and planning of future storm water systems.

  1. Unsteady CFD simulation for bucket design optimization of Pelton turbine runner

    NASA Astrophysics Data System (ADS)

    KUMASHIRO, Takashi; FUKUHARA, Haruki; TANI, Kiyohito

    2016-11-01

    To investigate flow patterns on the bucket of Pelton turbine runners is one of the important issues to improve the turbine performance. By studying the mechanism of loss generation on the flow around the bucket, it becomes possible to optimize the design of inner and outer bucket shape. For making it into study, computational fluid dynamics (CFD) is quite an effective method. It is normally used to simulate the flow in turbines and to expect the turbine performances in the development for many kind of water turbine including Pelton type. Especially in the bucket development, the numerical investigations are more useful than observations and measurements obtained in the model test to understand the transient flow patterns. In this paper, a numerical study on two different design buckets is introduced. The simplified analysis domain with consideration for reduction of computational load is also introduced. Furthermore the model tests of two buckets are also performed by using the same test equipment. As the results of the model test, a difference of turbine efficiency is clearly confirmed. The trend of calculated efficiencies on both buckets agrees with the experiment. To investigate the causes of that, the difference of unsteady flow patterns between two buckets is discussed based on the results of numerical analysis.

  2. Previously identified patellar tendinopathy risk factors differ between elite and sub-elite volleyball players.

    PubMed

    Janssen, I; Steele, J R; Munro, B J; Brown, N A T

    2015-06-01

    Patellar tendinopathy is the most common knee injury incurred in volleyball, with its prevalence in elite athletes more than three times that of their sub-elite counterparts. The purpose of this study was to determine whether patellar tendinopathy risk factors differed between elite and sub-elite male volleyball players. Nine elite and nine sub-elite male volleyball players performed a lateral stop-jump block movement. Maximum vertical jump, training history, muscle extensibility and strength, three-dimensional landing kinematics (250 Hz), along with lower limb neuromuscular activation patterns (1500 Hz), and patellar tendon loading were collected during each trial. Multivariate analyses of variance (P < 0.05) assessed for between-group differences in risk factors or patellar tendon loading. Significant interaction effects were further evaluated using post-hoc univariate analysis of variance tests. Landing kinematics, neuromuscular activation patterns, patellar tendon loading, and most of the previously identified risk factors did not differ between the elite and sub-elite players. However, elite players participated in a higher training volume and had less quadriceps extensibility than sub-elite players. Therefore, high training volume is likely the primary contributor to the injury discrepancy between elite and sub-elite volleyball players. Interventions designed to reduce landing frequency and improve quadriceps extensibility are recommended to reduce patellar tendinopathy prevalence in volleyball players. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Measuring and Understanding the Energy Use Signatures of a Bank Building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, YuLong; Liu, Bing; Athalye, Rahul A.

    The Pacific Northwest National Laboratory measured and analyzed the energy end-use patterns in a bank building located in the north-eastern United States. This work was performed in collaboration with PNC Financial Service Group under the US DOE’s Commercial Building Partnerships Program. This paper presents the metering study and the results of the metered data analysis. It provides a benchmark for the energy use of different bank-related equipments. The paper also reveals the importance of metering in fully understanding building loads and indentifying opportunities for energy efficiency improvements that will have impacts across PNC’s portfolio of buildings and were crucial tomore » reducing receptacle loads in the design of a net-zero bank branches. PNNL worked with PNC to meter a 4,000 ft2 bank branch in the state of Pennsylvania. 71 electrical circuits were monitored and 25 stand-alone watt-hour meters were installed at the bank. These meters monitored the consumption of all interior and exterior lighting, receptacle loads, service water heating, and the HVAC rooftop unit at a 5-minute sampling interval from November 2009 to November 2010. A total of over 8 million data records were generated, which were then analyzed to produce the end-use patterns, daily usage profiles, rooftop unit usage cycles, and inputs for calibrating the energy model of the building.« less

  4. Frequency Distribution in Domestic Microwave Ovens and Its Influence on Heating Pattern.

    PubMed

    Luan, Donglei; Wang, Yifen; Tang, Juming; Jain, Deepali

    2017-02-01

    In this study, snapshots of operating frequency profiles of domestic microwave ovens were collected to reveal the extent of microwave frequency variations under different operation conditions. A computer simulation model was developed based on the finite difference time domain method to analyze the influence of the shifting frequency on heating patterns of foods in a microwave oven. The results showed that the operating frequencies of empty and loaded domestic microwave ovens varied widely even among ovens of the same model purchased on the same date. Each microwave oven had its unique characteristic operating frequencies, which were also affected by the location and shape of the load. The simulated heating patterns of a gellan gel model food when heated on a rotary plate agreed well with the experimental results, which supported the reliability of the developed simulation model. Simulation indicated that the heating patterns of a stationary model food load changed with the varying operating frequency. However, the heating pattern of a rotary model food load was not sensitive to microwave frequencies due to the severe edge heating overshadowing the effects of the frequency variations. © 2016 Institute of Food Technologists®.

  5. Assessing Footwear Effects from Principal Features of Plantar Loading during Running.

    PubMed

    Trudeau, Matthieu B; von Tscharner, Vinzenz; Vienneau, Jordyn; Hoerzer, Stefan; Nigg, Benno M

    2015-09-01

    The effects of footwear on the musculoskeletal system are commonly assessed by interpreting the resultant force at the foot during the stance phase of running. However, this approach overlooks loading patterns across the entire foot. An alternative technique for assessing foot loading across different footwear conditions is possible using comprehensive analysis tools that extract different foot loading features, thus enhancing the functional interpretation of the differences across different interventions. The purpose of this article was to use pattern recognition techniques to develop and use a novel comprehensive method for assessing the effects of different footwear interventions on plantar loading. A principal component analysis was used to extract different loading features from the stance phase of running, and a support vector machine (SVM) was used to determine whether and how these loading features were different across three shoe conditions. The results revealed distinct loading features at the foot during the stance phase of running. The loading features determined from the principal component analysis allowed successful classification of all three shoe conditions using the SVM. Several differences were found in the location and timing of the loading across each pairwise shoe comparison using the output from the SVM. The analysis approach proposed can successfully be used to compare different loading patterns with a much greater resolution than has been reported previously. This study has several important applications. One such application is that it would not be relevant for a user to select a shoe or for a manufacturer to alter a shoe's construction if the classification across shoe conditions would not have been significant.

  6. Frequency effects on the stability of a journal bearing for periodic loading

    NASA Technical Reports Server (NTRS)

    Vijayaraghavan, D.; Brewe, D. E.

    1991-01-01

    The stability of a journal bearing is numerically predicted when a unidirectional periodic external load is applied. The analysis is performed using a cavitation algorithm, which mimics the Jakobsson-Floberg and Olsson (JFO) theory by accounting for the mass balance through the complete bearing. Hence, the history of the film is taken into consideration. The loading pattern is taken to be sinusoidal and the frequency of the load cycle is varied. The results are compared with the predictions using Reynolds boundary conditions for both film rupture and reformation. With such comparisons, the need for accurately predicting the cavitation regions for complex loading patterns is clearly demonstrated. For a particular frequency of loading, the effects of mass, amplitude of load variation and frequency of journal speed are also investigated. The journal trajectories, transient variations in fluid film forces, net surface velocity and minimum film thickness, and pressure profiles are also presented.

  7. Modeling Geometry and Progressive Failure of Material Interfaces in Plain Weave Composites

    NASA Technical Reports Server (NTRS)

    Hsu, Su-Yuen; Cheng, Ron-Bin

    2010-01-01

    A procedure combining a geometrically nonlinear, explicit-dynamics contact analysis, computer aided design techniques, and elasticity-based mesh adjustment is proposed to efficiently generate realistic finite element models for meso-mechanical analysis of progressive failure in textile composites. In the procedure, the geometry of fiber tows is obtained by imposing a fictitious expansion on the tows. Meshes resulting from the procedure are conformal with the computed tow-tow and tow-matrix interfaces but are incongruent at the interfaces. The mesh interfaces are treated as cohesive contact surfaces not only to resolve the incongruence but also to simulate progressive failure. The method is employed to simulate debonding at the material interfaces in a ceramic-matrix plain weave composite with matrix porosity and in a polymeric matrix plain weave composite without matrix porosity, both subject to uniaxial cyclic loading. The numerical results indicate progression of the interfacial damage during every loading and reverse loading event in a constant strain amplitude cyclic process. However, the composites show different patterns of damage advancement.

  8. Modeling the Effects of Perceptual Load: Saliency, Competitive Interactions, and Top-Down Biases.

    PubMed

    Neokleous, Kleanthis; Shimi, Andria; Avraamides, Marios N

    2016-01-01

    A computational model of visual selective attention has been implemented to account for experimental findings on the Perceptual Load Theory (PLT) of attention. The model was designed based on existing neurophysiological findings on attentional processes with the objective to offer an explicit and biologically plausible formulation of PLT. Simulation results verified that the proposed model is capable of capturing the basic pattern of results that support the PLT as well as findings that are considered contradictory to the theory. Importantly, the model is able to reproduce the behavioral results from a dilution experiment, providing thus a way to reconcile PLT with the competing Dilution account. Overall, the model presents a novel account for explaining PLT effects on the basis of the low-level competitive interactions among neurons that represent visual input and the top-down signals that modulate neural activity. The implications of the model concerning the debate on the locus of selective attention as well as the origins of distractor interference in visual displays of varying load are discussed.

  9. Exploring the impact of network tariffs on household electricity expenditures using load profiles and socio-economic characteristics

    NASA Astrophysics Data System (ADS)

    Azarova, Valeriya; Engel, Dominik; Ferner, Cornelia; Kollmann, Andrea; Reichl, Johannes

    2018-04-01

    Growing self-generation and storage are expected to cause significant changes in residential electricity utilization patterns. Commonly applied volumetric network tariffs may induce imbalance between different groups of households and their respective contribution to recovering the operating costs of the grid. Understanding consumer behaviour and appliance usage together with socio-economic factors can help regulatory authorities to adapt network tariffs to new circumstances in a fair way. Here, we assess the effects of 11 network tariff scenarios on household budgets using real load profiles from 765 households. Thus we explore the possibly disruptive impact of applying peak-load-based tariffs on the budgets of households when they have been mainly charged for consumed volumes before. Our analysis estimates the change in household network expenditure for different combinations of energy, peak and fixed charges, and can help to design tariffs that recover the costs needed for the sustainable operation of the grid.

  10. Virtual Design Method for Controlled Failure in Foldcore Sandwich Panels

    NASA Astrophysics Data System (ADS)

    Sturm, Ralf; Fischer, S.

    2015-12-01

    For certification, novel fuselage concepts have to prove equivalent crashworthiness standards compared to the existing metal reference design. Due to the brittle failure behaviour of CFRP this requirement can only be fulfilled by a controlled progressive crash kinematics. Experiments showed that the failure of a twin-walled fuselage panel can be controlled by a local modification of the core through-thickness compression strength. For folded cores the required change in core properties can be integrated by a modification of the fold pattern. However, the complexity of folded cores requires a virtual design methodology for tailoring the fold pattern according to all static and crash relevant requirements. In this context a foldcore micromodel simulation method is presented to identify the structural response of a twin-walled fuselage panels with folded core under crash relevant loading condition. The simulations showed that a high degree of correlation is required before simulation can replace expensive testing. In the presented studies, the necessary correlation quality could only be obtained by including imperfections of the core material in the micromodel simulation approach.

  11. Geometric design and mechanical behavior of a deployable cylinder with Miura origami

    NASA Astrophysics Data System (ADS)

    Cai, Jianguo; Deng, Xiaowei; Feng, Jian; Zhou, Ya

    2015-12-01

    The folding and deployment of a cylinder with Miura origami patterns are studied in this paper. First, the geometric formulation of the design problem is discussed. Then the loading case of the axial strains and corresponding external nodal loads applied on the vertices of the top polygon during the motion is investigated analytically. The influence of the angle between the diagonal and horizontal fold lines α and β and the number of Miura origami elements n on the dynamic behavior of the basic segment is also discussed. Then the dynamic behavior is analyzed using numerical simulations. Finally, the deployment process of a cylinder with multi-stories is discussed. The numerical results agree well with the analytical predictions. The results show that the range of motion, i.e. the maximal displacement of top nodes, will also increase with the increase of angles α and β. This cylinder, with a smaller n, may have a bistable behavior. When n is larger, the influence of n on the axial strains and external nodal loads is slight. The numerical results agree well with the analytical predictions. Moreover, the deployment of the cylinder with multi-stories is non-uniform, which deploys from the upper story to the lower story.

  12. A Novel 24 Ghz One-Shot Rapid and Portable Microwave Imaging System (Camera)

    NASA Technical Reports Server (NTRS)

    Ghasr, M.T.; Abou-Khousa, M.A.; Kharkovsky, S.; Zoughi, R.; Pommerenke, D.

    2008-01-01

    A novel 2D microwave imaging system at 24 GHz based on MST techniques. Enhanced sensitivity and SNR by utilizing PIN diode-loaded resonant slots. Specific slot and array design to increase transmission and reduce cross -coupling. Real-time imaging at a rate in excess of 30 images per second. Reflection as well transmission mode capabilities. Utility and application for electric field distribution mapping related to: Nondestructive Testing (NDT), imaging applications (SAR, Holography), and antenna pattern measurements.

  13. Comparative stress distribution of implant-retained mandibular ball-supported and bar-supported overlay dentures: a finite element analysis.

    PubMed

    Vafaei, Fariborz; Khoshhal, Masoumeh; Bayat-Movahed, Saeed; Ahangary, Ahmad Hassan; Firooz, Farnaz; Izady, Alireza; Rakhshan, Vahid

    2011-08-01

    Implant-retained mandibular ball-supported and bar-supported overlay dentures are the two most common treatment options for the edentulous mandible. The superior option in terms of strain distribution should be determined. The three-dimensional model of mandible (based on computerized tomography scan) and its overlying implant-retained bar-supported and ball-supported overlay dentures were simulated using SolidWorks, NURBS, and ANSYS Workbench. Loads A (60 N) and B (60 N) were exerted, respectively, in protrusive and laterotrusive motions, on second molar mesial, first molar mesial, and first premolar. The strain distribution patterns were assessed on (1) implant tissue, (2) first implant-bone, and (3) second implant-bone interfaces. Protrusive: Strain was mostly detected in the apical of the fixtures and least in the cervical when bar design was used. On the nonworking side, however, strain was higher in the cervical and lower in the apical compared with the working side implant. Laterotrusive: The strain values were closely similar in the two designs. It seems that both designs are acceptable in terms of stress distribution, although a superior pattern is associated with the application of bar design in protrusive motion.

  14. Effectiveness of modified pushover analysis procedure for the estimation of seismic demands of buildings subjected to near-fault ground motions having fling step

    NASA Astrophysics Data System (ADS)

    Mortezaei, A.; Ronagh, H. R.

    2013-06-01

    Near-fault ground motions with long-period pulses have been identified as being critical in the design of structures. These motions, which have caused severe damage in recent disastrous earthquakes, are characterized by a short-duration impulsive motion that transmits large amounts of energy into the structures at the beginning of the earthquake. In nearly all of the past near-fault earthquakes, significant higher mode contributions have been evident in building structures near the fault rupture, resulting in the migration of dynamic demands (i.e. drifts) from the lower to the upper stories. Due to this, the static nonlinear pushover analysis (which utilizes a load pattern proportional to the shape of the fundamental mode of vibration) may not produce accurate results when used in the analysis of structures subjected to near-fault ground motions. The objective of this paper is to improve the accuracy of the pushover method in these situations by introducing a new load pattern into the common pushover procedure. Several pushover analyses are performed for six existing reinforced concrete buildings that possess a variety of natural periods. Then, a comparison is made between the pushover analyses' results (with four new load patterns) and those of FEMA (Federal Emergency Management Agency)-356 with reference to nonlinear dynamic time-history analyses. The comparison shows that, generally, the proposed pushover method yields better results than all FEMA-356 pushover analysis procedures for all investigated response quantities and is a closer match to the nonlinear time-history responses. In general, the method is able to reproduce the essential response features providing a reasonable measure of the likely contribution of higher modes in all phases of the response.

  15. Estimation of particulate nutrient load using turbidity meter.

    PubMed

    Yamamoto, K; Suetsugi, T

    2006-01-01

    The "Nutrient Load Hysteresis Coefficient" was proposed to evaluate the hysteresis of the nutrient loads to flow rate quantitatively. This could classify the runoff patterns of nutrient load into 15 patterns. Linear relationships between the turbidity and the concentrations of particulate nutrients were observed. It was clarified that the linearity was caused by the influence of the particle size on turbidity output and accumulation of nutrients on smaller particles (diameter < 23 microm). The L-Q-Turb method, which is a new method for the estimation of runoff loads of nutrients using a regression curve between the turbidity and the concentrations of particulate nutrients, was developed. This method could raise the precision of the estimation of nutrient loads even if they had strong hysteresis to flow rate. For example, as for the runoff load of total phosphorus load on flood events in a total of eight cases, the averaged error of estimation of total phosphorus load by the L-Q-Turb method was 11%, whereas the averaged estimation error by the regression curve between flow rate and nutrient load was 28%.

  16. Standing Height as a Prevention Measure for Overuse Injuries of the Back in Alpine Ski Racing: A Kinematic and Kinetic Study of Giant Slalom

    PubMed Central

    Spörri, Jörg; Kröll, Josef; Fasel, Benedikt; Aminian, Kamiar; Müller, Erich

    2018-01-01

    Background: In alpine ski racing, typical loading patterns of the back include a combined occurrence of spinal bending, torsion, and high peak loads. These factors are known to be associated with high spinal disc loading and have been suggested to be attributable to different types of spine deterioration. However, little is known about the effect of standing height (ie, the distance between the bottom of the running surface of the ski and the ski boot sole) on the aforementioned back loading patterns. Purpose: To investigate the effect of reduced standing height on the skier’s overall trunk kinematics and the acting ground-reaction forces in giant slalom (GS) from an overuse injury prevention perspective. Study Design: Controlled laboratory study. Methods: Seven European Cup–level athletes skied a total of 224 GS turns with 2 different pairs of skis varying in standing height. Their overall trunk movement (frontal bending, lateral bending, and torsion angles) was measured based on 2 inertial measurement units located at the sacrum and sternum. Pressure insoles were used to determine the total ground-reaction force. Results: During the turn phase in which the greatest spinal disc loading is expected to occur, significantly lower total ground-reaction forces were observed for skis with a decreased standing height. Simultaneously, the skier’s overall trunk movement (ie, frontal bending, lateral bending, and torsion angles) remained unwaveringly high. Conclusion: Standing height is a reasonable measure to reduce the skier’s overall back loading in GS. Yet, when compared with the effects achievable by increased gate offsets in slalom, for instance, the preventative benefits of decreased standing height seem to be rather small. Clinical Relevance: To reduce the magnitude of overall back loading in GS and to prevent overuse injuries of the back, decreasing standing height might be an efficient approach. Nevertheless, the clinical relevance of the current findings, as well as the effectiveness of the measure “reduced standing height,” must be verified by epidemiological studies before its preventative potential can be judged as conclusive. PMID:29344540

  17. Relative significance of heat transfer processes to quantify tradeoffs between complexity and accuracy of energy simulations with a building energy use patterns classification

    NASA Astrophysics Data System (ADS)

    Heidarinejad, Mohammad

    This dissertation develops rapid and accurate building energy simulations based on a building classification that identifies and focuses modeling efforts on most significant heat transfer processes. The building classification identifies energy use patterns and their contributing parameters for a portfolio of buildings. The dissertation hypothesis is "Building classification can provide minimal required inputs for rapid and accurate energy simulations for a large number of buildings". The critical literature review indicated there is lack of studies to (1) Consider synoptic point of view rather than the case study approach, (2) Analyze influence of different granularities of energy use, (3) Identify key variables based on the heat transfer processes, and (4) Automate the procedure to quantify model complexity with accuracy. Therefore, three dissertation objectives are designed to test out the dissertation hypothesis: (1) Develop different classes of buildings based on their energy use patterns, (2) Develop different building energy simulation approaches for the identified classes of buildings to quantify tradeoffs between model accuracy and complexity, (3) Demonstrate building simulation approaches for case studies. Penn State's and Harvard's campus buildings as well as high performance LEED NC office buildings are test beds for this study to develop different classes of buildings. The campus buildings include detailed chilled water, electricity, and steam data, enabling to classify buildings into externally-load, internally-load, or mixed-load dominated. The energy use of the internally-load buildings is primarily a function of the internal loads and their schedules. Externally-load dominated buildings tend to have an energy use pattern that is a function of building construction materials and outdoor weather conditions. However, most of the commercial medium-sized office buildings have a mixed-load pattern, meaning the HVAC system and operation schedule dictate the indoor condition regardless of the contribution of internal and external loads. To deploy the methodology to another portfolio of buildings, simulated LEED NC office buildings are selected. The advantage of this approach is to isolate energy performance due to inherent building characteristics and location, rather than operational and maintenance factors that can contribute to significant variation in building energy use. A framework for detailed building energy databases with annual energy end-uses is developed to select variables and omit outliers. The results show that the high performance office buildings are internally-load dominated with existence of three different clusters of low-intensity, medium-intensity, and high-intensity energy use pattern for the reviewed office buildings. Low-intensity cluster buildings benefit from small building area, while the medium- and high-intensity clusters have a similar range of floor areas and different energy use intensities. Half of the energy use in the low-intensity buildings is associated with the internal loads, such as lighting and plug loads, indicating that there are opportunities to save energy by using lighting or plug load management systems. A comparison between the frameworks developed for the campus buildings and LEED NC office buildings indicates these two frameworks are complementary to each other. Availability of the information has yielded to two different procedures, suggesting future studies for a portfolio of buildings such as city benchmarking and disclosure ordinance should collect and disclose minimal required inputs suggested by this study with the minimum level of monthly energy consumption granularity. This dissertation developed automated methods using the OpenStudio API (Application Programing Interface) to create energy models based on the building class. ASHRAE Guideline 14 defines well-accepted criteria to measure accuracy of energy simulations; however, there is no well-accepted methodology to quantify the model complexity without the influence of the energy modeler judgment about the model complexity. This study developed a novel method using two weighting factors, including weighting factors based on (1) computational time and (2) easiness of on-site data collection, to measure complexity of the energy models. Therefore, this dissertation enables measurement of both model complexity and accuracy as well as assessment of the inherent tradeoffs between energy simulation model complexity and accuracy. The results of this methodology suggest for most of the internal load contributors such as operation schedules the on-site data collection adds more complexity to the model compared to the computational time. Overall, this study provided specific data on tradeoffs between accuracy and model complexity that points to critical inputs for different building classes, rather than an increase in the volume and detail of model inputs as the current research and consulting practice indicates. (Abstract shortened by UMI.).

  18. Loads specification and embedded plate definition for the ITER cryoline system

    NASA Astrophysics Data System (ADS)

    Badgujar, S.; Benkheira, L.; Chalifour, M.; Forgeas, A.; Shah, N.; Vaghela, H.; Sarkar, B.

    2015-12-01

    ITER cryolines (CLs) are complex network of vacuum-insulated multi and single process pipe lines, distributed in three different areas at ITER site. The CLs will support different operating loads during the machine life-time; either considered as nominal, occasional or exceptional. The major loads, which form the design basis are inertial, pressure, temperature, assembly, magnetic, snow, wind, enforced relative displacement and are put together in loads specification. Based on the defined load combinations, conceptual estimation of reaction loads have been carried out for the lines located inside the Tokamak building. Adequate numbers of embedded plates (EPs) per line have been defined and integrated in the building design. The finalization of building EPs to support the lines, before the detailed design, is one of the major design challenges as the usual logic of the design may alter. At the ITER project level, it was important to finalize EPs to allow adequate design and timely availability of the Tokamak building. The paper describes the single loads, load combinations considered in load specification and the approach for conceptual load estimation and selection of EPs for Toroidal Field (TF) Cryoline as an example by converting the load combinations in two main load categories; pressure and seismic.

  19. Footwear Matters: Influence of Footwear and Foot Strike on Load Rates during Running.

    PubMed

    Rice, Hannah M; Jamison, Steve T; Davis, Irene S

    2016-12-01

    Running with a forefoot strike (FFS) pattern has been suggested to reduce the risk of overuse running injuries, due to a reduced vertical load rate compared with rearfoot strike (RFS) running. However, resultant load rate has been reported to be similar between foot strikes when running in traditional shoes, leading to questions regarding the value of running with a FFS. The influence of minimal footwear on the resultant load rate has not been considered. This study aimed to compare component and resultant instantaneous loading rate (ILR) between runners with different foot strike patterns in their habitual footwear conditions. Twenty-nine injury-free participants (22 men, seven women) ran at 3.13 m·s along a 30-m runway, with their habitual foot strike and footwear condition. Ground reaction force data were collected. Peak ILR values were compared between three conditions; those who habitually run with an RFS in standard shoes, with an FFS in standard shoes, and with an FFS in minimal shoes. Peak resultant, vertical, lateral, and medial ILR were lower (P < 0.001) when running in minimal shoes with an FFS than in standard shoes with either foot strike. When running with an FFS, peak posterior ILR were lower (P < 0.001) in minimal than standard shoes. When running in a standard shoe, peak resultant and component ILR were similar between footstrike patterns. However, load rates were lower when running in minimal shoes with a FFS, compared with running in standard shoes with either foot strike. Therefore, it appears that footwear alters the load rates during running, even with similar foot strike patterns.

  20. Specimen Designs for Testing Advanced Aeropropulsion Materials Under In-Plane Biaxial Loading

    NASA Technical Reports Server (NTRS)

    Ellis, John R.; Abul-Aziz, Ali

    2003-01-01

    A design study was undertaken to develop specimen designs for testing advanced aeropropulsion materials under in-plane biaxial loading. The focus of initial work was on developing a specimen design suitable for deformation and strength tests to be conducted under monotonic loading. The type of loading initially assumed in this study was the special case of equibiaxial, tensile loading. A specimen design was successfully developed after a lengthy design and optimization process with overall dimensions of 12 by 12 by 0.625 in., and a gage area of 3.875 by 3.875 by 0.080 in. Subsequently, the scope of the work was extended to include the development of a second design tailored for tests involving cyclic loading. A specimen design suitably tailored to meet these requirements was successfully developed with overall dimensions of 12 by 12 by 0.500 in. and a gage area of 2.375 by 2.375 by 0.050 in. Finally, an investigation was made to determine whether the specimen designs developed in this study for equibiaxial, tensile loading could be used without modification to investigate general forms of biaxial loading. For best results, it was concluded that specimen designs need to be optimized and tailored to meet the specific loading requirements of individual research programs.

  1. 78 FR 28896 - Design Limits and Loading Combinations for Metal Primary Reactor Containment System Components

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0095] Design Limits and Loading Combinations for Metal... Regulatory Guide (RG) 1.57, ``Design Limits and Loading Combinations for Metal Primary Reactor Containment... the NRC staff considers acceptable for design limits and loading combinations for metal primary...

  2. Temporal pattern of emotions and cognitive load during simulation training and debriefing.

    PubMed

    Fraser, Kristin; McLaughlin, Kevin

    2018-04-24

    In the simulated clinical environment, there is a perceived benefit to the emotional activation experienced by learners; however, potential harm of excessive and/or negative emotions has also been hypothesized. An improved understanding of the emotional experiences of learners during each phase of the simulation session will inform instructional design. In this observational study, we asked 174 first-year medical students about their emotional state upon arrival to the simulation lab (t1). They were then trained on a standard simulation scenario, after which they rated their emotional state and perceived cognitive load (t2). After debriefing, we then asked them to again rate their emotions and cognitive load (t3). Students reported that their experience of tranquility (a positive and low-arousal state) dropped from pre-scenario (t1) to post-scenario (t2), and returned to baseline levels after debriefing (t3), from 0.69 (0.87) to 0.14 (0.78) to 0.62 (0.78). Post scenario cognitive load was rated to be moderately high at 6.62 (1.12) and scores increased after debriefing to 6.90 (1.05) d = 0.26, p < 0.001. Cognitive load was associated with the simultaneous measures of emotions at both t2 and t3. Participant emotions are significantly altered through the experience of medical simulation and emotions are associated with subjective ratings of cognitive load.

  3. Progress in extrapolating divertor heat fluxes towards large fusion devices

    NASA Astrophysics Data System (ADS)

    Sieglin, B.; Faitsch, M.; Eich, T.; Herrmann, A.; Suttrop, W.; Collaborators, JET; the MST1 Team; the ASDEX Upgrade Team

    2017-12-01

    Heat load to the plasma facing components is one of the major challenges for the development and design of large fusion devices such as ITER. Nowadays fusion experiments can operate with heat load mitigation techniques, e.g. sweeping, impurity seeding, but do not generally require it. For large fusion devices however, heat load mitigation will be essential. This paper presents the current progress of the extrapolation of steady state and transient heat loads towards large fusion devices. For transient heat loads, so-called edge localized modes are considered a serious issue for the lifetime of divertor components. In this paper, the ITER operation at half field (2.65 T) and half current (7.5 MA) will be discussed considering the current material limit for the divertor peak energy fluence of 0.5 {MJ}/{{{m}}}2. Recent studies were successful in describing the observed energy fluence in the JET, MAST and ASDEX Upgrade using the pedestal pressure prior to the ELM crash. Extrapolating this towards ITER results in a more benign heat load compared to previous scalings. In the presence of magnetic perturbation, the axisymmetry is broken and a 2D heat flux pattern is induced on the divertor target, leading to local increase of the heat flux which is a concern for ITER. It is shown that for a moderate divertor broadening S/{λ }{{q}}> 0.5 the toroidal peaking of the heat flux disappears.

  4. The effects of a deleterious mutation load on patterns of influenza A/H3N2's antigenic evolution in humans

    PubMed Central

    Koelle, Katia; Rasmussen, David A

    2015-01-01

    Recent phylogenetic analyses indicate that RNA virus populations carry a significant deleterious mutation load. This mutation load has the potential to shape patterns of adaptive evolution via genetic linkage to beneficial mutations. Here, we examine the effect of deleterious mutations on patterns of influenza A subtype H3N2's antigenic evolution in humans. By first analyzing simple models of influenza that incorporate a mutation load, we show that deleterious mutations, as expected, act to slow the virus's rate of antigenic evolution, while making it more punctuated in nature. These models further predict three distinct molecular pathways by which antigenic cluster transitions occur, and we find phylogenetic patterns consistent with each of these pathways in influenza virus sequences. Simulations of a more complex phylodynamic model further indicate that antigenic mutations act in concert with deleterious mutations to reproduce influenza's spindly hemagglutinin phylogeny, co-circulation of antigenic variants, and high annual attack rates. DOI: http://dx.doi.org/10.7554/eLife.07361.001 PMID:26371556

  5. A fractal image analysis methodology for heat damage inspection in carbon fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Haridas, Aswin; Crivoi, Alexandru; Prabhathan, P.; Chan, Kelvin; Murukeshan, V. M.

    2017-06-01

    The use of carbon fiber-reinforced polymer (CFRP) composite materials in the aerospace industry have far improved the load carrying properties and the design flexibility of aircraft structures. A high strength to weight ratio, low thermal conductivity, and a low thermal expansion coefficient gives it an edge for applications demanding stringent loading conditions. Specifically, this paper focuses on the behavior of CFRP composites under stringent thermal loads. The properties of composites are largely affected by external thermal loads, especially when the loads are beyond the glass temperature, Tg, of the composite. Beyond this, the composites are subject to prominent changes in mechanical and thermal properties which may further lead to material decomposition. Furthermore, thermal damage formation being chaotic, a strict dimension cannot be associated with the formed damage. In this context, this paper focuses on comparing multiple speckle image analysis algorithms to effectively characterize the formed thermal damages on the CFRP specimen. This would provide us with a fast method for quantifying the extent of heat damage in carbon composites, thus reducing the required time for inspection. The image analysis methods used for the comparison include fractal dimensional analysis of the formed speckle pattern and analysis of number and size of various connecting elements in the binary image.

  6. The relationship between control, kinematic and electromyographic variables in fast single-joint movements in humans.

    PubMed

    Feldman, A G; Adamovich, S V; Levin, M F

    1995-01-01

    Two versions of the hypothesis that discrete movements are produced by shifts in the system's equilibrium point are considered. The first suggests that shifts are monotonic and end near the peak velocity of movement, and the second presumes that they are nonmonotonic ("N-shaped") and proceed until the end of movement. The first version, in contrast to the second, predicts that movement time may be significantly reduced by opposing loads without changes in the control pattern. The purpose of the present study was to test the two hypotheses about the duration and shape of the shift in the equilibrium point based on their respective predictions concerning the effects of perturbations on kinematic and EMG patterns in fast elbow flexor movements. Subjects performed unopposed flexions of about 55-70 degrees (control trials) and, in random test trials, movements were opposed by spring-like loads generated by a torque motor. Subjects had no visual feedback and were instructed not to correct arm deflections in case of perturbations. After the end of the movement, the load was removed leading to a secondary movement to the same final position as that in control trials (equifinality). When the load was varied, the static arm positions before unloading and associated joint torques (ranging from 0 to 80-90% of maximum voluntary contraction) had a monotonic relationship. Test movements opposed by a high load (80-90% of maximal voluntary contraction) ended near the peak velocity of control movements. Phasic and tonic electromyographic patterns were load-dependent. In movements opposed by high loads, the first agonist burst was significantly prolonged and displayed a high level of tonic activity for as long as the load was maintained. In the same load conditions, the antagonist burst was suppressed during the dynamic and static phases of movement. The findings of suppression of the antagonist burst does not support the hypothesis of an N-shaped control signal. Equally, the substantial reduction in movement time by the introduction of an opposing load cannot be reconciled in this model. Instead, our data indicate that the shifts in the equilibrium point underlying fast flexor movements are of short duration, ending near the peak velocity of unopposed movement. This suggests that kinematic and electromyographic patterns represent a long-lasting oscillatory response of the system to the short-duration monotonic control pattern, external forces and proprioceptive feedback.

  7. Effects of Surface Inclination on the Vertical Loading Rates and Landing Pattern during the First Attempt of Barefoot Running in Habitual Shod Runners.

    PubMed

    An, W; Rainbow, M J; Cheung, R T H

    2015-01-01

    Barefoot running has been proposed to reduce vertical loading rates, which is a risk factor of running injuries. Most of the previous studies evaluated runners on level surfaces. This study examined the effect of surface inclination on vertical loading rates and landing pattern during the first attempt of barefoot running among habitual shod runners. Twenty habitual shod runners were asked to run on treadmill at 8.0 km/h at three inclination angles (0°; +10°; -10°) with and without their usual running shoes. Vertical average rate (VALR) and instantaneous loading rate (VILR) were obtained by established methods. Landing pattern was decided using high-speed camera. VALR and VILR in shod condition were significantly higher (p < 0.001) in declined than in level or inclined treadmill running, but not in barefoot condition (p > 0.382). There was no difference (p > 0.413) in the landing pattern among all surface inclinations. Only one runner demonstrated complete transition to non-heel strike landing in all slope conditions. Reducing heel strike ratio in barefoot running did not ensure a decrease in loading rates (p > 0.15). Conversely, non-heel strike landing, regardless of footwear condition, would result in a softer landing (p < 0.011).

  8. Effects of Surface Inclination on the Vertical Loading Rates and Landing Pattern during the First Attempt of Barefoot Running in Habitual Shod Runners

    PubMed Central

    An, W.; Rainbow, M. J.; Cheung, R. T. H.

    2015-01-01

    Barefoot running has been proposed to reduce vertical loading rates, which is a risk factor of running injuries. Most of the previous studies evaluated runners on level surfaces. This study examined the effect of surface inclination on vertical loading rates and landing pattern during the first attempt of barefoot running among habitual shod runners. Twenty habitual shod runners were asked to run on treadmill at 8.0 km/h at three inclination angles (0°; +10°; −10°) with and without their usual running shoes. Vertical average rate (VALR) and instantaneous loading rate (VILR) were obtained by established methods. Landing pattern was decided using high-speed camera. VALR and VILR in shod condition were significantly higher (p < 0.001) in declined than in level or inclined treadmill running, but not in barefoot condition (p > 0.382). There was no difference (p > 0.413) in the landing pattern among all surface inclinations. Only one runner demonstrated complete transition to non-heel strike landing in all slope conditions. Reducing heel strike ratio in barefoot running did not ensure a decrease in loading rates (p > 0.15). Conversely, non-heel strike landing, regardless of footwear condition, would result in a softer landing (p < 0.011). PMID:26258133

  9. Moving Aerospace Structural Design Practice to a Load and Resistance Factor Approach

    NASA Technical Reports Server (NTRS)

    Larsen, Curtis E.; Raju, Ivatury S.

    2016-01-01

    Aerospace structures are traditionally designed using the factor of safety (FOS) approach. The limit load on the structure is determined and the structure is then designed for FOS times the limit load - the ultimate load. Probabilistic approaches utilize distributions for loads and strengths. Failures are predicted to occur in the region of intersection of the two distributions. The load and resistance factor design (LRFD) approach judiciously combines these two approaches by intensive calibration studies on loads and strength to result in structures that are efficient and reliable. This paper discusses these three approaches.

  10. Methods for Combining Payload Parameter Variations with Input Environment

    NASA Technical Reports Server (NTRS)

    Merchant, D. H.; Straayer, J. W.

    1975-01-01

    Methods are presented for calculating design limit loads compatible with probabilistic structural design criteria. The approach is based on the concept that the desired limit load, defined as the largest load occuring in a mission, is a random variable having a specific probability distribution which may be determined from extreme-value theory. The design limit load, defined as a particular value of this random limit load, is the value conventionally used in structural design. Methods are presented for determining the limit load probability distributions from both time-domain and frequency-domain dynamic load simulations. Numerical demonstrations of the methods are also presented.

  11. An engineering evaluation of the Space Shuttle OMS engine after 5 orbital flights

    NASA Technical Reports Server (NTRS)

    David, D.

    1983-01-01

    Design features, performances on the first five flights, and condition of the Shuttle OMS engines are summarized. The engines were designed to provide a vacuum-fed 6000 lb of thrust and a 310 sec specific impulse, fueled by a combination of N2O4 and monomethylhydrazine (MMH) at a mixture ratio of 1.65. The design lifetime is 1000 starts and 15 hr of cumulative firing duration. The engine assembly is throat gimballed and features yaw actuators. No degradation of the hot components was observed during the first five flights, and the injector pattern maintained a uniform, enduring level of performance. An increase in the take-off loads have led to enhancing the wall thickness in the nozzle in affected areas. The engine is concluded to be performing to design specifications and is considered an operational system.

  12. Experimental Investigation on the Fatigue Mechanical Properties of Intermittently Jointed Rock Models Under Cyclic Uniaxial Compression with Different Loading Parameters

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Dai, Feng; Dong, Lu; Xu, Nuwen; Feng, Peng

    2018-01-01

    Intermittently jointed rocks, widely existing in many mining and civil engineering structures, are quite susceptible to cyclic loading. Understanding the fatigue mechanism of jointed rocks is vital to the rational design and the long-term stability analysis of rock structures. In this study, the fatigue mechanical properties of synthetic jointed rock models under different cyclic conditions are systematically investigated in the laboratory, including four loading frequencies, four maximum stresses, and four amplitudes. Our experimental results reveal the influence of the three cyclic loading parameters on the mechanical properties of jointed rock models, regarding the fatigue deformation characteristics, the fatigue energy and damage evolution, and the fatigue failure and progressive failure behavior. Under lower loading frequency or higher maximum stress and amplitude, the jointed specimen is characterized by higher fatigue deformation moduli and higher dissipated hysteresis energy, resulting in higher cumulative damage and lower fatigue life. However, the fatigue failure modes of jointed specimens are independent of cyclic loading parameters; all tested jointed specimens exhibit a prominent tensile splitting failure mode. Three different crack coalescence patterns are classified between two adjacent joints. Furthermore, different from the progressive failure under static monotonic loading, the jointed rock specimens under cyclic compression fail more abruptly without evident preceding signs. The tensile cracks on the front surface of jointed specimens always initiate from the joint tips and then propagate at a certain angle with the joints toward the direction of maximum compression.

  13. Highly Loaded Mesoporous Silica/Nanoparticle Composites and Patterned Mesoporous Silica Films

    NASA Astrophysics Data System (ADS)

    Kothari, Rohit; Hendricks, Nicholas R.; Wang, Xinyu; Watkins, James J.

    2014-03-01

    Novel approaches for the preparation of highly filled mesoporous silica/nanoparticle (MS/NP) composites and for the fabrication of patterned MS films are described. The incorporation of iron platinum NPs within the walls of MS is achieved at high NP loadings by doping amphiphilic poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (Pluronic®) copolymer templates via selective hydrogen bonding between the pre-synthesized NPs and the hydrophilic portion of the block copolymer. The MS is then synthesized by means of phase selective condensation of tetraethylorthosilicate (TEOS) within the NP loaded block copolymer templates dilated with supercritical carbon dioxide (scCO2) followed by calcination. For patterned films, microphase separated block copolymer/small molecule additive blends are patterned using UV-assisted nanoimprint lithography. Infusion and condensation of a TEOS within template films using ScCO2 as a processing medium followed by calcination yields the patterned MS films. Scanning electron microscopy is used characterize pattern fidelity and transmission electron microscopy analysis confirms the presence of the mesopores. Long range order in nanocomposites is confirmed by low angle x-ray diffraction.

  14. Monosodium Glutamate Intake, Dietary Patterns and Asthma in Chinese Adults

    PubMed Central

    Shi, Zumin; Yuan, Baojun; Wittert, Gary A.; Pan, Xiaoqun; Dai, Yue; Adams, Robert; Taylor, Anne W.

    2012-01-01

    Objectives Emerging evidence shows that diet is related to asthma. The aim of this analysis was to investigate the association between monosodium glutamate (MSG) intake, overall dietary patterns and asthma. Methods Data from 1486 Chinese men and women who participated in the Jiangsu Nutrition Study (JIN) were analyzed. In this study, MSG intake and dietary patterns were quantitatively assessed in 2002. Information on asthma history was collected during followed-up in 2007. Results Of the sample, 1.4% reported ever having asthma. MSG intake was not positively associated with asthma. There was a significant positive association between ‘traditional’ (high loadings on rice, wheat flour, and vegetable) food pattern and asthma. No association between ’macho’ (rich in meat and alcohol), ‘sweet tooth’ (high loadings on cake, milk, and yoghurt) ‘vegetable rich’ (high loadings on whole grain, fruit, and vegetable) food patterns and asthma was found. Smoking and overweight were not associated with asthma in the sample. Conclusion While a ‘Traditional’ food pattern was positively associated with asthma among Chinese adults, there was no significant association between MSG intake and asthma. PMID:23240044

  15. Theory of a Traveling Wave Feed for a Planar Slot Array Antenna

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam

    2012-01-01

    Planar arrays of waveguide-fed slots have been employed in many radar and remote sensing applications. Such arrays are designed in the standing wave configuration because of high efficiency. Traveling wave arrays can produce greater bandwidth at the expense of efficiency due to power loss in the load or loads. Traveling wave planar slot arrays may be designed with a long feed waveguide consisting of centered-inclined coupling slots. The feed waveguide is terminated in a matched load, and the element spacing in the feed waveguide is chosen to produce a beam squinted from the broadside. The traveling wave planar slot array consists of a long feed waveguide containing resonant-centered inclined coupling slots in the broad wall, coupling power into an array of stacked radiating waveguides orthogonal to it. The radiating waveguides consist of longitudinal offset radiating slots in a standing wave configuration. For the traveling wave feed of a planar slot array, one has to design the tilt angle and length of each coupling slot such that the amplitude and phase of excitation of each radiating waveguide are close to the desired values. The coupling slot spacing is chosen for an appropriate beam squint. Scattering matrix parameters of resonant coupling slots are used in the design process to produce appropriate excitations of radiating waveguides with constraints placed only on amplitudes. Since the radiating slots in each radiating waveguide are designed to produce a certain total admittance, the scattering (S) matrix of each coupling slot is reduced to a 2x2 matrix. Elements of each 2x2 S-matrix and the amount of coupling into the corresponding radiating waveguide are expressed in terms of the element S11. S matrices are converted into transmission (T) matrices, and the T matrices are multiplied to cascade the coupling slots and waveguide sections, starting from the load end and proceeding towards the source. While the use of non-resonant coupling slots may provide an additional degree of freedom in the design, resonant coupling slots simplify the design process. The amplitude of the wave going to the load is set at unity. The S11 parameter, r of the coupling slot closest to the load, is assigned an arbitrary value. A larger value of r will reduce the power dissipated in the load while increasing the reflection coefficient at the input port. It is now possible to obtain the excitation of the radiating waveguide closest to the load and the coefficients of the wave incident and reflected at the input port of this coupling slot. The next coupling slot parameter, r , is chosen to realize the excitation of that radiating waveguide. One continues this process moving towards the source, until all the coupling slot parameters r and hence the S11 parameter of the 4-port coupler, r, are known for each coupling slot. The goal is to produce the desired array aperture distribution in the feed direction. From an interpolation of the computed moment method data for the slot parameters, all the coupling slot tilt angles and lengths are obtained. From the excitations of the radiating waveguides computed from the coupling values, radiating slot parameters may be obtained so as to attain the desired total normalized slot admittances. This process yields the radiating slot parameters, offsets, and lengths. The design is repeated by choosing different values of r for the last coupling slot until the percentage of power dissipated in the load and the input reflection coefficient values are satisfactory. Numerical results computed for the radiation pattern, the tilt angles and lengths of coupling slots, and excitation phases of the radiating waveguides, are presented for an array with uniform amplitude excitation. The design process has been validated using computer simulations. This design procedure is valid for non-uniform amplitude excitations as well.

  16. Micropatterned coculture of vascular endothelial and smooth muscle cells on layered electrospun fibrous mats toward blood vessel engineering.

    PubMed

    Li, Huinan; Liu, Yaowen; Lu, Jinfu; Wei, Jiaojun; Li, Xiaohong

    2015-06-01

    A major challenge in vascular engineering is the establishment of proper microenvironment to guide the spatial organization, growth, and extracellular matrix (ECM) productions of cells found in blood vessels. In the current study, micropatterned fibrous mats with distinct ridges and grooves of different width were created to load smooth muscle cells (SMCs), which were assembled by stacking on vascular endothelial cell (EC)-loaded flat fibrous mats to mimic the in vivo-like organized structure of blood vessels. SMCs were mainly distributed in the ridges, and aligned fibers in the patterned regions led to the formation of elongated cell bodies, intense actin filaments, and expressions of collagen I and α-smooth muscle actin in a parallel direction with fibers. ECs spread over the flat fibrous mats and expressed collagen IV and laminin with a cobblestone-like feature. A z-stack scanning of fluorescently stained fibrous mats indicated that SMCs effectively infiltrated into fibrous scaffolds at the depth of around 200 μm. Compared with SMCs cultured alone, the coculture with ECs enhanced the proliferation, infiltration, and cytoskeleton elongation of SMCs on patterned fibrous mats. Although the coculture of SMCs made no significant difference in the EC growth, the coculture system on patterned fibrous scaffolds promoted ECM productions of both ECs and SMCs. Thus, this patterned fibrous configuration not only offers a promising technology in the design of tissue engineering scaffolds to construct blood vessels with durable mechanical properties, but also provides a platform for patterned coculture to investigate cell-matrix and cell-cell interactions in highly organized tissues. © 2014 Wiley Periodicals, Inc.

  17. Patterns of Morning and Evening Fatigue Among Adults with HIV/AIDS

    PubMed Central

    Lerdal, Anners; Gay, Caryl L.; Aouizerat, Bradley E.; Portillo, Carmen J.; Lee, Kathryn A.

    2011-01-01

    Aims and objectives Describe patterns of morning and evening fatigue in adults with HIV and examine their relationship to demographic and clinical factors and other symptoms. Background Most studies of HIV-related fatigue assess average levels of fatigue and do not address its diurnal fluctuations. Patterns of fatigue over the course of the day may have important implications for assessment and treatment. Design A cross-sectional, correlational design was used with six repeated measures over 72 hours. Method A convenience sample of 318 HIV-infected adults was recruited in San Francisco. Socio-demographic, clinical and symptom data were collected with questionnaires. CD4+ T-cell count and viral load were obtained from medical records. Participants completed a four-item version of the Lee Fatigue Scale each morning and evening for three consecutive days. Participants were grouped based on their diurnal pattern of fatigue (high evening only, high morning only, high morning and evening and low morning and evening). Group comparisons and logistic regression were used to determine the unique predictors of each fatigue pattern. Results The high evening fatigue pattern was associated with anxiety and the high morning pattern was associated with anxiety and depression. The morning fatigue pattern showed very little fluctuation between morning and evening, the evening pattern showed the largest fluctuation. The high morning and evening pattern was associated with anxiety, depression and sleep disturbance and this group reported the most fatigue-related distress and interference in functioning. Conclusions These results provide initial evidence for the importance of assessing the patient’s daily pattern of fatigue fluctuation, as different patterns were associated with different symptom experiences and perhaps different etiologies. Relevance to clinical practice Different fatigue patterns may benefit from tailored intervention strategies. Management of depressive symptoms could be tested in patients who experience high levels of morning fatigue. PMID:21752119

  18. The effect of foot strike pattern on achilles tendon load during running.

    PubMed

    Almonroeder, Thomas; Willson, John D; Kernozek, Thomas W

    2013-08-01

    In this study we compared Achilles tendon loading parameters during barefoot running among females with different foot strike patterns using open-source computer muscle modeling software to provide dynamic simulations of running. Muscle forces of the gastrocnemius and soleus were estimated from experimental data collected in a motion capture laboratory during barefoot running for 11 runners utilizing a rearfoot strike (RFS) and 8 runners utilizing a non-RFS (NRFS) pattern. Our results show that peak Achilles tendon force occurred earlier in stance phase (p = 0.007), which contributed to a 15% increase in average Achilles tendon loading rate among participants adopting a NRFS pattern (p = 0.06). Stance time, step length, and the estimated number of steps per mile were similar between groups. However, runners with a NRFS pattern experienced 11% greater Achilles tendon impulse each step (p = 0.05) and nearly significantly greater Achilles tendon impulse per mile run (p = 0.06). This difference equates to an additional 47.7 body weights for each mile run with a NRFS pattern. Runners considering a NRFS pattern may want to account for these novel stressors and adapt training programs accordingly.

  19. Calibration of the live load factor in LRFD design guidelines.

    DOT National Transportation Integrated Search

    2010-09-01

    The Load and Resistant Factor Design (LRFD) approach is based on the concept of structural reliability. The approach is : more rational than the former design approaches such as Load Factor Design or Allowable Stress Design. The LRFD : Specification ...

  20. Calibration of the live load factor in LRFD design guidelines : [revised].

    DOT National Transportation Integrated Search

    2011-07-01

    The Load and Resistant Factor Design (LRFD) approach is based on the concept of structural reliability. The approach is : more rational than the former design approaches such as Load Factor Design or Allowable Stress Design. The LRFD : Specification ...

  1. Liver-targeting self-assembled hyaluronic acid-glycyrrhetinic acid micelles enhance hepato-protective effect of silybin after oral administration.

    PubMed

    Han, Xiaofeng; Wang, Zhe; Wang, Manyuan; Li, Jing; Xu, Yongsong; He, Rui; Guan, Hongyu; Yue, Zhujun; Gong, Muxin

    2016-06-01

    In order to enhance oral bioavailability and liver targeting delivery of silybin, two amphiphilic hyaluronic acid derivatives, hyaluronic acid-deoxycholic acid (HA-adh-DOCA) and hyaluronic acid-glycyrrhetinic acid (HA-adh-GA) conjugates, were designed and synthesized. Silybin was successfully loaded in HA-adh-DOCA and HA-adh-GA micelles with high drug-loading capacities (20.3% ± 0.5% and 20.6% ± 0.6%, respectively). The silybin-loaded micelles were spherical in shape with the average size around 130 nm. In vitro release study showed that two silybin-loaded micelles displayed similar steady continued-release pattern in simulated gastrointestinal fluids and PBS. Single-pass intestinal perfusion studies indicated that silybin-loaded micelles were absorbed in the whole intestine and transported via a passive diffusion mechanism. Compared with suspension formulation, silybin-loaded HA-adh-DOCA and HA-adh-GA micelles achieved significantly higher AUC and Cmax level. Moreover, liver targeting drug delivery of micelles was confirmed by in vivo imaging analysis. In comparison between the two micellar formulations, HA-adh-GA micelles possessed higher targeting capacity than HA-adh-DOCA micelles, owing to the active hepatic targeting properties of glycyrrhetinic acid. In the treatment of acute liver injury induced by CCl4, silybin-loaded HA-adh-GA micelles displayed better effects over suspension control and silybin-loaded HA-adh-DOCA micelles. Overall, pharmaceutical and pharmacological indicators suggested that the HA-adh-GA conjugates can be successfully utilized for liver targeting of orally administered therapeutics.

  2. Cross-Modal Decoding of Neural Patterns Associated with Working Memory: Evidence for Attention-Based Accounts of Working Memory

    PubMed Central

    Majerus, Steve; Cowan, Nelson; Péters, Frédéric; Van Calster, Laurens; Phillips, Christophe; Schrouff, Jessica

    2016-01-01

    Recent studies suggest common neural substrates involved in verbal and visual working memory (WM), interpreted as reflecting shared attention-based, short-term retention mechanisms. We used a machine-learning approach to determine more directly the extent to which common neural patterns characterize retention in verbal WM and visual WM. Verbal WM was assessed via a standard delayed probe recognition task for letter sequences of variable length. Visual WM was assessed via a visual array WM task involving the maintenance of variable amounts of visual information in the focus of attention. We trained a classifier to distinguish neural activation patterns associated with high- and low-visual WM load and tested the ability of this classifier to predict verbal WM load (high–low) from their associated neural activation patterns, and vice versa. We observed significant between-task prediction of load effects during WM maintenance, in posterior parietal and superior frontal regions of the dorsal attention network; in contrast, between-task prediction in sensory processing cortices was restricted to the encoding stage. Furthermore, between-task prediction of load effects was strongest in those participants presenting the highest capacity for the visual WM task. This study provides novel evidence for common, attention-based neural patterns supporting verbal and visual WM. PMID:25146374

  3. Microfluidic PDMS on paper (POP) devices.

    PubMed

    Shangguan, Jin-Wen; Liu, Yu; Pan, Jian-Bin; Xu, Bi-Yi; Xu, Jing-Juan; Chen, Hong-Yuan

    2016-12-20

    In this paper, we propose a generalized concept of microfluidic polydimethylsiloxane (PDMS) on paper (POP) devices, which combines well the merits of paper chips and PDMS chips. First, we optimized the conditions for accurate PDMS spatial patterning on paper, based on screen printing and a high temperature enabled superfast curing technique, which enables PDMS patterning to an accuracy of tens of microns in less than ten seconds. This, in turn, makes it available for seamless, reversible and reliable integration of the resulting paper layer with other PDMS channel structures. The integrated POP devices allow for both porous paper and smooth channels to be spatially defined on the devices, greatly extending the flexibility for designers to be able to construct powerful functional structures. To demonstrate the versatility of this design, a prototype POP device for the colorimetric analysis of liver function markers, serum protein, alkaline phosphatase (ALP) and aspartate aminotransferase (AST), was constructed. On this POP device, quantitative sample loading, mixing and multiplex analysis have all been realized.

  4. A Computer-Controlled Laser Bore Scanner

    NASA Astrophysics Data System (ADS)

    Cheng, Charles C.

    1980-08-01

    This paper describes the design and engineering of a laser scanning system for production applications. The laser scanning techniques, the timing control, the logic design of the pattern recognition subsystem, the digital computer servo control for the loading and un-loading of parts, and the laser probe rotation and its synchronization will be discussed. The laser inspection machine is designed to automatically inspect the surface of precision-bored holes, such as those in automobile master cylinders, without contacting the machined surface. Although the controls are relatively sophisticated, operation of the laser inspection machine is simple. A laser light beam from a commercially available gas laser, directed through a probe, scans the entire surface of the bore. Reflected light, picked up through optics by photoelectric sensors, generates signals that are fed to a mini-computer for processing. A pattern recognition techniques program in the computer determines acceptance or rejection of the part being inspected. The system's acceptance specifications are adjustable and are set to the user's established tolerances. However, the computer-controlled laser system is capable of defining from 10 to 75 rms surface finish, and voids or flaws from 0.0005 to 0.020 inch. Following the successful demonstration with an engineering prototype, the described laser machine has proved its capability to consistently ensure high-quality master brake cylinders. It thus provides a safety improvement for the automotive braking system. Flawless, smooth cylinder bores eliminate premature wearing of the rubber seals, resulting in a longer-lasting master brake cylinder and a safer and more reliable automobile. The results obtained from use of this system, which has been in operation about a year for replacement of a tedious, manual operation on one of the high-volume lines at the Bendix Hydraulics Division, have been very satisfactory.

  5. Electromyographic and Neuromuscular Force Patterns Associated with Unexpectedly Loaded Rapid Limb Movements.

    ERIC Educational Resources Information Center

    Richardson, Charles; Simmons, Roger W.

    Bi-articular, unidirectional arm movements were studied to evaluate the electromyographic (EMG) and neuromuscular force patterns that occur when a limb is unexpectedly perturbed. A series of training trials were continued with a control load spring attached to the apparatus until a pre-specified criterion for learning was attained. The limb was…

  6. Biomechanical studies on the effect of iatrogenic dentin removal on vertical root fractures.

    PubMed

    Ossareh, A; Rosentritt, M; Kishen, A

    2018-01-01

    The aim of this study was to understand the mechanism by which iatrogenic root dentin removal influences radicular stress distribution and subsequently affects the resistance to vertical root fractures (VRF) in endodontically treated teeth. The experiments were conducted in two phases. Phase 1: freshly extracted premolar teeth maintained in phosphate-buffered saline were instrumented to simulate three different degrees of dentin removal, designated as low, medium, and extreme groups. Micro-Ct analyzes were performed to quantitatively determine: (a) the amount of dentin removed, (b) the remaining dentin volume, and (c) the moment of inertia of root dentin. The specimens were then subjected to thermomechanical cycling and continuous loading to determine (a) the mechanical load to fracture and (b) dentin microcracking (fractography) using scanning electron microscopy. Phase 2: Finite element analysis was used to evaluate the influence of dentin removal on the stress distribution pattern in root dentin. The data obtained were analyzed using one-way ANOVA and Tukey's post hoc test ( P < 0.05). Phase 1: A significantly greater volume of dentin was removed from teeth in extreme group when compared to low group ( P < 0.01). The mechanical analysis showed that the load to fracture was significantly lower in teeth from extreme group ( P < 0.05). A linear relationship was observed between the moment of inertia and load to fracture in all experimental groups ( R 2 = 0.52). Fractography showed that most microcracks were initiated from the root canal walls in extreme group. Phase 2: The numerical analysis showed that the radicular stress distribution increased apically and buccolingually with greater degree of root canal dentin removal. The combined experimental/numerical analyses highlighted the influence of remaining root dentin volume on the radicular bending resistance, stress distribution pattern, and subsequent propensity to VRF.

  7. Biotribological evaluation of artificial disc arthroplasty devices: influence of loading and kinematic patterns during in vitro wear simulation.

    PubMed

    Grupp, Thomas M; Yue, James J; Garcia, Rolando; Basson, Janet; Schwiesau, Jens; Fritz, Bernhard; Blömer, Wilhelm

    2009-01-01

    Wear simulation is an essential pre-clinical method to predict the mid- and long-term clinical wear behavior of newly introduced devices for total disc arthroplasty. The main requirement of a suitable method for spinal wear simulation has to be the ability to distinguish between design concepts and allow for a direct comparison of predicate devices. The objective of our study was to investigate the influence of loading and kinematic patterns based on two different protocols for spinal wear simulation (ISO/FDIS 18192-1 (2006) and ASTM F2423-05). In vitro wear simulation was performed with six activ L lumbar artificial disc devices (Aesculap Tuttlingen, Germany). The applied kinematic pattern of movement was multidirectional for ISO (elliptic track) and unidirectional with a curvilinear shape for ASTM. Testing was done for 10 million cycles in the ISO loading mode and afterwards with the same specimens for 5 million cycles according to the ASTM protocol with a customized six-station servohydraulic spinal wear simulator (EndoLab Thansau, Germany). Gravimetrical and geometrical wear assessment, a slide track analysis correlated to an optical surface characterization, and an estimation of particle size and morphology were performed. The gravimetric wear rate for the first 10 million cycles was ISO(initial) = 2.7 +/- 0.3 mg/million cycles. During the ASTM test period (10-15 million cycles) a gravimetric wear rate of 0.14 +/- 0.06 mg/million cycles was estimated. The wear rates between the ISO and ASTM driven simulations differ substantially (approximately 20-fold) and statistical analysis demonstrates a significant difference (p < 0.001) between the test groups. The main explanation of divergency between ISO and ASTM driven wear simulations is the multidirectional pattern of movement described in the ISO document resulting in a cross-shear stress on the polyethylene material. Due to previous retrieval observations, it seems to be very unlikely that a lumbar artificial disc is loaded with a linear wear path.Testing according to ASTM F2423-05 with pure unidirectional motion does not reflect the kinematics of TDA patients' daily activities. Based on our findings it seems to be more reliable to predict the clinical wear behavior of an artificial disc replacement using the ISO/FDIS 18192-1 method.

  8. Biotribological evaluation of artificial disc arthroplasty devices: influence of loading and kinematic patterns during in vitro wear simulation

    PubMed Central

    Yue, James J.; Garcia, Rolando; Basson, Janet; Schwiesau, Jens; Fritz, Bernhard; Blömer, Wilhelm

    2008-01-01

    Wear simulation is an essential pre-clinical method to predict the mid- and long-term clinical wear behavior of newly introduced devices for total disc arthroplasty. The main requirement of a suitable method for spinal wear simulation has to be the ability to distinguish between design concepts and allow for a direct comparison of predicate devices. The objective of our study was to investigate the influence of loading and kinematic patterns based on two different protocols for spinal wear simulation (ISO/FDIS 18192-1 (2006) and ASTM F2423-05). In vitro wear simulation was performed with six activ® L lumbar artificial disc devices (Aesculap Tuttlingen, Germany). The applied kinematic pattern of movement was multidirectional for ISO (elliptic track) and unidirectional with a curvilinear shape for ASTM. Testing was done for 10 million cycles in the ISO loading mode and afterwards with the same specimens for 5 million cycles according to the ASTM protocol with a customized six-station servohydraulic spinal wear simulator (EndoLab Thansau, Germany). Gravimetrical and geometrical wear assessment, a slide track analysis correlated to an optical surface characterization, and an estimation of particle size and morphology were performed. The gravimetric wear rate for the first 10 million cycles was ISOinitial = 2.7 ± 0.3 mg/million cycles. During the ASTM test period (10–15 million cycles) a gravimetric wear rate of 0.14 ± 0.06 mg/million cycles was estimated. The wear rates between the ISO and ASTM driven simulations differ substantially (approximately 20-fold) and statistical analysis demonstrates a significant difference (p < 0.001) between the test groups. The main explanation of divergency between ISO and ASTM driven wear simulations is the multidirectional pattern of movement described in the ISO document resulting in a cross-shear stress on the polyethylene material. Due to previous retrieval observations, it seems to be very unlikely that a lumbar artificial disc is loaded with a linear wear path.Testing according to ASTM F2423-05 with pure unidirectional motion does not reflect the kinematics of TDA patients‘ daily activities. Based on our findings it seems to be more reliable to predict the clinical wear behavior of an artificial disc replacement using the ISO/FDIS 18192-1 method. PMID:19050942

  9. Modulation of weight off-loading level over body-weight supported locomotion training.

    PubMed

    Wang, Ping; Low, K H; Lim, Peter A C; McGregor, A H

    2011-01-01

    With the evolution of robotic systems to facilitate overground walking rehabilitation, it is important to understand the effect of robotic-aided body-weight supported loading on lower limb muscle activity, if we are to optimize neuromotor recovery. To achieve this objective, we have collected and studied electromyography (EMG) data from key muscles in the lower extremity from healthy subjects walking over a wide range of body-weight off-loading levels as provided by a bespoke gait robot. By examining the impact of body-weight off-loading, it was found that muscle activation patterns were sensitive to the level of off-loading. In addition, a large off-loading might introduce disturbance of muscle activation pattern, led to a wider range of motion in terms of dorsiflexion/plantarflexion. Therefore, any future overground training machine should be enhanced to exclude unnecessary effect of body off-loading in securing the sustaining upright posture and providing assist-as-needed BWS over gait rehabilitation. © 2011 IEEE

  10. Practising what we preach: using cognitive load theory for workshop design and evaluation.

    PubMed

    Naismith, Laura M; Haji, Faizal A; Sibbald, Matthew; Cheung, Jeffrey J H; Tavares, Walter; Cavalcanti, Rodrigo B

    2015-12-01

    Theory-based instructional design is a top priority in medical education. The goal of this Show and Tell article is to present our theory-driven approach to the design of instruction for clinical educators. We adopted cognitive load theory as a framework to design and evaluate a series of professional development workshops that were delivered at local, national and international academic conferences in 2014. We used two rating scales to measure participants' cognitive load. Participants also provided narrative comments as to how the workshops could be improved. Cognitive load ratings from 59 participants suggested that the workshop design optimized learning by managing complexity for different levels of learners (intrinsic load), stimulating cognitive processing for long-term memory storage (germane load), and minimizing irrelevant distracters (extraneous load). Narrative comments could also be classified as representing intrinsic, extraneous, or germane load, which provided specific directions for ongoing quality improvement. These results demonstrate that a cognitive load theory approach to workshop design and evaluation is feasible and useful in the context of medical education.

  11. Effects of Formulation Variables on the Particle Size and Drug Encapsulation of Imatinib-Loaded Solid Lipid Nanoparticles.

    PubMed

    Gupta, Biki; Poudel, Bijay Kumar; Pathak, Shiva; Tak, Jin Wook; Lee, Hee Hyun; Jeong, Jee-Heon; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2016-06-01

    Imatinib (IMT), an anticancer agent, inhibits receptor tyrosine kinases and is characterized by poor aqueous solubility, extensive first-pass metabolism, and rapid clearance. The aims of the current study are to prepare imatinib-loaded solid lipid nanoparticles (IMT-SLN) and study the effects of associated formulation variables on particle size and drug encapsulation on IMT-SLN using an experimental design. IMT-SLN was optimized by use of a "combo" approach involving Plackett-Burman design (PBD) and Box-Behnken design (BBD). PBD screening resulted in the determination of organic-to-aqueous phase ratio (O/A), drug-to-lipid ratio (D/L), and amount of Tween® 20 (Tw20) as three significant variables for particle size (S z), drug loading (DL), and encapsulation efficiency (EE) of IMT-SLN, which were used for optimization by BBD, yielding an optimized criteria of O/A = 0.04, D/L = 0.03, and Tw20 = 2.50% w/v. The optimized IMT-SLN exhibited monodispersed particles with a size range of 69.0 ± 0.9 nm, ζ-potential of -24.2 ± 1.2 mV, and DL and EE of 2.9 ± 0.1 and 97.6 ± 0.1% w/w, respectively. Results of in vitro release study showed a sustained release pattern, presumably by diffusion and erosion, with a higher release rate at pH 5.0, compared to pH 7.4. In conclusion, use of the combo experimental design approach enabled clear understanding of the effects of various formulation variables on IMT-SLN and aided in the preparation of a system which exhibited desirable physicochemical and release characteristics.

  12. Measuring cognitive load: performance, mental effort and simulation task complexity.

    PubMed

    Haji, Faizal A; Rojas, David; Childs, Ruth; de Ribaupierre, Sandrine; Dubrowski, Adam

    2015-08-01

    Interest in applying cognitive load theory in health care simulation is growing. This line of inquiry requires measures that are sensitive to changes in cognitive load arising from different instructional designs. Recently, mental effort ratings and secondary task performance have shown promise as measures of cognitive load in health care simulation. We investigate the sensitivity of these measures to predicted differences in intrinsic load arising from variations in task complexity and learner expertise during simulation-based surgical skills training. We randomly assigned 28 novice medical students to simulation training on a simple or complex surgical knot-tying task. Participants completed 13 practice trials, interspersed with computer-based video instruction. On trials 1, 5, 9 and 13, knot-tying performance was assessed using time and movement efficiency measures, and cognitive load was assessed using subjective rating of mental effort (SRME) and simple reaction time (SRT) on a vibrotactile stimulus-monitoring secondary task. Significant improvements in knot-tying performance (F(1.04,24.95)  = 41.1, p < 0.001 for movements; F(1.04,25.90)  = 49.9, p < 0.001 for time) and reduced cognitive load (F(2.3,58.5)  = 57.7, p < 0.001 for SRME; F(1.8,47.3)  = 10.5, p < 0.001 for SRT) were observed in both groups during training. The simple-task group demonstrated superior knot tying (F(1,24)  = 5.2, p = 0.031 for movements; F(1,24)  = 6.5, p = 0.017 for time) and a faster decline in SRME over the first five trials (F(1,26)  = 6.45, p = 0.017) compared with their peers. Although SRT followed a similar pattern, group differences were not statistically significant. Both secondary task performance and mental effort ratings are sensitive to changes in intrinsic load among novices engaged in simulation-based learning. These measures can be used to track cognitive load during skills training. Mental effort ratings are also sensitive to small differences in intrinsic load arising from variations in the physical complexity of a simulation task. The complementary nature of these subjective and objective measures suggests their combined use is advantageous in simulation instructional design research. © 2015 John Wiley & Sons Ltd.

  13. Safety Identifying of Integral Abutment Bridges under Seismic and Thermal Loads

    PubMed Central

    Easazadeh Far, Narges; Barghian, Majid

    2014-01-01

    Integral abutment bridges (IABs) have many advantages over conventional bridges in terms of strength and maintenance cost. Due to the integrity of these structures uniform thermal and seismic loads are known important ones on the structure performance. Although all bridge design codes consider temperature and earthquake loads separately in their load combinations for conventional bridges, the thermal load is an “always on” load and, during the occurrence of an earthquake, these two important loads act on bridge simultaneously. Evaluating the safety level of IABs under combination of these loads becomes important. In this paper, the safety of IABs—designed by AASHTO LRFD bridge design code—under combination of thermal and seismic loads is studied. To fulfill this aim, first the target reliability indexes under seismic load have been calculated. Then, these analyses for the same bridge under combination of thermal and seismic loads have been repeated and the obtained reliability indexes are compared with target indexes. It is shown that, for an IAB designed by AASHTO LRFD, the indexes have been reduced under combined effects. So, the target level of safety during its design life is not provided and the code's load combination should be changed. PMID:25405232

  14. 24 CFR 200.925b - Residential and institutional building code comparison items.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...); (6) Individual unit smoke detectors; (7) Building alarm systems; (8) Highrise criteria; (b) Light and...) Design live loads; (2) Design dead loads; (3) Snow loads; (4) Wind loads. (5) Earthquake loads (in...

  15. 24 CFR 200.925b - Residential and institutional building code comparison items.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...); (6) Individual unit smoke detectors; (7) Building alarm systems; (8) Highrise criteria; (b) Light and...) Design live loads; (2) Design dead loads; (3) Snow loads; (4) Wind loads. (5) Earthquake loads (in...

  16. 24 CFR 200.925b - Residential and institutional building code comparison items.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...); (6) Individual unit smoke detectors; (7) Building alarm systems; (8) Highrise criteria; (b) Light and...) Design live loads; (2) Design dead loads; (3) Snow loads; (4) Wind loads. (5) Earthquake loads (in...

  17. Using observed load distributions with a simple model to analyse the epidemiology of sea lice (Lepeophtheirus salmonis) on sea trout (Salmo trutta).

    PubMed

    Murray, Alexander G

    2002-06-01

    Sea lice are ectoparasites of salmonids that have been associated with the recent decline in sea trout numbers in north-west Europe. Observed patterns of louse load distribution between sea trout in the seas surrounding the UK, Ireland and Norway and a simple model have been used to analyse the epidemiology of lice. Loads are aggregated and deviate strongly from the Poisson distribution, although less than is observed with many other parasites. The louse numbers on fish from offshore sites are slightly less variable than for fish from coastal sites with comparable mean loads. Analysis of louse development stages and sexes shows that selection between hosts by sea lice plays a limited role. If host selection is absent, then associated poor condition would be caused by, not the cause of, high louse burdens; however the absence of such selection is not proved. Scenarios with infection that is patchy in space and time best generate the aggregated load patterns observed; these patches accord with observed swarms of copepodids. Prevalence patterns may indicate the movement of trout between environments. Control of copepodids in infection 'hot spots', either directly or through control of louse egg production in their catchment, may reduce louse loads on wild sea trout and, in particular, extreme and damaging loads.

  18. Design of push-pull system to control diesel particular matter inside a dead-end entry.

    PubMed

    Zheng, Yi; Thiruvengadam, Magesh; Lan, Hai; Tien, Jerry C

    Diesel particulate matter (DPM) is considered to be carcinogenic after prolonged exposure. With more diesel-powered equipment used in underground mines, miners' exposure to DPM has become an increasing concern. This paper used computational fluid dynamics method to study the DPM dispersion in a dead-end entry with loading operation. The effects of different push-pull ventilation systems on DPM distribution were evaluated to improve the working conditions for underground miners. The four push-pull systems considered include: long push and short pull tubing; short push and long pull tubing, long push and curved pull tubing, and short push and curved pull tubing. A species transport model with buoyancy effect was used to examine the DPM dispersion pattern with unsteady state analysis. During the 200 s of loading operation, high DPM levels were identified in the face and dead-end entry regions. This study can be used for mining engineer as guidance to design and setup local ventilation, select DPM control strategies and for DPM annual training for underground miners.

  19. Reduced Design Load Basis for Ultimate Blade Loads Estimation in Multidisciplinary Design Optimization Frameworks

    NASA Astrophysics Data System (ADS)

    Pavese, Christian; Tibaldi, Carlo; Larsen, Torben J.; Kim, Taeseong; Thomsen, Kenneth

    2016-09-01

    The aim is to provide a fast and reliable approach to estimate ultimate blade loads for a multidisciplinary design optimization (MDO) framework. For blade design purposes, the standards require a large amount of computationally expensive simulations, which cannot be efficiently run each cost function evaluation of an MDO process. This work describes a method that allows integrating the calculation of the blade load envelopes inside an MDO loop. Ultimate blade load envelopes are calculated for a baseline design and a design obtained after an iteration of an MDO. These envelopes are computed for a full standard design load basis (DLB) and a deterministic reduced DLB. Ultimate loads extracted from the two DLBs with the two blade designs each are compared and analyzed. Although the reduced DLB supplies ultimate loads of different magnitude, the shape of the estimated envelopes are similar to the one computed using the full DLB. This observation is used to propose a scheme that is computationally cheap, and that can be integrated inside an MDO framework, providing a sufficiently reliable estimation of the blade ultimate loading. The latter aspect is of key importance when design variables implementing passive control methodologies are included in the formulation of the optimization problem. An MDO of a 10 MW wind turbine blade is presented as an applied case study to show the efficacy of the reduced DLB concept.

  20. [Factors affecting the pressure distribution underneath the foot sole in ski boots].

    PubMed

    Schaff, P; Kulot, M; Hauser, W; Rosemeyer, B

    1988-12-01

    The determination of pressure patterns underneath the footsole inside skiboots, may reveal reasons for footpain and injury risk. In our study, a new developed 72 point measuring mat was used in 5 different skiboots. Data were collected in 10 subjects in different forward flexion positions. In addition a determination of the pressure distribution over the instep was done by means of single measuring points. The results proof, that a proper adapting along the dorsum of the foot does lower the forefoot load during flexion. A tightly closed and well adapted boot will lead to a significant reduction of the total load on the footsole. High shaft models show similar pressure patterns even at earlier forward flexion angles. A pressure related discrimination between rear entry and traditional boots, that was found along the tibia, was not the case underneath the footsole. The force transmission is mainly performed along the shaft of the boot. The effect of orthotics designed mainly to support steerability of the ski, is therefore doubtful. The results may help to improve our knowledge of the interaction between boot and skier and lead, together with future field research, to a reduction of equipment related injuries.

  1. Nutritional quality of dietary patterns of children: are there differences inside and outside school?

    PubMed

    Vieira, Diva Aliete Dos Santos; Castro, Michelle Alessandra; Fisberg, Mauro; Fisberg, Regina Mara

    To describe the dietary patterns of children inside and outside school and investigate their associations with sociodemographic factors and nutritional status. This was a multicenter cross-sectional study in which children of both sexes, aged 1-6 years, attending private and public daycare centers and preschools in Brazil, were evaluated (n=2979). Demographic, socioeconomic and dietary data (weighed food records and estimated food records) were collected. Dietary patterns were derived by factor analysis from 36 food groups. Four dietary patterns were identified inside school, and three outside. Inside school, the "traditional" pattern was associated to low income and presented high nutritional quality. The "dual" pattern was associated with low income and with high intake of added sugar and glycemic load. The "snack" pattern was associated with children enrolled at private schools and with high intake of added sugar and glycemic load. The "bread and butter" pattern was associated with high intake of added sugar and trans fat. Outside school, the "traditional" pattern was associated with high intake of saturated fat, trans fats, sodium, and total fiber. The "bread and butter" pattern was associated with high intake of trans fats and glycemic load, whereas the "snack" pattern was associated with overweight, private schools, high income, and high intake of trans fats, sodium, and total fiber. There are differences in the nutritional quality of dietary patterns inside and outside school, and heterogeneity in adherence to these patterns were observed across regions and socioeconomic classes. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  2. An intelligent switch with back-propagation neural network based hybrid power system

    NASA Astrophysics Data System (ADS)

    Perdana, R. H. Y.; Fibriana, F.

    2018-03-01

    The consumption of conventional energy such as fossil fuels plays the critical role in the global warming issues. The carbon dioxide, methane, nitrous oxide, etc. could lead the greenhouse effects and change the climate pattern. In fact, 77% of the electrical energy is generated from fossil fuels combustion. Therefore, it is necessary to use the renewable energy sources for reducing the conventional energy consumption regarding electricity generation. This paper presents an intelligent switch to combine both energy resources, i.e., the solar panels as the renewable energy with the conventional energy from the State Electricity Enterprise (PLN). The artificial intelligence technology with the back-propagation neural network was designed to control the flow of energy that is distributed dynamically based on renewable energy generation. By the continuous monitoring on each load and source, the dynamic pattern of the intelligent switch was better than the conventional switching method. The first experimental results for 60 W solar panels showed the standard deviation of the trial at 0.7 and standard deviation of the experiment at 0.28. The second operation for a 900 W of solar panel obtained the standard deviation of the trial at 0.05 and 0.18 for the standard deviation of the experiment. Moreover, the accuracy reached 83% using this method. By the combination of the back-propagation neural network with the observation of energy usage of the load using wireless sensor network, each load can be evenly distributed and will impact on the reduction of conventional energy usage.

  3. Comparison of two parametric methods to estimate pesticide mass loads in California's Central Valley

    USGS Publications Warehouse

    Saleh, Dina K.; Lorenz, David L.; Domagalski, Joseph L.

    2011-01-01

    Mass loadings were calculated for four pesticides in two watersheds with different land uses in the Central Valley, California, by using two parametric models: (1) the Seasonal Wave model (SeaWave), in which a pulse signal is used to describe the annual cycle of pesticide occurrence in a stream, and (2) the Sine Wave model, in which first-order Fourier series sine and cosine terms are used to simulate seasonal mass loading patterns. The models were applied to data collected during water years 1997 through 2005. The pesticides modeled were carbaryl, diazinon, metolachlor, and molinate. Results from the two models show that the ability to capture seasonal variations in pesticide concentrations was affected by pesticide use patterns and the methods by which pesticides are transported to streams. Estimated seasonal loads compared well with results from previous studies for both models. Loads estimated by the two models did not differ significantly from each other, with the exceptions of carbaryl and molinate during the precipitation season, where loads were affected by application patterns and rainfall. However, in watersheds with variable and intermittent pesticide applications, the SeaWave model is more suitable for use on the basis of its robust capability of describing seasonal variation of pesticide concentrations.

  4. Novel method to control antenna currents based on theory of characteristic modes

    NASA Astrophysics Data System (ADS)

    Elghannai, Ezdeen Ahmed

    Characteristic Mode Theory is one of the very few numerical methods that provide a great deal of physical insight because it allows us to determine the natural modes of the radiating structure. The key feature of these modes is that the total induced antenna current, input impedance/admittance and radiation pattern can be expressed as a linear weighted combination of individual modes. Using this decomposition method, it is possible to study the behavior of the individual modes, understand them and therefore control the antennas behavior; in other words, control the currents induced on the antenna structure. This dissertation advances the topic of antenna design by carefully controlling the antenna currents over the desired frequency band to achieve the desired performance specifications for a set of constraints. Here, a systematic method based on the Theory of Characteristic Modes (CM) and lumped reactive loading to achieve the goal of current control is developed. The lumped reactive loads are determined based on the desired behavior of the antenna currents. This technique can also be used to impedance match the antenna to the source/generator connected to it. The technique is much more general than the traditional impedance matching. Generally, the reactive loads that properly control the currents exhibit a combination of Foster and non-Foster behavior. The former can be implemented with lumped passive reactive components, while the latter can be implemented with lumped non-Foster circuits (NFC). The concept of current control is applied to design antennas with a wide band (impedance/pattern) behavior using reactive loads. We successfully applied this novel technique to design multi band and wide band antennas for wireless applications. The technique was developed to match the antenna to resistive and/or complex source impedance and control the radiation pattern at these frequency bands, considering size and volume constraints. A wide band patch antenna was achieved using the developed technique. In addition, the technique was applied to multi band wire less Universal Serial Bus (USB) dongle antenna that serves for WLAN IEEE 802.11 a/b/g/n band applications and Radio Frequency Identification (RFID) tag antenna for 915MHz band applications with superior performance compared to previous published results. This dissertation also discusses the total Q of an antenna from the CM standpoint. A new expression as well as additional physical information about each mode's individual contribution to the total antenna Q are provided. Finally, the theory is used to an analyze the antenna in both radiation and/or scattering modes. In the antenna scattering mode, the field scattered by an antenna contains a component that is the short circuit scattered field, and a second component that is proportional to the radiation field. In this dissertation, an analytical study of this phenomena from the CM standpoint is performed aiming to shed some light on antenna scattering phenomenon where additional physical insight is obtained and thus used to reach desire results.

  5. Influence of core design, production technique, and material selection on fracture behavior of yttria-stabilized tetragonal zirconia polycrystal fixed dental prostheses produced using different multilayer techniques: split-file, over-pressing, and manually built-up veneers.

    PubMed

    Mahmood, Deyar Jallal Hadi; Linderoth, Ewa H; Wennerberg, Ann; Vult Von Steyern, Per

    2016-01-01

    To investigate and compare the fracture strength and fracture mode in eleven groups of currently, the most commonly used multilayer three-unit all-ceramic yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) fixed dental prostheses (FDPs) with respect to the choice of core material, veneering material area, manufacturing technique, design of connectors, and radii of curvature of FDP cores. A total of 110 three-unit Y-TZP FDP cores with one intermediate pontic were made. The FDP cores in groups 1-7 were made with a split-file design, veneered with manually built-up porcelain, computer-aided design-on veneers, and over-pressed veneers. Groups 8-11 consisted of FDPs with a state-of-the-art design, veneered with manually built-up porcelain. All the FDP cores were subjected to simulated aging and finally loaded to fracture. There was a significant difference (P<0.05) between the core designs, but not between the different types of Y-TZP materials. The split-file designs with VITABLOCS(®) (1,806±165 N) and e.max(®) ZirPress (1,854±115 N) and the state-of-the-art design with VITA VM(®) 9 (1,849±150 N) demonstrated the highest mean fracture values. The shape of a split-file designed all-ceramic reconstruction calls for a different dimension protocol, compared to traditionally shaped ones, as the split-file design leads to sharp approximal indentations acting as fractural impressions, thus decreasing the overall strength. The design of a framework is a crucial factor for the load bearing capacity of an all-ceramic FDP. The state-of-the-art design is preferable since the split-file designed cores call for a cross-sectional connector area at least 42% larger, to have the same load bearing capacity as the state-of-the-art designed cores. All veneering materials and techniques tested in the study, split-file, over-press, built-up porcelains, and glass-ceramics are, with a great safety margin, sufficient for clinical use both anteriorly and posteriorly. Analysis of the fracture pattern shows differences between the milled veneers and over-pressed or built-up veneers, where the milled ones show numerically more veneer cracks and the other groups only show complete connector fractures.

  6. A Risk-Based Approach to Variable Load Configuration Validation in Steam Sterilization: Application of PDA Technical Report 1 Load Equivalence Topic.

    PubMed

    Pavell, Anthony; Hughes, Keith A

    2010-01-01

    This article describes a method for achieving the load equivalence model, described in Parenteral Drug Association Technical Report 1, using a mass-based approach. The item and load bracketing approach allows for mixed equipment load size variation for operational flexibility along with decreased time to introduce new items to the operation. The article discusses the utilization of approximately 67 items/components (Table IV) identified for routine sterilization with varying quantities required weekly. The items were assessed for worst-case identification using four temperature-related criteria. The criteria were used to provide a data-based identification of worst-case items, and/or item equivalence, to carry forward into cycle validation using a variable load pattern. The mass approach to maximum load determination was used to bracket routine production use and allows for variable loading patterns. The result of the item mapping and load bracketing data is "a proven acceptable range" of sterilizing conditions including loading configuration and location. The application of these approaches, while initially more time/test-intensive than alternate approaches, provides a method of cycle validation with long-term benefit of ease of ongoing qualification, minimizing time and requirements for new equipment qualification for similar loads/use, and for rapid and rigorous assessment of new items for sterilization.

  7. Rare earth elements in river waters

    NASA Technical Reports Server (NTRS)

    Goldstein, Steven J.; Jacobsen, Stein B.

    1988-01-01

    To characterize the input to the oceans of rare earth elements (REE) in the dissolved and the suspended loads of rivers, the REE concentrations were measured in samples of Amazon, Indus, Mississippi, Murray-Darling, and Ohio rivers and in samples of smaller rivers that had more distinct drainage basin lithology and water chemistry. It was found that, in the suspended loads of small rivers, the REE pattern was dependent on drainage basin geology, whereas the suspended loads in major rivers had relatively uniform REE patterns and were heavy-REE depleted relative to the North American Shale composite (NASC). The dissolved loads in the five major rivers had marked relative heavy-REE enrichments, relative to the NASC and the suspended material, with the (La/Yb)N ratio of about 0.4 (as compared with the ratio of about 1.9 in suspended loads).

  8. Design, fabrication, testing and delivery of a feasibility model laminated ferrite memory

    NASA Technical Reports Server (NTRS)

    Heckler, H. C.

    1973-01-01

    The effect of using multiword addressing with laminated ferrite arrays was made. Both a reduction in the number of components, and a reduction in power consumption was obtained for memory capacities between one million bits and one million words. An investigation into the effect of variations in the processing steps resulted in a number of process modifications that improved the quality of the arrays. A feasibility model laminated ferrite memory system was constructed by modifying a commercial plated wire memory system to operate with laminated ferrite arrays. To provide flexibility for the testing of the laminated ferrite memory, an exerciser has been constructed to automatically control the loading and recirculation of arbitrary size checkerboard patterns of one's and zero's and to display the patterns of stored information on a CRT screen.

  9. Verification of a three-dimensional viscous flow analysis for a single stage compressor

    NASA Astrophysics Data System (ADS)

    Matsuoka, Akinori; Hashimoto, Keisuke; Nozaki, Osamu; Kikuchi, Kazuo; Fukuda, Masahiro; Tamura, Atsuhiro

    1992-12-01

    A transonic flowfield around rotor blades of a highly loaded single stage axial compressor was numerically analyzed by a three dimensional compressible Navier-Stokes equation code using Chakravarthy and Osher type total variation diminishing (TVD) scheme. A stage analysis which calculates both flowfields around inlet guide vane (IGV) and rotor blades simultaneously was carried out. Comparing with design values and experimental data, computed results show slight difference quantitatively. But the numerical calculation simulates well the pressure rise characteristics of the compressor and its flow pattern including strong shock surface.

  10. Efficient Synthesis of Graph Methods: a Dynamically Scheduled Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minutoli, Marco; Castellana, Vito G.; Tumeo, Antonino

    RDF databases naturally map to a graph representation and employ languages, such as SPARQL, that implements queries as graph pattern matching routines. Graph methods exhibit an irregular behavior: they present unpredictable, fine-grained data accesses, and are synchronization inten- sive. Graph data structures expose large amounts of dy- namic parallelism, but are difficult to partition without gen- erating load unbalance. In this paper, we present a novel ar- chitecture to improve the synthesis of graph methods. Our design addresses the issues of these algorithms with two com- ponents: a Dynamic Task Scheduler (DTS), which reduces load unbalance and maximize resource utilization,more » and a Hi- erarchical Memory Interface controller (HMI), which pro- vides support for concurrent memory operations on multi- ported/multi-banked shared memories. We evaluate our ap- proach by generating the accelerators for a set of SPARQL queries from the Lehigh University Benchmark (LUBM). We first analyze the load unbalance of these queries, showing that execution time among tasks can differ even of order of magnitudes. We then synthesize the queries and com- pare the performance of the resulting accelerators against the current state of the art. Experimental results show that our solution provides a speedup over the serial implementa- tion close to the theoretical maximum and a speedup up to 3.45 over a baseline parallel implementation. We conclude our study by exploring the design space to achieve maximum memory channels utilization. The best design used at least three of the four memory channels for more than 90% of the execution time.« less

  11. a Web-Based Platform for Visualizing Spatiotemporal Dynamics of Big Taxi Data

    NASA Astrophysics Data System (ADS)

    Xiong, H.; Chen, L.; Gui, Z.

    2017-09-01

    With more and more vehicles equipped with Global Positioning System (GPS), access to large-scale taxi trajectory data has become increasingly easy. Taxis are valuable sensors and information associated with taxi trajectory can provide unprecedented insight into many aspects of city life. But analysing these data presents many challenges. Visualization of taxi data is an efficient way to represent its distributions and structures and reveal hidden patterns in the data. However, Most of the existing visualization systems have some shortcomings. On the one hand, the passenger loading status and speed information cannot be expressed. On the other hand, mono-visualization form limits the information presentation. In view of these problems, this paper designs and implements a visualization system in which we use colour and shape to indicate passenger loading status and speed information and integrate various forms of taxi visualization. The main work as follows: 1. Pre-processing and storing the taxi data into MongoDB database. 2. Visualization of hotspots for taxi pickup points. Through DBSCAN clustering algorithm, we cluster the extracted taxi passenger's pickup locations to produce passenger hotspots. 3. Visualizing the dynamic of taxi moving trajectory using interactive animation. We use a thinning algorithm to reduce the amount of data and design a preloading strategyto load the data smoothly. Colour and shape are used to visualize the taxi trajectory data.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imani, Mohammadreza F., E-mail: mohamad.imani@gmail.com; Grbic, Anthony

    One of the obstacles preventing wireless power transfer from becoming ubiquitous is their leakage of power: high-amplitude electromagnetic fields that can interfere with other electronic devices, increase health concerns, or hinder power metering. In this paper, we present near-field plates (NFPs) as a novel method to tailor the electromagnetic fields generated by a wireless power transfer system while maintaining high efficiency. NFPs are modulated arrays or surfaces designed to form prescribed near-field patterns. The NFP proposed in this paper consists of an array of loaded loops that are designed to confine the electromagnetic fields of a resonant transmitting loop tomore » the desired direction (receiving loop) while suppressing fields in other directions. The step-by-step design procedure for this device is outlined. Two NFPs are designed and examined in full-wave simulation. Their performance is shown to be in close agreement with the design predictions, thereby verifying the proposed design and operation. A NFP is also fabricated and experimentally shown to form a unidirectional wireless power transfer link with high efficiency.« less

  13. Increased Soluble Phosphorus Loads to Lake Erie: Unintended Consequences of Conservation Practices?

    PubMed

    Jarvie, Helen P; Johnson, Laura T; Sharpley, Andrew N; Smith, Douglas R; Baker, David B; Bruulsema, Tom W; Confesor, Remegio

    2017-01-01

    Cumulative daily load time series show that the early 2000s marked a step-change increase in riverine soluble reactive phosphorus (SRP) loads entering the Western Lake Erie Basin from three major tributaries: the Maumee, Sandusky, and Raisin Rivers. These elevated SRP loads have been sustained over the last 12 yr. Empirical regression models were used to estimate the contributions from (i) increased runoff from changing weather and precipitation patterns and (ii) increased SRP delivery (the combined effects of increased source availability and/or increased transport efficiency of labile phosphorus [P] fractions). Approximately 65% of the SRP load increase after 2002 was attributable to increased SRP delivery, with higher runoff volumes accounting for the remaining 35%. Increased SRP delivery occurred concomitantly with declining watershed P budgets. However, within these watersheds, there have been long-term, largescale changes in land management: reduced tillage to minimize erosion and particulate P loss, and increased tile drainage to improve field operations and profitability. These practices can inadvertently increase labile P fractions at the soil surface and transmission of soluble P via subsurface drainage. Our findings suggest that changes in agricultural practices, including some conservation practices designed to reduce erosion and particulate P transport, may have had unintended, cumulative, and converging impacts contributing to the increased SRP loads, reaching a critical threshold around 2002. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Cross-Modal Decoding of Neural Patterns Associated with Working Memory: Evidence for Attention-Based Accounts of Working Memory.

    PubMed

    Majerus, Steve; Cowan, Nelson; Péters, Frédéric; Van Calster, Laurens; Phillips, Christophe; Schrouff, Jessica

    2016-01-01

    Recent studies suggest common neural substrates involved in verbal and visual working memory (WM), interpreted as reflecting shared attention-based, short-term retention mechanisms. We used a machine-learning approach to determine more directly the extent to which common neural patterns characterize retention in verbal WM and visual WM. Verbal WM was assessed via a standard delayed probe recognition task for letter sequences of variable length. Visual WM was assessed via a visual array WM task involving the maintenance of variable amounts of visual information in the focus of attention. We trained a classifier to distinguish neural activation patterns associated with high- and low-visual WM load and tested the ability of this classifier to predict verbal WM load (high-low) from their associated neural activation patterns, and vice versa. We observed significant between-task prediction of load effects during WM maintenance, in posterior parietal and superior frontal regions of the dorsal attention network; in contrast, between-task prediction in sensory processing cortices was restricted to the encoding stage. Furthermore, between-task prediction of load effects was strongest in those participants presenting the highest capacity for the visual WM task. This study provides novel evidence for common, attention-based neural patterns supporting verbal and visual WM. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Free-standing carbon nanotube composite sensing skin for distributed strain sensing in structures

    NASA Astrophysics Data System (ADS)

    Burton, Andrew R.; Minegishi, Kaede; Kurata, Masahiro; Lynch, Jerome P.

    2014-04-01

    The technical challenges of managing the health of critical infrastructure systems necessitate greater structural sensing capabilities. Among these needs is the ability for quantitative, spatial damage detection on critical structural components. Advances in material science have now opened the door for novel and cost-effective spatial sensing solutions specially tailored for damage detection in structures. However, challenges remain before spatial damage detection can be realized. Some of the technical challenges include sensor installations and extensive signal processing requirements. This work addresses these challenges by developing a patterned carbon nanotube composite thin film sensor whose pattern has been optimized for measuring the spatial distribution of strain. The carbon nanotube-polymer nanocomposite sensing material is fabricated on a flexible polyimide substrate using a layer-by-layer deposition process. The thin film sensors are then patterned into sensing elements using optical lithography processes common to microelectromechanical systems (MEMS) technologies. The sensor array is designed as a series of sensing elements with varying width to provide insight on the limitations of such patterning and implications of pattern geometry on sensing signals. Once fabrication is complete, the substrate and attached sensor are epoxy bonded to a poly vinyl composite (PVC) bar that is then tested with a uniaxial, cyclic load pattern and mechanical response is characterized. The fabrication processes are then utilized on a larger-scale to develop and instrument a component-specific sensing skin in order to observe the strain distribution on the web of a steel beam. The instrumented beam is part of a larger steel beam-column connection with a concrete slab in composite action. The beam-column subassembly is laterally loaded and strain trends in the web are observed using the carbon nanotube composite sensing skin. The results are discussed in the context of understanding the properties of the thin film sensor and how it may be advanced toward structural sensing applications.

  16. Loads and low frequency dynamics - An ENVIRONET data base

    NASA Technical Reports Server (NTRS)

    Garba, John A.

    1988-01-01

    The loads and low frequency dynamics data base, part of Environet, is described with particular attention given to its development and contents. The objective of the data base is to provide the payload designer with design approaches and design data to meet STS safety requirements. Currently the data base consists of the following sections: abstract, scope, glossary, requirements, interaction with other environments, summary of the loads analysis process, design considerations, guidelines for payload design loads, information data base, and references.

  17. Optimize Short Term load Forcasting Anomalous Based Feed Forward Backpropagation

    NASA Astrophysics Data System (ADS)

    Mulyadi, Y.; Abdullah, A. G.; Rohmah, K. A.

    2017-03-01

    This paper contains the Short-Term Load Forecasting (STLF) using artificial neural network especially feed forward back propagation algorithm which is particularly optimized in order to getting a reduced error value result. Electrical load forecasting target is a holiday that hasn’t identical pattern and different from weekday’s pattern, in other words the pattern of holiday load is an anomalous. Under these conditions, the level of forecasting accuracy will be decrease. Hence we need a method that capable to reducing error value in anomalous load forecasting. Learning process of algorithm is supervised or controlled, then some parameters are arranged before performing computation process. Momentum constant a value is set at 0.8 which serve as a reference because it has the greatest converge tendency. Learning rate selection is made up to 2 decimal digits. In addition, hidden layer and input component are tested in several variation of number also. The test result leads to the conclusion that the number of hidden layer impact on the forecasting accuracy and test duration determined by the number of iterations when performing input data until it reaches the maximum of a parameter value.

  18. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    NASA Astrophysics Data System (ADS)

    Kerschberger, P.; Gehrer, A.

    2010-08-01

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  19. Development and evaluation of triclosan loaded poly-ɛ-caprolactone nanoparticulate system for the treatment of periodontal infections

    NASA Astrophysics Data System (ADS)

    Aminu, Nafiu; Baboota, Sanjula; Pramod, K.; Singh, Manisha; Dang, Shweta; Ansari, Shahid H.; Sahni, Jasjeet K.; Ali, Javed

    2013-11-01

    Periodontal disease affects tooth-supporting structures and nanoparticles (NPs) have been a promising approach for its treatment. The purpose of the study was to develop triclosan-loaded poly-ɛ-caprolactone (PCL) NPs for the treatment of periodontal infections. Solvent displacement method was used to prepare NPs following Box-Behnken design. The NPs were evaluated with respect to particle size, polydispersity index, surface morphology, zeta potential, thermal properties, in vitro drug release, and cell viability assay. The optimized NPs were in the size range of 180-230 nm with a mean size of 205.61 ± 10.4 nm. Entrapment efficiency (EE) of 91.02 ± 2.4 % was obtained with a drug loading of 21.71 ± 1.3 %. About 97 % of drug was released in vitro after 3 h. NPs demonstrated almost 100 % cell viability in L929 cell lines. Shelf life of the nanoparticles was 17.07 months. PCL affected particle size whereas triclosan affected loading and EE. The optimized NPs were spherical with smooth surface and exhibited biphasic in vitro release pattern. NPs had optimum zeta potential and PDI and were stable on storage. Absence of cytotoxicity of NPs to L929 cells indicated its safety. Triclosan-loaded PCL nanoparticles could thus serve as a novel colloidal drug delivery system against periodontal infections.

  20. New consumer load prototype for electricity theft monitoring

    NASA Astrophysics Data System (ADS)

    Abdullateef, A. I.; Salami, M. J. E.; Musse, M. A.; Onasanya, M. A.; Alebiosu, M. I.

    2013-12-01

    Illegal connection which is direct connection to the distribution feeder and tampering of energy meter has been identified as a major process through which nefarious consumers steal electricity on low voltage distribution system. This has contributed enormously to the revenue losses incurred by the power and energy providers. A Consumer Load Prototype (CLP) is constructed and proposed in this study in order to understand the best possible pattern through which the stealing process is effected in real life power consumption. The construction of consumer load prototype will facilitate real time simulation and data collection for the monitoring and detection of electricity theft on low voltage distribution system. The prototype involves electrical design and construction of consumer loads with application of various standard regulations from Institution of Engineering and Technology (IET), formerly known as Institution of Electrical Engineers (IEE). LABVIEW platform was used for data acquisition and the data shows a good representation of the connected loads. The prototype will assist researchers and power utilities, currently facing challenges in getting real time data for the study and monitoring of electricity theft. The simulation of electricity theft in real time is one of the contributions of this prototype. Similarly, the power and energy community including students will appreciate the practical approach which the prototype provides for real time information rather than software simulation which has hitherto been used in the study of electricity theft.

  1. Nanoengineered mesoporous silica nanoparticles for smart delivery of doxorubicin

    NASA Astrophysics Data System (ADS)

    Mishra, Akhilesh Kumar; Pandey, Himanshu; Agarwal, Vishnu; Ramteke, Pramod W.; Pandey, Avinash C.

    2014-08-01

    The motive of the at hand exploration was to contrive a proficient innovative pH-responsive nanocarrier designed for an anti-neoplastic agent that not only owns competent loading capacity but also talented to liberate the drug at the specific site. pH sensitive hollow mesoporous silica nanoparticles ( MSN) have been synthesized by sequence of chemical reconstruction with an average particle size of 120 nm. MSN reveal noteworthy biocompatibility and efficient drug loading magnitude. Active molecules such as Doxorubicin (DOX) can be stocked and set free from the pore vacuities of MSN by tuning the pH of the medium. The loading extent of MSN was found up to 81.4 wt% at pH 7.8. At mild acidic pH, DOX is steadily released from the pores of MSN. Both, the nitrogen adsorption-desorption isotherms and X-ray diffraction patterns reflects that this system holds remarkable stable mesostructure. Additionally, the outcomes of cytotoxicity assessment further establish the potential of MSN as a relevant drug transporter which can be thought over an appealing choice to a polymeric delivery system.

  2. Study on Flexural Behaviour of Ternary Blended Reinforced Self Compacting Concrete Beam with Conventional RCC Beam

    NASA Astrophysics Data System (ADS)

    Marshaline Seles, M.; Suryanarayanan, R.; Vivek, S. S.; Dhinakaran, G.

    2017-07-01

    The conventional concrete when used for structures having dense congested reinforcement, the problems such as external compaction and vibration needs special attention. In such case, the self compacting concrete (SCC) which has the properties like flow ability, passing and filling ability would be an obvious answer. All those SCC flow behavior was governed by EFNARC specifications. In present study, the combination type of SCC was prepared by replacing cement with silica fume (SF) and metakaolin (MK) along with optimum dosages of chemical admixtures. From the fresh property test, cube compressive strength and cylinder split tensile strength, optimum ternary mix was obtained. In order to study the flexural behavior, the optimum ternary mix was taken in which beam specimens of size 1200 mm x 100 mm x 200 mm was designed as singly reinforced section according to IS: 456-2000, Limit state method. Finally the comparative experimental analysis was made between conventional RCC and SCC beams of same grade in terms of flexural strength namely yield load & ultimate load, load- deflection curve, crack size and pattern respectively.

  3. Modeling the Effects of Perceptual Load: Saliency, Competitive Interactions, and Top-Down Biases

    PubMed Central

    Neokleous, Kleanthis; Shimi, Andria; Avraamides, Marios N.

    2016-01-01

    A computational model of visual selective attention has been implemented to account for experimental findings on the Perceptual Load Theory (PLT) of attention. The model was designed based on existing neurophysiological findings on attentional processes with the objective to offer an explicit and biologically plausible formulation of PLT. Simulation results verified that the proposed model is capable of capturing the basic pattern of results that support the PLT as well as findings that are considered contradictory to the theory. Importantly, the model is able to reproduce the behavioral results from a dilution experiment, providing thus a way to reconcile PLT with the competing Dilution account. Overall, the model presents a novel account for explaining PLT effects on the basis of the low-level competitive interactions among neurons that represent visual input and the top-down signals that modulate neural activity. The implications of the model concerning the debate on the locus of selective attention as well as the origins of distractor interference in visual displays of varying load are discussed. PMID:26858668

  4. Design of long-term sludge-loading rates for forests under uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crohn, D.M.

    1995-09-01

    A simple time series describing nitrate-nitrogen concentrations percolating form a sludge-amended forest is presented for the case where applications are made at several-year intervals. The time series converges to a quasi-steady-state solution that can be solved for an application rate limited by percolating nitrate-nitrogen concentrations. Excess nitrogen is commonly converted to nitrate, a form that leaches readily to pollute ground water. A chance constraint incorporates uncertainty associated with precipitation and evapotranspiration, the most important factors in determining the excess of water available for leaching. Design loading rates for eight New York state forest regions are discussed. If applications occur atmore » 3-year intervals, rates range form 0.2 to 5.3 Mg/ha dry weight depending on the design confidence level, local excess water patterns, forest nitrogen uptake, sludge type, and atmospheric nitrogen deposition rates. Results are compared to predictions made with FORSENTO, a comprehensive model for simulating sludge applications to northern hardwood forests. FORSENTO simulations suggest that mature hardwoods need only 12 kg/ha to support annually perennial material growth and that atmospheric nitrogen deposition may eventually meet or exceed needs of trees so that landspreading may not be sustainable indefinitely in some areas.« less

  5. Physiologically Distributed Loading Patterns Drive the Formation of Zonally Organized Collagen Structures in Tissue-Engineered Meniscus.

    PubMed

    Puetzer, Jennifer L; Bonassar, Lawrence J

    2016-07-01

    The meniscus is a dense fibrocartilage tissue that withstands the complex loads of the knee via a unique organization of collagen fibers. Attempts to condition engineered menisci with compression or tensile loading alone have failed to reproduce complex structure on the microscale or anatomic scale. Here we show that axial loading of anatomically shaped tissue-engineered meniscus constructs produced spatial distributions of local strain similar to those seen in the meniscus when the knee is loaded at full extension. Such loading drove formation of tissue with large organized collagen fibers, levels of mechanical anisotropy, and compressive moduli that match native tissue. Loading accelerated the development of native-sized and aligned circumferential and radial collagen fibers. These loading patterns contained both tensile and compressive components that enhanced the major biochemical and functional properties of the meniscus, with loading significantly improved glycosaminoglycan (GAG) accumulation 200-250%, collagen accumulation 40-55%, equilibrium modulus 1000-1800%, and tensile moduli 500-1200% (radial and circumferential). Furthermore, this study demonstrates local changes in mechanical environment drive heterogeneous tissue development and organization within individual constructs, highlighting the importance of recapitulating native loading environments. Loaded menisci developed cartilage-like tissue with rounded cells, a dense collagen matrix, and increased GAG accumulation in the more compressively loaded horns, and fibrous collagen-rich tissue in the more tensile loaded outer 2/3, similar to native menisci. Loaded constructs reached a level of organization not seen in any previous engineered menisci and demonstrate great promise as meniscal replacements.

  6. Topology-optimization-based design method of flexures for mounting the primary mirror of a large-aperture space telescope.

    PubMed

    Hu, Rui; Liu, Shutian; Li, Quhao

    2017-05-20

    For the development of a large-aperture space telescope, one of the key techniques is the method for designing the flexures for mounting the primary mirror, as the flexures are the key components. In this paper, a topology-optimization-based method for designing flexures is presented. The structural performances of the mirror system under multiple load conditions, including static gravity and thermal loads, as well as the dynamic vibration, are considered. The mirror surface shape error caused by gravity and the thermal effect is treated as the objective function, and the first-order natural frequency of the mirror structural system is taken as the constraint. The pattern repetition constraint is added, which can ensure symmetrical material distribution. The topology optimization model for flexure design is established. The substructuring method is also used to condense the degrees of freedom (DOF) of all the nodes of the mirror system, except for the nodes that are linked to the mounting flexures, to reduce the computation effort during the optimization iteration process. A potential optimized configuration is achieved by solving the optimization model and post-processing. A detailed shape optimization is subsequently conducted to optimize its dimension parameters. Our optimization method deduces new mounting structures that significantly enhance the optical performance of the mirror system compared to the traditional methods, which only focus on the parameters of existing structures. Design results demonstrate the effectiveness of the proposed optimization method.

  7. Energy management of a university campus utilizing short-term load forecasting with an artificial neural network

    NASA Astrophysics Data System (ADS)

    Palchak, David

    Electrical load forecasting is a tool that has been utilized by distribution designers and operators as a means for resource planning and generation dispatch. The techniques employed in these predictions are proving useful in the growing market of consumer, or end-user, participation in electrical energy consumption. These predictions are based on exogenous variables, such as weather, and time variables, such as day of week and time of day as well as prior energy consumption patterns. The participation of the end-user is a cornerstone of the Smart Grid initiative presented in the Energy Independence and Security Act of 2007, and is being made possible by the emergence of enabling technologies such as advanced metering infrastructure. The optimal application of the data provided by an advanced metering infrastructure is the primary motivation for the work done in this thesis. The methodology for using this data in an energy management scheme that utilizes a short-term load forecast is presented. The objective of this research is to quantify opportunities for a range of energy management and operation cost savings of a university campus through the use of a forecasted daily electrical load profile. The proposed algorithm for short-term load forecasting is optimized for Colorado State University's main campus, and utilizes an artificial neural network that accepts weather and time variables as inputs. The performance of the predicted daily electrical load is evaluated using a number of error measurements that seek to quantify the best application of the forecast. The energy management presented utilizes historical electrical load data from the local service provider to optimize the time of day that electrical loads are being managed. Finally, the utilization of forecasts in the presented energy management scenario is evaluated based on cost and energy savings.

  8. Evaluation of a cost-effective loads approach. [for Viking Orbiter light weight structural design

    NASA Technical Reports Server (NTRS)

    Garba, J. A.; Wada, B. K.; Bamford, R.; Trubert, M. R.

    1976-01-01

    A shock spectra/impedance method for loads prediction is used to estimate member loads for the Viking Orbiter, a 7800-lb interplanetary spacecraft that has been designed using transient loads analysis techniques. The transient loads analysis approach leads to a lightweight structure but requires complex and costly analyses. To reduce complexity and cost a shock spectra/impedance method is currently being used to design the Mariner Jupiter Saturn spacecraft. This method has the advantage of using low-cost in-house loads analysis techniques and typically results in more conservative structural loads. The method is evaluated by comparing the increase in Viking member loads to the loads obtained by the transient loads analysis approach. An estimate of the weight penalty incurred by using this method is presented. The paper also compares the calculated flight loads from the transient loads analyses and the shock spectra/impedance method to measured flight data.

  9. Room Temperature and Elevated Temperature Composite Sandwich Joint Testing

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.

    1998-01-01

    Testing of composite sandwich joint elements has been completed to verify the strength capacity of joints designed to carry specified running loads representative of a high speed civil transport wing. Static tension testing at both room and an elevated temperature of 350 F and fatigue testing at room temperature were conducted to determine strength capacity, fatigue life, and failure modes. Static tension test results yielded failure loads above the design loads for the room temperature tests, confirming the ability of the joint concepts tested to carry their design loads. However, strength reductions as large as 30% were observed at the elevated test temperature, where all failure loads were below the room temperature design loads for the specific joint designs tested. Fatigue testing resulted in lower than predicted fatigue lives.

  10. Engine System Loads Development for the Fastrac 60K Flight Engine

    NASA Technical Reports Server (NTRS)

    Frady, Greg; Christensen, Eric R.; Mims, Katherine; Harris, Don; Parks, Russell; Brunty, Joseph

    2000-01-01

    Early implementation of structural dynamics finite element analyses for calculation of design loads is considered common design practice for high volume manufacturing industries such as automotive and aeronautical industries. However, with the rarity of rocket engine development programs starts, these tools are relatively new to the design of rocket engines. In the new Fastrac engine program, the focus has been to reduce the cost to weight ratio; current structural dynamics analysis practices were tailored in order to meet both production and structural design goals. Perturbation of rocket engine design parameters resulted in a number of Fastrac load cycles necessary to characterize the impact due to mass and stiffness changes. Evolution of loads and load extraction methodologies, parametric considerations and a discussion of load path sensitivities are discussed.

  11. An assessment of alternative fuel cell designs for residential and commercial cogeneration

    NASA Technical Reports Server (NTRS)

    Wakefield, R. A.

    1980-01-01

    A comparative assessment of three fuel cell systems for application in different buildings and geographic locations is presented. The study was performed at the NASA Lewis Center and comprised the fuel cell design, performance in different conditions, and the economic parameters. Applications in multifamily housing, stores and hospitals were considered, with a load of 10kW-1 MW. Designs were traced through system sizing, simulation/evaluation, and reliability analysis, and a computer simulation based on a fourth-order representation of a generalized system was performed. The cells were all phosphoric acid type cells, and were found to be incompatible with gas/electric systems and more favorable economically than the gas/electric systems in hospital uses. The methodology used provided an optimized energy-use pattern and minimized back-up system turn-on.

  12. Dietary patterns in Swedish adults; results from a national dietary survey.

    PubMed

    Ax, Erika; Warensjö Lemming, Eva; Becker, Wulf; Andersson, Agneta; Lindroos, Anna Karin; Cederholm, Tommy; Sjögren, Per; Fung, Teresa T

    2016-01-14

    Dietary patterns derived by statistical procedures is a way to identify overall dietary habits in specific populations. The aim of this study was to identify and characterise dietary patterns in Swedish adults using data from the national dietary survey Riksmaten adults 2010-11 (952 women, 788 men). Principal component analyses were used and two patterns were identified in both sexes: a healthy pattern loading positively on vegetables, fruits, fish and seafood, and vegetable oils, and negatively on refined bread and fast food, and a Swedish traditional pattern loading positively on potatoes, meat and processed meat, full-fat milk products, sweet bakery products, sweet condiments and margarine. In addition, a light-meal pattern was identified in women with positive loadings on fibre-rich bread, cheese, rice, pasta and food grain dishes, substitute products for meat and dairy products, candies and tea. The healthy pattern was positively correlated to dietary fibre (r 0·51-0·58) and n-3 (r 0·25-0·31) (all P<0·0001), and had a higher nutrient density of folate, vitamin D and Se. The Swedish traditional and the light-meal pattern were positively correlated to added sugar (r 0·20-0·25) and the Swedish traditional also to SFA (r 0·13-0·21) (all P<0·0001); both patterns were in general negatively correlated to micronutrients. Dietary pattern scores were associated with, for example, age, physical activity, education and income. In conclusion, we identified three major dietary patterns among Swedish adults. The patterns can be further used for examining the association between whole diet and health outcomes.

  13. Patterns of interactions at grade 5 classroom in learning the topic of statistics viewed from cognitive load theory

    NASA Astrophysics Data System (ADS)

    Setianingsih, R.

    2018-01-01

    The nature of interactions that occurs among teacher, students, learning sources, and learning environment creates different settings to enhance learning. Any setting created by a teacher is affected by 3 (three) types of cognitive load: intrinsic cognitive load, extraneous cognitive load, and germane cognitive load. This study is qualitative in nature, aims to analyse the patterns of interaction that are constituted in mathematics instructions by taking into account the cognitive load theory. The subjects of this study are 21 fifth-grade students who learn mathematics in small groups and whole-class interactive lessons. The data were collected through classroom observations which were videotaped, while field notes were also taken. The data analysis revealed that students engaged in productive interaction and inquiry while they were learning mathematics in small groups or in whole class setting, in which there was a different type of cognitive load that dominantly affecting the learning processes at each setting. During learning mathematics in whole class setting, the most frequently found interaction patterns were to discuss and compare solution based on self-developed models, followed by expressing opinions. This is consistent with the principles of mathematics learning, which gives students wide opportunities to construct mathematical knowledge through individual learning, learning in small groups as well as learning in whole class settings. It means that by participating in interactive learning, the students are habitually engaged in productive interactions and high level of mathematical thinking.

  14. Patterns of circulating fat-soluble vitamins and carotenoids and risk of frailty in four European cohorts of older adults.

    PubMed

    Pilleron, Sophie; Weber, Daniela; Pérès, Karine; Colpo, Marco; Gomez-Cabrero, David; Stuetz, Wolfgang; Dartigues, Jean-François; Ferrucci, Luigi; Bandinelli, Stefania; Garcia-Garcia, Francisco Jose; Grune, Tilman; Féart, Catherine

    2018-01-27

    To investigate the cross-sectional and prospective associations between patterns of serum fat-soluble micronutrients and frailty in four European cohorts of older adults 65 years of age and older. Participants from the Three-City (Bordeaux, France), AMI (Gironde, France), TSHA (Toledo, Spain) and InCHIANTI (Tuscany, Italy) cohorts with available data on serum α-carotene, β-carotene, lycopene, cryptoxanthin, lutein + zeaxanthin, retinol, α-tocopherol, γ-tocopherol and 25-hydroxyvitamin D3 (25(OH)D) were included. A principal component (PC) analysis was used to derive micronutrient patterns. Frailty was defined using Fried's criteria. Multivariate logistic regression models adjusted for socio-demographic and health-related covariates were performed to assess the association between micronutrient patterns and prevalent frailty in 1324 participants, and the risk of frailty in 915 initially non-frail participants. Three different patterns were identified: the first pattern was characterized by higher serum carotenoids and α-tocopherol levels; the second was characterized by high loadings for serum vitamins A and E levels and low loadings for carotenes level; the third one had the highest loading for serum 25(OH)D and cryptoxanthin level and the lowest loading for vitamin A and E. A significant cross-sectional association was only observed between the seconnd PC and prevalent frailty (p = 0.02). Compared to the highest quartile, participants in the lowest quartile-i.e., high carotenes and low vitamins E and A levels-had higher odds of frailty (Odds ratio = 2.2; 95% confidence interval 1.3-3.8). No association with the risk of frailty was observed. These findings suggest that some specific micronutrient patterns are markers but not predictors of frailty in these European cohorts of older adults.

  15. Aerosol loading impact on Asian monsoon precipitation patterns

    NASA Astrophysics Data System (ADS)

    Biondi, Riccardo; Cagnazzo, Chiara; Costabile, Francesca; Cairo, Francesco

    2017-04-01

    Solar light absorption by aerosols such as black carbon and dust assume a key role in driving the precipitation patterns in the Indian subcontinent. The aerosols stack up against the foothills of the Himalayas in the pre-monsoon season and several studies have already demonstrated that this can cause precipitation anomalies during summer. Despite its great significance in climate change studies, the link between absorbing aerosols loading and precipitation patterns remains highly uncertain. The main challenge for this kind of studies is to find consistent and reliable datasets. Several aerosol time series are available from satellite and ground based instruments and some precipitation datasets from satellite sensors, but they all have different time/spatial resolution and they use different assumptions for estimating the parameter of interest. We have used the aerosol estimations from the Ozone Monitoring Instrument (OMI), the Along-Track Scanning Radiometer (AATSR) and the MODerate resolution Imaging Spectroradiometer (MODIS) and validated them against the Aerosol Robotic Network (AERONET) measurements in the Indian area. The precipitation has been analyzed by using the Tropical Rainfall Measuring Mission (TRMM) estimations and the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2). From our results it is evident the discrepancy between the aerosol loading on the area of interest from the OMI, AATSR, and MODIS, but even between 3 different algorithms applied to the MODIS data. This uncertainty does not allow to clearly distinguishing high aerosol loading years from low aerosol loading years except in a couple of cases where all the estimations agree. Similar issues are also present in the precipitation estimations from TRMM and MERRA-2. However, all the aerosol datasets agree in defining couples of consecutive years with a large gradient of aerosol loading. Based on this assumption we have compared the precipitation anomalies and found typical patterns characterizing different Indian regions in late summer. Analyzing the AERONET data we have also separated the black carbon and dust contribution to the total aerosol loading based on aerosol spectral optical properties for investigating the link between different aerosol types and precipitation patterns.

  16. Universal resilience patterns in cascading load model: More capacity is not always better

    NASA Astrophysics Data System (ADS)

    Wang, Jianwei; Wang, Xue; Cai, Lin; Ni, Chengzhang; Xie, Wei; Xu, Bo

    We study the problem of universal resilience patterns in complex networks against cascading failures. We revise the classical betweenness method and overcome its limitation of quantifying the load in cascading model. Considering that the generated load by all nodes should be equal to the transported one by all edges in the whole network, we propose a new method to quantify the load on an edge and construct a simple cascading model. By attacking the edge with the highest load, we show that, if the flow between two nodes is transported along the shortest paths between them, then the resilience of some networks against cascading failures inversely decreases with the enhancement of the capacity of every edge, i.e. the more capacity is not always better. We also observe the abnormal fluctuation of the additional load that exceeds the capacity of each edge. By a simple graph, we analyze the propagation of cascading failures step by step, and give a reasonable explanation of the abnormal fluctuation of cascading dynamics.

  17. Phosphorus and nitrogen fluxes carried by 21 Finnish agricultural rivers in 1985-2006.

    PubMed

    Ekholm, Petri; Rankinen, Katri; Rita, Hannu; Räike, Antti; Sjöblom, Heidi; Raateland, Arjen; Vesikko, Ljudmila; Cano Bernal, José Enrique; Taskinen, Antti

    2015-04-01

    The Finnish Agri-Environmental Programme aims to reduce nutrient load to waters. Using national monitoring data, we estimated the agricultural load (incl. natural background) of total phosphorus (TP) and total nitrogen (TN) transported by 21 Finnish rivers to the northern Baltic Sea and analysed the flow-adjusted trends in the loads and concentrations from 1985 to 2006. We also related the loads to spatial and temporal patterns in catchment and agricultural characteristics. Agricultural load of TN increased, especially in the rivers discharging into the Bothnian Bay, while the load of TP decreased in most of the rivers, except those discharging into the Archipelago Sea. The trends may partly be related to a decrease in grassed area (TP, TN) and increased mineralisation (TN), but the available data on catchment and agricultural characteristics did not fully explain the observed pattern. Our study showed that data arising from relatively infrequent monitoring may prove useful for analysing long-term trend. The mutual correlation among the explaining variables hampered the analysis of the load generating factors.

  18. The Importance of Splat Events to the Spatiotemporal Structure of Near-Bed Fluid Velocity and Bed Load Motion Over Bed Forms: Laboratory Experiments Downstream of a Backward Facing Step

    NASA Astrophysics Data System (ADS)

    Leary, K. C. P.; Schmeeckle, M. W.

    2017-12-01

    Flow separation/reattachment on the lee side of alluvial bed forms is known to produce a complex turbulence field, but the spatiotemporal details of the associated patterns of bed load sediment transported remain largely unknown. Here we report turbulence-resolving, simultaneous measurements of bed load motion and near-bed fluid velocity downstream of a backward facing step in a laboratory flume. Two synchronized high-speed video cameras simultaneously observed bed load motion and the motion of neutrally buoyant particles in a laser light sheet 6 mm above the bed at 250 frames/s downstream of a 3.8 cm backward facing step. Particle Imaging Velocimetry (PIV) and Acoustic Doppler Velocimetry (ADV) were used to characterize fluid turbulent patterns, while manual particle tracking techniques were used to characterize bed load transport. Octant analysis, conducted using ADV data, coupled with Markovian sequence probability analysis highlights differences in the flow near reattachment versus farther downstream. Near reattachment, three distinct flow patterns are apparent. Farther downstream we see the development of a dominant flow sequence. Localized, intermittent, high-magnitude transport events are more apparent near flow reattachment. These events are composed of streamwise and cross-stream fluxes of comparable magnitudes. Transport pattern and fluid velocity data are consistent with the existence of permeable "splat events," wherein a volume of fluid moves toward and impinges on the bed (sweep) causing a radial movement of fluid in all directions around the point of impingement (outward interaction). This is congruent with flow patterns, identified with octant analysis, proximal to flow reattachment.

  19. Synthesis of resistive tapers to control scattering patterns of strips

    NASA Astrophysics Data System (ADS)

    Haupt, Randy L.

    Scattering occurs when an electromagnetic wave impinges on an object and creates currents in that object which reradiate other electromagnetic waves. Three primary methods exist to reduce microwave scattering from an object: covering it with absorber, changing its shape, and detuning it through impedance loading. Absorbers convert unwanted electromagnetic energy into heat. An example is lining an anechoic chamber with absorbers. Changing its shape channels energy from one direction to another, changes dominant scattering centers, or causes returns from one direction to another, changes dominant scattering centers, or causes returns from various parts to coherently add and cancel the total return. Impedance loading alters the resonant frequency of an object. Absorbers have the most attractive features. They have a broad bandwidth, attenuate the return in many directions, and may be used to reduce scattering from an object after the object is designed. Before trying to control scattering from complex shapes, such as an antenna or airplane, one should try to develop methods to control scattering from simple objects. A very simple object is two dimensional strip. It is infinitely thin, has a finite width, and an infinite length. The scattering pattern of the strip depends upon its width and material composition. Varying these two factors provides a means for controlling the radar cross-section (RCS) of the strip. The goal of this thesis is to synthesize resistive tapers for the strip that produce desired bistatic scattering and backscattering patterns.

  20. Investigating the Interaction Pattern and Structural Elements of a Drug-Polymer Complex at the Molecular Level.

    PubMed

    Nie, Haichen; Mo, Huaping; Zhang, Mingtao; Song, Yang; Fang, Ke; Taylor, Lynne S; Li, Tonglei; Byrn, Stephen R

    2015-07-06

    Strong associations between drug and polymeric carriers are expected to contribute to higher drug loading capacities and better physical stability of amorphous solid dispersions. However, molecular details of the interaction patterns and underlying mechanisms are still unclear. In the present study, a series of amorphous solid dispersions of clofazimine (CLF), an antileprosy drug, were prepared with different polymers by applying the solvent evaporation method. When using hypromellose phthalate (HPMCP) as the carrier, the amorphous solid dispersion system exhibits not only superior drug loading capacity (63% w/w) but also color change due to strong drug-polymer association. In order to further explain these experimental observations, the interaction between CLF and HPMCP was investigated in a nonpolar volatile solvent system (chloroform) prior to forming the solid dispersion. We observed significant UV/vis and (1)H NMR spectral changes suggesting the protonation of CLF and formation of ion pairs between CLF and HPMCP in chloroform. Furthermore, nuclear Overhauser effect spectroscopy (NOESY) and diffusion order spectroscopy (DOSY) were employed to evaluate the strength of associations between drug and polymers, as well as the molecular mobility of CLF. Finally, by correlating the experimental values with quantum chemistry calculations, we demonstrate that the protonated CLF is binding to the carboxylate group of HPMCP as an ion pair and propose a possible structural model of the drug-polymer complex. Understanding the drug and carrier interaction patterns from a molecular perspective is critical for the rational design of new amorphous solid dispersions.

  1. Injuries And Footwear (Part 2): Minimalist Running Shoes.

    PubMed

    Knapik, Joseph J; Orr, Robin; Pope, Rodney; Grier, Tyson

    2016-01-01

    This article defines minimalist running shoes and examines physiological, biomechanical, and injury rate differences when running in conventional versus minimalist running shoes. A minimalist shoe is one that provides "minimal interference with the natural movement of the foot, because of its high flexibility, low heel to toe drop, weight and stack height, and the absence of motion control and stability devices." Most studies indicate that running in minimalist shoes results in a lower physiological energy cost than running in conventional shoes, likely because of the lower weight of the minimalist shoe. Most individuals running in conventional shoes impact the ground heel first (rearfoot strike pattern), whereas most people running in minimalist shoes tend to strike with the front of the foot (forefoot strike pattern). The rate at which force is developed on ground impact (i.e., the loading rate) is generally higher when running in conventional versus minimalist shoes. Findings from studies that have looked at associations between injuries and foot strike patterns or injuries and loading rates are conflicting, so it is not clear if these factors influence injury rates; more research is needed. Better-designed prospective studies indicate that bone stress injuries and the overall injury incidence are higher in minimalist shoes during the early weeks (10-12 weeks) of transition to this type of footwear. Longer-term studies are needed to define injury rates once runners are fully transitioned to minimalist shoes. At least one longer-term minimalist-shoe investigation is ongoing and, hopefully, will be published soon. 2016.

  2. The Effect of an Extreme and Prolonged Population Bottleneck on Patterns of Deleterious Variation: Insights from the Greenlandic Inuit.

    PubMed

    Pedersen, Casper-Emil T; Lohmueller, Kirk E; Grarup, Niels; Bjerregaard, Peter; Hansen, Torben; Siegismund, Hans R; Moltke, Ida; Albrechtsen, Anders

    2017-02-01

    The genetic consequences of population bottlenecks on patterns of deleterious genetic variation in human populations are of tremendous interest. Based on exome sequencing of 18 Greenlandic Inuit we show that the Inuit have undergone a severe ∼20,000-year-long bottleneck. This has led to a markedly more extreme distribution of allele frequencies than seen for any other human population tested to date, making the Inuit the perfect population for investigating the effect of a bottleneck on patterns of deleterious variation. When comparing proxies for genetic load that assume an additive effect of deleterious alleles, the Inuit show, at most, a slight increase in load compared to European, East Asian, and African populations. Specifically, we observe <4% increase in the number of derived deleterious alleles in the Inuit. In contrast, proxies for genetic load under a recessive model suggest that the Inuit have a significantly higher load (20% increase or more) compared to other less bottlenecked human populations. Forward simulations under realistic models of demography support our empirical findings, showing up to a 6% increase in the genetic load for the Inuit population across all models of dominance. Further, the Inuit population carries fewer deleterious variants than other human populations, but those that are present tend to be at higher frequency than in other populations. Overall, our results show how recent demographic history has affected patterns of deleterious variants in human populations. Copyright © 2017 by the Genetics Society of America.

  3. Gait asymmetries in unilateral symptomatic hip osteoarthritis and their association with radiographic severity and pain.

    PubMed

    Farkas, Gary J; Schlink, Bryan R; Fogg, Louis F; Foucher, Kharma C; Wimmer, Markus A; Shakoor, Najia

    2018-05-01

    Little is known about the loading patterns in unilateral hip osteoarthritis (OA) and their relationship to radiographic severity and pain. We aimed to examine the loading patterns at the hips of those with unilateral symptomatic hip OA and identify associations between radiographic severity and pain with loading alterations. Sixty-one subjects with symptomatic unilateral hip OA underwent gait analyses and evaluation for radiographic severity (Kellgren-Lawrence [KL]-grade) and pain (visual analogue scale) at bilateral hips. Hip OA subjects had greater range of motion and higher hip flexion, adduction, internal and external rotation moments at the contralateral, asymptomatic hip compared to the ipsilateral hip ( p < 0.05). Correlations were noted between increasing KL-grade and increasing asymmetry of contralateral to ipsilateral hip loading ( p < 0.05). There were no relationships with pain and loading asymmetry. Unilateral symptomatic hip OA subjects demonstrate asymmetry in loading between the hips, with relatively greater loads at the contralateral hip. These loading asymmetries were directly related to the radiographic severity of symptomatic hip OA and not with pain. Additional research is needed to determine the role of gait asymmetries in disease progression.

  4. The transfer of movement sequences: effects of decreased and increased load.

    PubMed

    Muehlbauer, Thomas; Panzer, Stefan; Shea, Charles H

    2007-06-01

    A number of recent experiments have demonstrated that a movement structure develops during the course of learning a movement sequence that provides the basis for transfer. After learning a movement sequence participants have been shown to be able to effectively produce the sequence when movement demands require that the sequence be rescaled in amplitude or produced with an unpractised set of effectors. The purpose of the present experiment was to determine whether participants, after learning a complex 16-element movement sequence with a 0.567-kg load, could also effectively produce the sequence when the load was decreased (0.0 kg) or increased (1.134 kg). The results indicated that participants were able to effectively compensate for decreased and increased load with virtually no changes in performance characteristics (displacement, velocity, acceleration, and pattern of element durations) while electromyographic (EMG) signals demonstrated that smaller (reduced load) or larger forces (increased load) were spontaneously generated to compensate for the change in load. The muscle activation patterns of the biceps and triceps as well as the level of coactivation appeared to be generally upscaled to generate and dissipate the changes in force requirement needed to compensate for the increased load.

  5. Comparison of Two Parametric Methods to Estimate Pesticide Mass Loads in California's Central Valley

    USGS Publications Warehouse

    Saleh, D.K.; Lorenz, D.L.; Domagalski, Joseph L.

    2011-01-01

    Mass loadings were calculated for four pesticides in two watersheds with different land uses in the Central Valley, California, by using two parametric models: (1) the Seasonal Wave model (SeaWave), in which a pulse signal is used to describe the annual cycle of pesticide occurrence in a stream, and (2) the Sine Wave model, in which first-order Fourier series sine and cosine terms are used to simulate seasonal mass loading patterns. The models were applied to data collected during water years 1997 through 2005. The pesticides modeled were carbaryl, diazinon, metolachlor, and molinate. Results from the two models show that the ability to capture seasonal variations in pesticide concentrations was affected by pesticide use patterns and the methods by which pesticides are transported to streams. Estimated seasonal loads compared well with results from previous studies for both models. Loads estimated by the two models did not differ significantly from each other, with the exceptions of carbaryl and molinate during the precipitation season, where loads were affected by application patterns and rainfall. However, in watersheds with variable and intermittent pesticide applications, the SeaWave model is more suitable for use on the basis of its robust capability of describing seasonal variation of pesticide concentrations. ?? 2010 American Water Resources Association. This article is a US Government work and is in the public domain in the USA.

  6. Investigation of progressive failure robustness and alternate load paths for damage tolerant structures

    NASA Astrophysics Data System (ADS)

    Marhadi, Kun Saptohartyadi

    Structural optimization for damage tolerance under various unforeseen damage scenarios is computationally challenging. It couples non-linear progressive failure analysis with sampling-based stochastic analysis of random damage. The goal of this research was to understand the relationship between alternate load paths available in a structure and its damage tolerance, and to use this information to develop computationally efficient methods for designing damage tolerant structures. Progressive failure of a redundant truss structure subjected to small random variability was investigated to identify features that correlate with robustness and predictability of the structure's progressive failure. The identified features were used to develop numerical surrogate measures that permit computationally efficient deterministic optimization to achieve robustness and predictability of progressive failure. Analysis of damage tolerance on designs with robust progressive failure indicated that robustness and predictability of progressive failure do not guarantee damage tolerance. Damage tolerance requires a structure to redistribute its load to alternate load paths. In order to investigate the load distribution characteristics that lead to damage tolerance in structures, designs with varying degrees of damage tolerance were generated using brute force stochastic optimization. A method based on principal component analysis was used to describe load distributions (alternate load paths) in the structures. Results indicate that a structure that can develop alternate paths is not necessarily damage tolerant. The alternate load paths must have a required minimum load capability. Robustness analysis of damage tolerant optimum designs indicates that designs are tailored to specified damage. A design Optimized under one damage specification can be sensitive to other damages not considered. Effectiveness of existing load path definitions and characterizations were investigated for continuum structures. A load path definition using a relative compliance change measure (U* field) was demonstrated to be the most useful measure of load path. This measure provides quantitative information on load path trajectories and qualitative information on the effectiveness of the load path. The use of the U* description of load paths in optimizing structures for effective load paths was investigated.

  7. Use of two-dimensional transmission photoelastic models to study stresses in double-lap bolted joints

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Liu, D. H.

    1981-01-01

    The stress distribution in two hole connectors in a double lap joint configuration was studied. The following steps are described: (1) fabrication of photoelastic models of double lap double hole joints designed to determine the stresses in the inner lap; (2) assessment of the effects of joint geometry on the stresses in the inner lap; and (3) quantification of differences in the stresses near the two holes. The two holes were on the centerline of the joint and the joints were loaded in tension, parallel to the centerline. Acrylic slip fit pins through the holes served as fasteners. Two dimensional transmission photoelastic models were fabricated by using transparent acrylic outer laps and a photoelastic model material for the inner laps. It is concluded that the photoelastic fringe patterns which are visible when the models are loaded are due almost entirely to stresses in the inner lap.

  8. How does spallation microdamage nucleate in bulk amorphous alloys under shock loading?

    NASA Astrophysics Data System (ADS)

    Huang, X.; Ling, Z.; Zhang, H. S.; Ma, J.; Dai, L. H.

    2011-11-01

    Specially designed plate-impact experiments have been conducted on a Zr-based amorphous alloy using a single-stage light gas gun. To understand the microdamage nucleation process in the material, the samples are subjected to dynamic tensile loadings of identical amplitude (˜ 3.18 GPa) but with different durations (83-201 ns). A cellular pattern with an equiaxed shape is observed on the spallation surface, which shows that spallation in the tested amorphous alloy is a typical ductile fracture and that microvoids have been nucleated during the process. Based on the observed fracture morphologies of the spallation surface and free-volume theory, we propose a microvoid nucleation model of bulk amorphous alloys. It is found that nucleation of microvoids at the early stage of spallation in amorphous alloys results from diffusion and coalescence of free volume, and that high mean tensile stress plays a dominant role in microvoid nucleation.

  9. Supplementing biomechanical modeling with EMG analysis

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Jagodnik, Kathleen; Crentsil, Lawton; Humphreys, Bradley; Funk, Justin; Gallo, Christopher; Thompson, William; DeWitt, John; Perusek, Gail

    2016-01-01

    It is well established that astronauts experience musculoskeletal deconditioning when exposed to microgravity environments for long periods of time. Spaceflight exercise is used to counteract these effects, and the Advanced Resistive Exercise Device (ARED) on the International Space Station (ISS) has been effective in minimizing musculoskeletal losses. However, the exercise devices of the new exploration vehicles will have requirements of limited mass, power and volume. Because of these limitations, there is a concern that the exercise devices will not be as effective as ARED in maintaining astronaut performance. Therefore, biomechanical modeling is being performed to provide insight on whether the small Multi-Purpose Crew Vehicle (MPCV) device, which utilizes a single-strap design, will provide sufficient physiological loading to maintain musculoskeletal performance. Electromyography (EMG) data are used to supplement the biomechanical model results and to explore differences in muscle activation patterns during exercises using different loading configurations.

  10. Modeling a constant power load for nickel-hydrogen battery testing using SPICE

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas B.; Lollar, Louis F.; Nelms, R. M.

    1990-01-01

    The effort to design and model a constant power load for the HST (Hubble Space Telescope) nickel-hydrogen battery tests is described. The constant power load was designed for three different simulations on the batteries: life cycling, reconditioning, and capacity testing. A dc-dc boost converter was designed to act as this constant power load. A boost converter design was chosen because of the low test battery voltage (4 to 6 VDC) generated and the relatively high power requirement of 60 to 70 W. The SPICE model was shown to consistently predict variations in the actual circuit as various designs were attempted. It is concluded that the confidence established in the SPICE model of the constant power load ensures its extensive utilization in future efforts to improve performance in the actual load circuit.

  11. Center for the Built Environment: UFAD Cooling Load Design Tool

    Science.gov Websites

    Energy Publications Project Title: Underfloor Air Distribution (UFAD) Cooling Load Design Tool Providing . Webster, 2010. Development of a simplified cooling load design tool for underfloor air distribution Near-ZNE Buildings Setpoint Energy Savings Calculator UFAD Case Studies UFAD Cooling Design Tool UFAD

  12. A new approach for the delivery of artemisinin: formulation, characterization, and ex-vivo antileishmanial studies.

    PubMed

    Want, Muzamil Yaqub; Islamuddin, Mohammad; Chouhan, Garima; Dasgupta, Anjan Kumar; Chattopadhyay, Asoke Prasun; Afrin, Farhat

    2014-10-15

    Artemisinin, a potential antileishmanial compound with poor bioavailability and stability has limited efficacy in visceral leishmaniasis. Encapsulating artemisinin into poly lactic-co glycolic nanoparticles may improve its effectiveness and reduce toxicity. Artemisinin-loaded nanoparticles were prepared, optimized (using Box-Behnken design) and characterized by dynamic light scattering technique, Atomic force microscopy (AFM), Transmission electron microscopy (TEM) and Fourier Transform-Infra Red spectroscopy. Release kinetics of artemisinin from optimized nanoformulation was studied by dialysis method at pH 7.4 and 5.5. Cytotoxicity and antileishmanial activity of these nanoparticles was tested on murine macrophages by MTT assay and macrophage-infested Leishmania donovani amastigotes ex vivo, respectively. Artemisinin-loaded nanoparticles were 221±14nm in diameter, with polydispersity index, zeta potential, drug loading and entrapment efficiency of 0.1±0.015, -9.07±0.69mV, 28.03±1.14 and 68.48±1.97, respectively. AFM and TEM studies indicated that the particles were spherical in shape. These colloidal particles showed a sustained release pattern in vitro. Treatment with artemisinin-loaded nanoparticles significantly reduced the number of amastigotes per macrophage and percent infected macrophages ex vivo compared to free artemisinin. These nanoparticles were also non-toxic to macrophages compared to artemisinin alone. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Appetitive and Dietary Effects of Consuming an Energy-Dense Food (Peanuts) with or between Meals by Snackers and Nonsnackers.

    PubMed

    Devitt, A A; Kuevi, A; Coelho, S B; Lartey, A; Lokko, P; Costa, N; Bressan, J; Mattes, R D

    2011-01-01

    Background. Energy-dense foods are inconsistently implicated in elevated energy intake (EI). This may stem from other food properties and/or differences in dietary incorporation, that is, as snacks or with meals. Objective. Assess intake pattern and food properties on acute appetitive ratings (AR) and EI. Design. 201 normal and overweight adults consuming a standard lunch. Test loads of 1255.2 kJ (300 kcal) were added to the lunch or provided as snack. Loads (peanuts, snack mix, and snack mix with peanuts) were energy, macronutrient, and volumetrically matched with a lunch portion as control. Participants completed meal and snack sessions of their randomly assigned load. Results. No differences were observed in daily EI or AR for meal versus snack or treatment versus control. Consumption of peanuts as a snack tended to strengthen dietary compensation compared to peanuts or other loads with a meal. Conclusions. Inclusion of an energy-dense food as a snack or meal component had comparable influence on AR and EI. Peanuts tended to elicit stronger dietary compensation when consumed as a snack versus with a meal. If substantiated, this latter observation suggests that properties other than those controlled here (energy, macronutrient content, and volume) modify AR and EI.

  14. Characterization of interdigitated electrode piezoelectric fiber composites under high electrical and mechanical loading

    NASA Astrophysics Data System (ADS)

    Rodgers, John P.; Bent, Aaron A.; Hagood, Nesbitt W.

    1996-05-01

    The primary objective of this work is to develop a standard methodology for characterizing structural actuation systems intended for operation in high electrical and mechanical loading environments. The designed set of tests evaluates the performance of the active materials system under realistic operating conditions. The tests are also used to characterize piezoelectric fiber composites which have been developed as an alternative to monolithic piezoceramic wafers for structural actuation applications. The performance of this actuator system has been improved using an interdigitated electrode pattern, which orients the primary component of the electric field into the plane of the structure, enabling the use of the primary piezoelectric effect along the active fibers. One possible application of this technology is in the integral twist actuation of helicopter rotor blades for higher harmonic control. This application requires actuators which can withstand the harsh rotor blade operating environment. This includes large numbers of electrical and mechanical cycles with considerable centripetal and bending loads. The characterization tests include standard active material tests as well as application-driven tests which evaluate the performance of the actuators during simulated operation. Test results for several actuator configurations are provided, including S2 glass- reinforced and E-glass laminated actuators. The study concludes that the interdigitated electrode piezoelectric fiber composite actuator has great potential for high loading applications.

  15. A research on motion design for APP's loading pages based on time perception

    NASA Astrophysics Data System (ADS)

    Cao, Huai; Hu, Xiaoyun

    2018-04-01

    Due to restrictions caused by objective reasons like network bandwidth, hardware performance and etc., waiting is still an inevitable phenomenon that appears in our using mobile-terminal products. Relevant researches show that users' feelings in a waiting scenario can affect their evaluations on the whole product and services the product provides. With the development of user experience and inter-facial design subjects, the role of motion effect in the interface design has attracted more and more scholars' attention. In the current studies, the research theory of motion design in a waiting scenario is imperfect. This article will use the basic theory and experimental research methods of cognitive psychology to explore the motion design's impact on user's time perception when users are waiting for loading APP pages. Firstly, the article analyzes the factors that affect waiting experience of loading APP pages based on the theory of time perception, and then discusses motion design's impact on the level of time-perception when loading pages and its design strategy. Moreover, by the operation analysis of existing loading motion designs, the article classifies the existing loading motions and designs an experiment to verify the impact of different types of motions on the user's time perception. The result shows that the waiting time perception of mobile's terminals' APPs is related to the loading motion types, the combination type of loading motions can effectively shorten the waiting time perception as it scores a higher mean value in the length of time perception.

  16. Designing divertor targets for uniform power load

    NASA Astrophysics Data System (ADS)

    Dekeyser, W.; Reiter, D.; Baelmans, M.

    2015-08-01

    Divertor design for next step fusion reactors heavily relies on 2D edge plasma modeling with codes as e.g. B2-EIRENE. While these codes are typically used in a design-by-analysis approach, in previous work we have shown that divertor design can alternatively be posed as a mathematical optimization problem, and solved very efficiently using adjoint methods adapted from computational aerodynamics. This approach has been applied successfully to divertor target shape design for more uniform power load. In this paper, the concept is further extended to include all contributions to the target power load, with particular focus on radiation. In a simplified test problem, we show the potential benefits of fully including the radiation load in the design cycle as compared to only assessing this load in a post-processing step.

  17. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Thomas D.; Johns Hopkins University School of Medicine, Baltimore, MD 21205; Lyubimov, Artem Y.

    A highly X-ray-transparent, silicon nitride-based device has been designed and fabricated to harvest protein microcrystals for high-resolution X-ray diffraction data collection using microfocus beamlines and XFELs. Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming themore » challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  18. The design of optimal electric power demand management contracts

    NASA Astrophysics Data System (ADS)

    Fahrioglu, Murat

    1999-11-01

    Our society derives a quantifiable benefit from electric power. In particular, forced outages or blackouts have enormous consequences on society, one of which is loss of economic surplus. Electric utilities try to provide reliable supply of electric power to their customers. Maximum customer benefit derives from minimum cost and sufficient supply availability. Customers willing to share in "availability risk" can derive further benefit by participating in controlled outage programs. Specifically, whenever utilities foresee dangerous loading patterns, there is a need for a rapid reduction in demand either system-wide or at specific locations. The utility needs to get relief in order to solve its problems quickly and efficiently. This relief can come from customers who agree to curtail their loads upon request in exchange for an incentive fee. This thesis shows how utilities can get efficient load relief while maximizing their economic benefit. This work also shows how estimated customer cost functions can be calibrated, using existing utility data, to help in designing efficient demand management contracts. In order to design such contracts, optimal mechanism design is adopted from "Game Theory" and applied to the interaction between a utility and its customers. The idea behind mechanism design is to design an incentive structure that encourages customers to sign up for the right contract and reveal their true value of power. If a utility has demand management contracts with customers at critical locations, most operational problems can be solved efficiently. This thesis illustrates how locational attributes of customers incorporated into demand management contract design can have a significant impact in solving system problems. This kind of demand management contracts can also be used by an Independent System Operator (ISO). During times of congestion a loss of economic surplus occurs. When the market is too slow or cannot help relieve congestion, demand management can help solve the problem. Another tool the ISO requires for security purposes is reserves. Even though demand management contracts may not be a good substitute for spinning reserves, they are adequate to augment or replace supplemental and backup reserves.

  19. Oceans of Data: In what ways can learning research inform the development of electronic interfaces and tools for use by students accessing large scientific databases?

    NASA Astrophysics Data System (ADS)

    Krumhansl, R. A.; Foster, J.; Peach, C. L.; Busey, A.; Baker, I.

    2012-12-01

    The practice of science and engineering is being revolutionized by the development of cyberinfrastructure for accessing near real-time and archived observatory data. Large cyberinfrastructure projects have the potential to transform the way science is taught in high school classrooms, making enormous quantities of scientific data available, giving students opportunities to analyze and draw conclusions from many kinds of complex data, and providing students with experiences using state-of-the-art resources and techniques for scientific investigations. However, online interfaces to scientific data are built by scientists for scientists, and their design can significantly impede broad use by novices. Knowledge relevant to the design of student interfaces to complex scientific databases is broadly dispersed among disciplines ranging from cognitive science to computer science and cartography and is not easily accessible to designers of educational interfaces. To inform efforts at bridging scientific cyberinfrastructure to the high school classroom, Education Development Center, Inc. and the Scripps Institution of Oceanography conducted an NSF-funded 2-year interdisciplinary review of literature and expert opinion pertinent to making interfaces to large scientific databases accessible to and usable by precollege learners and their teachers. Project findings are grounded in the fundamentals of Cognitive Load Theory, Visual Perception, Schemata formation and Universal Design for Learning. The Knowledge Status Report (KSR) presents cross-cutting and visualization-specific guidelines that highlight how interface design features can address/ ameliorate challenges novice high school students face as they navigate complex databases to find data, and construct and look for patterns in maps, graphs, animations and other data visualizations. The guidelines present ways to make scientific databases more broadly accessible by: 1) adjusting the cognitive load imposed by the user interface and visualizations so that it doesn't exceed the amount of information the learner can actively process; 2) drawing attention to important features and patterns; and 3) enabling customization of visualizations and tools to meet the needs of diverse learners.

  20. Engine System Loads Analysis Compared to Hot-Fire Data

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Jennings, John M.; Mims, Katherine; Brunty, Joseph; Christensen, Eric R.; McConnaughey, Paul R. (Technical Monitor)

    2002-01-01

    Early implementation of structural dynamics finite element analyses for calculation of design loads is considered common design practice for high volume manufacturing industries such as automotive and aeronautical industries. However with the rarity of rocket engine development programs starts, these tools are relatively new to the design of rocket engines. In the NASA MC-1 engine program, the focus was to reduce the cost-to-weight ratio. The techniques for structural dynamics analysis practices, were tailored in this program to meet both production and structural design goals. Perturbation of rocket engine design parameters resulted in a number of MC-1 load cycles necessary to characterize the impact due to mass and stiffness changes. Evolution of loads and load extraction methodologies, parametric considerations and a discussion of load path sensitivities are important during the design and integration of a new engine system. During the final stages of development, it is important to verify the results of an engine system model to determine the validity of the results. During the final stages of the MC-1 program, hot-fire test results were obtained and compared to the structural design loads calculated by the engine system model. These comparisons are presented in this paper.

  1. Three-Dimensional Biomechanical Analysis of Rearfoot and Forefoot Running

    PubMed Central

    Knorz, Sebastian; Kluge, Felix; Gelse, Kolja; Schulz-Drost, Stefan; Hotfiel, Thilo; Lochmann, Matthias; Eskofier, Björn; Krinner, Sebastian

    2017-01-01

    Background: In the running community, a forefoot strike (FFS) pattern is increasingly preferred compared with a rearfoot strike (RFS) pattern. However, it has not been fully understood which strike pattern may better reduce adverse joint forces within the different joints of the lower extremity. Purpose: To analyze the 3-dimensional (3D) stress pattern in the ankle, knee, and hip joint in runners with either a FFS or RFS pattern. Study Design: Descriptive laboratory study. Methods: In 22 runners (11 habitual rearfoot strikers, 11 habitual forefoot strikers), RFS and FFS patterns were compared at 3.0 m/s (6.7 mph) on a treadmill with integrated force plates and a 3D motion capture analysis system. This combined analysis allowed characterization of the 3D biomechanical forces differentiated for the ankle, knee, and hip joint. The maximum peak force (MPF) and maximum loading rate (LR) were determined in their 3 ordinal components: vertical, anterior-posterior (AP), and medial-lateral (ML). Results: For both strike patterns, the vertical components of the MPF and LR were significantly greater than their AP or ML components. In the vertical axis, FFS was generally associated with a greater MPF but significantly lower LR in all 3 joints. The AP components of MPF and LR were significantly lower for FFS in the knee joint but significantly greater in the ankle and hip joints. The ML components of MPF and LR tended to be greater for FFS but mostly did not reach a level of significance. Conclusion: FFS and RFS were associated with different 3D stress patterns in the ankle, knee, and hip joint, although there was no global advantage of one strike pattern over the other. The multimodal individual assessment for the different anatomic regions demonstrated that FFS seems favorable for patients with unstable knee joints in the AP axis and RFS may be recommended for runners with unstable ankle joints. Clinical Relevance: Different strike patterns show different 3D stress in joints of the lower extremity. Due to either rehabilitation after injuries or training in running sports, rearfoot or forefoot running should be preferred to prevent further damage or injuries caused by inadequate biomechanical load. Runners with a history of knee joint injuries may benefit from FFS whereas RFS may be favorable for runners with a history of ankle joint injuries. PMID:28812039

  2. Structural qualification testing and operational loading on a fiberglass rotor blade for the Mod-OA wind turbine

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.

    1983-01-01

    Fatigue tests were performed on full- and half-scale root end sections, first to qualify the root retention design, and second to induce failure. Test methodology and results are presented. Two operational blades were proof tested to design limit load to ascertain buckling resistance. Measurements of natural frequency, damping ratio, and deflection under load made on the operational blades are documented. The tests showed that all structural design requirements were met or exceeded. Blade loads measured during 3000 hr of field operation were close to those expected. The measured loads validated the loads used in the fatigue tests and gave high confidence in the ability of the blades to achieve design life.

  3. Load Distribution Factors for Composite Multicell Box Girder Bridges

    NASA Astrophysics Data System (ADS)

    Tiwari, Sanjay; Bhargava, Pradeep

    2017-12-01

    Cellular steel section composite with a concrete deck is one of the most suitable superstructures in resisting torsional and warping effects induced by highway loading. This type of structure has inherently created new design problems for engineers in estimating its load distribution when subjected to moving vehicles. Indian Codes of Practice does not provide any specific guidelines for the design of straight composite concrete deck-steel multi-cell bridges. To meet the practical requirements arising during the design process, a simple design method is needed for straight composite multi-cell bridges in the form of load distribution factors for moment and shear. This work presents load distribution characteristics of straight composite multi-cell box girder bridges under IRC trains of loads.

  4. The effect of fatigue cracks on fastener flexibility, load distribution, and fatigue crack growth

    NASA Astrophysics Data System (ADS)

    Whitman, Zachary Layne

    Fatigue cracks typically occur at stress risers such as geometry changes and holes. This type of failure has serious safety and economic repercussions affecting structures such as aircraft. The need to prevent catastrophic failure due to fatigue cracks and other discontinuities has led to durability and damage tolerant methodologies influencing the design of aircraft structures. Holes in a plate or sheet filled with a fastener are common fatigue critical locations in aircraft structure requiring damage tolerance analysis (DTA). Often, the fastener is transferring load which leads to a loading condition involving both far-field stresses such as tension and bending, and localized bearing at the hole. The difference between the bearing stress and the tensile field at the hole is known as load transfer. The ratio of load transfer as well as the magnitude of the stresses plays a significant part in how quickly a crack will progress to failure. Unfortunately, the determination of load transfer in a complex joint is far from trivial. Many methods exist in the open literature regarding the analysis of splices, doublers and attachment joints to determine individual fastener loads. These methods work well for static analyses but greater refinement is needed for crack growth analysis. The first fastener in a splice or joint is typically the most critical but different fastener flexibility equations will all give different results. The constraint of the fastener head and shop end, along with the type of fastener, affects the stiffness or flexibility of the fastener. This in turn will determine the load that the fastener will transfer within a given fastener pattern. However, current methods do not account for the change in flexibility at a fastener as the crack develops. It is put forth that a crack does indeed reduce the stiffness of a fastener by changing its constraint, thus lessening the load transfer. A crack growth analysis utilizing reduced load transfer will result in a slower growing crack versus an analysis that ignores the effect.

  5. Nitrate Removal Rates in Denitrifying Bioreactors During Storm Flows

    NASA Astrophysics Data System (ADS)

    Pluer, W.; Walter, T.

    2017-12-01

    Field denitrifying bioreactors are designed to reduce excess nitrate (NO3-) pollution in runoff from agricultural fields. Field bioreactors saturate organic matter to create conditions that facilitate microbial denitrification. Prior studies using steady flow in lab-scale bioreactors showed that a hydraulic retention time (HRT) between 4 and 10 hours was optimal for reducing NO3- loads. However, during storm-induced events, flow rate and actual HRT fluctuate. These fluctuations have the potential to disrupt the system in significant ways that are not captured by the idealized steady-flow HRT models. The goal of this study was to investigate removal rate during dynamic storm flows of variable rates and durations. Our results indicate that storm peak flow and duration were not significant controlling variables. Instead, we found high correlations (p=0.004) in average removal rates between bioreactors displaying a predominantly uniform flow pattern compared with bioreactors that exhibited preferential flow (24.4 and 21.4 g N m-3 d-1, respectively). This suggests that the internal flow patterns are a more significant driver of removal rate than external factors of the storm hydrograph. Designing for flow patterns in addition to theoretical HRT will facilitate complete mixing within the bioreactors. This will help maximize excess NO3- removal during large storm-induced runoff events.

  6. Split torque transmission load sharing

    NASA Technical Reports Server (NTRS)

    Krantz, T. L.; Rashidi, M.; Kish, J. G.

    1992-01-01

    Split torque transmissions are attractive alternatives to conventional planetary designs for helicopter transmissions. The split torque designs can offer lighter weight and fewer parts but have not been used extensively for lack of experience, especially with obtaining proper load sharing. Two split torque designs that use different load sharing methods have been studied. Precise indexing and alignment of the geartrain to produce acceptable load sharing has been demonstrated. An elastomeric torque splitter that has large torsional compliance and damping produces even better load sharing while reducing dynamic transmission error and noise. However, the elastomeric torque splitter as now configured is not capable over the full range of operating conditions of a fielded system. A thrust balancing load sharing device was evaluated. Friction forces that oppose the motion of the balance mechanism are significant. A static analysis suggests increasing the helix angle of the input pinion of the thrust balancing design. Also, dynamic analysis of this design predicts good load sharing and significant torsional response to accumulative pitch errors of the gears.

  7. Fastener Design Manual

    NASA Technical Reports Server (NTRS)

    Barrett, Richard T.

    1990-01-01

    This manual was written for design engineers to enable them to choose appropriate fasteners for their designs. Subject matter includes fastener material selection, platings, lubricants, corrosion, locking methods, washers, inserts, thread types and classes, fatigue loading, and fastener torque. A section on design criteria covers the derivation of torque formulas, loads on a fastener group, combining simultaneous shear and tension loads, pullout load for tapped holes, grip length, head styles, and fastener strengths. The second half of this manual presents general guidelines and selection criteria for rivets and lockbolts.

  8. Contrasting visual working memory for verbal and non-verbal material with multivariate analysis of fMRI

    PubMed Central

    Habeck, Christian; Rakitin, Brian; Steffener, Jason; Stern, Yaakov

    2012-01-01

    We performed a delayed-item-recognition task to investigate the neural substrates of non-verbal visual working memory with event-related fMRI (‘Shape task’). 25 young subjects (mean age: 24.0 years; STD=3.8 years) were instructed to study a list of either 1,2 or 3 unnamable nonsense line drawings for 3 seconds (‘stimulus phase’ or STIM). Subsequently, the screen went blank for 7 seconds (‘retention phase’ or RET), and then displayed a probe stimulus for 3 seconds in which subject indicated with a differential button press whether the probe was contained in the studied shape-array or not (‘probe phase’ or PROBE). Ordinal Trend Canonical Variates Analysis (Habeck et al., 2005a) was performed to identify spatial covariance patterns that showed a monotonic increase in expression with memory load during all task phases. Reliable load-related patterns were identified in the stimulus and retention phase (p<0.01), while no significant pattern could be discerned during the probe phase. Spatial covariance patterns that were obtained from an earlier version of this task (Habeck et al., 2005b) using 1, 3, or 6 letters (‘Letter task’) were also prospectively applied to their corresponding task phases in the current non-verbal task version. Interestingly, subject expression of covariance patterns from both verbal and non-verbal retention phases correlated positively in the non-verbal task for all memory loads (p<0.0001). Both patterns also involved similar frontoparietal brain regions that were increasing in activity with memory load, and mediofrontal and temporal regions that were decreasing. Mean subject expression of both patterns across memory load during retention also correlated positively with recognition accuracy (dL) in the Shape task (p<0.005). These findings point to similarities in the neural substrates of verbal and non-verbal rehearsal processes. Encoding processes, on the other hand, are critically dependent on the to-be-remembered material, and seem to necessitate material-specific neural substrates. PMID:22652306

  9. Radiation pattern of a borehole radar antenna

    USGS Publications Warehouse

    Ellefsen, K.J.; Wright, D.L.

    2002-01-01

    To understand better how a borehole antenna radiates radar waves into a formation, this phenomenon is simulated numerically using the finite-difference, time-domain method. The simulations are of two different antenna models that include features like a driving point fed by a coaxial cable, resistive loading of the antenna, and a water-filled borehole. For each model, traces are calculated in the far-field region, and then, from these traces, radiation patterns are calculated. The radiation patterns show that the amplitude of the radar wave is strongly affected by its frequency, its propagation direction, and the resistive loading of the antenna.

  10. Innovative design of composite structures: Design, manufacturing, and testing of plates utilizing curvilinear fiber trajectories

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Rust, R. J.; Waters, W. A., Jr.

    1994-01-01

    As a means of improving structural design, the concept of fabricating flat plates containing holes by incorporating curvilinear fiber trajectories to transmit loads around the hole is studied. In the present discussion this concept is viewed from a structural level, where access holes, windows, doors, and other openings are of significant size. This is opposed to holes sized for mechanical fasteners. Instead of cutting the important load-bearing fibers at the hole edge, as a conventional straightline design does, the curvilinear design preserves the load-bearing fibers by orienting them in smooth trajectories around the holes, their loading not ending abruptly at the hole edge. Though the concept of curvilinear fiber trajectories has been studied before, attempts to manufacture and test such plates have been limited. This report describes a cooperative effort between Cincinnati Milacron Inc., NASA Langley Research Center, and Virginia Polytechnic Institute and State University to design, manufacture, and test plates using the curvilinear fiber trajectory concept. The paper discusses details of the plate design, details of the manufacturing, and a summary of results from testing the plates with inplane compressive buckling loads and tensile loads. Comparisons between the curvilinear and conventional straightline fiber designs based on measurements and observation are made. Failure modes, failure loads, strains, deflections, and other key responses are compared.

  11. Influence of Training Load and Altitude on HRV Fatigue Patterns in Elite Nordic Skiers.

    PubMed

    Schmitt, Laurent; Regnard, Jacques; Coulmy, Nicolas; Millet, Gregoire P

    2018-06-14

    We aimed to analyse the relationship between training load/intensity and different heart rate variability (HRV) fatigue patterns in 57 elite Nordic-skiers. 1063 HRV tests were performed during 5 years. R-R intervals were recorded in resting supine (SU) and standing (ST) positions. Heart rate, low (LF), high (HF) frequency powers of HRV were determined. Training volume, training load (TL, a.u.) according to ventilatory threshold 1 (VT1) and VT2 were measured in zones I≤VT1; VT1VT2, IV for strength. TL was performed at 81.6±3.5% in zone I, 0.9±0.9% in zone II, 5.0±3.6% in zone III, 11.6±6.3% in zone IV. 172 HRV tests matched a fatigue state and four HRV fatigue patterns (F) were statistically characterized as F(HF-LF-)SU_ST for 121 tests, F(LF+SULF-ST) for 18 tests, F(HF-SUHF+ST) for 26 tests and F(HF+SU) for 7 tests. The occurrence of fatigue states increased substantially with the part of altitude training time (r2=0.52, p<0.001). This study evidenced that there is no causal relationship between training load/intensity and HRV fatigue patterns. Four fatigue-shifted HRV patterns were sorted. Altitude training periods appeared critical as they are likely to increase the overreaching risks. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Trunk coordination in healthy and chronic nonspecific low back pain subjects during repetitive flexion-extension tasks: Effects of movement asymmetry, velocity and load.

    PubMed

    Mokhtarinia, Hamid Reza; Sanjari, Mohammad Ali; Chehrehrazi, Mahshid; Kahrizi, Sedigheh; Parnianpour, Mohamad

    2016-02-01

    Multiple joint interactions are critical to produce stable coordinated movements and can be influenced by low back pain and task conditions. Inter-segmental coordination pattern and variability were assessed in subjects with and without chronic nonspecific low back pain (CNSLBP). Kinematic data were collected from 22 CNSLBP and 22 healthy volunteers during repeated trunk flexion-extension in various conditions of symmetry, velocity, and loading; each at two levels. Sagittal plane angular data were time normalized and used to calculate continuous relative phase for each data point. Mean absolute relative phase (MARP) and deviation phase (DP) were derived to quantify lumbar-pelvis and pelvis-thigh coordination patterns and variability. Statistical analysis revealed more in-phase coordination pattern in CNSLBP (p=0.005). There was less adaptation in the DP for the CNSLBP group, as shown by interactions of Group by Load (p=.008) and Group by Symmetry by Velocity (p=.03) for the DP of pelvis-thigh and lumbar-pelvis couplings, respectively. Asymmetric (p<0.001) and loaded (p=0.04) conditions caused less in-phase coordination. Coordination variability was higher during asymmetric and low velocity conditions (p<0.001). In conclusion, coordination pattern and variability could be influenced by trunk flexion-extension conditions. CNSLBP subjects demonstrated less adaptability of movement pattern to the demands of the flexion-extension task. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Computation of spanwise distribution of circulation and lift coefficient for flapped wings of arbitrary planform

    NASA Technical Reports Server (NTRS)

    Razak, K.

    1980-01-01

    The question of the effect of distribution and magnitude of spanwise circulation and shed vorticity from an airplane wing on the distribution pattern of agricultural products distributed from an airplane was studied. The first step in an analysis of this question is the determination of the actual distribution of lift along an airplane wing, from which the pattern of shed vorticity can be determined. A procedure is developed to calculate the span loading for flapped and unflapped wings of arbitrary aspect ratio and taper ratio. The procedure was programmed on a small programmable calculator, the Hewlett Packard HP-97, and also was programmed in BASIC language. They could be used to explore the variations in span loading that can be secured by variable flap deflections or the effect of flying at varying air speeds at different airplane gross weights. Either an absolute evaluation of span loading can be secured or comparative span loading can be evaluated to determine their effect on swath width and swath distribution pattern. The programs are intended to assist the user in evaluating the effect of a given spanload distribution.

  14. Genotype patterns at PICALM, CR1, BIN1, CLU, and APOE genes are associated with episodic memory

    PubMed Central

    Barral, S.; Bird, T.; Goate, A.; Farlow, M.R.; Diaz-Arrastia, R.; Bennett, D.A.; Graff-Radford, N.; Boeve, B.F.; Sweet, R.A.; Stern, Y.; Wilson, R.S.; Foroud, T.; Ott, J.; Green, Robert; Kowall, Neil; Farrer, Lindsay; Williamson, Jennifer; Santana, Vincent; Schmechel, Donald; Gaskel, Peter; Ghetti, Bernardino; Farlow, Martin R.; Faber, Kelley; Prentice, Heather; Horner, Kelly; Growdon, John H.; Blacker, Deborah; Tanzi, Rudolph E.; Hyman, Bradley T.; Boeve, Bradley; Kuntz, Karen; Norgaard, Lindsay; Larson, Nathan; Kistler, Dana; Parfitt, Francine; Haddow, Jenny; Silverman, Jeremy; Beeri, Michal Schnaider; Sano, Mary; Wang, Joy; Lally, Rachel; Johnson, Nancy; Mesulam, Marcel; Weintraub, Sandra; Bigio, Eileen; Kaye, Jeffery; Kramer, Patricia; Payne-Murphy, Jessica; Bennett, David; Jacobs, Holli; Chang, Jeen-Soo; Arends, Danielle; Harrell, Lindy; Bartzokis, George; Cummings, Jeffery; Lu, Po H.; Toland, Usha; Smith, Charles; Brickhouse, Alise; Trojanowski, John; Van Deerlin, Vivianna; McCarty Wood, Elisabeth; DeKosky, Steven; Sweet, Robert; Weamer, Elise; Chui, Helena; Varpetian, Arousiak; Diaz-Arrastia, Ramon; Rosenberg, Roger; Davis, Barbara; Bird, Thomas; Schellenberg, Gerard D.; Raskind, Murray; Rumbaugh, Malia; Nickel, Kate; Goate, Alison; Morris, John; Norton, Joanne; Levitch, Denise; Grant, Betsy; Coats, Mary; Levey, Allen; Rosen, Ami; Anosike, Ezinna

    2012-01-01

    Objective: Several genome-wide association studies (GWAS) have associated variants in late-onset Alzheimer disease (LOAD) susceptibility genes; however, these single nucleotide polymorphisms (SNPs) have very modest effects, suggesting that single SNP approaches may be inadequate to identify genetic risks. An alternative approach is the use of multilocus genotype patterns (MLGPs) that combine SNPs at different susceptibility genes. Methods: Using data from 1,365 subjects in the National Institute on Aging Late-Onset Alzheimer's Disease Family Study, we conducted a family-based association study in which we tabulated MLGPs for SNPs at CR1, BIN1, CLU, PICALM, and APOE. We used generalized estimating equations to model episodic memory as the dependent endophenotype of LOAD and the MLGPs as predictors while adjusting for sex, age, and education. Results: Several genotype patterns influenced episodic memory performance. A pattern that included PICALM and CLU was the strongest genotypic profile for lower memory performance (β = −0.32, SE = 0.19, p = 0.021). The effect was stronger after addition of APOE (p = 0.016). Two additional patterns involving PICALM, CR1, and APOE and another pattern involving PICALM, BIN1, and APOE were also associated with significantly poorer memory performance (β = −0.44, SE = 0.09, p = 0.009 and β = −0.29, SE = 0.07, p = 0.012) even after exclusion of patients with LOAD. We also identified genotype pattern involving variants in PICALM, CLU, and APOE as a predictor of better memory performance (β = 0.26, SE = 0.10, p = 0.010). Conclusions: MLGPs provide an alternative analytical approach to predict an individual's genetic risk for episodic memory performance, a surrogate indicator of LOAD. Identifying genotypic patterns contributing to the decline of an individual's cognitive performance may be a critical step along the road to preclinical detection of Alzheimer disease. PMID:22539578

  15. Load and resistance factor design of drilled shafts in shale for lateral loading.

    DOT National Transportation Integrated Search

    2014-04-01

    A research project involving 32 drilled shaft load tests was undertaken to establish LRFD procedures for : design of drilled shafts subjected to lateral loads. Tests were performed at two Missouri Department of : Transportation (MoDOT) geotechnical r...

  16. Design criteria for portable timber bridge systems : static versus dynamic loads

    Treesearch

    John M. Franklin; S. E. Taylor; Paul A. Morgan; M. A. Ritter

    1999-01-01

    Design criteria are needed specifically for portable bridges to insure that they are safe and cost effective. This paper discusses different portable bridge categories and their general design criteria. Specific emphasis is given to quantifying the effects of dynamic live loads on portable bridge design. Results from static and dynamic load tests of two portable timber...

  17. Minimum depth of soil cover above long-span soil-steel railway bridges

    NASA Astrophysics Data System (ADS)

    Esmaeili, Morteza; Zakeri, Jabbar Ali; Abdulrazagh, Parisa Haji

    2013-12-01

    Recently, soil-steel bridges have become more commonly used as railway-highway crossings because of their economical advantages and short construction period compared with traditional bridges. The currently developed formula for determining the minimum depth of covers by existing codes is typically based on vehicle loads and non-stiffened panels and takes into consideration the geometrical shape of the metal structure to avoid the failure of soil cover above a soil-steel bridge. The effects of spans larger than 8 m or more stiffened panels due to railway loads that maintain a safe railway track have not been accounted for in the minimum cover formulas and are the subject of this paper. For this study, two-dimensional finite element (FE) analyses of four low-profile arches and four box culverts with spans larger than 8 m were performed to develop new patterns for the minimum depth of soil cover by considering the serviceability criterion of the railway track. Using the least-squares method, new formulas were then developed for low-profile arches and box culverts and were compared with Canadian Highway Bridge Design Code formulas. Finally, a series of three-dimensional (3D) finite element FE analyses were carried out to control the out-of-plane buckling in the steel plates due to the 3D pattern of train loads. The results show that the out-of-plane bending does not control the buckling behavior of the steel plates, so the proposed equations for minimum depth of cover can be appropriately used for practical purposes.

  18. A comparative biomechanical analysis of habitually unshod and shod runners based on a foot morphological difference.

    PubMed

    Mei, Qichang; Fernandez, Justin; Fu, Weijie; Feng, Neng; Gu, Yaodong

    2015-08-01

    Running is one of the most accessible physical activities and running with and without footwear has attracted extensive attention in the past several years. In this study 18 habitually male unshod runners and 20 habitually male shod runners (all with dominant right feet) participated in a running test. A Vicon motion analysis system was used to capture the kinematics of each participant's lower limb. The in-shoe plantar pressure measurement system was employed to measure the pressure and force exerted on the pressure sensors of the insole. The function of a separate hallux in unshod runners is analyzed through the comparison of plantar pressure parameters. Owing to the different strike patterns in shod and unshod runners, peak dorsiflexion and plantarflexion angle were significantly different. Habitually shod runners exhibited a decreased foot strike angle (FSA) under unshod conditions; and the vertical average loading rate (VALR) of shod runners under unshod conditions was larger than that under shod conditions. This suggests that the foot strike pattern is more important than the shod or unshod running style and runners need to acquire the technique. It can be concluded that for habitually unshod runners the separate hallux takes part of the foot loading and reduces loading to the forefoot under shod conditions. The remaining toes of rearfoot strike (RFS) runners function similarly under unshod conditions. These morphological features of shod and unshod runners should be considered in footwear design to improve sport performance and reduce injury. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Limiter Observations during W7-X First Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurden, Glen Anthony; Biedermann, C.; Effenberg, F.

    During the first operational phase (referred to as OP1.1) of the new Wendelstein 7-X (W7-X) stellarator, five poloidal graphite limiters were mounted on the inboard side of the vacuum vessel, one in each of the five toroidal modules which form the W7-X vacuum vessel. Each limiter consisted of nine specially shaped graphite tiles, designed to conform to the last closed field line geometry in the bean-shaped section of the standard OP1.1 magnetic field configuration (Sunn Pedersen et al 2015 Nucl. Fusion 55 126001). Here, we observed the limiters with multiple infrared and visible camera systems, as well as filtered photomultipliers.more » Power loads are calculated from infrared (IR) temperature measurements using THEODOR, and heating patterns (dual stripes) compare well with field line mapping and EMC3-EIRENE predictions. While the poloidal symmetry of the heat loads was excellent, the toroidal heating pattern showed up to a factor of 2× variation, with peak heat loads on Limiter 1. The total power intercepted by the limiters was up to ~60% of the input ECRH heating power. Calorimetry using bulk tile heating (measured via post-shot IR thermography) on Limiter 3 showed a difference between short high power discharges, and longer lower power ones, with regards to the fraction of energy deposited on the limiters. Finally, fast heating transients, with frequency >1 kHz were detected, and their visibility was enhanced by the presence of surface coatings which developed on the limiters by the end of the campaign.« less

  20. Identification and risk estimation of movement strategies during cutting maneuvers.

    PubMed

    David, Sina; Komnik, Igor; Peters, Markus; Funken, Johannes; Potthast, Wolfgang

    2017-12-01

    Approximately 70% of anterior cruciate ligament (ACL) injuries occur in non-contact situations during cutting and landing maneuvers. Parameters such as footstrike patterns and trunk orientation were found to influence ACL relevant knee loading, however, the relationship between the whole body movement and injury risk is debated. This study identifies whole body movement strategies that increase injury risk, and provides training recommendations to reduce this risk or enable a save return to sports after injury. Experimental cross-sectional study design. Three dimensional movement analysis was carried out to investigate 50 participants performing anticipated 90° cutting maneuvers. To identify and characterize movement strategies, footstrike pattern, knee valgus moment, knee internal rotation moment, angle of attack, shoulder and pelvis axis were analyzed using statistical parametric mapping. Three different movement strategies were identified. One strategy included rearfoot striking in combination with a relatively upright body position which generated higher knee joint loads than the second strategy, forefoot striking in combination with more backwards leaning and pre-rotation of the trunk towards the new movement direction. A third strategy combined forefoot striking with less preorientation which increased the ACL relevant knee joint load compared to the second strategy. The identified movement strategies clearly pre-determine the injury risk during non-contact situations with the third strategy as the most unfavorable one. Compared to the study of isolated parameters, the analysis of the whole body movement allowed for detailed separation of more risky from less risky cutting strategies. These results give practical recommendations for the prevention of ACL injury. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  1. Limiter Observations during W7-X First Plasmas

    DOE PAGES

    Wurden, Glen Anthony; Biedermann, C.; Effenberg, F.; ...

    2017-04-03

    During the first operational phase (referred to as OP1.1) of the new Wendelstein 7-X (W7-X) stellarator, five poloidal graphite limiters were mounted on the inboard side of the vacuum vessel, one in each of the five toroidal modules which form the W7-X vacuum vessel. Each limiter consisted of nine specially shaped graphite tiles, designed to conform to the last closed field line geometry in the bean-shaped section of the standard OP1.1 magnetic field configuration (Sunn Pedersen et al 2015 Nucl. Fusion 55 126001). Here, we observed the limiters with multiple infrared and visible camera systems, as well as filtered photomultipliers.more » Power loads are calculated from infrared (IR) temperature measurements using THEODOR, and heating patterns (dual stripes) compare well with field line mapping and EMC3-EIRENE predictions. While the poloidal symmetry of the heat loads was excellent, the toroidal heating pattern showed up to a factor of 2× variation, with peak heat loads on Limiter 1. The total power intercepted by the limiters was up to ~60% of the input ECRH heating power. Calorimetry using bulk tile heating (measured via post-shot IR thermography) on Limiter 3 showed a difference between short high power discharges, and longer lower power ones, with regards to the fraction of energy deposited on the limiters. Finally, fast heating transients, with frequency >1 kHz were detected, and their visibility was enhanced by the presence of surface coatings which developed on the limiters by the end of the campaign.« less

  2. The mechanical response of a polyetheretherketone femoral knee implant under a deep squatting loading condition.

    PubMed

    de Ruiter, Lennert; Janssen, Dennis; Briscoe, Adam; Verdonschot, Nico

    2017-12-01

    The current study was designed to investigate the mechanical response of a polyetheretherketone-on-polyethylene total knee replacement device during a deep squat. Application of this high-demand loading condition can identify weaknesses of the polyetheretherketone relative to cobalt-chromium. This study investigated whether the implant is strong enough for this type of loading, whether cement stresses are considerably changed and whether a polyetheretherketone femoral component is likely to lead to reduced periprosthetic bone loss as compared to a cobalt-chromium component. A finite element model of a total knee arthroplasty subjected to a deep squat loading condition, which was previously published, was adapted with an alternative total knee arthroplasty design made of either polyetheretherketone or cobalt-chromium. The maximum tensile and compressive stresses within the implant and cement mantle were analysed against their yield and fatigue stress levels. The amount of stress shielding within the bone was compared between the polyetheretherketone and cobalt-chromium cases. Relative to its material strength, tensile peak stresses were higher in the cobalt-chromium implant; compressive peak stresses were higher in the polyetheretherketone implant. The stress patterns differed substantially between polyetheretherketone and cobalt-chromium. The tensile stresses in the cement mantle supporting the polyetheretherketone implant were up to 33% lower than with the cobalt-chromium component, but twice as high for compression. Stress shielding was reduced to a median of 1% for the polyetheretherketone implant versus 56% for the cobalt-chromium implant. Both the polyetheretherketone implant and the underlying cement mantle should be able to cope with the stress levels present during a deep squat. Relative to the cobalt-chromium component, stress shielding of the periprosthetic femur was substantially less with a polyetheretherketone femoral component.

  3. Strategy for chemotherapeutic delivery using a nanosized porous metal-organic framework with a central composite design

    PubMed Central

    Li, Yingpeng; Li, Xiuyan; Guan, Qingxia; Zhang, Chunjing; Xu, Ting; Dong, Yujing; Bai, Xinyu; Zhang, Weiping

    2017-01-01

    Background Enhancing drug delivery is an ongoing endeavor in pharmaceutics, especially when the efficacy of chemotherapy for cancer is concerned. In this study, we prepared and evaluated nanosized HKUST-1 (nanoHKUST-1), nanosized metal-organic drug delivery framework, loaded with 5-fluorouracil (5-FU) for potential use in cancer treatment. Materials and methods NanoHKUST-1 was prepared by reacting copper (II) acetate [Cu(OAc)2] and benzene-1,3,5-tricarboxylic acid (H3BTC) with benzoic acid (C6H5COOH) at room temperature (23.7°C±2.4°C). A central composite design was used to optimize 5-FU-loaded nanoHKUST-1. Contact time, ethanol concentration, and 5-FU:material ratios were the independent variables, and the entrapment efficiency of 5-FU was the response parameter measured. Powder X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption were used to determine the morphology of nanoHKUST-1. In addition, 5-FU release studies were conducted, and the in vitro cytotoxicity was evaluated. Results Entrapment efficiency and drug loading were 9.96% and 40.22%, respectively, while the small-angle X-ray diffraction patterns confirmed a regular porous structure. The SEM and TEM images of the nanoHKUST-1 confirmed the presence of round particles (diameter: approximately 100 nm) and regular polygon arrays of mesoporous channels of approximately 2–5 nm. The half-maximal lethal concentration (LC50) of the 5-FU-loaded nanoHKUST-1 was approximately 10 µg/mL. Conclusion The results indicated that nanoHKUST-1 is a potential vector worth developing as a cancer chemotherapeutic drug delivery system. PMID:28260892

  4. Strategy for chemotherapeutic delivery using a nanosized porous metal-organic framework with a central composite design.

    PubMed

    Li, Yingpeng; Li, Xiuyan; Guan, Qingxia; Zhang, Chunjing; Xu, Ting; Dong, Yujing; Bai, Xinyu; Zhang, Weiping

    2017-01-01

    Enhancing drug delivery is an ongoing endeavor in pharmaceutics, especially when the efficacy of chemotherapy for cancer is concerned. In this study, we prepared and evaluated nanosized HKUST-1 (nanoHKUST-1), nanosized metal-organic drug delivery framework, loaded with 5-fluorouracil (5-FU) for potential use in cancer treatment. NanoHKUST-1 was prepared by reacting copper (II) acetate [Cu(OAc) 2 ] and benzene-1,3,5-tricarboxylic acid (H 3 BTC) with benzoic acid (C 6 H 5 COOH) at room temperature (23.7°C±2.4°C). A central composite design was used to optimize 5-FU-loaded nanoHKUST-1. Contact time, ethanol concentration, and 5-FU:material ratios were the independent variables, and the entrapment efficiency of 5-FU was the response parameter measured. Powder X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption were used to determine the morphology of nanoHKUST-1. In addition, 5-FU release studies were conducted, and the in vitro cytotoxicity was evaluated. Entrapment efficiency and drug loading were 9.96% and 40.22%, respectively, while the small-angle X-ray diffraction patterns confirmed a regular porous structure. The SEM and TEM images of the nanoHKUST-1 confirmed the presence of round particles (diameter: approximately 100 nm) and regular polygon arrays of mesoporous channels of approximately 2-5 nm. The half-maximal lethal concentration (LC 50 ) of the 5-FU-loaded nanoHKUST-1 was approximately 10 µg/mL. The results indicated that nanoHKUST-1 is a potential vector worth developing as a cancer chemotherapeutic drug delivery system.

  5. Population-based learning of load balancing policies for a distributed computer system

    NASA Technical Reports Server (NTRS)

    Mehra, Pankaj; Wah, Benjamin W.

    1993-01-01

    Effective load-balancing policies use dynamic resource information to schedule tasks in a distributed computer system. We present a novel method for automatically learning such policies. At each site in our system, we use a comparator neural network to predict the relative speedup of an incoming task using only the resource-utilization patterns obtained prior to the task's arrival. Outputs of these comparator networks are broadcast periodically over the distributed system, and the resource schedulers at each site use these values to determine the best site for executing an incoming task. The delays incurred in propagating workload information and tasks from one site to another, as well as the dynamic and unpredictable nature of workloads in multiprogrammed multiprocessors, may cause the workload pattern at the time of execution to differ from patterns prevailing at the times of load-index computation and decision making. Our load-balancing policy accommodates this uncertainty by using certain tunable parameters. We present a population-based machine-learning algorithm that adjusts these parameters in order to achieve high average speedups with respect to local execution. Our results show that our load-balancing policy, when combined with the comparator neural network for workload characterization, is effective in exploiting idle resources in a distributed computer system.

  6. Creation of an Aeronautical Capstone Design Project Program at Ohio State University

    DTIC Science & Technology

    2014-12-08

    Equation 12 below. As Figure 35 shows, a single adhesively bonded lap joint is considered. The epoxy only sees a load in the axial direction. In...lap joint [1] = = ( ) 12 =stress distribution factor = applied load in the axial direction ...Figure 11. The joints are designed to handle the bending loads of horizontal, vertical and angled deployment and are designed to directly load the carbon

  7. Aircraft Survivability: Rotorcraft Survivability. Summer 2010

    DTIC Science & Technology

    2010-01-01

    Loading of the shafts was conducted using two techniques. The first tech- nique applied a torsion load up to the design limit load after the article...show the ballistic impact and impact damage. Figure 11 shows a 45-degree shaft failure, a common failure type, when loaded to design limit after...SUMMER 2010 ROTORCRAFT Survivability STUDY ON ROTORCRAFT SURVIVABILITY V-22 INTEGRATED SURVIVABILITY DESIGN CH-53K HEAVY LIFT HELICOPTER 9 20 25

  8. Thoracolumbar spine model with articulated ribcage for the prediction of dynamic spinal loading.

    PubMed

    Ignasiak, Dominika; Dendorfer, Sebastian; Ferguson, Stephen J

    2016-04-11

    Musculoskeletal modeling offers an invaluable insight into the spine biomechanics. A better understanding of thoracic spine kinetics is essential for understanding disease processes and developing new prevention and treatment methods. Current models of the thoracic region are not designed for segmental load estimation, or do not include the complex construct of the ribcage, despite its potentially important role in load transmission. In this paper, we describe a numerical musculoskeletal model of the thoracolumbar spine with articulated ribcage, modeled as a system of individual vertebral segments, elastic elements and thoracic muscles, based on a previously established lumbar spine model and data from the literature. The inverse dynamics simulations of the model allow the prediction of spinal loading as well as costal joints kinetics and kinematics. The intradiscal pressure predicted by the model correlated well (R(2)=0.89) with reported intradiscal pressure measurements, providing a first validation of the model. The inclusion of the ribcage did not affect segmental force predictions when the thoracic spine did not perform motion. During thoracic motion tasks, the ribcage had an important influence on the predicted compressive forces and muscle activation patterns. The compressive forces were reduced by up to 32%, or distributed more evenly between thoracic vertebrae, when compared to the predictions of the model without ribcage, for mild thoracic flexion and hyperextension tasks, respectively. The presented musculoskeletal model provides a tool for investigating thoracic spine loading and load sharing between vertebral column and ribcage during dynamic activities. Further validation for specific applications is still necessary. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Quantitative and qualitative characteristics of grey water for reuse requirements and treatment alternatives: the case of Jordan.

    PubMed

    Ghunmi, Lina Abu; Zeeman, Grietje; van Lier, Jules; Fayyed, Manar

    2008-01-01

    The objective of this work is to assess the potentials and requirements for grey water reuse in Jordan. The results revealed that urban, rural and dormitory grey water production rate and concentration of TS, BOD(5), COD and pathogens varied between 18-66 L cap(-1)d(-1), 848-1,919, 200-1,056, and 560-2,568 mg L(-1) and 6.9E2-2.7E5 CFU mL(-1), respectively. The grey water compromises 64 to 85% of the total water flow in the rural and urban areas. Storing grey water is inevitable to meet reuse requirements in terms of volume and timing. All the studied grey waters need treatment, in terms of solids, BOD(5), COD and pathogens, before storage and reuse. Storage and physical treatment, as a pretreatment step should be avoided, since it produces unstable effluents and non-stabilized sludge. However, extensive biological treatment can combine storage and physical treatments. Furthermore, a batch-fed biological treatment system combining anaerobic and aerobic processes copes with the fluctuations in the hydrographs and pollutographs as well as the present nutrients. The inorganic content of grey water in Jordan is about drinking water quality and does not need treatment. Moreover, the grey water SAR values were 3-7, revealing that the concentrations of monovalent and divalent cations comply with agricultural demand in Jordan. The observed patterns in the hydrographs and pollutographs showed that the hydraulic load could be used for the design of both physical and biological treatment units for dormitories and hotels. For family houses the hydraulic load was identified as the key design parameter for physical treatment units and the organic load is the key design parameter for biological treatment units. Copyright IWA Publishing 2008.

  10. Development and statistical optimization of nefopam hydrochloride loaded nanospheres for neuropathic pain using Box-Behnken design.

    PubMed

    Sukhbir, S; Yashpal, S; Sandeep, A

    2016-09-01

    Nefopam hydrochloride (NFH) is a non-opioid centrally acting analgesic drug used to treat chronic condition such as neuropathic pain. In current research, sustained release nefopam hydrochloride loaded nanospheres (NFH-NS) were auspiciously synthesized using binary mixture of eudragit RL 100 and RS 100 with sorbitan monooleate as surfactant by quasi solvent diffusion technique and optimized by 3 5 Box-Behnken designs to evaluate the effects of process and formulation variables. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetric (DSC) and X-ray diffraction (XRD) affirmed absence of drug-polymer incompatibility and confirmed formation of nanospheres. Desirability function scrutinized by design-expert software for optimized formulation was 0.920. Optimized batch of NFH-NS had mean particle size 328.36 nm ± 2.23, % entrapment efficiency (% EE) 84.97 ± 1.23, % process yield 83.60 ± 1.31 and % drug loading (% DL) 21.41 ± 0.89. Dynamic light scattering (DLS), zeta potential analysis and scanning electron microscopy (SEM) validated size, charge and shape of nanospheres, respectively. In-vitro drug release study revealed biphasic release pattern from optimized nanospheres. Korsmeyer Peppas found excellent kinetics model with release exponent less than 0.45. Chronic constricted injury (CCI) model of optimized NFH-NS in Wistar rats produced significant difference in neuropathic pain behavior ( p  < 0.05) as compared to free NFH over 10 h indicating sustained action. Long term and accelerated stability testing of optimized NFH-NS revealed degradation rate constant 1.695 × 10 -4 and shelf-life 621 days at 25 ± 2 °C/60% ± 5% RH.

  11. Modulation of release kinetics by plasma polymerization of ampicillin-loaded β-TCP ceramics

    NASA Astrophysics Data System (ADS)

    Labay, C.; Buxadera-Palomero, J.; Avilés, M.; Canal, C.; Ginebra, M. P.

    2016-08-01

    Beta-tricalcium phosphate (β-TCP) bioceramics are employed in bone repair surgery. Their local implantation in bone defects puts them in the limelight as potential materials for local drug delivery. However, obtaining suitable release patterns fitting the required therapeutics is a challenge. Here, plasma polymerization of ampicillin-loaded β-TCP is studied for the design of a novel antibiotic delivery system. Polyethylene glycol-like (PEG-like) coating of β-TCP by low pressure plasma polymerization was performed using diglyme as precursor, and nanometric PEG-like layers were obtained by simple and double plasma polymerization processes. A significant increase in hydrophobicity, and the presence of plasma polymer was visible on the surface by SEM and quantified by XPS. As a main consequence of the plasma polymerisation, the release kinetics were successfully modified, avoiding burst release, and slowing down the initial rate of release leading to a 4.5 h delay in reaching the same antibiotic release percentage, whilst conservation of the activity of the antibiotic was simultaneously maintained. Thus, plasma polymerisation on the surface of bioceramics may be a good strategy to design controlled drug delivery matrices for local bone therapies.

  12. Load research manual. Volume 2: Fundamentals of implementing load research procedures

    NASA Astrophysics Data System (ADS)

    1980-11-01

    This manual will assist electric utilities and state regulatory authorities in investigating customer electricity demand as part of cost-of-service studies, rate design, marketing research, system design, load forecasting, rate reform analysis, and load management research. Load research procedures are described in detail. Research programs at three utilities are compared: Carolina Power and Light Company, Long Island Lighting Company, and Southern California Edison Company. A load research bibliography and glossaries of load research and statistical terms are also included.

  13. SSME alternate turbopump (pump section) axial load analysis

    NASA Technical Reports Server (NTRS)

    Crease, G. A.; Rosello, A., Jr.; Fetfatsidis, A. K.

    1989-01-01

    A flow balancing computer program constructed to calculate the axial loads on the Space Shuttle Main Engine (SSME) alternate turbopumps (ATs) pump sections are described. The loads are used in turn to determine load balancing piston design requirements. The application of the program to the inlet section, inducer/impeller/stage, bearings, seals, labyrinth, damper, piston, face and corner, and stationary/rotating surfaces is indicated. Design analysis results are reported which show that the balancing piston's designs are adequate and that performance and life will not be degraded by the turbopump's axial load characteristics.

  14. 24 CFR 3285.315 - Special snow load conditions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Foundations § 3285.315 Special snow load conditions. (a) General. Foundations for homes designed for and located in areas with roof live loads greater than 40 psf must be designed by the manufacturer for the special snow load...

  15. On Wind Forces in the Forest-Edge Region During Extreme-Gust Passages and Their Implications for Damage Patterns

    NASA Astrophysics Data System (ADS)

    Gromke, Christof; Ruck, Bodo

    2018-03-01

    A damage pattern that is occasionally found after a period of strong winds shows an area of damaged trees inside a forest stand behind an intact stripe of trees directly at the windward edge. In an effort to understand the mechanism leading to this damage pattern, wind loading in the forest-edge region during passages of extreme gusts with different characteristics are investigated using a scaled forest model in the wind tunnel. The interaction of a transient extreme gust with the stationary atmospheric boundary layer (ABL) as a background flow at the forest edge leads to the formation of a vortex at the top of the canopy. This vortex intensifies when travelling downstream and subsequently deflects high-momentum air from above the canopy downwards resulting in increased wind loading on the tree crowns. Under such conditions, the decrease in wind loading in the streamwise direction can be relatively weak compared to stationary ABL approach flows. The resistance of trees with streamwise distance from the forest edge, however, is the result of adaptive growth to wind loading under stationary flow conditions and shows a rapid decline within two to three tree heights behind the windward edge. For some of the extreme gusts realized, an exceedance of the wind loading over the resistance of the trees is found at approximately three tree heights behind the forest edge, suggesting that the damage pattern described above can be caused by the interaction of a transient extreme gust with the stationary ABL flow.

  16. Foot loading characteristics during three fencing-specific movements.

    PubMed

    Trautmann, Caroline; Martinelli, Nicolo; Rosenbaum, Dieter

    2011-12-01

    Plantar pressure characteristics during fencing movements may provide more specific information about the influence of foot loading on overload injury patterns. Twenty-nine experienced fencers participated in the study. Three fencing-specific movements (lunge, advance, retreat) and normal running were performed with three different shoe models: Ballestra (Nike, USA), Adistar Fencing Lo (Adidas, Germany), and the fencers' own shoes. The Pedar system (Novel, Munich, Germany) was used to collect plantar pressures at 50 Hz. Peak pressures, force-time integrals and contact times for five foot regions were compared between four athletic tasks in the lunge leg and supporting leg. Plantar pressure analysis revealed characteristic pressure distribution patterns for the fencing movements. For the lunge leg, during the lunge and advance movements the heel is predominantly loaded; during retreat, it is the hallux. For the supporting leg, during the lunge and advance movements the forefoot is predominantly loaded; during retreat, it is the hallux. Fencing-specific movements load the plantar surface in a distinct way compared with running. An effective cushioning in the heel and hallux region would help to minimize foot loading during fencing-specific movements.

  17. Simplified Design Method for Tension Fasteners

    NASA Astrophysics Data System (ADS)

    Olmstead, Jim; Barker, Paul; Vandersluis, Jonathan

    2012-07-01

    Tension fastened joints design has traditionally been an iterative tradeoff between separation and strength requirements. This paper presents equations for the maximum external load that a fastened joint can support and the optimal preload to achieve this load. The equations, based on linear joint theory, account for separation and strength safety factors and variations in joint geometry, materials, preload, load-plane factor and thermal loading. The strength-normalized versions of the equations are applicable to any fastener and can be plotted to create a "Fastener Design Space", FDS. Any combination of preload and tension that falls within the FDS represents a safe joint design. The equation for the FDS apex represents the optimal preload and load capacity of a set of joints. The method can be used for preliminary design or to evaluate multiple pre-existing joints.

  18. Innovated Conceptual Design of Loading Unloading Tool for Livestock at the Port

    NASA Astrophysics Data System (ADS)

    Mustakim, Achmad; Hadi, Firmanto

    2018-03-01

    The condition of loading and unloading process of livestock in a number of Indonesian ports doesn’t meet the principle of animal welfare, which makes cattle lose weight and injury when unloaded. Livestock loading and unloading is done by throwing cattle into the sea one by one, tying cattle hung with a sling strap and push the cattle to the berth directly. This process is against PP. 82 year 2000 on Article 47 and 55 about animal welfare. Innovation of loading and unloading tools design offered are loading and unloading design with garbarata. In the design of loading and unloading tools with garbarata, apply the concept of semi-horizontal hydraulic ladder that connects the ship and truck directly. This livestock unloading equipment design innovation is a combination of fire extinguisher truck design and bridge equipped with weightlifting equipment. In 10 years of planning garbarata, requires a total cost of IDR 321,142,921; gets benefits IDR 923,352,333; and BCR (Benefit-Cost Ratio) Value worth 2.88. BCR value >1 means the tool is feasible applied. The designs of this loading and unloading tools are estimated up to 1 hour faster than existing way. It can also minimize risks such as injury and also weight reduction livestock agencies significantly.

  19. Derivation of Design Loads and Random Vibration specifications for Spacecraft Instruments and Sub-Units

    NASA Astrophysics Data System (ADS)

    Fransen, S.; Yamawaki, T.; Akagi, H.; Eggens, M.; van Baren, C.

    2014-06-01

    After a first estimation based on statistics, the design loads for instruments are generally estimated by coupled spacecraft/instrument sine analysis once an FE-model of the spacecraft is available. When the design loads for the instrument have been derived, the next step in the process is to estimate the random vibration environment at the instrument base and to compute the RMS load at the centre of gravity of the instrument by means of vibro-acoustic analysis. Finally the design loads of the light-weight sub-units of the instrument can be estimated through random vibration analysis at instrument level, taking into account the notches required to protect the instrument interfaces in the hard- mounted random vibration test. This paper presents the aforementioned steps of instrument and sub-units loads derivation in the preliminary design phase of the spacecraft and identifies the problems that may be encountered in terms of design load consistency between low-frequency and high-frequency environments. The SpicA FAR-infrared Instrument (SAFARI) which is currently developed for the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) will be used as a guiding example.

  20. Passive Orbital Disconnect Strut (PODS 3) structural test program

    NASA Technical Reports Server (NTRS)

    Parmley, R. T.

    1985-01-01

    A passive orbital disconnect strut (PODS-3) was analyzed structurally and thermally. Development tests on a graphite/epoxy orbit tube and S glass epoxy launch tube provided the needed data to finalize the design. A detailed assembly procedure was prepared. One strut was fabricated. Shorting loads in both the axial and lateral direction (vs. load angle and location) were measured. The strut was taken to design limit loads at both ambient and 78 K (cold end only). One million fatigue cycles were performed at predicted STS loads (half in tension, half in compression) with the cold end at 78 K. The fatigue test was repeated at design limit loads. Six struts were then fabricated and tested as a system. Axial loads, side loads, and simulated asymmetric loads due to temperature gradients around the vacuum shell were applied. Shorting loads were measured for all tests.

  1. Virtual Genomes in Flux: An Interplay of Neutrality and Adaptability Explains Genome Expansion and Streamlining

    PubMed Central

    Cuypers, Thomas D.; Hogeweg, Paulien

    2012-01-01

    The picture that emerges from phylogenetic gene content reconstructions is that genomes evolve in a dynamic pattern of rapid expansion and gradual streamlining. Ancestral organisms have been estimated to possess remarkably rich gene complements, although gene loss is a driving force in subsequent lineage adaptation and diversification. Here, we study genome dynamics in a model of virtual cells evolving to maintain homeostasis. We observe a pattern of an initial rapid expansion of the genome and a prolonged phase of mutational load reduction. Generally, load reduction is achieved by the deletion of redundant genes, generating a streamlining pattern. Load reduction can also occur as a result of the generation of highly neutral genomic regions. These regions can expand and contract in a neutral fashion. Our study suggests that genome expansion and streamlining are generic patterns of evolving systems. We propose that the complex genotype to phenotype mapping in virtual cells as well as in their biological counterparts drives genome size dynamics, due to an emerging interplay between adaptation, neutrality, and evolvability. PMID:22234601

  2. Watershed-based sources of polycyclic aromatic hydrocarbons in urban storm water.

    PubMed

    Stein, Eric D; Tiefenthaler, Liesl L; Schiff, Kenneth

    2006-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic and mutagenic compounds, ubiquitous in the air and water of urban environments, and have been shown to accumulate in coastal estuarine and marine sediments. Although previous studies have documented concentrations and loads of PAHs in urban runoff, little is known about the sources and temporal patterns of PAH loading from storm water. This study characterized the sources and temporal patterns of PAHs in urban storm water by analyzing PAH concentrations and loads from a range of homogeneous land use sites and in-river mass emission sites throughout the greater Los Angeles, California, USA, region. Samples were collected at 30- to 60-min intervals over the course of a storm during multiple storm events over a four-year period in order to investigate PAH sources and inter- and intrastorm patterns in loading. Polycyclic aromatic hydrocarbon storm fluxes ranged from 1.3 g/km2 for the largely undeveloped Arroyo Sequit watershed to 223.7 g/km2 for the highly urbanized Verdugo Wash watershed, with average storm fluxes being 46 times higher in developed versus undeveloped watersheds. Early-season storms repeatedly produced substantially higher loads than comparably sized late-season storms. Within individual storms, PAHs exhibited a moderate first flush with between 30 and 60% of the total PAH load being discharged in the first 20% of the storm volume. The relative distribution of individual PAHs demonstrated a consistent predominance of high-molecular-weight compounds indicative of pyrogenic sources.

  3. Validation of Simplified Load Equations Through Loads Measurement and Modeling of a Small Horizontal-Axis Wind Turbine Tower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dana, Scott; Van Dam, Jeroen J; Damiani, Rick R

    As part of an ongoing effort to improve the modeling and prediction of small wind turbine dynamics, the National Renewable Energy Laboratory (NREL) tested a small horizontal-axis wind turbine in the field at the National Wind Technology Center. The test turbine was a 2.1-kW downwind machine mounted on an 18-m multi-section fiberglass composite tower. The tower was instrumented and monitored for approximately 6 months. The collected data were analyzed to assess the turbine and tower loads and further validate the simplified loads equations from the International Electrotechnical Commission (IEC) 61400-2 design standards. Field-measured loads were also compared to the outputmore » of an aeroelastic model of the turbine. In particular, we compared fatigue loads as measured in the field, predicted by the aeroelastic model, and calculated using the simplified design equations. Ultimate loads at the tower base were assessed using both the simplified design equations and the aeroelastic model output. The simplified design equations in IEC 61400-2 do not accurately model fatigue loads and a discussion about the simplified design equations is discussed.« less

  4. Comprehensive experimental and numerical analysis of instability phenomena in pump turbines

    NASA Astrophysics Data System (ADS)

    Gentner, Ch; Sallaberger, M.; Widmer, Ch; Bobach, B.-J.; Jaberg, H.; Schiffer, J.; Senn, F.; Guggenberger, M.

    2014-03-01

    The changes in the electricity market have led to changed requirements for the operation of pump turbines. Utilities need to change fast and frequently between pumping and generating modes and increasingly want to operate at off-design conditions for extended periods. Operation of the units in instable areas of the machine characteristic is not acceptable and may lead to self-excited vibration of the hydraulic system. In turbine operation of pump turbines unstable behaviour can occur at low load off-design operation close to runaway conditions (S-shape of the turbine characteristic). This type of instability may impede the synchronization of the machine in turbine mode and thus increase start-up and switch over times. A pronounced S-shaped instability can also lead to significant drop of discharge in the event of load rejection. Low pressure on the suction side and in the tail-race tunnel could cause dangerous separation of the water column. Understanding the flow features that lead to the instable behaviour of pump turbines is a prerequisite to the design of machines that can fulfil the growing requirements relating to operational flexibility. Flow simulation in these instability zones is demanding due to the complex and highly unsteady flow patterns. Only unsteady simulation methods are able to reproduce the governing physical effects in these operating regions. ANDRITZ HYDRO has been investigating the stability behaviour of pump turbines in turbine operation in cooperation with several universities using simulation and measurements. In order to validate the results of flow simulation of unstable operating points, the Graz University of Technology (Austria) performed detailed experimental investigations. Within the scope of a long term research project, the operating characteristics of several pump turbine runners have been measured and flow patterns in the pump turbine at speed no load and runaway have been examined by 2D Laser particle image velocimetry (PIV). For several wicket gate positions, the flow fields in the vane-less space at runner inlet observed in the experiment are compared with the results of unsteady CFD flow simulations. Physical phenomena are visualized and insight to flow phenomena is given. Analyses using both results of simulation and measurement allow deriving a consistent explanation of the fluid mechanical mechanisms leading to the S-shaped instability of pump turbines.

  5. Wettability Patterning for Enhanced Dropwise Condensation

    NASA Astrophysics Data System (ADS)

    Ghosh, Aritra; Ganguly, Ranjan; Megaridis, Constantine

    2014-11-01

    Dropwise condensation (DwC), in order to be sustainable, requires removal of the condensate droplets. This removal is frequently facilitated by gravity. The rate of DwC heat transfer depends strongly on the maximum departing droplet diameter. Based on wettability patterning, we present a facile technique designed to control the maximum droplet size in DwC within vapor/air atmospheres, and demonstrate how this approach can be used to enhance the corresponding heat transfer rate. We examine various hydrophilic-superhydrophilic patterns, which, respectively sustain DwC and filmwise (FwC) condensation on the substrate. The fabrication method does notemploy any hydrophobizing agent. By juxtaposing parallel lines of hydrophilic (CA ~ 78°) and superhydrophilic (CA ~ 0°) regions on the condensing surface, we create alternating domains of DwC and FwC. The average droplet size on the DwC domain is reduced by ~ 60% compared to the theoretical maximum, which corresponds to the line width. We compare heat transfer rate between unpatternend DwC surfaces and patterned DwC surfaces. Even after sacrificing 40% of condensing area, we achieve up to 20% improvement in condensate collection rate using an interdigitated superhydrophilic pattern, inspired by the vein network of plant leaves. The bioinspired interdigitated pattern is found to outperform the straight hydrophilic-superhydrophilic pattern, particularly under higher vapor loadings in an air/vapor ambient atmosphere. NSF STTR Grant 1331817 via NBD Nano.

  6. The synergistic effects of shear stress and cyclic hydrostatic pressure modulate chondrogenic induction of human mesenchymal stem cells.

    PubMed

    Hosseini, Motahare-Sadat; Tafazzoli-Shadpour, Mohammad; Haghighipour, Nooshin; Aghdami, Naser; Goodarzi, Alireza

    2015-10-01

    In this study, we examined chondrogenic regulation of 2 types of mesenchymal stem cells seeded on the bioengineered substrate in monolayer cultures under mechanically defined conditions to mimic the in vivo microenvironment of chondrocytes within articular cartilage tissues. Human adipose-derived mesenchymal stem cells (ASCs) and bone marrow mesenchymal stem cells (BSCs) were exposed to 0.2 Pa shear stress, 3 MPa cyclic hydrostatic pressure, and combined loading with different sequences on chemically designed medical-grade silicone rubber, while no soluble growth factors were added to the culture medium. The expression levels of chondrogenic-specific genes of SOX9, aggrecan, and type II collagen (Col II) were measured. Results were compared to those of cells treated by biological growth factor. Gene expression patterns were dependent on the loading regime. Moreover, the source of mesenchymal stem cells (adipose or bone marrow) was influential in gene expression. Overall, enhanced expression of chondrogenic markers was found through application of mechanical stimuli. The response was generally found to be significantly promoted when the 2 loading regimes were superimposed. Differentiation of ASCs was shown by a modest increase in gene expression profiles. In general, BSCs expressed higher levels of chondrogenic gene expression than ASCs after 3 weeks. A greater effect on Col II and SOX9 mRNA expression was observed when combined loadings were applied. Results may be applied in determining the proper loading sequence for obtaining functional target cells in cartilage engineering applications.

  7. Patellar tendon load in different types of eccentric squats.

    PubMed

    Frohm, A; Halvorsen, K; Thorstensson, A

    2007-07-01

    Differences in mechanical loading of the patellar tendon have been suggested as a reason for varying effects in rehabilitation of patellar tendinopathy using different eccentric squat exercises and devices. The aim was to characterize the magnitude and pattern of mechanical load at the knee and on the patellar tendon during four types of eccentric squat. Subjects performed squats with a submaximal free weight and with maximal effort in a device for eccentric overloading (Bromsman), on a decline board and horizontal surface. Kinematics was recorded with a motion-capture system, reaction forces with force plates, and electromyography from three leg muscles with surface electrodes. Inverse dynamics was used to calculate knee joint kinetics. Eccentric work, mean and peak patellar tendon force, and angle at peak force were greater (25-30%) for squats on decline board compared to horizontal surface with free weight, but not in Bromsman. Higher knee load forces (60-80%), but not work, were observed with Bromsman than free weight. Angular excursions at the knee and ankle were larger with decline board, particularly with free weight, and smaller in Bromsman than with free weight. Mean electromyography was greater on a decline board for gastrocnemius (13%) and vastus medialis (6%) with free weight, but in Bromsman only for gastrocnemius (7%). The results demonstrated clear differences in the biomechanical loading on the knee during different squat exercises. Quantification of such differences provides information that could be used to explain differences in rehabilitation effects as well as in designing more optimal rehabilitation exercises for patellar tendinopathy.

  8. Structural biomechanics of the craniomaxillofacial skeleton under maximal masticatory loading: Inferences and critical analysis based on a validated computational model.

    PubMed

    Pakdel, Amir R; Whyne, Cari M; Fialkov, Jeffrey A

    2017-06-01

    The trend towards optimizing stabilization of the craniomaxillofacial skeleton (CMFS) with the minimum amount of fixation required to achieve union, and away from maximizing rigidity, requires a quantitative understanding of craniomaxillofacial biomechanics. This study uses computational modeling to quantify the structural biomechanics of the CMFS under maximal physiologic masticatory loading. Using an experimentally validated subject-specific finite element (FE) model of the CMFS, the patterns of stress and strain distribution as a result of physiological masticatory loading were calculated. The trajectories of the stresses were plotted to delineate compressive and tensile regimes over the entire CMFS volume. The lateral maxilla was found to be the primary vertical buttress under maximal bite force loading, with much smaller involvement of the naso-maxillary buttress. There was no evidence that the pterygo-maxillary region is a buttressing structure, counter to classical buttress theory. The stresses at the zygomatic sutures suggest that two-point fixation of zygomatic complex fractures may be sufficient for fixation under bite force loading. The current experimentally validated biomechanical FE model of the CMFS is a practical tool for in silico optimization of current practice techniques and may be used as a foundation for the development of design criteria for future technologies for the treatment of CMFS injury and disease. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. Electricity forecasting on the individual household level enhanced based on activity patterns

    PubMed Central

    Gajowniczek, Krzysztof; Ząbkowski, Tomasz

    2017-01-01

    Leveraging smart metering solutions to support energy efficiency on the individual household level poses novel research challenges in monitoring usage and providing accurate load forecasting. Forecasting electricity usage is an especially important component that can provide intelligence to smart meters. In this paper, we propose an enhanced approach for load forecasting at the household level. The impacts of residents’ daily activities and appliance usages on the power consumption of the entire household are incorporated to improve the accuracy of the forecasting model. The contributions of this paper are threefold: (1) we addressed short-term electricity load forecasting for 24 hours ahead, not on the aggregate but on the individual household level, which fits into the Residential Power Load Forecasting (RPLF) methods; (2) for the forecasting, we utilized a household specific dataset of behaviors that influence power consumption, which was derived using segmentation and sequence mining algorithms; and (3) an extensive load forecasting study using different forecasting algorithms enhanced by the household activity patterns was undertaken. PMID:28423039

  10. Electricity forecasting on the individual household level enhanced based on activity patterns.

    PubMed

    Gajowniczek, Krzysztof; Ząbkowski, Tomasz

    2017-01-01

    Leveraging smart metering solutions to support energy efficiency on the individual household level poses novel research challenges in monitoring usage and providing accurate load forecasting. Forecasting electricity usage is an especially important component that can provide intelligence to smart meters. In this paper, we propose an enhanced approach for load forecasting at the household level. The impacts of residents' daily activities and appliance usages on the power consumption of the entire household are incorporated to improve the accuracy of the forecasting model. The contributions of this paper are threefold: (1) we addressed short-term electricity load forecasting for 24 hours ahead, not on the aggregate but on the individual household level, which fits into the Residential Power Load Forecasting (RPLF) methods; (2) for the forecasting, we utilized a household specific dataset of behaviors that influence power consumption, which was derived using segmentation and sequence mining algorithms; and (3) an extensive load forecasting study using different forecasting algorithms enhanced by the household activity patterns was undertaken.

  11. Heat sink structural design concepts for a hypersonic research airplane

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.; Jackson, L. R.

    1977-01-01

    Hypersonic research aircraft design requires careful consideration of thermal stresses. This paper relates some of the problems in a heat sink structural design that can be avoided by appropriate selection of design options including material selection, design concepts, and load paths. Data on several thermal loading conditions are presented on various conventional designs including bulkheads, longerons, fittings, and frames. Results indicate that conventional designs are inadequate and that acceptable designs are possible by incorporating innovative design practices. These include nonintegral pressure compartments, ball-jointed links to distribute applied loads without restraining the thermal expansion, and material selections based on thermal compatibility.

  12. Optimization of prosthetic foot stiffness to reduce metabolic cost and intact knee loading during below-knee amputee walking: a theoretical study.

    PubMed

    Fey, Nicholas P; Klute, Glenn K; Neptune, Richard R

    2012-11-01

    Unilateral below-knee amputees develop abnormal gait characteristics that include bilateral asymmetries and an elevated metabolic cost relative to non-amputees. In addition, long-term prosthesis use has been linked to an increased prevalence of joint pain and osteoarthritis in the intact leg knee. To improve amputee mobility, prosthetic feet that utilize elastic energy storage and return (ESAR) have been designed, which perform important biomechanical functions such as providing body support and forward propulsion. However, the prescription of appropriate design characteristics (e.g., stiffness) is not well-defined since its influence on foot function and important in vivo biomechanical quantities such as metabolic cost and joint loading remain unclear. The design of feet that improve these quantities could provide considerable advancements in amputee care. Therefore, the purpose of this study was to couple design optimization with dynamic simulations of amputee walking to identify the optimal foot stiffness that minimizes metabolic cost and intact knee joint loading. A musculoskeletal model and distributed stiffness ESAR prosthetic foot model were developed to generate muscle-actuated forward dynamics simulations of amputee walking. Dynamic optimization was used to solve for the optimal muscle excitation patterns and foot stiffness profile that produced simulations that tracked experimental amputee walking data while minimizing metabolic cost and intact leg internal knee contact forces. Muscle and foot function were evaluated by calculating their contributions to the important walking subtasks of body support, forward propulsion and leg swing. The analyses showed that altering a nominal prosthetic foot stiffness distribution by stiffening the toe and mid-foot while making the ankle and heel less stiff improved ESAR foot performance by offloading the intact knee during early to mid-stance of the intact leg and reducing metabolic cost. The optimal design also provided moderate braking and body support during the first half of residual leg stance, while increasing the prosthesis contributions to forward propulsion and body support during the second half of residual leg stance. Future work will be directed at experimentally validating these results, which have important implications for future designs of prosthetic feet that could significantly improve amputee care.

  13. Design of complex bone internal structure using topology optimization with perimeter control.

    PubMed

    Park, Jaejong; Sutradhar, Alok; Shah, Jami J; Paulino, Glaucio H

    2018-03-01

    Large facial bone loss usually requires patient-specific bone implants to restore the structural integrity and functionality that also affects the appearance of each patient. Titanium alloys (e.g., Ti-6Al-4V) are typically used in the interfacial porous coatings between the implant and the surrounding bone to promote stability. There exists a property mismatch between the two that in general leads to complications such as stress-shielding. This biomechanical discrepancy is a hurdle in the design of bone replacements. To alleviate the mismatch, the internal structure of the bone replacements should match that of the bone. Topology optimization has proven to be a good technique for designing bone replacements. However, the complex internal structure of the bone is difficult to mimic using conventional topology optimization methods without additional restrictions. In this work, the complex bone internal structure is recovered using a perimeter control based topology optimization approach. By restricting the solution space by means of the perimeter, the intricate design complexity of bones can be achieved. Three different bone regions with well-known physiological loadings are selected to illustrate the method. Additionally, we found that the target perimeter value and the pattern of the initial distribution play a vital role in obtaining the natural curvatures in the bone internal structures as well as avoiding excessive island patterns. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Short-term changes in running mechanics and foot strike pattern after introduction to minimalistic footwear.

    PubMed

    Willson, John D; Bjorhus, Jordan S; Williams, D S Blaise; Butler, Robert J; Porcari, John P; Kernozek, Thomas W

    2014-01-01

    Minimalistic footwear has garnered widespread interest in the running community, based largely on the premise that the footwear may reduce certain running-related injury risk factors through adaptations in running mechanics and foot strike pattern. To examine short-term adaptations in running mechanics among runners who typically run in conventional cushioned heel running shoes as they transition to minimalistic footwear. A 2-week, prospective, observational study. A movement science laboratory. Nineteen female runners with a rear foot strike (RFS) pattern who usually train in conventional running shoes. The participants trained for 20 minutes, 3 times per week for 2 weeks by using minimalistic footwear. Three-dimensional lower extremity running mechanics were analyzed before and after this 2-week period. Hip, knee, and ankle joint kinematics at initial contact; step length; stance time; peak ankle joint moment and joint work; impact peak; vertical ground reaction force loading rate; and foot strike pattern preference were evaluated before and after the intervention. The knee flexion angle at initial contact increased 3.8° (P < .01), but the ankle and hip flexion angles at initial contact did not change after training. No changes in ankle joint kinetics or running temporospatial parameters were observed. The majority of participants (71%), before the intervention, demonstrated an RFS pattern while running in minimalistic footwear. The proportion of runners with an RFS pattern did not decrease after 2 weeks (P = .25). Those runners who chose an RFS pattern in minimalistic shoes experienced a vertical loading rate that was 3 times greater than those who chose to run with a non-RFS pattern. Few systematic changes in running mechanics were observed among participants after 2 weeks of training in minimalistic footwear. The majority of the participants continued to use an RFS pattern after training in minimalistic footwear, and these participants experienced higher vertical loading rates. Continued exposure to these greater loading rates may have detrimental effects over time. Copyright © 2014 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, X.; Yao, C.

    A prototype dual-blade stripline kicker for the APS multi-bend achromat (MBA) upgrade has been designed and developed. It was optimized with 3D CST Microwave Studio. The high voltage (HV) feedthrough and air-side connector were designed and optimized. Electromagnetic fields along the beam path, the deflecting angle, the high electric fields and their locations were calculated with 15kV differential pulse voltage applied to the kicker blades through the feedthroughs. Beam impedance and the power dissipation on different parts of the kicker and external loads were studied for a 48-bunch fill pattern. Our results show that the prototype kicker with its HVmore » feedthroughs meets the specified requirements. The results of TDR (time-domain reflectometer) test, high voltage pulse test and beam test of the prototype kicker assembly agreed with the simulations.« less

  16. Investigation of a Cross-Correlation Based Optical Strain Measurement Technique for Detecting radial Growth on a Rotating Disk

    NASA Technical Reports Server (NTRS)

    Clem, Michelle M.; Woike, Mark R.

    2013-01-01

    The Aeronautical Sciences Project under NASA`s Fundamental Aeronautics Program is extremely interested in the development of novel measurement technologies, such as optical surface measurements in the internal parts of a flow path, for in situ health monitoring of gas turbine engines. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. In the present study, a cross-correlation imaging technique is investigated in a proof-of-concept study as a possible optical technique to measure the radial growth and strain field on an already cracked sub-scale turbine engine disk under loaded conditions in the NASA Glenn Research Center`s High Precision Rotordynamics Laboratory. The optical strain measurement technique under investigation offers potential fault detection using an applied high-contrast random speckle pattern and imaging the pattern under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds induces an external load, resulting in a radial growth of the disk of approximately 50.0-im in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will be undistorted; however, during rotation the cracked region will grow radially, thus causing the applied particle pattern to be .shifted`. The resulting particle displacements between the two images will then be measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. In order to develop and validate this optical strain measurement technique an initial proof-of-concept experiment is carried out in a controlled environment. Using PIV optimization principles and guidelines, three potential speckle patterns, for future use on the rotating disk, are developed and investigated in the controlled experiment. A range of known shifts are induced on the patterns; reference and data images are acquired before and after the induced shift, respectively, and the images are processed using the cross-correlation algorithms in order to determine the particle displacements. The effectiveness of each pattern at resolving the known shift is evaluated and discussed in order to choose the most suitable pattern to be implemented onto a rotating disk in the Rotordynamics Lab. Although testing on the rotating disk has not yet been performed, the driving principles behind the development of the present optical technique are based upon critical aspects of the future experiment, such as the amount of expected radial growth, disk analysis, and experimental design and are therefore addressed in the paper.

  17. Booster Interface Loads

    NASA Technical Reports Server (NTRS)

    Gentz, Steve; Wood, Bill; Nettles, Mindy

    2015-01-01

    The interaction between shock waves and the wake shed from the forward booster/core attach hardware results in unsteady pressure fluctuations, which can lead to large buffeting loads on the vehicle. This task investigates whether computational tools can adequately predict these flows, and whether alternative booster nose shapes can reduce these loads. Results from wind tunnel tests will be used to validate the computations and provide design information for future Space Launch System (SLS) configurations. The current work combines numerical simulations with wind tunnel testing to predict buffeting loads caused by the boosters. Variations in nosecone shape, similar to the Ariane 5 design (fig. 1), are being evaluated with regard to lowering the buffet loads. The task will provide design information for the mitigation of buffet loads for SLS, along with validated simulation tools to be used to assess future SLS designs.

  18. Assessment of reliability of CAD-CAM tooth-colored implant custom abutments.

    PubMed

    Guilherme, Nuno Marques; Chung, Kwok-Hung; Flinn, Brian D; Zheng, Cheng; Raigrodski, Ariel J

    2016-08-01

    Information is lacking about the fatigue resistance of computer-aided design and computer-aided manufacturing (CAD-CAM) tooth-colored implant custom abutment materials. The purpose of this in vitro study was to investigate the reliability of different types of CAD-CAM tooth-colored implant custom abutments. Zirconia (Lava Plus), lithium disilicate (IPS e.max CAD), and resin-based composite (Lava Ultimate) abutments were fabricated using CAD-CAM technology and bonded to machined titanium-6 aluminum-4 vanadium (Ti-6Al-4V) alloy inserts for conical connection implants (NobelReplace Conical Connection RP 4.3×10 mm; Nobel Biocare). Three groups (n=19) were assessed: group ZR, CAD-CAM zirconia/Ti-6Al-4V bonded abutments; group RC, CAD-CAM resin-based composite/Ti-6Al-4V bonded abutments; and group LD, CAD-CAM lithium disilicate/Ti-6Al-4V bonded abutments. Fifty-seven implant abutments were secured to implants and embedded in autopolymerizing acrylic resin according to ISO standard 14801. Static failure load (n=5) and fatigue failure load (n=14) were tested. Weibull cumulative damage analysis was used to calculate step-stress reliability at 150-N and 200-N loads with 2-sided 90% confidence limits. Representative fractured specimens were examined using stereomicroscopy and scanning electron microscopy to observe fracture patterns. Weibull plots revealed β values of 2.59 for group ZR, 0.30 for group RC, and 0.58 for group LD, indicating a wear-out or cumulative fatigue pattern for group ZR and load as the failure accelerating factor for groups RC and LD. Fractographic observation disclosed that failures initiated in the interproximal area where the lingual tensile stresses meet the compressive facial stresses for the early failure specimens. Plastic deformation of titanium inserts with fracture was observed for zirconia abutments in fatigue resistance testing. Significantly higher reliability was found in group ZR, and no significant differences in reliability were determined between groups RC and LD. Differences were found in the failure characteristics of group ZR between static and fatigue loading. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  19. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.

    PubMed

    Wang, Peihong; Du, Hejun

    2015-07-01

    Zinc oxide (ZnO) thin film piezoelectric microelectromechanical systems (MEMS) based vibration energy harvesters with two different designs are presented. These harvesters consist of a silicon cantilever, a silicon proof mass, and a ZnO piezoelectric layer. Design I has a large ZnO piezoelectric element and Design II has two smaller and equally sized ZnO piezoelectric elements; however, the total area of ZnO thin film in two designs is equal. The ZnO thin film is deposited by means of radio-frequency magnetron sputtering method and is characterized by means of XRD and SEM techniques. These ZnO energy harvesters are fabricated by using MEMS micromachining. The natural frequencies of the fabricated ZnO energy harvesters are simulated and tested. The test results show that these two energy harvesters with different designs have almost the same natural frequency. Then, the output performance of different ZnO energy harvesters is tested in detail. The effects of series connection and parallel connection of two ZnO elements on the load voltage and power are also analyzed. The experimental results show that the energy harvester with two ZnO piezoelectric elements in parallel connection in Design II has higher load voltage and higher load power than the fabricated energy harvesters with other designs. Its load voltage is 2.06 V under load resistance of 1 MΩ and its maximal load power is 1.25 μW under load resistance of 0.6 MΩ, when it is excited by an external vibration with frequency of 1300.1 Hz and acceleration of 10 m/s(2). By contrast, the load voltage of the energy harvester of Design I is 1.77 V under 1 MΩ resistance and its maximal load power is 0.98 μW under 0.38 MΩ load resistance when it is excited by the same vibration.

  20. Biomechanical studies on the effect of iatrogenic dentin removal on vertical root fractures

    PubMed Central

    Ossareh, A.; Rosentritt, M.; Kishen, A.

    2018-01-01

    Introduction: The aim of this study was to understand the mechanism by which iatrogenic root dentin removal influences radicular stress distribution and subsequently affects the resistance to vertical root fractures (VRF) in endodontically treated teeth. Materials and Methods: The experiments were conducted in two phases. Phase 1: freshly extracted premolar teeth maintained in phosphate-buffered saline were instrumented to simulate three different degrees of dentin removal, designated as low, medium, and extreme groups. Micro-Ct analyzes were performed to quantitatively determine: (a) the amount of dentin removed, (b) the remaining dentin volume, and (c) the moment of inertia of root dentin. The specimens were then subjected to thermomechanical cycling and continuous loading to determine (a) the mechanical load to fracture and (b) dentin microcracking (fractography) using scanning electron microscopy. Phase 2: Finite element analysis was used to evaluate the influence of dentin removal on the stress distribution pattern in root dentin. The data obtained were analyzed using one-way ANOVA and Tukey's post hoc test (P < 0.05). Results: Phase 1: A significantly greater volume of dentin was removed from teeth in extreme group when compared to low group (P < 0.01). The mechanical analysis showed that the load to fracture was significantly lower in teeth from extreme group (P < 0.05). A linear relationship was observed between the moment of inertia and load to fracture in all experimental groups (R2 = 0.52). Fractography showed that most microcracks were initiated from the root canal walls in extreme group. Phase 2: The numerical analysis showed that the radicular stress distribution increased apically and buccolingually with greater degree of root canal dentin removal. Conclusions: The combined experimental/numerical analyses highlighted the influence of remaining root dentin volume on the radicular bending resistance, stress distribution pattern, and subsequent propensity to VRF. PMID:29899632

  1. Design Considerations for Fusible Heat Sink

    NASA Technical Reports Server (NTRS)

    Cognata, Thomas J.; Leimkuehler, Thomas O.; Sheth, Rubik B.

    2011-01-01

    Traditionally radiator designs are based off a passive or flow through design depending on vehicle requirements. For cyclical heat loads, a novel idea of combining a full flow through radiator to a phase change material is currently being investigated. The flow through radiator can be designed for an average heat load while the phase change material can be used as a source of supplemental heat rejections when vehicle heat loads go above the average load. Furthermore, by using water as the phase change material, harmful radiation protection can be provided to the crew. This paper discusses numerous trades conducted to understand the most optimal fusible heat sink design for a particular heat load. Trades include configuration concepts, amount of phase change needed for supplemental heat rejection, and the form of interstitial material needed for optimal performance. These trades were used to culminate to a fusible heat sink design. The paper will discuss design parameters taken into account to develop an engineering development unit.

  2. The nature of operating flight loads and their effect on propulsion system structures

    NASA Technical Reports Server (NTRS)

    Dickenson, K. H.; Martin, R. L.

    1981-01-01

    Past diagnostics studies revealed the primary causes of performance deterioration of high by-pass turbofan engines to be flight loads, erosion, and thermal distortion. The various types of airplane loads that are imposed on the engine throughout the lifetime of an airplane are examined. These include flight loads from gusts and maneuvers and ground loads from takeoff, landing, and taxi conditions. Clarification is made in definitions of the airframer's limit and ultimate design loads and the engine manufacturer's operating design loads. Finally, the influence of these loads on the propulsion system structures is discussed.

  3. Characterization and development of truck load spectra and growth factors for current and future pavement design practices in Louisiana : technical summary report.

    DOT National Transportation Integrated Search

    2011-07-01

    Current roadway pavement design practices follow the standards set by the American Society of State : Highway and Transportation Officials (AASHTO), which require the use of an equivalent single axle load : (ESAL-18 kip single axle load) for design t...

  4. Current research on shear buckling and thermal loads with PASCO: Panel Analysis and Sizing Code

    NASA Technical Reports Server (NTRS)

    Stroud, W. J.; Greene, W. H.; Anderson, M. S.

    1981-01-01

    The PASCO computer program to obtain the detailed dimensions of optimum stiffened composite structural panels is described. Design requirements in terms of inequality constraints can be placed on buckling loads or vibration frequencies, lamina stresses and strains, and overall panel stiffness for each of many load conditions. General panel cross sections can be treated. An analysis procedure involving a smeared orthotropic solution was investigated. The conservatism in the VIPASA solution and the danger in a smeared orthotropic solution is explored. PASCO's capability to design for thermal loadings is also described. It is emphasized that design studies illustrate the importance of the multiple load condition capability when thermal loads are present.

  5. Designing ecological flows to gravely braided rivers in alpine environments

    NASA Astrophysics Data System (ADS)

    Egozi, R.; Ashmore, P.

    2009-04-01

    Designing ecological flows in gravelly braided streams requires estimating the channel forming discharge in order to maintain the braided reach physical (allocation of flow and bed load) and ecological (maintaining the habitat diversity) functions. At present, compared to single meander streams, there are fewer guiding principles for river practitioners that can be used to manage braided streams. Insight into braiding morphodynamics using braiding intensity indices allows estimation of channel forming discharge. We assess variation in braiding intensity by mapping the total number of channels (BIT) and the number of active (transporting bed load) channels (BIA) at different stages of typical diurnal melt-water hydrographs in a pro-glacial braided river, Sunwapta River, Canada. Results show that both BIA and BIT vary with flow stage but over a limited range of values. Furthermore, maximum BIT occurs below peak discharge. At this stage there is a balance between channel merging from inundation and occupation of new channels as the stage rises. This stage is the channel forming discharge because above this stage the existing braided pattern cannot discharge the volume of water without causing morphological changes (e.g., destruction of bifurcations, channel avulsion). Estimation of the channel forming discharge requires a set of braiding intensity measurements over a range of flow stages. The design of ecological flows must take into consideration flow regime characteristics rather than just the channel forming discharge magnitude.

  6. Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bir, G. S.; Lawson, M. J.; Li, Y.

    2011-10-01

    This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-basedmore » structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.« less

  7. A Neural Network Design for the Estimation of Nonlinear Behavior of a Magnetically-Excited Piezoelectric Harvester

    NASA Astrophysics Data System (ADS)

    Çelik, Emre; Uzun, Yunus; Kurt, Erol; Öztürk, Nihat; Topaloğlu, Nurettin

    2018-01-01

    An application of an artificial neural network (ANN) has been implemented in this article to model the nonlinear relationship of the harvested electrical power of a recently developed piezoelectric pendulum with respect to its resistive load R L and magnetic excitation frequency f. Prediction of harvested power for a wide range is a difficult task, because it increases dramatically when f gets closer to the natural frequency f 0 of the system. The neural model of the concerned system is designed upon the basis of a standard multi-layer network with a back propagation learning algorithm. Input data, termed input patterns, to present to the network and the respective output data, termed output patterns, describing desired network output that are carefully collected from the experiment under several conditions in order to train the developed network accurately. Results have indicated that the designed ANN is an effective means for predicting the harvested power of the piezoelectric harvester as functions of R L and f with a root mean square error of 6.65 × 10-3 for training and 1.40 for different test conditions. Using the proposed approach, the harvested power can be estimated reasonably without tackling the difficulty of experimental studies and complexity of analytical formulas representing the concerned system.

  8. Design and fabrication of graphite-epoxy bolted wing skin splice specimens

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Mccarty, J. E.

    1977-01-01

    Graphite-epoxy bolted joint specimens were designed and fabricated. These specimens were to be representative of a side-of-body wing skin splice with a 20-year life expectancy in a commercial transport environment. Preliminary tests were performed to determine design values of bearing and net tension stresses. Based upon the information developed, a three-fastener-wide representative wing skin splice was designed for a load of 2627 KN/m (15,000 lbf/in.). One joint specimen was fabricated and tested at NASA. The wing skin splice failed at 106 percent of design ultimate load. This joint design achieved all static load objectives. Fabrication of six specimens, together with their loading fixtures, was completed, and the specimens were delivered to NASA-LRC.

  9. Measurement of inspiratory muscle performance with incremental threshold loading: a comparison of two techniques.

    PubMed Central

    Bardsley, P A; Bentley, S; Hall, H S; Singh, S J; Evans, D H; Morgan, M D

    1993-01-01

    BACKGROUND--Incremental threshold loading (ITL) is a test of inspiratory muscle performance which is usually performed by breathing through a weighted inspiratory plunger, the load on the inspiratory muscles being increased by externally adding weights to the intake valve. This is not a true threshold device and may be inaccurate. This method was compared with a true threshold device consisting of a solenoid valve which only opens to supply air at a predetermined negative mouth pressure. METHODS--Six naive, normal subjects (three men and three women) aged 22-24 years underwent three tests using each system. The inspiratory loads were increased every minute by equivalent amounts, -10 cm H2O with the solenoid valve and by 50 g with the weighted plunger, until the subjects could not inspire or sustain inspiration for a full minute. Six experienced subjects (four men and two women) aged 23-41 years were subsequently randomised to perform ITL with the solenoid valve, twice with the breathing pattern fixed and twice free. RESULTS--The solenoid valve generated a more accurate mouth pressure response and was less variable at higher loads than the weighted plunger. The work performed (expressed as the pressure-time product) was less with the solenoid valve but was more reproducible. ITL with the solenoid valve was not influenced by controlling the breathing pattern of the subjects. CONCLUSIONS--The solenoid valve has several features that make it superior to the weighted plunger as a device for ITL. It generates a more accurate mouth pressure response which is less variable at higher loads. Increases in load are smoother and quicker to introduce. ITL with the solenoid valve is not influenced by varying breathing patterns and does not require any external regulation. PMID:8511732

  10. Measurement of inspiratory muscle performance with incremental threshold loading: a comparison of two techniques.

    PubMed

    Bardsley, P A; Bentley, S; Hall, H S; Singh, S J; Evans, D H; Morgan, M D

    1993-04-01

    Incremental threshold loading (ITL) is a test of inspiratory muscle performance which is usually performed by breathing through a weighted inspiratory plunger, the load on the inspiratory muscles being increased by externally adding weights to the intake valve. This is not a true threshold device and may be inaccurate. This method was compared with a true threshold device consisting of a solenoid valve which only opens to supply air at a predetermined negative mouth pressure. Six naive, normal subjects (three men and three women) aged 22-24 years underwent three tests using each system. The inspiratory loads were increased every minute by equivalent amounts, -10 cm H2O with the solenoid valve and by 50 g with the weighted plunger, until the subjects could not inspire or sustain inspiration for a full minute. Six experienced subjects (four men and two women) aged 23-41 years were subsequently randomised to perform ITL with the solenoid valve, twice with the breathing pattern fixed and twice free. The solenoid valve generated a more accurate mouth pressure response and was less variable at higher loads than the weighted plunger. The work performed (expressed as the pressure-time product) was less with the solenoid valve but was more reproducible. ITL with the solenoid valve was not influenced by controlling the breathing pattern of the subjects. The solenoid valve has several features that make it superior to the weighted plunger as a device for ITL. It generates a more accurate mouth pressure response which is less variable at higher loads. Increases in load are smoother and quicker to introduce. ITL with the solenoid valve is not influenced by varying breathing patterns and does not require any external regulation.

  11. Influence of Distributed Dead Loads on Vehicle Position for Maximum Moment in Simply Supported Bridges

    NASA Astrophysics Data System (ADS)

    Gupta, Tanmay; Kumar, Manoj

    2017-06-01

    Usually, the design moments in the simply supported bridges are obtained as the sum of moments due to dead loads and live load where the live load moments are calculated using the rolling load concept neglecting the effect of dead loads. For the simply supported bridges, uniformly distributed dead load produces maximum moment at mid-span while the absolute maximum bending moment due to multi-axel vehicles occur under a wheel which usually do not lie at mid-span. Since, the location of absolute maximum bending moment due to multi-axel vehicle do not coincide with the location of maximum moment due to dead loads occurring at mid-span, the design moment may not be obtained by simply superimposing the effect of dead load and live load. Moreover, in case of Class-A and Class-70R wheeled vehicular live loads, which consists of several axels, the number of axels to be considered over the bridge of given span and their location is tedious to find out and needs several trials. The aim of the present study is to find the number of wheels for Class-A and Class-70R wheeled vehicles and their precise location to produce absolute maximum moment in the bridge considering the effect of dead loads and impact factor. Finally, in order to enable the designers, the design moments due to Class-70R wheeled and Class-A loading have been presented in tabular form for the spans from 10 to 50 m.

  12. Helium process cycle

    DOEpatents

    Ganni, Venkatarao

    2008-08-12

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  13. Helium process cycle

    DOEpatents

    Ganni, Venkatarao

    2007-10-09

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  14. Validation of Simplified Load Equations through Loads Measurement and Modeling of a Small Horizontal-Axis Wind Turbine Tower; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dana, S.; Damiani, R.; vanDam, J.

    As part of an ongoing effort to improve the modeling and prediction of small wind turbine dynamics, NREL tested a small horizontal axis wind turbine in the field at the National Wind Technology Center (NWTC). The test turbine was a 2.1-kW downwind machine mounted on an 18-meter multi-section fiberglass composite tower. The tower was instrumented and monitored for approximately 6 months. The collected data were analyzed to assess the turbine and tower loads and further validate the simplified loads equations from the International Electrotechnical Commission (IEC) 61400-2 design standards. Field-measured loads were also compared to the output of an aeroelasticmore » model of the turbine. Ultimate loads at the tower base were assessed using both the simplified design equations and the aeroelastic model output. The simplified design equations in IEC 61400-2 do not accurately model fatigue loads. In this project, we compared fatigue loads as measured in the field, as predicted by the aeroelastic model, and as calculated using the simplified design equations.« less

  15. Low-density lipoproteins modulate endothelial cells to secrete endothelin-1 in a polarized pattern: a study using a culture model system simulating arterial intima.

    PubMed

    Unoki, H; Fan, J; Watanabe, T

    1999-01-01

    We investigated the structural and functional properties of human umbilical vein endothelial cells (HUVECs) cultured on a two-chamber culture model system using an amnion membrane. Compared to HUVECs cultured on a plastic dish, HUVECs cultured on the model system exhibited several features similar to those of in vivo vessels, including formation of the intercellular junctional devices and expression of tight junction-associated protein ZO-1 and adherence junction-associated protein alpha-catenin. Furthermore, we found that HUVECs had a property of polar secretion of endothelin-1 (ET-1). About 90% of the total amount of synthesized ET-1 was found in the lower well, designated as the basal side. When HUVECs were incubated with either native low-density lipoproteins (nLDLs) or oxidized LDLs (oxLDLs) at a concentration of 100 microgram/ml, ET-1 secretion was significantly increased, dependent on the cell side (apical vs basal) on which the nLDLs or oxLDLs were loaded. When the LDLs were loaded on the apical side, the secretion of ET-1 from HUVECs on the apical side was increased by 48% (nLDL) and 61% (oxLDL), whereas it was accompanied by a concomitant decrease of ET-1 on the basal side (45% by nLDLs and 38% by oxLDLs). When loaded on the basal side, however, ET-1 was increased by 23% (nLDLs) and 53% (oxLDLs) on the basal side, with a 26% simultaneous decrease of ET-1 on the opposite side for both nLDLs and oxLDLs. On the contrary, high-density lipoproteins (HDLs) inhibited ET-1 secretion from HUVECs on the opposite side of the well on which HDLs were loaded; there was a 57% decrease on the basal side when HDLs were loaded on the apical side, and a 46% decrease on the apical side when loaded on the basal side. These results indicate that modulation of ET-1 secretion from ECs by lipoproteins is virtually dependent on the place (apical vs basal) where these proteins are present. The finding that nLDLs and oxLDLs enhance ET-1 secretion by ECs in a polarized pattern suggests that ET-1 may be involved in pathophysiological processes such as atherogenesis.

  16. ARBAN-A new method for analysis of ergonomic effort.

    PubMed

    Holzmann, P

    1982-06-01

    ARBAN is a method for the ergonomic analysis of work, including work situations which involve widely differing body postures and loads. The idea of the method is thal all phases of the analysis process that imply specific knowledge on ergonomics are teken over by filming equipment and a computer routine. All tasks that must be carried out by the investigator in the process of analysis are so designed that they appear as evident by the use of systematic common sense. The ARBAN analysis method contains four steps: 1. Recording of the workplace situation on video or film. 2. Coding the posture and load situation at a number of closely spaced 'frozen' situations. 3. Computerisation. 4. Evaluation of the results. The computer calculates figures for the total ergonomic stress on the whole body as well as on different parts of the body separately. They are presented as 'Ergonomic stress/ time curves', where the heavy load situations occur as peaks of the curve. The work cycle may also be divided into different tasks, where the stress and duration patterns can be compared. The integral of the curves are calculated for single-figure comparison of different tasks as well as different work situations.

  17. Design-Load Basis for LANL Structures, Systems, and Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    I. Cuesta

    2004-09-01

    This document supports the recommendations in the Los Alamos National Laboratory (LANL) Engineering Standard Manual (ESM), Chapter 5--Structural providing the basis for the loads, analysis procedures, and codes to be used in the ESM. It also provides the justification for eliminating the loads to be considered in design, and evidence that the design basis loads are appropriate and consistent with the graded approach required by the Department of Energy (DOE) Code of Federal Regulation Nuclear Safety Management, 10, Part 830. This document focuses on (1) the primary and secondary natural phenomena hazards listed in DOE-G-420.1-2, Appendix C, (2) additional loadsmore » not related to natural phenomena hazards, and (3) the design loads on structures during construction.« less

  18. Effects of Swept Tips on V-22 Whirl Flutter and Loads

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.

    2005-01-01

    A CAMRAD II model of the V-22 Osprey tiltrotor was constructed for the purpose of analyzing the effects of blade design changes on whirl flutter. The model incorporated a dual load-path grip/yoke assembly, a swashplate coupled to the transmission case, and a drive train. A multiple-trailer free wake was used for loads calculations. The effects of rotor design changes on whirl-mode stability were calculated for swept blades and offset tip masses. A rotor with swept tips and inboard tuning masses was examined in detail to reveal the mechanisms by which these design changes affect stability and loads. Certain combinations of design features greatly increased whirl-mode stability, with (at worst) moderate increases to loads.

  19. Connector design in a long-span-fixed dental prosthesis: a three-dimensional finite element analysis.

    PubMed

    Harshitha Gowda, B H; Satish Babu, C L

    2013-01-01

    The goal of every prosthetic management is to simulate nature and be in harmony with nature within the physiological limits. The occlusal forces on a fixed dental prosthesis are transmitted to the surrounding structures through pontics, connectors and retainers and more stresses are seen at the connector region. To analyze the stress patterns in cast and soldered connectors between the two pontics and between the retainer and pontic of a four unit fixed dental prosthesis on axial and non axial loading and also to observe and ascertain the need to modify the design of the rigid connectors. Subsequently four models each of cast and soldered connectors with cylindrical and triangular design, of dimension 3 × 4 mm and thickness 0.5 mm was designed for the study. The first premolar and second molar were considered as the abutments and 2 nd premolar and 1 st molar as the pontics. The analysis was done using ANSYS version 8.0 software and by placing axial and non-axial load of 40 Newtons each. Von Misses stresses were observed at the connector region between the two pontics, especially in the cervical region. The cylindrical cast connectors showed less stress in comparison to triangular design and the difference in the stress distribution of cast and soldered connectors were marginal. The occlusal forces on a fixed dental prosthesis are transmitted to the surrounding structures through pontics, connectors and retainers with maximum stresses concentrated at the connectors. Hence this three-dimensional finite element analysis study investigated stress distribution in a four unit posterior fixed dental prosthesis, having cylindrical and triangular connector designs.

  20. Dynamic tests of composite panels of an aircraft wing

    NASA Astrophysics Data System (ADS)

    Splichal, Jan; Pistek, Antonin; Hlinka, Jiri

    2015-10-01

    The paper describes the analysis of aerospace composite structures under dynamic loading. Today, it is common to use design procedures based on assumption of static loading only, and dynamic loading is rarely assumed and applied in design and certification of aerospace structures. The paper describes the application of dynamic loading for the design of aircraft structures, and the validation of the procedure on a selected structure. The goal is to verify the possibility of reducing the weight through improved design/modelling processes using dynamic loading instead of static loading. The research activity focuses on the modelling and testing of a composite panel representing a local segment of an aircraft wing section, investigating in particular the buckling behavior under dynamic loading. Finite Elements simulation tools are discussed, as well as the advantages of using a digital optical measurement system for the evaluation of the tests. The comparison of the finite element simulations with the results of the tests is presented.

  1. Forefoot strikers exhibit lower running-induced knee loading than rearfoot strikers.

    PubMed

    Kulmala, Juha-Pekka; Avela, Janne; Pasanen, Kati; Parkkari, Jari

    2013-12-01

    Knee pain and Achilles tendinopathies are the most common complaints among runners. The differences in the running mechanics may play an important role in the pathogenesis of lower limb overuse injuries. However, the effect of a runner's foot strike pattern on the ankle and especially on the knee loading is poorly understood. The purpose of this study was to examine whether runners using a forefoot strike pattern exhibit a different lower limb loading profile than runners who use rearfoot strike pattern. Nineteen female athletes with a natural forefoot strike (FFS) pattern and pair-matched women with rearfoot strike (RFS) pattern (n = 19) underwent 3-D running analysis at 4 m·s⁻¹. Joint angles and moments, patellofemoral contact force and stresses, and Achilles tendon forces were analyzed and compared between groups. FFS demonstrated lower patellofemoral contact force and stress compared with heel strikers (4.3 ± 1.2 vs 5.1 ± 1.1 body weight, P = 0.029, and 11.1 ± 2.9 vs 13.0 ± 2.8 MPa, P = 0.04). In addition, knee frontal plane moment was lower in the FFS compared with heel strikers (1.49 ± 0.51 vs 1.97 ± 0.66 N·m·kg⁻¹, P =0.015). At the ankle level, FFS showed higher plantarflexor moment (3.12 ± 0.40 vs 2.54 ± 0.37 N·m·kg⁻¹; P = 0.001) and Achilles tendon force (6.3 ± 0.8 vs 5.1 ± 1.3 body weight; P = 0.002) compared with RFS. To our knowledge, this is the first study that shows differences in patellofemoral loading and knee frontal plane moment between FFS and RFS. FFS exhibit both lower patellofemoral stress and knee frontal plane moment than RFS, which may reduce the risk of running-related knee injuries. On the other hand, parallel increase in ankle plantarflexor and Achilles tendon loading may increase risk for ankle and foot injuries.

  2. Extreme winds and tornadoes: an overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, J.R.

    1985-01-01

    The objective of this course on extreme winds, hurricanes and tornadoes is to provide an overview of these natural phenomenon from the perspective of design of new buildings and structures or the evaluation of existing ones. Information is directly applicable to design and evaluation processes. The premise is that the facility under consideration, which may consist of various buildings, structures, processing equipment, stacks, ventilation ducts, etc., can be classified into certain categories, depending on the importance of the mission performed in the facility or the hazard that is presented by the particular operation. Having classified the facility into an appropriatemore » category will automatically define certain design goals for the facility. The design goals are then met by selecting a design wind speed that is appropriate for the specified exceedance probability and by following certain specified design procedures. The problem then is to determine appropriate wind loads and other applicable loads, including dead loads, live loads, seismic loads and other loads that may act on the structures. The design process can then proceed in the usual manner. In the case of existing facilities the strengths of the various structural elements, subsystems and systems are evaluated and these strengths are related to wind speeds that would result in failure to meet the design goals. 12 refs.« less

  3. Extreme load alleviation using industrial implementation of active trailing edge flaps in a full design load basis

    NASA Astrophysics Data System (ADS)

    Barlas, Thanasis; Pettas, Vasilis; Gertz, Drew; Madsen, Helge A.

    2016-09-01

    The application of active trailing edge flaps in an industrial oriented implementation is evaluated in terms of capability of alleviating design extreme loads. A flap system with basic control functionality is implemented and tested in a realistic full Design Load Basis (DLB) for the DTU 10MW Reference Wind Turbine (RWT) model and for an upscaled rotor version in DTU's aeroelastic code HAWC2. The flap system implementation shows considerable potential in reducing extreme loads in components of interest including the blades, main bearing and tower top, with no influence on fatigue loads and power performance. In addition, an individual flap controller for fatigue load reduction in above rated power conditions is also implemented and integrated in the general controller architecture. The system is shown to be a technology enabler for rotor upscaling, by combining extreme and fatigue load reduction.

  4. Immune networks: multi-tasking capabilities at medium load

    NASA Astrophysics Data System (ADS)

    Agliari, E.; Annibale, A.; Barra, A.; Coolen, A. C. C.; Tantari, D.

    2013-08-01

    Associative network models featuring multi-tasking properties have been introduced recently and studied in the low-load regime, where the number P of simultaneously retrievable patterns scales with the number N of nodes as P ˜ log N. In addition to their relevance in artificial intelligence, these models are increasingly important in immunology, where stored patterns represent strategies to fight pathogens and nodes represent lymphocyte clones. They allow us to understand the crucial ability of the immune system to respond simultaneously to multiple distinct antigen invasions. Here we develop further the statistical mechanical analysis of such systems, by studying the medium-load regime, P ˜ Nδ with δ ∈ (0, 1]. We derive three main results. First, we reveal the nontrivial architecture of these networks: they exhibit a high degree of modularity and clustering, which is linked to their retrieval abilities. Second, by solving the model we demonstrate for δ < 1 the existence of large regions in the phase diagram where the network can retrieve all stored patterns simultaneously. Finally, in the high-load regime δ = 1 we find that the system behaves as a spin-glass, suggesting that finite-connectivity frameworks are required to achieve effective retrieval.

  5. Developing a passive load reduction blade for the DTU 10 MW reference turbine

    NASA Astrophysics Data System (ADS)

    de Vaal, J. B.; Nygaard, T. A.; Stenbro, R.

    2016-09-01

    This paper presents the development of a passive load reduction blade for the DTU 10 MW reference wind turbine, using the aero-hydro-servo-elastic analysis tool 3DFloat. Passive load reduction is achieved by introducing sweep to the path of the blade elastic axis, so that out-of-plane bending deflections result in load alleviating torsional deformations of the blade. Swept blades are designed to yield similar annual energy production as a rotor with a reference straight blade. This is achieved by modifying the aerodynamic twist distribution for swept blades based on non-linear blade deflection under steady state loads. The passive load reduction capability of a blade design is evaluated by running a selection of fatigue- and extreme load cases with the analysis tool 3DFloat and determining equivalent fatigue loads, fatigue damage and extreme loads at the blade root and tower base. The influence of sweep on the flutter speed of a blade design is also investigated. A large number of blade designs are evaluated by varying the parameters defining the sweep path of a blade's elastic axis. Results show that a moderate amount of sweep can effectively reduce equivalent fatigue damage and extreme loads, without significantly reducing the flutter speed, or compromising annual energy production.

  6. Combined seismic plus live-load analysis of highway bridges.

    DOT National Transportation Integrated Search

    2011-10-01

    "The combination of seismic and vehicle live loadings on bridges is an important design consideration. There are well-established design : provisions for how the individual loadings affect bridge response: structural components that carry vertical li...

  7. 46 CFR 154.406 - Design loads for cargo tanks and fixtures: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... motion of the vessel. (4) Transient or stationary thermal loads if the design temperature is colder that..., cargo weight, and corresponding support reaction. (8) Insulation weight. (9) Loads of a pipe tower and...

  8. 46 CFR 154.406 - Design loads for cargo tanks and fixtures: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... motion of the vessel. (4) Transient or stationary thermal loads if the design temperature is colder that..., cargo weight, and corresponding support reaction. (8) Insulation weight. (9) Loads of a pipe tower and...

  9. Improved LRFD/LRFR specifications for permit and fatigue load truck.

    DOT National Transportation Integrated Search

    2011-01-01

    Bridge design and evaluation are moving toward the American Association of State Highway and Transportation : Officials (AASHTO) load and resistance factor design/load and resistance factor rating (LRFD/LRFR) : specifications using calibrated truck l...

  10. Stress-Constrained Structural Topology Optimization with Design-Dependent Loads

    NASA Astrophysics Data System (ADS)

    Lee, Edmund

    Topology optimization is commonly used to distribute a given amount of material to obtain the stiffest structure, with predefined fixed loads. The present work investigates the result of applying stress constraints to topology optimization, for problems with design-depending loading, such as self-weight and pressure. In order to apply pressure loading, a material boundary identification scheme is proposed, iteratively connecting points of equal density. In previous research, design-dependent loading problems have been limited to compliance minimization. The present study employs a more practical approach by minimizing mass subject to failure constraints, and uses a stress relaxation technique to avoid stress constraint singularities. The results show that these design dependent loading problems may converge to a local minimum when stress constraints are enforced. Comparisons between compliance minimization solutions and stress-constrained solutions are also given. The resulting topologies of these two solutions are usually vastly different, demonstrating the need for stress-constrained topology optimization.

  11. Effect of vibration during fatiguing resistance exercise on subsequent muscle activity during maximal voluntary isometric contractions.

    PubMed

    McBride, Jeffrey M; Porcari, John P; Scheunke, Mark D

    2004-11-01

    This investigation was designed to determine if vibration during fatiguing resistance exercise would alter associated patterns of muscle activity. A cross-over design was employed with 8 subjects completing a resistance exercise bout once with a vibrating dumbbell (V) (44 Hz, 3 mm displacement) and once without vibration (NV). For both exercise bouts, 10 sets were performed with a load that induced concentric muscle failure during the 10th repetition. The appropriate load for each set was determined during a pretest. Each testing session was separated by 1 week. Electromyography (EMG) was obtained from the biceps brachii muscle at 12 different time points during a maximum voluntary contraction (MVC) at a 170 degrees elbow angle after each set of the dumbbell exercise. The time points were as follows: pre (5 minutes before the resistance exercise bout), T1-T10 (immediately following each set of resistance exercise), and post (15 minutes after the resistance exercise bout). EMG was analyzed for median power frequency (MPF) and maximum (mEMG). NV resulted in a significant decrease in MPF at T1-T4 (p < or 0.05) and a significant increase in mEMG at T2 during the MVC. V had an overall trend of lower mEMG in comparison to NV. The mEMG and MPF values associated with NV were similar to previously reported investigations. The lower mEMG values and the higher MPF of V in comparison to NV are undocumented. The EMG patterns observed with vibration may indicate a more efficient and effective recruitment of high threshold motor units during fatiguing contractions. This may indicate the usage of vibration with resistance exercise as an effective tool for strength training athletes.

  12. Compensated Box-Jenkins transfer function for short term load forecast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breipohl, A.; Yu, Z.; Lee, F.N.

    In the past years, the Box-Jenkins ARIMA method and the Box-Jenkins transfer function method (BJTF) have been among the most commonly used methods for short term electrical load forecasting. But when there exists a sudden change in the temperature, both methods tend to exhibit larger errors in the forecast. This paper demonstrates that the load forecasting errors resulting from either the BJ ARIMA model or the BJTF model are not simply white noise, but rather well-patterned noise, and the patterns in the noise can be used to improve the forecasts. Thus a compensated Box-Jenkins transfer method (CBJTF) is proposed tomore » improve the accuracy of the load prediction. Some case studies have been made which result in about a 14-33% reduction of the root mean square (RMS) errors of the forecasts, depending on the compensation time period as well as the compensation method used.« less

  13. Evaluation of a Composite Sandwich Fuselage Side Panel with Damage and Subjected to Internal Pressure

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Ambur, Damodar R.; Bodine, Jerry; Dopker, Bernhard

    1997-01-01

    The results from an experimental and analytical study of a composite sandwich fuselage side panel for a transport aircraft are presented. The panel has two window cutouts and three frames, and has been evaluated with internal pressure loads that generate biaxial tension loading conditions. Design limit load and design ultimate load tests have been performed on the graphite-epoxy sandwich panel with the middle frame removed to demonstrate the suitability of this two-frame design for supporting the prescribed biaxial loading conditions with twice the initial frame spacing of 20 inches. The two-frame panel was damaged by cutting a notch that originates at the edge of a cutout and extends in the panel hoop direction through the window-belt area. This panel with a notch was tested in a combined-load condition to demonstrate the structural damage tolerance at the design limit load condition. The two panel configurations successfully satisfied all design load requirements in the experimental part of the study, and the three-frame and two-frame panel responses are fully explained by the analysis results. The results of this study suggest that there is potential for using sandwich structural concepts with greater than the usual 20-in.-wide frame spacing to further reduce aircraft fuselage structural weight.

  14. A Structural Weight Estimation Program (SWEEP) for Aircraft. Volume 11 - Flexible Airloads Stand-Alone Program

    DTIC Science & Technology

    1974-06-01

    stiffness, lb-in. I Integer used to designate wing strip number 2 I Airplanw pitching moment of inertia, slug ft 2 I Airplane yawing moment of inertia...slug ft J Integer used to designated wing-loading distribution, i.e., J-l, loading due to angle of attack J=2> loading due to flap deflection J-3...moment at intersection of load reference line and body interface station (for vertical tail), in.-lb Integer used to designate type of wing airload

  15. In situ forces and length patterns of the fibular collateral ligament under controlled loading: an in vitro biomechanical study using a robotic system.

    PubMed

    Liu, Ping; Wang, Jianquan; Xu, Yan; Ao, Yingfang

    2015-04-01

    The aim of this study was to determine the in situ forces and length patterns of the fibular collateral ligament (FCL) and kinematics of the knee under various loading conditions. Six fresh-frozen cadaveric knees were used (mean age 46 ± 14.4 years; range 20-58). In situ forces and length patterns of FCL and kinematics of the knee were determined under the following loading conditions using a robotic/universal force-moment sensor testing system: no rotation, varus (10 Nm), external rotation (5 Nm), and internal rotation (5 Nm) at 0°, 15°, 30°, 60º, 90°, and 120° of flexion, respectively. Under no rotation loading, the distances between the centres of the FCL attachments decreased as the knee flexed. Under varus loading, the force in FCL peaked at 15° of flexion and decreased with further knee flexion, while distances remained nearly constant and the varus rotation increased with knee flexion. Using external rotation, the force in the FCL also peaked at 15° flexion and decreased with further knee flexion, the distances decreased with flexion, and external rotation increased with knee flexion. Using internal rotation load, the force in the FCL was relatively small across all knee flexion angles, and the distances decreased with flexion; the amount of internal rotation was fairly constant. FCL has a primary role in preventing varus and external rotation at 15° of flexion. The FCL does not perform isometrically following knee flexion during neutral rotation, and tibia rotation has significant effects on the kinematics of the FCL. Varus and external rotation laxity increased following knee flexion. By providing more realistic data about the function and length patterns of the FCL and the kinematics of the intact knee, improved reconstruction and rehabilitation protocols can be developed.

  16. Patterns of morning and evening fatigue among adults with HIV/AIDS.

    PubMed

    Lerdal, Anners; Gay, Caryl L; Aouizerat, Bradley E; Portillo, Carmen J; Lee, Kathryn A

    2011-08-01

    Describe patterns of morning and evening fatigue in adults with HIV and examine their relationship to demographic and clinical factors and other symptoms. Most studies of HIV-related fatigue assess average levels of fatigue and do not address its diurnal fluctuations. Patterns of fatigue over the course of the day may have important implications for assessment and treatment. A cross-sectional, correlational design was used with six repeated measures over 72 hours. A convenience sample of 318 HIV-infected adults was recruited in San Francisco. Socio-demographic, clinical and symptom data were collected with questionnaires. CD4+ T-cell count and viral load were obtained from medical records. Participants completed a four-item version of the Lee Fatigue Scale each morning and evening for three consecutive days. Participants were grouped based on their diurnal pattern of fatigue (high evening only, high morning only, high morning and evening and low morning and evening). Group comparisons and logistic regression were used to determine the unique predictors of each fatigue pattern. The high evening fatigue pattern was associated with anxiety and the high morning pattern was associated with anxiety and depression. The morning fatigue pattern showed very little fluctuation between morning and evening, the evening pattern showed the largest fluctuation. The high morning and evening pattern was associated with anxiety, depression and sleep disturbance and this group reported the most fatigue-related distress and interference in functioning. These results provide initial evidence for the importance of assessing the patient's daily pattern of fatigue fluctuation, as different patterns were associated with different symptom experiences and perhaps different aetiologies. Different fatigue patterns may benefit from tailored intervention strategies. Management of depressive symptoms could be tested in patients who experience high levels of morning fatigue. © 2011 Blackwell Publishing Ltd.

  17. Towards Cognitive Load Theory as Guideline for Instructional Design in Science Education

    ERIC Educational Resources Information Center

    Meissner, Barbara; Bogner, Franz X.

    2013-01-01

    We applied cognitive load theory in an heuristic out-of-school science lesson. The lesson comprises experiments concerning major attributes of NaCl and was designed for 5th to 8th grade students. Our interest focused on whether cognitive load theory provides sufficient guidelines for instructional design in the field of heuristic science…

  18. Method and apparatus of prefetching streams of varying prefetch depth

    DOEpatents

    Gara, Alan [Mount Kisco, NY; Ohmacht, Martin [Yorktown Heights, NY; Salapura, Valentina [Chappaqua, NY; Sugavanam, Krishnan [Mahopac, NY; Hoenicke, Dirk [Seebruck-Seeon, DE

    2012-01-24

    Method and apparatus of prefetching streams of varying prefetch depth dynamically changes the depth of prefetching so that the number of multiple streams as well as the hit rate of a single stream are optimized. The method and apparatus in one aspect monitor a plurality of load requests from a processing unit for data in a prefetch buffer, determine an access pattern associated with the plurality of load requests and adjust a prefetch depth according to the access pattern.

  19. Viper cabin-fuselage structural design concept with engine installation and wing structural design

    NASA Technical Reports Server (NTRS)

    Marchesseault, B.; Carr, D.; Mccorkle, T.; Stevens, C.; Turner, D.

    1993-01-01

    This report describes the process and considerations in designing the cabin, nose, drive shaft, and wing assemblies for the 'Viper' concept aircraft. Interfaces of these assemblies, as well as interfaces with the sections of the aircraft aft of the cabin, are also discussed. The results of the design process are included. The goal of this project is to provide a structural design which complies with FAR 23 requirements regarding occupant safety, emergency landing loads, and maneuvering loads. The design must also address the interfaces of the various systems in the cabin, nose, and wing, including the drive shaft, venting, vacuum, electrical, fuel, and control systems. Interfaces between the cabin assembly and the wing carrythrough and empennage assemblies were required, as well. In the design of the wing assemblies, consistency with the existing cabin design was required. The major areas considered in this report are materials and construction, loading, maintenance, environmental considerations, wing assembly fatigue, and weight. The first three areas are developed separately for the nose, cabin, drive shaft, and wing assemblies, while the last three are discussed for the entire design. For each assembly, loading calculations were performed to determine the proper sizing of major load carrying components. Table 1.0 lists the resulting margins of safety for these key components, along with the types of the loads involved, and the page number upon which they are discussed.

  20. Robust QCT/FEA Models of Proximal Femur Stiffness and Fracture Load During a Sideways Fall on the Hip

    PubMed Central

    Dragomir-Daescu, Dan; Buijs, Jorn Op Den; McEligot, Sean; Dai, Yifei; Entwistle, Rachel C.; Salas, Christina; Melton, L. Joseph; Bennet, Kevin E.; Khosla, Sundeep; Amin, Shreyasee

    2013-01-01

    Clinical implementation of quantitative computed tomography-based finite element analysis (QCT/FEA) of proximal femur stiffness and strength to assess the likelihood of proximal femur (hip) fractures requires a unified modeling procedure, consistency in predicting bone mechanical properties, and validation with realistic test data that represent typical hip fractures, specifically, a sideways fall on the hip. We, therefore, used two sets (n = 9, each) of cadaveric femora with bone densities varying from normal to osteoporotic to build, refine, and validate a new class of QCT/FEA models for hip fracture under loading conditions that simulate a sideways fall on the hip. Convergence requirements of finite element models of the first set of femora led to the creation of a new meshing strategy and a robust process to model proximal femur geometry and material properties from QCT images. We used a second set of femora to cross-validate the model parameters derived from the first set. Refined models were validated experimentally by fracturing femora using specially designed fixtures, load cells, and high speed video capture. CT image reconstructions of fractured femora were created to classify the fractures. The predicted stiffness (cross-validation R2 = 0.87), fracture load (cross-validation R2 = 0.85), and fracture patterns (83% agreement) correlated well with experimental data. PMID:21052839

  1. In vivo contact kinematics and contact forces of the knee after total knee arthroplasty during dynamic weight-bearing activities.

    PubMed

    Varadarajan, Kartik M; Moynihan, Angela L; D'Lima, Darryl; Colwell, Clifford W; Li, Guoan

    2008-07-19

    Analysis of polyethylene component wear and implant loosening in total knee arthroplasty (TKA) requires precise knowledge of in vivo articular motion and loading conditions. This study presents a simultaneous in vivo measurement of tibiofemoral articular contact forces and contact kinematics in three TKA patients. These measurements were accomplished via a dual fluoroscopic imaging system and instrumented tibial implants, during dynamic single leg lunge and chair rising-sitting. The measured forces and contact locations were also used to determine mediolateral distribution of axial contact forces. Contact kinematics data showed a medial pivot during flexion of the knee, for all patients in the study. Average axial forces were higher for lunge compared to chair rising-sitting (224% vs. 187% body weight). In this study, we measured peak anteroposterior and mediolateral forces averaging 13.3% BW during lunge and 18.5% BW during chair rising-sitting. Mediolateral distributions of axial contact force were both patient and activity specific. All patients showed equitable medial-lateral loading during lunge but greater loads at the lateral compartment during chair rising-sitting. The results of this study may enable more accurate reproduction of in vivo loads and articular motion patterns in wear simulators and finite element models. This in turn may help advance our understanding of factors limiting longevity of TKA implants, such as aseptic loosening and polyethylene component wear, and enable improved TKA designs.

  2. Axial displacement of external and internal implant-abutment connection evaluated by linear mixed model analysis.

    PubMed

    Seol, Hyon-Woo; Heo, Seong-Joo; Koak, Jai-Young; Kim, Seong-Kyun; Kim, Shin-Koo

    2015-01-01

    To analyze the axial displacement of external and internal implant-abutment connection after cyclic loading. Three groups of external abutments (Ext group), an internal tapered one-piece-type abutment (Int-1 group), and an internal tapered two-piece-type abutment (Int-2 group) were prepared. Cyclic loading was applied to implant-abutment assemblies at 150 N with a frequency of 3 Hz. The amount of axial displacement, the Periotest values (PTVs), and the removal torque values(RTVs) were measured. Both a repeated measures analysis of variance and pattern analysis based on the linear mixed model were used for statistical analysis. Scanning electron microscopy (SEM) was used to evaluate the surface of the implant-abutment connection. The mean axial displacements after 1,000,000 cycles were 0.6 μm in the Ext group, 3.7 μm in the Int-1 group, and 9.0 μm in the Int-2 group. Pattern analysis revealed a breakpoint at 171 cycles. The Ext group showed no declining pattern, and the Int-1 group showed no declining pattern after the breakpoint (171 cycles). However, the Int-2 group experienced continuous axial displacement. After cyclic loading, the PTV decreased in the Int-2 group, and the RTV decreased in all groups. SEM imaging revealed surface wear in all groups. Axial displacement and surface wear occurred in all groups. The PTVs remained stable, but the RTVs decreased after cyclic loading. Based on linear mixed model analysis, the Ext and Int-1 groups' axial displacements plateaued after little cyclic loading. The Int-2 group's rate of axial displacement slowed after 100,000 cycles.

  3. Do dietary patterns determine levels of vitamin B6, folate, and vitamin B12 intake and corresponding biomarkers in European adolescents? The Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study.

    PubMed

    Iglesia, Iris; Huybrechts, Inge; Mouratidou, Theodora; Santabárbara, Javier; Fernández-Alvira, Juan M; Santaliestra-Pasías, Alba M; Manios, Yannis; De la O Puerta, Alejandro; Kafatos, Anthony; Gottrand, Frédéric; Marcos, Ascensión; Sette, Stefania; Plada, Maria; Stehle, Peter; Molnár, Dénes; Widhalm, Kurt; Kersting, Mathilde; De Henauw, Stefaan; Moreno, Luis A; González-Gross, Marcela

    2018-06-01

    To determine dietary patterns (DPs) and explain the highest variance of vitamin B 6 , folate, and B 12 intake and related concentrations among European adolescents. A total of 2173 adolescents who participated in the Healthy Lifestyle in Europe by Nutrition in Adolescence study met the eligibility criteria for the vitamin B intake analysis (46% boys) and 586 adolescents for the biomarkers analysis (47% boys). Two non-consecutive, 24-h, dietary recalls were used to assess the mean intakes. Concentrations were measured by chromatography and immunoassay testing. A reduced rank regression was applied to elucidate the combined effect of food intake of vitamin B and related concentrations. The identified DPs (one per vitamin B intake and biomarker and by sex) explained a variability between 34.2% and 23.7% of the vitamin B intake and between 17.2% and 7% of the biomarkers. In the reduced rank regression models, fish, eggs, cheese, whole milk and buttermilk intakes were loaded positively for vitamin B intake in both sexes; however, soft drinks and chocolate were loaded negatively. For the biomarkers, a higher variability was observed in the patterns in terms of food loads such as alcoholic drinks, sugars, and soft drinks. Some food items were loaded differently between intakes and biomarkers such as fish products, which was loaded positively for intakes but negatively for plasma folate in girls. The identified DPs explained up to 34.2% and 17.2% of the variability of the vitamin B intake and plasma concentrations, respectively, in European adolescents. Further studies are needed to elucidate the factors that determine such patterns. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Workplace field testing of the pressure drop of particulate respirators using welding fumes.

    PubMed

    Cho, Hyun-Woo; Yoon, Chung-Sik

    2012-10-01

    In a previous study, we concluded that respirator testing with a sodium chloride aerosol gave a conservative estimate of filter penetration for welding fume aerosols. A rapid increase in the pressure drop (PD) of some respirators was observed as fumes accumulated on the filters. The present study evaluated particulate respirator PD based on workplace field tests. A field PD tester was designed and validated using the TSI 8130 Automatic Filter Tester, designed in compliance with National Institute for Occupational and Safety and Health regulation 42 CFR part 84. Three models (two replaceable dual-type filters and one replaceable single-type filter) were evaluated against CO(2) gas arc welding on mild steel in confined booths in the workplace. Field tests were performed under four airborne concentrations (27.5, 15.4, 7.9, and 2.1 mg m(-3)). The mass concentration was measured by the gravimetric method, and number concentration was monitored using P-Trak (Model 8525, TSI, USA). Additionally, photos and scanning electron microscopy-energy dispersive X-ray spectroscopy were used to visualize and analyze the composition of welding fumes trapped in the filters. The field PD tester showed no significant difference compared with the TSI tester. There was no significant difference in the initial PD between laboratory and field results. The PD increased as a function of fume load on the respirator filters for all tested models. The increasing PD trend differed by models, and PD increased rapidly at high concentrations because greater amount of fumes accumulated on the filters in a given time. The increase in PD as a function of fume load on the filters showed a similar pattern as fume load varied for a particular model, but different patterns were observed for different models. Images and elemental analyses of fumes trapped on the respirator filters showed that most welding fumes were trapped within the first layer, outer web cover, and second layer, in order, while no fumes were observed beneath the fourth layer of the tested respirators. The current findings contribute substantially to our understanding of respirator PD in the presence of welding fumes.

  5. Sea level side loads in high-area-ratio rocket engines

    NASA Technical Reports Server (NTRS)

    Nave, L. H.; Coffey, G. A.

    1973-01-01

    An empirical separation and side load model to obtain applied aerodynamic loads has been developed based on data obtained from full-scale J-2S (265K-pound-thrust engine with an area ratio of 40:1) engine and model testing. Experimental data include visual observations of the separation patterns that show the dynamic nature of the separation phenomenon. Comparisons between measured and applied side loads are made. Correlations relating the separation location to the applied side loads and the methods used to determine the separation location are given.

  6. A literature review of the effects of computer input device design on biomechanical loading and musculoskeletal outcomes during computer work.

    PubMed

    Bruno Garza, J L; Young, J G

    2015-01-01

    Extended use of conventional computer input devices is associated with negative musculoskeletal outcomes. While many alternative designs have been proposed, it is unclear whether these devices reduce biomechanical loading and musculoskeletal outcomes. To review studies describing and evaluating the biomechanical loading and musculoskeletal outcomes associated with conventional and alternative input devices. Included studies evaluated biomechanical loading and/or musculoskeletal outcomes of users' distal or proximal upper extremity regions associated with the operation of alternative input devices (pointing devices, mice, other devices) that could be used in a desktop personal computing environment during typical office work. Some alternative pointing device designs (e.g. rollerbar) were consistently associated with decreased biomechanical loading while other designs had inconsistent results across studies. Most alternative keyboards evaluated in the literature reduce biomechanical loading and musculoskeletal outcomes. Studies of other input devices (e.g. touchscreen and gestural controls) were rare, however, those reported to date indicate that these devices are currently unsuitable as replacements for traditional devices. Alternative input devices that reduce biomechanical loading may make better choices for preventing or alleviating musculoskeletal outcomes during computer use, however, it is unclear whether many existing designs are effective.

  7. Dual band new bisected-Π CRLH metamaterial cell loaded dipole antennas

    NASA Astrophysics Data System (ADS)

    Abdalla, M. A.; Ghouz, M. H.; Abo El-Dahab, M.

    2018-06-01

    In this paper, two different designs for new metamaterial loaded dipole antenna are presented. The designs are based on loading printed dipole antennas with modified versions of composite right left handed cells. Different objectives are intended for these new designs; which are achieving compact size, dual band functionalities and good gain of the loaded dipole antenna. The designed antennas can serve different wireless services for GPS (1.227 GHz and 1.57 GHz), Universal Telecommunications System (UMTS 1.9 GHz), and WiFi (2.4 GHz). The two presented antennas have gain whose values are better than 1.9 dB up to 3.5 dB at all operating frequencies. The designed loading has reduced the physical / electrical length of conventional dipole antenna by 25%. The theoretical analysis, circuit model, full wave simulations and experimental measurements of the reported antennas are introduced.

  8. Low-damage direct patterning of silicon oxide mask by mechanical processing

    PubMed Central

    2014-01-01

    To realize the nanofabrication of silicon surfaces using atomic force microscopy (AFM), we investigated the etching of mechanically processed oxide masks using potassium hydroxide (KOH) solution. The dependence of the KOH solution etching rate on the load and scanning density of the mechanical pre-processing was evaluated. Particular load ranges were found to increase the etching rate, and the silicon etching rate also increased with removal of the natural oxide layer by diamond tip sliding. In contrast, the local oxide pattern formed (due to mechanochemical reaction of the silicon) by tip sliding at higher load was found to have higher etching resistance than that of unprocessed areas. The profile changes caused by the etching of the mechanically pre-processed areas with the KOH solution were also investigated. First, protuberances were processed by diamond tip sliding at lower and higher stresses than that of the shearing strength. Mechanical processing at low load and scanning density to remove the natural oxide layer was then performed. The KOH solution selectively etched the low load and scanning density processed area first and then etched the unprocessed silicon area. In contrast, the protuberances pre-processed at higher load were hardly etched. The etching resistance of plastic deformed layers was decreased, and their etching rate was increased because of surface damage induced by the pre-processing. These results show that etching depth can be controlled by controlling the etching time through natural oxide layer removal and mechanochemical oxide layer formation. These oxide layer removal and formation processes can be exploited to realize low-damage mask patterns. PMID:24948891

  9. A design procedure for the phase-controlled parallel-loaded resonant inverter

    NASA Technical Reports Server (NTRS)

    King, Roger J.

    1989-01-01

    High-frequency-link power conversion and distribution based on a resonant inverter (RI) has been recently proposed. The design of several topologies is reviewed, and a simple approximate design procedure is developed for the phase-controlled parallel-loaded RI. This design procedure seeks to ensure the benefits of resonant conversion and is verified by data from a laboratory 2.5 kVA, 20-kHz converter. A simple phasor analysis is introduced as a useful approximation for design purposes. The load is considered to be a linear impedance (or an ac current sink). The design procedure is verified using a 2.5-kVA 20-kHz RI. Also obtained are predictable worst-case ratings for each component of the resonant tank circuit and the inverter switches. For a given load VA requirement, below-resonance operation is found to result in a significantly lower tank VA requirement. Under transient conditions such as load short-circuit, a reversal of the expected commutation sequence is possible.

  10. Controller design for wind turbine load reduction via multiobjective parameter synthesis

    NASA Astrophysics Data System (ADS)

    Hoffmann, A. F.; Weiβ, F. A.

    2016-09-01

    During the design process for a wind turbine load reduction controller many different, sometimes conflicting requirements must be fulfilled simultaneously. If the requirements can be expressed as mathematical criteria, such a design problem can be solved by a criterion-vector and multi-objective design optimization. The software environment MOPS (Multi-Objective Parameter Synthesis) supports the engineer for such a design optimization. In this paper MOPS is applied to design a multi-objective load reduction controller for the well-known DTU 10 MW reference wind turbine. A significant reduction in the fatigue criteria especially the blade damage can be reached by the use of an additional Individual Pitch Controller (IPC) and an additional tower damper. This reduction is reached as a trade-off with an increase of actuator load.

  11. An equilibrium-point model of electromyographic patterns during single-joint movements based on experimentally reconstructed control signals.

    PubMed

    Latash, M L; Goodman, S R

    1994-01-01

    The purpose of this work has been to develop a model of electromyographic (EMG) patterns during single-joint movements based on a version of the equilibrium-point hypothesis, a method for experimental reconstruction of the joint compliant characteristics, the dual-strategy hypothesis, and a kinematic model of movement trajectory. EMG patterns are considered emergent properties of hypothetical control patterns that are equally affected by the control signals and peripheral feedback reflecting actual movement trajectory. A computer model generated the EMG patterns based on simulated movement kinematics and hypothetical control signals derived from the reconstructed joint compliant characteristics. The model predictions have been compared to published recordings of movement kinematics and EMG patterns in a variety of movement conditions, including movements over different distances, at different speeds, against different-known inertial loads, and in conditions of possible unexpected decrease in the inertial load. Changes in task parameters within the model led to simulated EMG patterns qualitatively similar to the experimentally recorded EMG patterns. The model's predictive power compares it favourably to the existing models of the EMG patterns. Copyright © 1994. Published by Elsevier Ltd.

  12. Assessment of dynamic effects on aircraft design loads: The landing impact case

    NASA Astrophysics Data System (ADS)

    Bronstein, Michael; Feldman, Esther; Vescovini, Riccardo; Bisagni, Chiara

    2015-10-01

    This paper addresses the potential benefits due to a fully dynamic approach to determine the design loads of a mid-size business jet. The study is conducted by considering the fuselage midsection of the DAEDALOS aircraft model with landing impact conditions. The comparison is presented in terms of stress levels between the novel dynamic approach and the standard design practice based on the use of equivalent static loads. The results illustrate that a slight reduction of the load levels can be achieved, but careful modeling of the damping level is needed. Guidelines for an improved load definition are discussed, and suggestions for future research activities are provided.

  13. Recommendations to the NRC (Nuclear Regulatory Commission) for Review Criteria for Alternative Methods of Low-Level Radioactive Waste Disposal. Task 2A. Below-Ground Vaults.

    DTIC Science & Technology

    1988-01-01

    Settlements ........ 2.6-21 2.6.2.7.4.2 Total Settleme. t ... 2.6-21 2.6.2.7.4.3 Lateral Deformations ........ 2.6-22 2.6.2.7.5 Limits for Soil Loads and...otherwise specified, such as construction loads , etc. 2.1-2 F - Loads due to lateral and vertical pressure of incidental liquids. H - Loads due to lateral ...design loads , as well as forces and moments imposed by the continuity of the structural framing system. Columns should be designed to sustain all design

  14. The AMchip04 and the processing unit prototype for the FastTracker

    NASA Astrophysics Data System (ADS)

    Andreani, A.; Annovi, A.; Beretta, M.; Bogdan, M.; Citterio, M.; Alberti, F.; Giannetti, P.; Lanza, A.; Magalotti, D.; Piendibene, M.; Shochet, M.; Stabile, A.; Tang, J.; Tompkins, L.; Volpi, G.

    2012-08-01

    Modern experiments search for extremely rare processes hidden in much larger background levels. As the experiment`s complexity, the accelerator backgrounds and luminosity increase we need increasingly complex and exclusive event selection. We present the first prototype of a new Processing Unit (PU), the core of the FastTracker processor (FTK). FTK is a real time tracking device for the ATLAS experiment`s trigger upgrade. The computing power of the PU is such that a few hundred of them will be able to reconstruct all the tracks with transverse momentum above 1 GeV/c in ATLAS events up to Phase II instantaneous luminosities (3 × 1034 cm-2 s-1) with an event input rate of 100 kHz and a latency below a hundred microseconds. The PU provides massive computing power to minimize the online execution time of complex tracking algorithms. The time consuming pattern recognition problem, generally referred to as the ``combinatorial challenge'', is solved by the Associative Memory (AM) technology exploiting parallelism to the maximum extent; it compares the event to all pre-calculated ``expectations'' or ``patterns'' (pattern matching) simultaneously, looking for candidate tracks called ``roads''. This approach reduces to a linear behavior the typical exponential complexity of the CPU based algorithms. Pattern recognition is completed by the time data are loaded into the AM devices. We report on the design of the first Processing Unit prototypes. The design had to address the most challenging aspects of this technology: a huge number of detector clusters (``hits'') must be distributed at high rate with very large fan-out to all patterns (10 Million patterns will be located on 128 chips placed on a single board) and a huge number of roads must be collected and sent back to the FTK post-pattern-recognition functions. A network of high speed serial links is used to solve the data distribution problem.

  15. Associations of anthropometry since birth with sagittal posture at age 7 in a prospective birth cohort: the Generation XXI Study

    PubMed Central

    Lucas, Raquel; Simpkin, Andrew J; Heron, Jon; Alegrete, Nuno; Tilling, Kate; Howe, Laura D; Barros, Henrique

    2017-01-01

    Objectives Adult sagittal posture is established during childhood and adolescence. A flattened or hypercurved spine is associated with poorer musculoskeletal health in adulthood. Although anthropometry from birth onwards is expected to be a key influence on sagittal posture design, this has never been assessed during childhood. Our aim was to estimate the association between body size throughout childhood with sagittal postural patterns at age 7. Design Prospective cohort study. Setting and participants A subsample of 1029 girls and 1101 boys taking part in the 7-year-old follow-up of the birth cohort Generation XXI (Porto, Portugal) was included. We assessed the associations between anthropometric measurements (weight, height and body mass index) at birth, 4 and 7 years of age and postural patterns at age 7. Postural patterns were defined using latent profile analysis, a probabilistic model-based technique which allows for simultaneously including anthropometrics as predictors of latent profiles by means of logistic regression. Results Postural patterns identified were sway, flat and "neutral to hyperlordotic"in girls, and "sway to neutral", flat and hyperlordotic in boys; with flat and hyperlordotic postures representing a straightened and a rounded spine, respectively. In both girls and boys, higher weight was associated with lower odds of a flat pattern compared with a sway/"sway to neutral"pattern, with stronger associations at older ages: for example, ORs were 0.68 (95% CI 0.53 to 0.88) per SD increase in birth weight and 0.36 (95% CI 0.19 to 0.68) per SD increase in weight at age 7 in girls, with similar findings in boys. Boys with higher ponderal index at birth were more frequently assigned to the hyperlordotic pattern (OR=1.44 per SD; p=0.043). Conclusions Our findings support a prospective sculpting role of body size and therefore of load on musculoskeletal spinopelvic structures, with stronger associations as children get older. PMID:28751482

  16. Load to Failure and Stiffness

    PubMed Central

    Esquivel, Amanda O.; Duncan, Douglas D.; Dobrasevic, Nikola; Marsh, Stephanie M.; Lemos, Stephen E.

    2015-01-01

    Background: Rotator cuff tendinopathy is a frequent cause of shoulder pain that can lead to decreased strength and range of motion. Failures after using the single-row technique of rotator cuff repair have led to the development of the double-row technique, which is said to allow for more anatomical restoration of the footprint. Purpose: To compare 5 different types of suture patterns while maintaining equality in number of anchors. The hypothesis was that the Mason-Allen–crossed cruciform transosseous-equivalent technique is superior to other suture configurations while maintaining equality in suture limbs and anchors. Study Design: Controlled laboratory study. Methods: A total of 25 fresh-frozen cadaveric shoulders were randomized into 5 suture configuration groups: single-row repair with simple stitch technique; single-row repair with modified Mason-Allen technique; double-row Mason-Allen technique; double-row cross-bridge technique; and double-row suture bridge technique. Load and displacement were recorded at 100 Hz until failure. Stiffness and bone mineral density were also measured. Results: There was no significant difference in peak load at failure, stiffness, maximum displacement at failure, or mean bone mineral density among the 5 suture configuration groups (P < .05). Conclusion: According to study results, when choosing a repair technique, other factors such as number of sutures in the repair should be considered to judge the strength of the repair. Clinical Relevance: Previous in vitro studies have shown the double-row rotator cuff repair to be superior to the single-row repair; however, clinical research does not necessarily support this. This study found no difference when comparing 5 different repair methods, supporting research that suggests the number of sutures and not the pattern can affect biomechanical properties. PMID:26665053

  17. Shape-anchored porous polymer monoliths for integrated online solid-phase extraction-microchip electrophoresis-electrospray ionization mass spectrometry.

    PubMed

    Nordman, Nina; Barrios-Lopez, Brianda; Laurén, Susanna; Suvanto, Pia; Kotiaho, Tapio; Franssila, Sami; Kostiainen, Risto; Sikanen, Tiina

    2015-02-01

    We report a simple protocol for fabrication of shape-anchored porous polymer monoliths (PPMs) for on-chip SPE prior to online microchip electrophoresis (ME) separation and on-chip (ESI/MS). The chip design comprises a standard ME separation channel with simple cross injector and a fully integrated ESI emitter featuring coaxial sheath liquid channel. The monolith zone was prepared in situ at the injection cross by laser-initiated photopolymerization through the microchip cover layer. The use of high-power laser allowed not only maskless patterning of a precisely defined monolith zone, but also faster exposure time (here, 7 min) compared with flood exposure UV lamps. The size of the monolith pattern was defined by the diameter of the laser output (∅500 μm) and the porosity was geared toward high through-flow to allow electrokinetic actuation and thus avoid coupling to external pumps. Placing the monolith at the injection cross enabled firm anchoring based on its cross-shape so that no surface premodification with anchoring linkers was needed. In addition, sample loading and subsequent injection (elution) to the separation channel could be performed similar to standard ME setup. As a result, 15- to 23-fold enrichment factors were obtained already at loading (preconcentration) times as short as 25 s without sacrificing the throughput of ME analysis. The performance of the SPE-ME-ESI/MS chip was repeatable within 3.1% and 11.5% RSD (n = 3) in terms of migration time and peak height, respectively, and linear correlation was observed between the loading time and peak area. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Electrophoresis for genotyping: microtiter array diagonal gel electrophoresis on horizontal polyacrylamide gels, hydrolink, or agarose.

    PubMed

    Day, I N; Humphries, S E

    1994-11-01

    Electrophoresis of DNA has been performed traditionally in either an agarose or acrylamide gel matrix. Considerable effort has been directed to improved quality agaroses capable of high resolution, but for small fragments, such as those from polymerase chain reaction (PCR) and post-PCR digests, acrylamide still offers the highest resolution. Although agarose gels can easily be prepared in an open-faced format to gain the conveniences of horizontal electrophoresis, acrylamide does not polymerize in the presence of air and the usual configurations for gel preparation lead to electrophoresis in the vertical dimension. We describe here a very simple device and method to prepare and manipulate horizontal polyacrylamide gels (H-PAGE). In addition, the open-faced horizontal arrangement enables loading of arrays of wells. Since many procedures are undertaken in standard 96-well microtiter plates, we have also designed a device which preserves the exact configuration of the 8 x 12 array and enables electrophoresis in tracks following a 71.6 degrees diagonal between wells (MADGE, microtiter array diagonal gel electrophoresis), using either acrylamide or agarose. This eliminates almost all of the staff time taken in setup, loading, and recordkeeping and offers high resolution for genotyping pattern recognition. The nature and size of the gels allow direct stacking of gels in one tank, so that a tank used typically to analyze 30-60 samples can readily be used to analyze 1000-2000 samples. The gels would also enable robotic loading. Electrophoresis allows analysis of size and charge, parameters inaccessible to liquid-phase methods: thus, genotyping size patterns, variable length repeats, and haplotypes is possible, as well as adaptability to typing of point variations using protocols which create a difference detectable by electrophoresis.

  19. Collaborators and Communication Channels in Eight Patient-Centered Medical Homes.

    PubMed

    Chase, Dian A; Dorr, David A; Cohen, Deborah J; Ash, Joan S

    2017-01-01

    The patient-centered medical home (PCMH) concept requires collaboration among clinicians both within the medical home clinic, and outside the clinic. As we redesign health information technology (HIT) to support transformation to the PCMH, we need to better understand these collaboration patterns. This study provides quantitative data describing these collaborations in order to facilitate the design of systems to allow for more efficient collaboration. Eighty-four clinicians in eight clinics identified their two most recent significant collaborators - one each within the clinic and in the medical neighborhood. They also identified the communication channels used in these collaborations. We used k-means clustering to identify communication patterns. Within the clinic, half of the primary care providers (PCPs) identified a care manager as their most recent collaborator. Outside specialists were their most common external collaborators. Ninety-two percent of the non-PCP participants identified PCP's as their most recent internal collaborators. The best model for communication channel usage (p < .0001) had six clusters. In general, inside communications were more informal but outside collaborations were more often formal written communications (faxes, letters) or the exchange of electronic health record progress notes. But there were exceptions to these patterns and in many cases multiple channels were used for the same collaboration. Systems design (and redesign) needs to focus on reducing communications load and increasing communication effectiveness while maintaining flexibility.

  20. Interconnect patterns for printed organic thermoelectric devices with large fill factors

    NASA Astrophysics Data System (ADS)

    Gordiz, Kiarash; Menon, Akanksha K.; Yee, Shannon K.

    2017-09-01

    Organic materials can be printed into thermoelectric (TE) devices for low temperature energy harvesting applications. The output voltage of printed devices is often limited by (i) small temperature differences across the active materials attributed to small leg lengths and (ii) the lower Seebeck coefficient of organic materials compared to their inorganic counterparts. To increase the voltage, a large number of p- and n-type leg pairs is required for organic TEs; this, however, results in an increased interconnect resistance, which then limits the device output power. In this work, we discuss practical concepts to address this problem by positioning TE legs in a hexagonal closed-packed layout. This helps achieve higher fill factors (˜91%) than conventional inorganic devices (˜25%), which ultimately results in higher voltages and power densities due to lower interconnect resistances. In addition, wiring the legs following a Hilbert spacing-filling pattern allows for facile load matching to each application. This is made possible by leveraging the fractal nature of the Hilbert interconnect pattern, which results in identical sub-modules. Using the Hilbert design, sub-modules can better accommodate non-uniform temperature distributions because they naturally self-localize. These device design concepts open new avenues for roll-to-roll printing and custom TE module shapes, thereby enabling organic TE modules for self-powered sensors and wearable electronic applications.

  1. Polyethylene damage and deformation on fixed-bearing, non-conforming unicondylar knee replacements corresponding to progressive changes in alignment and fixation.

    PubMed

    Harman, Melinda K; Schmitt, Sabine; Rössing, Sven; Banks, Scott A; Sharf, Hans-Peter; Viceconti, Marco; Hodge, W Andrew

    2010-07-01

    Deviations from nominal alignment of unicondylar knee replacements impact knee biomechanics, including the load and stress distribution at the articular contact surfaces. This study characterizes relationships between the biomechanical environment, distinguished by progressive changes in alignment and fixation, and articular damage and deformation in a consecutive series of retrieved unicondylar knee replacements. Twenty seven fixed-bearing, non-conforming unicondylar knee replacements of one design were retrieved after 2 to 13 years of in vivo function. The in vivo biomechanical environment was characterized by grading component migration measured from full-length radiographs and grading component fixation based on intraoperative manual palpation. Articular damage patterns and linear deformation on the polyethylene inserts were measured using optical photogrammetry and contact point digitization. Articular damage patterns and surface deformation on the explanted polyethylene inserts corresponded to progressive changes in component alignment and fixation. Component migration produced higher deformation rates, whereas loosening contributed to larger damage areas but lower deformation rates. Migration and loosening of the femoral component, but not the tibial component, were factors contributing to large regions of abrasion concentrated on the articular periphery. Classifying component migration and fixation at revision proved useful for distinguishing common biomechanical conditions associated with the varied polyethylene damage patterns and linear deformation for this fixed-bearing, non-conforming design. Pre-clinical evaluations of unicondylar knee replacements that are capable of reproducing variations in clinical alignment and predicting the observed wear mechanisms are necessary to better understand the impact of knee biomechanics and design on unicondylar knee replacement longevity. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Performance of a novel two-phase continuously fed leach bed reactor for demand-based biogas production from maize silage.

    PubMed

    Linke, Bernd; Rodríguez-Abalde, Ángela; Jost, Carsten; Krieg, Andreas

    2015-02-01

    This study investigated the potential of producing biogas on demand from maize silage using a novel two-phase continuously fed leach bed reactor (LBR) which is connected to an anaerobic filter (AF). Six different feeding patterns, each for 1week, were studied at a weekly average of a volatile solids (VS) loading rate of 4.5 g L(-1) d(-1) and a temperature of 38°C. Methane production from the LBR and AF responded directly proportional to the VS load from the different daily feeding and resulted in an increase up to 50-60% per day, compared to constant feeding each day. The feeding patterns had no impact on VS methane yield which corresponded on average to 330 L kg(-1). In spite of some daily shock loadings, carried out during the different feeding patterns study, the reactor performance was not affected. A robust and reliable biogas production from stalky biomass was demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Lower Extremity Biomechanics and Self-Reported Foot-Strike Patterns Among Runners in Traditional and Minimalist Shoes.

    PubMed

    Goss, Donald L; Lewek, Michael; Yu, Bing; Ware, William B; Teyhen, Deydre S; Gross, Michael T

    2015-06-01

    The injury incidence rate among runners is approximately 50%. Some individuals have advocated using an anterior-foot-strike pattern to reduce ground reaction forces and injury rates that they attribute to a rear-foot-strike pattern. The proportion of minimalist shoe wearers who adopt an anterior-foot-strike pattern remains unclear. To evaluate the accuracy of self-reported foot-strike patterns, compare negative ankle- and knee-joint angular work among runners using different foot-strike patterns and wearing traditional or minimalist shoes, and describe average vertical-loading rates. Descriptive laboratory study. Research laboratory. A total of 60 healthy volunteers (37 men, 23 women; age = 34.9 ± 8.9 years, height = 1.74 ± 0.08 m, mass = 70.9 ± 13.4 kg) with more than 6 months of experience wearing traditional or minimalist shoes were instructed to classify their foot-strike patterns. Participants ran in their preferred shoes on an instrumented treadmill with 3-dimensional motion capture. Self-reported foot-strike patterns were compared with 2-dimensional video assessments. Runners were classified into 3 groups based on video assessment: traditional-shoe rear-foot strikers (TSR; n = 22), minimalist-shoe anterior-foot strikers (MSA; n = 21), and minimalist-shoe rear-foot strikers (MSR; n = 17). Ankle and knee negative angular work and average vertical-loading rates during stance phase were compared among groups. Only 41 (68.3%) runners reported foot-strike patterns that agreed with the video assessment (κ = 0.42, P < .001). The TSR runners demonstrated greater ankle-dorsiflexion and knee-extension negative work than MSA and MSR runners (P < .05). The MSA (P < .001) and MSR (P = .01) runners demonstrated greater ankle plantar-flexion negative work than TSR runners. The MSR runners demonstrated a greater average vertical-loading rate than MSA and TSR runners (P < .001). Runners often cannot report their foot-strike patterns accurately and may not automatically adopt an anterior-foot-strike pattern after transitioning to minimalist running shoes.

  4. A Computer Based Moire Technique To Measure Very Small Displacements

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.; Amadshahi, Mansour A.; Subbaraman, B.

    1987-02-01

    The accuracy that can be achieved in the measurement of very small displacements in techniques such as moire, holography and speckle is limited by the noise inherent to the utilized optical devices. To reduce the noise to signal ratio, the moire method can be utilized. Two system of carrier fringes are introduced, an initial system before the load is applied and a final system when the load is applied. The moire pattern of these two systems contains the sought displacement information and the noise common to the two patterns is eliminated. The whole process is performed by a computer on digitized versions of the patterns. Examples of application are given.

  5. Infrared Ship Classification Using A New Moment Pattern Recognition Concept

    NASA Astrophysics Data System (ADS)

    Casasent, David; Pauly, John; Fetterly, Donald

    1982-03-01

    An analysis of the statistics of the moments and the conventional invariant moments shows that the variance of the latter become quite large as the order of the moments and the degree of invariance increases. Moreso, the need to whiten the error volume increases with the order and degree, but so does the computational load associated with computing the whitening operator. We thus advance a new estimation approach to the use of moments in pattern recog-nition that overcomes these problems. This work is supported by experimental verification and demonstration on an infrared ship pattern recognition problem. The computational load associated with our new algorithm is also shown to be very low.

  6. Fracture of Structural Materials under Dynamic Loading

    DTIC Science & Technology

    1981-03-25

    in character- izing the dynamic fracture resistance of materials, and in designing equipment and procedures for measuring dynamic fracture toughness...useful in assessing the safety of structures under dynamic loads, in characterizing the dyraamic fracture resistance of materials, and in designing ...I INTRODUCTION Structures used by the United States Air Force must be designed to resist catastrophic fracture when subjected ti dynamic loads. For

  7. Anti-buckling design of variable stiffness composite cylinder under combined loading based on the multi-objective optimization method

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Chen, J.

    2018-06-01

    Variable stiffness composite structures take full advantages of composite’s design ability. An enlarged design space will make the structure’s performance more excellent. Through an optimal design of a variable stiffness cylinder, the buckling capacity of the cylinder will be increased as compared with its constant stiffness counterpart. In this paper, variable stiffness composite cylinders sustaining combined loadings are considered, and the optimization is conducted based on the multi-objective optimization method. The results indicate that variable stiffness cylinder’s loading capacity is increased significantly as compared with the constant stiffness, especially when an inhomogeneous loading is considered.

  8. Real-time polarization imaging algorithm for camera-based polarization navigation sensors.

    PubMed

    Lu, Hao; Zhao, Kaichun; You, Zheng; Huang, Kaoli

    2017-04-10

    Biologically inspired polarization navigation is a promising approach due to its autonomous nature, high precision, and robustness. Many researchers have built point source-based and camera-based polarization navigation prototypes in recent years. Camera-based prototypes can benefit from their high spatial resolution but incur a heavy computation load. The pattern recognition algorithm in most polarization imaging algorithms involves several nonlinear calculations that impose a significant computation burden. In this paper, the polarization imaging and pattern recognition algorithms are optimized through reduction to several linear calculations by exploiting the orthogonality of the Stokes parameters without affecting precision according to the features of the solar meridian and the patterns of the polarized skylight. The algorithm contains a pattern recognition algorithm with a Hough transform as well as orientation measurement algorithms. The algorithm was loaded and run on a digital signal processing system to test its computational complexity. The test showed that the running time decreased to several tens of milliseconds from several thousand milliseconds. Through simulations and experiments, it was found that the algorithm can measure orientation without reducing precision. It can hence satisfy the practical demands of low computational load and high precision for use in embedded systems.

  9. In vitro validation of a shape-optimized fiber-reinforced dental bridge.

    PubMed

    Chen, YungChung; Li, Haiyan; Fok, Alex

    2011-12-01

    To improve its mechanical performance, structural optimization had been used in a previous study to obtain an alternative design for a 3-unit inlay-retained fiber-reinforced composite (FRC) dental bridge. In that study, an optimized layout of the FRC substructure had been proposed to minimize stresses in the veneering composite and interfacial stresses between the composite and substructure. The current work aimed to validate in vitro the improved fracture resistance of the optimized design. All samples for the 3-unit inlay-retained FRC dental bridge were made with glass-fibers (FibreKor) as the substructure, surrounded by a veneering composite (GC Gradia). Two different FRC substructure designs were prepared: a conventional (n=20) and an optimized design (n=21). The conventional design was a straight beam linking one proximal box to the other, while the optimized design was a curved beam following the lower outline of the pontic. All samples were loaded to 400N on a universal test machine (MTS 810) with a loading speed of 0.2mm/min. During loading, the force and displacement were recorded. Meanwhile, a two-channel acoustic emission (AE) system was used to monitor the development of cracks during loading. The load-displacement curves of the two groups displayed significant differences. For the conventional design, there were numerous drops in load corresponding to local damage of the sample. For the optimized design, the load curves were much smoother. Cracks were clearly visible on the surface of the conventional group only, and the directions of those cracks were perpendicular to those of the most tensile stresses. Results from the more sensitive AE measurement also showed that the optimized design had, on average, fewer cracking events: 38 versus 2969 in the conventional design. The much lower number of AE events and smoother load-displacement curves indicated that the optimized FRC bridge design had a higher fracture resistance. It is expected that the optimized design will significantly improve the clinical performance of FRC bridges. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Development of implant loading device for animal study about various loading protocol: a pilot study

    PubMed Central

    Yoon, Joon-Ho; Park, Young-Bum; Cho, Yuna; Kim, Chang-Sung; Choi, Seong-Ho; Moon, Hong-Seok; Lee, Keun-Woo

    2012-01-01

    PURPOSE The aims of this pilot study were to introduce implant loading devices designed for animal study and to evaluate the validity of the load transmission ability of the loading devices. MATERIALS AND METHODS Implant loading devices were specially designed and fabricated with two implant abutments and cast metal bars, and orthodontic expansion screw. In six Beagles, all premolars were extracted and two implants were placed in each side of the mandibles. The loading device was inserted two weeks after the implant placement. According to the loading protocol, the load was applied to the implants with different time and method,simulating early, progressive, and delayed loading. The implants were clinically evaluated and the loading devices were removed and replaced to the master cast, followed by stress-strain analysis. Descriptive statistics of remained strain (µε) was evaluated after repeating three cycles of the loading device activation. Statistic analysis was performed using nonparametric, independent t-test with 5% significance level and Friedman's test was also used for verification. RESULTS The loading devices were in good action. However, four implants in three Beagles showed loss of osseointegration. In stress-strain analysis, loading devices showed similar amount of increase in the remained strain after applying 1-unit load for three times. CONCLUSION Specialized design of the implant loading device was introduced. The loading device applied similar amount of loads near the implant after each 1-unit loading. However, the direction of the loads was not parallel to the long axis of the implants as predicted before the study. PMID:23236575

  11. Design and reliability of a MEMS thermal rotary actuator.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Michael Sean; Corwin, Alex David

    2007-09-01

    A new rotary MEMS actuator has been developed and tested at Sandia National Laboratories that utilizes a linear thermal actuator as the drive mechanism. This actuator was designed to be a low-voltage, high-force alternative to the existing electrostatic torsional ratcheting actuator (TRA) [1]. The new actuator, called the Thermal Rotary Actuator (ThRA), is conceptually much simpler than the TRA and consists of a gear on a hub that is turned by a linear thermal actuator [2] positioned outside of the gear. As seen in Figure 1, the gear is turned through a ratcheting pawl, with anti-reverse pawls positioned around themore » gear for unidirectional motion (see Figure 1). A primary consideration in the design of the ThRA was the device reliability and in particular, the required one-to-one relationship between the ratcheting output motion and the electrical input signal. The electrostatic TRA design has been shown to both over-drive and under-drive relative to the number of input pulses [3]. Two different ThRA designs were cycle tested to measure the skip rate. This was done in an automated test setup by using pattern matching to measure the angle of rotation of the output gear after a defined number of actuation pulses. By measuring this gear angle over time, the number of skips can be determined. Figure 2 shows a picture of the ThRA during testing, with the pattern-matching features highlighted. In the first design tested, it was found that creep in the thermal actuator limited the number of skip-free cycles, as the rest position of the actuator would creep forward enough to prevent the counter-rotation pawls from fully engaging (Figure 3). Even with this limitation, devices were measured with up to 100 million cycles with no skipping. A design modification was made to reduce the operating temperature of the thermal actuator which has been shown in a previous study [2] to reduce the creep rate. In addition, changes were made to the drive ratchet design and actuation direction to increase the available output force. This new design was tested and shown to operate in one case out to greater than 360 million cycles without any skipping, after which the test was stopped without failure. The output force was also measured as a function of input voltage (Figure 4), and shown to be higher than the previous design. The maximum force shown in the figure is a limit of the gauge used, not the actuator itself. Continued work for this design will focus on understanding the actuator performance while driving a load, as all current tests were performed with no load on the output gear.« less

  12. Improving the Quality of Online Discussion: The Effects of Strategies Designed Based on Cognitive Load Theory Principles

    ERIC Educational Resources Information Center

    Darabi, Aubteen; Jin, Li

    2013-01-01

    This article focuses on heavy cognitive load as the reason for the lack of quality associated with conventional online discussion. Using the principles of cognitive load theory, four online discussion strategies were designed specifically aiming at reducing the discussants' cognitive load and thus enhancing the quality of their online discussion.…

  13. The ASTRO-1 preliminary design review coupled load analysis

    NASA Technical Reports Server (NTRS)

    Mcghee, D. S.

    1984-01-01

    Results of the ASTRO-1 preliminary design review coupled loads analysis are presented. The M6.0Y Generic Shuttle mathematical models were used. Internal accelerations, interface forces, relative displacements, and net e.g., accelerations were recovered for two ASTRO-1 payloads in a tandem configuration. Twenty-seven load cases were computed and summarized. Load exceedences were found and recommendations made.

  14. Analysis and Design of the NASA Langley Cryogenic Pressure Box

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Stevens, Jonathan C.; Vause, R. Frank; Winn, Peter M.; Maguire, James F.; Driscoll, Glenn C.; Blackburn, Charles L.; Mason, Brian H.

    1999-01-01

    A cryogenic pressure box was designed and fabricated for use at NASA Langley Research Center (LaRC) to subject 72 in. x 60 in. curved panels to cryogenic temperatures and biaxial tensile loads. The cryogenic pressure box is capable of testing curved panels down to -423 F (20K) with 54 psig maximum pressure on the concave side, and elevated temperatures and atmospheric pressure on the convex surface. The internal surface of the panel is cooled by high pressure helium as that is cooled to -423 F by liquid helium heat exchangers. An array of twelve independently controlled fans circulate the high pressure gaseous helium to provide uniform cooling on the panel surface. The load introduction structure, consisting of four stainless steel load plates and numerous fingers attaching the load plates to the test panel, is designed to introduce loads into the test panel that represent stresses that will he observed in the actual tank structure. The load plates are trace cooled with liquid nitrogen to reduce thermal gradients that may result in bending the load plates, and thus additional stresses in the test panel. The design of the cryogenic systems, load introduction structure, and control system are discussed in this report.

  15. Changes in frontal plane dynamics and the loading response phase of the gait cycle are characteristic of severe knee osteoarthritis application of a multidimensional analysis technique.

    PubMed

    Astephen, J L; Deluzio, K J

    2005-02-01

    Osteoarthritis of the knee is related to many correlated mechanical factors that can be measured with gait analysis. Gait analysis results in large data sets. The analysis of these data is difficult due to the correlated, multidimensional nature of the measures. A multidimensional model that uses two multivariate statistical techniques, principal component analysis and discriminant analysis, was used to discriminate between the gait patterns of the normal subject group and the osteoarthritis subject group. Nine time varying gait measures and eight discrete measures were included in the analysis. All interrelationships between and within the measures were retained in the analysis. The multidimensional analysis technique successfully separated the gait patterns of normal and knee osteoarthritis subjects with a misclassification error rate of <6%. The most discriminatory feature described a static and dynamic alignment factor. The second most discriminatory feature described a gait pattern change during the loading response phase of the gait cycle. The interrelationships between gait measures and between the time instants of the gait cycle can provide insight into the mechanical mechanisms of pathologies such as knee osteoarthritis. These results suggest that changes in frontal plane loading and alignment and the loading response phase of the gait cycle are characteristic of severe knee osteoarthritis gait patterns. Subsequent investigations earlier in the disease process may suggest the importance of these factors to the progression of knee osteoarthritis.

  16. Short-term forecasts gain in accuracy. [Regression technique using ''Box-Jenkins'' analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Box-Jenkins time-series models offer accuracy for short-term forecasts that compare with large-scale macroeconomic forecasts. Utilities need to be able to forecast peak demand in order to plan their generating, transmitting, and distribution systems. This new method differs from conventional models by not assuming specific data patterns, but by fitting available data into a tentative pattern on the basis of auto-correlations. Three types of models (autoregressive, moving average, or mixed autoregressive/moving average) can be used according to which provides the most appropriate combination of autocorrelations and related derivatives. Major steps in choosing a model are identifying potential models, estimating the parametersmore » of the problem, and running a diagnostic check to see if the model fits the parameters. The Box-Jenkins technique is well suited for seasonal patterns, which makes it possible to have as short as hourly forecasts of load demand. With accuracy up to two years, the method will allow electricity price-elasticity forecasting that can be applied to facility planning and rate design. (DCK)« less

  17. Layers: A molecular surface peeling algorithm and its applications to analyze protein structures

    PubMed Central

    Karampudi, Naga Bhushana Rao; Bahadur, Ranjit Prasad

    2015-01-01

    We present an algorithm ‘Layers’ to peel the atoms of proteins as layers. Using Layers we show an efficient way to transform protein structures into 2D pattern, named residue transition pattern (RTP), which is independent of molecular orientations. RTP explains the folding patterns of proteins and hence identification of similarity between proteins is simple and reliable using RTP than with the standard sequence or structure based methods. Moreover, Layers generates a fine-tunable coarse model for the molecular surface by using non-random sampling. The coarse model can be used for shape comparison, protein recognition and ligand design. Additionally, Layers can be used to develop biased initial configuration of molecules for protein folding simulations. We have developed a random forest classifier to predict the RTP of a given polypeptide sequence. Layers is a standalone application; however, it can be merged with other applications to reduce the computational load when working with large datasets of protein structures. Layers is available freely at http://www.csb.iitkgp.ernet.in/applications/mol_layers/main. PMID:26553411

  18. Non-medical use of prescription drugs and its association with socio-demographic characteristics, dietary pattern, and perceived academic load and stress in college students in Puerto Rico.

    PubMed

    Betancourt, Jesmari; Ríos, Josué L; Pagán, Ideliz; Fabián, Carla; González, Anaisa M; Cruz, Sonia Y; González, Michael J; Rivera, Winna T; Palacios, Cristina

    2013-06-01

    Stress can have deleterious effects on health and academic performance. Common stress-relieving activities among college students include the non-medical use of prescription drugs (NMUPD). The aim of this study was to determine the associations between self-perceived academic load and stress, NMUPD (stimulants, depressants, and sleeping medication), and dietary pattern in college students in PR. A questionnaire to evaluate academic load and stress, NMUPD, and dietary pattern was used on a representative sample of 275 first- and second-year students from one campus. In total, 27.6% reported NMUPD in the past 6 months, with higher use among students aged 21-30 years (93.4%) than in those aged 31-53 years (6.6%; p=0.062). Those with high levels of stress had higher NMUPD (42.1%) than did those with low (26.3%) or moderate (31.6%) stress levels, after controlling for age and sex (p=0.03). Among those who reported NMUPD over the previous 6 months, 74% reported that such use was effective as a coping strategy, and 35% reported that it helped them to improve academic performance. Although no significant association was found between NMUPD and dietary pattern, 57% of the participants reported that their appetites decreased when they engaged in NMUPD. To our knowledge, this is the first study that has associated self-perceived academic load and stress, NMUPD, and dietary pattern among college students in Puerto Rico. NMUPD's prevalence was 27.6%, which prevalence appeared to be higher in students aged 21-30 years than in those of any other age. High levels of stress were significantly related to high NMUPD in this sample.

  19. A 100-kW metal wind turbine blade basic data, loads and stress analysis

    NASA Technical Reports Server (NTRS)

    Cherritt, A. W.; Gaidelis, J. A.

    1975-01-01

    A rotor loads computer program was used to define the steady state and cyclic loads acting on 60 ft long metal blades designed for the ERDA/NASA 100 kW wind turbine. Blade load and stress analysis used to support the structural design are presented. For the loading conditions examined, the metal blades are structurally adequate for use, within the normal operating range, as part of the wind turbine system.

  20. Numerical verification of two-component dental implant in the context of fatigue life for various load cases.

    PubMed

    Szajek, Krzysztof; Wierszycki, Marcin

    2016-01-01

    Dental implant designing is a complex process which considers many limitations both biological and mechanical in nature. In earlier studies, a complete procedure for improvement of two-component dental implant was proposed. However, the optimization tasks carried out required assumption on representative load case, which raised doubts on optimality for the other load cases. This paper deals with verification of the optimal design in context of fatigue life and its main goal is to answer the question if the assumed load scenario (solely horizontal occlusal load) leads to the design which is also "safe" for oblique occlussal loads regardless the angle from an implant axis. The verification is carried out with series of finite element analyses for wide spectrum of physiologically justified loads. The design of experiment methodology with full factorial technique is utilized. All computations are done in Abaqus suite. The maximal Mises stress and normalized effective stress amplitude for various load cases are discussed and compared with the assumed "safe" limit (equivalent of fatigue life for 5e6 cycles). The obtained results proof that coronial-appical load component should be taken into consideration in the two component dental implant when fatigue life is optimized. However, its influence in the analyzed case is small and does not change the fact that the fatigue life improvement is observed for all components within whole range of analyzed loads.

  1. 7 CFR 1724.51 - Design requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., galloping or conductor separation, design loads, structure strength limitations, insulator selection and design, guying requirements, and vibration considerations. For lines composed of steel or concrete poles, or steel towers, in which load information will be used to purchase the structures, the design data...

  2. 7 CFR 1724.51 - Design requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., galloping or conductor separation, design loads, structure strength limitations, insulator selection and design, guying requirements, and vibration considerations. For lines composed of steel or concrete poles, or steel towers, in which load information will be used to purchase the structures, the design data...

  3. 7 CFR 1724.51 - Design requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., galloping or conductor separation, design loads, structure strength limitations, insulator selection and design, guying requirements, and vibration considerations. For lines composed of steel or concrete poles, or steel towers, in which load information will be used to purchase the structures, the design data...

  4. Reliability-based evaluation of bridge components for consistent safety margins.

    DOT National Transportation Integrated Search

    2010-10-01

    The Load and Resistant Factor Design (LRFD) approach is based on the concept of structural reliability. The approach is more : rational than the former design approaches such as Load Factor Design or Allowable Stress Design. The LRFD Specification fo...

  5. A review of ion and metal pollutants in urban green water infrastructures.

    PubMed

    Kabir, Md Imran; Daly, Edoardo; Maggi, Federico

    2014-02-01

    In urban environments, the breakdown of chemicals and pollutants, especially ions and metal compounds, can be favoured by green water infrastructures (GWIs). The overall aim of this review is to set the basis to model GWIs using deterministic approaches in contrast to empirical ones. If a better picture of chemicals and pollutant input and an improved understanding of hydrological and biogeochemical processes affecting these pollutants were known, GWIs could be designed to efficiently retain these pollutants for site-specific meteorological patterns and pollutant load. To this end, we surveyed the existing literature to retrieve a comprehensive dataset of anions and cations, and alkaline and transition metal pollutants incoming to urban environments. Based on this survey, we assessed the pollution load and ecological risk indexes for metals. The existing literature was then surveyed to review the metal retention efficiency of GWIs, and possible biogeochemical processes related to inorganic metal compounds were proposed that could be integrated in biogeochemical models of GWIs. © 2013.

  6. Visual scanning behavior and pilot workload

    NASA Technical Reports Server (NTRS)

    Tole, J. R.; Stephens, A. T.; Vivaudou, M.; Ephrath, A. R.; Young, L. R.

    1983-01-01

    Sophisticated man machine interaction often requires the human operator to perform a stereotyped scan of various instruments in order to monitor and/or control a system. For situations in which this type of stereotyped behavior exists, such as certain phases of instrument flight, scan pattern was shown to be altered by the imposition of simultaneous verbal tasks. A study designed to examine the relationship between pilot visual scan of instruments and mental workload is described. It was found that a verbal loading task of varying difficulty causes pilots to stare at the primary instrument as the difficulty increases and to shed looks at instruments of less importance. The verbal loading task also affected the rank ordering of scanning sequences. By examining the behavior of pilots with widely varying skill levels, it was suggested that these effects occur most strongly at lower skill levels and are less apparent at high skill levels. A graphical interpretation of the hypothetical relationship between skill, workload, and performance is introduced and modelling results are presented to support this interpretation.

  7. Isolating Age-Group Differences in Working Memory Load-Related Neural Activity: Assessing the Contribution of Working Memory Capacity Using a Partial-Trial fMRI Method

    PubMed Central

    Bennett, Ilana J.; Rivera, Hannah G.; Rypma, Bart

    2013-01-01

    Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. PMID:23357076

  8. Selective impairment of auditory selective attention under concurrent cognitive load.

    PubMed

    Dittrich, Kerstin; Stahl, Christoph

    2012-06-01

    Load theory predicts that concurrent cognitive load impairs selective attention. For visual stimuli, it has been shown that this impairment can be selective: Distraction was specifically increased when the stimulus material used in the cognitive load task matches that of the selective attention task. Here, we report four experiments that demonstrate such selective load effects for auditory selective attention. The effect of two different cognitive load tasks on two different auditory Stroop tasks was examined, and selective load effects were observed: Interference in a nonverbal-auditory Stroop task was increased under concurrent nonverbal-auditory cognitive load (compared with a no-load condition), but not under concurrent verbal-auditory cognitive load. By contrast, interference in a verbal-auditory Stroop task was increased under concurrent verbal-auditory cognitive load but not under nonverbal-auditory cognitive load. This double-dissociation pattern suggests the existence of different and separable verbal and nonverbal processing resources in the auditory domain.

  9. Design and fabrication of composite wing panels containing a production splice

    NASA Technical Reports Server (NTRS)

    Reed, D. L.

    1975-01-01

    Bolted specimens representative of both upper and lower wing surface splices of a transport aircraft were designed and manufactured for static and random load tension and compression fatigue testing including ground-air-ground load reversals. The specimens were fabricated with graphite-epoxy composite material. Multiple tests were conducted at various load levels and the results were used as input to a statistical wearout model. The statically designed specimens performed very well under highly magnified fatigue loadings. Two large panels, one tension and compression, were fabricated for testing by NASA-LRC.

  10. Fast reactor core concepts to improve transmutation efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi

    Fast Reactor (FR) core concepts to improve transmutation efficiency were conducted. A heterogeneous MA loaded core was designed based on the 1000MWe-ABR breakeven core. The heterogeneous MA loaded core with Zr-H loaded moderated targets had a better transmutation performance than the MA homogeneous loaded core. The annular pellet rod design was proposed as one of the possible design options for the MA target. It was shown that using annular pellet MA rods mitigates the self-shielding effect in the moderated target so as to enhance the transmutation rate.

  11. Prediction of contact mechanics in metal-on-metal Total Hip Replacement for parametrically comprehensive designs and loads.

    PubMed

    Donaldson, Finn E; Nyman, Edward; Coburn, James C

    2015-07-16

    Manufacturers and investigators of Total Hip Replacement (THR) bearings require tools to predict the contact mechanics resulting from diverse design and loading parameters. This study provides contact mechanics solutions for metal-on-metal (MoM) bearings that encompass the current design space and could aid pre-clinical design optimization and evaluation. Stochastic finite element (FE) simulation was used to calculate the head-on-cup contact mechanics for five thousand combinations of design and loading parameters. FE results were used to train a Random Forest (RF) surrogate model to rapidly predict the contact patch dimensions, contact area, pressures and plastic deformations for arbitrary designs and loading. In addition to widely observed polar and edge contact, FE results included ring-polar, asymmetric-polar, and transitional categories which have previously received limited attention. Combinations of design and load parameters associated with each contact category were identified. Polar contact pressures were predicted in the range of 0-200 MPa with no permanent deformation. Edge loading (with subluxation) was associated with pressures greater than 500 MPa and induced permanent deformation in 83% of cases. Transitional-edge contact (with little subluxation) was associated with intermediate pressures and permanent deformation in most cases, indicating that, even with ideal anatomical alignment, bearings may face extreme wear challenges. Surrogate models were able to accurately predict contact mechanics 18,000 times faster than FE analyses. The developed surrogate models enable rapid prediction of MoM bearing contact mechanics across the most comprehensive range of loading and designs to date, and may be useful to those performing bearing design optimization or evaluation. Published by Elsevier Ltd.

  12. Ergonomic design and evaluation of new surgical scissors.

    PubMed

    Shimomura, Yoshihiro; Shirakawa, Hironori; Sekine, Masashi; Katsuura, Tetsuo; Igarashi, Tatsuo

    2015-01-01

    The purpose of this study is to design a new surgical scissors handle and determine its effectiveness with various usability indices. A new scissors handle was designed that retains the professional grip but has the shapes of the eye rings modified to fit the thumb and ring finger and finger rests for the index and little finger. The newly designed scissors and traditional scissors were compared by electromyography, subjective evaluation and task performance in experiments using cutting and peeling tasks. The newly designed scissors reduced muscle load in both hand during cutting by the closing action, and reduced the muscle load in the left hand during peeling by the opening action through active use of the right hand. In evaluation by surgeons, task performance improved in addition to the decrease in muscle load. The newly designed scissors used in this study demonstrated high usability. A new scissors handle was designed that has the eye rings modified to fit the thumb and ring finger. The newly designed scissors reduced muscle load and enabled active use of the right hand. In evaluation by surgeons, task performance improved in addition to the decrease in muscle load.

  13. Regenerative biomaterials that "click": simple, aqueous-based protocols for hydrogel synthesis, surface immobilization, and 3D patterning.

    PubMed

    Nimmo, Chelsea M; Shoichet, Molly S

    2011-11-16

    The click chemistry era has generated a library of versatile "spring-loaded" reactions that offer high yields, regio- and stereospecificity, and outstanding functional group tolerance. These powerful transformations are particularly advantageous for the design of sophisticated biomaterials that require high levels of precision and control, namely, materials that promote tissue regeneration such as hydrogels, 2D functionalized substrates, and 3D biomimetic scaffolds. In this review, the synthesis and application of regenerative biomaterials via click chemistry are summarized. Particular emphasis is placed on the copper(I)-catalyzed alkyne-azide cycloaddition, Diels-Alder cycloadditions, and thiol-click coupling.

  14. Smart integrated microsystems: the energy efficiency challenge (Conference Presentation) (Plenary Presentation)

    NASA Astrophysics Data System (ADS)

    Benini, Luca

    2017-06-01

    The "internet of everything" envisions trillions of connected objects loaded with high-bandwidth sensors requiring massive amounts of local signal processing, fusion, pattern extraction and classification. From the computational viewpoint, the challenge is formidable and can be addressed only by pushing computing fabrics toward massive parallelism and brain-like energy efficiency levels. CMOS technology can still take us a long way toward this goal, but technology scaling is losing steam. Energy efficiency improvement will increasingly hinge on architecture, circuits, design techniques such as heterogeneous 3D integration, mixed-signal preprocessing, event-based approximate computing and non-Von-Neumann architectures for scalable acceleration.

  15. Alternative analyses of locomotive structural designs for crashworthiness

    DOT National Transportation Integrated Search

    2000-01-01

    Enhanced crashworthiness performance of North American locomotives is proposed by both increasing the design loads on specific structural components or by describing the crashworthiness performance under specific impact conditions. The design loads f...

  16. Design and Testing of a Fast, 50 kV Solid-State Kicker Pulser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, E G; Hickman, B C; Lee, B S

    2002-06-24

    The ability to extract particle beam bunches from a ring accelerator in arbitrary order can greatly extend an accelerator's capabilities and applications. A prototype solid-state kicker pulser capable of generating asynchronous bursts of 50 kV pulses has been designed and tested into a 50{Omega} load. The pulser features fast rise and fall times and is capable of generating an arbitrary pattern of pulses with a maximum burst frequency exceeding 5 MHz If required, the pulse-width of each pulse in the burst is independently adjustable. This kicker modulator uses multiple solid-state modules stacked in an inductive-adder configuration where the energy ismore » switched into each section of the adder by a parallel array of MOSFETs. Test data, capabilities, and limitations of the prototype pulser are described.« less

  17. A Method to Analyze and Optimize the Load Sharing of Split Path Transmissions

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.

    1996-01-01

    Split-path transmissions are promising alternatives to the common planetary transmissions for rotorcraft. Heretofore, split-path designs proposed for or used in rotorcraft have featured load-sharing devices that add undesirable weight and complexity to the designs. A method was developed to analyze and optimize the load sharing in split-path transmissions without load-sharing devices. The method uses the clocking angle as a design parameter to optimize for equal load sharing. In addition, the clocking angle tolerance necessary to maintain acceptable load sharing can be calculated. The method evaluates the effects of gear-shaft twisting and bending, tooth bending, Hertzian deformations within bearings, and movement of bearing supports on load sharing. It was used to study the NASA split-path test gearbox and the U.S. Army's Comanche helicopter main rotor gearbox. Acceptable load sharing was found to be achievable and maintainable by using proven manufacturing processes. The analytical results compare favorably to available experimental data.

  18. The Effect of Fatigue Cracks on Fastener Flexibility, Load Distribution and Fatigue Crack Growth

    DTIC Science & Technology

    2012-05-01

    fastener will transfer within a given fastener pattern. iv iv However, current methods do not account for the change in flexibility at a fastener...affects the growth of the crack. Thus, as the effect of the crack starts to impact the load transfer of the joint there is a need to account for...not account for spectrum loading but typically were cycled from 1g to limit or maximum flight load and then correlated to measured usage using

  19. Evaluation of a cost-effective loads approach. [shock spectra/impedance method for Viking Orbiter

    NASA Technical Reports Server (NTRS)

    Garba, J. A.; Wada, B. K.; Bamford, R.; Trubert, M. R.

    1976-01-01

    A shock spectra/impedance method for loads predictions is used to estimate member loads for the Viking Orbiter, a 7800-lb interplanetary spacecraft that has been designed using transient loads analysis techniques. The transient loads analysis approach leads to a lightweight structure but requires complex and costly analyses. To reduce complexity and cost, a shock spectra/impedance method is currently being used to design the Mariner Jupiter Saturn spacecraft. This method has the advantage of using low-cost in-house loads analysis techniques and typically results in more conservative structural loads. The method is evaluated by comparing the increase in Viking member loads to the loads obtained by the transient loads analysis approach. An estimate of the weight penalty incurred by using this method is presented. The paper also compares the calculated flight loads from the transient loads analyses and the shock spectra/impedance method to measured flight data.

  20. Splash evaluation of SRB designs

    NASA Technical Reports Server (NTRS)

    Counter, D. N.

    1974-01-01

    A technique is developed to optimize the shuttle solid rocket booster (SRB) design for water impact loads. The SRB is dropped by parachute and recovered at sea for reuse. Loads experienced at water impact are design critical. The probability of each water impact load is determined using a Monte Carlo technique and an aerodynamic analysis of the SRB parachute system. Meteorological effects are included and four configurations are evaluated.

  1. MOD-1 Wind Turbine Generator Analysis and Design Report, Volume 2

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The MOD-1 detail design is appended. The supporting analyses presented include a parametric system trade study, a verification of the computer codes used for rotor loads analysis, a metal blade study, and a definition of the design loads at each principal wind turbine generator interface for critical loading conditions. Shipping and assembly requirements, composite blade development, and electrical stability are also discussed.

  2. In situ MEMS testing: correlation of high-resolution X-ray diffraction with mechanical experiments and finite element analysis.

    PubMed

    Schifferle, Andreas; Dommann, Alex; Neels, Antonia

    2017-01-01

    New methods are needed in microsystems technology for evaluating microelectromechanical systems (MEMS) because of their reduced size. The assessment and characterization of mechanical and structural relations of MEMS are essential to assure the long-term functioning of devices, and have a significant impact on design and fabrication. Within this study a concept for the investigation of mechanically loaded MEMS materials on an atomic level is introduced, combining high-resolution X-ray diffraction (HRXRD) measurements with finite element analysis (FEA) and mechanical testing. In situ HRXRD measurements were performed on tensile loaded single crystal silicon (SCSi) specimens by means of profile scans and reciprocal space mapping (RSM) on symmetrical (004) and (440) reflections. A comprehensive evaluation of the rather complex XRD patterns and features was enabled by the correlation of measured with simulated, 'theoretical' patterns. Latter were calculated by a specifically developed, simple and fast approach on the basis of continuum mechanical relations. Qualitative and quantitative analysis confirmed the admissibility and accuracy of the presented method. In this context [001] Poisson's ratio was determined providing an error of less than 1.5% with respect to analytical prediction. Consequently, the introduced procedure contributes to further going investigations of weak scattering being related to strain and defects in crystalline structures and therefore supports investigations on materials and devices failure mechanisms.

  3. Stress distributions of a bracket type orthodontic miniscrew and the surrounding bone under moment loadings: Three-dimensional finite element analysis

    PubMed Central

    Ajami, Shabnam; Mina, Ahmad; Nabavizadeh, Seyed Amin

    2016-01-01

    Objectives: To evaluate the effect of moments and the combination of forces and moments on the mechanical properties of a bracket type miniscrew, resembling engagement of a rectangular wire by three-dimensional (3D) finite element study. Materials and Methods: By solid work software (Dassaunlt systems solid works, concord, Mass), a 3D miniscrew model of 6, 8, 10 mm lengths was designed and inserted in the osseous block, consisted of the cortical, and cancellous bones. The stress distributions, maximum stresses, and deflections of the miniscrew were evaluated for all parts using ANSYS (Work Bench, 2014). Results: As the magnitudes of the load increased from 100 to 200, 400 and 800 grf-mm, the peak of stresses in the 6 mm long miniscrew were increased from 7.7 to 61.5 Mpa. The maximum values of Von Mises in the cancellous bone were tremendously lower in comparison to the cortical bone by one hundredth. As the length of the miniscrew in contact with the bone was increased, the amounts and patterns of stress distribution in the cortical bone and the miniscrew did not change significantly. Conclusions: As the moment magnitude increased, the pick stresses increased linearly. The existence of cancellous bone was not significantly responsible for the stress distribution. The pattern of stress distribution did not change by the length of the miniscrew. PMID:27127753

  4. In situ MEMS testing: correlation of high-resolution X-ray diffraction with mechanical experiments and finite element analysis

    PubMed Central

    Schifferle, Andreas; Dommann, Alex; Neels, Antonia

    2017-01-01

    Abstract New methods are needed in microsystems technology for evaluating microelectromechanical systems (MEMS) because of their reduced size. The assessment and characterization of mechanical and structural relations of MEMS are essential to assure the long-term functioning of devices, and have a significant impact on design and fabrication. Within this study a concept for the investigation of mechanically loaded MEMS materials on an atomic level is introduced, combining high-resolution X-ray diffraction (HRXRD) measurements with finite element analysis (FEA) and mechanical testing. In situ HRXRD measurements were performed on tensile loaded single crystal silicon (SCSi) specimens by means of profile scans and reciprocal space mapping (RSM) on symmetrical (004) and (440) reflections. A comprehensive evaluation of the rather complex XRD patterns and features was enabled by the correlation of measured with simulated, ‘theoretical’ patterns. Latter were calculated by a specifically developed, simple and fast approach on the basis of continuum mechanical relations. Qualitative and quantitative analysis confirmed the admissibility and accuracy of the presented method. In this context [001] Poisson’s ratio was determined providing an error of less than 1.5% with respect to analytical prediction. Consequently, the introduced procedure contributes to further going investigations of weak scattering being related to strain and defects in crystalline structures and therefore supports investigations on materials and devices failure mechanisms. PMID:28533825

  5. Effects of running with backpack loads during simulated gravitational transitions: Improvements in postural control

    NASA Astrophysics Data System (ADS)

    Brewer, Jeffrey David

    The National Aeronautics and Space Administration is planning for long-duration manned missions to the Moon and Mars. For feasible long-duration space travel, improvements in exercise countermeasures are necessary to maintain cardiovascular fitness, bone mass throughout the body and the ability to perform coordinated movements in a constant gravitational environment that is six orders of magnitude higher than the "near weightlessness" condition experienced during transit to and/or orbit of the Moon, Mars, and Earth. In such gravitational transitions feedback and feedforward postural control strategies must be recalibrated to ensure optimal locomotion performance. In order to investigate methods of improving postural control adaptation during these gravitational transitions, a treadmill based precision stepping task was developed to reveal changes in neuromuscular control of locomotion following both simulated partial gravity exposure and post-simulation exercise countermeasures designed to speed lower extremity impedance adjustment mechanisms. The exercise countermeasures included a short period of running with or without backpack loads immediately after partial gravity running. A novel suspension type partial gravity simulator incorporating spring balancers and a motor-driven treadmill was developed to facilitate body weight off loading and various gait patterns in both simulated partial and full gravitational environments. Studies have provided evidence that suggests: the environmental simulator constructed for this thesis effort does induce locomotor adaptations following partial gravity running; the precision stepping task may be a helpful test for illuminating these adaptations; and musculoskeletal loading in the form of running with or without backpack loads may improve the locomotor adaptation process.

  6. Biomechanical loading on the upper extremity increases from single key tapping to directional tapping.

    PubMed

    Qin, Jin; Trudeau, Matthieu; Katz, Jeffrey N; Buchholz, Bryan; Dennerlein, Jack T

    2011-08-01

    Musculoskeletal disorders associated with computer use span the joints of the upper extremity. Computing typically involves tapping in multiple directions. Thus, we sought to describe the loading on the finger, wrist, elbow and shoulder joints in terms of kinematic and kinetic difference across single key switch tapping to directional tapping on multiple keys. An experiment with repeated measures design was conducted. Six subjects tapped with their right index finger on a stand-alone number keypad placed horizontally in three conditions: (1) on single key switch (the number key 5); (2) left and right on number key 4 and 6; (3) top and bottom on number key 8 and 2. A force-torque transducer underneath the keypad measured the fingertip force. An active-marker infrared motion analysis system measured the kinematics of the fingertip, hand, forearm, upper arm and torso. Joint moments for the metacarpophalangeal, wrist, elbow, and shoulder joints were estimated using inverse dynamics. Tapping in the top-bottom orientation introduced the largest biomechanical loading on the upper extremity especially for the proximal joint, followed by tapping in the left-right orientation, and the lowest loading was observed during single key switch tapping. Directional tapping on average increased the fingertip force, joint excursion, and peak-to-peak joint torque by 45%, 190% and 55%, respectively. Identifying the biomechanical loading patterns associated with these fundamental movements of keying improves the understanding of the risks of upper extremity musculoskeletal disorders for computer keyboard users. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Teaching Gene Technology in an Outreach Lab: Students' Assigned Cognitive Load Clusters and the Clusters' Relationships to Learner Characteristics, Laboratory Variables, and Cognitive Achievement

    NASA Astrophysics Data System (ADS)

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2013-02-01

    This study classified students into different cognitive load (CL) groups by means of cluster analysis based on their experienced CL in a gene technology outreach lab which has instructionally been designed with regard to CL theory. The relationships of the identified student CL clusters to learner characteristics, laboratory variables, and cognitive achievement were examined using a pre-post-follow-up design. Participants of our day-long module Genetic Fingerprinting were 409 twelfth-graders. During the module instructional phases (pre-lab, theoretical, experimental, and interpretation phases), we measured the students' mental effort (ME) as an index of CL. By clustering the students' module-phase-specific ME pattern, we found three student CL clusters which were independent of the module instructional phases, labeled as low-level, average-level, and high-level loaded clusters. Additionally, we found two student CL clusters that were each particular to a specific module phase. Their members reported especially high ME invested in one phase each: within the pre-lab phase and within the interpretation phase. Differentiating the clusters, we identified uncertainty tolerance, prior experience in experimentation, epistemic interest, and prior knowledge as relevant learner characteristics. We found relationships to cognitive achievement, but no relationships to the examined laboratory variables. Our results underscore the importance of pre-lab and interpretation phases in hands-on teaching in science education and the need for teachers to pay attention to these phases, both inside and outside of outreach laboratory learning settings.

  8. The mechanism of force transference in feet of children ages two to six.

    PubMed

    Hu, Mingyu; Zhou, Nan; Xu, Bo; Chen, Wuyong; Wu, Jianxin; Zhou, Jin

    2017-05-01

    The aim of this study was to design an algorithm to quantify the plantar force transference of children from ages 2-6. In total, 319 healthy children without abnormal gait patterns, foot deformities or injuries, able to walk independently, and with normal BMIs were recruited, and their plantar force distributions were measured. Their plantar areas were divided into ten parts: the hallux, toes #2-5, the first to fifth metatarsal heads (1st-5th MTH), the mid-foot (MF), medial heel (MH) and lateral heel (LH), in which a relative force-time integral (FTIrel) (%) was calculated. Our results show that the FTIrel was significantly transferred along either the transverse or longitudinal arches. The middle of the forefoot and the toe areas were the two main loading regions in children aged 2-3, and posterior to anterior FTIrel shifting was typical. However, anterior to posterior and lateral to medial FTI transferences were found in children aged 5-6, and major loading was found in the heel area. Further, loading in the mid-foot varied with the child's development and was observed to tend to decrease over time. Overall, according to the algorithm designed in this study, these results demonstrated that the development of the arches, both in transverse and longitudinal directions, had already begun in early stages of toddlerhood. Meanwhile, the arches were an important attractor engaged in the windlass mechanism while walking, and they played a major role as bridges to promote posterior to anterior and medial to lateral force transference. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Pullout Performances of Grouted Rockbolt Systems with Bond Defects

    NASA Astrophysics Data System (ADS)

    Xu, Chang; Li, Zihan; Wang, Shanyong; Wang, Shuren; Fu, Lei; Tang, Chunan

    2018-03-01

    This paper presents a numerical study on the pullout behaviour of fully grouted rockbolts with bond defects. The cohesive zone model (CZM) is adopted to model the bond-slip behaviour between the rockbolt and grout material. Tensile tests were also conducted to validate the numerical model. The results indicate that the defect length can obviously influence the load and stress distributions along the rockbolt as well as the load-displacement response of the grouted system. Moreover, a plateau in the stress distribution forms due to the bond defect. The linear limit and peak load of the load-displacement response decrease as the defect length increases. A bond defect located closer to the loaded end leads to a longer nonlinear stage in the load-displacement response. However, the peak loads measured from the specimens made with various defect locations are almost approximately the same. The peak load for a specimen with the defects equally spaced along the bolt is higher than that for a specimen with defects concentrated in a certain zone, even with the same total defect length. Therefore, the dispersed pattern of bond defects would be much safer than the concentrated pattern. For the specimen with dispersed defects, the peak load increases with an increase in the defect spacing, even if the total defect length is the same. The peak load for a grouted rockbolt system with defects increases with an increases in the bolt diameter. This work leads to a better understanding of the load transfer mechanism for grouted rockbolt systems with bond defects, and paves the way towards developing a general evaluation method for damaged rockbolt grouted systems.

  10. Traffic load spectra for implementing and using the mechanistic-empirical pavement design guide in Georgia.

    DOT National Transportation Integrated Search

    2014-02-01

    The GDOT is preparing for implementation of the Mechanistic-Empirical Pavement Design : Guide (MEPDG). As part of this preparation, a statewide traffic load spectra program is being : developed for gathering truck axle loading data. This final report...

  11. The Effects of Geometric and Loading Imperfections on the Response and Lower-Bound Buckling Load of a Compression-Loaded Cylindrical Shell

    NASA Technical Reports Server (NTRS)

    Kriegesmann, Benedikt; Hilburger, Mark W.; Rolfes, Raimund

    2012-01-01

    Results from a numerical study of the buckling response of a thin-walled compressionloaded isotropic circular cylindrical shell with initial geometric and loading imperfections are used to determine a lower bound buckling load estimate suitable for preliminary design. The lower bound prediction techniques presented herein include an imperfection caused by a lateral perturbation load, an imperfection in the shape of a single stress-free dimple (similar to the lateral pertubation imperfection), and a distributed load imperfection that induces a nonuniform load in the shell. The ABAQUS finite element code is used for the analyses. Responses of the cylinders for selected imperfection amplitudes and imperfection types are considered, and the effect of each imperfection is compared to the response of a geometrically perfect cylinder. The results indicate that compression-loaded shells subjected to a lateral perturbation load or a single dimple imperfection, and a nonuniform load imperfection, exhibit similar buckling behavior and lower bound trends and the predicted lower bounds are much less conservative than the corresponding design recommendation NASA SP-8007 for the design of buckling-critical shells. In addition, the lateral perturbation technique and the distributed load imperfection produce response characteristics that are physically meaningful and can be validated via laboratory testing.

  12. Analysis of Aerodynamic Load of LSU-03 (LAPAN Surveillance UAV-03) Propeller

    NASA Astrophysics Data System (ADS)

    Rahmadi Nuranto, Awang; Jamaludin Fitroh, Ahmad; Syamsudin, Hendri

    2018-04-01

    The existing propeller of the LSU-03 aircraft is made of wood. To improve structural strength and obtain better mechanical properties, the propeller will be redesigned usingcomposite materials. It is necessary to simulate and analyze the design load. This research paper explainsthe simulation and analysis of aerodynamic load prior to structural design phase of composite propeller. Aerodynamic load calculations are performed using both the Blade Element Theory(BET) and the Computational Fluid Dynamic (CFD)simulation. The result of both methods show a close agreement, the different thrust forces is only 1.2 and 4.1% for two type mesh. Thus the distribution of aerodynamic loads along the surface of the propeller blades of the 3-D CFD simulation results are considered valid and ready to design the composite structure. TheCFD results is directly imported to the structure model using the Direct Import CFD / One-Way Fluid Structure Interaction (FSI) method. Design load of propeller is chosen at the flight condition at speed of 20 km/h at 7000 rpm.

  13. Reliability Sensitivity Analysis and Design Optimization of Composite Structures Based on Response Surface Methodology

    NASA Technical Reports Server (NTRS)

    Rais-Rohani, Masoud

    2003-01-01

    This report discusses the development and application of two alternative strategies in the form of global and sequential local response surface (RS) techniques for the solution of reliability-based optimization (RBO) problems. The problem of a thin-walled composite circular cylinder under axial buckling instability is used as a demonstrative example. In this case, the global technique uses a single second-order RS model to estimate the axial buckling load over the entire feasible design space (FDS) whereas the local technique uses multiple first-order RS models with each applied to a small subregion of FDS. Alternative methods for the calculation of unknown coefficients in each RS model are explored prior to the solution of the optimization problem. The example RBO problem is formulated as a function of 23 uncorrelated random variables that include material properties, thickness and orientation angle of each ply, cylinder diameter and length, as well as the applied load. The mean values of the 8 ply thicknesses are treated as independent design variables. While the coefficients of variation of all random variables are held fixed, the standard deviations of ply thicknesses can vary during the optimization process as a result of changes in the design variables. The structural reliability analysis is based on the first-order reliability method with reliability index treated as the design constraint. In addition to the probabilistic sensitivity analysis of reliability index, the results of the RBO problem are presented for different combinations of cylinder length and diameter and laminate ply patterns. The two strategies are found to produce similar results in terms of accuracy with the sequential local RS technique having a considerably better computational efficiency.

  14. Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    2000-01-01

    This paper introduces a simple "Rule of Thumb" (ROT) method to estimate the load capacity of foil air journal bearings, which are self-acting compliant-surface hydrodynamic bearings being considered for Oil-Free turbo-machinery applications such as gas turbine engines. The ROT is based on first principles and data available in the literature and it relates bearing load capacity to the bearing size and speed through an empirically based load capacity coefficient, D. It is shown that load capacity is a linear function of bearing surface velocity and bearing projected area. Furthermore, it was found that the load capacity coefficient, D, is related to the design features of the bearing compliant members and operating conditions (speed and ambient temperature). Early bearing designs with basic or "first generation" compliant support elements have relatively low load capacity. More advanced bearings, in which the compliance of the support structure is tailored, have load capacities up to five times those of simpler designs. The ROT enables simplified load capacity estimation for foil air journal bearings and can guide development of new Oil-Free turbomachinery systems.

  15. Application of Theodorsen's Theory to Propeller Design

    NASA Technical Reports Server (NTRS)

    Crigler, John L

    1948-01-01

    A theoretical analysis is presented for obtaining by use of Theodorsen's propeller theory the load distribution along a propeller radius to give the optimum propeller efficiency for any design condition.The efficiencies realized by designing for the optimum load distribution are given in graphs, and the optimum efficiency for any design condition may be read directly from the graph without any laborious calculations. Examples are included to illustrate the method of obtaining the optimum load distributions for both single-rotating and dual-rotating propellers.

  16. Application of Theodorsen's theory to propeller design

    NASA Technical Reports Server (NTRS)

    Crigler, John L

    1949-01-01

    A theoretical analysis is presented for obtaining, by use of Theodorsen's propeller theory, the load distribution along a propeller radius to give the optimum propeller efficiency for any design condition. The efficiencies realized by designing for the optimum load distribution are given in graphs, and the optimum efficiency for any design condition may be read directly from the graph without any laborious calculations. Examples are included to illustrate the method of obtaining the optimum load distributions for both single-rotating and dual-rotating propellers.

  17. Explicit Nonlinear Finite Element Geometric Analysis of Parabolic Leaf Springs under Various Loads

    PubMed Central

    Kong, Y. S.; Omar, M. Z.; Chua, L. B.; Abdullah, S.

    2013-01-01

    This study describes the effects of bounce, brake, and roll behavior of a bus toward its leaf spring suspension systems. Parabolic leaf springs are designed based on vertical deflection and stress; however, loads are practically derived from various modes especially under harsh road drives or emergency braking. Parabolic leaf springs must sustain these loads without failing to ensure bus and passenger safety. In this study, the explicit nonlinear dynamic finite element (FE) method is implemented because of the complexity of experimental testing A series of load cases; namely, vertical push, wind-up, and suspension roll are introduced for the simulations. The vertical stiffness of the parabolic leaf springs is related to the vehicle load-carrying capability, whereas the wind-up stiffness is associated with vehicle braking. The roll stiffness of the parabolic leaf springs is correlated with the vehicle roll stability. To obtain a better bus performance, two new parabolic leaf spring designs are proposed and simulated. The stress level during the loadings is observed and compared with its design limit. Results indicate that the newly designed high vertical stiffness parabolic spring provides the bus a greater roll stability and a lower stress value compared with the original design. Bus safety and stability is promoted, as well as the load carrying capability. PMID:24298209

  18. Explicit nonlinear finite element geometric analysis of parabolic leaf springs under various loads.

    PubMed

    Kong, Y S; Omar, M Z; Chua, L B; Abdullah, S

    2013-01-01

    This study describes the effects of bounce, brake, and roll behavior of a bus toward its leaf spring suspension systems. Parabolic leaf springs are designed based on vertical deflection and stress; however, loads are practically derived from various modes especially under harsh road drives or emergency braking. Parabolic leaf springs must sustain these loads without failing to ensure bus and passenger safety. In this study, the explicit nonlinear dynamic finite element (FE) method is implemented because of the complexity of experimental testing A series of load cases; namely, vertical push, wind-up, and suspension roll are introduced for the simulations. The vertical stiffness of the parabolic leaf springs is related to the vehicle load-carrying capability, whereas the wind-up stiffness is associated with vehicle braking. The roll stiffness of the parabolic leaf springs is correlated with the vehicle roll stability. To obtain a better bus performance, two new parabolic leaf spring designs are proposed and simulated. The stress level during the loadings is observed and compared with its design limit. Results indicate that the newly designed high vertical stiffness parabolic spring provides the bus a greater roll stability and a lower stress value compared with the original design. Bus safety and stability is promoted, as well as the load carrying capability.

  19. Optimal design method to minimize users' thinking mapping load in human-machine interactions.

    PubMed

    Huang, Yanqun; Li, Xu; Zhang, Jie

    2015-01-01

    The discrepancy between human cognition and machine requirements/behaviors usually results in serious mental thinking mapping loads or even disasters in product operating. It is important to help people avoid human-machine interaction confusions and difficulties in today's mental work mastered society. Improving the usability of a product and minimizing user's thinking mapping and interpreting load in human-machine interactions. An optimal human-machine interface design method is introduced, which is based on the purpose of minimizing the mental load in thinking mapping process between users' intentions and affordance of product interface states. By analyzing the users' thinking mapping problem, an operating action model is constructed. According to human natural instincts and acquired knowledge, an expected ideal design with minimized thinking loads is uniquely determined at first. Then, creative alternatives, in terms of the way human obtains operational information, are provided as digital interface states datasets. In the last, using the cluster analysis method, an optimum solution is picked out from alternatives, by calculating the distances between two datasets. Considering multiple factors to minimize users' thinking mapping loads, a solution nearest to the ideal value is found in the human-car interaction design case. The clustering results show its effectiveness in finding an optimum solution to the mental load minimizing problems in human-machine interaction design.

  20. Numerical Study of Stratified Charge Combustion in Wave Rotors

    NASA Technical Reports Server (NTRS)

    Nalim, M. Razi

    1997-01-01

    A wave rotor may be used as a pressure-gain combustor effecting non-steady flow, and intermittent, confined combustion to enhance gas turbine engine performance. It will be more compact and probably lighter than an equivalent pressure-exchange wave rotor, yet will have similar thermodynamic and mechanical characteristics. Because the allowable turbine blade temperature limits overall fuel/air ratio to sub-flammable values, premixed stratification techniques are necessary to burn hydrocarbon fuels in small engines with compressor discharge temperature well below autoignition conditions. One-dimensional, unsteady numerical simulations of stratified-charge combustion are performed using an eddy-diffusivity turbulence model and a simple reaction model incorporating a flammability limit temperature. For good combustion efficiency, a stratification strategy is developed which concentrates fuel at the leading and trailing edges of the inlet port. Rotor and exhaust temperature profiles and performance predictions are presented at three representative operating conditions of the engine: full design load, 40% load, and idle. The results indicate that peak local gas temperatures will result in excessive temperatures within the rotor housing unless additional cooling methods are used. The rotor itself will have acceptable temperatures, but the pattern factor presented to the turbine may be of concern, depending on exhaust duct design and duct-rotor interaction.

Top