Science.gov

Sample records for loadingson monolithic structures

  1. Anisotropically structured magnetic aerogel monoliths

    NASA Astrophysics Data System (ADS)

    Heiligtag, Florian J.; Airaghi Leccardi, Marta J. I.; Erdem, Derya; Süess, Martin J.; Niederberger, Markus

    2014-10-01

    Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture.Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture. Electronic supplementary information (ESI) available: Digital photographs of dispersions and gels with different water-to-ethanol ratios; magnetic measurements of an anatase aerogel containing 0.25 mol% Fe3O4 nanoparticles; XRD patterns of the iron oxide and

  2. Increased thermal conductivity monolithic zeolite structures

    DOEpatents

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  3. Residual Strength Analyses of Monolithic Structures

    NASA Technical Reports Server (NTRS)

    Forth, Scott (Technical Monitor); Ambur, Damodar R. (Technical Monitor); Seshadri, B. R.; Tiwari, S. N.

    2003-01-01

    Finite-element fracture simulation methodology predicts the residual strength of damaged aircraft structures. The methodology uses the critical crack-tip-opening-angle (CTOA) fracture criterion to characterize the fracture behavior of the material. The CTOA fracture criterion assumes that stable crack growth occurs when the crack-tip angle reaches a constant critical value. The use of the CTOA criterion requires an elastic- plastic, finite-element analysis. The critical CTOA value is determined by simulating fracture behavior in laboratory specimens, such as a compact specimen, to obtain the angle that best fits the observed test behavior. The critical CTOA value appears to be independent of loading, crack length, and in-plane dimensions. However, it is a function of material thickness and local crack-front constraint. Modeling the local constraint requires either a three-dimensional analysis or a two-dimensional analysis with an approximation to account for the constraint effects. In recent times as the aircraft industry is leaning towards monolithic structures with the intention of reducing part count and manufacturing cost, there has been a consistent effort at NASA Langley to extend critical CTOA based numerical methodology in the analysis of integrally-stiffened panels.In this regard, a series of fracture tests were conducted on both flat and curved aluminum alloy integrally-stiffened panels. These flat panels were subjected to uniaxial tension and during the test, applied load-crack extension, out-of-plane displacements and local deformations around the crack tip region were measured. Compact and middle-crack tension specimens were tested to determine the critical angle (wc) using three-dimensional code (ZIP3D) and the plane-strain core height (hJ using two-dimensional code (STAGS). These values were then used in the STAGS analysis to predict the fracture behavior of the integrally-stiffened panels. The analyses modeled stable tearing, buckling, and crack

  4. Fischer-Tropsch Synthesis on Ceramic Monolith-Structured Catalysts

    SciTech Connect

    Wang, Yong; Liu, Wei

    2009-04-19

    This paper reports recent research results about impact of different catalyst bed configurations on FT reaction product distribution. A CoRe/γ-alumina catalyst is prepared in bulk particle form and tested in the packed bed reactor at a size of 60 to 100 mesh. The same catalyst is ball milled and coated on a ceramic monolith support structure of channel size about 1mm. The monolith catalyst module is tested in two different ways, as a whole piece and as well-defined channels. Steady-state reaction conversion is measured at various temperatures under constant H2/CO feed ratio of 2 and reactor pressure of 25 bar. Detailed product analysis is performed. Significant formation of wax is evident with the packed particle bed and with the monolith catalyst that is improperly packed. By contrast, the wax formation is not detected in the liquid product by confining the reactions inside the monolith channel. This study presents an important finding about the structured catalyst/reactor system that the product distribution highly depends on the way how the structured reactor is set up. Even if the same catalyst and same reaction conditions (T, P, H2/oil ratio) are used, hydrodynamics (or flow conditions) inside a structured channel can have a significant impact on the product distribution.

  5. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure.

    PubMed

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-10-04

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields.

  6. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure

    PubMed Central

    2013-01-01

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields. PMID:24093494

  7. Fabrication of large-sized silica monolith exceeding 1000 mL with high structural homogeneity.

    PubMed

    Miyamoto, Riichi; Ando, Yukiko; Kurusu, Chie; Bai, Hong-zhi; Nakanishi, Kazuki; Ippommatsu, Masamichi

    2013-06-01

    Reproducible fabrication of the hierarchically porous monolithic silica in a large volume exceeding 1000 mL has been established. By the hydrothermal enlargement of the fully accessible small pores to exceed 50 nm in diameter, the capillary force emerged on solvent evaporation was dramatically reduced, which allowed the preparation of crack-free monoliths with evaporative solvent removal under an ambient pressure. The local temperature inhomogeneity within a reaction vessel in a large volume was precisely controlled to cancel the heat evolved by the hydrolysis reaction of tetramethoxysilane and that consumed to melt ice cubes dispersed in the solution, resulting in large monolithic silica pieces with improved structural homogeneity. Homogeneity of the pore structure was confirmed, both on macro- and mesoscales, using SEM, mercury intrusion, and nitrogen adsorption/desorption measurements. Furthermore, the deviations in chromatographic performance were examined by evaluating multiple smaller monolithic columns prepared from the monolithic silica pieces cut from different parts of a large monolith. All the daughter columns thus prepared exhibited comparable performances to each other to prove the overall homogeneity of the mother monolith. Preliminary results on high-speed separation of peptides and proteins by the octadecylsilylated silica monolith of the above production have also been demonstrated. PMID:23568889

  8. Behavior of a surface applied radionuclide and a dye tracer in structured and repacked soil monoliths.

    PubMed

    Albrecht, A; Schultze, U; Bugallo, P Bello; Wydler, H; Frossard, E; Flühler, H

    2003-01-01

    There has been increasing evidence in recent years about the impact of soil structure on vadose zone hydrology and the distribution of surface applied chemical substances. We have carried out a combined dye and radionuclide tracer study on two monoliths from the same location, one structured and one repacked, as part of an ongoing study to investigate the link between preferential flow, leaching of surface applied substances and their distribution within the soil.A tracer solution containing 1300 Bq/L (58)Co and 0.31 micromol/L Sulforhodamine B (SB) was added with roughly constant irrigation during a period of three weeks. The dye served as a tracer for water movement within the soil and thus allowed linkage of the radiotracer ((58)Co) with the flow pattern. Both were monitored in the outflow and measured within profile sections after monolith disassembly. Preferential flow in the structured monolith promoted the bypass and transport of both tracers, although transport was impeded at depths greater than 30 cm by compacted soil and reduced hydraulic conductivity. Eighty four percent of radiocobalt and 8% of SB were found in the upper 4 cm of the structured monolith. The homogenized monolith, on the other hand, showed mostly chromatographic infiltration and a more efficient soil filtering capacity with 91% of radiocobalt and 20% SB residing in the upper 4 cm. Furthermore no tracer was found in the outflow of the homogenized monolith during normal to high irrigation or at greater depth within the monolith. We have related flow characteristics and sorption of radiotracers by quantifying dye distributions and radionuclide activities throughout the profiles. Activities within the flow paths are up to 20-times higher than those measured in the soil matrix, and a fraction of radiocobalt follows the dye tracer in spite of cobalt's low mobility. The dye can thus be used to trace radionuclide distribution within the soil block.

  9. Compact grating structure for application to filters and resonators in monolithic microwave integrated circuits

    NASA Astrophysics Data System (ADS)

    Wang, Te-Hui; Itoh, Tatsuo

    1987-12-01

    Possible high-Q circuits based on a low-loss crosstie-overlay slow-wave structure are proposed for monolithic microwave integrated circuits (MMICs). Various configurations and results for slow-wave factors are presented. This structure is used for construction of a frequency-selective reflector with a compact size. The effect of conductor loss is considered.

  10. Solvers for large-displacement fluid structure interaction problems: segregated versus monolithic approaches

    NASA Astrophysics Data System (ADS)

    Heil, Matthias; Hazel, Andrew L.; Boyle, Jonathan

    2008-12-01

    We compare the relative performance of monolithic and segregated (partitioned) solvers for large- displacement fluid structure interaction (FSI) problems within the framework of oomph-lib, the object-oriented multi-physics finite-element library, available as open-source software at http://www.oomph-lib.org . Monolithic solvers are widely acknowledged to be more robust than their segregated counterparts, but are believed to be too expensive for use in large-scale problems. We demonstrate that monolithic solvers are competitive even for problems in which the fluid solid coupling is weak and, hence, the segregated solvers converge within a moderate number of iterations. The efficient monolithic solution of large-scale FSI problems requires the development of preconditioners for the iterative solution of the linear systems that arise during the solution of the monolithically coupled fluid and solid equations by Newton’s method. We demonstrate that recent improvements to oomph-lib’s FSI preconditioner result in mesh-independent convergence rates under uniform and non-uniform (adaptive) mesh refinement, and explore its performance in a number of two- and three-dimensional test problems involving the interaction of finite-Reynolds-number flows with shell and beam structures, as well as finite-thickness solids.

  11. Proton Conduction in Sulfonated Organic-Inorganic Hybrid Monoliths with Hierarchical Pore Structure.

    PubMed

    von der Lehr, Martin; Seidler, Christopher F; Taffa, Dereje H; Wark, Michael; Smarsly, Bernd M; Marschall, Roland

    2016-09-28

    Porous organic-inorganic hybrid monoliths with hierarchical porosity exhibiting macro- and mesopores are prepared via sol-gel process under variation of the mesopore size. Organic moieties in the pore walls are incorporated by substituting up to 10% of the silicon precursor tetramethylorthosilicate with bisilylated benzene molecules. After functionalization with sulfonic acid groups, the resulting sulfonated hybrid monoliths featuring a bimodal pore structure are investigated regarding proton conduction depending on temperature and relative humidity. The hierarchical pore system and controlled mesopore design turn out to be crucial for sulfonation and proton conduction. These sulfonated hybrid hierarchical monoliths containing only 10% organic precursor exhibit higher proton conduction at different relative humidities than sulfonated periodic mesoporous organosilica made of 100% bisilylated precursors exhibiting solely mesopores, even with a lower concentration of sulfonic acid groups. PMID:27598017

  12. Proton Conduction in Sulfonated Organic-Inorganic Hybrid Monoliths with Hierarchical Pore Structure.

    PubMed

    von der Lehr, Martin; Seidler, Christopher F; Taffa, Dereje H; Wark, Michael; Smarsly, Bernd M; Marschall, Roland

    2016-09-28

    Porous organic-inorganic hybrid monoliths with hierarchical porosity exhibiting macro- and mesopores are prepared via sol-gel process under variation of the mesopore size. Organic moieties in the pore walls are incorporated by substituting up to 10% of the silicon precursor tetramethylorthosilicate with bisilylated benzene molecules. After functionalization with sulfonic acid groups, the resulting sulfonated hybrid monoliths featuring a bimodal pore structure are investigated regarding proton conduction depending on temperature and relative humidity. The hierarchical pore system and controlled mesopore design turn out to be crucial for sulfonation and proton conduction. These sulfonated hybrid hierarchical monoliths containing only 10% organic precursor exhibit higher proton conduction at different relative humidities than sulfonated periodic mesoporous organosilica made of 100% bisilylated precursors exhibiting solely mesopores, even with a lower concentration of sulfonic acid groups.

  13. Computational fluid dynamics simulations yielding guidelines for the ideal internal structure of monolithic liquid chromatography columns.

    PubMed

    Gzil, P; Baron, G V; Desmet, G

    2003-04-01

    A theoretical calculation of the separation performance of a (hypothetical) micro-structured monolithic LC column is presented, confirming that the polydispersity effect in parallel bundle columns can theoretically be eliminated to a very large extent by radially redistributing the mobile phase fluid at regular intervals. It is demonstrated that the flow can be redistributed in such a way that the advantage coming from the suppression of the polydispersity effect largely exceeds the losses caused by the additional pressure-drop and band broadening. The presently considered micro-structured column would allow to perform N > 100,000 plate separations in a few hundred of seconds, i.e., about an order of magnitude faster than the best possible packed bed and monolithic HPLC columns, while offering the same mass loadability. This clearly demonstrates that the currently available LC columns are still far away from the absolute resolution limit of the ideal, fully optimised LC column.

  14. Tailoring the macroporous structure of monolithic silica-based capillary columns with potential for liquid chromatography.

    PubMed

    Laschober, Stefan; Sulyok, Michael; Rosenberg, Erwin

    2007-03-01

    The present work aims at the optimisation of the synthesis of methyl-silsesquioxane monolithic capillary columns using a sol-gel based protocol. The influence of reaction conditions such as temperature, reaction mixture composition and catalyst concentration has been examined. The morphology of the products was studied by scanning electron microscopy and nitrogen adsorption. Monolithic capillary columns were obtained with a skeleton-like structure with open pores. Pore diameters vary from 0.8 to 15 microm, diameters of the xerogel network vary from 0.4 to 12 microm, respectively. Specific surface areas up to 334 m2/g have been observed, however, many materials did not possess areas above few m2/g which represents the limit of detection of the nitrogen porosimetry measurements. Excellent adhesion to the capillary wall was observed in all cases, and drying was possible at ambient conditions without the formation of cracks. PMID:17241639

  15. Monolithic integrated high-T.sub.c superconductor-semiconductor structure

    NASA Technical Reports Server (NTRS)

    Burns, Michael J. (Inventor); de la Houssaye, Paul R. (Inventor); Garcia, Graham A. (Inventor); Russell, Stephen D. (Inventor); Clayton, Stanley R. (Inventor); Barfknecht, Andrew T. (Inventor)

    2000-01-01

    A method for the fabrication of active semiconductor and high-temperature superconducting device of the same substrate to form a monolithically integrated semiconductor-superconductor (MISS) structure is disclosed. A common insulating substrate, preferably sapphire or yttria-stabilized zirconia, is used for deposition of semiconductor and high-temperature superconductor substructures. Both substructures are capable of operation at a common temperature of at least 77 K. The separate semiconductor and superconductive regions may be electrically interconnected by normal metals, refractory metal silicides, or superconductors. Circuits and devices formed in the resulting MISS structures display operating characteristics which are equivalent to those of circuits and devices prepared on separate substrates.

  16. Method for making a monolithic integrated high-T.sub.c superconductor-semiconductor structure

    NASA Technical Reports Server (NTRS)

    Burns, Michael J. (Inventor); de la Houssaye, Paul R. (Inventor); Garcia, Graham A. (Inventor); Russell, Stephen D. (Inventor); Clayton, Stanley R. (Inventor); Barfknecht, Andrew T. (Inventor)

    2000-01-01

    A method for the fabrication of active semiconductor and high-temperature perconducting devices on the same substrate to form a monolithically integrated semiconductor-superconductor (MISS) structure is disclosed. A common insulating substrate, preferably sapphire or yttria-stabilized zirconia, is used for deposition of semiconductor and high-temperature superconductor substructures. Both substructures are capable of operation at a common temperature of at least 77 K. The separate semiconductor and superconductive regions may be electrically interconnected by normal metals, refractory metal silicides, or superconductors. Circuits and devices formed in the resulting MISS structures display operating characteristics which are equivalent to those of circuits and devices prepared on separate substrates.

  17. Color tunable monolithic InGaN/GaN LED having a multi-junction structure.

    PubMed

    Kong, Duk-Jo; Kang, Chang-Mo; Lee, Jun-Yeob; Kim, James; Lee, Dong-Seon

    2016-03-21

    In this study, we have fabricated a blue-green color-tunable monolithic InGaN/GaN LED having a multi-junction structure with three terminals. The device has an n-p-n structure consisting of a green and a blue active region, i.e., an n-GaN / blue-MQW / p-GaN / green-MQW / n-GaN / Al2O3 structure with three terminals for independently controlling the two active regions. To realize this LED structure, a typical LED consisting of layers of n-GaN, blue MQW, and p-GaN is regrown on a conventional green LED by using a metal organic chemical vapor deposition (MOCVD) method. We explain detailed mechanisms of three operation modes which are the green, blue, and cyan mode. Moreover, we discuss optical properties of the device. PMID:27136884

  18. Color tunable monolithic InGaN/GaN LED having a multi-junction structure.

    PubMed

    Kong, Duk-Jo; Kang, Chang-Mo; Lee, Jun-Yeob; Kim, James; Lee, Dong-Seon

    2016-03-21

    In this study, we have fabricated a blue-green color-tunable monolithic InGaN/GaN LED having a multi-junction structure with three terminals. The device has an n-p-n structure consisting of a green and a blue active region, i.e., an n-GaN / blue-MQW / p-GaN / green-MQW / n-GaN / Al2O3 structure with three terminals for independently controlling the two active regions. To realize this LED structure, a typical LED consisting of layers of n-GaN, blue MQW, and p-GaN is regrown on a conventional green LED by using a metal organic chemical vapor deposition (MOCVD) method. We explain detailed mechanisms of three operation modes which are the green, blue, and cyan mode. Moreover, we discuss optical properties of the device.

  19. Processing and characterization of monolithic carbon structures based on wood fiberboards

    NASA Astrophysics Data System (ADS)

    Kercher, Andrew Keith

    The structure and properties of monolithic carbonized medium-density fiberboards were studied to expand the capabilities of carbonized wood processing. Medium-density fiberboard (MDF) has a more uniform structure than wood, which was investigated in earlier studies for monolithic carbon structures. The uniform structure of medium density fiberboard (MDF) allowed for a reduction in thermal processing time from 4.5 days for wood carbonization to 1 day for MDF carbonization. Key physical properties of carbonized MDF (c-MDF) were determined for potential applications, such as battery electrodes, fuel cell separators and activated carbon filters. X-ray diffraction (XRD) was used to characterize the growth of large turbostratic crystallites and large graphene sheets during the carbonization process. A novel x-ray diffraction method using monolithic pieces of c-MDF was used to correlate the dimensional changes occurring during the carbonization process with the growth of large turbostratic crystallites. The insights gained from the XRD investigation of c-MDF were used to develop a quasipercolation model, which describes the microstructural evolution of hard carbons. This quasipercolation model explained the observed changes in bulk density, dimension, helium density and electrical conductivity of c-MDF. The model also explained how nanopores form in activated carbon materials. The mechanical and electrical properties of carbonized MDF were measured using ASTM 4-point bending and 4-point electrical conductivity techniques. The elastic modulus was shown to vary from 1.5 to 4.5 GPa for the carbonization temperature range of 600°C to 1000°C. The electrical resistivity varied by seven orders of magnitude from 600°C to 1400°C. An open foam model was used to approximate the mechanical and electrical properties of the hard carbon material in the porous c-MDF. Large structural activated carbons were made by physical activation of c-MDF in carbon dioxide. A low activation

  20. Monolithic ceramics

    NASA Technical Reports Server (NTRS)

    Herbell, Thomas P.; Sanders, William A.

    1992-01-01

    A development history and current development status evaluation are presented for SiC and Si3N4 monolithic ceramics. In the absence of widely sought improvements in these materials' toughness, and associated reliability in structural applications, uses will remain restricted to components in noncritical, nonman-rated aerospace applications such as cruise missile and drone gas turbine engine components. In such high temperature engine-section components, projected costs lie below those associated with superalloy-based short-life/expendable engines. Advancements are required in processing technology for the sake of fewer and smaller microstructural flaws.

  1. Synthesis and electronic structure of low-density monoliths of nanoporous nanocrystalline anatase TiO2

    SciTech Connect

    Kucheyev, S O; Baumann, T F; Wang, Y M; van Buuren, T; Satcher, J H

    2004-08-13

    Monolithic nanocrystalline anatase titania aerogels are synthesized by the epoxide sol-gel method followed by thermal annealing at 550 C. These aerogels are formed by {approx}10-20 nm size anatase nanoparticles which are randomly oriented and interconnected into an open-cell solid network. Aerogel monoliths have an apparent density of {approx}6% and a surface area of {approx} 100 m{sup 2} g{sup -1}. High-resolution transmission electron microscopy and soft x-ray absorption near-edge structure spectroscopy reveal good crystallinity of the anatase nanoparticles forming the aerogel skeleton.

  2. Design of monoliths through their mechanical properties.

    PubMed

    Podgornik, Aleš; Savnik, Aleš; Jančar, Janez; Krajnc, Nika Lendero

    2014-03-14

    Chromatographic monoliths have several interesting properties making them attractive supports for analytics but also for purification, especially of large biomolecules and bioassemblies. Although many of monolith features were thoroughly investigated, there is no data available to predict how monolith mechanical properties affect its chromatographic performance. In this work, we investigated the effect of porosity, pore size and chemical modification on methacrylate monolith compression modulus. While a linear correlation between pore size and compression modulus was found, the effect of porosity was highly exponential. Through these correlations it was concluded that chemical modification affects monolith porosity without changing the monolith skeleton integrity. Mathematical model to describe the change of monolith permeability as a function of monolith compression modulus was derived and successfully validated for monoliths of different geometries and pore sizes. It enables the prediction of pressure drop increase due to monolith compressibility for any monolith structural characteristics, such as geometry, porosity, pore size or mobile phase properties like viscosity or flow rate, based solely on the data of compression modulus and structural data of non-compressed monolith. Furthermore, it enables simple determination of monolith pore size at which monolith compressibility is the smallest and the most robust performance is expected. Data of monolith compression modulus in combination with developed mathematical model can therefore be used for the prediction of monolith permeability during its implementation but also to accelerate the design of novel chromatographic monoliths with desired hydrodynamic properties for particular application.

  3. Optimal design of a spectral readout type planar waveguide-mode sensor with a monolithic structure.

    PubMed

    Wang, Xiaomin; Fujimaki, Makoto; Kato, Takafumi; Nomura, Ken-Ichi; Awazu, Koichi; Ohki, Yoshimichi

    2011-10-10

    Optical planar waveguide-mode sensor is a promising candidate for highly sensitive biosensing techniques in fields such as protein adsorption, receptor-ligand interaction and surface bacteria adhesion. To make the waveguide-mode sensor system more realistic, a spectral readout type waveguide sensor is proposed to take advantage of its high speed, compactness and low cost. Based on our previously proposed monolithic waveguide-mode sensor composed of a SiO2 waveguide layer and a single crystalline Si layer [1], the mechanism for achieving high sensitivity is revealed by numerical simulations. The optimal achievable sensitivities for a series of waveguide structures are summarized in a contour map, and they are found to be better than those of previously reported angle-scan type waveguide sensors.

  4. Monolithic structure of integrated coaxial microhollow dielectric barrier discharges: Characterization for environmental and biomedical applications

    NASA Astrophysics Data System (ADS)

    Tachibana, Kunihide; Nakamura, Toshihiro; Motomura, Hideki

    2016-07-01

    The characteristics of microhollow dielectric barrier discharge devices in a thin monolithic planar structure with many holes were analyzed regarding the production of OH radicals, using optical emission and laser-induced fluorescence (LIF) spectroscopy techniques. Spatial distributions of OH radical density depended on the diameter of electrode holes from 0.6 to 1.5 mm and the discharge operating gas species. Apparent emission intensity from OH radicals and the LIF signals were very high in He and Ar gases but quite low in N2. However, taking into account the LIF quenching rate in each gas, the existing densities of OH radicals in all tested gases were not greatly different from each other. The absolute density of OH radicals estimated by a comparison of the LIF intensity with our measured result on a conventional He plasma jet referring to reported densities in similar situations was on the order of 1014 cm‑3.

  5. Monolithic-Structured Single-Layered Textile-Based Dye-Sensitized Solar Cells

    PubMed Central

    Yun, Min Ju; Cha, Seung I.; Kim, Han Seong; Seo, Seon Hee; Lee, Dong Y.

    2016-01-01

    Textile-structured solar cells are frequently discussed in the literature due to their prospective applications in wearable devices and in building integrated solar cells that utilize their flexibility, mechanical robustness, and aesthetic appearance, but the current approaches for textile-based solar cells—including the preparation of fibre-type solar cells woven into textiles—face several difficulties from high friction and tension during the weaving process. This study proposes a new structural concept and fabrication process for monolithic-structured textile-based dye-sensitized solar cells that are fabricated by a process similar to the cloth-making process, including the preparation of wires and yarns that are woven for use in textiles, printed, dyed, and packaged. The fabricated single-layered textile-based dye-sensitized solar cells successfully act as solar cells in our study, even under bending conditions. By controlling the inter-weft spacing and the number of Ti wires for the photoelectrode conductor, we have found that the performance of this type of dye-sensitized solar cell was notably affected by the spacing between photoelectrodes and counter-electrodes, the exposed areas of Ti wires to photoelectrodes, and photoelectrodes’ surface morphology. We believe that this study provides a process and concept for improved textile-based solar cells that can form the basis for further research. PMID:27708359

  6. Monolithic carbon structures including suspended single nanowires and nanomeshes as a sensor platform

    NASA Astrophysics Data System (ADS)

    Lim, Yeongjin; Heo, Jeong-Il; Madou, Marc; Shin, Heungjoo

    2013-11-01

    With the development of nanomaterial-based nanodevices, it became inevitable to develop cost-effective and simple nanofabrication technologies enabling the formation of nanomaterial assembly in a controllable manner. Herein, we present suspended monolithic carbon single nanowires and nanomeshes bridging two bulk carbon posts, fabricated in a designed manner using two successive UV exposure steps and a single pyrolysis step. The pyrolysis step is accompanied with a significant volume reduction, resulting in the shrinkage of micro-sized photoresist structures into nanoscale carbon structures. Even with the significant elongation of the suspended carbon nanowire induced by the volume reduction of the bulk carbon posts, the resultant tensional stress along the nanowire is not significant but grows along the wire thickness; this tensional stress gradient and the bent supports of the bridge-like carbon nanowire enhance structural robustness and alleviate the stiction problem that suspended nanostructures frequently experience. The feasibility of the suspended carbon nanostructures as a sensor platform was demonstrated by testing its electrochemical behavior, conductivity-temperature relationship, and hydrogen gas sensing capability.

  7. Monolithic-Structured Single-Layered Textile-Based Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Yun, Min Ju; Cha, Seung I.; Kim, Han Seong; Seo, Seon Hee; Lee, Dong Y.

    2016-10-01

    Textile-structured solar cells are frequently discussed in the literature due to their prospective applications in wearable devices and in building integrated solar cells that utilize their flexibility, mechanical robustness, and aesthetic appearance, but the current approaches for textile-based solar cells—including the preparation of fibre-type solar cells woven into textiles—face several difficulties from high friction and tension during the weaving process. This study proposes a new structural concept and fabrication process for monolithic-structured textile-based dye-sensitized solar cells that are fabricated by a process similar to the cloth-making process, including the preparation of wires and yarns that are woven for use in textiles, printed, dyed, and packaged. The fabricated single-layered textile-based dye-sensitized solar cells successfully act as solar cells in our study, even under bending conditions. By controlling the inter-weft spacing and the number of Ti wires for the photoelectrode conductor, we have found that the performance of this type of dye-sensitized solar cell was notably affected by the spacing between photoelectrodes and counter-electrodes, the exposed areas of Ti wires to photoelectrodes, and photoelectrodes’ surface morphology. We believe that this study provides a process and concept for improved textile-based solar cells that can form the basis for further research.

  8. Monolithic Domes.

    ERIC Educational Resources Information Center

    Lanham, Carol

    2002-01-01

    Describes how the energy savings, low cost, and near-absolute protection from tornadoes provided by monolithic domes is starting to appeal to school districts for athletic and other facilities, including the Italy (Texas) Independent School District. Provides an overview of monolithic dome construction. (EV)

  9. A penalty-projection algorithm for a monolithic fluid-structure interaction solver

    NASA Astrophysics Data System (ADS)

    Cerroni, D.; Manservisi, S.

    2016-05-01

    In this paper we propose a new iterative penalty-projection algorithm for a monolithic fluid-structure interaction solver. Projection methods, that split the computation of the velocity from the pressure, are very popular in fluid dynamics since the boundary errors generated by the projection method are localized mainly near the boundary layers where the incorrect pressure boundary conditions are imposed. However, when solid regions are taken into account, the pressure projected field cannot satisfy fully coupled boundary constraints imposed on external solid surfaces such as stress-free conditions, and, due to the rigidity of the medium, the boundary errors propagate deeply in the interior. In order to reduce the projection errors we propose a one-step penalty-projection method in the fluid domain and an iterative penalty-projection method in the solid region. This technique decouples the pressure-velocity degrees of freedom and, as a consequence, the computational cost. In order to verify the accuracy and robustness of the proposed method we compare the results between this splitting velocity-pressure algorithm and the coupled one. These numerical results show stability and robustness of the proposed algorithm with a strong reduction of the computational effort.

  10. A preliminary investigation of the growth of an aneurysm with a multiscale monolithic Fluid-Structure interaction solver

    NASA Astrophysics Data System (ADS)

    Cerroni, D.; Manservisi, S.; Pozzetti, G.

    2015-11-01

    In this work we investigate the potentialities of multi-scale engineering techniques to approach complex problems related to biomedical and biological fields. In particular we study the interaction between blood and blood vessel focusing on the presence of an aneurysm. The study of each component of the cardiovascular system is very difficult due to the fact that the movement of the fluid and solid is determined by the rest of system through dynamical boundary conditions. The use of multi-scale techniques allows us to investigate the effect of the whole loop on the aneurysm dynamic. A three-dimensional fluid-structure interaction model for the aneurysm is developed and coupled to a mono-dimensional one for the remaining part of the cardiovascular system, where a point zero-dimensional model for the heart is provided. In this manner it is possible to achieve rigorous and quantitative investigations of the cardiovascular disease without loosing the system dynamic. In order to study this biomedical problem we use a monolithic fluid-structure interaction (FSI) model where the fluid and solid equations are solved together. The use of a monolithic solver allows us to handle the convergence issues caused by large deformations. By using this monolithic approach different solid and fluid regions are treated as a single continuum and the interface conditions are automatically taken into account. In this way the iterative process characteristic of the commonly used segregated approach, it is not needed any more.

  11. Structural Behavior of Monolithic Fuel Plates During Hot Isostatic Pressing and Annealing

    SciTech Connect

    Pavel G. Medvedev; Hakan Ozaltun

    2010-03-01

    This paper presents results of the stress analysis in the monolithic fuel plates during thermal transients performed using COMSOL finite element analysis software. Large difference in the thermal expansion between the U-Mo foil and Al cladding is the main load origin during heating and cooling of the fuel plates. In addition, the mechanical behavior of the plate is affected by the difference in yield points between the foil and the cladding. This is manifested by the plastic deformation and permanent strains in the cladding, and elastic deformation of the foil. The results show existence of the critical temperature points at which the stresses change from compressive to tensile. The paper highlights principal differences in mechanical behavior between monolithic and dispersion fuel plates, underlines the need for mechanical property data, especially for the U-Mo alloys, and discusses the methodology for mechanical analysis of the monolithic plates.

  12. Simulation Based Optimization of Complex Monolithic Composite Structures Using Cellular Core Technology

    NASA Astrophysics Data System (ADS)

    Hickmott, Curtis W.

    Cellular core tooling is a new technology which has the capability to manufacture complex integrated monolithic composite structures. This novel tooling method utilizes thermoplastic cellular cores as inner tooling. The semi-rigid nature of the cellular cores makes them convenient for lay-up, and under autoclave temperature and pressure they soften and expand providing uniform compaction on all surfaces including internal features such as ribs and spar tubes. This process has the capability of developing fully optimized aerospace structures by reducing or eliminating assembly using fasteners or bonded joints. The technology is studied in the context of evaluating its capabilities, advantages, and limitations in developing high quality structures. The complex nature of these parts has led to development of a model using the Finite Element Analysis (FEA) software Abaqus and the plug-in COMPRO Common Component Architecture (CCA) provided by Convergent Manufacturing Technologies. This model utilizes a "virtual autoclave" technique to simulate temperature profiles, resin flow paths, and ultimately deformation from residual stress. A model has been developed simulating the temperature profile during curing of composite parts made with the cellular core technology. While modeling of composites has been performed in the past, this project will look to take this existing knowledge and apply it to this new manufacturing method capable of building more complex parts and develop a model designed specifically for building large, complex components with a high degree of accuracy. The model development has been carried out in conjunction with experimental validation. A double box beam structure was chosen for analysis to determine the effects of the technology on internal ribs and joints. Double box beams were manufactured and sectioned into T-joints for characterization. Mechanical behavior of T-joints was performed using the T-joint pull-off test and compared to traditional

  13. Monolithic spectrometer

    DOEpatents

    Rajic, S.; Egert, C.M.; Kahl, W.K.; Snyder, W.B. Jr.; Evans, B.M. III; Marlar, T.A.; Cunningham, J.P.

    1998-05-19

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays. 6 figs.

  14. Monolithic spectrometer

    DOEpatents

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  15. Optical AND/OR gates based on monolithically integrated vertical cavity laser with depleted optical thyristor structure.

    PubMed

    Choi, Woon-Kyung; Kim, Doo-Gun; Kim, Do-Gyun; Choi, Young-Wan; Choquette, Kent D; Lee, Seok; Woo, Deok-Ha

    2006-11-27

    Latching optical switches and optical logic gates with AND and OR functionality are demonstrated for the first time by the monolithic integration of a vertical cavity lasers with depleted optical thyristor structure. The thyristors have a low threshold current of 0.65 mA and a high on/off contrast ratio of more than 50 dB. By simply changing a reference switching voltage, this single device operates as two logic functions, optical logic AND and OR. The thyristor laser fabricated by using the oxidation process and has achieved high optical output power efficiency and a high sensitivity to the optical input light.

  16. Monolithic III-V on Silicon Plasmonic Nanolaser Structure for Optical Interconnects

    NASA Astrophysics Data System (ADS)

    Li, Ning; Liu, Ke; Sorger, Volker J.; Sadana, Devendra K.

    2015-09-01

    Monolithic integration of III-V semiconductor lasers with Si circuits can reduce cost and enhance performance for optical interconnects dramatically. We propose and investigate plasmonic III-V nanolasers as monolithically integrated light source on Si chips due to many advantages. First, these III-V plasmonic light sources can be directly grown on Si substrates free of crystallographic defects due to the submicron cavity footprint (250 nm × 250 nm) being smaller than the average defect free region size of the heteroepitaxial III-V material on Si. Secondly, the small lateral and vertical dimensions facilitate process co-integration with Si complementary metal-oxide-semiconductor (CMOS) in the front end of the line. Thirdly, combining with monolithically integrated CMOS circuits with low device capacitance and parasitic capacitance, the nano-cavity optoelectronic devices consume orders of magnitude less power than the conventional lasers and reduce the energy consumption. Fourthly, the modulation bandwidth of the plasmonic light-sources is enhanced to significantly higher than conventional lasers due to enhanced photon state density and transition rate. In addition, we show that these device performance are very robust after taking into account the surface recombination and variations in device fabrication processes.

  17. Monolithic III–V on Silicon Plasmonic Nanolaser Structure for Optical Interconnects

    PubMed Central

    Li, Ning; Liu, Ke; Sorger, Volker J.; Sadana, Devendra K.

    2015-01-01

    Monolithic integration of III–V semiconductor lasers with Si circuits can reduce cost and enhance performance for optical interconnects dramatically. We propose and investigate plasmonic III–V nanolasers as monolithically integrated light source on Si chips due to many advantages. First, these III–V plasmonic light sources can be directly grown on Si substrates free of crystallographic defects due to the submicron cavity footprint (250 nm × 250 nm) being smaller than the average defect free region size of the heteroepitaxial III–V material on Si. Secondly, the small lateral and vertical dimensions facilitate process co-integration with Si complementary metal-oxide-semiconductor (CMOS) in the front end of the line. Thirdly, combining with monolithically integrated CMOS circuits with low device capacitance and parasitic capacitance, the nano-cavity optoelectronic devices consume orders of magnitude less power than the conventional lasers and reduce the energy consumption. Fourthly, the modulation bandwidth of the plasmonic light-sources is enhanced to significantly higher than conventional lasers due to enhanced photon state density and transition rate. In addition, we show that these device performance are very robust after taking into account the surface recombination and variations in device fabrication processes. PMID:26369698

  18. Development of GaAs/Si and GaAs/Si monolithic structures for future space solar cells

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Vernon, S. M.; Wolfson, R. G.; Tobin, S. P.

    1984-01-01

    The results of heteroepitaxial growth of GaAs and GaAlAs directly on Si are presented, and applications to new cell structures are suggested. The novel feature is the elimination of a Ge lattice transition region. This feature not only reduces the cost of substrate preparation, but also makes possible the fabrication of high efficiency monolithic cascade structures. All films to be discussed were grown by organometallic chemical vapor deposition at atmospheric pressure. This process yielded reproducible, large-area films of GaAs, grown directly on Si, that are tightly adherent and smooth, and are characterized by a defect density of 5 x 10(6) power/sq cm. Preliminary studies indicate that GaAlAs can also be grown in this way. A number of promising applications are suggested. Certainly these substrates are ideal for low-weight GaAs space solar ells. For very high efficiency, the absence of Ge makes the technology attractive for GaAlAs/Si monolithic cascades, in which the Si substrates would first be provided with a suitable p/n junction. An evaluation of a three bandgap cascade consisting of appropriately designed GaAlAs/GaAs/Si layers is also presented.

  19. Effects of indirect bandgap top cells in a monolithic cascade cell structure

    NASA Technical Reports Server (NTRS)

    Curtis, H. B.; Godlewski, M. P.

    1982-01-01

    The effect of having a slightly indirect top cell in a three junction cascade monolithic stack is calculated. The minority carrier continuity equations are utilized to calculate individual junction performance. Absorption coefficient curves for general III-V compounds are calculated for a variety of direct and indirect gap materials. The results indicate that for a small excursion into the indirect region, (about 0.1 eV), the loss of efficiency is acceptably small (less than 2.5 percent) and considerably less than attempting to make the top junction a smaller direct bandgap.

  20. Monolithic 3D titania with ultrathin nanoshell structures for enhanced photocatalytic activity and recyclability

    NASA Astrophysics Data System (ADS)

    Ahn, Changui; Park, Junyong; Kim, Donghyuk; Jeon, Seokwoo

    2013-10-01

    Titania has attracted considerable interest for use in water purification applications due to its excellent photocatalytic activity. To further improve the efficiency of photocatalysis, numerous nanostructures (i.e. nanoparticles, nanotubes, and nanowires) have been proposed to increase the surface area of titania. Despite the high photocatalytic performance of the nanostructured titania, subsequent difficulties encountered in recollection and reuse of titania inhibit the practical application for water purification systems. Here we successfully fabricate monolithic, three dimensional (3D) nanoshell titania with high uniformity over large areas (~1 × 1 inch2) through proximity field nanopatterning (PnP) and low-temperature atomic layer deposition (ALD) techniques. The higher surface area of 3D nanoshell titania increases the photocatalytic performance more than three-fold relative to that of a thin film of equivalent sample size. Also, the monolithic form of titania enables it to be reused without any degradation of photocatalytic activity. The newly developed nanomaterials in this study can serve as an efficient and reusable photocatalyst for water purification systems.Titania has attracted considerable interest for use in water purification applications due to its excellent photocatalytic activity. To further improve the efficiency of photocatalysis, numerous nanostructures (i.e. nanoparticles, nanotubes, and nanowires) have been proposed to increase the surface area of titania. Despite the high photocatalytic performance of the nanostructured titania, subsequent difficulties encountered in recollection and reuse of titania inhibit the practical application for water purification systems. Here we successfully fabricate monolithic, three dimensional (3D) nanoshell titania with high uniformity over large areas (~1 × 1 inch2) through proximity field nanopatterning (PnP) and low-temperature atomic layer deposition (ALD) techniques. The higher surface area of 3D

  1. Relation of structure to performance characteristics of monolithic and perfusive stationary phases.

    PubMed

    Trilisky, Egor I; Koku, Harun; Czymmek, Kirk J; Lenhoff, Abraham M

    2009-09-01

    Commercially available polymer-based monolithic and perfusive stationary phases were evaluated for their applicability in chromatography of biologics. Information on bed geometry, including that from electron microscopy (EM), was used to interpret and predict accessible volumes, binding capacities, and pressure drops. For preparative purification of biologics up to at least 7 nm in diameter, monoliths and perfusive resins are inferior to conventional stationary phases due to their low binding capacities (20-30 g/L for BSA). For larger biologics, up to several hundred nanometers in diameter, calculations from EM images predict a potential increase in binding capacity to nearly 100 g/L. The accessible volume for adenovirus calculated from the EM images matched the experimental value. While the pores of perfusive resins are essentially inaccessible to adenovirus under binding conditions, under non-adsorbing conditions the accessible intrabead porosity is almost as large as the interbead porosity. Modeling of breakthrough curves showed that the experimentally observed slow approach to full saturation can be explained by the distribution of pore sizes. PMID:19646709

  2. Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling

    SciTech Connect

    Barker, Andrew T. Cai Xiaochuan

    2010-02-01

    We introduce and study numerically a scalable parallel finite element solver for the simulation of blood flow in compliant arteries. The incompressible Navier-Stokes equations are used to model the fluid and coupled to an incompressible linear elastic model for the blood vessel walls. Our method features an unstructured dynamic mesh capable of modeling complicated geometries, an arbitrary Lagrangian-Eulerian framework that allows for large displacements of the moving fluid domain, monolithic coupling between the fluid and structure equations, and fully implicit time discretization. Simulations based on blood vessel geometries derived from patient-specific clinical data are performed on large supercomputers using scalable Newton-Krylov algorithms preconditioned with an overlapping restricted additive Schwarz method that preconditions the entire fluid-structure system together. The algorithm is shown to be robust and scalable for a variety of physical parameters, scaling to hundreds of processors and millions of unknowns.

  3. Triaxial tunable mechanical monolithic sensors for large band low frequency monitoring and characterization of sites and structures

    NASA Astrophysics Data System (ADS)

    Barone, F.; Giordano, G.; Acernese, F.; Romano, R.

    2016-04-01

    This paper describes the application of the monolithic UNISA Folded Pendulum, optimized as inertial sensor (seismometer) for low frequency applications for characterization of sites (including underground sites) and structures (e.g. buildings, bridges, historical monuments), but, in general, for applications requiring large band low-frequency performances coupled with high sensitivities. The main characteristics of this class of sensors are high sensitivity, large measurement band, compactness, lightness, scalability, tunability of the resonance frequency, low thermal noise and very good immunity to environmental noises. The horizontal and vertical versions of folded pendulum allow an effective state-of-the-art mechanical implementation of triaxial sensors, configurable both as seismometer and/or as accelerometer.

  4. Hierarchically structured monolithic silicalite-1 consisting of crystallized nanoparticles and its performance in the Beckmann rearrangement of cyclohexanone oxime.

    PubMed

    Li, Wen-Cui; Lu, An-Hui; Palkovits, Regina; Schmidt, Wolfgang; Spliethoff, Bernd; Schüth, Ferdi

    2005-09-14

    In this study, we present a synthetic pathway for the fabrication of self-supporting zeolite monoliths consisting of crystallized nanoparticles. A resorcinol-formaldehyde-based organic aerogel is used as a template, and silicalite-1 is used as the zeolite example. The silicalite-1 monoliths obtained consist of individual well-defined zeolite nanocrystals with sizes of 30-40 nm. The monoliths exhibit a high mechanical stability and have hierarchical porosity, with micropores within the zeolite particles, a mesopore system formed by the packing of the nanoparticles, and a macropore system on the monolith level. Such monolithic zeolites show high selectivity typically above 80% to epsilon-caprolactam combined with a high rate of reaction of 0.46 g(caprolactame)/(g(catalyst).h) in the Beckmann rearrangement of cyclohexanone oxime.

  5. Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures

    PubMed Central

    Schwarz, Benedikt; Reininger, Peter; Ristanić, Daniela; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried

    2014-01-01

    The increasing demand of rapid sensing and diagnosis in remote areas requires the development of compact and cost-effective mid-infrared sensing devices. So far, all miniaturization concepts have been demonstrated with discrete optical components. Here we present a monolithically integrated sensor based on mid-infrared absorption spectroscopy. A bi-functional quantum cascade laser/detector is used, where, by changing the applied bias, the device switches between laser and detector operation. The interaction with chemicals in a liquid is resolved via a dielectric-loaded surface plasmon polariton waveguide. The thin dielectric layer enhances the confinement and enables efficient end-fire coupling from and to the laser and detector. The unamplified detector signal shows a slope of 1.8–7 μV per p.p.m., which demonstrates the capability to reach p.p.m. accuracy over a wide range of concentrations (0–60%). Without any hybrid integration or subwavelength patterning, our approach allows a straightforward and cost-saving fabrication. PMID:24905443

  6. Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures.

    PubMed

    Schwarz, Benedikt; Reininger, Peter; Ristanić, Daniela; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried

    2014-06-06

    The increasing demand of rapid sensing and diagnosis in remote areas requires the development of compact and cost-effective mid-infrared sensing devices. So far, all miniaturization concepts have been demonstrated with discrete optical components. Here we present a monolithically integrated sensor based on mid-infrared absorption spectroscopy. A bi-functional quantum cascade laser/detector is used, where, by changing the applied bias, the device switches between laser and detector operation. The interaction with chemicals in a liquid is resolved via a dielectric-loaded surface plasmon polariton waveguide. The thin dielectric layer enhances the confinement and enables efficient end-fire coupling from and to the laser and detector. The unamplified detector signal shows a slope of 1.8-7 μV per p.p.m., which demonstrates the capability to reach p.p.m. accuracy over a wide range of concentrations (0-60%). Without any hybrid integration or subwavelength patterning, our approach allows a straightforward and cost-saving fabrication.

  7. Effect of polyethylene glycol on pore structure and separation efficiency of silica-based monolithic capillary columns.

    PubMed

    Hara, Takeshi; Desmet, Gert; Baron, Gino V; Minakuchi, Hiroyoshi; Eeltink, Sebastiaan

    2016-04-15

    Monolithic silica materials (first unclad monolith rods, then monolithic capillary columns) were prepared using various amounts of polyethylene glycols (PEGs) with different molecular weight (MW). The monolith rods were used to examine the mesoporosity by argon physisorption technique, and the macroporosity by mercury intrusion porosimetry. Subsequently, silica-based monolithic capillary columns with an inner diameter of 100 μm were produced using the same preparation conditions as used for the rods. The results obtained with the monolith rods showed the following important findings: (1) it is feasible to fabricate monolithic silica rods possessing macropore size of 0.5-1.4 μm by tuning the amount of PEGs (independently of the MW), whereas the macropore volume and the mesoporosity remain similar. (2) the smallest macropore size (0.5 μm) rod prepared with PEG having a MW=20,000g/mol provided a narrower macropore size distribution than with PEG with MW=10,000g/mol. The monolithic capillary columns produced with the different PEG type showed similar retention factors for hexylbenzene (k=2.3-2.4) and similar t0-based column permeability (Kv0=2.3-2.4×10(-14)m(2)) in 20:80% (v/v) water:methanol, as expected from the results obtained with the monolith rods. The column prepared with PEG of MW=20,000g/mol gave a plate height of H=4.0 μm for hexylbenzene at an optimal linear velocity of u0=2.6mm/s in 20:80% (v/v) water containing 0.1% formic acid:acetonitrile. To the best of our knowledge, this is the lowest plate height ever recorded for a monolithic column. Comparing the kinetic performance at 30MPa shows that the best monolithic silica column obtained in the present study performs better than the second-generation monolithic silica columns developed up till now in the practically most relevant range of plate numbers (N≤40,000). In this range, the performance is now similar to that of 2.7 μm core-shell particle columns. PMID:26976349

  8. Novel monolithic integration scheme for high-speed electroabsorption modulators and semiconductor optical amplifiers using cascaded structure.

    PubMed

    Lin, Fang-Zheng; Wu, Tsu-Hsiu; Chiu, Yi-Jen

    2009-06-01

    A new monolithic integration scheme, namely cascaded-integration (CI), for improving high-speed optical modulation is proposed and demonstrated. High-speed electroabsorption modulators (EAMs) and semiconductor optical amplifiers (SOAs) are taken as the integrated elements of CI. This structure is based on an optical waveguide defined by cascading segmented EAMs with segmented SOAs, while high-impedance transmission lines (HITLs) are used for periodically interconnecting EAMs, forming a distributive optical re-amplification and re-modulation. Therefore, not only the optical modulation can be beneficial from SOA gain, but also high electrical reflection due to EAM low characteristic impedance can be greatly reduced. Two integration schemes, CI and conventional single-section (SS), with same total EAM- and SOA- lengths are fabricated and compared to examine the concept. Same modulation-depth against with EAM bias (up to 5V) as well as SOA injection current (up to 60mA) is found in both structures. In comparison with SS, a < 1dB extra optical-propagation loss in CI is measured due to multi-sections of electrical-isolation regions between EAMs and SOAs, suggesting no significant deterioration in CI on DC optical modulation efficiency. Lower than -12dB of electrical reflection from D.C. to 30GHz is observed in CI, better than -5dB reflection in SS for frequency of above 5GHz. Superior high-speed electrical properties in CI structure can thus lead to higher speed of electrical-to-optical (EO) response, where -3dB bandwidths are >30GHz and 13GHz for CI and SS respectively. Simulation results on electrical and EO response are quite consistent with measurement, confirming that CI can lower the driving power at high-speed regime, while the optical loss is still kept the same level. Taking such distributive advantage (CI) with optical gain, not only higher-speed modulation with high output optical power can be attained, but also the trade-off issue due to impedance mismatch

  9. Taking a Large Monolith to Use for Teaching Soil Morphology.

    ERIC Educational Resources Information Center

    Smith, B. R.; And Others

    1989-01-01

    Described is a technique for taking a large monolith for the purpose of teaching soil structure. Materials and procedures are detailed. A survey of 93 students indicated that the larger monolith was preferred over the commonly used narrow ones. (CW)

  10. Characterization of polyacrylamide based monolithic columns.

    PubMed

    Plieva, Fatima M; Andersson, Jonatan; Galaev, Igor Yu; Mattiasson, Bo

    2004-07-01

    Supermacroporous monolithic polyacrylamide (pAAm)-based columns have been prepared by radical cryo-copolymerization (copolymerization in the moderately frozen system) of acrylamide with functional co-monomer, allyl glycidyl ether (AGE), and cross-linker N,N'-methylene-bis-acrylamide (MBAAm) directly in glass columns (ID 10 mm). The monolithic columns have uniform supermacroporous sponge-like structure with interconnected supermacropores of pore size 5-100 microm. The monoliths can be dried and stored in the dry state. High mechanical stability of the monoliths allowed sterilization by autoclaving. Column-to-column reproducibility of pAAm-monoliths was demonstrated on 5 monolithic columns from different batches prepared under the same cryostructuration conditions.

  11. Characterization of polyacrylamide based monolithic columns.

    PubMed

    Plieva, Fatima M; Andersson, Jonatan; Galaev, Igor Yu; Mattiasson, Bo

    2004-07-01

    Supermacroporous monolithic polyacrylamide (pAAm)-based columns have been prepared by radical cryo-copolymerization (copolymerization in the moderately frozen system) of acrylamide with functional co-monomer, allyl glycidyl ether (AGE), and cross-linker N,N'-methylene-bis-acrylamide (MBAAm) directly in glass columns (ID 10 mm). The monolithic columns have uniform supermacroporous sponge-like structure with interconnected supermacropores of pore size 5-100 microm. The monoliths can be dried and stored in the dry state. High mechanical stability of the monoliths allowed sterilization by autoclaving. Column-to-column reproducibility of pAAm-monoliths was demonstrated on 5 monolithic columns from different batches prepared under the same cryostructuration conditions. PMID:15354560

  12. Photoluminescence studies of a perceived white light emission from a monolithic InGaN/GaN quantum well structure

    NASA Astrophysics Data System (ADS)

    Ben Sedrine, N.; Esteves, T. C.; Rodrigues, J.; Rino, L.; Correia, M. R.; Sequeira, M. C.; Neves, A. J.; Alves, E.; Bockowski, M.; Edwards, P. R.; O'Donnell, K. P.; Lorenz, K.; Monteiro, T.

    2015-09-01

    In this work we demonstrate by photoluminescence studies white light emission from a monolithic InGaN/GaN single quantum well structure grown by metal organic chemical vapour deposition. As-grown and thermally annealed samples at high temperature (1000 °C, 1100 °C and 1200 °C) and high pressure (1.1 GPa) were analysed by spectroscopic techniques, and the annealing effect on the photoluminescence is deeply explored. Under laser excitation of 3.8 eV at room temperature, the as-grown structure exhibits two main emission bands: a yellow band peaked at 2.14 eV and a blue band peaked at 2.8 eV resulting in white light perception. Interestingly, the stability of the white light is preserved after annealing at the lowest temperature (1000 °C), but suppressed for higher temperatures due to a deterioration of the blue quantum well emission. Moreover, the control of the yellow/blue bands intensity ratio, responsible for the white colour coordinate temperatures, could be achieved after annealing at 1000 °C. The room temperature white emission is studied as a function of incident power density, and the correlated colour temperature values are found to be in the warm white range: 3260-4000 K.

  13. Consolidation and densification methods for fibrous monolith processing

    SciTech Connect

    Sutaria, Manish P.; Rigali, Mark J.; Cipriani, Ronald A.; Artz, Gregory J.; Mulligan, Anthony C.

    2006-06-20

    Methods for consolidation and densification of fibrous monolith composite structures are provided. Consolidation and densification of two- and three-dimensional fibrous monolith components having complex geometries can be achieved by pressureless sintering. The fibrous monolith composites are formed from filaments having at least a first material composition generally surrounded by a second material composition. The composites are sintered at a pressure of no more than about 30 psi to provide consolidated and densified fibrous monolith composites.

  14. Analysis and characterizations of planar transmission structures and components for superconducting and monolithic integrated circuits

    NASA Technical Reports Server (NTRS)

    Itoh, Tatsuo

    1991-01-01

    The analysis and modeling of superconducting planar transmission lines were performed. Theoretically, the highest possible Q values of superconducting microstrip line was calculated and, as a result, it provided the Q value that the experiment can aim for. As an effort to search for a proper superconducting transmission line structure, the superconducting microstrip line and coplanar waveguide were compared in terms of loss characteristics and their design aspects. Also, the research was expanded to a superconducting coplanar waveguide family in the microwave packaging environment. Theoretically, it was pointed out that the substrate loss is critical in the superconducting transmission line structures.

  15. Analysis and characterizations of planar transmission structures and components for superconducting and monolithic integrated circuits

    NASA Technical Reports Server (NTRS)

    Itoh, Tatsuo

    1992-01-01

    The research effort was continued to design and characterize superconducting transmission line structures. The research during this period was concentrated on the implementation of a superconductor into coplanar waveguide structures. First, the superconducting coplanar waveguide was examined, and compared with a superconducting microstrip line in terms of loss characteristics and their design aspects. Then, the research was carried on the design and characterization of the coplanar waveguide family in the packaging environment. The transition between the coaxial line to the conductor backed coplanar waveguide was also designed for the measurement of the superconducting conductor backed coplanar waveguide.

  16. A Parallel Monolithic Approach for Fluid-Structure Interaction in a Cerebral Aneurysm

    NASA Astrophysics Data System (ADS)

    Sahin, Mehmet; Eken, Ali

    2014-11-01

    A parallel fully-coupled approach has been developed for the fluid-structure interaction problem in a cerebral artery with aneurysm. An Arbitrary Lagrangian-Eulerian formulation based on the side-centered unstructured finite volume method is employed for the governing incompressible Navier-Stokes equations and the classical Galerkin finite element formulation is used to discretize the constitutive law for the Saint Venant-Kirchhoff material in a Lagrangian frame for the solid domain. The time integration method for the structure domain is based on the energy conserving mid-point method while the second-order backward difference is used within the fluid domain. The resulting large-scale algebraic linear equations are solved using a one-level restricted additive Schwarz preconditioner with a block-incomplete factorization within each partitioned sub-domains. The parallel implementation of the present fully coupled unstructured fluid-structure solver is based on the PETSc library. The proposed numerical algorithm is initially validated for several classical benchmark problems and then applied to a more complicated problem involving unsteady pulsatile blood flow in a cerebral artery with aneurysm as a realistic fluid-structure interaction problem encountered in biomechanics. The authors acknowledge financial support from Turkish National Scientific and Technical Research Council through Project Number 112M107.

  17. A space imaging concept based on a 4m structured spun-cast borosilicate monolithic primary mirror

    NASA Astrophysics Data System (ADS)

    West, S. C.; Bailey, S. H.; Bauman, S.; Cuerden, B.; Granger, Z.; Olbert, B. H.

    2010-07-01

    Lockheed Martin Corporation (LMC) tasked The University of Arizona Steward Observatory (UASO) to conduct an engineering study to examine the feasibility of creating a 4m space telescope based on mature borosilicate technology developed at the UASO for ground-based telescopes. UASO has completed this study and concluded that existing launch vehicles can deliver a 4m monolithic telescope system to a 500 km circular orbit and provide reliable imagery at NIIRS 7-8. An analysis of such an imager based on a lightweight, high-performance, structured 4m primary mirror cast from borosilicate glass is described. The relatively high CTE of this glass is used to advantage by maintaining mirror shape quality with a thermal figuring method. Placed in a 290 K thermal shroud (similar to the Hubble Space Telescope), the orbit averaged figure surface error is 6nm rms when earth-looking. Space-looking optical performance shows that a similar thermal conditioning scheme combined with a 270 K shroud achieves primary mirror distortion of 10 nm rms surface. Analysis shows that a 3-point bipod mount will provide launch survivability with ample margin. The primary mirror naturally maintains its shape at 1g allowing excellent end-to-end pre-launch testing with e.g. the LOTIS 6.5m Collimator. The telescope includes simple systems to measure and correct mirror shape and alignment errors incorporating technologies already proven on the LOTIS Collimator. We have sketched a notional earth-looking 4m telescope concept combined with a wide field TMA concept into a DELTA IV or ATLAS 552 EELV fairing. We have combined an initial analysis of launch and space performance of a special light-weighted honeycomb borosilicate mirror (areal density 95 kg/m2) with public domain information on the existing launch vehicles.

  18. Monolithic fiber optic sensor assembly

    SciTech Connect

    Sanders, Scott

    2015-02-10

    A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.

  19. Surface modified aerogel monoliths

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas (Inventor); Johnston, James C. (Inventor); Kuczmarski, Maria A. (Inventor); Meador, Mary Ann B. (Inventor)

    2013-01-01

    This invention comprises reinforced aerogel monoliths such as silica aerogels having a polymer coating on its outer geometric surface boundary, and to the method of preparing said aerogel monoliths. The polymer coatings on the aerogel monoliths are derived from polymer precursors selected from the group consisting of isocyanates as a precursor, precursors of epoxies, and precursors of polyimides. The coated aerogel monoliths can be modified further by encapsulating the aerogel with the polymer precursor reinforced with fibers such as carbon or glass fibers to obtain mechanically reinforced composite encapsulated aerogel monoliths.

  20. Scaling up the Single Transducer Thickness-Independent Ultrasonic Imaging Method for Accurate Characterization of Microstructural Gradients in Monolithic and Composite Tubular Structures

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Carney, Dorothy V.; Baaklini, George Y.; Bodis, James R.; Rauser, Richard W.

    1998-01-01

    Ultrasonic velocity/time-of-flight imaging that uses back surface reflections to gauge volumetric material quality is highly suited for quantitative characterization of microstructural gradients including those due to pore fraction, density, fiber fraction, and chemical composition variations. However, a weakness of conventional pulse-echo ultrasonic velocity/time-of-flight imaging is that the image shows the effects of thickness as well as microstructural variations unless the part is uniformly thick. This limits this imaging method's usefulness in practical applications. Prior studies have described a pulse-echo time-of-flight-based ultrasonic imaging method that requires using a single transducer in combination with a reflector plate placed behind samples that eliminates the effect of thickness variation in the image. In those studies, this method was successful at isolating ultrasonic variations due to material microstructure in plate-like samples of silicon nitride, metal matrix composite, and polymer matrix composite. In this study, the method is engineered for inspection of more complex-shaped structures-those having (hollow) tubular/curved geometry. The experimental inspection technique and results are described as applied to (1) monolithic mullite ceramic and polymer matrix composite 'proof-of-concept' tubular structures that contain machined patches of various depths and (2) as-manufactured monolithic silicon nitride ceramic and silicon carbide/silicon carbide composite tubular structures that might be used in 'real world' applications.

  1. Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links.

    PubMed

    Kim, Hyunseok; Farrell, Alan C; Senanayake, Pradeep; Lee, Wook-Jae; Huffaker, Diana L

    2016-03-01

    Monolithically integrated III-V semiconductors on a silicon-on-insulator (SOI) platform can be used as a building block for energy-efficient on-chip optical links. Epitaxial growth of III-V semiconductors on silicon, however, has been challenged by the large mismatches in lattice constants and thermal expansion coefficients between epitaxial layers and silicon substrates. Here, we demonstrate for the first time the monolithic integration of InGaAs nanowires on the SOI platform and its feasibility for photonics and optoelectronic applications. InGaAs nanowires are grown not only on a planar SOI layer but also on a 3D structured SOI layer by catalyst-free metal-organic chemical vapor deposition. The precise positioning of nanowires on 3D structures, including waveguides and gratings, reveals the versatility and practicality of the proposed platform. Photoluminescence measurements exhibit that the composition of ternary InGaAs nanowires grown on the SOI layer has wide tunability covering all telecommunication wavelengths from 1.2 to 1.8 μm. We also show that the emission from an optically pumped single nanowire is effectively coupled and transmitted through an SOI waveguide, explicitly showing that this work lays the foundation for a new platform toward energy-efficient optical links.

  2. Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links.

    PubMed

    Kim, Hyunseok; Farrell, Alan C; Senanayake, Pradeep; Lee, Wook-Jae; Huffaker, Diana L

    2016-03-01

    Monolithically integrated III-V semiconductors on a silicon-on-insulator (SOI) platform can be used as a building block for energy-efficient on-chip optical links. Epitaxial growth of III-V semiconductors on silicon, however, has been challenged by the large mismatches in lattice constants and thermal expansion coefficients between epitaxial layers and silicon substrates. Here, we demonstrate for the first time the monolithic integration of InGaAs nanowires on the SOI platform and its feasibility for photonics and optoelectronic applications. InGaAs nanowires are grown not only on a planar SOI layer but also on a 3D structured SOI layer by catalyst-free metal-organic chemical vapor deposition. The precise positioning of nanowires on 3D structures, including waveguides and gratings, reveals the versatility and practicality of the proposed platform. Photoluminescence measurements exhibit that the composition of ternary InGaAs nanowires grown on the SOI layer has wide tunability covering all telecommunication wavelengths from 1.2 to 1.8 μm. We also show that the emission from an optically pumped single nanowire is effectively coupled and transmitted through an SOI waveguide, explicitly showing that this work lays the foundation for a new platform toward energy-efficient optical links. PMID:26901448

  3. Monolithic exploding foil initiator

    DOEpatents

    Welle, Eric J; Vianco, Paul T; Headley, Paul S; Jarrell, Jason A; Garrity, J. Emmett; Shelton, Keegan P; Marley, Stephen K

    2012-10-23

    A monolithic exploding foil initiator (EFI) or slapper detonator and the method for making the monolithic EFI wherein the exploding bridge and the dielectric from which the flyer will be generated are integrated directly onto the header. In some embodiments, the barrel is directly integrated directly onto the header.

  4. New Monolithic Dome Schools.

    ERIC Educational Resources Information Center

    Parker, Freda

    2000-01-01

    Discusses how the Grand Meadow (Minnesota) school district got more than twice the grant money asked for from the state's legislature as well as voter approval for five new $8 million monolithic domes for their K-12 facility. Three additional school district successes in developing monolithic domes for their schools are examined. (GR)

  5. Variably porous structures

    SciTech Connect

    Braun, Paul V.; Yu, Xindi

    2011-01-18

    A method of making a monolithic porous structure, comprises electrodepositing a material on a template; removing the template from the material to form a monolithic porous structure comprising the material; and electropolishing the monolithic porous structure.

  6. Mechanically stable, hierarchically porous Cu3(btc)2 (HKUST-1) monoliths via direct conversion of copper(II) hydroxide-based monoliths.

    PubMed

    Moitra, Nirmalya; Fukumoto, Shotaro; Reboul, Julien; Sumida, Kenji; Zhu, Yang; Nakanishi, Kazuki; Furukawa, Shuhei; Kitagawa, Susumu; Kanamori, Kazuyoshi

    2015-02-28

    The synthesis of highly crystalline macro-meso-microporous monolithic Cu3(btc)2 (HKUST-1; btc(3-) = benzene-1,3,5-tricarboxylate) is demonstrated by direct conversion of Cu(OH)2-based monoliths while preserving the characteristic macroporous structure. The high mechanical strength of the monoliths is promising for possible applications to continuous flow reactors. PMID:25572361

  7. Monolithic integration of enhancement-mode vertical driving transistorson a standard InGaN/GaN light emitting diode structure

    NASA Astrophysics Data System (ADS)

    Lu, Xing; Liu, Chao; Jiang, Huaxing; Zou, Xinbo; Zhang, Anping; Lau, Kei May

    2016-08-01

    In this letter, monolithic integration of InGaN/GaN light emitting diodes (LEDs) with vertical metal-oxide-semiconductor field effect transistor (VMOSFET) drivers have been proposed and demonstrated. The VMOSFET was achieved by simply regrowing a p- and n-GaN bilayer on top of a standard LED structure. After fabrication, the VMOSFET is connected with the LED through the conductive n-GaN layer, with no need of extra metal interconnections. The junction-based VMOSFET is inherently an enhancement-mode (E-mode) device with a threshold voltage of 1.6 V. By controlling the gate bias of the VMOSFET, the light intensity emitted from the integrated VMOSFET-LED device could be well modulated, which shows great potential for various applications, including solid-state lighting, micro-displays, and visible light communications.

  8. Consolidation and densification methods for fibrous monolith processing

    DOEpatents

    Sutaria, Manish P.; Rigali, Mark J.; Cipriani, Ronald A.; Artz, Gregory J.; Mulligan, Anthony C.

    2004-05-25

    Methods for consolidation and densification of fibrous monolith composite structures are provided. Consolidation and densification of two- and three-dimensional fibrous monolith components having complex geometries can be achieved by pressureless sintering. The fibrous monolith composites are formed from filaments having at least a first material composition generally surrounded by a second material composition. The composites are sintered in an inert gas or nitrogen gas at a pressure of no more than about 30 psi to provide consolidated and densified fibrous monolith composites.

  9. Recycling of inorganic waste in monolithic and cellular glass‐based materials for structural and functional applications

    PubMed Central

    Rincón, Acacio; Marangoni, Mauro; Cetin, Suna

    2016-01-01

    Abstract The stabilization of inorganic waste of various nature and origin, in glasses, has been a key strategy for environmental protection for the last decades. When properly formulated, glasses may retain many inorganic contaminants permanently, but it must be acknowledged that some criticism remains, mainly concerning costs and energy use. As a consequence, the sustainability of vitrification largely relies on the conversion of waste glasses into new, usable and marketable glass‐based materials, in the form of monolithic and cellular glass‐ceramics. The effective conversion in turn depends on the simultaneous control of both starting materials and manufacturing processes. While silica‐rich waste favours the obtainment of glass, iron‐rich wastes affect the functionalities, influencing the porosity in cellular glass‐based materials as well as catalytic, magnetic, optical and electrical properties. Engineered formulations may lead to important reductions of processing times and temperatures, in the transformation of waste‐derived glasses into glass‐ceramics, or even bring interesting shortcuts. Direct sintering of wastes, combined with recycled glasses, as an example, has been proven as a valid low‐cost alternative for glass‐ceramic manufacturing, for wastes with limited hazardousness. The present paper is aimed at providing an up‐to‐date overview of the correlation between formulations, manufacturing technologies and properties of most recent waste‐derived, glass‐based materials. © 2016 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  10. Monolithic metal oxide transistors.

    PubMed

    Choi, Yongsuk; Park, Won-Yeong; Kang, Moon Sung; Yi, Gi-Ra; Lee, Jun-Young; Kim, Yong-Hoon; Cho, Jeong Ho

    2015-04-28

    We devised a simple transparent metal oxide thin film transistor architecture composed of only two component materials, an amorphous metal oxide and ion gel gate dielectric, which could be entirely assembled using room-temperature processes on a plastic substrate. The geometry cleverly takes advantage of the unique characteristics of the two components. An oxide layer is metallized upon exposure to plasma, leading to the formation of a monolithic source-channel-drain oxide layer, and the ion gel gate dielectric is used to gate the transistor channel effectively at low voltages through a coplanar gate. We confirmed that the method is generally applicable to a variety of sol-gel-processed amorphous metal oxides, including indium oxide, indium zinc oxide, and indium gallium zinc oxide. An inverter NOT logic device was assembled using the resulting devices as a proof of concept demonstration of the applicability of the devices to logic circuits. The favorable characteristics of these devices, including (i) the simplicity of the device structure with only two components, (ii) the benign fabrication processes at room temperature, (iii) the low-voltage operation under 2 V, and (iv) the excellent and stable electrical performances, together support the application of these devices to low-cost portable gadgets, i.e., cheap electronics. PMID:25777338

  11. A monolithic collapse origin for the thin and thick disc structure of the S0 galaxy ESO 243-49

    NASA Astrophysics Data System (ADS)

    Comerón, S.; Salo, H.; Peletier, R. F.; Mentz, J.

    2016-09-01

    ESO 243-49 is a high-mass (circular velocity vc ≈ 200 km s-1), edge-on S0 galaxy in the Abell 2877 cluster at a distance of ~95 Mpc. To elucidate the origin of the thick disc of this S0 galaxy, we use Multi Unit Spectroscopic Explorer (MUSE) science verification data to study its kinematics and stellar populations. The thick disc emits ~80% of the light at heights in excess of 3.5 arcsec (1.6 kpc). The rotation velocities of its stars lag by 30-40 km s-1 compared to those in the thin disc, which is compatible with the asymmetric drift. The thick disc is found to be more metal-poor than the thin disc, but both discs have old ages. We suggest an internal origin for the thick disc stars in high-mass galaxies. We propose that the thick disc formed either a) first in a turbulent phase with a high star formation rate and that a thin disc formed shortly afterwards, or b) because of the dynamical heating of a thin pre-existing component. Either way, the star formation in ESO 243-49 was quenched just a few Gyr after the galaxy was born and the formation of a thin and a thick disc must have occurred before the galaxy stopped forming stars. The formation of the discs was so fast that it could be described as a monolithic collapse where several generations of stars formed in rapid succession. Based on observations made at the European Southern Observatory using the Very Large Telescope under programme 60.A-9328(A).

  12. A wafer-scale packaging structure with monolithic microwave integrated circuits and passives embedded in a silicon substrate for multichip modules for radio frequency applications

    NASA Astrophysics Data System (ADS)

    Geng, Fei; Ding, Xiao-yun; Xu, Gao-wei; Luo, Le

    2009-10-01

    A wafer-level packaging structure with chips and passive components embedded in a silicon substrate for multichip modules (MCM) is proposed for radio frequency (RF) applications. The packaging structure consists of two layers of benzocyclobutene (BCB) films and three layers of metalized films, in which the monolithic microwave ICs (MMICs), thin film resistors, striplines and microstrip lines are integrated. The low resistivity silicon wafer with etched cavities is used as a substrate. The BCB films serve as interlayer dielectrics (ILDs). Wirebonding gold bumps are used as electric interconnections between different layers, which eliminate the need of preparing vias by costly procedures including dry etching, metal sputtering and electroplating. The chemical mechanical planarization (CMP) is used to uncover the gold bumps, and the BCB curing profile is optimized to obtain the appropriate BCB film for CMP process. In this work, the thermal, mechanical, electrical as well as RF properties of the packaging structure are investigated. The packaging thermal resistance can be controlled below 2 °C W-1. The average shear strength of the gold bumps on the BCB surface is about 70 MPa. In addition, a Kelvin test structure is fabricated for resistance testing of the vertical vias. The performances of MMIC and interconnection structure at high frequency are simulated and tested. The testing results reveal that the slight shifting of S-parameter curves of the packaged MMIC indicates perfect transmission characteristics at high frequency. For the transition structure of transmission line, the experimental results are compatible with the simulation results. The insertion loss (S21) is below 0.4 dB from 0 to 40 GHz and the return loss (S11) is less than -20 dB from 0 to 40 GHz. For a low noise amplifier (LNA) chip, the S21 shifting caused by the packaging structure is below 0.5 dB, and S11 is less than -10 dB from 8 GHz to 14 GHz.

  13. Monolithic microwave integrated circuits

    NASA Astrophysics Data System (ADS)

    Pucel, R. A.

    Monolithic microwave integrated circuits (MMICs), a new microwave technology which is expected to exert a profound influence on microwave circuit designs for future military systems as well as for the commercial and consumer markets, is discussed. The book contains an historical discussion followed by a comprehensive review presenting the current status in the field. The general topics of the volume are: design considerations, materials and processing considerations, monolithic circuit applications, and CAD, measurement, and packaging techniques. All phases of MMIC technology are covered, from design to testing.

  14. Development of a monolithic ferrite memory array

    NASA Technical Reports Server (NTRS)

    Heckler, C. H., Jr.; Bhiwandker, N. C.

    1972-01-01

    The results of the development and testing of ferrite monolithic memory arrays are presented. This development required the synthesis of ferrite materials having special magnetic and physical characteristics and the development of special processes; (1) for making flexible sheets (laminae) of the ferrite composition, (2) for embedding conductors in ferrite, and (3) bonding ferrite laminae together to form a monolithic structure. Major problems encountered in each of these areas and their solutions are discussed. Twenty-two full-size arrays were fabricated and fired during the development of these processes. The majority of these arrays were tested for their memory characteristics as well as for their physical characteristics and the results are presented. The arrays produced during this program meet the essential goals and demonstrate the feasibility of fabricating monolithic ferrite memory arrays by the processes developed.

  15. Macroporous silver monoliths using a simple surfactant

    NASA Astrophysics Data System (ADS)

    Khan, Farid; Eswaramoorthy, Muthusamy; Rao, C. N. R.

    2007-01-01

    An elegant method to synthesize porous silver monoliths using a simple surfactant cum reductant, Triton X-114, as the sacrificial template is described. The gel forming property of the surfactant with silver nitrate is utilized to make the porous framework. The monoliths obtained with a mixture of Triton X-114 and dextran have also been examined. A significant improvement in the pore structure was observed when Triton X-114 was used along with Ludox silica sol, followed by calcination and HF treatment. The presence of interparticle pores in the 20-25 nm range on the macroporous silver framework suggests the role of silica spheres in the nanopore formation.

  16. Quasi-monolithic tunable optical resonator

    NASA Technical Reports Server (NTRS)

    Arbore, Mark (Inventor); Tapos, Francisc (Inventor)

    2003-01-01

    An optical resonator has a piezoelectric element attached to a quasi-monolithic structure. The quasi-monolithic structure defines an optical path. Mirrors attached to the structure deflect light along the optical path. The piezoelectric element controllably strains the quasi-monolithic structure to change a length of the optical path by about 1 micron. A first feedback loop coupled to the piezoelectric element provides fine control over the cavity length. The resonator may include a thermally actuated spacer attached to the cavity and a mirror attached to the spacer. The thermally actuated spacer adjusts the cavity length by up to about 20 microns. A second feedback loop coupled to the sensor and heater provides a coarse control over the cavity length. An alternative embodiment provides a quasi-monolithic optical parametric oscillator (OPO). This embodiment includes a non-linear optical element within the resonator cavity along the optical path. Such an OPO configuration is broadly tunable and capable of mode-hop free operation for periods of 24 hours or more.

  17. Embedded-monolith armor

    DOEpatents

    McElfresh, Michael W.; Groves, Scott E; Moffet, Mitchell L.; Martin, Louis P.

    2016-07-19

    A lightweight armor system utilizing a face section having a multiplicity of monoliths embedded in a matrix supported on low density foam. The face section is supported with a strong stiff backing plate. The backing plate is mounted on a spall plate.

  18. Biomimetic superelastic graphene-based cellular monoliths.

    PubMed

    Qiu, Ling; Liu, Jeffery Z; Chang, Shery L Y; Wu, Yanzhe; Li, Dan

    2012-01-01

    Many applications proposed for graphene require multiple sheets be assembled into a monolithic structure. The ability to maintain structural integrity upon large deformation is essential to ensure a macroscopic material which functions reliably. However, it has remained a great challenge to achieve high elasticity in three-dimensional graphene networks. Here we report that the marriage of graphene chemistry with ice physics can lead to the formation of ultralight and superelastic graphene-based cellular monoliths. Mimicking the hierarchical structure of natural cork, the resulting materials can sustain their structural integrity under a load of >50,000 times their own weight and can rapidly recover from >80% compression. The unique biomimetic hierarchical structure also provides this new class of elastomers with exceptionally high energy absorption capability and good electrical conductivity. The successful synthesis of such fascinating materials paves the way to explore the application of graphene in a self-supporting, structurally adaptive and 3D macroscopic form. PMID:23212370

  19. Monolithic MACS micro resonators

    NASA Astrophysics Data System (ADS)

    Lehmann-Horn, J. A.; Jacquinot, J.-F.; Ginefri, J. C.; Bonhomme, C.; Sakellariou, D.

    2016-10-01

    Magic Angle Coil Spinning (MACS) aids improving the intrinsically low NMR sensitivity of heterogeneous microscopic samples. We report on the design and testing of a new type of monolithic 2D MACS resonators to overcome known limitations of conventional micro coils. The resonators' conductors were printed on dielectric substrate and tuned without utilizing lumped element capacitors. Self-resonance conditions have been computed by a hybrid FEM-MoM technique. Preliminary results reported here indicate robust mechanical stability, reduced eddy currents heating and negligible susceptibility effects. The gain in B1 /√{ P } is in agreement with the NMR sensitivity enhancement according to the principle of reciprocity. A sensitivity enhancement larger than 3 has been achieved in a monolithic micro resonator inside a standard 4 mm rotor at 500 MHz. These 2D resonators could offer higher performance micro-detection and ease of use of heterogeneous microscopic substances such as biomedical samples, microscopic specimens and thin film materials.

  20. Monolithic MACS micro resonators.

    PubMed

    Lehmann-Horn, J A; Jacquinot, J-F; Ginefri, J C; Bonhomme, C; Sakellariou, D

    2016-10-01

    Magic Angle Coil Spinning (MACS) aids improving the intrinsically low NMR sensitivity of heterogeneous microscopic samples. We report on the design and testing of a new type of monolithic 2D MACS resonators to overcome known limitations of conventional micro coils. The resonators' conductors were printed on dielectric substrate and tuned without utilizing lumped element capacitors. Self-resonance conditions have been computed by a hybrid FEM-MoM technique. Preliminary results reported here indicate robust mechanical stability, reduced eddy currents heating and negligible susceptibility effects. The gain in B1/P is in agreement with the NMR sensitivity enhancement according to the principle of reciprocity. A sensitivity enhancement larger than 3 has been achieved in a monolithic micro resonator inside a standard 4mm rotor at 500MHz. These 2D resonators could offer higher performance micro-detection and ease of use of heterogeneous microscopic substances such as biomedical samples, microscopic specimens and thin film materials. PMID:27544845

  1. Monolithic Optoelectronic Integrated Circuit

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Walters, Wayne; Gustafsen, Jerry; Bendett, Mark

    1990-01-01

    Monolithic optoelectronic integrated circuit (OEIC) receives single digitally modulated input light signal via optical fiber and converts it into 16-channel electrical output signal. Potentially useful in any system in which digital data must be transmitted serially at high rates, then decoded into and used in parallel format at destination. Applications include transmission and decoding of control signals to phase shifters in phased-array antennas and also communication of data between computers and peripheral equipment in local-area networks.

  2. Monolithic Millimeter Wave Oscillator

    NASA Astrophysics Data System (ADS)

    Wang, Nan-Lei

    There is an increasing interest in the millimeter -wave spectrum for use in communications and for military and scientific applications. The concept of monolithic integration aims to produce very-high-frequency circuits in a more reliable, reproducible way than conventional electronics, and also at lower cost, with smaller size and lighter weight. In this thesis, a negative resistance device is integrated monolithically with a resonator to produce an effective oscillator. This work fills the void resulting from the exclusion of the local oscillator from the monolithic millimeter-wave integrated circuit (MMMIC) receiver design. For convenience a microwave frequency model was used to design the resonator circuit. A 5 GHz hybrid oscillator was first fabricated to test the design; the necessary GaAs process technology was developed for the fabrication. Negative resistance devices and oscillator theory were studied, and a simple but practical model of the Gunn diode was devised to solve the impedance matching problem. Monolithic oscillators at the Ka band (35 GHz) were built and refined. All devices operated in CW mode. By means of an electric-field probe, the output power was coupled into a metallic waveguide for measurement purposes. The best result was 3.63 mW of power output, the highest efficiency was 0.43% and the frequency stability was better than 10-4. In the future, an IMPATT diode could replace the Gunn device to give much higher power and efficiency. A varactor-tuned circuit also suitable for large-scale integration is under study.

  3. Facile fabrication of mesoporous poly(ethylene-co-vinyl alcohol)/chitosan blend monoliths.

    PubMed

    Wang, Guowei; Xin, Yuanrong; Uyama, Hiroshi

    2015-11-01

    Poly(ethylene-co-vinyl alcohol) (EVOH)/chitosan blend monoliths were fabricated by thermally-induced phase separation method. Chitosan was successfully incorporated into the polymeric monolith by selecting EVOH as the main component of the monolith. SEM images exhibit that the chitosan was located on the inner surface of the monolith. Fourier-transform infrared analysis and elemental analysis indicate the successful blend of EVOH and chitosan. BET results show that the blend monoliths had high specific surface area and uniform mesopore structure. Good adsorption ability toward various heavy metal ions was found in the blend monoliths due to the large chelation capacity of chitosan. The blend monoliths have potential application for waste water purification or bio-related applications.

  4. Porous graphene oxide/carboxymethyl cellulose monoliths, with high metal ion adsorption.

    PubMed

    Zhang, Yongli; Liu, Yue; Wang, Xinrui; Sun, Zhiming; Ma, Junkui; Wu, Tao; Xing, Fubao; Gao, Jianping

    2014-01-30

    Orderly porous graphene oxide/carboxymethyl cellulose (GO/CMC) monoliths were prepared by a unidirectional freeze-drying method. The porous monoliths were characterized by Fourier transform infrared spectra, X-ray diffraction and scanning electron microscopy. Their properties including compressive strength and moisture adsorption were measured. The incorporation of GO changed the porous structure of the GO/CMC monoliths and significantly increased their compressive strength. The porous GO/CMC monoliths exhibited a strong ability to adsorb metal ions, and the Ni(2+) ions adsorbed on GO/CMC monolith were reduced by NaBH4 to obtain Ni GO/CMC monolith which could be used as catalyst in the reduction of 4-nitrophenol to 4-aminophenol. Since CMC is biodegradable and non-toxic, the porous GO/CMC monoliths are potential environmental adsorbents. PMID:24299788

  5. Monolith electroplating process

    DOEpatents

    Agarrwal, Rajev R.

    2001-01-01

    An electroplating process for preparing a monolith metal layer over a polycrystalline base metal and the plated monolith product. A monolith layer has a variable thickness of one crystal. The process is typically carried in molten salts electrolytes, such as the halide salts under an inert atmosphere at an elevated temperature, and over deposition time periods and film thickness sufficient to sinter and recrystallize completely the nucleating metal particles into one single crystal or crystals having very large grains. In the process, a close-packed film of submicron particle (20) is formed on a suitable substrate at an elevated temperature. The temperature has the significance of annealing particles as they are formed, and substrates on which the particles can populate are desirable. As the packed bed thickens, the submicron particles develop necks (21) and as they merge into each other shrinkage (22) occurs. Then as micropores also close (23) by surface tension, metal density is reached and the film consists of unstable metal grain (24) that at high enough temperature recrystallize (25) and recrystallized grains grow into an annealed single crystal over the electroplating time span. While cadmium was used in the experimental work, other soft metals may be used.

  6. Development of oxide fibrous monolith systems.

    SciTech Connect

    Goretta, K. C.

    1999-03-02

    Fibrous monolithic ceramics generally have a cellular structure that consists of a strong cell surrounded by a weaker boundary phase [1-5]. Fibrous monoliths (FMs) are produced from powders by conventional ceramic fabrication techniques, such as extrusion [1,2]. When properly engineered, they exhibit fail gracefully [3-5]. Several compositions of ceramics and cermets have been processed successfully in fibrous monolithic form [4]. The most thoroughly investigated fibrous monolith consists of Si{sub 3}N{sub 4} cells and a BN cell-boundary phase [3-5]. Through appropriate selection of initial powders and extrusion and hot-pressing parameters, very tough final products have been produced. The resultant high toughness is due primarily to delamination during fracture along textured platelike BN grains. The primary objectives of our program are to develop: (1) Oxide-based FMs, including new systems with improved properties; (2) FMs that can be pressureless sintered rather than hot-pressed; (3) Techniques for continuous extrusion of FM filaments, including solid freeform fabrication (SFF) for net-shape fabrication of FMs; (4) Predictive micromechanical models for FM design and performance; and (5) Ties with industrial producers and users of FMs.

  7. Monolithic Flexure Pre-Stressed Ultrasonic Horns

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Allen, Phillip Grant (Inventor)

    2015-01-01

    A monolithic ultrasonic horn where the horn, backing, and pre-stress structures are combined in a single monolithic piece is disclosed. Pre-stress is applied by external flexure structures. The provision of the external flexures has numerous advantages including the elimination of the need for a pre-stress bolt. The removal of the pre-stress bolt eliminates potential internal electric discharge points in the actuator. In addition, it reduces the chances of mechanical failure in the actuator stacks that result from the free surface in the hole of conventional ring stacks. In addition, the removal of the stress bolt and the corresponding reduction in the overall number of parts reduces the overall complexity of the resulting ultrasonic horn actuator and simplifies the ease of the design, fabrication and integration of the actuator of the present invention into other structures.

  8. Monolithic Flexure Pre-Stressed Ultrasonic Horns

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Allen, Phillip Grant (Inventor)

    2016-01-01

    A monolithic ultrasonic horn where the horn, backing, and pre-stress structures are combined in a single monolithic piece is disclosed. Pre-stress is applied by external flexure structures. The provision of the external flexures has numerous advantages including the elimination of the need for a pre-stress bolt. The removal of the pre-stress bolt eliminates potential internal electric discharge points in the actuator. In addition, it reduces the chances of mechanical failure in the actuator stacks that result from the free surface in the hole of conventional ring stacks. In addition, the removal of the stress bolt and the corresponding reduction in the overall number of parts reduces the overall complexity of the resulting ultrasonic horn actuator and simplifies the ease of the design, fabrication and integration of the actuator of the present invention into other structures.

  9. Monolithic solid electrolyte oxygen pump

    DOEpatents

    Fee, Darrell C.; Poeppel, Roger B.; Easler, Timothy E.; Dees, Dennis W.

    1989-01-01

    A multi-layer oxygen pump having a one-piece, monolithic ceramic structure affords high oxygen production per unit weight and volume and is thus particularly adapted for use as a portable oxygen supply. The oxygen pump is comprised of a large number of small cells on the order of 1-2 millimeters in diameter which form the walls of the pump and which are comprised of thin, i.e., 25-50 micrometers, ceramic layers of cell components. The cell components include an air electrode, an oxygen electrode, an electrolyte and interconnection materials. The cell walls form the passages for input air and for exhausting the oxygen which is transferred from a relatively dilute gaseous mixture to a higher concentration by applying a DC voltage across the electrodes so as to ionize the oxygen at the air electrode, whereupon the ionized oxygen travels through the electrolyte and is converted to oxygen gas at the oxygen electrode.

  10. Finite element analysis of monolithic solid oxide fuel cells

    SciTech Connect

    Saigal, A. . Dept. of Mechanical Engineering); Majumdar, S. )

    1992-01-01

    This paper investigates the stress and fracture behavior of a monolithic solid oxide fuel cell (MSOFC) currently under joint development by Allied Signal Corporation and Argonne National Laboratory. The MSOFC is an all-ceramic fuel cell capable of high power density and tolerant of a variety of hydrocarbon fuels, making it potentially attractive for stationary utility and mobile transportation systems. The monolithic design eliminates inactive structural supports, increases active surface area, and lowers voltage losses caused by internal resistance.

  11. Finite element analysis of monolithic solid oxide fuel cells

    SciTech Connect

    Saigal, A.; Majumdar, S.

    1992-04-01

    This paper investigates the stress and fracture behavior of a monolithic solid oxide fuel cell (MSOFC) currently under joint development by Allied Signal Corporation and Argonne National Laboratory. The MSOFC is an all-ceramic fuel cell capable of high power density and tolerant of a variety of hydrocarbon fuels, making it potentially attractive for stationary utility and mobile transportation systems. The monolithic design eliminates inactive structural supports, increases active surface area, and lowers voltage losses caused by internal resistance.

  12. Monolithic tandem solar cell

    DOEpatents

    Wanlass, Mark W.

    1991-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, and (c) a second photoactive subcell on the first subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two-terminal device or a three-terminal device.

  13. Monolithic microfluidic concentrators and mixers

    DOEpatents

    Frechet, Jean M.; Svec, Frantisek; Yu, Cong; Rohr, Thomas

    2005-05-03

    Microfluidic devices comprising porous monolithic polymer for concentration, extraction or mixing of fluids. A method for in situ preparation of monolithic polymers by in situ initiated polymerization of polymer precursors within microchannels of a microfluidic device and their use for solid phase extraction (SPE), preconcentration, concentration and mixing.

  14. Advances in monoliths and related porous materials for microfluidics.

    PubMed

    Knob, Radim; Sahore, Vishal; Sonker, Mukul; Woolley, Adam T

    2016-05-01

    In recent years, the use of monolithic porous polymers has seen significant growth. These materials present a highly useful support for various analytical and biochemical applications. Since their introduction, various approaches have been introduced to produce monoliths in a broad range of materials. Simple preparation has enabled their easy implementation in microchannels, extending the range of applications where microfluidics can be successfully utilized. This review summarizes progress regarding monoliths and related porous materials in the field of microfluidics between 2010 and 2015. Recent developments in monolith preparation, solid-phase extraction, separations, and catalysis are critically discussed. Finally, a brief overview of the use of these porous materials for analysis of subcellular and larger structures is given. PMID:27190564

  15. Monolithic THz Frequency Multipliers

    NASA Technical Reports Server (NTRS)

    Erickson, N. R.; Narayanan, G.; Grosslein, R. M.; Martin, S.; Mehdi, I.; Smith, P.; Coulomb, M.; DeMartinez, G.

    2001-01-01

    Frequency multipliers are required as local oscillator sources for frequencies up to 2.7 THz for FIRST and airborne applications. Multipliers at these frequencies have not previously been demonstrated, and the object of this work was to show whether such circuits are really practical. A practical circuit is one which not only performs as well as is required, but also can be replicated in a time that is feasible. As the frequency of circuits is increased, the difficulties in fabrication and assembly increase rapidly. Building all of the circuit on GaAs as a monolithic circuit is highly desirable to minimize the complexity of assembly, but at the highest frequencies, even a complete monolithic circuit is extremely small, and presents serious handling difficulty. This is compounded by the requirement for a very thin substrate. Assembly can become very difficult because of handling problems and critical placement. It is very desirable to make the chip big enough to that it can be seen without magnification, and strong enough that it may be picked up with tweezers. Machined blocks to house the chips present an additional challenge. Blocks with complex features are very expensive, and these also imply very critical assembly of the parts. It would be much better if the features in the block were as simple as possible and non-critical to the function of the chip. In particular, grounding and other electrical interfaces should be done in a manner that is highly reproducible.

  16. Monolithic ballasted penetrator

    DOEpatents

    Hickerson, Jr., James P.; Zanner, Frank J.; Baldwin, Michael D.; Maguire, Michael C.

    2001-01-01

    The present invention is a monolithic ballasted penetrator capable of delivering a working payload to a hardened target, such as reinforced concrete. The invention includes a ballast made from a dense heavy material insert and a monolithic case extending along an axis and consisting of a high-strength steel alloy. The case includes a nose end containing a hollow portion in which the ballast is nearly completely surrounded so that no movement of the ballast relative to the case is possible during impact with a hard target. The case is cast around the ballast, joining the two parts together. The ballast may contain concentric grooves or protrusions that improve joint strength between the case and ballast. The case further includes a second hollow portion; between the ballast and base, which has a payload fastened within this portion. The penetrator can be used to carry instrumentation to measure the geologic character of the earth, or properties of arctic ice, as they pass through it.

  17. Comparison of soil-monolith extraction techniques

    NASA Astrophysics Data System (ADS)

    Meissner, R.; Rupp, H.; Weller, U.; Vogel, H.-J.

    2009-04-01

    In the international literature the term „lysimeter" is used for different objectives, e.g. suction cups, fluxmeters, etc. According to our understanding it belongs to the direct methods to measure water and solute fluxes in soil. Depending on the scientific task the shape and dimensions of the lysimeter as well as the type of filling (disturbed or undisturbed) and the specific instrumentation can be different. In any case where water dynamics or solute transport in natural soil is considered, lysimeters should be filled with 'undisturbed' monoliths which are large enough to contain the small scale heterogeneity of a site since flow and transport is highly sensitive to soil structure. Furthermore, lysimeters with vegetation should represent the natural crop inventory and the maximum root penetration depth should be taken into account. The aim of this contribution is to give an overview about different methods for obtaining undisturbed soil monoliths, in particular about i) techniques for the vertical and ii) for the horizontal extraction and iii) to evaluate the most frequently used procedures based on X-ray tomography images. Minimal disturbance of the soil monolith during extraction and subsequence filling of the lysimeter vessel is of critical importance for establishing flow and transport conditions corresponding approximately to natural field conditions. In the past, several methods were used to extract and fill lysimeter vessels vertically - including hand digging, employing sets of trihedral scaffold with lifting blocks and ballast, or using heavy duty excavators, which could shear and cut large blocks of soil. More recently, technologies have been developed to extract cylindrical soil monoliths by using ramming equipment or screw presses. One of the great disadvantages of the mentioned methods is the compaction or settling of soil that occurs during the "hammering" or "pressing". For this reason a new technology was developed, which cuts the outline of

  18. Characterization of methacrylate chromatographic monoliths bearing affinity ligands.

    PubMed

    Černigoj, Urh; Vidic, Urška; Nemec, Blaž; Gašperšič, Jernej; Vidič, Jana; Lendero Krajnc, Nika; Štrancar, Aleš; Podgornik, Aleš

    2016-09-16

    We investigated effect of immobilization procedure and monolith structure on chromatographic performance of methacrylate monoliths bearing affinity ligands. Monoliths of different pore size and various affinity ligands were prepared and characterized using physical and chromatographic methods. When testing protein A monoliths with different protein A ligand densities, a significant nonlinear effect of ligand density on dynamic binding capacity (DBC) for IgG was obtained and accurately described by Langmuir isotherm curve enabling estimation of protein A utilization as a function of ligand density. Maximal IgG binding capacity was found to be at least 12mg/mL exceeding theoretical monolayer adsorption value of 7.8mg/mL assuming hexagonal packing and IgG hydrodynamic diameter of 11nm. Observed discrepancy was explained by shrinkage of IgG during adsorption on protein A experimentally determined through calculated adsorbed IgG layer thickness of 5.4nm from pressure drop data. For monoliths with different pore size maximal immobilized densities of protein A as well as IgG dynamic capacity linearly correlates with monolith surface area indicating constant ligand utilization. Finally, IgGs toward different plasma proteins were immobilized via the hydrazide coupling chemistry to provide oriented immobilization. DBC was found to be flow independent and was increasing with the size of bound protein. Despite DBC was lower than IgG capacity to immobilized protein A, ligand utilization was higher. PMID:27554023

  19. Monolithic microchannel heatsink

    DOEpatents

    Benett, William J.; Beach, Raymond J.; Ciarlo, Dino R.

    1996-01-01

    A silicon wafer has slots sawn in it that allow diode laser bars to be mounted in contact with the silicon. Microchannels are etched into the back of the wafer to provide cooling of the diode bars. To facilitate getting the channels close to the diode bars, the channels are rotated from an angle perpendicular to the diode bars which allows increased penetration between the mounted diode bars. This invention enables the fabrication of monolithic silicon microchannel heatsinks for laser diodes. The heatsinks have low thermal resistance because of the close proximity of the microchannels to the laser diode being cooled. This allows high average power operation of two-dimensional laser diode arrays that have a high density of laser diode bars and therefore high optical power density.

  20. Monolithic microchannel heatsink

    DOEpatents

    Benett, W.J.; Beach, R.J.; Ciarlo, D.R.

    1996-08-20

    A silicon wafer has slots sawn in it that allow diode laser bars to be mounted in contact with the silicon. Microchannels are etched into the back of the wafer to provide cooling of the diode bars. To facilitate getting the channels close to the diode bars, the channels are rotated from an angle perpendicular to the diode bars which allows increased penetration between the mounted diode bars. This invention enables the fabrication of monolithic silicon microchannel heatsinks for laser diodes. The heatsinks have low thermal resistance because of the close proximity of the microchannels to the laser diode being cooled. This allows high average power operation of two-dimensional laser diode arrays that have a high density of laser diode bars and therefore high optical power density. 9 figs.

  1. Monolithic freeform element

    NASA Astrophysics Data System (ADS)

    Kiontke, Sven R.

    2015-09-01

    For 10 years there has been the asphere as one of the new products to be accepted by the market. All parts of the chain design, production and measurement needed to learn how to treat the asphere and what it is helpful for. The aspheric optical element now is established and accepted as an equal optical element between other as a fast growing part of all the optical elements. Now we are focusing onto the next new element with a lot of potential, the optical freeform surface. Manufacturing results will be shown for fully tolerance optic including manufacturing, setup and optics configurations including measurement setup. The element itself is a monolith consisting of several optical surfaces that have to be aligned properly to each other. The freeform surface is measured for surface form tolerance (irregularity, slope, Zernike, PV).

  2. Monolithically compatible impedance measurement

    DOEpatents

    Ericson, Milton Nance; Holcomb, David Eugene

    2002-01-01

    A monolithic sensor includes a reference channel and at least one sensing channel. Each sensing channel has an oscillator and a counter driven by the oscillator. The reference channel and the at least one sensing channel being formed integrally with a substrate and intimately nested with one another on the substrate. Thus, the oscillator and the counter have matched component values and temperature coefficients. A frequency determining component of the sensing oscillator is formed integrally with the substrate and has an impedance parameter which varies with an environmental parameter to be measured by the sensor. A gating control is responsive to an output signal generated by the reference channel, for terminating counting in the at least one sensing channel at an output count, whereby the output count is indicative of the environmental parameter, and successive ones of the output counts are indicative of changes in the environmental parameter.

  3. Fabrication and characterization of aligned macroporous monolith for high-performance protein chromatography.

    PubMed

    Du, Kaifeng; Zhang, Qi; Dan, Shunmin; Yang, Min; Zhang, Yongkui; Chai, Dezhi

    2016-04-22

    In the present study, a freeze casting method combined with particle accumulation was applied to fabricate the aligned macroporous monolith for high-performance protein chromatography. For the preparation, the reactive colloids were first prepared by using glycidyl methacrylate and ethylene glycol dimethacrylate as monomers. Subsequently, these colloids accumulated regularly and polymerized into the aligned macroporous monolith. The aligned porous structure of the monolith was characterized by SEM, mercury intrusion, and flow hydrodynamics. The results revealed that the generated monolith was possessed of aligned macropores in size of about 10 μm and high column permeability. Finally, after being modified with sulfonated groups, the monolith was evaluated for its chromatographic performance. It demonstrated that the aligned macropores endowed the monolith with excellent adsorption capacity and high column efficiency. PMID:27016114

  4. Pepsin immobilization on an aldehyde-modified polymethacrylate monolith and its application for protein analysis.

    PubMed

    Han, Wenjuan; Yamauchi, Mika; Hasegawa, Urara; Noda, Masanori; Fukui, Kiichi; van der Vlies, André J; Uchiyama, Susumu; Uyama, Hiroshi

    2015-05-01

    Polymer-based monoliths with interconnected porous structure have attracted much attention as a high-performance stationary phase for online digestion liquid chromatography-mass spectrometry (LC-MS) system. In this study, a poly(glycidyl methacrylate-co-methyl methacrylate) (PGM) monolith prepared via thermally induced phase separation (TIPS) was used as a solid support to covalently immobilize pepsin. The PGM monolith was modified with aminoacetal to yield an aldehyde-bearing (PGM-CHO) monolith. Pepsin was immobilized onto the PGM-CHO monolith via reductive amination. The immobilized pepsin showed better pH and thermal stability compared with free pepsin. Furthermore, the PGM-CHO monolith modified with pepsin was applied for online protein digestion followed by LC-MS and LC-MS/MS analyses. As a result, a larger number of peptides are reproducibly identified compared to those by polystyrene/divinylbenzene particle (POROS)-based online pepsin column.

  5. Fabrication and characterization of aligned macroporous monolith for high-performance protein chromatography.

    PubMed

    Du, Kaifeng; Zhang, Qi; Dan, Shunmin; Yang, Min; Zhang, Yongkui; Chai, Dezhi

    2016-04-22

    In the present study, a freeze casting method combined with particle accumulation was applied to fabricate the aligned macroporous monolith for high-performance protein chromatography. For the preparation, the reactive colloids were first prepared by using glycidyl methacrylate and ethylene glycol dimethacrylate as monomers. Subsequently, these colloids accumulated regularly and polymerized into the aligned macroporous monolith. The aligned porous structure of the monolith was characterized by SEM, mercury intrusion, and flow hydrodynamics. The results revealed that the generated monolith was possessed of aligned macropores in size of about 10 μm and high column permeability. Finally, after being modified with sulfonated groups, the monolith was evaluated for its chromatographic performance. It demonstrated that the aligned macropores endowed the monolith with excellent adsorption capacity and high column efficiency.

  6. Preparation of a biomimetic polyphosphorylcholine monolithic column for immobilized artificial membrane chromatography.

    PubMed

    Zhao, XiangLong; Chen, WeiJia; Zhou, ZhengYin; Wang, QiQin; Liu, ZhengHua; Moaddel, Ruin; Jiang, ZhengJin

    2015-08-14

    The present work aims to prepare a novel phosphatidylcholine functionalized monolithic stationary phase by in situ co-polymerization of 12-methacryloyl dodecylphosphocholine (MDPC) and ethylene dimethacrylate (EDMA) for immobilized artificial membrane chromatography. Scanning electron microscopy, energy dispersive X-ray spectroscopy, FT-IR spectroscopy, pore size distribution analysis, ζ-potential analysis and micro-HPLC were used to evaluate the monolithic structure and physicochemical properties. Satisfactory morphology, high mechanical stability, good permeability and chromatographic performance were obtained on the optimized monolithic columns. A typical reverse-phase retention mechanism was observed over a wide range of organic solvent content (acetonitrile< 80%). The optimized poly(MDPC-co-EDMA) monolith exhibited good selectivity for proteins and basic drugs. Good correlation was observed between the retention on commercial IAM column (IAM.PC.DD2) and poly(MDPC-co-EDMA) monolith. This novel poly(MDPC-co-EDMA) monolith exhibited good potential for studying the drug-membrane interaction.

  7. Steam reforming of n-hexane on pellet and monolithic catalyst beds. A comparative study on improvements due to heat transfer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Monolithic catalysts with higher available active surface areas and better thermal conductivity than conventional pellets beds, making possible the steam reforming of fuels heavier than naphtha, were examined. Performance comparisons were made between conventional pellet beds and honeycomb monolith catalysts using n-hexane as the fuel. Metal-supported monoliths were examined. These offer higher structural stability and higher thermal conductivity than ceramic supports. Data from two metal monoliths of different nickel catalyst loadings were compared to pellets under the same operating conditions. Improved heat transfer and better conversion efficiencies were obtained with the monolith having higher catalyst loading. Surface-gas interaction was observed throughout the length of the monoliths.

  8. Monolithic microextraction tips by emulsion photopolymerization.

    PubMed

    Liang, Shih-Shin; Chen, Shu-Hui

    2009-03-20

    Monoliths formed by photopolymerization are excellent means for fabricating functional elements in miniaturized microdevices such as microextraction tips which are becoming important for sample preparation. Various silica-based and polymer-based materials have been used to fabricate monoliths with through pores of several nm to 4 microm. However, the back pressure created by such methods is still considered to be high for microtips that use suction forces to deliver the liquid. In this study, we demonstrated that emulsion techniques such as oil-in-water can be used to form monoliths with large through pores (>20 microm), and with rigid structures on small (10 microL) and large (200 microL) pipette tips by photopolymerization. We further showed that, with minor modifications, various functionalized particles (5-20 microm) can be added to form stable emulsions and successfully encapsulated into the monoliths for qualitative and quantitative solid-phase microextractions for a diverse application. Due to high permeability and large surface area, quick equilibration can be achieved by pipetting to yield high recovery rates. Using tryptic digests of ovalbumin as the standard, we obtained a recovery yield of 90-109% (RSD: 10-16%) with a loading capacity of 3 mug for desalting tips immobilized with C18 beads. Using tryptic digests of beta-casein and alpha-casein as standards, we showed that phosphopeptides were substantially enriched by tips immobilized with immobilized metal affinity chromatography or TiO(2) materials. Using estrogenic compounds as standards, we obtained a recovery yield of 95-108% (RSD: 10-12%) and linear calibration curves ranging from 5 to 100 ng (R(2)>0.99) for Waters Oasis HLB tips immobilized with hydrophilic beads. PMID:19203757

  9. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    SciTech Connect

    Jantzen, C

    2006-12-22

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the <2g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form.

  10. Fluidized Bed Steam Reformer (FBSR) monolith formation

    SciTech Connect

    Jantzen, C.M.

    2007-07-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or 'mineralized' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydro-ceramics. All but one of the nine monoliths tested met the <2 g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydro-ceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form. (authors)

  11. Monolithic microcircuit techniques and processes

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1972-01-01

    Brief discussions of the techniques used to make dielectric and metal thin film depositions for monolithic circuits are presented. Silicon nitride deposition and the properties of silicon nitride films are discussed. Deposition of dichlorosilane and thermally grown silicon dioxide are reported. The deposition and thermal densification of borosilicate, aluminosilicate, and phosphosilicate glasses are discussed. Metallization for monolithic circuits and the characteristics of thin films are also included.

  12. Comparison of perfusion media and monoliths for protein and virus-like particle chromatography.

    PubMed

    Wu, Yige; Abraham, Dicky; Carta, Giorgio

    2016-05-20

    Structural and performance characteristics of perfusion chromatography media (POROS HS 20 and 50) and those of a polymethacrylate monolith (CIM SO3-1 tube monolith column) are compared for protein and virus-like particle chromatography using 1mL columns. Axial flow columns are used for POROS while the monolith has a radial flow configuration, which provides comparable operating pressures. The POROS beads contain a bimodal distribution of pore sizes, some as large as 0.5μm, which allow a small fraction of the mobile phase to flow within the particles, while the monolith contains 1-2μm flow channels. For proteins (lysozyme and IgG), the dynamic binding capacity of the POROS columns is more than twice that of the monolith at longer residence times. While the DBC of the POROS HS 50 column decreases at shorter residence times, the DBC of the POROS HS 20 column for IgG remains nearly twice that of the monolith at residence times at least as low as 0.2min as a result of intraparticle convection. Protein recoveries are comparable for all three columns. For VLPs, however, the eluted peaks are broader and recovery is lower for the monolith than for the POROS columns and is dependent on the direction of flow in the monolith, which is attributed to denser layer observed by SEM at the inlet surface of the monolith that appears to trap VLPs when loading in the normal flow direction. PMID:27106397

  13. Monolithic afocal telescope

    NASA Technical Reports Server (NTRS)

    Roberts, William T. (Inventor)

    2010-01-01

    An afocal monolithic optical element formed of a shallow cylinder of optical material (glass, polymer, etc.) with fast aspheric surfaces, nominally confocal paraboloids, configured on the front and back surfaces. The front surface is substantially planar, and this lends itself to deposition of multi-layer stacks of thin dielectric and metal films to create a filter for rejecting out-of-band light. However, an aspheric section (for example, a paraboloid) can either be ground into a small area of this surface (for a Cassegrain-type telescope) or attached to the planar surface (for a Gregorian-type telescope). This aspheric section of the surface is then silvered to create the telescope's secondary mirror. The rear surface of the cylinder is figured into a steep, convex asphere (again, a paraboloid in the examples), and also made reflective to form the telescope's primary mirror. A small section of the rear surface (approximately the size of the secondary obscuration, depending on the required field of the telescope) is ground flat to provide an unpowered surface through which the collimated light beam can exit the optical element. This portion of the rear surface is made to transmit the light concentrated by the reflective surfaces, and can support the deposition of a spectral filter.

  14. Factorizing monolithic applications

    SciTech Connect

    Hall, J.H.; Ankeny, L.A.; Clancy, S.P.

    1998-12-31

    The Blanca project is part of the US Department of Energy`s (DOE) Accelerated Strategic Computing Initiative (ASCI), which focuses on Science-Based Stockpile Stewardship through the large-scale simulation of multi-physics, multi-dimensional problems. Blanca is the only Los Alamos National Laboratory (LANL)-based ASCI project that is written entirely in C++. Tecolote, a new framework used in developing Blanca physics codes, provides an infrastructure for gluing together any number of components; this framework is then used to create applications that encompass a wide variety of physics models, numerical solution options, and underlying data storage schemes. The advantage of this approach is that only the essential components for the given model need be activated at runtime. Tecolote has been designed for code re-use and to isolate the computer science mechanics from the physics aspects as much as possible -- allowing physics model developers to write algorithms in a style quite similar to the underlying physics equations that govern the computational physics. This paper describes the advantages of component architectures and contrasts the Tecolote framework with Microsoft`s OLE and Apple`s OpenDoc. An actual factorization of a traditional monolithic application into its basic components is also described.

  15. New Graphene Form of Nanoporous Monolith for Excellent Energy Storage.

    PubMed

    Bi, Hui; Lin, Tianquan; Xu, Feng; Tang, Yufeng; Liu, Zhanqiang; Huang, Fuqiang

    2016-01-13

    Extraordinary tubular graphene cellular material of a tetrahedrally connected covalent structure was very recently discovered as a new supermaterial with ultralight, ultrastiff, superelastic, and excellent conductive characteristics, but no high specific surface area will keep it from any next-generation energy storage applications. Herein, we prepare another new graphene monolith of mesoporous graphene-filled tubes instead of hollow tubes in the reported cellular structure. This graphene nanoporous monolith is also composed of covalently bonded carbon network possessing high specific surface area of ∼1590 m(2) g(-1) and electrical conductivity of ∼32 S cm(-1), superior to graphene aerogels and porous graphene forms self-assembled by graphene oxide. This 3D graphene monolith can support over 10 000 times its own weight, significantly superior to CNT and graphene cellular materials with a similar density. Furthermore, pseudocapacitance-active functional groups are introduced into the new nanoporous graphene monolith as an electrode material in electrochemical capacitors. Surprisingly, the electrode of 3D mesoporous graphene has a specific capacitance of 303 F g(-1) and maintains over 98% retention after 10 000 cycles, belonging to the list for the best carbon-based active materials. The macroscopic mesoporous graphene monolith suggests the great potential as an electrode for supercapacitors in energy storage areas.

  16. Challenges and strategies in the preparation of large-volume polymer-based monolithic chromatography adsorbents.

    PubMed

    Ongkudon, Clarence M; Kansil, Tamar; Wong, Charlotte

    2014-03-01

    To date, the number of published reports on the large-volume preparation of polymer-based monolithic chromatography adsorbents is still lacking and is of great importance. Many critical factors need to be considered when manufacturing a large-volume polymer-based monolith for chromatographic applications. Structural integrity, validity, and repeatability are thought to be the key factors determining the usability of a large-volume monolith in a separation process. In this review, we focus on problems and solutions pertaining to heat dissipation, pore size distribution, "wall channel" effect, and mechanical strength in monolith preparation. A template-based method comprising sacrificial and nonsacrificial techniques is possibly the method of choice due to its precise control over the porous structure. However, additional expensive steps are usually required for the template removal. Other strategies in monolith preparation are also discussed.

  17. Recent Progress in Monolithic Silica Columns for High-Speed and High-Selectivity Separations

    NASA Astrophysics Data System (ADS)

    Ikegami, Tohru; Tanaka, Nobuo

    2016-06-01

    Monolithic silica columns have greater (through-pore size)/(skeleton size) ratios than particulate columns and fixed support structures in a column for chemical modification, resulting in high-efficiency columns and stationary phases. This review looks at how the size range of monolithic silica columns has been expanded, how high-efficiency monolithic silica columns have been realized, and how various methods of silica surface functionalization, leading to selective stationary phases, have been developed on monolithic silica supports, and provides information on the current status of these columns. Also discussed are the practical aspects of monolithic silica columns, including how their versatility can be improved by the preparation of small-sized structural features (sub-micron) and columns (1 mm ID or smaller) and by optimizing reaction conditions for in situ chemical modification with various restrictions, with an emphasis on recent research results for both topics.

  18. Recent Progress in Monolithic Silica Columns for High-Speed and High-Selectivity Separations.

    PubMed

    Ikegami, Tohru; Tanaka, Nobuo

    2016-06-12

    Monolithic silica columns have greater (through-pore size)/(skeleton size) ratios than particulate columns and fixed support structures in a column for chemical modification, resulting in high-efficiency columns and stationary phases. This review looks at how the size range of monolithic silica columns has been expanded, how high-efficiency monolithic silica columns have been realized, and how various methods of silica surface functionalization, leading to selective stationary phases, have been developed on monolithic silica supports, and provides information on the current status of these columns. Also discussed are the practical aspects of monolithic silica columns, including how their versatility can be improved by the preparation of small-sized structural features (sub-micron) and columns (1 mm ID or smaller) and by optimizing reaction conditions for in situ chemical modification with various restrictions, with an emphasis on recent research results for both topics. PMID:27306311

  19. Monolithical aspherical beam expanding systems

    NASA Astrophysics Data System (ADS)

    Fuchs, U.; Matthias, Sabrina

    2014-10-01

    Beam expanding is a common task, where Galileo telescopes are preferred. However researches and customers have found limitations when using these systems. A new monolithical solution which is based on the usage of only one aspherical component will be presented. It will be shown how to combine up to five monolithical beam expanding systems and to keep the beam quality at diffraction limitation. Insights will be given how aspherical beam expanding systems will help using larger incoming beams and reducing the overall length of such a system. Additionally an add-on element for divergence and wavelength adaption will be presented.

  20. Method of monolithic module assembly

    DOEpatents

    Gee, James M.; Garrett, Stephen E.; Morgan, William P.; Worobey, Walter

    1999-01-01

    Methods for "monolithic module assembly" which translate many of the advantages of monolithic module construction of thin-film PV modules to wafered c-Si PV modules. Methods employ using back-contact solar cells positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The methods of the invention allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  1. Tooth-colored CAD/CAM monolithic restorations.

    PubMed

    Reich, S

    2015-01-01

    A monolithic restoration (also known as a full contour restoration) is one that is manufactured from a single material for the fully anatomic replacement of lost tooth structure. Additional staining (followed by glaze firing if ceramic materials are used) may be performed to enhance the appearance of the restoration. For decades, monolithic restoration has been the standard for inlay and partial crown restorations manufactured by both pressing and computer-aided design and manufacturing (CAD/CAM) techniques. A limited selection of monolithic materials is now available for dental crown and bridge restorations. The IDS (2015) provided an opportunity to learn about and evaluate current trends in this field. In addition to new developments, established materials are also mentioned in this article to complete the picture. In line with the strategic focus of the IJCD, the focus here is naturally on CAD/CAM materials. PMID:26110926

  2. Tooth-colored CAD/CAM monolithic restorations.

    PubMed

    Reich, S

    2015-01-01

    A monolithic restoration (also known as a full contour restoration) is one that is manufactured from a single material for the fully anatomic replacement of lost tooth structure. Additional staining (followed by glaze firing if ceramic materials are used) may be performed to enhance the appearance of the restoration. For decades, monolithic restoration has been the standard for inlay and partial crown restorations manufactured by both pressing and computer-aided design and manufacturing (CAD/CAM) techniques. A limited selection of monolithic materials is now available for dental crown and bridge restorations. The IDS (2015) provided an opportunity to learn about and evaluate current trends in this field. In addition to new developments, established materials are also mentioned in this article to complete the picture. In line with the strategic focus of the IJCD, the focus here is naturally on CAD/CAM materials.

  3. Dual-band microstrip antennas with monolithic reactive loading

    NASA Technical Reports Server (NTRS)

    Davidson, S. E.; Long, S. A.; Richards, W. F.

    1985-01-01

    The design and experimental measurement of a dual-band, monolithic microstrip antenna is presented. The structure utilises a short-circuited length of microstrip transmission line to provide reactive loading and, thereby, retains the low-profile characteristic of a normal microstrip patch radiator.

  4. Protective Skins for Aerogel Monoliths

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Johnston, James C.; Kuczmarski, Maria A.; Meador, Ann B.

    2007-01-01

    A method of imparting relatively hard protective outer skins to aerogel monoliths has been developed. Even more than aerogel beads, aerogel monoliths are attractive as thermal-insulation materials, but the commercial utilization of aerogel monoliths in thermal-insulation panels has been inhibited by their fragility and the consequent difficulty of handling them. Therefore, there is a need to afford sufficient protection to aerogel monoliths to facilitate handling, without compromising the attractive bulk properties (low density, high porosity, low thermal conductivity, high surface area, and low permittivity) of aerogel materials. The present method was devised to satisfy this need. The essence of the present method is to coat an aerogel monolith with an outer polymeric skin, by painting or spraying. Apparently, the reason spraying and painting were not attempted until now is that it is well known in the aerogel industry that aerogels collapse in contact with liquids. In the present method, one prevents such collapse through the proper choice of coating liquid and process conditions: In particular, one uses a viscous polymer precursor liquid and (a) carefully controls the amount of liquid applied and/or (b) causes the liquid to become cured to the desired hard polymeric layer rapidly enough that there is not sufficient time for the liquid to percolate into the aerogel bulk. The method has been demonstrated by use of isocyanates, which, upon exposure to atmospheric moisture, become cured to polyurethane/polyurea-type coats. The method has also been demonstrated by use of commercial epoxy resins. The method could also be implemented by use of a variety of other resins, including polyimide precursors (for forming high-temperature-resistant protective skins) or perfluorinated monomers (for forming coats that impart hydrophobicity and some increase in strength).

  5. On the correlation between the porous structure and the electrochemical response of powdered and monolithic carbon aerogels as electrodes for capacitive deionization

    NASA Astrophysics Data System (ADS)

    Macías, C.; Lavela, P.; Rasines, G.; Zafra, M. C.; Tirado, J. L.; Ania, C. O.

    2016-10-01

    The combined effect of resorcinol/catalyst (100≤R/C≤800) and resorcinol/water (0.04≤R/W≤0.13) molar ratio on the textural and capacitive properties of carbon aerogels with potential application for capacitive deionization has been evaluated. Activated and pyrolyzed aerogels were synthesized by the sol-gel polymerization of resorcinol-formaldehyde mixtures and dried in supercritical conditions. Data show that high R/C and R/W molar ratios lead to materials with large pores in the mesopore range, whereas the surface area and micropore volumes remain somewhat the same. The activation of the aerogels increased the differences in the specific surface and micropore volumes due to the development of microporosity. This effect was more remarkable for the samples with low R/C whatever the R/W ratio, indicating that the carbon aerogel obtained using high amounts of catalyst are more prone to be activated. Regarding the electrochemical features of the aerogels, low capacitance values were measured in aerogels combining low R/W and high R/C and reciprocally low R/C and high R/W molar ratios, due to their higher resistance. Polarization resistances were found to be slightly higher for the pyrolyzed than for activated aerogels, and followed a decreasing trend with the mesoporosity, indicating the outstanding contribution of the mesoporous network to provide a good kinetic response. The desalting capacity of monolithic aerogels showed a simultaneous dependence with the surface area and the resistivity of the electrodes, pointing out the importance of performing electrochemical measurements in adequate cell configurations (i.e., desalting units) upon the intended application.

  6. Catastrophic failure of a monolithic zirconia prosthesis.

    PubMed

    Chang, Jae-Seung; Ji, Woon; Choi, Chang-Hoon; Kim, Sunjai

    2015-02-01

    Recently, monolithic zirconia restorations have received attention as an alternative to zirconia veneered with feldspathic porcelain to eliminate chipping failures of veneer ceramics. In this clinical report, a patient with mandibular edentulism received 4 dental implants in the interforaminal area, and a screw-retained monolithic zirconia prosthesis was fabricated. The patient also received a maxillary complete removable dental prosthesis over 4 anterior roots. At the 18-month follow-up, all of the zirconia cylinders were seen to be fractured, and the contacting abutment surfaces had lost structural integrity. The damaged abutments were replaced with new abutments, and a new prosthesis was delivered with a computer-assisted design and computer-assisted manufacturing fabricated titanium framework with denture teeth and denture base resins. At the 6-month recall, the patient did not have any problems. Dental zirconia has excellent physical properties; however, care should be taken to prevent excessive stresses on the zirconia cylinders when a screw-retained zirconia restoration is planned as a definitive prosthesis.

  7. High surface area, high permeability carbon monoliths

    SciTech Connect

    Lagasse, R.R.; Schroeder, J.L.

    1994-12-31

    The goal of this work is to prepare carbon monoliths having precisely tailored pore size distribution. Prior studies have demonstrated that poly(acrylonitrile) can be processed into a precursor having tailored macropore structure. Since the macropores were preserved during pyrolysis, this synthetic process provided a route to porous carbon having macropores with size =0.1 to 10{mu}m. No micropores of size <2 nm could be detected in the carbon, however, by nitrogen adsorption. In the present work, the authors have processed a different polymer, poly(vinylidene chloride) into a macroporous precursor, Pyrolysis produced carbon monoliths having macropores derived from the polymer precursor as well as extensive microporosity produced during the pyrolysis of the polymer. One of these carbons had BET surface area of 1,050 m{sup 2}/g and about 1.2 cc/g total pore volume, with about 1/3 of the total pore volume in micropores and the remainder in 1{mu}m macropores. No mesopores in the intermediate size range could be detected by nitrogen adsorption. Carbon materials having high surface area as well as micron size pores have potential applications as electrodes for double layer supercapacitors containing liquid electrolyte, or as efficient media for performing chemical separations.

  8. Macroscopic Carbon Nanotube-based 3D Monoliths.

    PubMed

    Du, Ran; Zhao, Qiuchen; Zhang, Na; Zhang, Jin

    2015-07-15

    Carbon nanotubes (CNTs) are one of the most promising carbon allotropes with incredible diverse physicochemical properties, thereby enjoying continuous worldwide attention since their discovery about two decades ago. From the point of view of practical applications, assembling individual CNTs into macroscopic functional and high-performance materials is of paramount importance. For example, multiscaled CNT-based assemblies including 1D fibers, 2D films, and 3D monoliths have been developed. Among all of these, monolithic 3D CNT architectures with porous structures have attracted increasing interest in the last few years. In this form, theoretically all individual CNTs are well connected and fully expose their surfaces. These 3D architectures have huge specific surface areas, hierarchical pores, and interconnected conductive networks, resulting in enhanced mass/electron transport and countless accessible active sites for diverse applications (e.g. catalysis, capacitors, and sorption). More importantly, the monolithic form of 3D CNT assemblies can impart additional application potentials to materials, such as free-standing electrodes, sensors, and recyclable sorbents. However, scaling the properties of individual CNTs to 3D assemblies, improving use of the diverse, structure-dependent properties of CNTs, and increasing the performance-to-cost ratio are great unsolved challenges for their real commercialization. This review aims to provide a comprehensive introduction of this young and energetic field, i.e., CNT-based 3D monoliths, with a focus on the preparation principles, current synthetic methods, and typical applications. Opportunities and challenges in this field are also presented.

  9. Monolithically Peltier-cooled laser diodes

    NASA Astrophysics Data System (ADS)

    Hava, S.; Hunsperger, R. G.; Sequeira, H. B.

    1984-04-01

    A new method of cooling a GaAs/GaAlAs laser in an optical integrated circuit or on a discrete chip, by adding an integral thermoelectric (Peltier) cooling and heat spreading device to the laser, is presented. This cooling both reduces and stabilizes the laser junction temperature to minimize such deleterious effects as wavelength drift due to heating. A unified description of the electrical and thermal properties of a monolithic semiconductor mesa structure is given. Here it is shown that an improvement in thermal characteristics is obtained by depositing a relatively thick metallic layer, and by using this layer as a part of an active Peltier structure. Experimental results reveal a 14-percent increase in emitted power (external quantum efficiency) due to passive heat spreading and a further 8-percent if its Peltier cooler is operated. Fabrication techniques used to obtain devices exhibiting the above performance characteristics are given.

  10. Monolithically Peltier-cooled laser diodes

    SciTech Connect

    Hava, S.; Hunsperger, R.G.; Sequeira, H.B.

    1984-04-01

    A new method of cooling a GaAs/GaAlAs laser in an optical integrated circuit or on a discrete chip, by adding an integral thermoelectric (Peltier) cooling and heat spreading device to the laser, is presented. This cooling both reduces and stabilizes the laser junction temperature to minimize such deleterious effects as wavelength drift due to heating. A unified description of the electrical and thermal properties of a monolithic semiconductor mesa structure is given. Here it is shown that an improvement in thermal characteristics is obtained by depositing a relatively thick metallic layer, and by using this layer as a part of an active Peltier structure. Experimental results reveal a 14-percent increase in emitted power (external quantum efficiency) due to passive heat spreading and a further 8-percent if its Peltier cooler is operated. Fabrication techniques used to obtain devices exhibiting the above performance characteristics are given. 21 references.

  11. Transparent monolithic metal ion containing nanophase aerogels

    SciTech Connect

    Risen, W. M., Jr.; Hu, X.; Ji, S.; Littrell, K.

    1999-12-01

    The formation of monolithic and transparent transition metal containing aerogels has been achieved through cooperative interactions of high molecular weight functionalized carbohydrates and silica precursors, which strongly influence the kinetics of gelation. After initial gelation, subsequent modification of the ligating character of the system, coordination of the group VIII metal ions, and supercritical extraction afford the aerogels. The structures at the nanophase level have been probed by photon and electron transmission and neutron scattering techniques to help elucidate the basis for structural integrity together with the small entity sizes that permit transparency in the visible range. They also help with understanding the chemical reactivities of the metal-containing sites in these very high surface area materials. These results are discussed in connection with new reaction studies.

  12. Monolithic-integrated microlaser encoder.

    PubMed

    Sawada, R; Higurashi, E; Ito, T; Ohguchi, O; Tsubamoto, M

    1999-11-20

    We have developed an extremely small integrated microencoder whose sides are less than 1 mm long. It is 1/100 the size of conventional encoders. This microencoder consists of a laser diode, monolithic photodiodes, and fluorinated polyimide waveguides with total internal reflection mirrors. The instrument can measure the relative displacement between a grating scale and the encoder with a resolution of the order of 0.01 microm; it can also determine the direction in which the scale is moving. By using the two beams that were emitted from the two etched mirrors of the laser diode, by monolithic integration of the waveguide and photodiodes, and by fabrication of a step at the edge of the waveguide, we were able to eliminate conventional bulky optical components such as the beam splitter, the quarter-wavelength plate, bulky mirrors, and bulky photodetectors. PMID:18324228

  13. Monolithic pattern-sensitive detector

    DOEpatents

    Berger, Kurt W.

    2000-01-01

    Extreme ultraviolet light (EUV) is detected using a precisely defined reference pattern formed over a shallow junction photodiode. The reference pattern is formed in an EUV absorber preferably comprising nickel or other material having EUV- and other spectral region attenuating characteristics. An EUV-transmissive energy filter is disposed between a passivation oxide layer of the photodiode and the EUV transmissive energy filter. The device is monolithically formed to provide robustness and compactness.

  14. Ground, sieved, and C18 modified monolithic silica particles for packing material of microcolumn high-performance liquid chromatography.

    PubMed

    Ko, Joung Ho; Baik, Yoon Suk; Park, Seong Tae; Cheong, Won Jo

    2007-03-16

    We here report a new type of stationary phase for microcolumns. C18 modified silica monolith particles were prepared by grinding and sieving the silica monolith followed by C18 modification and end-capping, and were used as packing material. Ground silica monolith particles were not spherical but irregular with some residual monolithic network structure. The separation efficiency of the stationary phase made of sieved monolith particles (5-10 microm) was better than that of the stationary phase made of unsieved particles. The microcolumn packed with the sieved C18 ground monolith particles (5-10 microm) showed quite good separation efficiency (height equivalent to theoretical plate, HETP, as low as 15 microm) and it was even superior to the microcolumn packed with a commercial spherical 5 microm C18 stationary phase. The column pressure drop of C18 monolith particles was about two-third of that of the commercial spherical C18 phase. The preparation method of C18 stationary phase with ground and sieved silica monolith particles presumably suggests advantages of simplicity and convenience in modification and washing procedures compared to bulk silica monolith. It also showed both improved separation efficiency and low back pressure. PMID:17289065

  15. Counterflow isotachophoresis in a monolithic column.

    PubMed

    Liu, Bingwen; Cong, Yongzheng; Ivory, Cornelius F

    2014-09-01

    This study describes stationary counterflow isotachophoresis (ITP) in a poly(acrylamide-co-N,N'-methylenebisacrylamide) monolithic column as a means for improving ITP processing capacity and reducing dispersion. The flow profile in the monolith was predicted using COMSOL's Brinkman Equation application mode, which revealed that the flow profile was mainly determined by monolith permeability. As monolith permeability decreases, the flow profile changes from a parabolic shape to a plug shape. An experimental monolithic column was prepared in a fused-silica capillary using an ultraviolet-initiated polymerization method. A monolithic column made from 8% (wt.) monomer was chosen for the stationary counterflow ITP experiments. Counterflow ITP in the monolithic column showed undistorted analyte zones with significantly reduced dispersion compared to the severe dispersion observed in an open capillary. Particularly, for r-phycoerythrin focused by counterflow ITP, its zone width in the monolithic column was only one-third that observed in an open capillary. These experiments demonstrate that stationary counterflow ITP in monoliths can be a robust and practical electrofocusing method.

  16. Clickable Periodic Mesoporous Organosilica Monolith for Highly Efficient Capillary Chromatographic Separation.

    PubMed

    Wu, Ci; Liang, Yu; Yang, Kaiguang; Min, Yi; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2016-02-01

    A novel clickable periodic mesoporous organosilica monolith with the surface area up to 1707 m(2) g(-1) was in situ synthesized in the capillary by the one-step condensation of the organobridged-bonded alkoxysilane precursor bis(triethoxysilyl)ethylene. With Si-C bonds in the skeleton, the monolith possesses excellent chemical and mechanical stability. With vinyl groups highly loaded and homogeneously distributed throughout the structure, the monolith can be readily functionalized with functional groups by effective thiol-ene "click" chemistry reaction. Herein, with "click" modification of C18, the obtained monolith was successfully applied for capillary liquid chromatographic separation of small molecules and proteins. The column efficiency could reach 148,000 N/m, higher than most reported hybrid monoliths. Moreover, intact proteins could be separated well with good reproducibility, even after the monolithic column was exposed by basic mobile phase (pH 10.0) overnight, demonstrating the great promising of such monolith for capillary chromatographic separation. PMID:26751092

  17. Clickable Periodic Mesoporous Organosilica Monolith for Highly Efficient Capillary Chromatographic Separation.

    PubMed

    Wu, Ci; Liang, Yu; Yang, Kaiguang; Min, Yi; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2016-02-01

    A novel clickable periodic mesoporous organosilica monolith with the surface area up to 1707 m(2) g(-1) was in situ synthesized in the capillary by the one-step condensation of the organobridged-bonded alkoxysilane precursor bis(triethoxysilyl)ethylene. With Si-C bonds in the skeleton, the monolith possesses excellent chemical and mechanical stability. With vinyl groups highly loaded and homogeneously distributed throughout the structure, the monolith can be readily functionalized with functional groups by effective thiol-ene "click" chemistry reaction. Herein, with "click" modification of C18, the obtained monolith was successfully applied for capillary liquid chromatographic separation of small molecules and proteins. The column efficiency could reach 148,000 N/m, higher than most reported hybrid monoliths. Moreover, intact proteins could be separated well with good reproducibility, even after the monolithic column was exposed by basic mobile phase (pH 10.0) overnight, demonstrating the great promising of such monolith for capillary chromatographic separation.

  18. A monolithic thin film electrochromic window

    SciTech Connect

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K.; Wei, G.; Yu, P.C.

    1991-12-31

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors` institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  19. A monolithic thin film electrochromic window

    SciTech Connect

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K. . Electro-Optics Technology Center); Wei, G. ); Yu, P.C. )

    1991-01-01

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors' institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  20. Monolithic short wave infrared (SWIR) detector array

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A monolithic self-scanned linear detector array was developed for remote sensing in the 1.1- 2.4-micron spectral region. A high-density IRCCD test chip was fabricated to verify new design approaches required for the detector array. The driving factors in the Schottky barrier IRCCD (Pdsub2Si) process development are the attainment of detector yield, uniformity, adequate quantum efficiency, and lowest possible dark current consistent with radiometric accuracy. A dual-band module was designed that consists of two linear detector arrays. The sensor architecture places the floating diffusion output structure in the middle of the chip, away from the butt edges. A focal plane package was conceptualized and includes a polycrystalline silicon substrate carrying a two-layer, thick-film interconnecting conductor pattern and five epoxy-mounted modules. A polycrystalline silicon cover encloses the modules and bond wires, and serves as a radiation and EMI shield, thermal conductor, and contamination seal.

  1. Titanium-scaffolded organic-monolithic stationary phases for ultra-high-pressure liquid chromatography.

    PubMed

    Vonk, Rudy J; Vaast, Axel; Eeltink, Sebastiaan; Schoenmakers, Peter J

    2014-09-12

    Organic-polymer monoliths with overall dimensions larger than one millimetre are prone to rupture - either within the monolith itself or between the monoliths and the containing wall - due to the inevitable shrinkage accompanying the formation of a cross-linked polymeric network. This problem has been addressed by creating titanium-scaffolded poly(styrene-co-divinylbenzene) (S-co-DVB) monoliths. Titanium-scaffolded monoliths were successfully used in liquid chromatography at very high pressures (up to 80MPa) and using gradients spanning the full range of water-acetonitrile compositions (0 to 100%). The kinetic-performance of (50-mm long) titanium-scaffolded monoliths was compared to that of similar monolith created in 1-mm i.d. glass-lined tubing at pressures up to 50MPa. The peak capacities obtained with the titanium-scaffolded column was about 30% lower. An increased Eddy-diffusion, due to the pillar-structure, and a decreased permeability are thought to be the main reasons for this reduced kinetic-performance. No decrease in performance was observed when the titanium-scaffolded columns were operated at pressures of 80MPa for up to 12h. The column-to-column repeatability (n=5) was acceptable in terms of observed peak widths at half heights (RSD ca. 10%) The run-to-run repeatability (n=135) in terms of retention times and peak widths at half height were found to be good. Titanium-scaffolded columns coupled in series up to a combined length of (200mm) were used for the analyses of a complex Escherichia coli protein sample. Our experiments demonstrate that columns based on titanium-scaffolded organic-polymer monolith can be operated under strenuous conditions without loss in performance. The titanium-scaffolded approach makes it feasible to create organic-polymer monoliths in wide-bore columns with accurate temperature control.

  2. Compact monolithic capacitive discharge unit

    DOEpatents

    Roesler, Alexander W.; Vernon, George E.; Hoke, Darren A.; De Marquis, Virginia K.; Harris, Steven M.

    2007-06-26

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  3. Improved monolithic tandem solar cell

    SciTech Connect

    Wanlass, M.W.

    1991-04-23

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surf ace of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched.

  4. Nanosecond monolithic CMOS readout cell

    DOEpatents

    Souchkov, Vitali V.

    2004-08-24

    A pulse shaper is implemented in monolithic CMOS with a delay unit formed of a unity gain buffer. The shaper is formed of a difference amplifier having one input connected directly to an input signal and a second input connected to a delayed input signal through the buffer. An elementary cell is based on the pulse shaper and a timing circuit which gates the output of an integrator connected to the pulse shaper output. A detector readout system is formed of a plurality of elementary cells, each connected to a pixel of a pixel array, or to a microstrip of a plurality of microstrips, or to a detector segment.

  5. Monolithic 20-GHz Transmitting Module

    NASA Technical Reports Server (NTRS)

    Kascak, T.; Kaelin, G.; Gupta, A.

    1986-01-01

    20-GHz monolithic microwave/millimeter-wave integrated circuit (MMIC) with amplification and phase-shift (time-delay) capabilities developed. Use of MMIC module technology promises to make feasible development of weight- and cost-effective phased-array antenna systems, identified as major factor in achieving minimum cost and efficient use of frequency and orbital resources of future generations of communication satellite systems. Use of MMIC transmitting modules provides for relatively simple method for phase-shift control of many separate radio-frequency (RF) signals required for phased-array antenna systems.

  6. Monolithically integrated absolute frequency comb laser system

    DOEpatents

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  7. Development of monolithically integrated silicon-film modules

    NASA Astrophysics Data System (ADS)

    Rand, J. A.; Cotter, J. E.; Ingram, A. E.; Lampros, T. H.; Ruffins, T. R.; Hall, R. B.; Barnett, A. M.

    1992-12-01

    Silicon-Film Product III is being developed into a low cost, stable device for large scale terrestrial power applications. The Product III structure is a thin (<100 μm) polycrystalline silicon layer on a non-conductive supporting ceramic substrate as illustrated in Figure 1. The presence of the substrate allows cells to be isolated and interconnected monolithically. The long term goal for the product is over 18% conversion efficiency on areas greater than 1200 cm2. The high efficiency will be based on polycrystalline thin silicon incorporated into a light trapping structure with a passivated back surface. Short term goals are focused on the development of large area ceramics, a monolithic interconnection process, and fabricating 100 cm2 solar cells.

  8. Stretchable Superhydrophobicity from Monolithic, Three-Dimensional Hierarchical Wrinkles.

    PubMed

    Lee, Won-Kyu; Jung, Woo-Bin; Nagel, Sidney R; Odom, Teri W

    2016-06-01

    We report the design of three-dimensional (3D) hierarchical wrinkle substrates that can maintain their superhydrophobicity even after being repeatedly stretched. Monolithic poly(dimethysiloxane) with multiscale features showed wetting properties characteristic of static superhydrophobicity with water contact angles (>160°) and very low contact angle hysteresis (<5°). To examine how superhydrophobicity was maintained as the substrate was stretched, we investigated the dynamic wetting behavior of bouncing and splashing upon droplet impact with the surface. On hierarchical wrinkles consisting of three different length scales, superhydrophobic bouncing was observed. The substrate remained superhydrophobic up to 100% stretching with no structural defects after 1000 cycles of stretching and releasing. Stretchable superhydrophobicity was possible because of the monolithic nature of the hierarchical wrinkles as well as partial preservation of nanoscale structures under stretching. PMID:27144774

  9. Stretchable Superhydrophobicity from Monolithic, Three-Dimensional Hierarchical Wrinkles.

    PubMed

    Lee, Won-Kyu; Jung, Woo-Bin; Nagel, Sidney R; Odom, Teri W

    2016-06-01

    We report the design of three-dimensional (3D) hierarchical wrinkle substrates that can maintain their superhydrophobicity even after being repeatedly stretched. Monolithic poly(dimethysiloxane) with multiscale features showed wetting properties characteristic of static superhydrophobicity with water contact angles (>160°) and very low contact angle hysteresis (<5°). To examine how superhydrophobicity was maintained as the substrate was stretched, we investigated the dynamic wetting behavior of bouncing and splashing upon droplet impact with the surface. On hierarchical wrinkles consisting of three different length scales, superhydrophobic bouncing was observed. The substrate remained superhydrophobic up to 100% stretching with no structural defects after 1000 cycles of stretching and releasing. Stretchable superhydrophobicity was possible because of the monolithic nature of the hierarchical wrinkles as well as partial preservation of nanoscale structures under stretching.

  10. Adsorption over polyacrylonitrile based carbon monoliths

    NASA Astrophysics Data System (ADS)

    Nandi, Mahasweta; Dutta, Arghya; Patra, Astam Kumar; Bhaumik, Asim; Uyama, Hiroshi

    2013-02-01

    Highly porous activated carbon monoliths have been prepared from mesoporous polyacrylonitrile (PAN) monolith as the carbon precursor. The mesoporous PAN monoliths are fabricated by a unique and facile template-free method which on carbonization gives N-doped activated carbon monoliths. The carbonization is achieved via two step thermal process which includes pretreatment in air leading to cyclization and subsequent aromatization of the PAN moieties followed by carbonization in a mixture of argon and carbon dioxide to give a layered carbon framework. Nitrogen sorption experiments carried over these carbon monoliths revealed high surface area (ca. 2500 m2g-1) for these materials with precise micropore size distribution. The activated carbons show extraordinarily high CO2 capture capacity and the uptake up to 3 bar has been found to be as high as 22.5 and 10.6 mmol/g at 273 K and 298 K, respectively.

  11. Laser cathode-ray tube with a monolithic laser screen

    SciTech Connect

    Bondarev, V Yu; Kozlovskii, V I; Krysa, A B; Popov, Yu M; Sviridov, D E; Skasyrskii, Ya K

    2007-09-30

    A monolithic nanostructure containing 13 GaInP/AlGaInP quantum wells between two Bragg mirrors formed by AlGaAs/AlAs layers is grown by vapour-phase epitaxy from organometallic compounds. A laser with longitudinal pumping by a scanning electron-beam is developed on the basis of this structure. An output power of 8 W is achieved at a wavelength of 660 nm with an efficiency of 7.5% at room temperature. (lasers)

  12. Fabrication of interfacial functionalized porous polymer monolith and its adsorption properties of copper ions.

    PubMed

    Han, Jiaxi; Du, Zhongjie; Zou, Wei; Li, Hangquan; Zhang, Chen

    2014-07-15

    The interfacial functionalized poly (glycidyl methacrylate) (PGMA) porous monolith was fabricated and applied as a novel porous adsorbent for copper ions (Cu(2+)). PGMA porous material with highly interconnected pore network was prepared by concentrated emulsion polymerization template. Then polyacrylic acid (PAA) was grafted onto the interface of the porous monolith by the reaction between the epoxy group on PGMA and a carboxyl group on PAA. Finally, the porous monolith was interfacial functionalized by rich amount of carboxyl groups and could adsorb copper ions effectively. The chemical structure and porous morphology of the porous monolith were measured by Fourier transform infrared spectroscopy and scanning electron microscopy. Moreover, the effects of pore size distribution, pH value, co-existing ions, contacting time, and initial concentrations of copper ions on the adsorption capacity of the porous adsorbents were studied.

  13. SpaciMS: spatial and temporal operando resolution of reactions within catalytic monoliths

    SciTech Connect

    Sa, Jacinto; Fernandes, Daniel; Aiouache, Farid; Goguet, Alexandre; Hardacdre, Christopher; Lundie, David; Naeem, Wasif; Partridge Jr, William P; Stere, Cristina

    2010-01-01

    Monolithic catalysts are widely used as structured catalysts, especially in the abatement of pollutants. Probing what happens inside these monoliths during operation is, therefore, vital for modelling and prediction of the catalyst behavior. SpaciMS is a spatially resolved capillary-inlet mass spectroscopy system allowing for the generation of spatially resolved maps of the reactions within monoliths. In this study SpaciMS results combined with 3D CFD modelling demonstrate that SpaciMS is a highly sensitive and minimally invasive technique that can provide reaction maps as well as catalytic temporal behavior. Herein we illustrate this by examining kinetic oscillations during a CO oxidation reaction over a Pt/Rh on alumina catalyst supported on a cordierite monolith. These oscillations were only observed within the monolith by SpaciMS between 30 and 90% CO conversion. Equivalent experiments performed in a plug-flow reactor using this catalyst in a crushed form over a similar range of reaction conditions did not display any oscillations demonstrating the importance of intra monolith analysis. This work demonstrates that the SpaciMS offers an accurate and comprehensive picture of structured catalysts under operation.

  14. Separation of hydrophobic metabolites using monolithic silica column in high-performance liquid chromatography and supercritical fluid chromatography.

    PubMed

    Bamba, Takeshi; Fukusaki, Eiichiro

    2009-08-01

    Monolithic silica columns have very low back-pressures and offer several advantages over conventional columns packed with spherical particles, such as high separation efficiency and rapid analysis. In this review, we report the applicability of monolithic silica columns for the analysis of complex hydrophobic metabolites. We have used monolithic columns in HPLC and developed a separation technique for the high-speed and high-resolution analysis of the geometric analogs of natural polyprenols. We also used monolithic columns in supercritical fluid chromatography for the successful separation of the structural isomers of carotenoids after deciding the analytical conditions that were suitable for this separation and have developed a method for profiling biological samples containing complex matrices. We have proved that excellent resolution can be obtained by connecting a number of monolithic columns in series.

  15. Focussed ion beam serial sectioning and imaging of monolithic materials for 3D reconstruction and morphological parameter evaluation.

    PubMed

    Vázquez, Mercedes; Moore, David; He, Xiaoyun; Ben Azouz, Aymen; Nesterenko, Ekaterina; Nesterenko, Pavel; Paull, Brett; Brabazon, Dermot

    2014-01-01

    A new characterisation method, based on the utilisation of focussed ion beam-scanning electron microscopy (FIB-SEM), has been employed for the evaluation of morphological parameters in porous monolithic materials. Sample FIB serial sectioning, SEM imaging and image processing techniques were used to extract the pore boundaries and reconstruct the 3D porous structure of carbon and silica-based monoliths. Since silica is a non-conducting material, a commercial silica monolith modified with activated carbon was employed instead to minimise the charge build-up during FIB sectioning. This work therefore presents a novel methodology that can be successfully employed for 3D reconstruction of porous monolithic materials which are or can be made conductive through surface or bulk modification. Furthermore, the 3D reconstructions were used for calculation of the monolith macroporosity, which was in good agreement with the porosity values obtained by mercury intrusion porosimetry (MIP).

  16. Facile preparation of organic-silica hybrid monolith for capillary hydrophilic liquid chromatography based on "thiol-ene" click chemistry.

    PubMed

    Chen, Ming-Luan; Zhang, Jun; Zhang, Zheng; Yuan, Bi-Feng; Yu, Qiong-Wei; Feng, Yu-Qi

    2013-04-01

    In this work, a one-step approach to facile preparation of organic-inorganic hybrid monoliths was successfully developed. After vinyl-end organic monomers and azobisisobutyronitrile (AIBN) were mixed with hydrolyzed tetramethoxysilane (TMOS) and 3-mercaptopropyltrimethoxysilane (MPTMS), the homogeneous mixture was introduced into a fused-silica capillary for simultaneous polycondensation and "thiol-ene" click reaction to form the organic-silica hybrid monoliths. By employing this strategy, two types of organic-silica hybrid monoliths with positively charged quaternary ammonium and amide groups were prepared, respectively. The functional groups were successfully introduced onto the monoliths during the sol-gel process with "thiol-ene" click reaction, which was demonstrated by ζ-potential assessment, energy dispersive X-ray spectroscopy (EDX), and Fourier transform infrared (FT-IR) spectroscopy. The porous structure of the prepared monolithic columns was examined by scanning electron microscopy (SEM), nitrogen adsorption-desorption measurement, and mercury intrusion porosimetry. These results indicate the prepared organic-silica hybrid monoliths possess homogeneous column bed, large specific surface area, good mechanical stability, and excellent permeability. The prepared monolithic columns were then applied for anion-exchange/hydrophilic interaction liquid chromatography. Different types of analytes, including benzoic acids, inorganic ions, nucleosides, and nucleotides, were well separated with high column efficiency around 80,000-130,000 plates/m. Taken together, we present a facile and universal strategy to prepare organic-silica hybrid monoliths with a variety of organic monomers using one-step approach.

  17. Preparation of monomeric and polymeric β-cyclodextrin functionalized monoliths for rapid isolation and purification of puerarin from Radix puerariae.

    PubMed

    Lv, Yongqin; Hughes, Timothy C; Hao, Xiaojuan; Mei, Danping; Tan, Tianwei

    2011-08-01

    Monomeric and epichlorohydrin polymerized β-CD functionalized monoliths were prepared for the rapid isolation and purification of the isoflavonoid puerarin, a well-known traditional Chinese drug, from a crude extract of Radix puerariae (root of the plant Pueraria lobata). Two copolymers poly(isocyanatoethyl methacrylate-co-methyl methacrylate-co-ethylene dimethacrylate) (poly(IEM-co-MMA-co-EDMA)) and poly(glycidyl methacrylate-co-EDMA) (poly(GMA-co-EDMA)) were developed as facile, highly reactive and versatile monolithic matrix. SEM characterization demonstrated that the modified monoliths had homogenous porous structure and morphology. The success of the chemical modification of the monolithic matrix was confirmed by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), solid-state (13) C NMR and elemental analysis. It was demonstrated that polymeric β-CD modified monoliths had better separation and selectivity for puerarin, recovering puerarin with a purity of 96% (m%) and a yield of 93% (m%). Compared with poly(glycidyl methacrylate-co-EDMA), poly(isocyanatoethyl methacrylate-co-methyl methacrylate-co-EDMA) monolithic matrix had higher reactivity, which significantly improved the β-CD ligand density and thus the selectivity of the monoliths. Puerarin with a purity of 96% (m%) and with a yield of 89% (m%) was recovered on the monolith.

  18. Facile preparation of organic-silica hybrid monolith for capillary hydrophilic liquid chromatography based on "thiol-ene" click chemistry.

    PubMed

    Chen, Ming-Luan; Zhang, Jun; Zhang, Zheng; Yuan, Bi-Feng; Yu, Qiong-Wei; Feng, Yu-Qi

    2013-04-01

    In this work, a one-step approach to facile preparation of organic-inorganic hybrid monoliths was successfully developed. After vinyl-end organic monomers and azobisisobutyronitrile (AIBN) were mixed with hydrolyzed tetramethoxysilane (TMOS) and 3-mercaptopropyltrimethoxysilane (MPTMS), the homogeneous mixture was introduced into a fused-silica capillary for simultaneous polycondensation and "thiol-ene" click reaction to form the organic-silica hybrid monoliths. By employing this strategy, two types of organic-silica hybrid monoliths with positively charged quaternary ammonium and amide groups were prepared, respectively. The functional groups were successfully introduced onto the monoliths during the sol-gel process with "thiol-ene" click reaction, which was demonstrated by ζ-potential assessment, energy dispersive X-ray spectroscopy (EDX), and Fourier transform infrared (FT-IR) spectroscopy. The porous structure of the prepared monolithic columns was examined by scanning electron microscopy (SEM), nitrogen adsorption-desorption measurement, and mercury intrusion porosimetry. These results indicate the prepared organic-silica hybrid monoliths possess homogeneous column bed, large specific surface area, good mechanical stability, and excellent permeability. The prepared monolithic columns were then applied for anion-exchange/hydrophilic interaction liquid chromatography. Different types of analytes, including benzoic acids, inorganic ions, nucleosides, and nucleotides, were well separated with high column efficiency around 80,000-130,000 plates/m. Taken together, we present a facile and universal strategy to prepare organic-silica hybrid monoliths with a variety of organic monomers using one-step approach. PMID:23434082

  19. Microfluidic devices and methods including porous polymer monoliths

    DOEpatents

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  20. Microfluidic devices and methods including porous polymer monoliths

    SciTech Connect

    Hatch, Anson V.; Sommer, Gregory j.; Singh, Anup K.; Wang, Ying-Chih; Abhyankar, Vinay

    2015-12-01

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  1. Synthesis and applications of monolithic HPLC columns

    NASA Astrophysics Data System (ADS)

    Liang, Chengdu

    Silica and carbon monolithic columns were synthesized and modified for liquid chromatography applications. Column configurations and cladding techniques were investigated in detail. Three novel approaches have been developed for the synthesis of bimodal porous rods. Out of these three methods, gel-casting was adopted for the synthesis of silica monoliths with ordered mesopores and uniform macropores; the use of colloidal templates and dual phase separation has been successfully implemented for the synthesis of carbon monoliths with well-controlled meso- and macro- porosities. The formation of mesopores in carbon materials has been further studied in the microphase separation of block copolymers. Electrochemical modification of carbon monoliths was discovered to be an efficient method for converting covalently bonded functionalities to carbon monoliths. N,N'-diethylaminobenzene has been attached to carbon surface for the separation of proteins and protein digests. The performances of carbon-based monolithic columns were studied intensely through frontal analysis and Van Deemter plot. Temperature and pressure effects were also investigated in carbon-based columns. The density of bonding on the modified carbon monoliths was characterized by thermogravimetric analysis.

  2. Tailoring the morphology of methacrylate ester-based monoliths for optimum efficiency in liquid chromatography.

    PubMed

    Eeltink, Sebastiaan; Herrero-Martinez, José Manuel; Rozing, Gerard P; Schoenmakers, Peter J; Kok, Wim Th

    2005-11-15

    Methacrylate ester-based monolithic stationary phases were prepared in situ in fused-silica capillaries and simultaneously in vials. The influence of the composition of the polymerization mixture on the morphology was studied with mercury intrusion porosimetry, scanning electron microscopy, and nitrogen adsorption measurements. A high-density porous polymeric material with a unimodal pore-size distribution was prepared with 40 wt % monomers and 60 wt % solvent in the mixture. A low-density material, prepared with a 20:80 ratio of monomers versus pore-forming solvent, showed a bimodal pore-size distribution and a much finer structure than the high-density monolith. The characteristic pore size could be controlled by changing the ratio of pore-forming solvents. With increasing solvent polarity, both the pore size and the dimension of the globules increased. The best efficiency in the CEC mode was obtained with an average pore size of 600 nm. Low-density monoliths exhibited lower A- and C-terms than high-density monoliths. With the optimal monolithic material, a minimum plate height of 5 mum could be obtained. The low-density monolith also performed better in the HPLC mode, giving a minimum plate height of 15 mum and a much higher flow permeability than that of the high-density material. PMID:16285684

  3. Monolithic Continuous-Flow Bioreactors

    NASA Technical Reports Server (NTRS)

    Stephanopoulos, Gregory; Kornfield, Julia A.; Voecks, Gerald A.

    1993-01-01

    Monolithic ceramic matrices containing many small flow passages useful as continuous-flow bioreactors. Ceramic matrix containing passages made by extruding and firing suitable ceramic. Pores in matrix provide attachment medium for film of cells and allow free movement of solution. Material one not toxic to micro-organisms grown in reactor. In reactor, liquid nutrients flow over, and liquid reaction products flow from, cell culture immobilized in one set of channels while oxygen flows to, and gaseous reaction products flow from, culture in adjacent set of passages. Cells live on inner surfaces containing flowing nutrient and in pores of walls of passages. Ready access to nutrients and oxygen in channels. They generate continuous high yield characteristic of immobilized cells, without large expenditure of energy otherwise incurred if necessary to pump nutrient solution through dense biomass as in bioreactors of other types.

  4. Monolithic cells for solar fuels.

    PubMed

    Rongé, Jan; Bosserez, Tom; Martel, David; Nervi, Carlo; Boarino, Luca; Taulelle, Francis; Decher, Gero; Bordiga, Silvia; Martens, Johan A

    2014-12-01

    Hybrid energy generation models based on a variety of alternative energy supply technologies are considered the best way to cope with the depletion of fossil energy resources and to limit global warming. One of the currently missing technologies is the mimic of natural photosynthesis to convert carbon dioxide and water into chemical fuel using sunlight. This idea has been around for decades, but artificial photosynthesis of organic molecules is still far away from providing real-world solutions. The scientific challenge is to perform in an efficient way the multi-electron transfer reactions of water oxidation and carbon dioxide reduction using holes and single electrons generated in an illuminated semiconductor. In this tutorial review the design of photoelectrochemical (PEC) cells that combine solar water oxidation and CO2 reduction is discussed. In such PEC cells simultaneous transport and efficient use of light, electrons, protons and molecules has to be managed. It is explained how efficiency can be gained by compartmentalisation of the water oxidation and CO2 reduction processes by proton exchange membranes, and monolithic concepts of artificial leaves and solar membranes are presented. Besides transferring protons from the anode to the cathode compartment the membrane serves as a molecular barrier material to prevent cross-over of oxygen and fuel molecules. Innovative nano-organized multimaterials will be needed to realise practical artificial photosynthesis devices. This review provides an overview of synthesis techniques which could be used to realise monolithic multifunctional membrane-electrode assemblies, such as Layer-by-Layer (LbL) deposition, Atomic Layer Deposition (ALD), and porous silicon (porSi) engineering. Advances in modelling approaches, electrochemical techniques and in situ spectroscopies to characterise overall PEC cell performance are discussed.

  5. Activated carbon monoliths for methane storage

    NASA Astrophysics Data System (ADS)

    Chada, Nagaraju; Romanos, Jimmy; Hilton, Ramsey; Suppes, Galen; Burress, Jacob; Pfeifer, Peter

    2012-02-01

    The use of adsorbent storage media for natural gas (methane) vehicles allows for the use of non-cylindrical tanks due to the decreased pressure at which the natural gas is stored. The use of carbon powder as a storage material allows for a high mass of methane stored for mass of sample, but at the cost of the tank volume. Densified carbon monoliths, however, allow for the mass of methane for volume of tank to be optimized. In this work, different activated carbon monoliths have been produced using a polymeric binder, with various synthesis parameters. The methane storage was studied using a home-built, dosing-type instrument. A monolith with optimal parameters has been fabricated. The gravimetric excess adsorption for the optimized monolith was found to be 161 g methane for kg carbon.

  6. Three-Dimensional Bicontinuous Graphene Monolith from Polymer Templates.

    PubMed

    Liu, Kewei; Chen, Yu-Ming; Policastro, Gina M; Becker, Matthew L; Zhu, Yu

    2015-06-23

    The two-dimensional single-layer and few-layered graphene exhibit many attractive properties such as large specific surface area and high charge carrier mobility. However, graphene sheets tend to stack together and form aggregates, which do not possess the desirable properties associated with graphene. Herein, we report a method to fabricate three-dimensional (3D), bicontinuous graphene monolith through a versatile hollow nickel (Ni) template derived from polymer blends. The poly(styrene)/poly(ethylene oxide) were used to fabricate a bicontinuous gyroid template using controlled phase separation. The Ni template was formed by electroless metal depositing on the polymer followed by removing the polymer phase. The resulting hollow Ni structure was highly porous (95.2%). Graphene was then synthesized from this hollow Ni template using chemical vapor deposition and the free-standing bicontinuous graphene monolith was obtained in high-throughput process. Finally, the bicontinuous graphene monolith was used directly as binder-free electrode in supercapacitor applications. The supercapacitor devices exhibited excellent stability.

  7. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    DOEpatents

    Wang, Daojing; Yang, Peidong; Kim, Woong; Fan, Rong

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  8. Detailed characterization of the kinetic performance of first and second generation silica monolithic columns for reversed-phase chromatography separations.

    PubMed

    Cabooter, Deirdre; Broeckhoven, Ken; Sterken, Roman; Vanmessen, Alison; Vandendael, Isabelle; Nakanishi, Kazuki; Deridder, Sander; Desmet, Gert

    2014-01-17

    The kinetic performance of commercially available first generation and prototype second generation silica monoliths has been investigated for 2.0mm and 3.0-3.2mm inner diameter columns. It is demonstrated that the altered sol-gel process employed for the production of second generation monoliths results in structures with a smaller characteristic size leading to an improved peak shape and higher efficiencies. The permeability of the columns however, decreases significantly due to the smaller throughpore and skeleton sizes. Scanning electron microscopy pictures suggest the first generation monoliths have cylindrical skeleton branches, whereas the second generation monoliths rather have skeleton branches that resemble a single chain of spherical globules. Using recently established correlations for the flow resistance of cylindrical and globule chain type monolithic structures, it is demonstrated that the higher flow resistance of the second generation monoliths can be entirely attributed to their smaller skeleton sizes, which is also evident from the external porosity that is largely the same for both monolith generations (ɛe∼0.65). The recorded van Deemter plots show a clear improvement in efficiency for the second generation monoliths (minimal plate heights of 13.6-14.1μm for the first and 6.5-8.2μm for the second generation, when assessing the plate count using the Foley-Dorsey method). The corresponding kinetic plots, however, indicate that the much reduced permeability of the second generation monoliths results in kinetic performances (time needed to achieve a given efficiency) which are only better than those of the first generation for plate counts up to N∼45,000. For more complex samples (N≥50,000), the first generation monoliths can intrinsically still provide faster analysis due to their high permeability. It is also demonstrated that - despite the improved efficiency of the second generation monoliths in the practical range of separations (N=10

  9. Formation of bimodal porous silica-titania monoliths by sol-gel route

    NASA Astrophysics Data System (ADS)

    Ruzimuradov, O. N.

    2011-10-01

    Silica-titania monoliths with micrometer-scale macroporous and nanometer-scale mesoporous structure and high titania contents are prepared by sol-gel process and phase separation. Titanium alkoxide precursor was not effective in the preparation of high titania content composites because of strong decrease in phase separation tendency. Bimodal porous gels with high titania content were obtained by using inorganic salt precursors such as titanium sulfate and titanium chloride. Various characterization techniques, including SEM, XRD, Hg porosimetry and N2 adsorption have been carried out to investigate the formation process and physical-chemical properties of silica-titania monoliths. The characterization results show that the silica-titania monoliths possess a bimodal porous structure with well-dispersed titania inside silica network. The addition of titania in silica improves the thermal stability of both macroporous and mesoporous structures.

  10. Facile synthesis of gradient mesoporous carbon monolith based on polymerization-induced phase separation

    NASA Astrophysics Data System (ADS)

    Xu, Shunjian; Luo, Yufeng; Zhong, Wei; Xiao, Zonghu; Luo, Yongping; Ou, Hui; Zhao, Xing-Zhong

    2014-06-01

    In this paper, a gradient mesoporous carbon (GMC) monolith derived from the mixtures of phenolic resin (PF) and ethylene glycol (EG) was prepared by a facile route based on polymerization-induced phase separation under temperature gradient (TG). A graded biphasic structure of PF-rich and EG-rich phases was first formed in preform under a TG, and then the preform was pyrolyzed to obtain the GMC monolith. The TG is mainly induced by the thermal resistance of the preferential phase separation layer at high temperature region. The pore structure of the monolith changes gradually along the TG direction. When the TG varies from 58°C to 29°C, the pore size, apparent porosity and specific surface area of the monolith range respectively from 18 nm to 83 nm, from 32% to 39% and from 140.5 m2/g to 515.3 m2/g. The gradient porous structure of the monolith is inherited from that of the preform, which depends on phase separation under TG in the resin mixtures. The pyrolysis mainly brings about the contraction of the pore size and wall thickness as well as the transformation of polymerized PF into glassy carbon.

  11. Monolithic gyroidal mesoporous mixed titanium-niobium nitrides.

    PubMed

    Robbins, Spencer W; Sai, Hiroaki; DiSalvo, Francis J; Gruner, Sol M; Wiesner, Ulrich

    2014-08-26

    Mesoporous transition metal nitrides are interesting materials for energy conversion and storage applications due to their conductivity and durability. We present ordered mixed titanium-niobium (8:2, 1:1) nitrides with gyroidal network structures synthesized from triblock terpolymer structure-directed mixed oxides. The materials retain both macroscopic integrity and mesoscale ordering despite heat treatment up to 600 °C, without a rigid carbon framework as a support. Furthermore, the gyroidal lattice parameters were varied by changing polymer molar mass. This synthesis strategy may prove useful in generating a variety of monolithic ordered mesoporous mixed oxides and nitrides for electrode and catalyst materials.

  12. Monolithic Gyroidal Mesoporous Mixed Titanium–Niobium Nitrides

    PubMed Central

    2015-01-01

    Mesoporous transition metal nitrides are interesting materials for energy conversion and storage applications due to their conductivity and durability. We present ordered mixed titanium–niobium (8:2, 1:1) nitrides with gyroidal network structures synthesized from triblock terpolymer structure-directed mixed oxides. The materials retain both macroscopic integrity and mesoscale ordering despite heat treatment up to 600 °C, without a rigid carbon framework as a support. Furthermore, the gyroidal lattice parameters were varied by changing polymer molar mass. This synthesis strategy may prove useful in generating a variety of monolithic ordered mesoporous mixed oxides and nitrides for electrode and catalyst materials. PMID:25122534

  13. Monolithic Fabry-Perot Wavelength Tunable Filter with Electrothermal Actuation

    NASA Astrophysics Data System (ADS)

    Kim, Chang Kyu; Lee, Myung Lae; Jun, Chi-Hoon; Choi, Chang Auck

    2005-02-01

    We report on a micromachined monolithic Fabry-Perot wavelength tunable filter with a thick moving structure operated by an electrothermal actuation. The monolithic structure simplifies the fabrication process and the electrothermal actuation mechanism reduces the required operation voltage. For the wet etching of the AlGaAs sacrificial layer, an HCl-based solution rather than a HF-based one was used because it results in a larger selectivity between the AlxGa1-xAs layers and less damage to the suspended structure. The wavelength tuning range of the 7.64-μm-thick structure was 47 nm for the power consumption of 5 mW, which results in the high tuning efficiency of ˜9.9 nm/mW. The wide tuning range of 81.2 nm for the 5.2-μm-thick structure, that is not possible with an electrostatic actuation mechanism due to the occurrence of breakdown, is achieved at the driving voltage below 5.7 V. Due to the simplicity of fabrication and the ease of integration, this structure is advantageous for use in wavelength tunable light sources and photodetectors.

  14. Neutron spectrometry with a monolithic silicon telescope.

    PubMed

    Agosteo, S; D'Angelo, G; Fazzi, A; Para, A Foglio; Pola, A; Zotto, P

    2007-01-01

    A neutron spectrometer was set-up by coupling a polyethylene converter with a monolithic silicon telescope, consisting of a DeltaE and an E stage-detector (about 2 and 500 microm thick, respectively). The detection system was irradiated with monoenergetic neutrons at INFN-Laboratori Nazionali di Legnaro (Legnaro, Italy). The maximum detectable energy, imposed by the thickness of the E stage, is about 8 MeV for the present detector. The scatter plots of the energy deposited in the two stages were acquired using two independent electronic chains. The distributions of the recoil-protons are well-discriminated from those due to secondary electrons for energies above 0.350 MeV. The experimental spectra of the recoil-protons were compared with the results of Monte Carlo simulations using the FLUKA code. An analytical model that takes into account the geometrical structure of the silicon telescope was developed, validated and implemented in an unfolding code. The capability of reproducing continuous neutron spectra was investigated by irradiating the detector with neutrons from a thick beryllium target bombarded with protons. The measured spectra were compared with data taken from the literature. Satisfactory agreement was found. PMID:17522037

  15. Monolithic integrated-optic TDLAS sensors

    NASA Astrophysics Data System (ADS)

    Frish, Michael B.; Scherer, David R.; Wainner, Richard T.; Allen, Mark G.; Shankar, Raji; Loncar, Marko

    2012-06-01

    We are developing prototype chip-scale low-power integrated-optic gas-phase chemical sensors based on infrared Tunable Diode Laser Absorption Spectroscopy (TDLAS). TDLAS is able to sense many gas phase chemicals with high sensitivity and selectivity. Using semiconductor fabrication and assembly techniques, the low-cost integrated optic TDLAS technology will permit mass production of sensors that have wide ranging industrial, medical, environmental, and consumer applications. Novel gas sensing elements using low-loss resonant photonic crystal cavities or waveguides will permit monolithic integration of a laser source, sampling elements, and detector on a semiconductor materials system substrate. Practical challenges to fabricating these devices include: a) selecting and designing the high-Q micro-resonator sensing element appropriate for the selected analyte; and b) device thermal management, especially stabilizing laser temperature with the precision needed for sensitive spectroscopic detection. In this paper, we analyze the expected sensitivity of micro-resonator-based structures for chemical sensing, and demonstrate a novel approach for exploiting laser waste heat to stabilize the laser temperature.

  16. Monolithic laser diode structure for microwave generation

    SciTech Connect

    Goldberg, L.; Weller, J.F.

    1990-03-06

    This patent describes an apparatus. It comprises: a semiconductor substrate; a semiconductor master laser and first and second semiconductor slave lasers fabricated adjacent to each other on the semiconductor substrate. The master laser generating an optical output at a frequency f{sub 0} and sidebands at multiples of {Delta}f, the first and second slave lasers being tuned to approximately coincide with first and second preselected sidebands of the master laser; and means for respectively injection-locking the first and second slave lasers to the first and second preselected sidebands.

  17. Peptide immobilized monolith containing tentacle-type functionalized polymer chains for high-capacity binding of immunoglobulin G.

    PubMed

    Du, Kaifeng

    2014-12-29

    A peptide immobilized tentacle-type monolith is developed here for high-performance IgG purification. In this work, the glucose-anchored GMA molecules serve as monomers to be grafted into the tentacle-type chains on highly porous monolith by a series of chemical reactions. While maintaining high column permeability, the tentacle grafting endows the monolith with lots of reactive handles to anchor more peptides. With that, the grafted monolith shows high peptide density of about 155μmolmL(-1), up to approximately 4.7 times higher over the ungrafted one (33μmolmL(-1)). As a result, the static adsorbing capacity and dynamic adsorption capacity at 50% breakthrough point reach 101.8 and 83.3mgmL(-1) for IgG adsorption, respectively. Regeneration, recycle and reuse of grafted monolith are highly successful for 25 runs without obvious capacity loss. By taking these advantages of high capacity and excellent structure stability, the affinity grafted monolith is evaluated by using cleared human blood supernatant. And the result shows the peptide immobilized tentacle type monolith displays excellent specificity and high effectiveness for IgG purification.

  18. Peptide immobilized monolith containing tentacle-type functionalized polymer chains for high-capacity binding of immunoglobulin G.

    PubMed

    Du, Kaifeng

    2014-12-29

    A peptide immobilized tentacle-type monolith is developed here for high-performance IgG purification. In this work, the glucose-anchored GMA molecules serve as monomers to be grafted into the tentacle-type chains on highly porous monolith by a series of chemical reactions. While maintaining high column permeability, the tentacle grafting endows the monolith with lots of reactive handles to anchor more peptides. With that, the grafted monolith shows high peptide density of about 155μmolmL(-1), up to approximately 4.7 times higher over the ungrafted one (33μmolmL(-1)). As a result, the static adsorbing capacity and dynamic adsorption capacity at 50% breakthrough point reach 101.8 and 83.3mgmL(-1) for IgG adsorption, respectively. Regeneration, recycle and reuse of grafted monolith are highly successful for 25 runs without obvious capacity loss. By taking these advantages of high capacity and excellent structure stability, the affinity grafted monolith is evaluated by using cleared human blood supernatant. And the result shows the peptide immobilized tentacle type monolith displays excellent specificity and high effectiveness for IgG purification. PMID:25476688

  19. Applications of monolithic solid-phase extraction in chromatography-based clinical chemistry assays.

    PubMed

    Bunch, Dustin R; Wang, Sihe

    2013-04-01

    Complex matrices, for example urine, serum, plasma, and whole blood, which are common in clinical chemistry testing, contain many non-analyte compounds that can interfere with either detection or in-source ionization in chromatography-based assays. To overcome this problem, analytes are extracted by protein precipitation, solid-phase extraction (SPE), and liquid-liquid extraction. With correct chemistry and well controlled material SPE may furnish clean specimens with consistent performance. Traditionally, SPE has been performed with particle-based adsorbents, but monolithic SPE is attracting increasing interest of clinical laboratories. Monoliths, solid pieces of stationary phase, have bimodal structures consisting of macropores, which enable passage of solvent, and mesopores, in which analytes are separated. This structure results in low back-pressure with separation capabilities similar to those of particle-based adsorbents. Monoliths also enable increased sample throughput, reduced solvent use, varied support formats, and/or automation. However, many of these monoliths are not commercially available. In this review, application of monoliths to purification of samples from humans before chromatography-based assays will be critically reviewed.

  20. Assessment of the Grouted IXC Monolith in Support of K East Basin Hazard Categorization

    SciTech Connect

    Short, Steven M.; Dodson, Michael G.; Alzheimer, James M.; Meyer, Perry A.

    2007-10-12

    Addendum to original report updating the structural analysis of the I-beam accident to reflect a smaller I-beam than originally assumed (addendum is 2 pages). The K East Basin currently contains six ion exchange columns (IXCs) that were removed from service over 10 years ago. Fluor Hanford plans to immobilize the six ion exchange columns (IXCs) in place in a concrete monolith. PNNL performed a structural assessment of the concrete monolith to determine its capability to absorb the forces imposed by postulated accidents and protect the IXCs from damage and thus prevent a release of radioactive material. From this assessment, design specifications for the concrete monolith were identified that would prevent a release of radioactive material for any of the postulated hazardous conditions.

  1. Feasibility evaluation of the monolithic braided ablative nozzle

    NASA Astrophysics Data System (ADS)

    Director, Mark N.; McPherson, Douglass J., Sr.

    1992-02-01

    The feasibility of the monolithic braided ablative nozzle was evaluated as part of an independent research and development (IR&D) program complementary to the National Aeronautics and Space Administration/Marshall Space Flight Center (NASA/MSFC) Low-Cost, High-Reliability Case, Insulation and Nozzle for Large Solid Rocket Motors (LOCCIN) Program. The monolithic braided ablative nozzle is a new concept that utilizes a continuous, ablative, monolithic flame surface that extends from the nozzle entrance, through the throat, to the exit plane. The flame surface is fabricated using a Through-the-Thickness braided carbon-fiber preform, which is impregnated with a phenolic or phenolic-like resin. During operation, the braided-carbon fiber/resin material ablates, leaving the structural backside at temperatures which are sufficiently low to preclude the need for any additional insulative materials. The monolithic braided nozzle derives its potential for low life cycle cost through the use of automated processing, one-component fabrication, low material scrap, low process scrap, inexpensive raw materials, and simplified case attachment. It also has the potential for high reliability because its construction prevents delamination, has no nozzle bondlines or leak paths along the flame surface, is amenable to simplified analysis, and is readily inspectable. In addition, the braided construction has inherent toughness and is damage-tolerant. Two static-firing tests were conducted using subscale, 1.8 - 2.0-inch throat diameter, hardware. Tests were approximately 15 seconds in duration, using a conventional 18 percent aluminum/ammonium perchlorate propellant. The first of these tests evaluated the braided ablative as an integral backside insulator and exit cone; the second test evaluated the monolithic braided ablative as an integral entrance/throat/exit cone nozzle. Both tests met their objectives. Radial ablation rates at the throat were as predicted, approximately 0.017 in

  2. Monolithic Solid Oxide Fuel Cell development

    NASA Technical Reports Server (NTRS)

    Myles, K. M.; Mcpheeters, C. C.

    1989-01-01

    The Monolithic Solid Oxide Fuel Cell (MSOFC) is an oxide-ceramic structure in which appropriate electronic and ionic conductors are fabricated in a honeycomb shape similar to a block of corrugated paperboard. These electronic and ionic conductors are arranged to provide short conduction paths to minimize resistive losses. The power density achievable with the MSOFC is expected to be about 8 kW/kg or 4 kW/L, at fuel efficienceis over 50 percent, because of small cell size and low resistive losses in the materials. The MSOFC operates in the range of 700 to 1000 C, at which temperatures rapid reform of hydrocarbon fuels is expected within the nickel-YSZ fuel channels. Tape casting and hot roll calendering are used to fabricate the MSOFC structure. The performance of the MSOFC has improved significantly during the course of development. The limitation of this system, based on materials resistance alone without interfacial resistances, is 0.093 ohm-sq cm area-specific resistance (ASR). The current typical performance of MSOFC single cells is characterized by ASRs of about 0.4 to 0.5 ohm-sq cm. With further development the ASR is expected to be reduced below 0.2 ohm-sq cm, which will result in power levels greater than 1.4 W/sq cm. The feasibility of the MSOFC concept was proven, and the performance was dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials were minimized. As a result of good matching of these properties, the MSOFC structure was successfully fabricated with few defects, and the system shows excellent promise for development into a practical power source.

  3. [Preparation and evaluation of pepsin affinity organic polymer capillary monolithic column].

    PubMed

    Chi, Cuijie; Wang, Wei; Ji, Yibing

    2014-08-01

    The protein modified monolithic column in affinity capillary electrochromatography (CEC) has attracted considerable attention over the past decades because of its great enantioseparation ability. A porous polymethacrylate ester-based capillary monolithic column poly (glycidyl methacrylate-co-ethyleneglycol dimethacrylate) (poly (GMA-co-EDMA)) was prepared by in situ co-polymerization. The process was initiated thermally by azobisisobutyronitrile (AIBN). The polymerization mixture contained GMA as the function monomer and EDMA as the crosslinking agent with 1,4-butanediol and 1-propanol as the binary porogen solvent. Under the optimized reaction conditions, including the proportion of monomer and porogens, reaction temperature etc, the column exhibited a uniform structure, sufficient permeability and excel- lent pressure resistance. The separation of alkyl benzenes on the column was mainly based on typical reversed-phase chromatographic retention mechanism. The reproducibility and stability were good with RSDs less than 9. 0%. A pepsin functionalized organic polymer monolith was prepared by covalently bonded pepsin to poly(GMA-co-EDMA) monolith with glutaraldehyde as a spacer based on the activity of epoxide group. The enantioseparation performance of the pepsin affinity monolith for basic enantiomers has been investigated by CEC. Nefopam, amlodipine, citalopram and chlorpheniramine were resolved, and baseline separations of nefopam, amlodipine, citalopram were achieved. The influences of pH, operating voltage, temperature and sample quantity used on the chiral separation were studied. The chiral recognition mechanism of enantiomers on the monolithic column in CEC is discussed. This work developed a new method for the prepataion and application of protein affinity monolith in CEC.

  4. GaAs monolithic RF modules for SARSAT distress beacons

    NASA Technical Reports Server (NTRS)

    Cauley, Michael A.

    1991-01-01

    Monolithic GaAs UHF components for use in SARSAT Emergency Distress beacons are under development by Microwave Monolithics, Inc., Simi Valley, CA. The components include a bi-phase modulator, driver amplifier, and a 5 watt power amplifier.

  5. Nanoklystron: A Monolithic Tube Approach to THz Power Generation

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H.; Fung, Andy; Manohara, Harish; Xu, Jimmy; Chang, Baohe

    2001-01-01

    The authors propose a new approach to THz power generation: the nanoklystron. Utilizing silicon micromachining techniques, the design and fabrication concept of a monolithic THz vacuum-tube reflex-klystron source is described. The nanoklystron employs a separately fabricated cathode structure composed of densely packed carbon nanotube field emitters and an add-in repeller. The nanotube cathode is expected to increase the current density, extend the cathode life and decrease the required oscillation voltage to values below 100 V. The excitation cavity is based on ridged-waveguide and differs from the conventional cylindrical re-entrant structures found in lower frequency klystrons. A quasi-static field analysis of the cavity and output coupling structure show excellent control of the quality factor and desired field distribution. Output power is expected to occur through an iris coupled matched rectangular waveguide and integrated pyramidal feed horn. The entire circuit is designed so as to be formed monolithically from two thermocompression bonded silicon wafers processed using deep reactive ion etching (DRIE) techniques. To expedite prototyping, a 600 GHz mechanically machined structure has been designed and is in fabrication. A complete numeric analysis of the nanoklystron circuit, including the electron beam dynamics has just gotten underway. Separate evaluation of the nanotube cathodes is also ongoing. The authors will describe the progress to date as well as plans for the immediate implementation and testing of nanoklystron prototypes at 640 and 1250 GHz.

  6. Designing Catalytic Monoliths For Closed-Cycle CO2 Lasers

    NASA Technical Reports Server (NTRS)

    Guinn, Keith; Herz, Richard K.; Goldblum, Seth; Noskowski, ED

    1992-01-01

    LASCAT (Design of Catalytic Monoliths for Closed-Cycle Carbon Dioxide Lasers) computer program aids in design of catalyst in monolith by simulating effects of design decisions on performance of laser. Provides opportunity for designer to explore tradeoffs among activity and dimensions of catalyst, dimensions of monolith, pressure drop caused by flow of gas through monolith, conversion of oxygen, and other variables. Written in FORTRAN 77.

  7. A 30 GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Mondal, J.; Contolatis, T.; Geddes, J.; Bauhahn, P.; Sokolov, V.

    1990-01-01

    The technical achievements and deliveries made during the duration of the program to develop a 30 GHz monolithic receive module for communication feed array applications and to deliver submodules and 30 GHz monolithic receive modules for experimental evaluation are discussed. Key requirements include an overall receive module noise figure of 5 dB, a 30 dB RF-to-RF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. In addition, the monolithic receive module design addresses a cost goal of less than one thousand dollars (1980 dollars) per module in unit buys of 5,000 or more, and a mechanical configuration that is applicable to a spaceborne phase array system. An additional task for the development and delivery of 32 GHz phase shifter integrated circuit (IC) for deep space communication is also described.

  8. Monolithic and mechanical multijunction space solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.

    1992-01-01

    High-efficiency, lightweight, radiation-resistant solar cells are essential to meet the large power requirements of future space missions. Single-junction cells are limited in efficiency. Higher cell efficiencies could be realized by developing multijunction, multibandgap solar cells. Monolithic and mechanically stacked tandem solar cells surpassing single-junction cell efficiencies have been fabricated. This article surveys the current status of monolithic and mechanically stacked multibandgap space solar cells, and outlines problems yet to be resolved. The monolithic and mechanically stacked cells each have their own problems related to size, processing, current and voltage matching, weight, and other factors. More information is needed on the effect of temperature and radiation on the cell performance. Proper reference cells and full-spectrum range simulators are also needed to measure efficiencies correctly. Cost issues are not addressed, since the two approaches are still in the developmental stage.

  9. Characterization of polymer monoliths containing embedded nanoparticles by scanning transmission X-ray microscopy (STXM).

    PubMed

    Arrua, R Dario; Hitchcock, Adam P; Hon, Wei Boon; West, Marcia; Hilder, Emily F

    2014-03-18

    The structural and chemical homogeneity of monolithic columns is a key parameter for high efficiency stationary phases in liquid chromatography. Improved characterization techniques are needed to better understand the polymer morphology and its optimization. Here the analysis of polymer monoliths by scanning transmission X-ray microscopy (STXM) is presented for the first time. Poly(butyl methacrylate-co-ethyleneglycoldimethacrylate) [poly(BuMA-co-EDMA)] monoliths containing encapsulated divinylbenzene (DVB) nanoparticles were characterized by STXM, which gives a comprehensive, quantitative chemical analysis of the monolith at a spatial resolution of 30 nm. The results are compared with other methods commonly used for the characterization of polymer monoliths [scanning electron microscopy (SEM), transmission electron microscopy (TEM), mercury porosimetry, and nitrogen adsorption]. The technique permitted chemical identification and mapping of the nanoparticles within the polymeric scaffold. Residual surfactant, which was used during the manufacture of the nanoparticles, was also detected. We show that STXM can give more in-depth chemical information for these types of materials and therefore lead to a better understanding of the link between polymer morphology and chromatographic performance.

  10. Polymethacrylate monolithic columns for hydrophilic interaction liquid chromatography prepared using a secondary surface polymerization.

    PubMed

    Currivan, Sinéad; Macak, Jan M; Jandera, Pavel

    2015-07-10

    Zwitterionic methacrylate based polymeric monolithic columns were prepared in two-step polymerizations, with reduced polymerization times. Characteristic properties such as hydrodynamic permeability, porosity, retention factors, and pore size distribution charts were used for column evaluation. A scaffold column was fabricated by polymerization of poly(lauryl methacrylate-co-tetraethyleneglycol dimethacrylate) and was used without further modification as a support for a poly(N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl)ammonium betaine-co-bisphenol A glycerolate dimethacrylate) second monolith layer with zwitterionic functionality, for HILIC separations. An additional internal structure was formed by the second monolithic layer. The fabrication procedure was reproducible with RSD<5%. Field emission scanning electron microscopy has also been used to investigate column pore morphology, using a novel technique where the polymeric material is imaged directly, without coverage with a conducting film or particles. The new polar monolithic columns were used for HILIC separations of phenolic acids, flavones, nucleosides, and bases of nucleic acids, with similar efficiencies but different selectivities for zwitterionic methacrylate monolithic columns recently prepared by single step polymerization.

  11. Polymethacrylate monolithic columns for hydrophilic interaction liquid chromatography prepared using a secondary surface polymerization.

    PubMed

    Currivan, Sinéad; Macak, Jan M; Jandera, Pavel

    2015-07-10

    Zwitterionic methacrylate based polymeric monolithic columns were prepared in two-step polymerizations, with reduced polymerization times. Characteristic properties such as hydrodynamic permeability, porosity, retention factors, and pore size distribution charts were used for column evaluation. A scaffold column was fabricated by polymerization of poly(lauryl methacrylate-co-tetraethyleneglycol dimethacrylate) and was used without further modification as a support for a poly(N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl)ammonium betaine-co-bisphenol A glycerolate dimethacrylate) second monolith layer with zwitterionic functionality, for HILIC separations. An additional internal structure was formed by the second monolithic layer. The fabrication procedure was reproducible with RSD<5%. Field emission scanning electron microscopy has also been used to investigate column pore morphology, using a novel technique where the polymeric material is imaged directly, without coverage with a conducting film or particles. The new polar monolithic columns were used for HILIC separations of phenolic acids, flavones, nucleosides, and bases of nucleic acids, with similar efficiencies but different selectivities for zwitterionic methacrylate monolithic columns recently prepared by single step polymerization. PMID:26022313

  12. Characterization of polymer monoliths containing embedded nanoparticles by scanning transmission X-ray microscopy (STXM).

    PubMed

    Arrua, R Dario; Hitchcock, Adam P; Hon, Wei Boon; West, Marcia; Hilder, Emily F

    2014-03-18

    The structural and chemical homogeneity of monolithic columns is a key parameter for high efficiency stationary phases in liquid chromatography. Improved characterization techniques are needed to better understand the polymer morphology and its optimization. Here the analysis of polymer monoliths by scanning transmission X-ray microscopy (STXM) is presented for the first time. Poly(butyl methacrylate-co-ethyleneglycoldimethacrylate) [poly(BuMA-co-EDMA)] monoliths containing encapsulated divinylbenzene (DVB) nanoparticles were characterized by STXM, which gives a comprehensive, quantitative chemical analysis of the monolith at a spatial resolution of 30 nm. The results are compared with other methods commonly used for the characterization of polymer monoliths [scanning electron microscopy (SEM), transmission electron microscopy (TEM), mercury porosimetry, and nitrogen adsorption]. The technique permitted chemical identification and mapping of the nanoparticles within the polymeric scaffold. Residual surfactant, which was used during the manufacture of the nanoparticles, was also detected. We show that STXM can give more in-depth chemical information for these types of materials and therefore lead to a better understanding of the link between polymer morphology and chromatographic performance. PMID:24552424

  13. One-pot preparation of a novel monolith for high performance liquid chromatography applications.

    PubMed

    Jiao, Xiaoyan; Shen, Shigang; Shi, Tiesheng

    2015-12-15

    Various novel porous organic-based monoliths with the mode of hydrophobicity were synthesized by in situ free-radical crosslinking copolymerization and optimized for the separations of small molecules and high-performance reversed-phase chromatography (RP-chromatography). These monoliths contained co-polymers based on glycidyl methacrylate (GMA)/ethylene glycol dimethacrylate (EDMA)/tripropylene glycol diacrylate (TPGDA) or EDMA/TPGDA. A mixture of cetanol, methanol and poly (ethylene glycol) (PEG) was used as the porogen, with the ratio of these solvents being varied along with the polymerization temperature to generate a library of monoliths. The conditions were optimized and the resulting poly (GMA-co-TPGDA-co-EDMA) monolith was investigated by infrared spectrometer (IR), field emission scanning electron microscope (FESEM), and mercury intrusion porosimetry (MIP), respectively. The column performance was assessed by the separation of a series of neutral solutes of benzene derivatives. The result demonstrated that the prepared monolith exhibited an RP-chromatographic behavior and relatively homogeneous structure, good permeability and separation performance. Moreover, the relative standard deviations (RSDs) of the retention factor values for benzene derivatives were less than 1.5% (n=7, column-to-column). The approach used in this study was extended to the separation of anilines.

  14. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Bauhahn, P.; Geddes, J.; Sokolov, V.; Contolatis, T.

    1988-01-01

    The fourth year progress is described on a program to develop a 27.5 to 30 GHz GaAs monolithic receive module for spaceborne-communication antenna feed array applications, and to deliver submodules for experimental evaluation. Program goals include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. Submicron gate length single and dual gate FETs are described and applied in the development of monolithic gain control amplifiers and low noise amplifiers. A two-stage monolithic gain control amplifier based on ion implanted dual gate MESFETs was designed and fabricated. The gain control amplifier has a gain of 12 dB at 29 GHz with a gain control range of over 13 dB. A two-stage monolithic low noise amplifier based on ion implanted MESFETs which provides 7 dB gain with 6.2 dB noise figure at 29 GHz was also developed. An interconnected receive module containing LNA, gain control, and phase shifter submodules was built using the LNA and gain control ICs as well as a monolithic phase shifter developed previously under this program. The design, fabrication, and evaluation of this interconnected receiver is presented. Progress in the development of an RF/IF submodule containing a unique ion implanted diode mixer diode and a broadband balanced mixer monolithic IC with on-chip IF amplifier and the initial design of circuits for the RF portion of a two submodule receiver are also discussed.

  15. Polymer network/carbon layer on monolith support and monolith catalytic reactor

    DOEpatents

    Nordquist, Andrew Francis; Wilhelm, Frederick Carl; Waller, Francis Joseph; Machado, Reinaldo Mario

    2003-08-26

    The present invention relates to an improved monolith catalytic reactor and a monolith support. The improvement in the support resides in a polymer network/carbon coating applied to the surface of a porous substrate and a catalytic metal, preferably a transition metal catalyst applied to the surface of the polymer network/carbon coating. The monolith support has from 100 to 800 cells per square inch and a polymer network/carbon coating with surface area of from 0.1 to 15 m.sup.2 /gram as measured by adsorption of N.sub.2 or Kr using the BET method.

  16. The Influence of Surface Topography and Surface Chemistry on the Anti-Adhesive Performance of Nanoporous Monoliths.

    PubMed

    Eichler-Volf, Anna; Xue, Longjian; Dornberg, Gregor; Chen, He; Kovalev, Alexander; Enke, Dirk; Wang, Yong; Gorb, Elena V; Gorb, Stanislav N; Steinhart, Martin

    2016-08-31

    We designed spongy monoliths allowing liquid delivery to their surfaces through continuous nanopore systems (mean pore diameter ∼40 nm). These nanoporous monoliths were flat or patterned with microspherical structures a few tens of microns in diameter, and their surfaces consisted of aprotic polymer or of TiO2 coatings. Liquid may reduce adhesion forces FAd; possible reasons include screening of solid-solid interactions and poroelastic effects. Softening-induced deformation of flat polymeric monoliths upon contact formation in the presence of liquids enhanced the work of separation WSe. On flat TiO2-coated monoliths, WSe was smaller under wet conditions than under dry conditions, possibly because of liquid-induced screening of solid-solid interactions. Under dry conditions, WSe is larger on flat TiO2-coated monoliths than on flat monoliths with a polymeric surface. However, under wet conditions, liquid-induced softening results in larger WSe on flat monoliths with a polymeric surface than on flat monoliths with an oxidic surface. Monolithic microsphere arrays show antiadhesive properties; FAd and WSe are reduced by at least 1 order of magnitude as compared to flat nanoporous counterparts. On nanoporous monolithic microsphere arrays, capillarity (WSe is larger under wet than under dry conditions) and solid-solid interactions (WSe is larger on oxide than on polymer) dominate contact mechanics. Thus, the microsphere topography reduces the impact of softening-induced surface deformation and screening of solid-solid interactions associated with liquid supply. Overall, simple modifications of surface topography and chemistry combined with delivery of liquid to the contact interface allow adjusting WSe and FAd over at least 1 order of magnitude. Adhesion management with spongy monoliths exploiting deployment (or drainage) of interfacial liquids as well as induction or prevention of liquid-induced softening of the monoliths may pave the way for the design of artificial

  17. UPDATE ON MONOLITHIC FUEL FABRICATION METHODS

    SciTech Connect

    C. R. Clark; J. F. Jue; G. A. Moore; N. P. Hallinan; B. H. Park; D. E. Burkes

    2006-10-01

    Efforts to develop a viable monolithic research reactor fuel plate have continued at Idaho National Laboratory. These efforts have concentrated on both fabrication process refinement and scale-up to produce full sized fuel plates. Progress at INL has led to fabrication of hot isostatic pressed uranium-molybdenum bearing monolithic fuel plates. These miniplates are part of the RERTR-8 miniplate irradiation test. Further progress has also been made on friction stir weld processing which has been used to fabricate full size fuel plates which will be irradiated in the ATR and OSIRIS reactors.

  18. Influence of porogen nature on the kinetic and potential efficiencies of divinylbenzene-based monolithic sorbents in gas chromatography

    NASA Astrophysics Data System (ADS)

    Korolev, A. A.; Shiryaeva, V. E.; Popova, T. P.; Kanat'eva, A. Yu.; Kurganov, A. A.

    2015-02-01

    It has been shown that using Poppe curves for characterization of monolithic sorbents makes it possible to optimize conditions for both the synthesis of monoliths intended for high-speed analysis and achievement of the best separation efficiency. The influence of the nature of a porogen on the kinetic efficiency of monolithic sorbents in high-pressure gas chromatography has been considered. It has been found that the nature of the porogen alcohol determines to a considerable extent the structure of the monolith and its kinetic efficiency. The sorbents prepared with the use of octanol-1 and dodecanol-1 have shown the best kinetic characteristics; however, minimal HETP values have been observed for the columns prepared using hexanol-1 as a porogen.

  19. Characterization of supermacroporous monolithic polyacrylamide based matrices designed for chromatography of bioparticles.

    PubMed

    Plieva, Fatima M; Savina, Irina N; Deraz, Sahar; Andersson, Jonatan; Galaev, Igor Yu; Mattiasson, Bo

    2004-07-25

    Supermacroporous monolithic acrylamide (AAm)-based cryogels were prepared by radical cryo-polymerizaton (polymerization in the moderately frozen system) of AAm with functional monomers and cross-linker N,N'-methylene-bis-acrylamide (MBAAm). Electron microscopy studies revealed supermacroporous structure of the developed cryogels with pore size of 5-100 microm. Cryogel porosity depended on cryo-polymerization conditions. More than 90% of the monolithic bed volume is the interconnected supermacropores filled with water and less than 10% of the monolithic volume is pore walls. The total protein binding capacity (lysozyme in the case of immobilized metal affinity chromatography (IMAC) column and bovine serum albumin (BSA) in the case of anion-exchange (AE) column) was independent of the flow rates till 600 cm/h. Chromatographic behavior of E. coli cells when a cell suspension was applied to ion-exchange cryogel columns depended on both the density of functional ligand and the porosity of the cryogel.

  20. Characterization of supermacroporous monolithic polyacrylamide based matrices designed for chromatography of bioparticles.

    PubMed

    Plieva, Fatima M; Savina, Irina N; Deraz, Sahar; Andersson, Jonatan; Galaev, Igor Yu; Mattiasson, Bo

    2004-07-25

    Supermacroporous monolithic acrylamide (AAm)-based cryogels were prepared by radical cryo-polymerizaton (polymerization in the moderately frozen system) of AAm with functional monomers and cross-linker N,N'-methylene-bis-acrylamide (MBAAm). Electron microscopy studies revealed supermacroporous structure of the developed cryogels with pore size of 5-100 microm. Cryogel porosity depended on cryo-polymerization conditions. More than 90% of the monolithic bed volume is the interconnected supermacropores filled with water and less than 10% of the monolithic volume is pore walls. The total protein binding capacity (lysozyme in the case of immobilized metal affinity chromatography (IMAC) column and bovine serum albumin (BSA) in the case of anion-exchange (AE) column) was independent of the flow rates till 600 cm/h. Chromatographic behavior of E. coli cells when a cell suspension was applied to ion-exchange cryogel columns depended on both the density of functional ligand and the porosity of the cryogel. PMID:15177170

  1. Monolithic Parallel Tandem Organic Photovoltaic Cell with Transparent Carbon Nanotube Interlayer

    NASA Technical Reports Server (NTRS)

    Tanaka, S.; Mielczarek, K.; Ovalle-Robles, R.; Wang, B.; Hsu, D.; Zakhidov, A. A.

    2009-01-01

    We demonstrate an organic photovoltaic cell with a monolithic tandem structure in parallel connection. Transparent multiwalled carbon nanotube sheets are used as an interlayer anode electrode for this parallel tandem. The characteristics of front and back cells are measured independently. The short circuit current density of the parallel tandem cell is larger than the currents of each individual cell. The wavelength dependence of photocurrent for the parallel tandem cell shows the superposition spectrum of the two spectral sensitivities of the front and back cells. The monolithic three-electrode photovoltaic cell indeed operates as a parallel tandem with improved efficiency.

  2. An 8 Meter Monolithic UV/Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Postman, Marc

    2008-01-01

    The planned Ares V launch vehicle with its 10 meter fairing and at least 55,600 kg capacity to Earth Sun L2 enables entirely new classes of space telescopes. A consortium from NASA, Space Telescope Science Institute, and aerospace industry are studying an 8-meter monolithic primary mirror UV/optical/NIR space telescope to enable new astrophysical research that is not feasible with existing or near-term missions, either space or ground. This paper briefly reviews the science case for such a mission and presents the results of an on-going technical feasibility study, including: optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; launch vehicle performance and trajectory; spacecraft including structure, propulsion, GN&C, avionics, power systems and reaction wheels; operations & servicing; mass budget and cost.

  3. Polymer monoliths synthesized by radiation co-polymerization in solution

    NASA Astrophysics Data System (ADS)

    Beiler, Barbara; Sáfrány, Ágnes

    2007-08-01

    Hydrophilic co-polymer monoliths were prepared by irradiating alcoholic solutions containing diethyleneglycol dimethacrylate (DEGDMA) and 2-hydroxyethylacrylate (HEA) monomers. The effect of monomer ratio, solvent properties and radiation dose on the porous properties of the monoliths was studied in detail and compared to the monolith prepared from DEGDMA. Increase of the HEA content in the co-monomer mixture (up to 18 vol%) resulted in monoliths with increased pore size and hydrophilic character. The biggest pores were obtained when methanol was used as solvent. The use of the monoliths as chromatographic columns for separation of proteins, amino and nucleic acids is also reported.

  4. Monolithic Flexure Pre-Stressed Ultrasonic Horns

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Allen, Phillip Grant

    2011-01-01

    High-power ultrasonic actuators are generally assembled with a horn, backing, stress bolt, piezoelectric rings, and electrodes. The manufacturing process is complex, expensive, difficult, and time-consuming. The internal stress bolt needs to be insulated and presents a potential internal discharge point, which can decrease actuator life. Also, the introduction of a center hole for the bolt causes many failures, reducing the throughput of the manufactured actuators. A new design has been developed for producing ultrasonic horn actuators. This design consists of using flexures rather than stress bolts, allowing one to apply pre-load to the piezoelectric material. It also allows one to manufacture them from a single material/plate, rapid prototype them, or make an array in a plate or 3D structure. The actuator is easily assembled, and application of pre-stress greater than 25 MPa was demonstrated. The horn consists of external flexures that eliminate the need for the conventional stress bolt internal to the piezoelectric, and reduces the related complexity. The stress bolts are required in existing horns to provide prestress on piezoelectric stacks when driven at high power levels. In addition, the manufacturing process benefits from the amenability to produce horn structures with internal cavities. The removal of the pre-stress bolt removes a potential internal electric discharge point in the actuator. In addition, it significantly reduces the chances of mechanical failure in the piezoelectric stacks that result from the hole surface in conventional piezoelectric actuators. The novel features of this disclosure are: 1. A design that can be manufactured from a single piece of metal using EDM, precision machining, or rapid prototyping. 2. Increased electromechanical coupling of the horn actuator. 3. Higher energy density. 4. A monolithic structure of a horn that consists of an external flexure or flexures that can be used to pre-stress a solid piezoelectric structure

  5. Fiber-based monolithic columns for liquid chromatography.

    PubMed

    Ladisch, Michael; Zhang, Leyu

    2016-10-01

    Fiber-based monoliths for use in liquid chromatographic separations are defined by columns packed with aligned fibers, woven matrices, or contiguous fiber structures capable of achieving rapid separations of proteins, macromolecules, and low molecular weight components. A common denominator and motivating driver for this approach, first initiated 25 years ago, was reducing the cost of bioseparations in a manner that also reduced residence time of retained components while achieving a high ratio of mass to momentum transfer. This type of medium, when packed into a liquid chromatography column, minimized the fraction of stagnant liquid and resulted in a constant plate height for non-adsorbing species. The uncoupling of dispersion from eluent flow rate enabled the surface chemistry of the stationary phase to be considered separately from fluid transport phenomena and pointed to new ways to apply chemistry for the engineering of rapid bioseparations. This paper addresses developments and current research on fiber-based monoliths and explains how the various forms of this type of chromatographic stationary phase have potential to provide new tools for analytical and preparative scale separations. The different stationary phases are discussed, and a model that captures the observed constant plate height as a function of mobile phase velocity is reviewed. Methods that enable hydrodynamically stable fiber columns to be packed and operated over a range of mobile phase flow rates, together with the development of new fiber chemistries, are shown to provide columns that extend the versatility of liquid chromatography using monoliths, particularly at the preparative scale. Graphical Abstract Schematic representation of a sample mixture being separated by a rolled-stationary phase column, resulting separated peaks shown in the chromatogram. PMID:27553948

  6. Constant capacitance in nanopores of carbon monoliths.

    PubMed

    García-Gómez, Alejandra; Moreno-Fernández, Gelines; Lobato, Belén; Centeno, Teresa A

    2015-06-28

    The results obtained for binder-free electrodes made of carbon monoliths with narrow micropore size distributions confirm that the specific capacitance in the electrolyte (C2H5)4NBF4/acetonitrile does not depend significantly on the micropore size and support the foregoing constant result of 0.094 ± 0.011 F m(-2).

  7. Package Holds Five Monolithic Microwave Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Decker, D. Richard; Olson, Hilding M.

    1996-01-01

    Packages protect and hold monolithic microwave integrated circuit (MMIC) chips while providing dc and radio-frequency (RF) electrical connections for chips undergoing development. Required to be compact, lightweight, and rugged. Designed to minimize undesired resonances, reflections, losses, and impedance mismatches.

  8. Purification of infective baculoviruses by monoliths.

    PubMed

    Gerster, Petra; Kopecky, Eva-Maria; Hammerschmidt, Nikolaus; Klausberger, Miriam; Krammer, Florian; Grabherr, Reingard; Mersich, Christa; Urbas, Lidija; Kramberger, Petra; Paril, Tina; Schreiner, Matthias; Nöbauer, Katharina; Razzazi-Fazeli, Ebrahim; Jungbauer, Alois

    2013-05-17

    A chromatographic process based on monoliths for purification of infective baculovirus without prior concentration step has been established. Baculovirus produced in Spodoptera frugiperda cells (Sf-9) were harvested by centrifugation, filtered through 0.8 μm filters and directly loaded onto radial 1 mL anion exchange monoliths with a channel size of 1.5-2.0 μm operated at a volumetric flow rate of one bed volume per minute. Optional an epoxy monolith was used as pre-column to reduce interfering compounds and substances influencing the capacity of anion exchange monoliths for baculovirus infectious virus could be eluted with a step gradient at salt concentrations of 440 mM NaCl. Recovery of infectious virus was highly influenced by composition and age of supernatant and ranged from 20 to >99% active baculovirus. Total protein content could be reduced to 1-8% and DNA content to 38-48% in main virus fraction. Infective virus could be 52-fold concentrated within 20.5h and simultaneously an 82-fold volume reduction was possible when loading 1150 mL (2.1×10(8) pfu/mL) onto 1 mL scale support.

  9. Monolithic integrated optic fiber Bragg grating sensor interrogator

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Esterkin, Yan; Kempen, Cornelia; Sun, Songjian

    2010-04-01

    Fiber Bragg gratings (FBGs) are a mature sensing technology that has gained rapid acceptance in civil, aerospace, chemical and petrochemical, medicine, aviation and automotive industries. Fiber Bragg grating sensors can be use for a variety of measurements including strain, stress, vibration, acoustics, acceleration, pressure, temperature, moisture, and corrosion distributed at multiple locations within the structure using a single fiber element. The most prominent advantages of FBGs are: small size and light weight, multiple FBG transducers on a single fiber, and immunity to radio frequency interference. A major disadvantage of FBG technology is that conventional state-of-the-art fiber Bragg grating interrogation systems are typically bulky, heavy, and costly bench top instruments that are assembled from off-the-shelf fiber optic and optical components integrated with a signal electronics board into an instrument console. Based on the need for a compact FBG interrogation system, this paper describes recent progress towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-TransceiverTM) system based on multi-channel monolithic integrated optic sensor microchip technology. The integrated optic microchip technology enables the monolithic integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogators systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm small form factor (SFF) package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation.

  10. Monolithic Active Pixel Matrix with Binary Counters (MAMBO) ASIC

    SciTech Connect

    Khalid, Farah F.; Deptuch, Grzegorz; Shenai, Alpana; Yarema, Raymond J.; /Fermilab

    2010-11-01

    Monolithic Active Matrix with Binary Counters (MAMBO) is a counting ASIC designed for detecting and measuring low energy X-rays from 6-12 keV. Each pixel contains analogue functionality implemented with a charge preamplifier, CR-RC{sup 2} shaper and a baseline restorer. It also contains a window comparator which can be trimmed by 4 bit DACs to remove systematic offsets. The hits are registered by a 12 bit ripple counter which is reconfigured as a shift register to serially output the data from the entire ASIC. Each pixel can be tested individually. Two diverse approaches have been used to prevent coupling between the detector and electronics in MAMBO III and MAMBO IV. MAMBO III is a 3D ASIC, the bottom ASIC consists of diodes which are connected to the top ASIC using {mu}-bump bonds. The detector is decoupled from the electronics by physically separating them on two tiers and using several metal layers as a shield. MAMBO IV is a monolithic structure which uses a nested well approach to isolate the detector from the electronics. The ASICs are being fabricated using the SOI 0.2 {micro}m OKI process, MAMBO III is 3D bonded at T-Micro and MAMBO IV nested well structure was developed in collaboration between OKI and Fermilab.

  11. Monoliths: special issue in a new package.

    PubMed

    Svec, Frantisek

    2013-08-01

    Regular special issues concerning monoliths have always been a stronghold of the Journal of Separation Science. Typically, we issued a call for papers, collected and processed the submitted manuscripts, and all of them were then printed in a single issue of the journal. This approach worked to a certain limit quite acceptably but there was always a longer waiting time between the early submissions and publication. This is why we decided to do it this year differently. I claimed in my 2013 New Years Editorial: "We are living in the electronic era! Why not to make an advantage of that?" And we do. As a result, all manuscript submitted for publication in the special issue Monoliths have already been published in regular issues as soon as they were accepted. The first page of these papers includes a footnote: "This paper is included in the virtual special issue Monoliths available at the Journal of Separation Science website." All papers published with this footnote were collected in a virtual special issue accessible through the internet. This concept ruled out possible delays in publication of contributions submitted early. Since we did not have any real "special issue", there was no need for any hard deadline for submission. We just collected manuscripts submitted for the special issue Monoliths published from January to July 2013 and included them in the virtual special issue. This new approach worked very well and we published 22 excellent papers that are included in the issue available now at this website: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1615-9314/homepage/virtual_special_issue__monoliths.htm. PMID:23939823

  12. Poly(ethylenimine)-Functionalized Monolithic Alumina Honeycomb Adsorbents for CO2 Capture from Air.

    PubMed

    Sakwa-Novak, Miles A; Yoo, Chun-Jae; Tan, Shuai; Rashidi, Fereshteh; Jones, Christopher W

    2016-07-21

    The development of practical and effective gas-solid contactors is an important area in the development of CO2 capture technologies. Target CO2 capture applications, such as postcombustion carbon capture and sequestration (CCS) from power plant flue gases or CO2 extraction directly from ambient air (DAC), require high flow rates of gas to be processed at low cost. Extruded monolithic honeycomb structures, such as those employed in the catalytic converters of automobiles, have excellent potential as structured contactors for CO2 adsorption applications because of the low pressure drop imposed on fluid moving through the straight channels of such structures. Here, we report the impregnation of poly(ethylenimine) (PEI), an effective aminopolymer reported commonly for CO2 separation, into extruded monolithic alumina to form structured CO2 sorbents. These structured sorbents are first prepared on a small scale, characterized thoroughly, and compared with powder sorbents with a similar composition. Despite consistent differences observed in the filling of mesopores with PEI between the monolithic and powder sorbents, their performance in CO2 adsorption is similar across a range of PEI contents. A larger monolithic cylinder (1 inch diameter, 4 inch length) is evaluated under conditions closer to those that might be used in large-scale applications and shows a similar performance to the smaller monoliths and powders tested initially. This larger structure is evaluated over five cycles of CO2 adsorption and steam desorption and demonstrates a volumetric capacity of 350 molCO2  m-3monolith and an equilibration time of 350 min under a 0.4 m s(-1) linear flow velocity through the monolith channels using 400 ppm CO2 in N2 as the adsorption gas at 30 °C. This volumetric capacity surpasses that of a similar technology considered previously, which suggested that CO2 could be removed from air at an operating cost as low as $100 per ton.

  13. Poly(ethylenimine)-Functionalized Monolithic Alumina Honeycomb Adsorbents for CO2 Capture from Air.

    PubMed

    Sakwa-Novak, Miles A; Yoo, Chun-Jae; Tan, Shuai; Rashidi, Fereshteh; Jones, Christopher W

    2016-07-21

    The development of practical and effective gas-solid contactors is an important area in the development of CO2 capture technologies. Target CO2 capture applications, such as postcombustion carbon capture and sequestration (CCS) from power plant flue gases or CO2 extraction directly from ambient air (DAC), require high flow rates of gas to be processed at low cost. Extruded monolithic honeycomb structures, such as those employed in the catalytic converters of automobiles, have excellent potential as structured contactors for CO2 adsorption applications because of the low pressure drop imposed on fluid moving through the straight channels of such structures. Here, we report the impregnation of poly(ethylenimine) (PEI), an effective aminopolymer reported commonly for CO2 separation, into extruded monolithic alumina to form structured CO2 sorbents. These structured sorbents are first prepared on a small scale, characterized thoroughly, and compared with powder sorbents with a similar composition. Despite consistent differences observed in the filling of mesopores with PEI between the monolithic and powder sorbents, their performance in CO2 adsorption is similar across a range of PEI contents. A larger monolithic cylinder (1 inch diameter, 4 inch length) is evaluated under conditions closer to those that might be used in large-scale applications and shows a similar performance to the smaller monoliths and powders tested initially. This larger structure is evaluated over five cycles of CO2 adsorption and steam desorption and demonstrates a volumetric capacity of 350 molCO2  m-3monolith and an equilibration time of 350 min under a 0.4 m s(-1) linear flow velocity through the monolith channels using 400 ppm CO2 in N2 as the adsorption gas at 30 °C. This volumetric capacity surpasses that of a similar technology considered previously, which suggested that CO2 could be removed from air at an operating cost as low as $100 per ton. PMID:27304708

  14. Monolithic integration of a MOSFET with a MEMS device

    DOEpatents

    Bennett, Reid; Draper, Bruce

    2003-01-01

    An integrated microelectromechanical system comprises at least one MOSFET interconnected to at least one MEMS device on a common substrate. A method for integrating the MOSFET with the MEMS device comprises fabricating the MOSFET and MEMS device monolithically on the common substrate. Conveniently, the gate insulator, gate electrode, and electrical contacts for the gate, source, and drain can be formed simultaneously with the MEMS device structure, thereby eliminating many process steps and materials. In particular, the gate electrode and electrical contacts of the MOSFET and the structural layers of the MEMS device can be doped polysilicon. Dopant diffusion from the electrical contacts is used to form the source and drain regions of the MOSFET. The thermal diffusion step for forming the source and drain of the MOSFET can comprise one or more of the thermal anneal steps to relieve stress in the structural layers of the MEMS device.

  15. Polyurea-Based Aerogel Monoliths and Composites

    NASA Technical Reports Server (NTRS)

    Lee, Je Kyun

    2012-01-01

    aerogel insulation material was developed that will provide superior thermal insulation and inherent radiation protection for government and commercial applications. The rubbery polyureabased aerogel exhibits little dustiness, good flexibility and toughness, and durability typical of the parent polyurea polymer, yet with the low density and superior insulation properties associated with aerogels. The thermal conductivity values of polyurea-based aerogels at lower temperature under vacuum pressures are very low and better than that of silica aerogels. Flexible, rubbery polyurea-based aerogels are able to overcome the weak and brittle nature of conventional inorganic and organic aerogels, including polyisocyanurate aerogels, which are generally prepared with the one similar component to polyurethane rubber aerogels. Additionally, with higher content of hydrogen in their structures, the polyurea rubber-based aerogels will also provide inherently better radiation protection than those of inorganic and carbon aerogels. The aerogel materials also demonstrate good hydrophobicity due to their hydrocarbon molecular structure. There are several strategies to overcoming the drawbacks associated with the weakness and brittleness of silica aerogels. Development of the flexible fiber-reinforced silica aerogel composite blanket has proven to be one promising approach, providing a conveniently fielded form factor that is relatively robust in industrial environments compared to silica aerogel monoliths. However, the flexible, silica aerogel composites still have a brittle, dusty character that may be undesirable, or even intolerable, in certain application environments. Although the cross - linked organic aerogels, such as resorcinol- formaldehyde (RF), polyisocyanurate, and cellulose aerogels, show very high impact strength, they are also very brittle with little elongation (i.e., less rubbery). Also, silica and carbon aerogels are less efficient radiation shielding materials due

  16. Constitutive Theory Developed for Monolithic Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Janosik, Lesley A.

    1998-01-01

    with these service conditions by developing a multiaxial viscoplastic constitutive model that accounts for time-dependent hereditary material deformation (such as creep and stress relaxation) in monolithic structural ceramics. Using continuum principles of engineering mechanics, we derived the complete viscoplastic theory from a scalar dissipative potential function.

  17. Monolithic Cylindrical Fused Silica Resonators with High Q Factors.

    PubMed

    Pan, Yao; Wang, Dongya; Wang, Yanyan; Liu, Jianping; Wu, Suyong; Qu, Tianliang; Yang, Kaiyong; Luo, Hui

    2016-01-01

    The cylindrical resonator gyroscope (CRG) is a typical Coriolis vibratory gyroscope whose performance is determined by the Q factor and frequency mismatch of the cylindrical resonator. Enhancing the Q factor is crucial for improving the rate sensitivity and noise performance of the CRG. In this paper, for the first time, a monolithic cylindrical fused silica resonator with a Q factor approaching 8 × 10⁵ (ring-down time over 1 min) is reported. The resonator is made of fused silica with low internal friction and high isotropy, with a diameter of 25 mm and a center frequency of 3974.35 Hz. The structure of the resonator is first briefly introduced, and then the experimental non-contact characterization method is presented. In addition, the post-fabrication experimental procedure of Q factor improvement, including chemical and thermal treatment, is demonstrated. The Q factor improvement by both treatments is compared and the primary loss mechanism is analyzed. To the best of our knowledge, the work presented in this paper represents the highest reported Q factor for a cylindrical resonator. The proposed monolithic cylindrical fused silica resonator may enable high performance inertial sensing with standard manufacturing process and simple post-fabrication treatment. PMID:27483263

  18. Monolithically Integrated High-β Nanowire Lasers on Silicon.

    PubMed

    Mayer, B; Janker, L; Loitsch, B; Treu, J; Kostenbader, T; Lichtmannecker, S; Reichert, T; Morkötter, S; Kaniber, M; Abstreiter, G; Gies, C; Koblmüller, G; Finley, J J

    2016-01-13

    Reliable technologies for the monolithic integration of lasers onto silicon represent the holy grail for chip-level optical interconnects. In this context, nanowires (NWs) fabricated using III-V semiconductors are of strong interest since they can be grown site-selectively on silicon using conventional epitaxial approaches. Their unique one-dimensional structure and high refractive index naturally facilitate low loss optical waveguiding and optical recirculation in the active NW-core region. However, lasing from NWs on silicon has not been achieved to date, due to the poor modal reflectivity at the NW-silicon interface. We demonstrate how, by inserting a tailored dielectric interlayer at the NW-Si interface, low-threshold single mode lasing can be achieved in vertical-cavity GaAs-AlGaAs core-shell NW lasers on silicon as measured at low temperature. By exploring the output characteristics along a detection direction parallel to the NW-axis, we measure very high spontaneous emission factors comparable to nanocavity lasers (β = 0.2) and achieve ultralow threshold pump energies ≤11 pJ/pulse. Analysis of the input-output characteristics of the NW lasers and the power dependence of the lasing emission line width demonstrate the potential for high pulsation rates ≥250 GHz. Such highly efficient nanolasers grown monolithically on silicon are highly promising for the realization of chip-level optical interconnects. PMID:26618638

  19. Macroporous monoliths for trace metal extraction from seawater

    DOE PAGES

    Yue, Yanfeng; Mayes, Richard T.; Gill, Gary; Kuo, Li -Jung; Wood, Jordana; Binder, Andrew J.; Brown, Suree; Dai, Sheng

    2015-05-29

    The viability of seawater-based uranium recovery depends on the uranium adsorption rate and capacity, since the concentration of uranium in the oceans is relatively low (3.3 gL-1). An important consideration for a fast adsorption is to maximize the adsorption properties of adsorbents such as surface areas and pore structures, which can greatly improve the kinetics of uranium extraction and the adsorption capacity simultaneously. Following this consideration, macroporous monolith adsorbents were prepared from the copolymerization of acrylonitrile (AN) and N,N -methylenebis(acrylamide) (MBAAm) based on a cryogel method using both hydrophobic and hydrophilic monomers. The monolithic sorbents were tested with simulated seawatermore » containing a high uranyl concentration (–6 ppm) and the uranium adsorption results showed that the adsorption capacities are strongly influenced by the ratio of monomer to the crosslinker, i.e., the density of the amidoxime groups. Furthermore, the preliminary seawater testing indicates the high salinity content of seawater does not hinder the adsorption of uranium.« less

  20. Macroporous monoliths for trace metal extraction from seawater

    SciTech Connect

    Yue, Yanfeng; Mayes, Richard T.; Gill, Gary; Kuo, Li -Jung; Wood, Jordana; Binder, Andrew J.; Brown, Suree; Dai, Sheng

    2015-05-29

    The viability of seawater-based uranium recovery depends on the uranium adsorption rate and capacity, since the concentration of uranium in the oceans is relatively low (3.3 gL-1). An important consideration for a fast adsorption is to maximize the adsorption properties of adsorbents such as surface areas and pore structures, which can greatly improve the kinetics of uranium extraction and the adsorption capacity simultaneously. Following this consideration, macroporous monolith adsorbents were prepared from the copolymerization of acrylonitrile (AN) and N,N -methylenebis(acrylamide) (MBAAm) based on a cryogel method using both hydrophobic and hydrophilic monomers. The monolithic sorbents were tested with simulated seawater containing a high uranyl concentration (–6 ppm) and the uranium adsorption results showed that the adsorption capacities are strongly influenced by the ratio of monomer to the crosslinker, i.e., the density of the amidoxime groups. Furthermore, the preliminary seawater testing indicates the high salinity content of seawater does not hinder the adsorption of uranium.

  1. Monolithic Cylindrical Fused Silica Resonators with High Q Factors

    PubMed Central

    Pan, Yao; Wang, Dongya; Wang, Yanyan; Liu, Jianping; Wu, Suyong; Qu, Tianliang; Yang, Kaiyong; Luo, Hui

    2016-01-01

    The cylindrical resonator gyroscope (CRG) is a typical Coriolis vibratory gyroscope whose performance is determined by the Q factor and frequency mismatch of the cylindrical resonator. Enhancing the Q factor is crucial for improving the rate sensitivity and noise performance of the CRG. In this paper, for the first time, a monolithic cylindrical fused silica resonator with a Q factor approaching 8 × 105 (ring-down time over 1 min) is reported. The resonator is made of fused silica with low internal friction and high isotropy, with a diameter of 25 mm and a center frequency of 3974.35 Hz. The structure of the resonator is first briefly introduced, and then the experimental non-contact characterization method is presented. In addition, the post-fabrication experimental procedure of Q factor improvement, including chemical and thermal treatment, is demonstrated. The Q factor improvement by both treatments is compared and the primary loss mechanism is analyzed. To the best of our knowledge, the work presented in this paper represents the highest reported Q factor for a cylindrical resonator. The proposed monolithic cylindrical fused silica resonator may enable high performance inertial sensing with standard manufacturing process and simple post-fabrication treatment. PMID:27483263

  2. Macroporous monoliths for trace metal extraction from seawater

    SciTech Connect

    Yue, Yanfeng; Mayes, Richard; Gill, Gary A.; Kuo, Li -Jung; Wood, Jordana R.; Binder, Andrew; Brown, Suree; Dai, Sheng

    2015-05-29

    The viability of seawater-based uranium recovery depends on the uranium adsorption rate and capacity, since the concentration of uranium in the oceans is relatively low (3.3 μgL⁻¹). An important consideration for a fast adsorption is to maximize the adsorption properties of adsorbents such as surface areas and pore structures, which can greatly improve the kinetics of uranium extraction and the adsorption capacity simultaneously. Following this consideration, macroporous monolith adsorbents were prepared from the copolymerization of acrylonitrile (AN) and N,N’-methylenebis(acrylamide) (MBAAm) based on a cryogel method using both hydrophobic and hydrophilic monomers. The monolithic sorbents were tested with simulated seawater containing a high uranyl concentration (–6 ppm) and the uranium adsorption results showed that the adsorption capacities are strongly influenced by the ratio of monomer to the crosslinker, i.e., the density of the amidoxime groups. The preliminary seawater testing indicates the high salinity content of seawater does not hinder the adsorption of uranium.

  3. Effect of the presence of an ordered micro-pillar array on the formation of silica monoliths.

    PubMed

    Detobel, Frederik; Eghbali, Hamed; De Bruyne, Selm; Terryn, Herman; Gardeniers, Han; Desmet, Gert

    2009-10-30

    We report on the synthesis of siloxane-based monoliths in the presence of a two-dimensional, perfectly ordered array of micro-pillars. Both methyltrimethoxysilane- and tetramethoxysilane-based monoliths were considered. The obtained structures were analyzed using scanning-electron microscopy and can be explained from the general theory of surface-directed phase separation in confined spaces. The formed structures are to a large extent nearly exclusively determined by the ratio between the bulk domain size of the monolith on the one hand and the distance between the micro-pillars on the other hand. When this ratio is small, the presence of the pillars has nearly no effect on the morphology of the produced monoliths. However, when the ratio approaches unity and ascends above it, some new types of monolith morphologies are induced, two of which appear to have interesting properties for use as novel chromatographic supports. One of these structures (obtained when the domain size/inter-pillar distance ratio is around unity) is a 3D network of linear interconnections between the pillars, organized such that all skeleton branches are oriented perpendicular to the micro-pillar surface. A second interesting structure is obtained at even higher values of the domain size/inter-pillar distance ratio. In this case, each individual micro-pillar is uniformly coated with a mesoporous shell.

  4. Development of large-area monolithically integrated silicon-film photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Rand, J. A.; Bacon, C.; Cotter, J. E.; Lampros, T. H.; Ingram, A. E.; Ruffins, T. R.; Hall, R. B.; Barnett, A. M.

    1992-07-01

    This report describes work to develop Silicon-Film Product 3 into a low-cost, stable device for large-scale terrestrial power applications. The Product 3 structure is a thin (less than 100 micron) polycrystalline silicon layer on a non-conductive supporting ceramic substrate. The presence of the substrate allows cells to be isolated and interconnected monolithically in various series/parallel configurations. The long-term goal for the product is efficiencies over 18 percent on areas greater than 1200 cm(exp 2). The high efficiency is made possible through the benefits of using polycrystalline thin silicon incorporated into a light-trapping structure with a passivated back surface. Short-term goals focused on the development of large-area ceramics, a monolithic interconnection process, and 100 cm(exp 2) solar cells. Critical elements of the monolithically integrated device were developed, and an insulating ceramic substrate was developed and tested. A monolithic interconnection process was developed that will isolate and interconnect individual cells on the ceramic surface. Production-based, low-cost process steps were used, and the process was verified using free-standing silicon wafers to achieve an open-circuit voltage (V(sub oc)) of 8.25 V over a 17-element string. The overall efficiency of the silicon-film materials was limited to 6percent by impurities. Improved processing and feedstock materials are under investigation.

  5. Mesoporous monoliths of inverse bicontinuous cubic phases of block copolymer bilayers

    NASA Astrophysics Data System (ADS)

    Park, Chiyoung; La, Yunju; An, Tae Hyun; Jeong, Hu Young; Kang, Sebyung; Joo, Sang Hoon; Ahn, Hyungju; Shin, Tae Joo; Kim, Kyoung Taek

    2015-03-01

    Solution self-assembly of block copolymers into inverse bicontinuous cubic mesophases is a promising new approach for creating porous polymer films and monoliths with highly organized bicontinuous mesoporous networks. Here we report the direct self-assembly of block copolymers with branched hydrophilic blocks into large monoliths consisting of the inverse bicontinuous cubic structures of the block copolymer bilayer. We suggest a facile and scalable method of solution self-assembly by diffusion of water to the block copolymer solution, which results in the unperturbed formation of mesoporous monoliths with large-pore (>25 nm diameter) networks weaved in crystalline lattices. The surface functional groups of the internal large-pore networks are freely accessible for large guest molecules such as protein complexes of which the molecular weight exceeded 100 kDa. The internal double-diamond (Pn3m) networks of large pores within the mesoporous monoliths could be replicated to self-supporting three-dimensional skeletal structures of crystalline titania and mesoporous silica.

  6. Semiconductor quantum dot intermixing for monolithic photonic integration

    NASA Astrophysics Data System (ADS)

    Wang, Yang

    Monolithic photonic integration and semiconductor quantum dot (QD) are two key technologies for the development of future fiber optic networks. This PhD work explores the possibilities for joining of these two ideas to create next generation photonic integrated circuits through the modeling, process development and characterization, and device demonstration of QD intermixing technique. The one-dimensional quantum well (QW) and three-dimensional QD intermixing model are developed. The calculations of multiple cations intermixing in InGaAsSb/AlGaAsSb QW structure suggest that a large tuning range of 2.4 mum to 1.7 mum can be obtained using intermixing technique. The theoretical analysis of quantum-confined Stark effect in the as-grown and interdiffused QD structures shows that the nonzero built-in dipole moment exists in the as-grown non-symmetrical QDs and we found that the uniform Fick's type intermixing will reduce the built-in dipole significantly. The enhanced Stark shifts have also been predicted for QD structures after intermixing. Impurity-free vacancy induced disordering (IFVD) and N ion-implantation induced disordering (N-IID) have been performed to promote the efficient group-III intermixing in InP-based quantum dash (QDash) laser structure. Selective intermixing can be achieved using SixNy as intermixing source and SiO2 as intermixing mask with a differential wavelength shift of 76 nm. A model has been proposed to explain the selective intermixing behavior and we postulate that the enhanced intermixing under SixNy capping layer is related to the dominant In diffusion with respect to other group-III atoms. More efficient intermixing which requires a lower activation than the IFVD was observed in N-IID) process. Differential bandgap shift of 112 nm has been observed after N implantation at 5 x 1012 ions/cm2 and subsequent annealing at 700°C. High quality bandgap tuned QDash lasers have been fabricated with over 120 nm wavelength blueshift showing the well

  7. Monolithic Optical-To-Electronic Receiver

    NASA Technical Reports Server (NTRS)

    Kunath, Richard; Mactaggert, Ross

    1994-01-01

    Monolithic optoelectronic integrated circuit converts multiplexed digital optical signals into electrical signals, separates, and distributes them to intended destinations. Developed to deliver phase and amplitude commands to monolithic microwave integrated circuits (MMIC's) at elements of millimeter-wave phased-array antenna from single optical fiber driven by external array controller. Also used in distribution of high-data-rate optical communications in local-area networks (LAN's). Notable features include options for optical or electrical clock inputs; outputs for raw data, addresses, and instructions for diagnosis; and optical-signal-detection circuit used to reduce power consumption by 80 percent between data-transmission times. Chip fabricated by processes available at many major semiconductor foundries. Distribution of digital signals in aircraft, automobiles, and ships potential application.

  8. Sol-gel synthesis of macro-mesoporous titania monoliths and their applications to chromatographic separation media for organophosphate compounds.

    PubMed

    Konishi, Junko; Fujita, Koji; Nakanishi, Kazuki; Hirao, Kazuyuki; Morisato, Kei; Miyazaki, Shota; Ohira, Masayoshi

    2009-10-30

    We have developed a method of independently tailoring the macro- and mesoporous structures in titania (TiO2) monoliths in order to achieve liquid chromatographic separations of phosphorous-containing compounds. Anatase TiO2 monolithic gels with well-defined bicontinuous macropores and microstructured skeletons are obtained via the sol-gel process in strongly acidic conditions using poly(ethylene oxide) as a phase separator and N-methylformamide as a proton scavenger. Aging treatment of the wet gels in the mother liquor at temperatures of 100-200 degrees C and subsequent heat treatment at 400 degrees C allow the formation and control of mesoporous structures with uniform pore size distributions in the gel skeletons, without disturbing the preformed macroporous morphology. The monolithic TiO2 rod columns with bimodal macro-mesoporous structures possess the phospho-sensitivity and exhibit excellent chromatographic separations of phosphorus-containing compounds.

  9. Monolithic solid oxide fuel cell development

    NASA Technical Reports Server (NTRS)

    Myles, K. M.; Mcpheeters, C. C.

    1989-01-01

    The feasibility of the monolithic solid oxide fuel cell (MSOFC) concept has been proven, and the performance has been dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials have been minimized, thus allowing successful fabrication of the MSOFC with few defects. The MSOFC shows excellent promise for development into a practical power source for many applications from stationary power, to automobile propulsion, to space pulsed power.

  10. Update On Monolithic Fuel Fabrication Development

    SciTech Connect

    C. R Clark; J. M. Wight; G. C. Knighton; G. A. Moore; J. F. Jue

    2005-11-01

    Efforts to develop a viable monolithic research reactor fuel plate have continued at Idaho National Laboratory. These efforts have concentrated on both fabrication process refinement and scale-up to produce full sized fuel plates. Advancements have been made in the production of U-Mo foil including full sized foils. Progress has also been made in the friction stir welding and transient liquid phase bonding fabrication processes resulting in better bonding, more stable processes and the ability to fabricate larger fuel plates.

  11. Method for making monolithic metal oxide aerogels

    DOEpatents

    Droege, M.W.; Coronado, P.R.; Hair, L.M.

    1995-03-07

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels. 6 figs.

  12. Monolithic 3D CMOS Using Layered Semiconductors.

    PubMed

    Sachid, Angada B; Tosun, Mahmut; Desai, Sujay B; Hsu, Ching-Yi; Lien, Der-Hsien; Madhvapathy, Surabhi R; Chen, Yu-Ze; Hettick, Mark; Kang, Jeong Seuk; Zeng, Yuping; He, Jr-Hau; Chang, Edward Yi; Chueh, Yu-Lun; Javey, Ali; Hu, Chenming

    2016-04-01

    Monolithic 3D integrated circuits using transition metal dichalcogenide materials and low-temperature processing are reported. A variety of digital and analog circuits are implemented on two sequentially integrated layers of devices. Inverter circuit operation at an ultralow supply voltage of 150 mV is achieved, paving the way to high-density, ultralow-voltage, and ultralow-power applications. PMID:26833783

  13. Method for making monolithic metal oxide aerogels

    DOEpatents

    Droege, Michael W.; Coronado, Paul R.; Hair, Lucy M.

    1995-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels.

  14. Nanoporous Carbon Monoliths with Tunable Thermal Insulation and Mechanical Properties.

    PubMed

    Wang, Xiaopeng; Chen, Fenghua; Luo, Zhenhua; Li, Hao; Zhao, Tong

    2016-01-01

    In this work, nanoscale porous carbon monoliths, with excellent compressive strength and thermal insulation, were obtained with a simple method of carbonizing cured phenol-formaldehyde resin/poly(methyl methacrylate) blends. Apparent density, pore size and morphology of the carbon monoliths were tailored by changing the composition, curing process and carbonization temperature. The continuous nanopores played a key role in enhancing mechanical and thermal performance of the carbon materials. When PMMA concentration was 25%, apparent density and thermal conductivity of the nanoporous carbonaceous monoliths were obtained as low as 1.07 g · cm⁻³ and 0.42 W/(m · K), decreasing by 29.4% and 35.4% than that of carbonaceous monoliths obtained from pure PF; while compressive strength of the nanoporous carbonaceous monoliths was as high as 34 MPa, which was improved over five times than that of pure PF carbon monoliths. PMID:27398592

  15. Nanoporous Carbon Monoliths with Tunable Thermal Insulation and Mechanical Properties.

    PubMed

    Wang, Xiaopeng; Chen, Fenghua; Luo, Zhenhua; Li, Hao; Zhao, Tong

    2016-01-01

    In this work, nanoscale porous carbon monoliths, with excellent compressive strength and thermal insulation, were obtained with a simple method of carbonizing cured phenol-formaldehyde resin/poly(methyl methacrylate) blends. Apparent density, pore size and morphology of the carbon monoliths were tailored by changing the composition, curing process and carbonization temperature. The continuous nanopores played a key role in enhancing mechanical and thermal performance of the carbon materials. When PMMA concentration was 25%, apparent density and thermal conductivity of the nanoporous carbonaceous monoliths were obtained as low as 1.07 g · cm⁻³ and 0.42 W/(m · K), decreasing by 29.4% and 35.4% than that of carbonaceous monoliths obtained from pure PF; while compressive strength of the nanoporous carbonaceous monoliths was as high as 34 MPa, which was improved over five times than that of pure PF carbon monoliths.

  16. Less common applications of monoliths III. Gas chromatography

    PubMed Central

    Svec, Frantisek; Kurganov, Alexander A.

    2008-01-01

    Porous polymer monoliths emerged about two decades ago. Despite this short time, they are finding applications in a variety of fields. In addition to the most common and certainly best known use of this new category of porous media as stationary phases in liquid chromatography, monolithic materials also found their applications in other areas. This review article focuses on monoliths in capillaries designed for separations in gas chromatography. PMID:17645884

  17. Preparation of a thermoresponsive polymer grafted polystyrene monolithic capillary for the separation of bioactive compounds.

    PubMed

    Koriyama, Takuya; Asoh, Taka-Aki; Kikuchi, Akihiko

    2016-11-01

    To develop aqueous microseparation columns for bioactive compounds, a thermoresponsive polymer grafted polymer monolith was prepared inside silica capillaries having an I.D. of 100μm by polymerization of styrene (St) with m/p-divinylbenzene (DVB) in the presence of polydimethylsiloxane as porogen, followed by surface-initiated atom transfer radical polymerization (SI-ATRP) of N-isopropylacrylamide (NIPAAm). SEM analysis indicated that the resulting poly(N-isopropylacrylamide) (PNIPAAm) grafted polystyrene monolith had a consecutive three-dimensionally interconnected structure and through-pores, similar to the base polystyrene (PSt) monolith. The elution behavior of steroids with different hydrophobicity was evaluated using micro-high-performance liquid chromatography in sole aqueous mobile phase. Temperature dependent interaction changes were observed between steroids and the PNIPAAm modified surfaces. Furthermore, the interaction between bioactive compounds and the PNIPAAm grafted PSt surfaces was controlled and eventually separate these molecules with different hydrophobicities by simple temperature modulation in aqueous environment. The PNIPAAm grafted PSt monolithic capillary showed improved separation properties of bioactive compounds, compared with a PNIPAAm grafted hollow capillary in aqueous environment. PMID:27559999

  18. Preparation of a thermoresponsive polymer grafted polystyrene monolithic capillary for the separation of bioactive compounds.

    PubMed

    Koriyama, Takuya; Asoh, Taka-Aki; Kikuchi, Akihiko

    2016-11-01

    To develop aqueous microseparation columns for bioactive compounds, a thermoresponsive polymer grafted polymer monolith was prepared inside silica capillaries having an I.D. of 100μm by polymerization of styrene (St) with m/p-divinylbenzene (DVB) in the presence of polydimethylsiloxane as porogen, followed by surface-initiated atom transfer radical polymerization (SI-ATRP) of N-isopropylacrylamide (NIPAAm). SEM analysis indicated that the resulting poly(N-isopropylacrylamide) (PNIPAAm) grafted polystyrene monolith had a consecutive three-dimensionally interconnected structure and through-pores, similar to the base polystyrene (PSt) monolith. The elution behavior of steroids with different hydrophobicity was evaluated using micro-high-performance liquid chromatography in sole aqueous mobile phase. Temperature dependent interaction changes were observed between steroids and the PNIPAAm modified surfaces. Furthermore, the interaction between bioactive compounds and the PNIPAAm grafted PSt surfaces was controlled and eventually separate these molecules with different hydrophobicities by simple temperature modulation in aqueous environment. The PNIPAAm grafted PSt monolithic capillary showed improved separation properties of bioactive compounds, compared with a PNIPAAm grafted hollow capillary in aqueous environment.

  19. Effect on mass transference phenomena by textural change inside monolithic carbon aerogels

    NASA Astrophysics Data System (ADS)

    Chejne, F.; Camargo-Trillos, D.; Pabón, E.; Carrasco-Marin, F.

    2015-08-01

    The effects on mass transference phenomena due textural changes of monolithic carbon aerogels were studied by hexane adsorption. The monolithic carbon aerogels were prepared after carbonization of the organic aerogels obtained by resorcinol-formaldehyde polymerization, using p-toluenesulfonic acid (acid-catalyst) and sodium carbonate catalysts (basic-catalyst). Internal texture was modified by CO2 activation. The characterization by gas adsorption showed that the monolithic carbon aerogels presents a bi-modal pore size distribution with presence of both microporous and mesoporous. It was shown that the activation process of monolithic carbon aerogels increases their micropore volume bigger than the other one acid-catalyst aerogel. The mesopores volume in the carbon aerogels plays an important role on mass transport mechanism. The samples with presence of significant mesopore volume present a lower height of mass transfer zone than others less mesopore volume; therefore better efficiency of adsorption in mass transfer zone in dynamic adsorption. The breakthrough curve methodology proposed in this work has allowed finding a relationship between the structural parameters and dynamic adsorption variables, which opens new approaches for measuring textural parameters of material.

  20. Monolithic fuel cell based power source for sprint power generation

    NASA Astrophysics Data System (ADS)

    Fee, D. C.; Busch, D. E.; Dees, D. W.; Dusek, J.; Easler, T. E.; Ellingson, W. A.; Flandermeyer, B. K.; Fousek, R. J.; Heiberger, J. J.; Majumdar, S.

    A unique fuel cell (monolith) coupled with a low power nuclear reactor presents an attractive approach for SDI burst power requirements. The high power, long duration bursts, appear achievable within a single shuttle launch limitation with appropriate development of the concept. The feasibility of the monolithic fuel cell concept has been demonstrated. Small arrays (stacks) of the monolithic design have been operated for hundreds of hours. The challenge is to improve the fabrication technology so that larger array of the monolithic design can be operated.

  1. Less common applications of monoliths: Preconcentration andsolid-phase extraction

    SciTech Connect

    Svec, Frantisek

    2006-03-27

    Monolithic materials are finding their place in a variety of fields. While liquid chromatography is the most emphasized use of this new category of porous media, some other just as important applications are eclipsed by the success of monolithic columns. This review article describes all current facets of use of monoliths in preconcentration and solid-phase extraction. In addition to the typical off line use that does not seem to be the main stream application for the monolithic materials, in-line connection of the preconcentration with HPLC, electrochromatography, electrophoresis, enzymatic digestion, as well as its applications in microfluidics are presented.

  2. Preparation of an aptamer based organic-inorganic hybrid monolithic column with gold nanoparticles as an intermediary for the enrichment of proteins.

    PubMed

    Zhao, Jin-Cheng; Zhu, Qing-Yun; Zhao, Ling-Yu; Lian, Hong-Zhen; Chen, Hong-Yuan

    2016-08-01

    A novel strategy for the preparation of an aptamer based organic-inorganic hybrid affinity monolithic column was developed successfully using gold nanoparticles (GNPs) as an intermediary for a sandwich structure to realize the functional modification of the surface of the monolithic matrix. This monolithic matrix was facilely pre-synthesized via one-step co-condensation. Due to the high surface-to-volume ratio of GNPs and the large specific surface area of the hybrid matrix, the average coverage density of aptamers on the hybrid monolith reached 342 pmol μL(-1). With the combination of an aptamer based hybrid affinity monolithic column and enzymatic chromogenic assay, the quantitation and detection limits of thrombin were as low as 5 nM and 2 nM, respectively. These results indicated that the GNPs attached monolith provided a novel technique to immobilize aptamers on an organic-inorganic hybrid monolith and it could be used to achieve highly selective recognition and determination of trace proteins. PMID:27307035

  3. Advanced materials development for multi-junction monolithic photovoltaic devices

    SciTech Connect

    Dawson, L.R.; Reno, J.L.

    1996-07-01

    We report results in three areas of research relevant to the fabrication of monolithic multi-junction photovoltaic devices. (1) The use of compliant intervening layers grown between highly mismatched materials, GaAs and GaP (same lattice constant as Si), is shown to increase the structural quality of the GaAs overgrowth. (2) The use of digital alloys applied to the MBE growth of GaAs{sub x}Sb{sub l-x} (a candidate material for a two junction solar cell) provides increased control of the alloy composition without degrading the optical properties. (3) A nitrogen plasma discharge is shown to be an excellent p-type doping source for CdTe and ZnTe, both of which are candidate materials for a two junction solar cell.

  4. Monolithic Interconnected Modules (MIMs) for Thermophotovoltaic Energy Conversion

    NASA Technical Reports Server (NTRS)

    Wilt, David; Wehrer, Rebecca; Palmisiano, Marc; Wanlass, Mark; Murray, Christopher

    2003-01-01

    Monolithic Interconnected Modules (MIM) are under development for thermophotovoltaic (TPV) energy conversion applications. MIM devices are typified by series-interconnected photovoltaic cells on a common, semi-insulating substrate and generally include rear-surface infrared (IR) reflectors. The MIM architecture is being implemented in InGaAsSb materials without semi-insulating substrates through the development of alternative isolation methodologies. Motivations for developing the MIM structure include: reduced resistive losses, higher output power density than for systems utilizing front surface spectral control, improved thermal coupling and ultimately higher system efficiency. Numerous design and material changes have been investigated since the introduction of the MIM concept in 1994. These developments as well as the current design strategies are addressed.

  5. Monolith filter apparatus and membrane apparatus, and method using same

    SciTech Connect

    Goldsmith, Robert L.

    2012-04-03

    A filtration apparatus that separates a liquid feedstock mixed with a gas into filtrate and retentate, the apparatus including at least one filtration device comprised of at least one monolith segment of porous material that defines a plurality of passageways extending longitudinally from a feed face of the structure to a retentate end face. The filtration device contains at least one filtrate conduit within it for carrying filtrate toward a filtrate collection zone, the filtrate conduit providing a path of lower flow resistance than that of alternative flow paths through the porous material of the device. The filtration device can also be utilized as a membrane support for a device for microfiltration, ultrafiltration, nanofiltration, reverse osmosis, or pervaporation. Also disclosed is a method for using such a filtration apparatus.

  6. Towards monolithic integration of germanium light sources on silicon chips

    NASA Astrophysics Data System (ADS)

    Saito, Shinichi; Zaher Al-Attili, Abdelrahman; Oda, Katsuya; Ishikawa, Yasuhiko

    2016-04-01

    Germanium (Ge) is a group-IV indirect band gap semiconductor, and therefore bulk Ge cannot emit light efficiently. However, the direct band gap energy is close to the indirect one, and significant engineering efforts are being made to convert Ge into an efficient gain material monolithically integrated on a Si chip. In this article, we will review the engineering challenges of developing Ge light sources fabricated using nano-fabrication technologies compatible with complementary metal-oxide-semiconductor processes. In particular, we review recent progress in applying high-tensile strain to Ge to reduce the direct band gap. Another important technique is doping Ge with donor impurities to fill the indirect band gap valleys in the conduction band. Realization of carrier confinement structures and suitable optical cavities will be discussed. Finally, we will discuss possible applications of Ge light sources in potential photonics-electronics convergent systems.

  7. Au/TiO2 supported on ferritic stainless steel monoliths as CO oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Milt, V. G.; Ivanova, S.; Sanz, O.; Domínguez, M. I.; Corrales, A.; Odriozola, J. A.; Centeno, M. A.

    2013-04-01

    Metallic supported structured catalysts were obtained by washcoating AluchromYHf monoliths with an Au/TiO2 catalyst. The powder catalyst was synthesized by DAE (direct anionic exchange) method. Using this catalyst, a stable slurry was prepared and used to washcoat the monoliths. TEM and SEM studies revealed that gold nanoparticles in the Au/TiO2 powder catalyst had an average diameter of 3-4 nm, but during the preparation of the structured catalyst, aggregate Au particles of the slurry reached diameters of 9 nm. Before coating, Aluchrom YHf monoliths were thermally treated to generate a homogeneous and well-adhered oxide rough surface layer, mainly composed of α-Al2O3 whiskers, which favored the anchoring of the catalyst. The catalytic layer deposited was well attached and contained not only the Au/TiO2 catalyst but also metallic oxides formed from stainless steel components that diffused through the oxide scale. The structural characterization was performed by XRD, XRF, TEM, SEM, GD-OES and SBET. The catalytic activity of the powder and structured catalysts was tested in the oxidation of the CO reaction. Catalysts demonstrated to be active at room temperature. After a first activation run, and in spite of their larger gold particle size, the catalytic activities of the structured catalysts overcame those of the powder catalyst. This improvement is probably due to the segregation of the transition metal oxides toward the surface oxide scale.

  8. Selective oxidation of cyclohexene through gold functionalized silica monolith microreactors

    NASA Astrophysics Data System (ADS)

    Alotaibi, Mohammed T.; Taylor, Martin J.; Liu, Dan; Beaumont, Simon K.; Kyriakou, Georgios

    2016-04-01

    Two simple, reproducible methods of preparing evenly distributed Au nanoparticle containing mesoporous silica monoliths are investigated. These Au nanoparticle containing monoliths are subsequently investigated as flow reactors for the selective oxidation of cyclohexene. In the first strategy, the silica monolith was directly impregnated with Au nanoparticles during the formation of the monolith. The second approach was to pre-functionalize the monolith with thiol groups tethered within the silica mesostructure. These can act as evenly distributed anchors for the Au nanoparticles to be incorporated by flowing a Au nanoparticle solution through the thiol functionalized monolith. Both methods led to successfully achieving even distribution of Au nanoparticles along the length of the monolith as demonstrated by ICP-OES. However, the impregnation method led to strong agglomeration of the Au nanoparticles during subsequent heating steps while the thiol anchoring procedure maintained the nanoparticles in the range of 6.8 ± 1.4 nm. Both Au nanoparticle containing monoliths as well as samples with no Au incorporated were tested for the selective oxidation of cyclohexene under constant flow at 30 °C. The Au free materials were found to be catalytically inactive with Au being the minimum necessary requirement for the reaction to proceed. The impregnated Au-containing monolith was found to be less active than the thiol functionalized Au-containing material, attributable to the low metal surface area of the Au nanoparticles. The reaction on the thiol functionalized Au-containing monolith was found to depend strongly on the type of oxidant used: tert-butyl hydroperoxide (TBHP) was more active than H2O2, likely due to the thiol induced hydrophobicity in the monolith.

  9. SUBGRADE MONOLITHIC ENCASEMENT STABILIZATION OF CATEGORY 3 LOW LEVEL WASTE (LLW)

    SciTech Connect

    PHILLIPS, S.J.

    2004-02-03

    A highly efficient and effective technology has been developed and is being used for stabilization of Hazard Category 3 low-level waste at the U.S. Department of Energy's Hanford Site. Using large, structurally interconnected monoliths, which form one large monolith that fills a waste disposal trench, the patented technology can be used for final internment of almost any hazardous, radioactive, or toxic waste or combinations of these waste materials packaged in a variety of sizes, shapes, and volumes within governmental regulatory limits. The technology increases waste volumetric loading by 100 percent, area use efficiency by 200 percent, and volumetric configuration efficiency by more than 500 percent over past practices. To date, in excess of 2,010 m{sup 3} of contact-handled and remote-handled low-level radioactive waste have been interned using this patented technology. Additionally, in excess of 120 m{sup 3} of low-level radioactive waste requiring stabilization in low-diffusion coefficient waste encasement matrix has been disposed using this technology. Greater than five orders of magnitude in radiation exposure reduction have been noted using this method of encasement of Hazard Category 3 waste. Additionally, exposure monitored at all monolith locations produced by the slip form technology is less than 1.29 x E-07 C {center_dot} kg{sup -1}. Monolithic encasement of Hazard Category 3 low-level waste and other waste category materials may be successfully accomplished using this technology at nominally any governmental or private sector waste disposal facility. Additionally, other waste materials consisting of hazardous, radioactive, toxic, or mixed waste materials can be disposed of using the monolithic slip form encasement technology.

  10. Monolithic aerogels with nanoporous crystalline phases

    NASA Astrophysics Data System (ADS)

    Daniel, Christophe; Guerra, Gaetano

    2015-05-01

    High porosity monolithic aerogels with nanoporous crystalline phases can be obtained from syndiotactic polystyrene and poly(2,6-dimethyl-1,4-phenylene)oxide thermoreversible gels by removing the solvent with supercritical CO2. The presence of crystalline nanopores in the aerogels based on these polymers allows a high uptake associated with a high selectivity of volatile organic compounds from vapor phase or aqueous solutions even at very low activities. The sorption and the fast kinetics make these materials particularly suitable as sorption medium to remove traces of pollutants from water and moist air.

  11. Monolithic LTCC seal frame and lid

    DOEpatents

    Krueger, Daniel S.; Peterson, Kenneth A.; Stockdale, Dave; Duncan, James Brent; Riggs, Bristen

    2016-06-21

    A method for forming a monolithic seal frame and lid for use with a substrate and electronic circuitry comprises the steps of forming a mandrel from a ceramic and glass based material, forming a seal frame and lid block from a ceramic and glass based material, creating a seal frame and lid by forming a compartment and a plurality of sidewalls in the seal frame and lid block, placing the seal frame and lid on the mandrel such that the mandrel fits within the compartment, and cofiring the seal frame and lid block.

  12. Method of fabricating a monolithic solid oxide fuel cell

    DOEpatents

    Minh, N.Q.; Horne, C.R.

    1994-03-01

    In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array. 10 figures.

  13. Method of fabricating a monolithic solid oxide fuel cell

    DOEpatents

    Minh, Nguyen Q.; Horne, Craig R.

    1994-01-01

    In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array.

  14. Fibrous monoliths: Economic ceramic matrix composites from powders [Final report

    SciTech Connect

    Rigali, Mark; Sutaria, Manish; Mulligan, Anthony; Creegan, Peter; Cipriani, Ron

    1999-05-26

    The project was to develop and perform pilot-scale production of fibrous monolith composites. The principal focus of the program was to develop damage-tolerant, wear-resistant tooling for petroleum drilling applications and generate a basic mechanical properties database on fibrous monolith composites.

  15. [Applications of polymeric monoliths in separation of bio-macromolecules].

    PubMed

    Bai, Ligai; Niu, Wenjing; Yang, Gengliang

    2013-04-01

    In recent years, the applications of high performance liquid chromatographic polymeric monoliths in the separation of macromolecules have been developed. In the review, the characters and new developments of bio-macromolecules separation by using the polymeric monoliths, combining with the works in our laboratory are summarized. Moreover, related influential reports are referred.

  16. Creating deep soil core monoliths: Beyond the solum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil monoliths serve as useful teaching aids in the study of the Earth’s critical zone where rock, soil, water, air, and organisms interact. Typical monolith preparation has so far been confined to the 1 to 2-m depth of the solum. Critical ecosystem services provided by soils include materials from ...

  17. Catalytic Ignition and Upstream Reaction Propagation in Monolith Reactors

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.

    2007-01-01

    Using numerical simulations, this work demonstrates a concept called back-end ignition for lighting-off and pre-heating a catalytic monolith in a power generation system. In this concept, a downstream heat source (e.g. a flame) or resistive heating in the downstream portion of the monolith initiates a localized catalytic reaction which subsequently propagates upstream and heats the entire monolith. The simulations used a transient numerical model of a single catalytic channel which characterizes the behavior of the entire monolith. The model treats both the gas and solid phases and includes detailed homogeneous and heterogeneous reactions. An important parameter in the model for back-end ignition is upstream heat conduction along the solid. The simulations used both dry and wet CO chemistry as a model fuel for the proof-of-concept calculations; the presence of water vapor can trigger homogenous reactions, provided that gas-phase temperatures are adequately high and there is sufficient fuel remaining after surface reactions. With sufficiently high inlet equivalence ratio, back-end ignition occurs using the thermophysical properties of both a ceramic and metal monolith (coated with platinum in both cases), with the heat-up times significantly faster for the metal monolith. For lower equivalence ratios, back-end ignition occurs without upstream propagation. Once light-off and propagation occur, the inlet equivalence ratio could be reduced significantly while still maintaining an ignited monolith as demonstrated by calculations using complete monolith heating.

  18. Variation in the chromatographic, material, and chemical characteristics of methacrylate-based polymer monoliths during photoinitiated low-temperature polymerization.

    PubMed

    Kobayashi, Ayumi; Nakaza, Takuya; Hirano, Tomohiko; Kitagawa, Shinya; Ohtani, Hajime

    2016-07-01

    Both the separation behavior and the structure of a polymer monolith column depends on both the reaction solution composition and the polymerization conditions. In photoinitiated low-temperature polymerization, polymerization temperature, irradiation intensity, and polymerization time were key factors to control the monolith characteristics. In this study, the effect of polymerization time on the chromatographic, material, and chemical characteristics of poly(butyl methacrylate-co-ethylene dimethacrylate) monoliths was studied using pyrolysis-gas chromatography, Raman spectroscopy, inverse size exclusion chromatography, scanning electron microscopy, and chromatographic methods. Both butyl methacrylate and ethylene dimethacrylate monomers were incorporated into the monolith as the polymerization time increased, and it resulted in increases in both the flow resistance (decrease in both permeability and total/through pore porosities) and retention factors. The longer polymerization time led to lower relative amounts of free methacrylate functional groups in the monolith, i.e. cross-linking was enhanced. The increase of the polymerization time from 8 to 12 min significantly reduced the separation efficiency for the retained analyte, whereas an increase in the fraction of the mesoporosity was observed. PMID:27129896

  19. Development and application of NDE methods for monolithic and continuous fiber ceramic matrix composites.

    SciTech Connect

    Ellingson, W. A.

    1999-05-21

    Monolithic structural ceramics and continuous fiber ceramic matrix composites (CMCs) are being developed for application in many thermally and chemically aggressive environments where structural reliability is paramount. We have recently developed advanced nondestructive evaluation (NDE) methods that can detect distributed ''defects'' such as density gradients and machining-induced damage in monolithic materials, as well as delamination, porosity, and throughwall cracks, in CMC materials. These advanced NDE methods utilize (a) high-resolution, high-sensitivity thermal imaging; (b) high-resolution X-ray imaging; (c) laser-based elastic optical scattering; (d) acoustic resonance; (e) air-coupled ultrasonic methods; and (f) high-sensitivity fluorescent penetrant technology. This paper discusses the development and application of these NDE methods relative to ceramic processing and ceramic components used in large-scale industrial gas turbines and hot gas filters for gas stream particulate cleanup.

  20. Preparation of polyhedral oligomeric silsesquioxane based imprinted monolith.

    PubMed

    Li, Fang; Chen, Xiu-Xiu; Huang, Yan-Ping; Liu, Zhao-Sheng

    2015-12-18

    Polyhedral oligomeric silsesquioxane (POSS) was successfully applied, for the first time, to prepare imprinted monolithic column with high porosity and good permeability. The imprinted monolithic column was synthesized with a mixture of PSS-(1-Propylmethacrylate)-heptaisobutyl substituted (MA 0702), naproxon (template), 4-vinylpyridine, and ethylene glycol dimethacrylate, in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4). The influence of synthesis parameters on the retention factor and imprinting effect, including the amount of MA 0702, the ratio of template to monomer, and the ratio of monomer to crosslinker, was investigated. The greatest imprinting factor on the imprinted monolithic column prepared with MA 0702 was 22, about 10 times higher than that prepared in absence of POSS. The comparisons between MIP monoliths synthesized with POSS and without POSS were made in terms of permeability, column efficiency, surface morphology and pore size distribution. In addition, thermodynamic and Van Deemter analysis were used to evaluate the POSS-based MIP monolith.

  1. Monolithic silica columns functionalized with substituted polyproline-derived chiral selectors as chiral stationary phases for high-performance liquid chromatography.

    PubMed

    Sancho, Raquel; Novell, Arnau; Svec, Frantisek; Minguillón, Cristina

    2014-10-01

    In this study, two polyproline-derived chiral selectors are bonded to monolithic silica gel columns. In spite of high chiral selector coverage, the derivatization was found to have only a slight effect on the hydrodynamics of the mobile phase through the column. The enantioseparation ability of the resulting chiral monolithic columns was evaluated with a series of structurally diverse racemic test compounds. When compared to analogous bead-based chiral stationary phases, higher enantioseparation and broader application domain were observed for monolithic columns. Moreover, the increase in flow rate produces a minor reduction of resolution, which permits to shorten analysis time. Additionally, increased loadability defines chiral polyproline derived monoliths as adequate for preparative chromatography.

  2. Monolithic integration of GaN-based light-emitting diodes and metal-oxide-semiconductor field-effect transistors.

    PubMed

    Lee, Ya-Ju; Yang, Zu-Po; Chen, Pin-Guang; Hsieh, Yung-An; Yao, Yung-Chi; Liao, Ming-Han; Lee, Min-Hung; Wang, Mei-Tan; Hwang, Jung-Min

    2014-10-20

    In this study, we report a novel monolithically integrated GaN-based light-emitting diode (LED) with metal-oxide-semiconductor field-effect transistor (MOSFET). Without additionally introducing complicated epitaxial structures for transistors, the MOSFET is directly fabricated on the exposed n-type GaN layer of the LED after dry etching, and serially connected to the LED through standard semiconductor-manufacturing technologies. Such monolithically integrated LED/MOSFET device is able to circumvent undesirable issues that might be faced by other kinds of integration schemes by growing a transistor on an LED or vice versa. For the performances of resulting device, our monolithically integrated LED/MOSFET device exhibits good characteristics in the modulation of gate voltage and good capability of driving injected current, which are essential for the important applications such as smart lighting, interconnection, and optical communication. PMID:25607316

  3. Changing the adsorption capacity of coal-based honeycomb monoliths for pollutant removal from liquid streams by controlling their porosity

    NASA Astrophysics Data System (ADS)

    Gatica, José M.; Harti, Sanae; Vidal, Hilario

    2010-09-01

    Coal-based honeycomb monoliths extruded using methods developed for ceramic materials have been used to retain methylene blue and p-nitrophenol from aqueous solutions. The influence of the filters' thermal treatment on their textural properties and performance as adsorbents was examined. Characterization by N 2 physisorption, mercury porosimetry and scanning electron microscopy along with adsorption tests under dynamic conditions suggest that, depending on the pollutant and its initial concentration, it can be more convenient to previously submit the monoliths to a simple carbonization or to an additional activation, with or without preoxidation, as a consequence of their different resulting pore structures. Infrared spectroscopy indicates that their different adsorption behaviour seems not to be related to differences in their surface chemical groups. In addition, axial crushing tests show that the monoliths have an acceptable mechanical resistance for the application investigated.

  4. Easy extrusion of honeycomb-shaped monoliths using Moroccan natural clays and investigation of their dynamic adsorptive behavior towards VOCs.

    PubMed

    Chafik, T; Harti, S; Cifredo, G; Gatica, J M; Vidal, H

    2009-10-15

    In the present work, honeycomb-shaped monoliths were easily extruded using local natural clays without the need of chemical binders. This finding allows significant cost reduction, in terms of not only additives and solvents but also the energy consumption required for their elimination by thermal treatment. The extruded monoliths were subject to mechanical strength testing in addition to the study of their thermal behavior, structural and textural properties. Moreover, one of their potential uses as VOCs adsorbents was evaluated in comparison with conventional packed bed by investigating their dynamic adsorptive and desorption behavior towards a model VOC of o-xylene type. PMID:19497661

  5. Monolithic Hydrogen Peroxide Catalyst Bed Development

    NASA Technical Reports Server (NTRS)

    Ponzo, J. B.

    2003-01-01

    With recent increased industry and government interest in rocket grade hydrogen peroxide as a viable propellant, significant effort has been expended to improve on earlier developments. This effort has been predominately centered in improving heterogeneous. typically catalyst beds; and homogeneous catalysts, which are typically solutions of catalytic substances. Heterogeneous catalyst beds have traditionally consisted of compressed wire screens plated with a catalytic substance, usually silver, and were used m many RCS applications (X-1, Mercury, and Centaur for example). Aerojet has devised a heterogeneous catalyst design that is monolithic (single piece), extremely compact, and has pressure drops equal to or less than traditional screen beds. The design consists of a bonded stack of very thin, photoetched metal plates, silver coated. This design leads to a high surface area per unit volume and precise flow area, resulting in high, stable, and repeatable performance. Very high throughputs have been demonstrated with 90% hydrogen peroxide. (0.60 lbm/s/sq in at 1775-175 psia) with no flooding of the catalyst bed. Bed life of over 900 seconds has also been demonstrated at throughputs of 0.60 lbm/s/sq in across varying chamber pressures. The monolithic design also exhibits good starting performance, short break-in periods, and will easily scale to various sizes.

  6. Development of a novel monolith frit-based solid-phase microextraction method for determination of hexanal and heptanal in human serum samples.

    PubMed

    Xu, Hui; Yan, Zhihua; Song, Dandan

    2012-03-01

    In this paper, a polypropylene frit with porous network structure and high area-to-thickness ratio (4.8 mm diameter, 1.6 mm thickness, 20 mm pore size) was utilized as a mould of monolith. Poly(methacrylic acid-ethlyene glycol dimethacrylate) (MAA-EGDMA) monolith was in situ synthesized in the micro-channel of frit by photopolymerization. A monolith frit-based solid-phase microextraction method (SPME) was developed for the determination of hexanal and heptanal in serum samples by combining with high-performance liquid chromatography. 2,4-Dinitrophenylhydrazine (DNPH) as the derivatizing reagent was absorbed on a monolith frit, then its derivatization reaction with aldehydes and the absorption of formed hydrazones on the monolith disk occurred simultaneously. The condition parameters for polymerization, derivatization and extraction were optimized systematically. Under the optimum conditions, rigid structure, low back-pressure and high column capacity were achieved for the monolith frit. The limits of detection for hexanal and heptanal were 1.86 and 1.38 nmol/L, respectively. The inter- and intra-day relative standard deviations were less than 7.7% (n = 6). This method was applied successfully to aldehydes analysis in human serum samples. The method possesses advantages such as simplicity, efficiency, low cost and good biocompatibility. It provides an alternative approach for quantification of aldehydes in complex biological samples.

  7. Hydrogel coated monoliths for enzymatic hydrolysis of penicillin G.

    PubMed

    de Lathouder, K M; Smeltink, M W; Straathof, A J J; Paasman, M A; van de Sandt, E J A X; Kapteijn, F; Moulijn, J A

    2008-08-01

    The objective of this work was to develop a hydrogel-coated monolith for the entrapment of penicillin G acylase (E. coli, PGA). After screening of different hydrogels, chitosan was chosen as the carrier material for the preparation of monolithic biocatalysts. This protocol leads to active immobilized biocatalysts for the enzymatic hydrolysis of penicillin G (PenG). The monolithic biocatalyst was tested in a monolith loop reactor (MLR) and compared with conventional reactor systems using free PGA, and a commercially available immobilized PGA. The optimal immobilization protocol was found to be 5 g l(-1) PGA, 1% chitosan, 1.1% glutaraldehyde and pH 7. Final PGA loading on glass plates was 29 mg ml(-1) gel. For 400 cpsi monoliths, the final PGA loading on functionalized monoliths was 36 mg ml(-1) gel. The observed volumetric reaction rate in the MLR was 0.79 mol s(-1) m(-3) (monolith). Apart from an initial drop in activity due to wash out of PGA at higher ionic strength, no decrease in activity was observed after five subsequent activity test runs. The storage stability of the biocatalysts is at least a month without loss of activity. Although the monolithic biocatalyst as used in the MLR is still outperformed by the current industrial catalyst (immobilized preparation of PGA, 4.5 mol s(-1) m(-3) (catalyst)), the rate per gel volume is slightly higher for monolithic catalysts. Good activity and improved mechanical strength make the monolithic bioreactor an interesting alternative that deserves further investigation for this application. Although moderate internal diffusion limitations have been observed inside the gel beads and in the gel layer on the monolith channel, this is not the main reason for the large differences in reactor performance that were observed. The pH drop over the reactor as a result of the chosen method for pH control results in a decreased performance of both the MLR and the packed bed reactor compared to the batch system. A different reactor

  8. Delocalized Plastic Flow in Proton-Irradiated Monolithic Metallic Glasses

    PubMed Central

    Heo, Jaewon; Kim, Sunghwan; Ryu, Seunghwa; Jang, Dongchan

    2016-01-01

    Creating new materials with novel properties through structural modification is the Holy Grail of materials science. The range of targetable structures for amplification of mechanical properties in metallic glasses would include types of atomic short range orders at the smallest scale through compositions or morphologies of phases in composites. Even though the usefulness of the latter approach has been successfully demonstrated in the past decades, the feasibility of the former has been incompletely proved with only marginal property improvements reported within experimentally-accessible atomic-level structural changes. Here, we report the significant enhancement of deformability in Zr-based monolithic metallic glass only through the atomic disordering by proton irradiation without altering any other structural traits. Metallic glass nanopillars that originally failed catastrophically without any notable plasticity become capable of attaining more than 30% uniaxial plastic strain accommodated by homogeneous deformation when irradiated to ~1 displacement per atom (DPA). We discuss the atomistic origin of this improved plasticity in terms of density and spatial distributions of icosahedral short range order influenced by irradiation. PMID:26988265

  9. Preparation of a poly(3'-azido-3'-deoxythymidine-co-propargyl methacrylate-co-pentaerythritol triacrylate) monolithic column by in situ polymerization and a click reaction for capillary liquid chromatography of small molecules and proteins.

    PubMed

    Lin, Zian; Yu, Ruifang; Hu, Wenli; Zheng, Jiangnan; Tong, Ping; Zhao, Hongzhi; Cai, Zongwei

    2015-07-01

    Combining free radical polymerization with click chemistry via a copper-mediated azide/alkyne cycloaddition (CuAAC) reaction in a "one-pot" process, a facile approach was developed for the preparation of a poly(3'-azido-3'-deoxythymidine-co-propargyl methacrylate-co-pentaerythritol triacrylate) (AZT-co-PMA-co-PETA) monolithic column. The resulting poly(AZT-co-PMA-co-PETA) monolith showed a relatively homogeneous monolithic structure, good permeability and mechanical stability. Different ratios of monomers and porogens were used for optimizing the properties of a monolithic column. A series of alkylbenzenes, amides, anilines, and benzoic acids were used to evaluate the chromatographic properties of the polymer monolith in terms of hydrophobic, hydrophilic and cation-exchange interactions, and the results showed that the poly(AZT-co-PMA-co-PETA) monolith exhibited more flexible adjustment in chromatographic selectivity than that of the parent poly(PMA-co-PETA) and AZT-modified poly(PMA-co-PETA) monoliths. Column efficiencies for toluene, DMF, and formamide with 35,000-48,000 theoretical plates per m could be obtained at a linear velocity of 0.17 mm s(-1). The run-to-run, column-to-column, and batch-to-batch repeatabilities of the retention factors were less than 4.2%. In addition, the proposed monolith was also applied to efficient separation of sulfonamides, nucleobases and nucleosides, anesthetics and proteins for demonstrating its potential.

  10. Comparison of polystyrene scintillator fiber array and monolithic polystyrene for neutron imaging and radiography

    NASA Astrophysics Data System (ADS)

    Simpson, R.; Cutler, T. E.; Danly, C. R.; Espy, M. A.; Goglio, J. H.; Hunter, J. F.; Madden, A. C.; Mayo, D. R.; Merrill, F. E.; Nelson, R. O.; Swift, A. L.; Wilde, C. H.; Zocco, T. G.

    2016-11-01

    The neutron imaging diagnostic at the National Ignition Facility has been operating since 2011 generating neutron images of deuterium-tritium (DT) implosions at peak compression. The current design features a scintillating fiber array, which allows for high imaging resolution to discern small-scale structure within the implosion. In recent years, it has become clear that additional neutron imaging systems need to be constructed in order to provide 3D reconstructions of the DT source and these additional views need to be on a shorter line of sight. As a result, there has been increased effort to identify new image collection techniques that improve upon imaging resolution for these next generation neutron imaging systems, such as monolithic deuterated scintillators. This work details measurements performed at the Weapons Neutron Research Facility at Los Alamos National Laboratory that compares the radiographic abilities of the fiber scintillator with a monolithic scintillator, which may be featured in a future short line of sight neutron imaging systems.

  11. Monolithic prestressed ceramic devices and method for making same

    NASA Technical Reports Server (NTRS)

    Haertling, Gene H. (Inventor)

    1996-01-01

    Monolithic, internally asymmetrically stress biased electrically active ceramic devices and a method for making same is disclosed. The first step in the method of the present invention is to fabricate a ceramic element having first and second opposing surfaces. Next, only the first surface is chemically reduced by heat treatment in a reducing atmosphere. This produces a concave shaped, internally asymmetrically stress biased ceramic element and an electrically conducting, chemically reduced layer on the first surface which serves as one of the electrodes of the device. Another electrode can be deposited on the second surface to complete the device. In another embodiment of the present invention two dome shaped ceramic devices can be placed together to form a completed clamshell structure or an accordion type structure. In a further embodiment, the clamshell or accordion type structures can be placed on top of one another. In another embodiment, a pair of dome shaped ceramic devices having opposing temperature characteristics can be placed on top of each other to produce an athermalized ceramic device.

  12. Rapid process for producing transparent, monolithic porous glass

    DOEpatents

    Coronado, Paul R.

    2006-02-14

    A process for making transparent porous glass monoliths from gels. The glass is produced much faster and in much larger sizes than present technology for making porous glass. The process reduces the cost of making large porous glass monoliths because: 1) the process does not require solvent exchange nor additives to the gel to increase the drying rates, 2) only moderate temperatures and pressures are used so relatively inexpensive equipment is needed, an 3) net-shape glass monoliths are possible using this process. The process depends on the use of temperature to control the partial pressure of the gel solvent in a closed vessel, resulting in controlled shrinking during drying.

  13. A decoupled monolithic projection method for natural convection problems

    NASA Astrophysics Data System (ADS)

    Pan, Xiaomin; Kim, Kyoungyoun; Lee, Changhoon; Choi, Jung-Il

    2016-06-01

    We propose an efficient monolithic numerical procedure based on a projection method for solving natural convection problems. In the present monolithic method, the buoyancy, linear diffusion, and nonlinear convection terms are implicitly advanced by applying the Crank-Nicolson scheme in time. To avoid an otherwise inevitable iterative procedure in solving the monolithic discretized system, we use a linearization of the nonlinear convection terms and approximate block lower-upper (LU) decompositions along with approximate factorization. Numerical simulations demonstrate that the proposed method is more stable and computationally efficient than other semi-implicit methods, preserving temporal second-order accuracy.

  14. Crack-free polydimethylsiloxane-bioactive glass-poly(ethylene glycol) hybrid monoliths with controlled biomineralization activity and mechanical property for bone tissue regeneration.

    PubMed

    Chen, Jing; Du, Yuzhang; Que, Wenxiu; Xing, Yonglei; Chen, Xiaofeng; Lei, Bo

    2015-12-01

    Crack-free organic-inorganic hybrid monoliths with controlled biomineralization activity and mechanical property have an important role for highly efficient bone tissue regeneration. Here, biomimetic and crack-free polydimethylsiloxane (PDMS)-modified bioactive glass (BG)-poly(ethylene glycol) (PEG) (PDMS-BG-PEG) hybrids monoliths were prepared by a facile sol-gel technique. Results indicate that under the assist of co-solvents, BG sol and PDMS and PEG could be hybridized at a molecular level, and effects of the PEG molecular weight on the structure, biomineralization activity, and mechanical property of the as-prepared hybrid monoliths were also investigated in detail. It is found that an addition of low molecular weight PEG can significantly prevent the formation of cracks and speed up the gelation of the hybrid monoliths, and the surface microstructure of the hybrid monoliths can be changed from the porous to the smooth as the PEG molecular weight increases. Additionally, the hybrid monoliths with low molecular weight PEG show the high formation of the biological apatite layer, while the hybrids with high molecular weight PEG exhibit negligible biomineralization ability in simulated body fluid (SBF). Furthermore, the PDMS-BG-PEG 600 hybrid monolith has significantly high compressive strength (32 ± 3 MPa) and modulus (153 ± 11 MPa), as well as good cell biocompatibility by supporting osteoblast (MC3T3-E1) attachment and proliferation. These results indicate that the as-prepared PDMS-BG-PEG hybrid monoliths may have promising applications for bone tissue regeneration.

  15. Fast preparation of a highly efficient organic monolith via photo-initiated thiol-ene click polymerization for capillary liquid chromatography.

    PubMed

    Chen, Lianfang; Ou, Junjie; Liu, Zhongshan; Lin, Hui; Wang, Hongwei; Dong, Jing; Zou, Hanfa

    2015-05-15

    A novel organic monolith was firstly prepared in a UV-transparent fused-silica capillary by a single-step approach via photo-initiated thiol-ene click polymerization reaction of 1,2,4-trivinylcyclohexane (TVCH) and pentaerythriol tetra(3-mercaptopropionate) (4SH) within 10min. The effects of both composition of prepolymerization solution and polymerization time on the morphology and permeability of monolithic column were investigated in detail. Then, the optimal condition was acquired to fabricate a homogeneous and permeable organic monolith. The chemical groups of the monolithic column were confirmed by Fourier transform infrared spectroscopy (FT-IR). The SEM graphs showed the organic monolith possessed a uniform porous structure, which promotes the highest column efficiency of ∼133,000 plates per meter for alkylbenzenes at the linear velocity of 0.65mm/s in reversed-phase liquid chromatography. Finally, the organic monolithic column was further applied for separation of basic compounds, pesticides and EPA610, indicating satisfactory separation ability.

  16. A novel positively charged achiral co-monomer for β-cyclodextrin monolithic stationary phase: improved chiral separation of acidic compounds using capillary electrochromatography coupled to mass spectrometry.

    PubMed

    Bragg, William; Shamsi, Shahab A

    2012-12-01

    The work presented here demonstrates the incorporation of vinylbenzyl trimethylammonium (VBTA) as a novel positively charged achiral co-monomer to a glycidyl methacrylate-beta cyclodextrin (GMA/β-CD) based monolith, providing anion exchange sites with reversed electroosmotic flow (EOF) for capillary electrochromatography (CEC). The monolithic phases, GMA/β-CD-VBTA and GMA/β-CD (without co-monomer) were characterized by scanning electron microscopy, optical microscopy, pressure drop/flow-rate curves and nitrogen adsorption analysis. After optimizing the stationary phase and mobile phase parameters, chiral separations of 41 pairs of structurally diverse anionic chiral analytes were compared individually using the GMA/β-CD-VBTA and GMA/β-CD monolithic columns. The GMA/β-CD-VBTA monolith chiral stationary phase separated significantly more acidic compounds compared to the GMA/β-CD column. To-date there has been limited work in the development of chiral monolithic column for CEC-mass spectrometry (MS). Because of good electrodriven flow characteristics, which allow the column to maintain a stable current in the absence of outlet vial, GMA/β-CD-VBTA column was successfully coupled to single quadrupole mass spectrometer for CEC-MS of several chiral test compounds. In addition, the same monolithic CEC column when coupled to a triple quadrupole MS instrument, two orders of magnitude higher sensitivity was observed compared to a single quadrupole MS instrument.

  17. One-Pot Approach to Prepare Organo-silica Hybrid Capillary Monolithic Column with Intact Mesoporous Silica Nanoparticle as Building Block

    PubMed Central

    Liu, Shengju; Peng, Jiaxi; Liu, Zheyi; Liu, Zhongshan; Zhang, Hongyan; Wu, Ren’an

    2016-01-01

    A facile “one-pot” approach to prepare organo-silica hybrid capillary monolithic column with intact mesoporous silica nanoparticle (IMSN) as crosslinker and building block was described. An IMSN crosslinked octadecyl-silica hybrid capillary monolithic column (IMSN-C18 monolithic column) was successfully prepared, and the effects of fabrication conditions (e.g. concentration of intact mesoporous silica nanoparticle, polycondensation temperature, content of vinyltrimethoxysilane and stearyl methacrylate) on the structures of the IMSN-C18 monolithic column were studied in detail. The IMSN-C18 hybrid monolithic column possessed uniform morphology, good mechanical and pH stability (pH 1.1–11), which was applied to the separations of alkyl benzenes, polycyclic aromatic hydrocarbons (PAHs), as well as proteins. The minimum plate height of 10.5 μm (corresponding to 95000 N m−1) for butylbenzene and high reproducibility were achieved. The analysis of tryptic digest of bovine serum albumin (BSA) was carried out on the IMSN-C18 monolithic column by cLC coupled mass spectrometry (cLC-MS/MS), with the protein sequence coverage of 87.5% for BSA, demonstrating its potential application in proteomics. PMID:27698475

  18. Neutral, Charged and Stratified Polar Monoliths for Hydrophilic Interaction Capillary Electrochromatography

    PubMed Central

    Gunasena, Dilani N.; El Rassi, Ziad

    2013-01-01

    Novel polar monoliths were introduced for hydrophilic interaction capillary electrochromatography (HI-CEC). In one case, a neutral polar monolith resulted from the in situ polymerization of glyceryl methacrylate (GMM) and pentaerythritol triacrylate (PETA) in a ternary porogenic solvent. GMM and PETA possess hydroxyl functional groups, which impart the monolith with hydrophilic interaction sites. This monolith is designated as hydroxy monolith. Although the hydroxy monolith is neutral and void of fixed charges on the surface, a relatively strong cathodal EOF was observed due to the electric double layer formed by the adsorption of ions from the mobile phase, producing a bulk mobile phase flow. The second monolith is charged and referred to as AP-monolith that possesses amine/amide functionalities on its surface, and was prepared by the in situ polymerization of N-(3-aminopropyl) methacrylamide hydrochloride (NAPM) and ethylene dimethacrylate (EDMA) in the presence of cyclohexanol, dodecanol and methanol as porogens. Over the pH range studied a strong anodal EOF was observed. The AP-monolith was further exploited in HI-CEC by modifying its surface with neutral mono- and oligosaccharides to produce a series of the so called sugar modified AP-monoliths (SMAP-monolith), which are considered as stratified hydrophilic monoliths possessing a sub-layer of polar amine/amide groups and a top layer of sugar (a polyhydroxy top layer).The SMAP-monoliths can be viewed as a blend of both the hydroxy monolith and the AP-monolith. The polarity of the various monoliths seems to follow the order: hydroxy monolith < AP-monolith < SMAP-monolith. The novel monoliths were characterized over a wide range of elution conditions with a variety of polar solutes including phenols, substituted phenols, nucleic acid bases, nucleosides and nucleotides PMID:23972465

  19. The Advanced Virgo monolithic fused silica suspension

    NASA Astrophysics Data System (ADS)

    Aisa, D.; Aisa, S.; Campeggi, C.; Colombini, M.; Conte, A.; Farnesini, L.; Majorana, E.; Mezzani, F.; Montani, M.; Naticchioni, L.; Perciballi, M.; Piergiovanni, F.; Piluso, A.; Puppo, P.; Rapagnani, P.; Travasso, F.; Vicerè, A.; Vocca, H.

    2016-07-01

    The detection of gravitational waves is one of the most challenging prospects faced by experimental physicists. Suspension thermal noise is an important noise source at operating frequencies between approximately 10 and 30 Hz, and represents a limit to the sensitivity of the ground based interferometric gravitational wave detectors. Its effects can be reduced by minimizing the losses and by optimizing the geometry of the suspension fiber as well as its attachment system. In this proceeding we will describe the mirrors double stage monolithic suspension system to be used in the Advanced Virgo (AdV) detector. We also present the results of the thermal noise study, performed with the help of a finite elements model, taking into account the precise geometry of the fibers attachment systems on the suspension elements. We shall demonstrate the suitability of this suspension for installation in AdV.

  20. Monolithic fuel injector and related manufacturing method

    DOEpatents

    Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; York, William David; Stevenson, Christian Xavier

    2012-05-22

    A monolithic fuel injection head for a fuel nozzle includes a substantially hollow vesicle body formed with an upstream end face, a downstream end face and a peripheral wall extending therebetween, an internal baffle plate extending radially outwardly from a downstream end of the bore, terminating short of the peripheral wall, thereby defining upstream and downstream fuel plenums in the vesicle body, in fluid communication by way of a radial gap between the baffle plate and the peripheral wall. A plurality of integral pre-mix tubes extend axially through the upstream and downstream fuel plenums in the vesicle body and through the baffle plate, with at least one fuel injection hole extending between each of the pre-mix tubes and the upstream fuel plenum, thereby enabling fuel in the upstream plenum to be injected into the plurality of pre-mix tubes. The fuel injection head is formed by direct metal laser sintering.

  1. Monolithic microwave integrated circuit water vapor radiometer

    NASA Technical Reports Server (NTRS)

    Sukamto, L. M.; Cooley, T. W.; Janssen, M. A.; Parks, G. S.

    1991-01-01

    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility.

  2. Differences in porous characteristics of styrenic monoliths prepared by controlled thermal polymerization in molds of varying dimensions.

    PubMed

    Byström, Emil; Viklund, Camilla; Irgum, Knut

    2010-02-01

    polymerization and looking for changes in the macropore structure by visual assessment of SEMs are therefore both rather questionable, at least for monoliths of the kind used in this study. PMID:20087873

  3. Textural characterization of native and n-alky-bonded silica monoliths by mercury intrusion/extrusion, inverse size exclusion chromatography and nitrogen adsorption.

    PubMed

    Thommes, M; Skudas, R; Unger, K K; Lubda, D

    2008-05-16

    Native and n-alkyl-bonded (n-octadecyl) monolithic silica rods with mesopores in the range between 10 and 25 nm and macropores in the range between 1.8 and 6.0 microm were examined by mercury intrusion/extrusion, inverse size exclusion chromatography (ISEC) and nitrogen sorption. Our results reveal very good agreement for the mesopore size distribution obtained from nitrogen adsorption (in combination with an advanced NLDFT analysis) and ISEC. Our studies highlight the importance of mercury porosimetry for the assessment of the macropore size distribution and show that mercury porosimetry is the only method which allows obtaining a combined and comprehensive structural characterization of macroporous/mesoporous silica monoliths. Our data clearly confirm that mercury porosimetry hysteresis and entrapment have different origin, and indicate the intrinsic nature of mercury porosimetry hysteresis in these silica monoliths. Within this context some silica monoliths show the remarkable result of no entrapment of mercury after extrusion from the mesopore system (i.e. for the first intrusion/extrusion cycle). The results of a systematic study of the mercury intrusion/extrusion behavior into native silica monoliths and monoliths with bonded n-alkyl groups reveals that the macro (through) pore structure, which controls the mass transfer to and from the mesopores, here mainly controls the entrapment behavior. Our data suggest that mercury intrusion/extrusion porosimetry does not only allow to obtain a comprehensive pore structure analysis, but can also serve as a tool to estimate the mass transport properties of silica monoliths to be employed in liquid-phase separation processes. PMID:18423477

  4. 62. VIEW SHOWING INSTALLATION TAINTER VALVE MACHINERY MONOLITH NO. 321, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. VIEW SHOWING INSTALLATION TAINTER VALVE MACHINERY MONOLITH NO. 32-1, LOOKING WEST Photograph No. 8571. October 24, 1949 - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 27, Granite City, Madison County, IL

  5. 10. LOCK CONSTRUCTION PHOTO SHOWING CONCRETE MONOLITHS FOR WALLS, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. LOCK CONSTRUCTION PHOTO SHOWING CONCRETE MONOLITHS FOR WALLS, LOOKING NORTH. August 1934 - Mississippi River 9-Foot Channel Project, Lock & Dam No. 16, Upper Mississippi River, Muscatine, Muscatine County, IA

  6. 25. DETAIL VIEW OF CONCRETE MONOLITH CONSTRUCTION AT UPPER END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. DETAIL VIEW OF CONCRETE MONOLITH CONSTRUCTION AT UPPER END OF MAIN LOCK AND DAM PIERS, LOOKING SOUTHEAST (DOWNSTREAM). NOTE GANTRY CRANES - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 26R, Alton, Madison County, IL

  7. 53. VIEW OF ROCK FOUNDATIONS AIR CLEANED FOR MONOLITHS 1722, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. VIEW OF ROCK FOUNDATIONS AIR CLEANED FOR MONOLITHS 17-22, INTERMEDIATE WALL, LOOKING NORTH Photograph No. 12840. September 10, 1948 - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 27, Granite City, Madison County, IL

  8. 27. DETAIL VIEW OF CONCRETE MONOLITH CONSTRUCTION AT DOWNSTREAM END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. DETAIL VIEW OF CONCRETE MONOLITH CONSTRUCTION AT DOWNSTREAM END OF WEST MAIN LOCK WALL, LOOKiNG SOUTHEAST - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 26R, Alton, Madison County, IL

  9. 26. DETAIL VIEW OF CONCRETE MONOLITH CONSTRUCTION AT UPPER END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. DETAIL VIEW OF CONCRETE MONOLITH CONSTRUCTION AT UPPER END OF MAIN LOCK AND DAM PIERS, LOOKING SOUTHEAST (DOWNSTREAM) - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 26R, Alton, Madison County, IL

  10. Experimental and computational investigation of flow in catalytic monolith channels

    SciTech Connect

    Wilson, G.C.; Bardon, M.F.; Witton, J.J. Cranfield Inst. of Technology )

    1992-01-01

    Monolith optimization is necessary for maximum efficiency during catalytic combustion. This paper describes a study undertaken to investigate the flow in catalytic monolith channels. A super-scale model of a single passage in a ceramic catalyst monolith was constructed and studied using pure air as the working fluid. Combustion of a representative natural gas mixture at the catalyst surface was simulated by electrical heating of the channel walls. The flow-field was probed with hot wire anemometers and fine wire thermocouples to obtain velocity and temperature data. Concurrently, the PHOENICS CFD package was used to model the flow. Results confirmed the presence of secondary flows and illustrated the effects of channel shape. The results are discussed as to their relevance to the design of a monolithic combustor for gas turbine applications. 15 refs.

  11. 31. SPILLWAY CHANNEL WALLS REINF DETAILS; MONOLITHS E21 AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. SPILLWAY CHANNEL WALLS REINF - DETAILS; MONOLITHS E-21 AND W-21. Sheet S-45, May, 1940. File no. 342/58. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  12. Synthesis of monolithic graphene-graphite integrated electronics.

    PubMed

    Park, Jang-Ung; Nam, SungWoo; Lee, Mi-Sun; Lieber, Charles M

    2011-11-20

    Encoding electronic functionality into nanoscale elements during chemical synthesis has been extensively explored over the past decade as the key to developing integrated nanosystems with functions defined by synthesis. Graphene has been recently explored as a two-dimensional nanoscale material, and has demonstrated simple device functions based on conventional top-down fabrication. However, the synthetic approach to encoding electronic functionality and thus enabling an entire integrated graphene electronics in a chemical synthesis had not previously been demonstrated. Here we report an unconventional approach for the synthesis of monolithically integrated electronic devices based on graphene and graphite. Spatial patterning of heterogeneous metal catalysts permits the selective growth of graphene and graphite, with a controlled number of graphene layers. Graphene transistor arrays with graphitic electrodes and interconnects were formed from the synthesis. These functional, all-carbon structures were transferable onto a variety of substrates. The integrated transistor arrays were used to demonstrate real-time, multiplexed chemical sensing and more significantly, multiple carbon layers of the graphene-graphite device components were vertically assembled to form a three-dimensional flexible structure which served as a top-gate transistor array. These results represent substantial progress towards encoding electronic functionality through chemical synthesis and suggest the future promise of one-step integration of graphene-graphite based electronics.

  13. Synthesis of monolithic graphene-graphite integrated electronics

    NASA Astrophysics Data System (ADS)

    Park, Jang-Ung; Nam, Sungwoo; Lee, Mi-Sun; Lieber, Charles M.

    2012-02-01

    Encoding electronic functionality into nanoscale elements during chemical synthesis has been extensively explored over the past decade as the key to developing integrated nanosystems with functions defined by synthesis. Graphene has been recently explored as a two-dimensional nanoscale material, and has demonstrated simple device functions based on conventional top-down fabrication. However, the synthetic approach to encoding electronic functionality and thus enabling an entire integrated graphene electronics in a chemical synthesis had not previously been demonstrated. Here we report an unconventional approach for the synthesis of monolithically integrated electronic devices based on graphene and graphite. Spatial patterning of heterogeneous metal catalysts permits the selective growth of graphene and graphite, with a controlled number of graphene layers. Graphene transistor arrays with graphitic electrodes and interconnects were formed from the synthesis. These functional, all-carbon structures were transferable onto a variety of substrates. The integrated transistor arrays were used to demonstrate real-time, multiplexed chemical sensing and more significantly, multiple carbon layers of the graphene-graphite device components were vertically assembled to form a three-dimensional flexible structure which served as a top-gate transistor array. These results represent substantial progress towards encoding electronic functionality through chemical synthesis and suggest the future promise of one-step integration of graphene-graphite based electronics.

  14. Synthesis of monolithic graphene – graphite integrated electronics

    PubMed Central

    Park, Jang-Ung; Nam, SungWoo; Lee, Mi-Sun; Lieber, Charles M.

    2013-01-01

    Encoding electronic functionality into nanoscale elements during chemical synthesis has been extensively explored over the past decade as the key to developing integrated nanosystems1 with functions defined by synthesis2-6. Graphene7-12 has been recently explored as a two-dimensional nanoscale material, and has demonstrated simple device functions based on conventional top-down fabrication13-20. However, the synthetic approach to encoding electronic functionality and thus enabling an entire integrated graphene electronics in a chemical synthesis had not previously been demonstrated. Here we report an unconventional approach for the synthesis of monolithically-integrated electronic devices based on graphene and graphite. Spatial patterning of heterogeneous catalyst metals permits the selective growth of graphene and graphite, with controlled number of graphene layers. Graphene transistor arrays with graphitic electrodes and interconnects were formed from synthesis. These functional, all-carbon structures were transferrable onto a variety of substrates. The integrated transistor arrays were used to demonstrate real-time, multiplexed chemical sensing, and more significantly, multiple carbon layers of the graphene-graphite device components were vertically assembled to form a three-dimensional flexible structure which served as a top-gate transistor array. These results represent a substantial progress towards encoding electronic functionality via chemical synthesis and suggest future promise for one-step integration of graphene-graphite based electronics. PMID:22101813

  15. Monolithically integrated mid-IR interband cascade laser and photodetector operating at room temperature

    NASA Astrophysics Data System (ADS)

    Lotfi, Hossein; Li, Lu; Shazzad Rassel, S. M.; Yang, Rui Q.; Corrége, Cédric J.; Johnson, Matthew B.; Larson, Preston R.; Gupta, James A.

    2016-10-01

    We report on the demonstration of a monolithically integrated mid-IR interband cascade (IC) laser and photodetector operating at room temperature. The base structure for the integrated laser and detector is a six-stage type-I IC laser with GaInAsSb quantum well active regions. The laser/detector pair was defined using focused ion beam milling. The laser section lased in cw mode with an emission wavelength of ˜3.1 μm at 20 °C and top-illuminated photodetectors fabricated from the same wafer had Johnson-noise-limited detectivity of 1.05 × 109 cm Hz1/2/W at this wavelength and temperature. Under the same condition, the detectivity for the edge illumination configuration for the monolithically integrated laser/photodetector pairs is projected to be as high as 1.85 × 1010 cm Hz1/2/W, as supported by experimentally observed high photocurrent and open-circuit voltage. These high performance characteristics for monolithically integrated IC devices show great prospects for on-chip integration of mid-IR photonic devices for miniaturized sensors and on-chip optical communication systems.

  16. Extended Leach Testing of Simulated LAW Cast Stone Monoliths

    SciTech Connect

    Serne, R. Jeffrey; Westsik, Joseph H.; Williams, Benjamin D.; Jung, H. B.; Wang, Guohui

    2015-07-09

    This report describes the results from long-term laboratory leach tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate the release of key constituents from monoliths of Cast Stone prepared with four simulated low-activity waste (LAW) liquid waste streams. Specific objectives of the Cast Stone long-term leach tests described in this report focused on four activities: 1. Extending the leaching times for selected ongoing EPA-1315 tests on monoliths made with LAW simulants beyond the conventional 63-day time period up to 609 days reported herein (with some tests continuing that will be documented later) in an effort to evaluate long-term leaching properties of Cast Stone to support future performance assessment activities. 2. Starting new EPA-1315 leach tests on archived Cast Stone monoliths made with four LAW simulants using two leachants (deionized water [DIW] and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water [VZP]). 3. Evaluating the impacts of varying the iodide loading (starting iodide concentrations) in one LAW simulant (7.8 M Na Hanford Tank Waste Operations Simulator (HTWOS) Average) by manufacturing new Cast Stone monoliths and repeating the EPA-1315 leach tests using DIW and the VZP leachants. 4. Evaluating the impacts of using a non-pertechnetate form of Tc that is present in some Hanford tanks. In this activity one LAW simulant (7.8 M Na HTWOS Average) was spiked with a Tc(I)-tricarbonyl gluconate species and then solidified into Cast Stone monoliths. Cured monoliths were leached using the EPA-1315 leach protocol with DIW and VZP. The leach results for the Tc-Gluconate Cast Stone monoliths were compared to Cast Stone monoliths pertechnetate.

  17. Phenylalanine functionalized zwitterionic monolith for hydrophobic interaction electrochromatography.

    PubMed

    Wang, Jiabin; Jia, Wenchao; Lin, Xucong; Wu, Xiaoping; Xie, Zenghong

    2013-12-01

    A novel phenylalanine (Phe) functionalized zwitterionic monolith for hydrophobic electrochromatography was prepared by a two-step procedure involving the synthesis of glycidyl methacrylate based polymer monolith and subsequent on-column chemical modification with Phe via ring-opening reaction of epoxides. Benefitting from the hydrophobicity of both methacrylate-based matrix and aromatic group of Phe, this monolith could exhibit good hydrophobic interaction for the separation. Typical RP chromatographic behavior was observed toward various solutes. The well-controlled cathodic or anodic EOF of the prepared column could be facilely switched by altering the pH values of running buffers. The separation mechanism of this Phe functionalized zwitterionic monolith is discussed in detail. Two mixed-mode mechanisms of RP/cation exchange and RP/anion exchange could be further realized on the same monolith in different pH condition of the mobile phase. Versatile separation capabilities of neutral, basic, and acidic analytes have been successfully achieved in this zwitterionic monolith by CEC method.

  18. Methacrylate monolith chromatography as a tool for waterborne virus removal.

    PubMed

    Rački, N; Kramberger, P; Steyer, A; Gašperšič, J; Štrancar, A; Ravnikar, M; Gutierrez-Aguirre, I

    2015-02-13

    Enteric viruses are commonly present in environmental waters and represent the major cause of waterborne infections and outbreaks. Since traditional wastewater treatments fail to remove enteric viruses in the water purification process, they are released daily into environmental waters. Monolithic supports have enabled chromatography to enter the field of virology. They have been successfully used in virus purification and concentration. In this work quaternary amine (QA) methacrylate monoliths were exploited to remove enteric viruses from wastewater treatment plant effluent. Expectedly, chromatographic processing of such a complex medium was troublesome, even for monoliths, characterized by extremely large pore dimensions. This problem was solved by introducing a pre-step chromatography using hydroxyl (OH) methacrylate monoliths. This way, molecules, that would hinder virus binding to the anion-exchanger monolith, were removed. As a result, the OH pre-column reduced backpressure increase on the subsequent anion-exchanger column, and increased both QA column binding capacity and life time. Wastewater effluent samples were successfully purified from five waterborne enteric viruses (rotavirus, norovirus genogroup I and II, astrovirus, sapovirus), below the detection limit of RT-qPCR. The breakthrough of the rotavirus binding capacity was not reached for concentrations that significantly exceeded those expected in effluent waters. The obtained results confirm that methacrylate monoliths can be a valuable tool for simultaneous removal of different waterborne viruses from contaminated water sources.

  19. Monolithic phononic crystals with a surface acoustic band gap from surface phonon-polariton coupling.

    PubMed

    Yudistira, D; Boes, A; Djafari-Rouhani, B; Pennec, Y; Yeo, L Y; Mitchell, A; Friend, J R

    2014-11-21

    We theoretically and experimentally demonstrate the existence of complete surface acoustic wave band gaps in surface phonon-polariton phononic crystals, in a completely monolithic structure formed from a two-dimensional honeycomb array of hexagonal shape domain-inverted inclusions in single crystal piezoelectric Z-cut lithium niobate. The band gaps appear at a frequency of about twice the Bragg band gap at the center of the Brillouin zone, formed through phonon-polariton coupling. The structure is mechanically, electromagnetically, and topographically homogeneous, without any physical alteration of the surface, offering an ideal platform for many acoustic wave applications for photonics, phononics, and microfluidics.

  20. Conceiving semi-active control devices for large-size monolithic monuments

    NASA Astrophysics Data System (ADS)

    Casciati, Fabio; El Attar, Adel; Casciati, Sara

    2001-07-01

    CHIME is a research project, funded by the European Union, which investigates the adoption of innovative structural control techniques in view of the seismic rehabilitation of the wide monumental cultural heritage in Mediterranean countries as Egypt, Tunisia and Cyprus. The structural control devices are mainly of the semi-active type. In this particular paper one reports the first results achieved within a case study. It considers an Egyptian large size monolithic monument. Alternative solutions for its seismic rehabilitation are eventually conceived and discussed.

  1. Hybrid silica monolith for microextraction by packed sorbent to determine drugs from plasma samples by liquid chromatography-tandem mass spectrometry.

    PubMed

    de Souza, Israel D; Domingues, Diego S; Queiroz, Maria E C

    2015-08-01

    The present study (1) reports on the synthesis of two hybrid silica monoliths functionalized with aminopropyl or cyanopropyl groups by the sol-gel process; (2) evaluates these monoliths as selective stationary phase for microextraction by packed sorbent (MEPS) to determine drugs in plasma samples via liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the multiple reactions monitoring (MRM) mode; and (3) discusses important factors related to the optimization of MEPS efficiency as well as the carryover effect. The prepared hybrid silica monoliths consisted of a uniform, porous, and continuous silica monolithic network. The structure of the aminopropyl hybrid silica monolith was more compact than the structure of the cyanopropyl hybrid silica monolith. The Fourier-transform infrared spectroscopy (FTIR) spectra of the hybrid silica monoliths displayed readily identifiable peaks, characteristic of the cyanopropyl and aminopropyl groups. Compared with the aminopropyl hybrid silica phase, the cyanopropyl hybrid silica phase exhibited higher binding capacity for most of the target drugs. The developed method afforded adequate linearity at concentrations ranging from the lower limit of quantification (0.05-1.00 ng mL(-1)) to the upper limit of quantification (40-10,500 ng mL(-1)); the coefficients of determination (r(2)) were higher than 0.9955. The precision of the method presented coefficients of variation (CV) lower than 14%; the relative standard error (RSE) of the accuracy ranged from -12% to 14%. The developed method allowed for simultaneous analysis of five antipsychotics (olanzapine, quetiapine, clozapine, haloperidol, and chlorpromazine) in combination with seven antidepressants (mirtazapine, paroxetine, citalopram, sertraline, imipramine, clomipramine, fluoxetine), two anticonvulsants (carbamazepine and lamotrigine), and two anxiolytics (diazepam and clonazepam) in plasma samples from schizophrenic patients, which should be valuable for therapeutic drug

  2. Biasable, Balanced, Fundamental Submillimeter Monolithic Membrane Mixer

    NASA Technical Reports Server (NTRS)

    Siegel, Peter; Schlecht, Erich; Mehdi, Imran; Gill, John; Velebir, James; Tsang, Raymond; Dengler, Robert; Lin, Robert

    2010-01-01

    This device is a biasable, submillimeter-wave, balanced mixer fabricated using JPL s monolithic membrane process a simplified version of planar membrane technology. The primary target application is instrumentation used for analysis of atmospheric constituents, pressure, temperature, winds, and other physical and chemical properties of the atmospheres of planets and comets. Other applications include high-sensitivity gas detection and analysis. This innovation uses a balanced configuration of two diodes allowing the radio frequency (RF) signal and local oscillator (LO) inputs to be separated. This removes the need for external diplexers that are inherently narrowband, bulky, and require mechanical tuning to change frequency. Additionally, this mixer uses DC bias-ability to improve its performance and versatility. In order to solve problems relating to circuit size, the GaAs membrane process was created. As much of the circuitry as possible is fabricated on-chip, making the circuit monolithic. The remainder of the circuitry is precision-machined into a waveguide block that holds the GaAs circuit. The most critical alignments are performed using micron-scale semiconductor technology, enabling wide bandwidth and high operating frequencies. The balanced mixer gets superior performance with less than 2 mW of LO power. This can be provided by a simple two-stage multiplier chain following an amplifier at around 90 GHz. Further, the diodes are arranged so that they can be biased. Biasing pushes the diodes closer to their switching voltage, so that less LO power is required to switch the diodes on and off. In the photo, the diodes are at the right end of the circuit. The LO comes from the waveguide at the right into a reduced-height section containing the diodes. Because the diodes are in series to the LO signal, they are both turned on and off simultaneously once per LO cycle. Conversely, the RF signal is picked up from the RF waveguide by the probe at the left, and flows

  3. Monolithic CMOS imaging x-ray spectrometers

    NASA Astrophysics Data System (ADS)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.

    2014-07-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and

  4. FIBROUS MONOLITH WEAR RESISTANT COMPONENTS FOR THE MINING INDUSTRY

    SciTech Connect

    Mark J. Rigali

    2001-10-01

    Published mechanical and thermal properties data on a variety of materials was gathered, with focus on materials that have potential with respect to developing wear resistant and damage tolerant composite for mining industry applications. Preliminary core materials of interest include but are not limited to: Diamond, Tungsten Carbide and Cemented Tungsten Carbides, Carbides of Boron, Silicon, Titanium and Aluminum, Diboride of Titanium and Aluminum, Nitrides of Aluminum, Silicon, Titanium, and Boron, Aluminum Oxide, Tungsten, Titanium, Iron, Cobalt and Metal Alloys. Preliminary boundary materials of interest include but are not limited to: W metal, WC-Co, W-Co, WFeNi, and Mo metal and alloys. Several FM test coupons were fabricated with various compositions using the above listed materials. These coupons were consolidated to varying degrees by uniaxial hot pressing, then cut and ground to expose the FM cell structure. One promising system, WC-Co core and WFeNi boundary, was consolidated to 97% of theoretical density, and demonstrates excellent hardness. Data on standard mechanical tests was gathered, and tests will begin on the consolidated test coupons during the upcoming reporting period. The program statements of work for ACR Inc. and its subcontractors, as well as the final contract negotiations, were finalized during the current reporting period. The program start date was February 22nd, 2001. In addition to the current subcontractors, Kennametal Inc., a major manufacturer of cutting tools and wear resistant tooling for the mining industry, expressed considerable interest in ACR's Fibrous Monolith composites for both machine and mining applications. At the request of Kennametal, ARC Inc fabricated and delivered several Fibrous Monolith coupons and components for testing and evaluation in the mining and machine tool applications. Additional samples of Diamond/Tungsten Carbide-6%Cobalt Fibrous Monolith were fabricated and delivered for testing Kennametal's Rapid

  5. Enhanced selective adsorption of CO2 on nitrogen-doped porous carbon monoliths derived from IRMOF-3.

    PubMed

    Ding, Shunmin; Dong, Qiaoling; Hu, Jingwei; Xiao, Weiming; Liu, Xiaohui; Liao, Lieqiang; Zhang, Ning

    2016-07-28

    The N-doped porous carbon monoliths prepared by direct carbonization of IRMOF-3, through an in situ activation and self-templating process, were found to exhibit significantly enhanced performance for the selective adsorption of CO2 compared to pristine IRMOF-3. The transformation from the microporous structure to the meso-macroporous structure opens the pathway for CO2 to more easily access the nitrogen anchors. PMID:27356869

  6. Aptamer functionalized hydrophilic polymer monolith with gold nanoparticles modification for the sensitive detection of human α-thrombin.

    PubMed

    Chen, Yuanbo; Deng, Nan; Wu, Ci; Liang, Yu; Jiang, Bo; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2016-07-01

    Low abundant proteins of body fluids participate nearly all physiological processes and indicate various kinds of diseases. The development of specific enrichment techniques is the key to identify and quantify the low abundant proteins. Herein, a novel kind of aptamer functionalized hydrophilic polymer monolith was developed for the specific enrichment and detection of human α-thrombin from the human plasma. Human α-thrombin aptamer, with thiol group modified at the 5' terminal, was immobilized on the gold nanoparticles (AuNPs) modified poly(glycidyl methacrylate-co-poly(ethylene glycol) diacrylate) monolithic column, with the binding capacity of 277.1μmol/L. Due to the hydrophilic poly(ethylene glycol) diacrylate) as the cross-linking monomer, the detection recovery of the aptamer-functionalized hydrophilic polymer monolithic column could reach to 92.6±5.2% (n=3) and the dynamic range could reach 0.5-300ng/μL (S/N>10) with on-line UV detection. Meanwhile, the column could run over 100 times, because the poly(glycidyl methacrylate-co-poly(ethylene glycol) diacrylate) stability structure and the AuNPs improved the stability of the matrix material. Furthermore, this column could even capture the target α-thrombin, which was spiked in 1000 folds of original human plasma. All these results demonstrated the great potential of the prepared aptamer functionalized hydrophilic polymer monolith for the recognition of the trace proteins in the biological samples. PMID:27154714

  7. Aptamer functionalized hydrophilic polymer monolith with gold nanoparticles modification for the sensitive detection of human α-thrombin.

    PubMed

    Chen, Yuanbo; Deng, Nan; Wu, Ci; Liang, Yu; Jiang, Bo; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2016-07-01

    Low abundant proteins of body fluids participate nearly all physiological processes and indicate various kinds of diseases. The development of specific enrichment techniques is the key to identify and quantify the low abundant proteins. Herein, a novel kind of aptamer functionalized hydrophilic polymer monolith was developed for the specific enrichment and detection of human α-thrombin from the human plasma. Human α-thrombin aptamer, with thiol group modified at the 5' terminal, was immobilized on the gold nanoparticles (AuNPs) modified poly(glycidyl methacrylate-co-poly(ethylene glycol) diacrylate) monolithic column, with the binding capacity of 277.1μmol/L. Due to the hydrophilic poly(ethylene glycol) diacrylate) as the cross-linking monomer, the detection recovery of the aptamer-functionalized hydrophilic polymer monolithic column could reach to 92.6±5.2% (n=3) and the dynamic range could reach 0.5-300ng/μL (S/N>10) with on-line UV detection. Meanwhile, the column could run over 100 times, because the poly(glycidyl methacrylate-co-poly(ethylene glycol) diacrylate) stability structure and the AuNPs improved the stability of the matrix material. Furthermore, this column could even capture the target α-thrombin, which was spiked in 1000 folds of original human plasma. All these results demonstrated the great potential of the prepared aptamer functionalized hydrophilic polymer monolith for the recognition of the trace proteins in the biological samples.

  8. Preparation and characterization of a molecularly imprinted monolithic column for pressure-assisted CEC separation of nitroimidazole drugs.

    PubMed

    Liao, Sulan; Wang, Xiaochun; Lin, Xucong; Xie, Zenghong

    2010-08-01

    A polymethacrylate-based molecularly imprinted monolithic column bearing mixed functional monomers, using non-covalent imprinting approach, was designed for the rapid separation of nitroimidazole compounds. The new monolithic column has been prepared via simple in situ polymerization of 2-hydroxyethyl methacrylate, dimethylaminoethyl methacrylate and ethylene dimethacrylate, using (S)-ornidazole ((S)-ONZ) as template in a binary porogenic mixture consisting of toluene and dodecanol. The composition of the polymerization mixture was systematically altered and optimized by altering the amount of monomers as well as the composition of the porogenic solvent. The column performance was evaluated in pressure-assisted CEC mode. Separation conditions such as pH, voltage, amount of organic modifier and salt concentration were studied. The optimized monolithic column resulted in excellent separation of a group of structurally related nitroimidazole drugs within 10 min in isocratic elution condition. Column efficiencies of 99 000, 80 000, 103 000, 60 000 and 99 000 plates/m were obtained for metronidazole, secnidazole, ronidazole, tinidazole and dimetridazole, respectively. Parallel experiments were carried out using molecularly imprinted and non-imprinted capillary columns. The separation might be the result of combined effects including hydrophobic, hydrogen bonding and the imprinting cavities on the (S)-ONZ-imprinted monolithic column. PMID:20661943

  9. Clay honeycomb monoliths for water purification: Modulating methylene blue adsorption through controlled activation via natural coal templating

    NASA Astrophysics Data System (ADS)

    Gatica, José M.; Gómez, Diana M.; Harti, Sanae; Vidal, Hilario

    2013-07-01

    Texturally modified clay honeycomb monoliths were prepared for use as filters to remove pollutants from water solutions. An easy, economical, "green chemistry" activation route was employed during the preparation to enhance the adsorption capacity of the honeycombs. The method involves mixing the clay before its extrusion with a natural coal that is subsequently eliminated from the monolith by heating it under air at the lowest possible temperature (440 °C according to a thermogravimetric study). The size of the coal particles used as a template was intentionally modified by adjusting the milling process (dry or wet) and its duration (1-120 min) to modulate the porosity induced in the clay monoliths after their further burning. N2 physisorption, mercury porosimetry, granulometry and SEM were used to investigate the influence of the above preparative variables on the textural properties of the clay, significant effects being found in the macropore range. Methylene blue adsorption tests under dynamic conditions suggest that there is a correlation between pollutant removal and the macropore structure generated. FTIR spectroscopy indicates that the differences observed in cationic dye adsorption over the monoliths must be related to their different texture rather than to differences in the nature of their surface hydroxyl groups.

  10. A design of experiment approach to the sol–gel synthesis of titania monoliths for chromatographic applications.

    PubMed

    Abi Jaoudé, Maguy; Randon, Jérôme; Bordes, Claire; Lanteri, Pierre; Bois, Laurence

    2012-05-01

    A design of experiement approach is described for the optimization of the microscopic morphology of macro-mesoporous titania monoliths that were elaborated for the chromatographic enrichment of phosphorylated compounds. The monolithic titania gels were formed via an alkoxy-derived sol-gel route in association with a phase separation mechanism. The synthesis was performed at mild temperatures of gelation using starting mixtures of titanium n-propoxide, hydrochloric acid, N-methylformamide, water, and poly (ethylene oxide). The gelation temperature and the chemical compositions of N-methylformamide, water, and poly (ethylene oxide) were chosen as the most relevant experimental factors of the sol–gel process. Using the sizes of the skeletons and macropores as morphological descriptors of the dried porous monoliths, the statistical analyses simultaneously revealed the effects and interactions between the different factors. Crack-free TiO2 monolithic rods of 8 to 10 cm long with well-defined co-continuous macropores and micro-structured skeletons were obtained after selection of the sol-gel parameters and optimization of the drying and heat-treatment steps of the gels. The bimodal texture of the rods exhibited macropores of 1.5 μm and mesopores centered at 5.2 nm with a total surface area of 140 m2 g(-1). The ability of the macro-mesoporous titania rods to selectively bind phosphorylated compounds was demonstrated for O-phosphoamino acids (P-Ser, P-Thr, P-Tyr).

  11. Deep-red semiconductor monolithic mode-locked lasers

    NASA Astrophysics Data System (ADS)

    Kong, L.; Wang, H. L.; Bajek, D.; White, S. E.; Forrest, A. F.; Wang, X. L.; Cui, B. F.; Pan, J. Q.; Ding, Y.; Cataluna, M. A.

    2014-12-01

    A deep-red semiconductor monolithic mode-locked laser is demonstrated. Multi-section laser diodes based on an AlGaAs multi-quantum-well structure were passively mode-locked, enabling the generation of picosecond optical pulses at 752 nm, at pulse repetition rates of 19.37 GHz. An investigation of the dependence of the pulse duration as a function of reverse bias revealed a predominantly exponential decay trend of the pulse duration, varying from 10.5 ps down to 3.5 ps, which can be associated with the concomitant reduction of absorption recovery time with increasing applied field. A 30-MHz-tunability of the pulse repetition rate with bias conditions is also reported. The demonstration of such a compact, efficient and versatile ultrafast laser in this spectral region paves the way for its deployment in a wide range of applications such as biomedical microscopy, pulsed terahertz generation as well as microwave and millimeter-wave generation, with further impact on sensing, imaging and optical communications.

  12. III-nitride monolithic LED covering full RGB color gamut

    NASA Astrophysics Data System (ADS)

    El-Ghoroury, Hussein S.; Chuang, Chih-Li; Kisin, Mikhail V.

    2016-03-01

    We present numerical simulation of III-nitride monolithic multi-color LED covering full red-green-blue (RGB) color gamut. The RGB LED structure was grown at Ostendo Technologies Inc. and has been used in Ostendo proprietary Quantum Photonic Imager (QPI) device. Active region of our RGB LED incorporates specially designed intermediate carrier blocking layers (ICBLs) controlling transport of each type of carriers and subsequent carrier injection redistribution among the optically active quantum wells (QWs) with different emission wavelengths. ICBLs are proved to be essential elements of multi-color LED active region design requiring optimization both in material composition and doping level. Strong interdependence between ICBL parameters and active QW characteristics presents additional challenge to multi-color LED design. Combination of several effects was crucial for adequate simulation of RGB LED color control features. Standard drift-diffusion transport model has been appended with rate equations for dynamic QW-confined carrier populations which appear severely off-balanced from corresponding mobile carrier subsystems. QW overshoot and Auger-assisted QW depopulation were also included into the carrier kinetic model thus enhancing the non-equilibrium character of QW confined populations and supporting the mobile carrier transport across the MQW active region. For device simulation we use COMSOL-based program suit developed at Ostendo Technologies Inc.

  13. Deep-red semiconductor monolithic mode-locked lasers

    SciTech Connect

    Kong, L.; Bajek, D.; White, S. E.; Forrest, A. F.; Cataluna, M. A.; Wang, H. L.; Pan, J. Q.; Wang, X. L.; Cui, B. F.; Ding, Y.

    2014-12-01

    A deep-red semiconductor monolithic mode-locked laser is demonstrated. Multi-section laser diodes based on an AlGaAs multi-quantum-well structure were passively mode-locked, enabling the generation of picosecond optical pulses at 752 nm, at pulse repetition rates of 19.37 GHz. An investigation of the dependence of the pulse duration as a function of reverse bias revealed a predominantly exponential decay trend of the pulse duration, varying from 10.5 ps down to 3.5 ps, which can be associated with the concomitant reduction of absorption recovery time with increasing applied field. A 30-MHz-tunability of the pulse repetition rate with bias conditions is also reported. The demonstration of such a compact, efficient and versatile ultrafast laser in this spectral region paves the way for its deployment in a wide range of applications such as biomedical microscopy, pulsed terahertz generation as well as microwave and millimeter-wave generation, with further impact on sensing, imaging and optical communications.

  14. FIBROUS MONOLITH WEAR RESISTANT COMPONENTS FOR THE MINING INDUSTRY

    SciTech Connect

    Mark J. Rigali; Kenneth L. Knittel; Mike L. Fulcher

    2002-03-01

    During this reporting period, work continued on development of formulations using the materials identified as contenders for the fibrous monolith wear resistant components. The FM structures fabricated were: diamond/WC-Co, B{sub 4}C/WC-Co, TiB{sub 2}/WC-Co, WC-Co/Co, WC-Co/WC-Co. Results of our consolidation densification studies on these systems lead to the down-selection of WC-Co/WC-Co, WC-Co/Co and diamond/WC-Co for further development for mining applications including drill bit inserts, roof bit inserts, radial tools conical tools and wear plates (WC-Co based system only) for earth moving equipment. Prototype component fabrication focused on the fabrication of WC-Co/WC-Co FM conical tools, diamond/WC-Co coated drill bit insert prototypes. Fabrication of WC-Co/WC-Co FM insert prototypes for a grader blade is also underway. ACR plans to initiate field-testing of the drill bit insert prototypes and the grader blade insert this summer (2002). The first WC-Co/WC-Co FM conical tool prototypes were sent to Kennametal for evaluation towards the end of the current reporting period.

  15. A monolithic 3D integrated nanomagnetic co-processing unit

    NASA Astrophysics Data System (ADS)

    Becherer, M.; Breitkreutz-v. Gamm, S.; Eichwald, I.; Žiemys, G.; Kiermaier, J.; Csaba, G.; Schmitt-Landsiedel, D.

    2016-01-01

    As CMOS scaling becomes more and more challenging there is strong impetus for beyond CMOS device research to add new functionality to ICs. In this article, a promising technology with non-volatile ferromagnetic computing states - the so-called Perpendicular Nanomagnetic Logic (pNML) - is reviewed. After introducing the 2D planar implementation of NML with magnetization perpendicular to the surface, the path to monolithically 3D integrated systems is discussed. Instead of CMOS substitution, additional functionality is added by a co-processor architecture as a prospective back-end-of-line (BEOL) process, where the computing elements are clocked by a soft-magnetic on-chip inductor. The unconventional computation in the ferromagnetic domain can lead to highly dense computing structures without leakage currents, attojoule dissipation per bit operation and data-throughputs comparable to state-of-the-art high-performance CMOS CPUs. In appropriate applications and with specialized computing architectures they might even circumvent the bottleneck of time-consuming memory access, as computation is inherently performed with non-volatile computing states.

  16. Proposal for all-graphene monolithic logic circuits

    NASA Astrophysics Data System (ADS)

    Kang, Jiahao; Sarkar, Deblina; Khatami, Yasin; Banerjee, Kaustav

    2013-08-01

    Since the very inception of integrated circuits, dissimilar materials have been used for fabricating devices and interconnects. Typically, semiconductors are used for devices and metals are used for interconnecting them. This, however, leads to a "contact resistance" between them that degrades device and circuit performance, especially for nanoscale technologies. This letter introduces and explores an "all-graphene" device-interconnect co-design scheme, where a single 2-dimensional sheet of monolayer graphene is proposed to be monolithically patterned to form both active devices (graphene nanoribbon tunnel-field-effect-transistors) as well as interconnects in a seamless manner. Thereby, the use of external contacts is alleviated, resulting in substantial reduction in contact parasitics. Calculations based on tight-binding theory and Non-Equilibrium Green's Function (NEGF) formalism solved self-consistently with the Poisson's equation are used to analyze the intricate properties of the proposed structure. This constitutes the first NEGF simulation based demonstration that devices and interconnects can be built using the "same starting material" - graphene. Moreover, it is also shown that all-graphene circuits can surpass the static performances of the 22 nm complementary metal-oxide-semiconductor devices, including minimum operable supply voltage, static noise margin, and power consumption.

  17. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Sokolov, V.; Geddes, J.; Bauhahn, P.

    1983-01-01

    Key requirements for a 30 GHz GaAs monolithic receive module for spaceborne communication antenna feed array applications include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five-bit phase shifter, and a maximum power consumption of 250 mW. The RF designs for each of the four submodules (low noise amplifier, some gain control, phase shifter, and RF to IF sub-module) are presented. Except for the phase shifter, high frequency, low noise FETs with sub-half micron gate lengths are employed in the submodules. For the gain control, a two stage dual gate FET amplifier is used. The phase shifter is of the passive switched line type and consists of 5-bits. It uses relatively large gate width FETs (with zero drain to source bias) as the switching elements. A 20 GHz local oscillator buffer amplifier, a FET compatible balanced mixer, and a 5-8 GHz IF amplifier constitute the RF/IF sub-module. Phase shifter fabrication using ion implantation and a self-aligned gate technique is described. Preliminary RF results obtained on such phase shifters are included.

  18. Solid oxide fuel cell having monolithic core

    DOEpatents

    Ackerman, John P.; Young, John E.

    1984-01-01

    A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween, and each interconnect wall consists of thin layers of the cathode and anode materials sandwiching a thin layer of interconnect material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick.

  19. Solid oxide fuel cell having monolithic core

    DOEpatents

    Ackerman, J.P.; Young, J.E.

    1983-10-12

    A solid oxide fuel cell is described for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick.

  20. Solid oxide fuel cell with monolithic core

    DOEpatents

    McPheeters, Charles C.; Mrazek, Franklin C.

    1988-01-01

    A solid oxide fuel cell in which fuel and oxidant gases undergo an electrochemical reaction to produce an electrical output includes a monolithic core comprised of a corrugated conductive sheet disposed between upper and lower generally flat sheets. The corrugated sheet includes a plurality of spaced, parallel, elongated slots which form a series of closed, linear, first upper and second lower gas flow channels with the upper and lower sheets within which a fuel gas and an oxidant gas respectively flow. Facing ends of the fuel cell are generally V-shaped and provide for fuel and oxidant gas inlet and outlet flow, respectively, and include inlet and outlet gas flow channels which are continuous with the aforementioned upper fuel gas and lower oxidant gas flow channels. The upper and lower flat sheets and the intermediate corrugated sheet are preferably comprised of ceramic materials and are securely coupled together such as by assembly in the green state and sintering together during firing at high temperatures. A potential difference across the fuel cell, or across a stacked array of similar fuel cells, is generated when an oxidant gas such as air and a fuel such as hydrogen gas is directed through the fuel cell at high temperatures, e.g., between 700.degree. C. and 1100.degree. C.

  1. Solid oxide fuel cell with monolithic core

    DOEpatents

    McPheeters, C.C.; Mrazek, F.C.

    1988-08-02

    A solid oxide fuel cell in which fuel and oxidant gases undergo an electrochemical reaction to produce an electrical output includes a monolithic core comprised of a corrugated conductive sheet disposed between upper and lower generally flat sheets. The corrugated sheet includes a plurality of spaced, parallel, elongated slots which form a series of closed, linear, first upper and second lower gas flow channels with the upper and lower sheets within which a fuel gas and an oxidant gas respectively flow. Facing ends of the fuel cell are generally V-shaped and provide for fuel and oxidant gas inlet and outlet flow, respectively, and include inlet and outlet gas flow channels which are continuous with the aforementioned upper fuel gas and lower oxidant gas flow channels. The upper and lower flat sheets and the intermediate corrugated sheet are preferably comprised of ceramic materials and are securely coupled together such as by assembly in the green state and sintering together during firing at high temperatures. A potential difference across the fuel cell, or across a stacked array of similar fuel cells, is generated when an oxidant gas such as air and a fuel such as hydrogen gas is directed through the fuel cell at high temperatures, e.g., between 700 C and 1,100 C. 8 figs.

  2. Monolithic supports with unique geometries and enhanced mass transfer.

    SciTech Connect

    Stuecker, John Nicholas; Ferrizz, Robert Matthew; Cesarano, Joseph, III; Miller, James Edward

    2004-01-01

    The catalytic combustion of natural gas has been the topic of much research over the past decade. Interest in this technology results from a desire to decrease or eliminate the emissions of harmful nitrogen oxides (NOX) from gas turbine power plants. A low-pressure drop catalyst support, such as a ceramic monolith, is ideal for this high-temperature, high-flow application. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. 'Robocasting' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low pressure drops. This report details the mass transfer effects for novel 3-dimensional robocast monoliths, traditional honeycomb-type monoliths, and ceramic foams. The mass transfer limit is experimentally determined using the probe reaction of CO oxidation over a Pt / {gamma}-Al{sub 2}O{sub 3} catalyst, and the pressure drop is measured for each monolith sample. Conversion versus temperature data is analyzed quantitatively using well-known dimensionless mass transfer parameters. The results show that, relative to the honeycomb monolith support, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application.

  3. There's more than one way to skin a cat: A wide selection of techniques used for the preparation of porous polymer monoliths

    PubMed Central

    Svec, Frantisek

    2010-01-01

    The porous polymer monoliths went a long way since their invention two decades ago. While the first studies applied the traditional polymerization processes at that time well established for the preparation of polymer particles, creativity of scientists interested in the monolithic structures has later led to the use of numerous less common techniques. This review article presents vast variety of methods that have meanwhile emerged. The text first briefly describes the early approaches used for the preparation of monoliths comprising standard free radical polymerizations and includes their development up to present days. Specific attention is paid to the effects of process variables on the formation of both porous structure and pore surface chemistry. Specific attention is also devoted to the use of photopolymerization. Then, several less common free radical polymerization techniques are presented in more detail such as those initiated by γ-rays and electron beam, the preparation of monoliths from high internal phase emulsions, and cryogels. Living processes including stable free radicals, atom transfer radical polymerization, and ring opening metathesis polymerization are also discussed. The review ends with description of preparation methods based on polycondensation and polyaddition reactions as well as on precipitation of preformed polymers affording the monolithic materials. PMID:19828151

  4. Preparation of quaternary amine monolithic column for strong anion-exchange chromatography and its application to the separation of Enterovirus 71.

    PubMed

    Gu, Huimin; Yin, Dezhong; Ren, Jie; Zhang, Baoliang; Zhang, Qiuyu

    2016-10-15

    Large size virion is unable to diffuse into pores of conventional porous chromatography particles. Therefore, separation of virion by conventional column-packing materials is not quite efficient. To solve this problem, a monolithic column with large convective pores and quaternary amine groups was prepared and was applied to separate Enterovirus 71 (EV71, ≈5700-6000kDa). Cross-section, pore structure, hydrodynamic performance, adsorption property and dynamic binding capacity of prepared monolithic column were determined. Double-pore structures, macropore at 2472nm and mesopore at 5-60nm, were formed. The porosity was up to 63.3%, which enable higher permeability and lower back pressure of the monolithic column than commercial UNO™ Q1 column. Based on the breakthrough curves, the loading capacity of bovine serum albumin was calculated to be 42.0mg per column. In addition, prepared quaternary amine monolithic column was proved to be suitable for the separation of protein mixture by strong anion-exchange chromatography. As a practical application, prepared monolith column presents excellent performance to the separation of EV71 from virus-proteins mixture.

  5. Unique Separation Behavior of a C60 Fullerene-Bonded Silica Monolith Prepared by an Effective Thermal Coupling Agent.

    PubMed

    Kubo, Takuya; Murakami, Yoshiki; Tsuzuki, Madoka; Kobayashi, Hiroshi; Naito, Toyohiro; Sano, Tomoharu; Yan, Mingdi; Otsuka, Koji

    2015-12-01

    Herein, we report a newly developed C60 fullerene-bonded silica monolith in a capillary with unique retention behavior due to the structure of C60 fullerene. N-Hydroxysuccinimide (NHS)-conjugated C60 fullerene was successfully synthesized by a thermal coupling agent, perfluorophenyl azide (PFPA), and assigned by spectroscopic analyses. Then, NHS-PFPA-C60 fullerene was attached onto the surface of a silica monolith in a capillary. The capillary provided specific separation ability for polycyclic aromatic hydrocarbons in liquid chromatography by an effective π-π interaction. Furthermore, corannulene, which has a hemispherical structure, was selectively retained in the capillary based on the specific structural recognition due to the spherical C60 fullerene. This is the first report revealing the spherical recognition ability by C60 fullerene in liquid chromatographic separation.

  6. Advanced Gasification Mercury/Trace Metal Control with Monolith Traps

    SciTech Connect

    Musich, Mark; Swanson, Michael; Dunham, Grant; Stanislowski, Joshua

    2010-10-05

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m{sup 3} (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m{sup 3} (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most

  7. ADVANCED GASIFICATION MERCURY/TRACE METAL CONTROL WITH MONOLITH TRAPS

    SciTech Connect

    Mark A. Musich; Michael L. Swanson; Grant E. Dunham; Joshua J. Stanislowski

    2010-07-31

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m3 (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m3 (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most effective arsine

  8. Structural Ceramics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This publication is a compilation of abstracts and slides of papers presented at the NASA Lewis Structural Ceramics Workshop. Collectively, these papers depict the scope of NASA Lewis' structural ceramics program. The technical areas include monolithic SiC and Si3N4 development, ceramic matrix composites, tribology, design methodology, nondestructive evaluation (NDE), fracture mechanics, and corrosion.

  9. Edge chipping and flexural resistance of monolithic ceramics☆

    PubMed Central

    Zhang, Yu; Lee, James J.-W.; Srikanth, Ramanathan; Lawn, Brian R.

    2014-01-01

    Objective Test the hypothesis that monolithic ceramics can be developed with combined esthetics and superior fracture resistance to circumvent processing and performance drawbacks of traditional all-ceramic crowns and fixed-dental-prostheses consisting of a hard and strong core with an esthetic porcelain veneer. Specifically, to demonstrate that monolithic prostheses can be produced with a much reduced susceptibility to fracture. Methods Protocols were applied for quantifying resistance to chipping as well as resistance to flexural failure in two classes of dental ceramic, microstructurally-modified zirconias and lithium disilicate glass–ceramics. A sharp indenter was used to induce chips near the edges of flat-layer specimens, and the results compared with predictions from a critical load equation. The critical loads required to produce cementation surface failure in monolithic specimens bonded to dentin were computed from established flexural strength relations and the predictions validated with experimental data. Results Monolithic zirconias have superior chipping and flexural fracture resistance relative to their veneered counterparts. While they have superior esthetics, glass–ceramics exhibit lower strength but higher chip fracture resistance relative to porcelain-veneered zirconias. Significance The study suggests a promising future for new and improved monolithic ceramic restorations, with combined durability and acceptable esthetics. PMID:24139756

  10. Pore volume accessibility of particulate and monolithic stationary phases.

    PubMed

    Urban, Jiří

    2015-05-29

    A chromatographic characterization of pore volume accessibility for both particulate and monolithic stationary phases is presented. Size-exclusion calibration curves have been used to determine the pore volume fraction that is accessible for six alkylbenzenes and twelve polystyrene standards in tetrahydrofuran as the mobile phase. Accessible porosity has been then correlated with the size of the pores from which individual compounds are just excluded. I have determined pore volume accessibility of commercially available columns packed with fully and superficially porous particles, as well as with silica-based monolithic stationary phase. I also have investigated pore accessibility of polymer-based monolithic stationary phases. Suggested protocol is used to characterize pore formation at the early stage of the polymerization, to evaluate an extent of hypercrosslinking during modification of pore surface, and to characterize the pore accessibility of monolithic stationary phases hypercrosslinked after an early termination of polymerization reaction. Pore volume accessibility was also correlated to column efficiency of both particulate and monolithic stationary phases. PMID:25892635

  11. Thermoresponsive ketoprofen-imprinted monolith prepared in ionic liquid.

    PubMed

    Sun, Xuan; Zhao, Chun-Yan; Wang, Xian-Hua; Huang, Yan-Ping; Liu, Zhao-Sheng

    2014-09-01

    A thermoresponsive imprinted monolith with the ability of molecular recognition for ketoprofen was prepared for the first time. The smart monolith was synthesized in a stainless steel column using acrylamide (AAm) and 2-acrylamide-2-methyl propanesulfonic acid (AMPS) as functional monomers, which can form interpolymer complexation to restrict access of the analyte to the imprinted networks at low temperatures. To avoid a high back pressure of the column derived from neat dimethyl sulfoxide (DMSO) as a porogenic solvent that is needed to solve polar AMPS, an ionic liquid, [BMIM]BF4, was introduced into the pre-polymerization mixture. The molecular recognition ability towards ketoprofen of the resulting thermoresponsive molecularly imprinted polymer (MIP) monolith displayed significant dependence on temperature compared with a non-imprinted column (NIP), and the greatest imprinting factor was achieved at the transition temperature of 35 °C (above 10). Furthermore, the number of binding sites of the smart MIP monolith at 35 °C was about 76 times as large as that at 25 °C. In addition, Freundlich analyses indicated that the thermoresponsive MIP monolith had homogeneous affinity sites at both 25 and 35 °C with heterogeneity index 0.9251 and 0.9851, respectively.

  12. Continuous vs. discrete models of nonadiabatic monolith catalysts

    SciTech Connect

    Groppi, G.; Tronconi, E.

    1996-08-01

    Monolith catalysts are widely applied for clean up of waste gases [catalytic mufflers, volatile organic compound (VOC) incinerators, reactors for selective catalytic reduction (SCR) of NO{sub x} by NH{sub 3}] in view of their unique combination of low-pressure drops and high gas-solid interfacial areas. The crucial point in continuous heat-transfer models is the evaluation of the effective thermal conductivity coefficients, which are functions both of the physical properties of the two phases and of the monolith geometry. In this work a novel expression for calculation of the radial effective conductivity is derived. The physical consistency of the steady-state continuous model implementing such an expression is then analyzed by comparison with a discrete monolith model. In spite of the just-mentioned limitations, discrete models have been partially validated in the literature against experimental temperature profiles in heated monoliths; thus, they can be regarded as a standard in evaluating the adequacy of the continuum approach. The reference problem of pure heat transfer with constant temperature of the external monolith wall is investigated for these purposes.

  13. V-band monolithic two stage HEMT amplifiers

    NASA Astrophysics Data System (ADS)

    Aust, M.; Yonaki, J.; Nakano, K.; Berenz, J.; Dow, G.

    Two different types of HEMT (high-electron-mobility transistor) monolithic low-noise amplifiers (LNAs) using AlGaAs/GaAs and pseudomorphic InGaAs/GaAs materials have been developed and have demonstrated excellent performance at 60 GHz. These monolithic LNAs have achieved noise figures of 5 dB, as well as associated gains of 11 dB. These two-stage circuits both utilize 0.2- x 60-micron HEMT devices for both bandpass and low-pass circuit topologies. Noise figures as low as 4.5 dB have been observed for single-stage MMIC- (monolithic-microwave-integrated-circuit) implemented LNAs, and gains in excess of 20 dB have been observed for three-stage versions of this amplifier with a 5-dB noise figure in the V band. This result represents the state-of-the art monolithic HEMT amplifier performance for AlGaAs and pseudomorphic InGaAs materials. This MMIC amplifier can occupy about less than one-third the size of existing MIC hybrid V-band LNAs. This represents a significant size reduction and cost saving due to repeatable circuit performance with monolithic technology. The chip sizes are both 1.6 x 2.7 mm for these two-stage amplifiers.

  14. Development of a far-infrared Ge:Ga monolithic array for a possible application to SPICA

    NASA Astrophysics Data System (ADS)

    Shirahata, Mai; Kamiya, Shuhei; Matsuura, Shuji; Kawada, Mitsunobu; Sawayama, Yoshihiro; Doi, Yasuo; Nakagawa, Takao; Wada, Takehiko; Kawada, Hidehiro; Creten, Ybe; Okcan, Burak; Raab, Walfried; Poglitsch, Albrecht

    2010-07-01

    We present the current status of the development of a far-infrared monolithic Ge:Ga photoconductor array proposed for the SAFARI instrument onboard SPICA, which is a future infrared space mission. SPICA has a large (3-m class) cooled (<6 K) telescope, which enables us to make astronomical observations with high spatial resolution and unprecedented sensitivity in the mid- and far-infrared wavelength. As a candidate detector to cover the 45-110 μm band of a far-infrared focal plan instrument of SAFARI, we are developing a large format monolithic Ge:Ga array. The monolithic Ge:Ga array is directly connected to cryogenic readout electronics (CRE) using the Au-Indium bumping technology. Our goal is to develop a 64×64 Ge:Ga array, on the basis of existing technologies and experience in making the 3×20 Ge:Ga monolithic arrays for the AKARI satellite. In order to realize a larger format array with better sensitivity than that of the AKARI array, we have been making some technical improvements; (1) development of the Au-In bumping technology to realize the large format array, (2) optimization of the structure of the transparent electrode to achieve the better sensitivity, (3) development of an anti-reflection coating to reduce interference fringe between the Ge substrate, and (4) Use of the low-noise cryogenic readout electronics with low power consumption. We fabricated the prototype 5×5 Ge:Ga arrays to demonstrate and evaluate the properties of monolithic array. We demonstrate experimentally the feasibility of these elemental technologies, and also show the results of performance measurements for the prototype Ge:Ga arrays.

  15. GaAs monolithic R.F. modules for SARSAT distress beacons

    NASA Technical Reports Server (NTRS)

    Cauley, Michael A.

    1991-01-01

    Monolithic GaAs UHF components for use in SARSAT Emergency Distress beacons are under development by Microwave Monolithics, Inc., Simi Valley, CA. The components include a bi-phase modulator, driver amplifier, and a 5 watt power amplifier.

  16. Monolithic interconnected module with a tunnel junction for enhanced electrical and optical performance

    DOEpatents

    Murray, Christopher S.; Wilt, David M.

    2000-01-01

    An improved thermophotovoltaic (TPV) n/p/n device is provided. Monolithic Interconnected Modules (MIMS), semiconductor devices converting infrared radiation to electricity, have been developed with improved electrical and optical performance. The structure is an n-type emitter on a p-type base with an n-type lateral conduction layer. The incorporation of a tunnel junction and the reduction in the amount of p-type material used results in negligible parasitic absorption, decreased series resistance, increased voltage and increased active area. The novel use of a tunnel junction results in the potential for a TPV device with efficiency greater than 24%.

  17. A Monolithic Interconnected module with a tunnel Junction for Enhanced Electrical and Optical Performance

    SciTech Connect

    Murray, Christopher Sean; Wilt, David Morgan

    1999-06-30

    An improved thermophotovoltaic (TPV) n/p/n device is provided. Monolithic Interconnected Modules (MIMs), semiconductor devices converting infrared radiation to electricity, have been developed with improved electrical and optical performance. The structure is an n-type emitter on a p-type base with an n-type lateral conduction layer. The incorporation of a tunnel junction and the reduction in the amount of p-type material used results in negligible parasitic absorption, decreased series resistance, increased voltage and increased active area. The novel use of a tunnel junction results in the potential for a TPV device with efficiency greater than 24%.

  18. Monolithic light guide optics enabling new user experience for see-through AR glasses

    NASA Astrophysics Data System (ADS)

    Sarayeddline, K.; Mirza, K.; Benoit, P.; Hugel, X.

    2014-09-01

    This paper describes the performances of mold light guide based see-through optics for the production of AR glasses for commercial and professional applications. A monolithic thin mold light guide with surface structure mirror array extracts and project bright and large virtual image into the user eye of sight. The light guide thin form factor allows a new user experience with two possible positions for the virtual image in front of the user eye. A wireless AR glasses based on this concept will be described and demonstrated. A comparison with others light guide based technologies in term of Safety, Brightness efficiency and form factor will be presented and discussed.

  19. ATLAST-8 Mission Concept Study for 8-Meter Monolithic UV/Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Postman, Marc; Arnold, William R., Sr.; Hopkins, Randall C.; Hornsby, Linda; Mosier, Gary E.; Pasquale, Bert A.

    2010-01-01

    ATLAST-8m is an 8-meter monolithic UV/optical/NIR space observatory which could be placed in orbit at Sun-Earth L2 by a heavily lift launch vehicle. Two development study cycles have resulted in a detailed concept including a dual foci optical design; several primary mirror launch support and secondary mirror support structural designs; spacecraft propulsion, power and pointing control design; and thermal design. ATLAST-8m is designed to yield never before achieved performance to obtain fundamental astronomical breakthroughs

  20. Parallel preconditioners for monolithic solution of shear bands

    NASA Astrophysics Data System (ADS)

    Berger-Vergiat, Luc; McAuliffe, Colin; Waisman, Haim

    2016-01-01

    Shear bands are one of the most fascinating instabilities in metals that occur under high strain rates. They describe narrow regions, on the order of micron scales, where plastic deformations and significant heating are localized which eventually leads to fracture nucleation and failure of the component. In this work shear bands are described by a set of four strongly coupled thermo-mechanical equations discretized by a mixed finite element formulation. A thermo-viscoplastic flow rule is used to model the inelastic constitutive law and finite thermal conductivity is prescribed which gives rise to an inherent physical length scale, governed by competition of shear heating and thermal diffusion. The residual equations are solved monolithically by a Newton type method at every time step and have been shown to yield mesh insensitive result. The Jacobian of the system is sparse and has a nonsymmetric block structure that varies with the different stages of shear bands formation. The aim of the current work is to develop robust parallel preconditioners to GMRES in order to solve the resulting Jacobian systems efficiently. The main idea is to design Schur complements tailored to the specific block structure of the system and that account for the varying stages of shear bands. We develop multipurpose preconditioners that apply to standard irreducible discretizations as well as our recent work on isogeometric discretizations of shear bands. The proposed preconditioners are tested on benchmark examples and compared to standard state of practice solvers such as GMRES/ILU and LU direct solvers. Nonlinear and linear iterations counts as well as CPU times and computational speedups are reported and it is shown that the proposed preconditioners are robust, efficient and outperform traditional state of the art solvers.

  1. A Viscoplastic Constitutive Theory for Monolithic Ceramic Materials. Series 1

    NASA Technical Reports Server (NTRS)

    Janosik, Lesley A.; Duffy, Stephen F.

    1997-01-01

    With increasing use of ceramic materials in high temperature structural applications such as advanced heat engine components, the need arises to accurately predict thermomechanical behavior. This paper, which is the first of two in a series, will focus on inelastic deformation behavior associated with these service conditions by providing an overview of a viscoplastic constitutive model that accounts for time-dependent hereditary material deformation (e.g., creep, stress relaxation, etc.) in monolithic structural ceramics. Early work in the field of metal plasticity indicated that inelastic deformations are essentially unaffected by hydrostatic stress. This is not the case, however, for ceramic-based material systems, unless the ceramic is fully dense. The theory presented here allows for fully dense material behavior as a limiting case. In addition, ceramic materials exhibit different time-dependent behavior in tension and compression. Thus, inelastic deformation models for ceramics must be constructed in a fashion that admits both sensitivity to hydrostatic stress and differing behavior in tension and compression. A number of constitutive theories for materials that exhibit sensitivity to the hydrostatic component of stress have been proposed that characterize deformation using time-independent classical plasticity as a foundation. However, none of these theories allow different behavior in tension and compression. In addition, these theories are somewhat lacking in that they are unable to capture creep, relaxation, and rate-sensitive phenomena exhibited by ceramic materials at high temperature. When subjected to elevated service temperatures, ceramic materials exhibit complex thermomechanical behavior that is inherently time-dependent, and hereditary in the sense that current behavior depends not only on current conditions, but also on thermo-mechanical history. The objective of this work is to present the formulation of a macroscopic continuum theory that

  2. Physical properties of monolithic U8 wt.%-Mo

    NASA Astrophysics Data System (ADS)

    Hengstler, R. M.; Beck, L.; Breitkreutz, H.; Jarousse, C.; Jungwirth, R.; Petry, W.; Schmid, W.; Schneider, J.; Wieschalla, N.

    2010-07-01

    As a possible high density fuel for research reactors, monolithic U8 wt.%-Mo ("U8Mo") was examined with regard to its structural, thermal and electric properties. X-ray diffraction by the Bragg-Brentano method was used to reveal the tetragonal lattice structure of rolled U8Mo. The specific heat capacity of cast U8Mo was determined by differential scanning calorimetry, its thermal diffusivity was measured by the laser flash method and its mass density by Archimedes' principle. From these results, the thermal conductivity of U8Mo in the temperature range from 40 °C to 250 °C was calculated; in the measured temperature range, it is in good accordance with literature data for UMo with 8 and 9 wt.% Mo, is higher than for 10 wt.% Mo and lower than for 5 wt.% Mo. The electric conductivity of rolled and cast U8Mo was measured by a four-wire method and the electron based part of the thermal conductivity calculated by the Wiedemann-Frantz law. Rolled and cast U8Mo was irradiated at about 150 °C with 80 MeV 127I ions to receive the same iodine ion density in the damage peak region as the fission product density in the fuel of a typical high flux reactor after the targeted nuclear burn-up. XRD analysis of irradiated U8Mo showed a change of the lattice parameters as well as the creation of UO 2 in the superficial sample regions; however, a phase change by irradiation was not observed. The determination of the electron based part of the thermal conductivity of the irradiated samples failed due to high measurement errors which are caused by the low thickness of the damage region in the ion irradiated samples.

  3. Monolithic fuel cell based power source for burst power generation

    NASA Astrophysics Data System (ADS)

    Fee, D. C.; Blackburn, P. E.; Busch, D. E.; Dees, D. W.; Dusek, J.; Easler, T. E.; Ellingson, W. A.; Flandermeyer, B. K.; Fousek, R. J.; Heiberger, J. J.

    A unique fuel cell coupled with a low power nuclear reactor presents an attractive approach for SDI burst power requirements. The monolithic fuel cell looks attractive for space applications and represents a quantum jump in fuel cell technology. Such a breakthrough in design is the enabling technology for lightweight, low volume power sources for space based pulse power systems. The monolith is unique among fuel cells in being an all solid state device. The capability for miniaturization, inherent in solid state devices, gives the low volume required for space missions. In addition, the solid oxide fuel cell technology employed in the monolith has high temperature reject heat and can be operated in either closed or open cycles. Both these features are attractive for integration into a burst power system.

  4. Synthesis of transparent nanocomposite monoliths for gamma scintillation

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Hajagos, Tibor J.; Kishpaugh, David; Jin, Yunxia; Hu, Wei; Chen, Qi; Pei, Qibing

    2015-08-01

    During the past decade, inorganic nanoparticles/polymer nanocomposites have been intensively studied to provide a low cost, high performance alternative for gamma scintillation. However, the aggregation of nanoparticles often occurs even at low nanoparticle concentrations and thus deteriorates the transparency and performance of these nanocomposite scintillators. Here we report an efficient fabrication protocol of transparent nanocomposite monoliths based on surface modified hafnium oxide nanoparticles. Using hafnium oxide nanoparticles with surface-grafted methacrylate groups, highly transparent bulk-size nanocomposite monoliths (2 mm thick, transmittance at 550 nm >75%) are fabricated with nanoparticle loadings up to 40 wt% (net hafnium wt% up to 28.5%). These nanocomposite monoliths of 1 cm diameter and 2 mm thickness are capable of producing a full energy photopeak for 662 keV gamma rays, with the best deconvoluted photopeak energy resolution reaching 8%.

  5. Cerec anterior crowns: restorative options with monolithic ceramic materials.

    PubMed

    Reich, Sven; Fiedlar, Kurt

    2013-01-01

    The aim of this article is to discuss the different types of monolithic ceramic crowns that can be placed on anterior teeth with existing shoulder preparations. Anterior crowns were indicated for the teeth 12 to 22 in the present case. The patient, a 65-year-old male, had received all-ceramic crowns 20 years earlier, which had started to develop cracks and palatal fractures over the last few years. The patient's teeth were prepared and four sets of crowns were fabricated using different monolithic ceramic materials: IPS e.max CAD, Cerec Blocs C In, VITABLOCS Real Life, and ENAMIC. Both shade characterization and crystallization firing were performed on the monolithic lithium disilicate glass ceramic crowns. The silicate ceramic crowns received glaze firing alone. The crowns made of hybrid ceramic (ENAMIC) were treated with a polymer sealant. PMID:24555406

  6. CHARACTERIZATION OF MONOLITHIC FUEL FOIL PROPERTIES AND BOND STRENGTH

    SciTech Connect

    D E Burkes; D D Keiser; D M Wachs; J S Larson; M D Chapple

    2007-03-01

    Understanding fuel foil mechanical properties, and fuel / cladding bond quality and strength in monolithic plates is an important area of investigation and quantification. Specifically, what constitutes an acceptable monolithic fuel – cladding bond, how are the properties of the bond measured and determined, and what is the impact of fabrication process or change in parameters on the level of bonding? Currently, non-bond areas are quantified employing ultrasonic determinations that are challenging to interpret and understand in terms of irradiation impact. Thus, determining mechanical properties of the fuel foil and what constitutes fuel / cladding non-bonds is essential to successful qualification of monolithic fuel plates. Capabilities and tests related to determination of these properties have been implemented at the INL and are discussed, along with preliminary results.

  7. MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY_

    SciTech Connect

    G. A. Moore; F. J. Rice; N. E. Woolstenhulme; J-F. Jue; B. H. Park; S. E. Steffler; N. P. Hallinan; M. D. Chapple; M. C. Marshall; B. L. Mackowiak; C. R. Clark; B. H. Rabin

    2009-11-01

    Full-size/prototypic U10Mo monolithic fuel-foils and aluminum clad fuel plates are being developed at the Idaho National Laboratory’s (INL) Materials and Fuels Complex (MFC). These efforts are focused on realizing Low Enriched Uranium (LEU) high density monolithic fuel plates for use in High Performance Research and Test Reactors. The U10Mo fuel foils under development afford a fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. An overview is provided of the ongoing monolithic UMo fuel development effort, including application of a zirconium barrier layer on fuel foils, fabrication scale-up efforts, and development of complex/graded fuel foils. Fuel plate clad bonding processes to be discussed include: Hot Isostatic Pressing (HIP) and Friction Bonding (FB).

  8. A Possible Astronomically Aligned Monolith at Gardom's Edge

    NASA Astrophysics Data System (ADS)

    Brown, Daniel; Alder, Andy; Bemand, Elizabeth

    2015-05-01

    A unique triangular shaped monolith located within the Peak District National Park at Gardom's Edge could be intentionally astronomically aligned. It is set within a landscape rich in late Neolithic and Bronze Age remains. We show that the stone is most likely in its original orientation owing to its clear signs of erosion and associated to the time period of the late Neolithic. It is tilted towards south and its north side slopes at an angle equal to the maximum altitude of the Sun at mid-summer. This alignment emphasizes the changing declinations of the Sun during the seasons as well as giving an indication of mid-summers day. This functionality is achieved by an impressive display of light and shadow on the north facing side of the monolith. Together with other monuments in the close vicinity the monolith would have represented an ideal marker or social arena for seasonal gatherings for the otherwise dispersed small communities.

  9. Record Methane Storage in Monolithic and Powdered Activated Carbons

    NASA Astrophysics Data System (ADS)

    Soo, Yuchoong; Nordwald, E.; Hester, B.; Romanos, J.; Isaacson, B.; Stalla, D.; Moore, D.; Kraus, M.; Burress, J.; Dohnke, E.; Pfeifer, P.

    2010-03-01

    The Alliance for Collaborative Research in Alternative Fuel Technology (ALL-CRAFT) has developed activated carbons from corn cob as adsorbent materials for methane gas storage by physisorption at low pressures. KOH activated carbons were compressed into carbon monolith using chemical binders. High pressure methane isotherms up to 250 bar at room temperature on monolithic and powdered activated carbons were measured gravimetrically and volumetrically. Record methane storage capacities of 250 g CH4/kg carbon and 130 g CH4/liter carbon at 35 bar and 293 K have been achieved. BET surface area, porosity, and pore size distributions were measured from sub-critical nitrogen isotherms. Pore entrances were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A prototype adsorbed natural gas (ANG) tank, loaded with carbon monoliths, was tested in Kansas City.

  10. Capillary electrochromatography with polyacrylamide monolithic stationary phases having bonded dodecyl ligands and sulfonic acid groups: evaluation of column performance with alkyl phenyl ketones and neutral moderately polar pesticides.

    PubMed

    Zhang, M; El Rassi, Z

    2001-08-01

    In this report, we describe the preparation of porous polyacrylamide-based monolithic columns via vinyl polymerization. These monoliths possess in their structures bonded dodecyl ligands and sulfonic acid groups. While the sulfonic acid groups are meant to support the electroosmotic flow (EOF) necessary for moving the mobile phase through the monolithic capillary, the dodecyl ligands are introduced to provide the nonpolar sites for chromatographic retention. However, incorporating the sulfonic acid groups in the monoliths does not only support the EOF but also exhibit hydrophilic interaction with moderately polar compounds such as urea herbicides and carbamates insecticides. Consequently, mixed-mode (reversed-phase/normal phase) retention behavior is observed with neutral and moderately polar pesticides. The amount of sulfonic acid group in the monolith can be conveniently adjusted by changing the amount of vinylsulfonic acid added to the polymerization reaction. Optimum EOF velocity and adequate chromatographic retention are obtained when 15% vinylsulfonic acid is added to the reaction mixture. Under these conditions, rapid separation and high plate counts reaching greater than 400000 plates/m are readily obtained.

  11. Preparation of organic-inorganic hybrid silica monolith with octyl and sulfonic acid groups for capillary electrochromatograhpy and application in determination of theophylline and caffeine in beverage.

    PubMed

    Chen, Ming-Luan; Zheng, Ming-Ming; Feng, Yu-Qi

    2010-05-21

    An organic-inorganic hybrid silica monolithic column with octyl and sulfonic acid groups has been prepared by sol-gel technique for capillary electrochromatograhpy. The structure of hybrid monolith was optimized by changing the composition of tetraethoxysilane (TEOS), octyltriethoxysilane (C(8)-TEOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) in the mixture of precursors. Then, the obtained hybrid monolith was oxidized using hydrogen peroxide (30%, w/w) to yield sulfonic acid groups. The sulfonic acid group, which served as strong cation-exchanger, dominated the charge on the surface of the capillary column and generated stable electroosmotic flow (EOF) in a wide range of pH. The monolithic column was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and elemental analysis (EA), and the performance of column was evaluated in detail by separating different kinds of compounds with column efficiency up to 155,000 plates/m for thiourea. In addition, this monolithic column was also applied in the analysis of theophylline (TP) and caffeine (CA) in beverages. The detection limits were 0.39 and 0.48 microg/mL for theophylline and caffeine, respectively. The method reproducibility was tested by evaluating the intra- and inter-day precisions, and relative standard deviations of less than 3.9 and 8.4%, respectively, were obtained. Recoveries of compounds from spiked beverage samples ranged from 87.2 to 105.2%.

  12. Experimental and in silico investigations of organic phosphates and phosphonates sorption on polymer-ceramic monolithic materials and hydroxyapatite.

    PubMed

    Pietrzyńska, Monika; Zembrzuska, Joanna; Tomczak, Rafał; Mikołajczyk, Jakub; Rusińska-Roszak, Danuta; Voelkel, Adam; Buchwald, Tomasz; Jampílek, Josef; Lukáč, Miloš; Devínsky, Ferdinand

    2016-10-10

    A method based on experimental and in silico evaluations for investigating interactions of organic phosphates and phosphonates with hydroxyapatite was developed. This quick and easy method is used for determination of differences among organophosphorus compounds of various structures in their mineral binding affinities. Empirical sorption evaluation was carried out using liquid chromatography with tandem mass spectrometry or UV-VIS spectroscopy. Raman spectroscopy was used to confirm sorption of organic phosphates and phosphonates on hydroxyapatite. Polymer-ceramic monolithic material and bulk hydroxyapatite were applied as sorbent materials. Furthermore, a Polymer-ceramic Monolithic In-Needle Extraction device was used to investigate both sorption and desorption steps. Binding energies were computed from the fully optimised structures utilising Density Functional Theory (DFT) at B3LYP/6-31+G(d,p) level. Potential pharmacologic and toxic effects of the tested compounds were estimated by the Prediction of the Activity Spectra of Substances using GeneXplain software. PMID:27552905

  13. Preparation of poly(γ-glutamic acid)/hydroxyapatite monolith via biomineralization for bone tissue engineering.

    PubMed

    Park, Sung-Bin; Hasegawa, Urara; van der Vlies, André J; Sung, Moon-Hee; Uyama, Hiroshi

    2014-01-01

    A hybrid monolith of poly(γ-glutamic acid) and hydroxyapatite (PGA/HAp monolith) was prepared via biomineralization and used as a macroporous cell scaffold in bone tissue engineering. The PGA monolith having a bimodal pore size distribution was used as a substrate to induce biomineralization. The PGA/HAp monolith was obtained by immersing the PGA monolith in simulated body fluid. Pretreatment with CaCl2 enhanced the apatite-forming ability of the PGA monolith. Murine osteoblastic MC3T3-E1 cells efficiently attached and proliferated on the PGA/HAp monolith. MTT assay showed that both the PGA and PGA/HAp monolith did not have apparent cytotoxicity. Moreover, the PGA and PGA/HAp monoliths adsorbed bone morphogenetic protein-2 (BMP-2) by electrostatic interaction which was slowly released in the medium during cell culture. The PGA/HAp monolith enhanced BMP-2 induced alkaline phosphatase activity compared to the PGA monolith and a polystyrene culture plate. Thus, these PGA/HAp monoliths may have potential in bone tissue engineering.

  14. DATA QUALITY OBJECTIVE SUMMARY REPORT FOR THE 105 K EAST ION EXCHANGE COLUMN MONOLITH

    SciTech Connect

    JOCHEN, R.M.

    2007-08-02

    The 105-K East (KE) Basin Ion Exchange Column (IXC) cells, lead caves, and the surrounding vault are to be removed as necessary components in implementing ''Hanford Federal Facility Agreement and Consent Order'' (Ecology et al. 2003) milestone M-034-32 (Complete Removal of the K East Basin Structure). The IXCs consist of six units located in the KE Basin, three in operating positions in cells and three stored in a lead cave. Methods to remove the IXCs from the KE Basin were evaluated in KBC-28343, ''Disposal of K East Basin Ion Exchange Column Evaluation''. The method selected for removal was grouting the six IXCs into a single monolith for disposal at the Environmental Restoration Disposal Facility (ERDF). Grout will be added to the IXC cells, IXC lead caves containing spent IXCs, and in the spaces between the lead cave walls and metal skin, to immobilize the contaminants, provide self-shielding, minimize void space, and provide a structurally stable waste form. The waste to be offered for disposal is the encapsulated monolith defined by the exterior surfaces of the vault and the lower surface of the underlying slab. This document presents summary of the data quality objective (DQO) process establishing the decisions and data required to support decision-making activities for the disposition of the IXC monolith. The DQO process is completed in accordance with the seven-step planning process described in EPA QA/G-4, ''Guidance for the Data Quality Objectives Process'', which is used to clarify and study objectives; define the appropriate type, quantity, and quality of data; and support defensible decision-making. The DQO process involves the following steps: (1) state the problem; (2) identify the decision; (3) identify the inputs to the decision; (4) define the boundaries of the study; (5) develop a decision rule (DR); (6) specify tolerable limits on decision errors; and (7) optimize the design for obtaining data.

  15. DATA QUALITY OBJECTIVES SUMMARY REPORT FOR THE 105K EAST BASIN ION EXCHANGE COLUMN MONOLITH

    SciTech Connect

    JOCHEN, R.M.

    2007-02-07

    The 105-K East (KE) Basin Ion Exchange Column (IXC) cells, lead caves, and the surrounding vault are to be removed as necessary components in implementing ''Hanford Federal Facility Agreement and Consert Order'' (Ecology et al. 2003) milestone M-034-32 (Complete Removal of the K East Basin Structure). The IXCs consist of six units located in the KE Basin, three in operating positions in cells and three stored in a lead cave. Methods to remove the IXCs from the KE Basin were evaluated in KBC-28343, ''Disposal of K East Basin Ion Exchange Column Evaluation''. The method selected for removal was grouting of the six IXCs into a single monolith for disposal at the Environmental Restoration Disposal Facility (ERDF). Grout will be added to the IXC cells, IXC lead caves containing spent IXCs, and in the spaces between to immobilize the contaminants, provide self-shielding, minimize void space, and provide a structurally stable waste form. The waste to be offered for disposal is the encapsulated monolith defined by the exterior surfaces of the vault and the lower surface of the underlying slab. This document presents a summary of the data quality objective (DQO) process establishing the decisions and data required to support decision-making activities for disposition of the IXC monolith. The DQO process is completed in accordance with the seven-step planning process described in EPA QA/G-4, ''Guidance for the Data Quality Objectives Process'', which is used to clarify and study objectives; define the appropriate type, quantity, and quality of data; and support defensible decision-making. The DQO process involves the following steps: (1) state the problem; (2) identify the decision; (3) identify the inputs to the decision; (4) define the boundaries of the study; (5) develop a decision rule (DR); (6) specify tolerable limits on decision errors; and (7) optimize the design for obtaining data.

  16. A Monolithic Oxide-Based Transversal Thermoelectric Energy Harvester

    NASA Astrophysics Data System (ADS)

    Teichert, S.; Bochmann, A.; Reimann, T.; Schulz, T.; Dreßler, C.; Udich, S.; Töpfer, J.

    2016-03-01

    We report the fabrication and properties of a monolithic transversal thermoelectric energy harvester based on the combination of a thermoelectric oxide and a metal. The fabrication of the device is done with a ceramic multilayer technology using printing and co-firing processes. Five transversal devices were combined to a meander-like thermoelectric generator. Electrical measurements and finite element calculations were performed to characterize the resulting thermoelectric generator. A maximum experimental electrical power output of 30.2 mW at a temperature difference of {Δ }T = 208 K was found. The prepared monolithic thermoelectric generator provides at {Δ }T = 35 K sufficient energy to drive a simple electronic sensor application.

  17. Monolithic integration of Si-MOSFET and GaN-LED using Si/SiO2/GaN-LED wafer

    NASA Astrophysics Data System (ADS)

    Tsuchiyama, Kazuaki; Yamane, Keisuke; Utsunomiya, Shu; Sekiguchi, Hiroto; Okada, Hiroshi; Wakahara, Akihiro

    2016-10-01

    In this report, we present a monolithic integration method for a Si-MOSFET and a GaN-LED onto a Si/SiO2/GaN-LED wafer as an elemental technology for monolithic optoelectronic integrated circuits. To enable a Si-MOSFET device process, we investigated the thermal tolerance of a thin top-Si and GaN-LED layer on a Si/SiO2/GaN-LED wafer. The high thermal tolerance of the Si/SiO2/GaN-LED structure allowed for the monolithic integration of a Si n-MOSFET and a GaN-µLED without degrading the performance of either device. A GaN-µLED driver circuit was fabricated using a Si n-MOSFET and a µLED of 30 × 30 µm2, with the modulation bandwidth of the circuit estimated to be over 10 MHz.

  18. Method for making devices having intermetallic structures and intermetallic devices made thereby

    DOEpatents

    Paul, Brian Kevin; Wilson, Richard Dean; Alman, David Eli

    2004-01-06

    A method and system for making a monolithic intermetallic structure are presented. The structure is made from lamina blanks which comprise multiple layers of metals which are patternable, or intermetallic lamina blanks that are patternable. Lamina blanks are patterned, stacked and registered, and processed to form a monolithic intermetallic structure. The advantages of a patterned monolithic intermetallic structure include physical characteristics such as melting temperature, thermal conductivity, and corrosion resistance. Applications are broad, and include among others, use as a microreactor, heat recycling device, and apparatus for producing superheated steam. Monolithic intermetallic structures may contain one or more catalysts within the internal features.

  19. Monolithic active pixel sensors (MAPS) in a VLSI CMOS technology

    NASA Astrophysics Data System (ADS)

    Turchetta, R.; French, M.; Manolopoulos, S.; Tyndel, M.; Allport, P.; Bates, R.; O'Shea, V.; Hall, G.; Raymond, M.

    2003-03-01

    Monolithic Active Pixel Sensors (MAPS) designed in a standard VLSI CMOS technology have recently been proposed as a compact pixel detector for the detection of high-energy charged particle in vertex/tracking applications. MAPS, also named CMOS sensors, are already extensively used in visible light applications. With respect to other competing imaging technologies, CMOS sensors have several potential advantages in terms of low cost, low power, lower noise at higher speed, random access of pixels which allows windowing of region of interest, ability to integrate several functions on the same chip. This brings altogether to the concept of 'camera-on-a-chip'. In this paper, we review the use of CMOS sensors for particle physics and we analyse their performances in term of the efficiency (fill factor), signal generation, noise, readout speed and sensor area. In most of high-energy physics applications, data reduction is needed in the sensor at an early stage of the data processing before transfer of the data to tape. Because of the large number of pixels, data reduction is needed on the sensor itself or just outside. This brings in stringent requirements on the temporal noise as well as to the sensor uniformity, expressed as a Fixed Pattern Noise (FPN). A pixel architecture with an additional transistor is proposed. This architecture, coupled to correlated double sampling of the signal will allow cancellation of the two dominant noise sources, namely the reset or kTC noise and the FPN. A prototype has been designed in a standard 0.25 μm CMOS technology. It has also a structure for electrical calibration of the sensor. The prototype is functional and detailed tests are under way.

  20. Fabrication of the LSST monolithic primary-tertiary mirror

    NASA Astrophysics Data System (ADS)

    Tuell, Michael T.; Martin, Hubert M.; Burge, James H.; Ketelsen, Dean A.; Law, Kevin; Gressler, William J.; Zhao, Chunyu

    2012-09-01

    As previously reported (at the SPIE Astronomical Instrumentation conference of 2010 in San Diego1), the Large Synoptic Survey Telescope (LSST) utilizes a three-mirror design in which the primary (M1) and tertiary (M3) mirrors are two concentric aspheric surfaces on one monolithic substrate. The substrate material is Ohara E6 borosilicate glass, in a honeycomb sandwich configuration, currently in production at The University of Arizona’s Steward Observatory Mirror Lab. We will provide an update to the status of the mirrors and metrology systems, which have advanced from concepts to hardware in the past two years. In addition to the normal requirements for smooth surfaces of the appropriate prescriptions, the alignment of the two surfaces must be accurately measured and controlled in the production lab, reducing the degrees of freedom needed to be controlled in the telescope. The surface specification is described as a structure function, related to seeing in excellent conditions. Both the pointing and centration of the two optical axes are important parameters, in addition to the axial spacing of the two vertices. This paper details the manufacturing process and metrology systems for each surface, including the alignment of the two surfaces. M1 is a hyperboloid and can utilize a standard Offner null corrector, whereas M3 is an oblate ellipsoid, so it has positive spherical aberration. The null corrector is a phase-etched computer-generated hologram (CGH) between the mirror surface and the center-of-curvature. Laser trackers are relied upon to measure the alignment and spacing as well as rough-surface metrology during looseabrasive grinding.

  1. Design Study of 8 Meter Monolithic Mirror UV/Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2008-01-01

    The planned Ares V launch vehicle with its 10 meter fairing shroud and 55,000 kg capacity to the Sun Earth L2 point enables entirely new classes of space telescopes. NASA MSFC has conducted a preliminary study that demonstrates the feasibility of launching a 6 to 8 meter class monolithic primary mirror telescope to Sun-Earth L2 using an Ares V. Specific technical areas studied included optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; launch vehicle performance and trajectory; spacecraft including structure, propulsion, GN&C, avionics, power systems and reaction wheels; operations and servicing; mass and power budgets; and system cost.

  2. Development and characterization of methacrylate-based hydrazide monoliths for oriented immobilization of antibodies.

    PubMed

    Brne, P; Lim, Y-P; Podgornik, A; Barut, M; Pihlar, B; Strancar, A

    2009-03-27

    Convective interaction media (CIM; BIA Separations) monoliths are attractive stationary phases for use in affinity chromatography because they enable fast affinity binding, which is a consequence of convectively enhanced mass transport. This work focuses on the development of novel CIM hydrazide (HZ) monoliths for the oriented immobilization of antibodies. Adipic acid dihydrazide (AADH) was covalently bound to CIM epoxy monoliths to gain hydrazide groups on the monolith surface. Two different antibodies were afterwards immobilized to hydrazide functionalized monolithic columns and prepared columns were tested for their selectivity. One column was further tested for the dynamic binding capacity. PMID:19203754

  3. Experimental characterisation of macro fibre composites and monolithic piezoelectric transducers for strain energy harvesting

    NASA Astrophysics Data System (ADS)

    Pozzi, Michele; Canziani, Alfredo; Durazo-Cardenas, Isidro; Zhu, Meiling

    2012-04-01

    μCompact and lightweight energy harvesters are needed to power wireless sensor nodes (WSNs). WSNs can provide health monitoring of aircraft structures, improving safety and reducing costs by enabling predictive maintenance. A simple solution, which meets the requirements for lightness and compactness, is represented by piezoelectric generators fixed to the surface of the wing (i.e. the wing skin). Such piezoelectric patches can harvest the strain energy available when the wing is flexed, as occurs, for example, in the presence of gust loading. For this study, monolithic piezoelectric sheets and macro fibre composite (MFC) generators were fixed to plates made of two materials commonly used for aircraft wing skin: Al-2024 aluminium alloy and an epoxy-carbon fibre composite. The plates then underwent harmonically varying loading in a tensile testing machine. The power generation of the harvesters was measured at a selection of strain levels and excitation frequencies, across a range of electrical loads. The optimal electrical load, yielding maximum power extraction, was identified for each working condition. The generated power increases quadratically with the strain and linearly with the frequency. The optimal electrical load decreases with increasing frequency and is only marginally dependent on strain. Absolute values of generated power were highest with the MFC, reaching 12mW (330μW/cm2) under 1170μstrain peak-to-peak excitation at 10Hz with a 66kΩ load. Power generation densities of 600μW/cm2 were achieved under 940μstrain with the monolithic transducers at 10Hz. It is found that MFCs have a lower power density than monolithic transducers, but, being more resilient, could be a more reliable choice. The power generated and the voltage outputs are appropriate for the intended application.

  4. Preparation of phenylboronate affinity rigid monolith with macromolecular porogen.

    PubMed

    Li, Xiang-Jie; Jia, Man; Zhao, Yong-Xin; Liu, Zhao-Sheng; Akber Aisa, Haji

    2016-03-18

    Boronate-affinity monolithic column was first prepared via polystyrene (PS) as porogen in this work. The monolithic polymer was synthetized using 4-vinylphenylboronic acid (4-VPBA) as functional monomer, ethylene glycol dimethacrylate (EDMA) as crosslinker monomer, and a mixture of PS solution in tetrahydrofuran, the linear macromolecular porogen, and toluene as porogen. Isoquercitrin (ISO) and hyperoside (HYP), isomer diol flavonoid glycosides, can be baseline separated on the poly(VPBA-co-EDMA) monolith. The effect of polymerization variables on the selectivity factor, e.g., the ratio of monomer to crosslinker (M/C), the amount of PS and the molecular weight of macromolecular porogen was investigated. The surface properties of the monolithic polymer were characterized by scanning electron microscopy and nitrogen adsorption. The best polymerization condition was the M/C ratio of 7:3, and the PS concentration of 40 mg/ml. The poly(VPBA-co-EDMA) polymer was also applied to extract cis-diol flavonoid glycosides from the crude extraction of cotton flower. After treated by poly(VPBA-co-EDMA) for solid phase extraction, high purity ISO and HYP (>99.96%) can be obtained with recovery of 83.7% and 78.6%, respectively. PMID:26896914

  5. Mechanical monolithic sensor for low frequency seismic noise measurement

    NASA Astrophysics Data System (ADS)

    Acernese, Fausto; De Rosa, Rosario; Giordano, Gerardo; Romano, Rocco; Barone, Fabrizio

    2007-10-01

    This paper describes a mechanical monolithic sensor for geophysical applications developed at the University of Salerno. The instrument is basically a monolithic tunable folded pendulum, shaped with precision machining and electric-discharge-machining, that can be used both as seismometer and, in a force-feedback configuration, as accelerometer. The monolithic mechanical design and the introduction of laser interferometric techniques for the readout implementation make it a very compact instrument, very sensitive in the low-frequency seismic noise band, with a very good immunity to environmental noises. Many changes have been produced since last version (2006), mainly aimed to the improvement of the mechanics and of the optical readout of the instrument. In fact, we have developed and tested a prototype with elliptical hinges and mechanical tuning of the resonance frequency together with a new laser optical lever and laser interferometer readout system. The theoretical sensitivity curve for both laser optical lever and laser interferometric readouts, calculated on the basis of suitable theoretical models, shows a very good agreement with the experimental measurements. Very interesting scientific result is that the measured natural resonance frequency of the instrument is ~ 70mHz with a Q ~ 140 in air without thermal stabilization, demonstrating the feasibility of a monolithic FP sensor with a natural resonance frequency of the order of 5 mHz with a more refined mechanical tuning.

  6. Mechanical monolithic horizontal sensor for low frequency seismic noise measurement

    NASA Astrophysics Data System (ADS)

    Acernese, Fausto; Giordano, Gerardo; Romano, Rocco; De Rosa, Rosario; Barone, Fabrizio

    2008-07-01

    This paper describes a mechanical monolithic horizontal sensor for geophysical applications developed at the University of Salerno. The instrument is basically a monolithic tunable folded pendulum, shaped with precision machining and electric discharge machining, that can be used both as seismometer and, in a force-feedback configuration, as accelerometer. The monolithic mechanical design and the introduction of laser interferometric techniques for the readout implementation makes it a very compact instrument, very sensitive in the low frequency seismic noise band, with a very good immunity to environmental noises. Many changes have been produced since last version (2007), mainly aimed to the improvement of the mechanics and of the optical readout of the instrument. In fact, we have developed and tested a prototype with elliptical hinges and mechanical tuning of the resonance frequency together with a laser optical lever and a new laser interferometer readout system. The theoretical sensitivity curve for both laser optical lever and laser interferometric readouts, evaluated on the basis of suitable theoretical models, shows a very good agreement with the experimental measurements. Very interesting scientific result is the measured natural resonance frequency of the instrument of 70mHz with a Q =140 in air without thermal stabilization. This result demonstrates the feasibility of a monolithic folded pendulum sensor with a natural resonance frequency of the order of millihertz with a more refined mechanical tuning.

  7. Cyclodextrin-Functionalized Monolithic Capillary Columns: Preparation and Chiral Applications.

    PubMed

    Adly, Frady G; Antwi, Nana Yaa; Ghanem, Ashraf

    2016-02-01

    In this review, the recently reported approaches for the preparation of cyclodextrin-functionalized capillary monolithic columns are highlighted, with few applications in chiral separations using capillary liquid chromatography (CLC) and capillary electrochromatography (CEC). Chirality 28:97-109, 2016. © 2015 Wiley Periodicals, Inc.

  8. From 1D to 3D - macroscopic nanowire aerogel monoliths.

    PubMed

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus

    2016-08-01

    Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying. PMID:27389477

  9. Preparation of phenylboronate affinity rigid monolith with macromolecular porogen.

    PubMed

    Li, Xiang-Jie; Jia, Man; Zhao, Yong-Xin; Liu, Zhao-Sheng; Akber Aisa, Haji

    2016-03-18

    Boronate-affinity monolithic column was first prepared via polystyrene (PS) as porogen in this work. The monolithic polymer was synthetized using 4-vinylphenylboronic acid (4-VPBA) as functional monomer, ethylene glycol dimethacrylate (EDMA) as crosslinker monomer, and a mixture of PS solution in tetrahydrofuran, the linear macromolecular porogen, and toluene as porogen. Isoquercitrin (ISO) and hyperoside (HYP), isomer diol flavonoid glycosides, can be baseline separated on the poly(VPBA-co-EDMA) monolith. The effect of polymerization variables on the selectivity factor, e.g., the ratio of monomer to crosslinker (M/C), the amount of PS and the molecular weight of macromolecular porogen was investigated. The surface properties of the monolithic polymer were characterized by scanning electron microscopy and nitrogen adsorption. The best polymerization condition was the M/C ratio of 7:3, and the PS concentration of 40 mg/ml. The poly(VPBA-co-EDMA) polymer was also applied to extract cis-diol flavonoid glycosides from the crude extraction of cotton flower. After treated by poly(VPBA-co-EDMA) for solid phase extraction, high purity ISO and HYP (>99.96%) can be obtained with recovery of 83.7% and 78.6%, respectively.

  10. Three-dimensional developing flow model for photocatalytic monolith reactors

    SciTech Connect

    Hossain, Md.M.; Raupp, G.B.; Hay, S.O.; Obee, T.N.

    1999-06-01

    A first-principles mathematical model describes performance of a titania-coated honeycomb monolith photocatalytic oxidation (PCO) reactor for air purification. The single-channel, 3-D convection-diffusion-reaction model assumes steady-state operation, negligible axial dispersion, and negligible homogeneous reaction. The reactor model accounts rigorously for entrance effects arising from the developing fluid-flow field and uses a previously developed first-principles radiation-field submodel for the UV flux profile down the monolith length. The model requires specification of an intrinsic photocatalytic reaction rate dependent on local UV light intensity and local reactant concentration, and uses reaction-rate expressions and kinetic parameters determined independently using a flat-plate reactor. Model predictions matched experimental pilot-scale formaldehyde conversion measurements for a range of inlet formaldehyde concentrations, air humidity levels, monolith lengths, and for various monolith/lamp-bank configurations. This agreement was realized without benefit of any adjustable photocatalytic reactor model parameters, radiation-field submodel parameters, or kinetic submodel parameters. The model tends to systematically overpredict toluene conversion data by about 33%, which falls within the accepted limits of experimental kinetic parameter accuracy. With further validation, the model could be used in PCO reactor design and to develop quantitative energy utilization metrics.

  11. Translucency of monolithic and core zirconia after hydrothermal aging

    PubMed Central

    Fathy, Salma M.; El-Fallal, Abeer A.; El-Negoly, Salwa A.; El Bedawy, Abu Baker

    2015-01-01

    Abstract Objective: To evaluate the hydrothermal aging effect on the translucency of partially stabilized tetragonal zirconia with yttria (Y-TZP) used as monolithic or fully milled zirconia and of core type. Methods: Twenty disc-shaped specimens (1 and 10 mm) for each type of monolithic and core Y-TZP materials were milled and sintered according to the manufacturer’s instruction. The final specimens were divided into two groups according to the type of Y-TZP used. Translucency parameter (TP) was measured over white and black backgrounds with the diffuse reflectance method; X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to analyze the microstructure of both Y-TZP types before and after aging. Data for TP values was statistically analyzed using Student’s t-test. Results: Monolithic Y-TZP showed the highest TP mean value (16.4 ± 0.316) before aging while core Y-TZP showed the lowest TP mean value (7.05 ± 0.261) after aging. There was a significant difference between the two Y-TZP types before and after hydrothermal aging. XRD analysis showed increases in monoclinic content in both Y-TZP surfaces after aging. Conclusion: Monolithic Y-TZP has a higher chance to low-temperature degradation than core type, which may significantly affect the esthetic appearance and translucency hence durability of translucent Y-TZP. PMID:27335897

  12. Single-frequency lasing of monolithic Ho,Tm:YLF

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Deyst, John P.; Storm, Mark E.

    1993-01-01

    Single-frequency lasing in monolithic crystals of holmium-thulium-doped YLF (Ho,Tm:YLF) is reported. A maximum single-frequency output power of 6 mW at a wavelength of 2.05 microns is demonstrated. Frequency tuning is also described.

  13. Monolithic fuel cell based power source for burst power generation

    SciTech Connect

    Fee, D.C.; Blackburn, P.E.; Busch, D.E.; Dees, D.W.; Dusek, J.; Easler, T.E.; Ellingson, W.A.; Flandermeyer, B.K.; Fousek, R.J.; Heiberger, J.J.; Majumdar, S.; McPheeters, C.C.; Mrazek, F.C.; Picciolo, J.J.; Singh, J.P.; Poeppel, R.B.

    1988-01-01

    A unique fuel cell coupled with a low power nuclear reactor presents an attractive approach for SDI burst power requirements. The requisite high power, long-duration bursts appear achievable with appropriate development of the concept. A monolithic fuel cell/nuclear reactor system clearly possesses several advantages. Fabrication methods, performance advantages, and applications are discussed in this report.

  14. Monolithic natural gas storage delivery system based on sorbents

    DOEpatents

    Hornbostel, Marc; Krishnan, Gopala N.; Sanjurjo, Angel

    2016-09-27

    The invention provides methods for producing a strong, light, sorbent-based storage/dispenser system for gases and fuels. The system comprises a porous monolithic material with an adherent strong impervious skin that is capable of storing a gas under pressure in a safe and usable manner.

  15. MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY

    SciTech Connect

    Glenn A. Moore; Francine J. Rice; Nicolas E. Woolstenhulme; W. David SwanK; DeLon C. Haggard; Jan-Fong Jue; Blair H. Park; Steven E. Steffler; N. Pat Hallinan; Michael D. Chapple; Douglas E. Burkes

    2008-10-01

    Within the Reduced Enrichment for Research and Test Reactors (RERTR) program directed by the US Department of Energy (DOE), UMo fuel-foils are being developed in an effort to realize high density monolithic fuel plates for use in high-flux research and test reactors. Namely, targeted are reactors that are not amenable to Low Enriched Uranium (LEU) fuel conversion via utilization of high density dispersion-based fuels, i.e. 8-9 gU/cc. LEU conversion of reactors having a need for >8-9 gU/cc fuel density will only be possible by way of monolithic fuel forms. The UMo fuel foils under development afford fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. Two primary challenges have been established with respect to UMo monolithic fuel development; namely, fuel element fabrication and in-reactor fuel element performance. Both issues are being addressed concurrently at the Idaho National Laboratory. An overview is provided of the ongoing monolithic UMo fuel development effort at the Idaho National Laboratory (INL); including development of complex/graded fuel foils. Fabrication processes to be discussed include: UMo alloying and casting, foil fabrication via hot rolling, fuel-clad interlayer application via co-rolling and thermal spray processes, clad bonding via Hot Isostatic Pressing (HIP) and Friction Bonding (FB), and fuel plate finishing.

  16. A monolithically-integrated μGC chemical sensor system.

    PubMed

    Manginell, Ronald P; Bauer, Joseph M; Moorman, Matthew W; Sanchez, Lawrence J; Anderson, John M; Whiting, Joshua J; Porter, Daniel A; Copic, Davor; Achyuthan, Komandoor E

    2011-01-01

    Gas chromatography (GC) is used for organic and inorganic gas detection with a range of applications including screening for chemical warfare agents (CWA), breath analysis for diagnostics or law enforcement purposes, and air pollutants/indoor air quality monitoring of homes and commercial buildings. A field-portable, light weight, low power, rapid response, micro-gas chromatography (μGC) system is essential for such applications. We describe the design, fabrication and packaging of μGC on monolithically-integrated Si dies, comprised of a preconcentrator (PC), μGC column, detector and coatings for each of these components. An important feature of our system is that the same mechanical micro resonator design is used for the PC and detector. We demonstrate system performance by detecting four different CWA simulants within 2 min. We present theoretical analyses for cost/power comparisons of monolithic versus hybrid μGC systems. We discuss thermal isolation in monolithic systems to improve overall performance. Our monolithically-integrated μGC, relative to its hybrid cousin, will afford equal or slightly lower cost, a footprint that is 1/2 to 1/3 the size and an improved resolution of 4 to 25%. PMID:22163970

  17. From 1D to 3D - macroscopic nanowire aerogel monoliths.

    PubMed

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus

    2016-08-01

    Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying.

  18. Shear bond strength of indirect composite material to monolithic zirconia

    PubMed Central

    2016-01-01

    PURPOSE This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). MATERIALS AND METHODS Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (α=.05). RESULTS Bond strength was significantly lower in untreated specimens than in sandblasted specimens (P<.05). No difference between the glaze layer and hydrofluoric acid application treated groups were observed. However, bond strength for these groups were significantly higher as compared with the other two groups (P<.05). CONCLUSION Combined use of glaze layer & hydrofluoric acid application and silanization are reliable for strong and durable bonding between indirect composite material and monolithic zirconia. PMID:27555895

  19. 26. SPILLWAY CHANNEL WALLS REINF. DETAILS; MONOLITHS W1 TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. SPILLWAY CHANNEL WALLS - REINF. DETAILS; MONOLITHS W-1 TO W-4 INCL. Sheet S-26, July, 1939. File no. SA 342/34. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  20. 24. SPILLWAY CHANNEL WALLS REINFORCEMENT DETAILS; MONOLITHS E1 TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. SPILLWAY CHANNEL WALLS - REINFORCEMENT DETAILS; MONOLITHS E-1 TO F-4 INCL. & NO. 34. Sheet S-11, June, 1939. File no. SA 342/24(?). - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  1. Preparation, characterization and application of molecularly imprinted monolithic column for hesperetin.

    PubMed

    Shao, Huikai; Zhao, Lingguo; Chen, Jian; Zhou, Haitao; Huang, Shuting; Li, Kang

    2015-01-01

    The molecularly imprinted solid-phase extraction (MISPE) monolithic column coupled with high-performance liquid chromatography (HPLC) was firstly developed for the extraction of hesperetin in the flesh of Citrus reticulata cv. Chachiensis, which is a traditional Chinese medicine (TCM). The molecularly imprinted polymers (MIPs) have been prepared by a thermal polymerization method using hesperetin as the template, acrylamide (AM) as functional monomer and ethylene glycol dimethacrylamide (EGDMA) as cross-linker in the mixed porogen of methanol, toluene and dodecanol. The prepared MIPs were characterized in detail by SEM and FTIR. The results confirmed the uniform and open structure of network skeleton with large flow-through pores. The influence of synthesis conditions on the specific recognition properties of hesperetin MIPs were also investigated systematically. The results showed that high adsorption capacity and good selectivity of MIPs were achieved when using non-imprinted polymer monolith (NIP) and structure similarly compound rutin as references. Furthermore, several parameters of the MISPE method have been optimized, and then it was successfully applied to the extraction of hesperetin from the flesh of Citrus reticulata cv. Chachiensis. Good gathering and impurity removing ability of prepared MIP were demonstrated. The MISPE method was proven to be a potentially competitive technique for separation and cleanup of hesperetin in complex TCM with satisfied recovery (90.8 ± 3.2%) and good precision (RSD = 6.48%).

  2. Processing and characterization of multi-cellular monolithic bioceramics for bone regenerative scaffolds

    NASA Astrophysics Data System (ADS)

    Ari-Wahjoedi, Bambang; Ginta, Turnad Lenggo; Parman, Setyamartana; Abustaman, Mohd Zikri Ahmad

    2014-10-01

    Multicellular monolithic ceramic body is a ceramic material which has many gas or liquid passages partitioned by thin walls throughout the bulk material. There are many currently known advanced industrial applications of multicellular ceramics structures i.e. as supports for various catalysts, electrode support structure for solid oxide fuel cells, refractories, electric/electronic materials, aerospace vehicle re-entry heat shields and biomaterials for dental as well as orthopaedic implants by naming only a few. Multicellular ceramic bodies are usually made of ceramic phases such as mullite, cordierite, aluminum titanate or pure oxides such as silica, zirconia and alumina. What make alumina ceramics is excellent for the above functions are the intrinsic properties of alumina which are hard, wear resistant, excellent dielectric properties, resists strong acid and alkali attacks at elevated temperatures, good thermal conductivities, high strength and stiffness as well as biocompatible. In this work the processing technology leading to truly multicellular monolithic alumina ceramic bodies and their characterization are reported. Ceramic slip with 66 wt.% solid loading was found to be optimum as impregnant to the polyurethane foam template. Mullitic ceramic composite of alumina-sodium alumino disilicate-Leucite-like phases with bulk and true densities of 0.852 and 1.241 g cm-3 respectively, pore linear density of ±35 cm-1, linear and bulk volume shrinkages of 7-16% and 32 vol.% were obtained. The compressive strength and elastic modulus of the bioceramics are ≈0.5-1.0 and ≈20 MPa respectively.

  3. Preparation, characterization and application of molecularly imprinted monolithic column for hesperetin.

    PubMed

    Shao, Huikai; Zhao, Lingguo; Chen, Jian; Zhou, Haitao; Huang, Shuting; Li, Kang

    2015-01-01

    The molecularly imprinted solid-phase extraction (MISPE) monolithic column coupled with high-performance liquid chromatography (HPLC) was firstly developed for the extraction of hesperetin in the flesh of Citrus reticulata cv. Chachiensis, which is a traditional Chinese medicine (TCM). The molecularly imprinted polymers (MIPs) have been prepared by a thermal polymerization method using hesperetin as the template, acrylamide (AM) as functional monomer and ethylene glycol dimethacrylamide (EGDMA) as cross-linker in the mixed porogen of methanol, toluene and dodecanol. The prepared MIPs were characterized in detail by SEM and FTIR. The results confirmed the uniform and open structure of network skeleton with large flow-through pores. The influence of synthesis conditions on the specific recognition properties of hesperetin MIPs were also investigated systematically. The results showed that high adsorption capacity and good selectivity of MIPs were achieved when using non-imprinted polymer monolith (NIP) and structure similarly compound rutin as references. Furthermore, several parameters of the MISPE method have been optimized, and then it was successfully applied to the extraction of hesperetin from the flesh of Citrus reticulata cv. Chachiensis. Good gathering and impurity removing ability of prepared MIP were demonstrated. The MISPE method was proven to be a potentially competitive technique for separation and cleanup of hesperetin in complex TCM with satisfied recovery (90.8 ± 3.2%) and good precision (RSD = 6.48%). PMID:25910048

  4. Compressible and monolithic microporous polymer sponges prepared via one-pot synthesis

    PubMed Central

    Lim, Yoonbin; Cha, Min Chul; Chang, Ji Young

    2015-01-01

    Compressible and monolithic microporous polymers (MPs) are reported. MPs were prepared as monoliths via a Sonogashira–Hagihara coupling reaction of 1,3,5-triethynylbenzene (TEB) with the bis(bromothiophene) monomer (PBT-Br). The polymers were reversibly compressible, and were easily cut into any form using a knife. Microscopy studies on the MPs revealed that the polymers had tubular microstructures, resembling those often found in marine sponges. Under compression, elastic buckling of the tube bundles was observed using an optical microscope. MP-0.8, which was synthesized using a 0.8:1 molar ratio of PBT-Br to TEB, showed microporosity with a BET surface area as high as 463 m2g–1. The polymer was very hydrophobic, with a water contact angle of 145° and absorbed 7–17 times its own weight of organic liquids. The absorbates were released by simple compression, allowing recyclable use of the polymer. MPs are potential precursors of structured carbon materials; for example, a partially graphitic material was obtained by pyrolysis of MP-0.8, which showed a similar tubular structure to that of MP-0.8. PMID:26534834

  5. Ex Situ Integration of Multifunctional Porous Polymer Monoliths into Thermoplastic Microfluidic Chips

    PubMed Central

    Kendall, Eric L.; Wienhold, Erik; Rahmanian, Omid D.; DeVoe, Don L.

    2014-01-01

    A unique method for incorporating functional porous polymer monolith elements into thermoplastic microfluidic chips is described. Monolith elements are formed in a microfabricated mold, rather than within the microchannels, and chemically functionalized off chip before insertion into solvent-softened thermoplastic microchannels during chip assembly. Because monoliths may be trimmed prior to final placement, control of their size, shape, and uniformity is greatly improved over in-situ photopolymerization methods. A characteristic trapezoidal profile facilitates rapid insertion and enables complete mechanical anchoring of the monolith periphery, eliminating the need for chemical attachment to the microchannel walls. Off-chip processing allows the parallel preparation of monoliths of differing compositions and surface chemistries in large batches. Multifunctional flow-through arrays of multiple monolith elements are demonstrated using this approach through the creation of a fluorescent immunosensor with integrated controls, and a microfluidic bubble separator comprising a combination of integrated hydrophobic and hydrophilic monolith elements. PMID:25018587

  6. Synthesis of hierarchical porous carbon monoliths with incorporated metal-organic frameworks for enhancing volumetric based CO₂ capture capability.

    PubMed

    Qian, Dan; Lei, Cheng; Hao, Guang-Ping; Li, Wen-Cui; Lu, An-Hui

    2012-11-01

    This work aims to optimize the structural features of hierarchical porous carbon monolith (HCM) by incorporating the advantages of metal-organic frameworks (MOFs) (Cu₃(BTC)₂) to maximize the volumetric based CO₂ capture capability (CO₂ capacity in cm³ per cm³ adsorbent), which is seriously required for the practical application of CO₂ capture. The monolithic HCM was used as a matrix, in which Cu₃(BTC)₂ was in situ synthesized, to form HCM-Cu₃(BTC)₂ composites by a step-by-step impregnation and crystallization method. The resulted HCM-Cu₃(BTC)₂ composites, which retain the monolithic shape and exhibit unique hybrid structure features of both HCM and Cu₃(BTC)₂, show high CO₂ uptake of 22.7 cm³ cm⁻³ on a volumetric basis. This value is nearly as twice as the uptake of original HCM. The dynamic gas separation measurement of HCM-Cu₃(BTC)₂, using 16% (v/v) CO₂ in N₂ as feedstock, illustrates that CO₂ can be easily separated from N₂ under the ambient conditions and achieves a high separation factor for CO₂ over N₂, ranging from 67 to 100, reflecting a strongly competitive CO₂ adsorption by the composite. A facile CO₂ release can be realized by purging an argon flow through the fixed-bed adsorber at 25 °C, indicating the good regeneration ability.

  7. Evaluation of translucency of monolithic zirconia and framework zirconia materials

    PubMed Central

    Tuncel, İlkin; Üşümez, Aslıhan

    2016-01-01

    PURPOSE The opacity of zirconia is an esthetic disadvantage that hinders achieving natural and shade-matched restorations. The aim of this study was to evaluate the translucency of non-colored and colored framework zirconia and monolithic zirconia. MATERIALS AND METHODS The three groups tested were: non-colored framework zirconia, colored framework zirconia with the A3 shade according to Vita Classic Scale, and monolithic zirconia (n=5). The specimens were fabricated in the dimensions of 15×12×0.5 mm. A spectrophotometer was used to measure the contrast ratio, which is indicative of translucency. Three measurements were made to obtain the contrast ratios of the materials over a white background (L*w) and a black background (L*b). The data were analyzed using the one-way analysis of variance and Tukey HSD tests. One specimen from each group was chosen for scanning electron microscope analysis. The determined areas of the SEM images were divided by the number of grains in order to calculate the mean grain size. RESULTS Statistically significant differences were observed among all groups (P<.05). Non-colored zirconia had the highest translucency with a contrast ratio of 0.75, while monolithic zirconia had the lowest translucency with a contrast ratio of 0.8. The mean grain sizes of the non-colored, colored, and monolithic zirconia were 233, 256, and 361 nm, respectively. CONCLUSION The translucency of the zirconia was affected by the coloring procedure and the grain size. Although monolithic zirconia may not be the best esthetic material for the anterior region, it may serve as an alternative in the posterior region for the bilayered zirconia restorations. PMID:27350851

  8. Monolithic thin film SAW (Surface Acoustic Wave) structures

    NASA Astrophysics Data System (ADS)

    Gunshor, R. L.; Datta, S.; Pierret, R. F.

    1984-09-01

    A new storage correlator is presented. The characteristics are long storage and ease of fabrication. Very large Q values for SAW (on-silicon) resonators are reported. New device concepts involving AlGaAs-GaAs double heterostructures are proposed.

  9. Monolithic ZnO SAW (Surface Acoustic Waves) structures

    NASA Astrophysics Data System (ADS)

    Gunshor, R. L.; Pierret, R. F.

    1983-07-01

    ZnO-on-silicon surface acoustic wave devices have been fabricated and tested. Electronic erasure of a stored correlator reference was demonstrated, the effect of laser annealing on propagation loss was examined, preliminary ageing studies were performed, and a conceptually new mode conversion resonator configuration was reported.

  10. Preparation of graphene/vanadium oxide nanocomposite monolith and its electrochemical performance

    SciTech Connect

    Deng, Lingjuan; Ma, Zhanying; Li, Xiaobo; Fan, Guang

    2015-10-15

    Graphical Abstract: Graphene/V{sub 2}O{sub 5}(G/V{sub 2}O{sub 5}) nanocomposite monolith is prepared in a mixture of ammonium vanadate, acetic acid and graphite oxide by one-step hydrothermal technology. Owing to the novel structure of ultralong V{sub 2}O{sub 5} nanobelts interpenetrated between the G nanosheets, the G/V{sub 2}O{sub 5} nanocomposite electrode shows higher specific capacitances and better cycle stability than those of G and V{sub 2}O{sub 5} electrodes for supercapaciors and lithium ion battaries. - Highlights: • G/V{sub 2}O{sub 5} nanocomposite monolith is prepared by one-step hydrothermal technology. • G/V{sub 2}O{sub 5} nanocomposite electrode shows much excellent capacitive property. • G/V{sub 2}O{sub 5} nanocomposite exhibits more stable cycle performance. - Abstract: Graphene/vanadium oxide nanocomposite (G/V{sub 2}O{sub 5}) monolith is prepared via a simple hydrothermal process. Owing to the intimate contact between the V{sub 2}O{sub 5} nanobelts and graphene nanosheets in the monolith, the nanocomposite shows excellent electric conductivity, and therefore makes the electrode–electrolyte contact better and Li{sup +} diffusion faster. A high specific capacitance of 163 F g{sup −1} has been achieved for G/V{sub 2}O{sub 5} electrode in 0.5 mol L{sup −1} K{sub 2}SO{sub 4} solution. The G/V{sub 2}O{sub 5} nanocomposite exhibits excellent cyclic performance with nearly 80% capacity retention at a current density of 5 A g{sup −1} in a testing range of 1000 cycles. Moreover, G/V{sub 2}O{sub 5} nanocomposite exhibits excellent discharge properties and cycle stability as an anode material for lithium ion batteries. The initial capacity is 1100 mAh g{sup −1} and the reversible capacity of 530 mAh g{sup −1} is maintained after 100 cycles at a current density of 50 mA g{sup −1}.

  11. Monolithic narrow-linewidth InGaAsP semiconductor laser for coherent optical communications

    NASA Technical Reports Server (NTRS)

    Palfrey, S. L.; Enstrom, R. E.; Longeway, P. A.

    1989-01-01

    A design for a monolithic narrow-linewidth InGaAsP diode laser has been developed using a multiple-quantum-well (MQW) extended-passive-cavity distributed-Bragg-reflector (DBR) laser design. Theoretical results indicate that this structure has the potential for a linewidth of 100 kHz or less. To realize this device, a number of the fabrication techniques required to integrate low-loss passive waveguides with active regions have been developed using a DBR laser structure. In addition, the MOCVD growth of InGaAs MQW laser structures has been developed, and threshold current densities as low as 1.6 kA/sq cm have been obtained from broad-stripe InGaAs/InGaAsP separate-confinement-heterostructure MQW lasers.

  12. Preparation of poly(butyl methacrylate-co-ethyleneglyceldimethacrylate) monolithic column modified with β-cyclodextrin and nano-cuprous oxide and its application in polymer monolithic microextraction of polychlorinated biphenyls.

    PubMed

    Zheng, Haijiao; Liu, Qingwen; Jia, Qiong

    2014-05-23

    A poly(butyl methacrylate-co-ethyleneglyceldimethacrylate) (poly(BMA-EDMA)) monolithic column was prepared with in situ polymerization method and modified with allylamine-β-cyclodextrin (ALA-β-CD) and nano-cuprous oxide (Cu2O). A polymer monolith microextraction method was developed with the modified monolithic column for the preconcentration of polychlorinated biphenyls combined with gas chromatography-electron capture detector. Various parameters affecting the extraction efficiency were investigated and optimized. Under the optimum experimental conditions, we obtained acceptable linearities, low limits of detection, and good intra-day/inter-day relative standard deviations. Because of the hydrophobic properties of β-CD and the porous nano structure of Cu2O, the enrichment capacity of the poly(BMA-EDMA) monolithic column was significantly improved. The extraction efficiency followed the order: poly(BMA-EDMA-ALA-β-CD-Cu2O)>poly(BMA-EDMA-ALA-β-CD)>poly(BMA-EDMA)>direct GC analysis. When applied to the determination of polychlorinated biphenyls in wine samples, low limits of detection (0.09ngmL(-1)) were obtained under the preoptimized conditions (sample volume 1.0mL, sample flow rate 0.1mLmin(-1), eluent volume 0.1mL, and eluent flow rate 0.05mLmin(-1)). In addition, the present method was employed to determine polychlorinated biphenyls in red wine samples and the accuracy was assessed through recovery experiments. The obtained recovery values were in the range of 78.8-104.1% with relative standard deviations less than 9.0%. PMID:24745841

  13. Design of Semiconductor-Based Back Reflectors for High Voc Monolithic Multijunction Solar Cells: Preprint

    SciTech Connect

    Garcia, I.; Geisz, J.; Steiner, M.; Olson, J.; Friedman, D.; Kurtz, S.

    2012-06-01

    State-of-the-art multijunction cell designs have the potential for significant improvement before going to higher number of junctions. For example, the Voc can be substantially increased if the photon recycling taking place in the junctions is enhanced. This has already been demonstrated (by Alta Devices) for a GaAs single-junction cell. For this, the loss of re-emitted photons by absorption in the underlying layers or substrate must be minimized. Selective back surface reflectors are needed for this purpose. In this work, different architectures of semiconductor distributed Bragg reflectors (DBR) are assessed as the appropriate choice for application in monolithic multijunction solar cells. Since the photon re-emission in the photon recycling process is spatially isotropic, the effect of the incident angle on the reflectance spectrum is of central importance. In addition, the DBR structure must be designed taking into account its integration into the monolithic multijunction solar cells, concerning series resistance, growth economics, and other issues. We analyze the tradeoffs in DBR design complexity with all these requirements to determine if such a reflector is suitable to improve multijunction solar cells.

  14. Growth of monolithic full-color GaN-based LED with intermediate carrier blocking layers

    NASA Astrophysics Data System (ADS)

    El-Ghoroury, Hussein S.; Yeh, Milton; Chen, J. C.; Li, X.; Chuang, Chih-Li

    2016-07-01

    Specially designed intermediate carrier blocking layers (ICBLs) in multi-active regions of III-nitride LEDs were shown to be effective in controlling the carrier injection distribution across the active regions. In principle, the majority of carriers, both holes and electrons, can be guided into targeted quantum wells and recombine to generate light of specific wavelengths at controlled current-densities. Accordingly we proposed and demonstrated a novel monolithic InGaN-based LED to achieve three primary colors of light from one device at selected current densities. This LED structure, which has three different sets of quantum wells separated with ICBLs for three primary red-green-blue (RGB) colors, was grown by metal-organic chemical vapor deposition (MOCVD). Results show that this LED can emit light ranging from 460 to 650 nm to cover the entire visible spectrum. The emission wavelength starts at 650 nm and then decreases to 460 nm or lower as the injection current increases. In addition to three primary colors, many other colors can be obtained by color mixing techniques. To the best of our knowledge, this is the first demonstration of monolithic full-color LED grown by a simple growth technique without using re-growth process.

  15. Investigation of Microwave Monolithic Integrated Circuit (MMIC) non-reciprocal millimeterwave components

    NASA Astrophysics Data System (ADS)

    Talisa, S. H.; Krishnaswamy, S. V.; Adam, J. D.; Yoo, K. C.; Doyle, N. J.

    1991-09-01

    Two ferrite film deposition techniques were investigated in this program for possible use in the monolithic integration of Gallium Arsenide electronic and magnetic millimeter-wave devices; (1) spin-spray plating (SSP) of nickel zinc ferrite films, and (2) sputtering of barium hexaferrites with C-axis oriented normally to the film plane. The SSP technique potential for this application was demonstrated. Film structural characteristics were studied, as well as their adhesions to other substrates and the conditions for growth of thicker films. Multilayers totalling 25 microns in thickness were grown on semiconducting substrates. The SSP process occurs at about 100 C and was experimentally demonstrated not to damage Gallium arsenide MMIC devices. The magnetic characteristics of these films were comparable to ceramic materials. A scheme for the monolithic integration of magnetic and Gallium arsenide electronic devices was proposed and its feasibility experimentally demonstrated. The films showed higher dielectric loss than was desirable, possibly owing to high water content. A better drying technique is required. Barium ferrite films with C-axis texture were reproducibly grown on sapphire. Magnetic measurements yielded acceptable saturation magnetization and anisotrophy field. Ferromagnetic resonance was not observed, possibly due to broad linewidths.

  16. Multi-channel monolithic integrated optic fiber Bragg grating sensor interrogator

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Esterkin, Yan; Kempen, Cornelia; Sun, Zongjian

    2011-09-01

    Fiber Bragg grating (FBG) is a mature sensing technology for the measurement of strain, vibration, acoustics, acceleration, pressure, temperature, moisture, and corrosion. It has gained rapid acceptance in civil, aerospace, chemical and petrochemical, medicine, aviation and automotive industries. The most prominent advantages of FBG are: small size and light weight, distributed array of FBG transducers on a single fiber, and immunity to radio frequency interference. However, a major disadvantage of FBG technology is that conventional state-of-the-art FBG interrogation system is typically bulky, heavy, and costly bench top instruments that are typically assembled from off-the-shelf fiber optic and optical components integrated with a signal electronics board into an instrument console. Based on the industrial need for a compact FBG interrogation system, this paper describes recent progress towards the development of miniature fiber Bragg grating sensor interrogator (FBG-Transceiver™) system based on multi-channel monolithic integrated optic sensor microchip technology. The integrated optic microchip technology enables monolithic integration of all functionalities, both passive and active, of conventional bench top FBG sensor interrogator system, packaged in a miniaturized, low power operation, 2 cm×5 cm small form factor (SFF) package suitable for long-term structural health monitoring in applications where size, weight, and power are critical for operation.

  17. IMAGINE project: a low cost, high performance, monolithic passive mm-wave imager front-end

    NASA Astrophysics Data System (ADS)

    Alexander, N.; Frijlink, P.; Hendricks, J.; Limiti, E.; Löffler, S.; Macdonald, C.; Maher, H.; Pettersson, L.; Platt, D.; Rice, P.; Riester, M.; Schulze, D.; Vassilev, V.

    2012-10-01

    The FP7 Research for SME project IMAGINE - a low cost, high performance monolithic passive mm-wave imager front-end is described in this paper. The main innovation areas for the project are: i) the development of a 94 GHz radiometer chipset and matching circuits suitable for monolithic integration. The chipset consists of a W-band low noise amplifier, fabricated using the commercially available OMMIC D007IH GaAs mHEMT process, and a zero bias resonant interband tunneling diode, fabricated using a patented epi-layer structure that is lattice matched to the same D007IH process; ii) the development of a 94 GHz antenna adapted for low cost manufacturing methods with performance suitable for real-time imaging; iii) the development of a low cost liquid crystal polymer PCB build-up technology with performance suitable for the integration and assembly of a 94 GHz radiometer module; iv) the assembly of technology demonstrator modules. The results achieved in these areas are presented.

  18. Features of Destruction of the Monolithic and Spaced Barriers from Anisotropic Materials at Impact

    NASA Astrophysics Data System (ADS)

    Radchenko, Andrey; Radchenko, Pavel

    2011-06-01

    Creation of materials with the specified properties is an actual problem. Modern technologies of reception of materials allow to optimize strength parameters of a design for work in concrete conditions of external influences. Such optimization can be made or thanks to the imparting to a structure of a material of orderliness, or thanks to material reinforcing by strengthening elements. After such arrangement the material, as a rule, gets high rate of anisotropy. Besides optimization of properties of a material also the various approaches connected with constructive decisions are used. The spaced targets to protection of designs from high-velocity objects are especially effective. In the given work the comparative analysis of development of destructions in the monolithic and spaced targets at high-velocity interaction is carried out. A material of targets is orthotropic organoplastic with high rate of anisotropy of elastic and strength properties. Destruction, efficiency of the monolithic and spaced targets depending on orientation of properties of an anisotropic material in a range of velocities of impact from 750 to 3000m/s is investigated.

  19. Separation of polyprenol and dolichol by monolithic silica capillary column chromatography.

    PubMed

    Bamba, Takeshi; Fukusaki, Eiiciro; Minakuchi, Hiroshi; Nakazawa, Yoshihisa; Kobayashi, Akio

    2005-10-01

    We attempted an analysis of naturally occurring polyprenol and dolichol using a monolithic silica capillary column in HPLC. First, the separation of the polyprenol mixture alone was performed using a 250 x 0.2 mm inner diameter (ID) octadecylsilyl (ODS)-monolithic silica capillary column. The resolution of the separation between octadecaprenol (prenol 18) and nonadecaprenol (prenol 19) exceeded by >or=2-fold the level recorded when using a conventional ODS-silica particle-packed column (250 x 4.6 mm ID) under the same elution conditions. Next, the mixture of the prenol type (polyprenol) and dolichol type (dihydropolyprenol) was subjected to this capillary HPLC system, and the separation of each homolog was successfully achieved. During the analysis of polyprenol fraction derived from Eucommia ulmoides leaves, dolichols were found as a single peak, including all-trans-polyprenol and cis-polyprenol previously identified. This sensitive high-resolution system is very useful for the analysis of compounds that are structurally close to polyprenols and dolichols and that have a low content.

  20. Elasticity and inelasticity of silicon nitride/boron nitride fibrous monoliths.

    SciTech Connect

    Smirnov, B. I.; Burenkov, Yu. A.; Kardashev, B. K.; Singh, D.; Goretta, K. C.; de Arellano-Lopez, A. R.; Energy Technology; Russian Academy of Sciences; Univer. de Sevilla

    2001-01-01

    A study is reported on the effect of temperature and elastic vibration amplitude on Young's modulus E and internal friction in Si{sub 3}N{sub 4} and BN ceramic samples and Si{sub 3}N{sub 4}/BN monoliths obtained by hot pressing of BN-coated Si{sub 3}N{sub 4} fibers. The fibers were arranged along, across, or both along and across the specimen axis. The E measurements were carried out under thermal cycling within the 20-600 C range. It was found that high-modulus silicon-nitride specimens possess a high thermal stability; the E(T) dependences obtained under heating and cooling coincide well with one another. The low-modulus BN ceramic exhibits a considerable hysteresis, thus indicating evolution of the defect structure under the action of thermoelastic (internal) stresses. Monoliths demonstrate a qualitatively similar behavior (with hysteresis). This behavior of the elastic modulus is possible under microplastic deformation initiated by internal stresses. The presence of microplastic shear in all the materials studied is supported by the character of the amplitude dependences of internal friction and the Young's modulus. The experimental data obtained are discussed in terms of a model in which the temperature dependences of the elastic modulus and their features are accounted for by both microplastic deformation and nonlinear lattice-atom vibrations, which depend on internal stresses.

  1. Ultralow Density, Monolithic WS2, MoS2, and MoS2/Graphene Aerogels.

    PubMed

    Worsley, Marcus A; Shin, Swanee J; Merrill, Matthew D; Lenhardt, Jeremy; Nelson, Art J; Woo, Leta Y; Gash, Alex E; Baumann, Theodore F; Orme, Christine A

    2015-05-26

    We describe the synthesis and characterization of monolithic, ultralow density WS2 and MoS2 aerogels, as well as a high surface area MoS2/graphene hybrid aerogel. The monolithic WS2 and MoS2 aerogels are prepared via thermal decomposition of freeze-dried ammonium thio-molybdate (ATM) and ammonium thio-tungstate (ATT) solutions, respectively. The densities of the pure dichalcogenide aerogels represent 0.4% and 0.5% of full density MoS2 and WS2, respectively, and can be tailored by simply changing the initial ATM or ATT concentrations. Similar processing in the presence of the graphene aerogel results in a hybrid structure with MoS2 sheets conformally coating the graphene scaffold. This layered motif produces a ∼50 wt % MoS2 aerogel with BET surface area of ∼700 m(2)/g and an electrical conductivity of 112 S/m. The MoS2/graphene aerogel shows promising results as a hydrogen evolution reaction catalyst with low onset potential (∼100 mV) and high current density (100 mA/cm(2) at 260 mV).

  2. Development of large-area monolithically integrated Silicon-Film photovoltaic modules. Annual subcontract report, 16 November 1991--31 December 1992

    SciTech Connect

    Rand, J.A.; Cotter, J.E.; Ingram, A.E.; Ruffins, T.R.; Shreve, K.P.; Hall, R.B.; Barnett, A.M.

    1993-06-01

    This report describes work to develop Silicon-Film{trademark} Product III into a low-cost, stable solar cell for large-scale terrestrial power applications. The Product III structure is a thin (< 100-{mu}m) polycrystalline layer of silicon on a durable, insulating, ceramic substrate. The insulating substrate allows the silicon layer to be isolated and metallized to form a monolithically interconnected array of solar cells. High efficiency is achievable with the use of light trapping and a passivated back surface. The long-term goal for the product is a 1200-cm{sup 2}, 18%-efficient, monolithic array. The short-term objectives are to improve material quality and to fabricate 100 cm{sup 2} monolithically interconnected solar cell arrays. Low minority-carrier diffusion length in the silicon film and series resistance in the interconnected device structure are presently limiting device performance. Material quality is continually improving through reduced impurity contamination. Metallization schemes, such as a solder-dipped interconnection process, have been developed that will allow low-cost production processing and minimize R{sub s} effects. Test data for a nine-cell device (16 cm{sup 2}) indicated a V{sub oc} of 3.72 V. These first-reported monolithically interconnected multicrystalline silicon-on-ceramic devices show low shunt conductance (< 0.1 mA/cm{sup 2}) due to limited conduction through the ceramic and no process-related metallization shunts.

  3. Monolithic integration of a quantum cascade laser array and an echelle grating multiplexer for widely tunable mid-infrared sources

    NASA Astrophysics Data System (ADS)

    Gilles, Clément; Orbe, Luis J.; Carpintero, Guillermo; Abautret, Johan; Maisons, Grégory; Carras, Mathieu

    2016-03-01

    In the mid-infrared (Mid-IR), arrays of distributed feedback Quantum Cascade Lasers (QCL) have been developed as a serious alternative to obtain extended wavelength operation range of laser-based gas sensing systems. Narrow-linewidth, single mode operation and wide tunability are then gathered together on a single chip with high compactness and intrinsic stability. In order to benefit from this extended wavelength range in a single output beam we have developed a platform for InP-based photonics. After the validation of all required building blocks such as straight waveguides, adiabatic couplers between active and passive waveguides, and echelle grating multiplexers, we are tackling the integration into a single monolithic device. We present the design, fabrication and performances of a tunable source, fully monolithic based on the echelle grating approach. Advantages are design flexibility, relatively simple processing and the need for one single epitaxial growth for the entire structure. The evanescent coupler has been designed to transfer all light adiabatically from the active region to a low loss passive waveguide, while taking advantage of the high gain available in the quantum wells. The multiplexer is based on an etched diffraction grating, covering the whole range of the 30 lasers of the array while keeping a very compact size. These results show the first realization of a monolithic widely tunable source in the Mid-IR and would therefore benefit to the development of fully integrated spectroscopic sensor systems.

  4. Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials.

    PubMed

    Roberts, Aled D; Li, Xu; Zhang, Haifei

    2014-07-01

    The development of the next generation of advanced lithium-ion batteries (LIBs) requires new & advanced materials and novel fabrication techniques in order to push the boundaries of performance and open up new and exciting markets. Structured carbon materials, with controlled pore features on the micron and nanometer scales, are explored as advanced alternatives to conventional graphite as the active material of the LIB anode. Mesoporous carbon materials, carbon nanotube-based materials, and graphene-based materials have been extensively investigated and reviewed. Morphology control (e.g., colloids, thin films, nanofibrous mats, monoliths) and hierarchical pores (particularly the presence of large pores) exhibit an increasing influence on LIB performance. This tutorial review focuses on the synthetic techniques for preparation of porous carbon spheres and carbon monoliths, including hydrothermal carbonization, emulsion templating, ice templating and new developments in making porous carbons from sustainable biomass and metal-organic framework templating. We begin with a brief introduction to LIBs, defining key parameters and terminology used to assess the performance of anode materials, and then address synthetic techniques for the fabrication of carbon spheres & monoliths and the relevant composites, followed, respectively, by a review of their performance as LIB anode materials. The review is completed with a prospective view on the possible direction of future research in this field.

  5. High-performance liquid chromatography separation of unsaturated organic compounds by a monolithic silica column embedded with silver nanoparticles.

    PubMed

    Zhu, Yang; Morisato, Kei; Hasegawa, George; Moitra, Nirmalya; Kiyomura, Tsutomu; Kurata, Hiroki; Kanamori, Kazuyoshi; Nakanishi, Kazuki

    2015-08-01

    The optimization of a porous structure to ensure good separation performances is always a significant issue in high-performance liquid chromatography column design. Recently we reported the homogeneous embedment of Ag nanoparticles in periodic mesoporous silica monolith and the application of such Ag nanoparticles embedded silica monolith for the high-performance liquid chromatography separation of polyaromatic hydrocarbons. However, the separation performance remains to be improved and the retention mechanism as compared with the Ag ion high-performance liquid chromatography technique still needs to be clarified. In this research, Ag nanoparticles were introduced into a macro/mesoporous silica monolith with optimized pore parameters for high-performance liquid chromatography separations. Baseline separation of benzene, naphthalene, anthracene, and pyrene was achieved with the theoretical plate number for analyte naphthalene as 36,000 m(-1). Its separation function was further extended to cis/trans isomers of aromatic compounds where cis/trans stilbenes were chosen as a benchmark. Good separation of cis/trans-stilbene with separation factor as 7 and theoretical plate number as 76,000 m(-1) for cis-stilbene was obtained. The trans isomer, however, is retained more strongly, which contradicts the long- established retention rule of Ag ion chromatography. Such behavior of Ag nanoparticles embedded in a silica column can be attributed to the differences in the molecular geometric configuration of cis/trans stilbenes.

  6. A novel application of methacrylate based short monolithic columns: concentrating Potato spindle tuber viroid from water samples.

    PubMed

    Ruščić, Jelena; Gutiérrez-Aguirre, Ion; Urbas, Lidija; Kramberger, Petra; Mehle, Nataša; Škorić, Dijana; Barut, Miloš; Ravnikar, Maja; Krajačić, Mladen

    2013-01-25

    Potato spindle tuber viroid (PSTVd) is the causal agent of a number of agriculturally important diseases. It is a single-stranded, circular and unencapsidated RNA molecule with only 356-360 nucleotides and no coding capacity. Because of its peculiar structural features, it is very stable ex vivo and it is easily transmitted mechanically by contaminated hands, tools, machinery, etc. In this work, we describe the development and optimization of a method for concentrating PSTVd using Convective Interaction Media (CIM) monolithic columns. The ion-exchange chromatography on diethylamine (DEAE) monolithic analytical column (CIMac DEAE-0.1 mL) resulted in up to 30% PSTVd recovery whilst the hydrophobic interaction chromatography on C4 monolithic analytical column (CIMac C4-0.1 mL) improved it up to 60%. This was due to the fact that the binding of the viroid to the C4 matrix was less strong than to the highly charged anion-exchange matrix and could be easier and more completely eluted under the applied chromatographic conditions. Based on these preliminary results, a C4 HLD-1 (High Ligand Density) 1 mL monolithic tube column was selected for further experiments. One-litre-water samples were mixed with different viroid quantities and loaded onto the column. By using reverse transcription quantitative polymerase chain reaction (RT-qPCR), the viroid RNA was quantified in the elution fraction (≈5 mL) indicating that 70% of the viroid was recovered and concentrated by at least two orders of magnitude. This approach will be helpful in screening irrigation waters and/or hydroponic systems' nutrient solutions for the presence of even extremely low concentrations of PSTVd.

  7. SEMICONDUCTOR DEVICES: Design and optimization of a monolithic GalnP/GalnAs tandem solar cell

    NASA Astrophysics Data System (ADS)

    Han, Zhang; Nuofu, Chen; Yu, Wang; Zhigang, Yin; Xlngwang, Zhang; Huiwei, Shi; Yanshuo, Wang; Tianmao, Huang

    2010-08-01

    We have theoretically calculated the photovoltaic conversion efficiency of a monolithic dual-junction GaInP/GaInAs device, which can be experimentally fabricated on a binary GaAs substrate. By optimizing the bandgap combination of the considered structure, an improvement of conversion efficiency has been observed in comparison to the conventional GaInP2/GaAs system. For the suggested bandgap combination 1.83 eV/1.335 eV, our calculation indicates that the attainable efficiency can be enhanced up to 40.45% (300 suns, AM1.5d) for the optimal structure parameter (1550 nm GaInP top and 5500 nm GaInAs bottom), showing promising application prospects due to its acceptable lattice-mismatch (0.43%) to the GaAs substrate.

  8. Advanced InSb monolithic Charge Coupled Infrared Imaging Devices (CCIRID)

    NASA Technical Reports Server (NTRS)

    Koch, T. L.; Thom, R. D.; Parrish, W. D.

    1981-01-01

    The continued development of monolithic InSb charge coupled infrared imaging devices (CCIRIDs) is discussed. The processing sequence and structural design of 20-element linear arrays are discussed. Also, results obtained from radiometric testing of the 20-element arrays using a clamped sample-and-hold output circuit are reported. The design and layout of a next-generation CCIRID chip are discussed. The major devices on this chip are a 20 by 16 time-delay-and-integration (TDI) area array and a 100-element linear imaging array. The development of a process for incorporating an ion implanted S(+) planar channel stop into the CCIRID structure and the development of a thin film transparent photogate are also addressed. The transparent photogates will increase quantum efficiency to greater than 70% across the 2.5 to 5.4 micrometer spectral region in future front-side illuminated CCIRIDs.

  9. Phase composition gradient in leached polluted cement monoliths

    SciTech Connect

    Leoni, Matteo Scardi, Paolo; Pelosato, Renato; Sora, Isabella Natali; Dotelli, Giovanni; Stampino, Paola Gallo; Presti, Arianna Lo

    2007-11-15

    The long-term behaviour of cement monoliths containing an organic waste, was investigated by means of a 14-month dynamic-leach-testing in deionised water. The degree of hydration and the phase composition were measured by Thermal Analysis (TGA/DTA), X-ray Powder Diffraction (XRD) and Energy Dispersive X-ray Spectroscopy (EDXS). X-ray data, analysed by the Rietveld method, provided a detailed quantitative information on the in-depth crystalline phase distribution in the specimens. Crossed with TGA and spectroscopic data and supported by the results of kinetic/hydration calculations, the diffraction results provide a detailed description of the in-depth phase composition gradient in the leached monoliths. In particular, 14-month old specimens show a clear leaching zone with predominance of CSH and calcite near the surface and low abundance of the other usual cement constituents. The material is not completely effective in retaining the contaminant.

  10. Exploring the pressure resistance limits of monolithic silica capillary columns.

    PubMed

    Hara, Takeshi; Eeltink, Sebastiaan; Desmet, Gert

    2016-05-13

    We report on an experimental approach to measure the pressure stability and mechanical strength of monolithic silica capillary columns with different diameters (50 and 100μm i.d.) and considering two different domain sizes, typical for the second generation monoliths or smaller. The approach consists of exposing the capillaries to ultra-high pressures (gradually stepwise increased from 20 to 80MPa), with intermediate measurements of the column efficiency, permeability and retention factors to check the mechanical stability of the bed. It was observed that all tested columns withstood the imposed pressure stress, i.e., all the tested parameters remained unaffected up till the maximal test pressure of 80MPa. The applied pressure gradient corresponded to 320MPa/m. The two 100μm i.d.-capillary columns were also exposed to pressures between 80 and 90MPa for a prolonged time (8h), and this did not cause any damage either. PMID:27086284

  11. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    DOEpatents

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2016-01-05

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  12. Mobile monolithic polymer elements for flow control in microfluidic devices

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.

    2004-08-31

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by either fluid or gas pressure against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  13. Mobile Monolith Polymer Elements For Flow Control In Microfluidic Systems

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.; Kirby, Brian J.

    2006-01-24

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  14. Mobile monolithic polymer elements for flow control in microfluidic devices

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.; Kirby, Brian J.

    2005-11-11

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  15. From 1D to 3D - macroscopic nanowire aerogel monoliths

    NASA Astrophysics Data System (ADS)

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus

    2016-07-01

    Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying.Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying. Electronic supplementary information (ESI) available: Experimental details, SEM and TEM images, and digital photographs. See DOI: 10.1039/c6nr04429h

  16. Monolithic millimeter-wave and picosecond electronic technologies

    SciTech Connect

    Talley, W.K.; Luhmann, N.C.

    1996-03-12

    Theoretical and experimental studies into monolithic millimeter-wave and picosecond electronic technologies have been undertaken as a collaborative project between the Lawrence Livermore National Laboratory (LLNL) and the University of California Department of Applied Science Coherent Millimeter-Wave Group under the auspices of the Laboratory Directed Research and Development Program at LLNL. The work involves the design and fabrication of monolithic frequency multiplier, beam control, and imaging arrays for millimeter-wave imaging and radar, as well as the development of high speed nonlinear transmission lines for ultra-wideband radar imaging, time domain materials characterization and magnetic fusion plasma applications. In addition, the Coherent Millimeter-Wave Group is involved in the fabrication of a state-of-the-art X-band ({approximately}8-11 GHz) RF photoinjector source aimed at producing psec high brightness electron bunches for advanced accelerator and coherent radiation generation studies.

  17. Hydrogenation with monolith reactor under conditions of immiscible liquid phases

    SciTech Connect

    Nordquist, Andrew Francis; Wilhelm, Frederick Carl; Waller, Francis Joseph; Machado, Reinaldo Mario

    2002-01-01

    The present invention relates to an improved for the hydrogenation of an immiscible mixture of an organic reactant in water. The immiscible mixture can result from the generation of water by the hydrogenation reaction itself or, by the addition of, water to the reactant prior to contact with the catalyst. The improvement resides in effecting the hydrogenation reaction in a monolith catalytic reactor from 100 to 800 cpi, at a superficial velocity of from 0.1 to 2 m/second in the absence of a cosolvent for the immiscible mixture. In a preferred embodiment, the hydrogenation is carried out using a monolith support which has a polymer network/carbon coating onto which a transition metal is deposited.

  18. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    DOEpatents

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2016-03-22

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  19. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    DOEpatents

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2014-07-08

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  20. Production of aligned microfibers and nanofibers and derived functional monoliths

    DOEpatents

    Hu, Michael Z.; DePaoli, David W.; Kuritz, Tanya; Omatete, Ogbemi

    2007-08-14

    The present invention comprises a method for producing microfibers and nanofibers and further fabricating derived solid monolithic materials having aligned uniform micro- or nanofibrils. A method for producing fibers ranging in diameter from micrometer-sized to nanometer-sized comprises the steps of producing an electric field and preparing a solid precipitative reaction media wherein the media comprises at least one chemical reactive precursor and a solvent having low electrical conductivity and wherein a solid precipitation reaction process for nucleation and growth of a solid phase occurs within the media. Then, subjecting the media to the electric field to induce in-situ growth of microfibers or nanofibers during the reaction process within the media causing precipitative growth of solid phase particles wherein the reaction conditions and reaction kinetics control the size, morphology and composition of the fibers. The fibers can then be wet pressed while under electric field into a solid monolith slab, dried and consolidated.

  1. Tunable optical reflectance using a monolithic encapsulated grating

    NASA Astrophysics Data System (ADS)

    Sang, Tian; Chen, Guoqing; Wang, Yueke; Wang, Benxin; Jiang, Wenwen; Zhao, Tianzhuo; Cai, Shaohong

    2016-09-01

    Tunable optical reflectance using a monolithic encapsulated grating in fused silica is presented based on the guided-mode resonance (GMR) effect. The resonance location can be altered by slightly varying the thickness of the top layer. For small thickness of the grating layer, the variation of the grating thickness can be tailored to create variable optical reflectance at the same operating wavelength with the filter linewidth and the reflection sidebands kept almost the same. By proper choosing the grating thickness, the novel dual functional device that combines functions of narrowband filtering and three-port beam splitting in the resonance domain can be obtained using the monolithic encapsulated grating. Multiline reflection filters can be obtained by increasing the thickness of the top layer, and tunable reflectivity for multiple operating wavelengths can be obtained by changing the grating thickness.

  2. Design and Testing of Prototypic Elements Containing Monolithic Fuel

    SciTech Connect

    N.E. Woolstenhulme; M.K. Meyer; D.M. Wachs

    2011-10-01

    The US fuel development team has performed numerous irradiation tests on small to medium sized specimens containing low enriched uranium fuel designs. The team is now focused on qualification and demonstration of the uranium-molybdenum Base Monolithic Design and has entered the next generation of testing with the design and irradiation of prototypic elements which contain this fuel. The designs of fuel elements containing monolithic fuel, such as AFIP-7 (which is currently under irradiation) and RERTR-FE (which is currently under fabrication), are appropriate progressions relative to the technology life cycle. The culmination of this testing program will occur with the design, fabrication, and irradiation of demonstration products to include the base fuel demonstration and design demonstration experiments. Future plans show that design, fabrication, and testing activities will apply the rigor needed for a demonstration campaign.

  3. Radially polarized cylindrical vector beams from a monolithic microchip laser

    NASA Astrophysics Data System (ADS)

    Naidoo, Darryl; Fromager, Michael; Ait-Ameur, Kamel; Forbes, Andrew

    2015-11-01

    Monolithic microchip lasers consist of a thin slice of laser crystal where the cavity mirrors are deposited directly onto the end faces. While this property makes such lasers very compact and robust, it prohibits the use of intracavity laser beam shaping techniques to produce complex light fields. We overcome this limitation and demonstrate the selection of complex light fields in the form of vector-vortex beams directly from a monolithic microchip laser. We employ pump reshaping and a thermal gradient across the crystal surface to control both the intensity and polarization profile of the output mode. In particular, we show laser oscillation on a superposition of Laguerre-Gaussian modes of zero radial and nonzero azimuthal index in both the scalar and vector regimes. Such complex light fields created directly from the source could find applications in fiber injection, materials processing and in simulating quantum processes.

  4. Affinity Monolith-Integrated Microchips for Protein Purification and Concentration.

    PubMed

    Gao, Changlu; Sun, Xiuhua; Wang, Huaixin; Qiao, Wei; Hu, Bo

    2016-01-01

    Affinity chromatography is a valuable method to purify and concentrate minute amount of proteins. Monoliths with epoxy groups for affinity immobilization were prepared by direct in-situ photopolymerization of glycidyl methacrylate and ethylene glycol dimethacrylate in porogenic solvents consisting of 1-dodecanol and cyclohexanol. By integrating affinity monoliths onto a microfluidic system, targeted biomolecules can be captured and retained on affinity column, while other biomolecules having no specific interactions toward the immobilized ligands flow through the microchannel. Therefore, proteins which remain on the affinity column are purified and concentrated, and then eluted by appropriate solutions and finally, separated by microchip capillary electrophoresis. This integrated microfluidic device has been applied to the purification and separation of specific proteins (FITC-labeled human serum albumin and IgG) in a mixture.

  5. Affinity Monolith-Integrated Microchips for Protein Purification and Concentration.

    PubMed

    Gao, Changlu; Sun, Xiuhua; Wang, Huaixin; Qiao, Wei; Hu, Bo

    2016-01-01

    Affinity chromatography is a valuable method to purify and concentrate minute amount of proteins. Monoliths with epoxy groups for affinity immobilization were prepared by direct in-situ photopolymerization of glycidyl methacrylate and ethylene glycol dimethacrylate in porogenic solvents consisting of 1-dodecanol and cyclohexanol. By integrating affinity monoliths onto a microfluidic system, targeted biomolecules can be captured and retained on affinity column, while other biomolecules having no specific interactions toward the immobilized ligands flow through the microchannel. Therefore, proteins which remain on the affinity column are purified and concentrated, and then eluted by appropriate solutions and finally, separated by microchip capillary electrophoresis. This integrated microfluidic device has been applied to the purification and separation of specific proteins (FITC-labeled human serum albumin and IgG) in a mixture. PMID:27473483

  6. Encapsulated subwavelength grating as a quasi-monolithic resonant reflector.

    PubMed

    Brückner, Frank; Friedrich, Daniel; Britzger, Michael; Clausnitzer, Tina; Burmeister, Oliver; Kley, Ernst-Bernhard; Danzmann, Karsten; Tünnermann, Andreas; Schnabel, Roman

    2009-12-21

    For a variety of laser interferometric experiments, the thermal noise of high-reflectivity multilayer dielectric coatings limits the measurement sensitivity. Recently, monolithic high-reflection waveguide mirrors with nanostructured surfaces have been proposed to reduce the thermal noise in interferometric measurements. Drawbacks of this approach are a highly complicated fabrication process and the high susceptibility of the nanostructured surfaces to damage and pollution. Here, we propose and demonstrate a novel quasi-monolithic resonant surface reflector that also avoids the thick dielectric stack of conventional mirrors but has a flat and robust surface. Our reflector is an encapsulated subwavelength grating that is based on silicon. We measured a high reflectivity of 93% for a wavelength of lambda = 1.55 microm under normal incidence. Perfect reflectivities are possible in theory.

  7. Monolith catalysts for closed-cycle carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.; Badlani, Ajay

    1991-01-01

    The objective was to explore ways of making a monolithic form of catalyst for CO2 lasers. The approach chosen was to pelletize the catalyst material, Au/MnO2 powder, and epoxy the pellets to stainless steel sheets as structural supports. The CO oxidation reaction over Au/MnO2 powder was found to be first overall, and the reaction rate constant at room temperature was 4.4 +/- 0.3 cc/(g x sec). The activation energy was 5.7 kcal/mol. The BET surface area of the pellets was found to vary from 125 to 140 sq m/g between different batches of catalyst. Pellets epoxied to stainless steel strips showed no sign of fracture or dusting when subjected to thermal tests. Pellets can be dropped onto hard surfaces with chipping of edges but no breakage of the pellets. Mechanical strength tests performed on the pellets showed that the crush strength is roughly one-fourth of the pelletizing force. The apparent activity and activation energy over the pellets were found to be less than over the powdered form of the catalyst. The lower apparent activity and activation energy of the pellets are due to the fact that the internal surface area of a pellet is not exposed to the reactant concentration present in the flowing gas as a result of intrapellet diffusion resistance. Effectiveness factors varied from 0.44, for pellets having thickness of 2 mm and attached with epoxy to a stainless steel strip. The epoxy and the stainless steel strip were found to simply block off one of the circular faces of the pellets. The epoxy did not penetrate the pellets and block the active sites. The values of the effective diffusivities were estimated to be between 2.3 x 10(exp -3) and 4.9 x 10(exp -3) sq cm/s. With measurements performed on one powder sample and one pellet configuration, reasonable accurate predictions can be made of conversions that would be obtained with other pellet thickness and configurations.

  8. Components for monolithic fiber chirped pulse amplification laser systems

    NASA Astrophysics Data System (ADS)

    Swan, Michael Craig

    The first portion of this work develops techniques for generating femtosecond-pulses from conventional fabry-perot laser diodes using nonlinear-spectral-broadening techniques in Yb-doped positive dispersion fiber ampliers. The approach employed an injection-locked fabry-perot laser diode followed by two stages of nonlinear-spectral-broadening to generate sub-200fs pulses. This thesis demonstrated that a 60ps gain-switched fabry-perot laser-diode can be injection-locked to generate a single-longitudinal-mode pulse and compressed by nonlinear spectral broadening to 4ps. Two problems have been identified that must be resolved before moving forward with this approach. First, gain-switched pulses from a standard diode-laser have a number of characteristics not well suited for producing clean self-phase-modulation-broadened pulses, such as an asymmetric temporal shape, which has a long pulse tail. Second, though parabolic pulse formation occurs for any arbitrary temporal input pulse profile, deviation from the optimum parabolic input results in extensively spectrally modulated self-phase-modulation-broadened pulses. In conclusion, the approach of generating self-phase-modulation-broadened pulses from pulsed laser diodes has to be modified from the initial approach explored in this thesis. The first Yb-doped chirally-coupled-core ber based systems are demonstrated and characterized in the second portion of this work. Robust single-mode performance independent of excitation or any other external mode management techniques have been demonstrated in Yb-doped chirally-coupled-core fibers. Gain and power efficiency characteristics are not compromised in any way in this novel fiber structure up to the 87W maximum power achieved. Both the small signal gain at 1064nm of 30.3dB, and the wavelength dependence of the small signal gain were comparable to currently deployed large-mode-area-fiber technology. The efficiencies of the laser and amplifier were measured to be 75% and 54

  9. Method for making a single-step etch mask for 3D monolithic nanostructures

    NASA Astrophysics Data System (ADS)

    Grishina, D. A.; Harteveld, C. A. M.; Woldering, L. A.; Vos, W. L.

    2015-12-01

    Current nanostructure fabrication by etching is usually limited to planar structures as they are defined by a planar mask. The realization of three-dimensional (3D) nanostructures by etching requires technologies beyond planar masks. We present a method for fabricating a 3D mask that allows one to etch three-dimensional monolithic nanostructures using only CMOS-compatible processes. The mask is written in a hard-mask layer that is deposited on two adjacent inclined surfaces of a Si wafer. By projecting in a single step two different 2D patterns within one 3D mask on the two inclined surfaces, the mutual alignment between the patterns is ensured. Thereby after the mask pattern is defined, the etching of deep pores in two oblique directions yields a three-dimensional structure in Si. As a proof of concept we demonstrate 3D mask fabrication for three-dimensional diamond-like photonic band gap crystals in silicon. The fabricated crystals reveal a broad stop gap in optical reflectivity measurements. We propose how 3D nanostructures with five different Bravais lattices can be realized, namely cubic, tetragonal, orthorhombic, monoclinic and hexagonal, and demonstrate a mask for a 3D hexagonal crystal. We also demonstrate the mask for a diamond-structure crystal with a 3D array of cavities. In general, the 2D patterns on the different surfaces can be completely independently structured and still be in perfect mutual alignment. Indeed, we observe an alignment accuracy of better than 3.0 nm between the 2D mask patterns on the inclined surfaces, which permits one to etch well-defined monolithic 3D nanostructures.

  10. Method for making a single-step etch mask for 3D monolithic nanostructures.

    PubMed

    Grishina, D A; Harteveld, C A M; Woldering, L A; Vos, W L

    2015-12-18

    Current nanostructure fabrication by etching is usually limited to planar structures as they are defined by a planar mask. The realization of three-dimensional (3D) nanostructures by etching requires technologies beyond planar masks. We present a method for fabricating a 3D mask that allows one to etch three-dimensional monolithic nanostructures using only CMOS-compatible processes. The mask is written in a hard-mask layer that is deposited on two adjacent inclined surfaces of a Si wafer. By projecting in a single step two different 2D patterns within one 3D mask on the two inclined surfaces, the mutual alignment between the patterns is ensured. Thereby after the mask pattern is defined, the etching of deep pores in two oblique directions yields a three-dimensional structure in Si. As a proof of concept we demonstrate 3D mask fabrication for three-dimensional diamond-like photonic band gap crystals in silicon. The fabricated crystals reveal a broad stop gap in optical reflectivity measurements. We propose how 3D nanostructures with five different Bravais lattices can be realized, namely cubic, tetragonal, orthorhombic, monoclinic and hexagonal, and demonstrate a mask for a 3D hexagonal crystal. We also demonstrate the mask for a diamond-structure crystal with a 3D array of cavities. In general, the 2D patterns on the different surfaces can be completely independently structured and still be in perfect mutual alignment. Indeed, we observe an alignment accuracy of better than 3.0 nm between the 2D mask patterns on the inclined surfaces, which permits one to etch well-defined monolithic 3D nanostructures. PMID:26581317

  11. A virtual zero-time, monolithic systolic sorting array

    SciTech Connect

    Britton, C.L.; Ericson, M.N.; Bouldin, D.W.

    1989-01-01

    A virtual zero-time monolithic sorting chip is described. The chip has a systolic array architecture and implements the ''sinking sort'' algorithm. The basic functional module of the systolic array is detailed and development techniques employed as well as functional simulation and results are presented. Lessons learned and educational significance of the development of this chip at a university are discussed. 3 refs., 4 figs.

  12. A virtual zero-time, monolithic systolic sorting array

    SciTech Connect

    Britton, C.L. Jr.; Ericson, M.N.; Bouldin, D.W.; Tennessee Univ., Knoxville, TN )

    1990-01-01

    A virtual zero-time monolithic sorting chip is described. The chip has a systolic array architecture and implements the sinking sort'' algorithm. The basic functional module of the systolic array is detailed and development techniques employed as well as functional simulation and results are presented. Lessons learned and educational significance of the development of this chip at a university are discussed. 3 refs., 4 figs.

  13. Monolithic AlGaAs second-harmonic nanoantennas

    NASA Astrophysics Data System (ADS)

    Gili, V. F.; Carletti, L.; Locatelli, A.; Rocco, D.; Finazzi, M.; Ghirardini, L.; Favero, I.; Gomez, C.; Lemaître, A.; Celebrano, M.; De Angelis, C.; Leo, G.

    2016-07-01

    We demonstrate monolithic aluminum gallium arsenide (AlGaAs) optical anoantennas. Using a selective oxidation technique, we fabricate such epitaxial semiconductor nanoparticles on an aluminum oxide substrate. Second harmonic generation from an AlGaAs nanocylinder of height h=400 nm and varying radius pumped with femtosecond pulses delivered at 1554-nm wavelength has been measured, revealing a peak conversion efficiency exceeding 10-5 for nanocylinders with an otpimized geometry.

  14. Low frequency, high sensitive tunable mechanical monolithic horizontal sensors

    NASA Astrophysics Data System (ADS)

    Acernese, Fausto; De Rosa, Rosario; Giordano, Gerardo; Romano, Rocco; Vilasi, Silvia; Barone, Fabrizio

    2011-04-01

    This paper describes an optimized version of the mechanical version of the monolithic tunable folded pendulum, developed at the University of Salerno, configurable both as seismometer and, in a force-feedback configuration, as accelerometer. Typical application of the sensors are in the field of geophysics, including the study of seismic and newtonian noise for characterization of suitable sites for underground interferometer for gravitational waves detection. The sensor, shaped with precision machining and electric-discharge-machining, like the previous version, is a very compact instrument, very sensitive in the low-frequency seismic noise band, with a very good immunity to environmental noises. Important characteristics are the tunability of the resonance frequency and the integrated laser optical readout, consisting of an optical lever and an interferometer. The theoretical sensitivity curves, largely improved due to a new design of the pendulum arms and of the electronics, are in a very good agreement with the measurements. The very large measurement band (10-6 +/- 10Hz) is couple to a very good sensitivity (10-12 m/√Hz in the band 0.1 +/- 10Hz), as seismometer. Prototypes of monolithic seismometers are already operational in selected sites around the world both to acquire seismic data for scientific analysis of seismic noise and to collect all the useful information to understand their performances in the very low frequency band (f < 1mHz). The results of the monolithic sensor as accelerometer (force feed-back configuration) are also presented and discussed. Particular relevance has their sensitivity that is better than 10-11 m/s2/√Hz in the band 0.1 +/- 10Hz. Finally, hypotheses are made on further developments and improvements of monolithic sensors.

  15. Advanced on-chip divider for monolithic microwave VCO's

    NASA Technical Reports Server (NTRS)

    Peterson, Weddell C.

    1989-01-01

    High frequency division on a monolithic circuit is a critical technology required to significantly enhance the performance of microwave and millimeter-wave phase-locked sources. The approach used to meet this need is to apply circuit design practices which are essentially 'microwave' in nature to the basically 'digital' problem of high speed division. Following investigation of several promising circuit approaches, program phase 1 culminated in the design and layout of an 8.5 GHz (Deep Space Channel 14) divide by four circuit based on a dynamic mixing divider circuit approach. Therefore, during program phase 2, an 8.5 GHz VCO with an integral divider which provides a phase coherent 2.125 GHz reference signal for phase locking applications was fabricated and optimized. Complete phase locked operation of the monolithic GaAs devices (VCO, power splitter, and dynamic divider) was demonstrated both individually and as an integrated unit. The fully functional integrated unit in a suitable test fixture was delivered to NASA for engineering data correlation. Based on the experience gained from this 8.5 GHz super component, a monolithic GaAs millimeter-wave dynamic divider for operation with an external VCO was also designed, fabricated, and characterized. This circuit, which was also delivered to NASA, demonstrated coherent division by four at an input frequency of 24.3 GHz. The high performance monolithic microwave VCO with a coherent low frequency reference output described in this report and others based on this technology will greatly benefit advanced communications systems in both the DoD and commercial sectors. Signal processing and instrumentation systems based on phase-locking loops will also attain enhanced performance at potentially reduced cost.

  16. Clinical assessment of enamel wear caused by monolithic zirconia crowns.

    PubMed

    Stober, T; Bermejo, J L; Schwindling, F S; Schmitter, M

    2016-08-01

    The purpose of this study was to measure enamel wear caused by antagonistic monolithic zirconia crowns and to compare this with enamel wear caused by contralateral natural antagonists. Twenty monolithic zirconia full molar crowns were placed in 20 patients. Patients with high activity of the masseter muscle at night (bruxism) were excluded. For analysis of wear, vinylpolysiloxane impressions were prepared after crown incorporation and at 6-, 12-, and 24-month follow-up. Wear of the occlusal contact areas of the crowns, of their natural antagonists, and of two contralateral natural antagonists (control teeth) was measured by use of plaster replicas and a 3D laser-scanning device. Differences of wear between the zirconia crown antagonists and the control teeth were investigated by means of two-sided paired Student's t-tests and linear regression analysis. After 2 years, mean vertical loss was 46 μm for enamel opposed to zirconia, 19-26 μm for contralateral control teeth and 14 μm for zirconia crowns. Maximum vertical loss was 151 μm for enamel opposed to zirconia, 75-115 μm for control teeth and 60 μm for zirconia crowns. Statistical analysis revealed significant differences between wear of enamel by zirconia-opposed teeth and by control teeth. Gender, which significantly affected wear, was identified as a possible confounder. Monolithic zirconia crowns generated more wear of opposed enamel than did natural teeth. Because of the greater wear caused by other dental ceramics, the use of monolithic zirconia crowns may be justified.

  17. Advanced indium antimonide monolithic charge coupled infrared imaging arrays

    NASA Technical Reports Server (NTRS)

    Koch, T. L.; Merilainen, C. A.; Thom, R. D.

    1981-01-01

    The continued process development of SiO2 insulators for use in advanced InSb monolithic charge coupled infrared imaging arrays is described. Specific investigations into the use of plasma enhanced chemical vapor deposited (PECVD) SiO2 as a gate insulator for InSb charge coupled devices is discussed, as are investigations of other chemical vapor deposited SiO2 materials.

  18. Foil fabrication and barrier layer application for monolithic fuels

    SciTech Connect

    Moore, Glenn A. Clark, Curtis R.; Jue, J.-F.; Swank, W. David; Haggard, D.C.; Chapple, Michael D.; Burkes, Douglas E.

    2008-07-15

    This presentation provides details of recent UMo fuel developments efforts at the Idaho National Laboratory. Processing of monolithic fuel foil, the friction bonding process, and hot isostatic press (HIP) sample preparation will be presented. Details of the hot rolling, foil annealing, zirconium barrier-layer application to U10Mo fuel foils via the hot-rolling process and application of silicon rich aluminum interfacial-layers via a thermal spray process will be presented. (author)

  19. Monolithic AlGaAs second-harmonic nanoantennas.

    PubMed

    Gili, V F; Carletti, L; Locatelli, A; Rocco, D; Finazzi, M; Ghirardini, L; Favero, I; Gomez, C; Lemaître, A; Celebrano, M; De Angelis, C; Leo, G

    2016-07-11

    We demonstrate monolithic aluminum gallium arsenide (AlGaAs) optical nanoantennas. Using a selective oxidation technique, we fabricated epitaxial semiconductor nanocylinders on an aluminum oxide substrate. Second harmonic generation from AlGaAs nanocylinders of 400 nm height and varying radius pumped with femtosecond pulses delivered at 1554-nm wavelength has been measured, revealing a peak conversion efficiency exceeding 10-5 for nanocylinders with an optimized geometry. PMID:27410864

  20. Monolithic torpedo bottle lining at Weirton Steel Corporation

    SciTech Connect

    Baker, R.; Griffith, E.

    1996-12-31

    In late 1992 and early 1993 Weirton Steel burned through three torpedo bottles in a three-month period. To determine the cause of the burn throughs, a thorough review of bottle maintenance practices was initiated. Upon identification of contributing factors, changes in operating practices were made. In an effort to increase bottle reliability, lining trials were initiated. Among the trials, a monolithic lining was installed and this paper will discuss results of the lining to date.

  1. Monolithic microwave integrated circuits: Interconnections and packaging considerations

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.

    1984-01-01

    Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.

  2. Monolithic microwave integrated circuit technology for advanced space communication

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Romanofsky, Robert R.

    1988-01-01

    Future Space Communications subsystems will utilize GaAs Monolithic Microwave Integrated Circuits (MMIC's) to reduce volume, weight, and cost and to enhance system reliability. Recent advances in GaAs MMIC technology have led to high-performance devices which show promise for insertion into these next generation systems. The status and development of a number of these devices operating from Ku through Ka band will be discussed along with anticipated potential applications.

  3. Coherent optical monolithic phased-array antenna steering system

    DOEpatents

    Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.

    1994-01-01

    An optical-based RF beam steering system for phased-array antennas comprising a photonic integrated circuit (PIC). The system is based on optical heterodyning employed to produce microwave phase shifting by a monolithic PIC constructed entirely of passive components. Microwave power and control signal distribution to the antenna is accomplished by optical fiber, permitting physical separation of the PIC and its control functions from the antenna. The system reduces size, weight, complexity, and cost of phased-array antenna systems.

  4. Comparison of costs for solidification of high-level radioactive waste solutions: glass monoliths vs metal matrices

    SciTech Connect

    Jardine, L.J.; Carlton, R.E.; Steindler, M.J.

    1981-05-01

    A comparative economic analysis was made of four solidification processes for liquid high-level radioactive waste. Two processes produced borosilicate glass monoliths and two others produced metal matrix composites of lead and borosilicate glass beads and lead and supercalcine pellets. Within the uncertainties of the cost (1979 dollars) estimates, the cost of the four processes was about the same, with the major cost component being the cost of the primary building structure. Equipment costs and operating and maintenance costs formed only a small portion of the building structure costs for all processes.

  5. [Preparation of a novel polymer monolith using atom transfer radical polymerization method for solid phase extraction].

    PubMed

    Shen, Ying; Qi, Li; Qiao, Juan; Mao, Lanqun; Chen, Yi

    2013-04-01

    In this study, a novel polymer monolith based solid phase extraction (SPE) material has been prepared by two-step atom transfer radical polymerization (ATRP) method. Firstly, employing ethylene glycol dimethacrylate (EDMA) as a cross-linker, a polymer monolith filled in a filter head has been in-situ prepared quickly under mild conditions. Then, the activators generated by electron transfer ATRP (ARGET ATRP) was used for the modification of poly(2-(dimethylamino)ethyl-methacrylate) (PDMAEMA) on the monolithic surface. Finally, this synthesized monolith for SPE was successfully applied in the extraction and enrichment of steroids. The results revealed that ATRP can be developed as a facile and effective method with mild reaction conditions for monolith construction and has the potential for preparing monolith in diverse devices.

  6. Organic monoliths for hydrophilic interaction electrochromatography/chromatography and immunoaffinity chromatography

    PubMed Central

    Gunasena, Dilani N.; El Rassi, Ziad

    2012-01-01

    This article is aimed at providing a review of the progress made over the past decade in the preparation of polar monoliths for hydrophilic interaction liquid chromatography (HILIC)/capillary electrochromatography (HI-CEC) and in the design of immuno-monoliths for immunoaffinity chromatography (IAC) that are based on some of the polar monolith precursors used in HILIC/HI-CEC. In addition, this review article discusses some of the applications of polar monoliths by HILIC and HI-CEC, and the applications of immuno-monoliths. This article is by no means an exhaustive review of the literature; it is rather a survey of the recent progress made in the field with 83 references published in the past decade on the topics of HILIC and IAC monoliths. PMID:22147366

  7. Preparing Silica Aerogel Monoliths via a Rapid Supercritical Extraction Method

    PubMed Central

    Gorka, Caroline A.

    2014-01-01

    A procedure for the fabrication of monolithic silica aerogels in eight hours or less via a rapid supercritical extraction process is described. The procedure requires 15-20 min of preparation time, during which a liquid precursor mixture is prepared and poured into wells of a metal mold that is placed between the platens of a hydraulic hot press, followed by several hours of processing within the hot press. The precursor solution consists of a 1.0:12.0:3.6:3.5 x 10-3 molar ratio of tetramethylorthosilicate (TMOS):methanol:water:ammonia. In each well of the mold, a porous silica sol-gel matrix forms. As the temperature of the mold and its contents is increased, the pressure within the mold rises. After the temperature/pressure conditions surpass the supercritical point for the solvent within the pores of the matrix (in this case, a methanol/water mixture), the supercritical fluid is released, and monolithic aerogel remains within the wells of the mold. With the mold used in this procedure, cylindrical monoliths of 2.2 cm diameter and 1.9 cm height are produced. Aerogels formed by this rapid method have comparable properties (low bulk and skeletal density, high surface area, mesoporous morphology) to those prepared by other methods that involve either additional reaction steps or solvent extractions (lengthier processes that generate more chemical waste).The rapid supercritical extraction method can also be applied to the fabrication of aerogels based on other precursor recipes. PMID:24637334

  8. Advanced Gasification Mercury/Trace Metal Control with Monolith Traps

    SciTech Connect

    Michael L. Swanson; Grant E. Dunham; Mark A. Musich

    2007-02-01

    Three potential additives for controlling mercury emissions from syngas at temperatures ranging from 350 to 500 F (177 to 260 C) were developed. Current efforts are being directed at increasing the effective working temperature for these sorbents and also being able to either eliminate any potential mercury desorption or trying to engineer a trace metal removal system that can utilize the observed desorption process to repeatedly regenerate the same sorbent monolith for extended use. Project results also indicate that one of these same sorbents can also successfully be utilized for arsenic removal. Capture of the hydrogen selenide in the passivated tubing at elevated temperatures has resulted in limited results on the effective control of hydrogen selenide with these current sorbents, although lower-temperature results are promising. Preliminary economic analysis suggests that these Corning monoliths potentially could be more cost-effective than the conventional cold-gas (presulfided activated carbon beds) technology currently being utilized. Recent Hg-loading results might suggest that the annualized costs might be as high as 2.5 times the cost of the conventional technology. However, this annualized cost does not take into account the significantly improved thermal efficiency of any plant utilizing the warm-gas monolith technology currently being developed.

  9. UPDATE ON MECHANICAL ANALYSIS OF MONOLITHIC FUEL PLATES

    SciTech Connect

    D. E. Burkes; F. J. Rice; J.-F. Jue; N. P. Hallinan

    2008-03-01

    Results on the relative bond strength of the fuel-clad interface in monolithic fuel plates have been presented at previous RRFM conferences. An understanding of mechanical properties of the fuel, cladding, and fuel / cladding interface has been identified as an important area of investigation and quantification for qualification of monolithic fuel forms. Significant progress has been made in the area of mechanical analysis of the monolithic fuel plates, including mechanical property determination of fuel foils, cladding processed by both hot isostatic pressing and friction bonding, and the fuel-clad composite. In addition, mechanical analysis of fabrication induced residual stress has been initiated, along with a study to address how such stress can be relieved prior to irradiation. Results of destructive examinations and mechanical tests are presented along with analysis and supporting conclusions. A brief discussion of alternative non-destructive evaluation techniques to quantify not only bond quality, but also bond integrity and strength, will also be provided. These are all necessary steps to link out-of-pile observations as a function of fabrication with in-pile behaviours.

  10. Monolithic preamplifier employing epitaxial N-channel JFETs

    SciTech Connect

    Radeka, V.; Rescia, S. ); Manfredi, P.F.; Re, V.; Speziali, V. . Dipt. di Elettronica Istituto Nazionale di Fisica Nucleare, Milan )

    1992-02-01

    This paper reports the results obtained in the research program oriented to the realisation of a monolithic preamplifier for calorimetry applications at high luminosity colliders. The main purpose of the program is to arrive at a monolithic realisation with a performance as close as possible to that of discrete preamplifiers. The junction field-effect transistors employed in discrete preamplifiers have an epitaxial channel and a very heavily doped gate diffused onto it. They present the best noise and radiation tolerance characteristics. The first step in the program implementation was, accordingly, the search for a process able to make the integration of epitaxial-channel. JFETs on a monolithic substrate possible. The integration has been accomplished on the basis of a buried-layer approach to device isolation. Individual JFETs and a complete preamplifier employing only N-channel JFETs have been realised. The characterisation of the individual devices has shown that their behaviour in terms of small signal and noise parameters is very close to that of their discrete equivalents. This result, along with the very good noise performances of the preamplifier, seems to point out that the buried layer process has fulfilled the task for which it was developed.

  11. Monolithic pixels on moderate resistivity substrate and sparsifying readout architecture

    NASA Astrophysics Data System (ADS)

    Giubilato, P.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Demaria, L.; Ikemoto, Y.; Kloukinas, K.; Mansuy, S. C.; Mattiazzo, S.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rivetti, A.; Rousset, J.; Silvestrin, L.; Snoeys, W.

    2013-12-01

    The LePix projects aim realizing a new generation monolithic pixel detectors with improved performances at lesser cost with respect to both current state of the art monolithic and hybrid pixel sensors. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This allows charge collection by drift while maintaining the other advantages usually offered by MAPS, like having a single piece detector and using a standard CMOS production line. The collection by drift mechanism, coupled to the low capacitance design of the collecting node made possible by the monolithic approach, provides an excellent signal to noise ratio straight at the pixel cell together with a radiation tolerance far superior to conventional un-depleted MAPS. The excellent signal-to-noise performance is demonstrated by the device ability to separate the 6 keV 55Fe double peak at room temperature. To achieve high granularity (10-20 μm pitch pixels) over large detector areas maintaining high readout speed, a completely new compressing architecture has been devised. This architecture departs from the mainstream hybrid pixel sparsification approach, which uses in-pixel logic to reduce data, by using topological compression to minimize pixel area and power consumption.

  12. Effect of cements on fracture resistance of monolithic zirconia crowns

    PubMed Central

    Nakamura, Keisuke; Mouhat, Mathieu; Nergård, John Magnus; Lægreid, Solveig Jenssen; Kanno, Taro; Milleding, Percy; Örtengren, Ulf

    2016-01-01

    Abstract Objectives The present study investigated the effect of cements on fracture resistance of monolithic zirconia crowns in relation to their compressive strength. Materials and methods Four different cements were tested: zinc phosphate cement (ZPC), glass-ionomer cement (GIC), self-adhesive resin-based cement (SRC) and resin-based cement (RC). RC was used in both dual cure mode (RC-D) and chemical cure mode (RC-C). First, the compressive strength of each cement was tested according to a standard (ISO 9917-1:2004). Second, load-to-failure test was performed to analyze the crown fracture resistance. CAD/CAM-produced monolithic zirconia crowns with a minimal thickness of 0.5 mm were prepared and cemented to dies with each cement. The crown–die samples were loaded until fracture. Results The compressive strength of SRC, RC-D and RC-C was significantly higher than those of ZPC and GIC (p < 0.05). However, there was no significant difference in the fracture load of the crown between the groups. Conclusion The values achieved in the load-to-failure test suggest that monolithic zirconia crowns with a minimal thickness of 0.5 mm may have good resistance against fracture regardless of types of cements. PMID:27335900

  13. Highly-efficient fully resonant vertical couplers for InP active-passive monolithic integration using vertically phase matched waveguides.

    PubMed

    López, Oscar García; Lasaosa, Daniel; López-Amo, Manuel; Galarza, Marko

    2013-09-23

    A new active-passive monolithic integration approach for photonic components based on vertical evanescent coupling is presented. Two vertically stacked waveguides are used in order to provide full resonant power transfer between them and avoiding the need of tapered structures. Light confinement in each waveguide is achieved combining strong lateral asymmetric structures and bent waveguides, both defined during lithography. Low propagation losses for the active waveguide and coupling efficiencies to the passive section as high as 97% have been obtained.

  14. Photoinitiated grafting of porous polymer monoliths and thermoplastic polymers for microfluidic devices

    DOEpatents

    Frechet, Jean M. J.; Svec, Frantisek; Rohr, Thomas

    2008-10-07

    A microfluidic device preferably made of a thermoplastic polymer that includes a channel or a multiplicity of channels whose surfaces are modified by photografting. The device further includes a porous polymer monolith prepared via UV initiated polymerization within the channel, and functionalization of the pore surface of the monolith using photografting. Processes for making such surface modifications of thermoplastic polymers and porous polymer monoliths are set forth.

  15. Application of Monolithic Zirconia Ceramics in Dental Practice: A Case History Report.

    PubMed

    Kim, Hee-Kyung; Kim, Sung-Hun; Lee, Jai-Bong; Han, Jung-Suk; Yeo, In-Sung

    2016-01-01

    Monolithic zirconia restorations increasingly have been used in dental practice in recent years and demonstrate superior mechanical performance compared with porcelain-veneered zirconia restorations. Recent advances in manufacturing technology have made possible the fabrication of translucent monolithic zirconia ceramics. This case report describes three clinical examples of monolithic zirconia fixed dental prostheses being used in the anterior and posterior regions and exhibiting acceptable esthetic results. PMID:27611758

  16. Application of Monolithic Zirconia Ceramics in Dental Practice: A Case History Report.

    PubMed

    Kim, Hee-Kyung; Kim, Sung-Hun; Lee, Jai-Bong; Han, Jung-Suk; Yeo, In-Sung

    2016-01-01

    Monolithic zirconia restorations increasingly have been used in dental practice in recent years and demonstrate superior mechanical performance compared with porcelain-veneered zirconia restorations. Recent advances in manufacturing technology have made possible the fabrication of translucent monolithic zirconia ceramics. This case report describes three clinical examples of monolithic zirconia fixed dental prostheses being used in the anterior and posterior regions and exhibiting acceptable esthetic results.

  17. Keeping Students Safe: Introducing the Monolithic Dome

    ERIC Educational Resources Information Center

    Lanham, Carol

    2009-01-01

    The tiny town of Niangua, Missouri, made national headlines in 2008 when a rare cluster of winter tornadoes tore across the state on an unseasonably warm January night. The twisters killed a Niangua woman in her trailer home and destroyed numerous other structures. News photos of the trailer debris were a sobering reminder of the vulnerability of…

  18. Preparation of a boronate-functionalized affinity hybrid monolith for specific capture of glycoproteins.

    PubMed

    Yang, F; Mao, J; He, X W; Chen, L X; Zhang, Y K

    2013-06-01

    A novel strategy for preparation of a boronate affinity hybrid monolith was developed using a Cu(I)-catalyzed 1,3-dipolar azide-alkyne cycloaddition (CuAAC) reaction of an alkyne-boronate ligand with an azide-functionalized monolithic intermediate. An azide-functionalized hybrid monolith was first synthesized via a single-step procedure to provide reactive sites for click chemistry; then the alkyne-boronate ligands were covalently immobilized on the azide-functionalized hybrid monolith via an in-column CuAAC reaction to form a boronate affinity hybrid monolith under mild conditions. The boronate affinity monolith was characterized and evaluated by means of elemental analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. The boronate affinity hybrid monolith exhibited excellent specificity toward nucleosides and glycoproteins, which were chosen as test cis-diol-containing compounds under neutral conditions. The binding capacity of the monolith for the glycoprotein ovalbumin was 2.36 mg · g(-1) at pH 7.0. The practicability of the boronate affinity hybrid monolithic material was demonstrated by specific capture of the glycoproteins ovalbumin and ovotransferrin from an egg sample.

  19. A novel design for monolithic interconnected modules (MIMs) for thermophotovoltaic (TPV) power conversion

    SciTech Connect

    Ward, J.S.; Duda, A.; Wanlass, M.W.

    1997-06-01

    The design for the fabrication of Monolithic Interconnected Modules (MIMs) for thermophotovoltaic (TPV) power conversion described in this paper utilizes a novel, interdigitated contacting scheme that increases the flexibility in the size of the component cells and hence the output current and voltage of the module. This flexibility is gained at the expense of only minimally increased grid obscuration. Because the design uses the grid fingers of the component cells as the interconnect structure, the area of the device used for this purpose becomes negligible. In this paper the authors report on the specifics of the design as well as issues related to the fabrication of the modules. Preliminary performance data for representative modules also are offered.

  20. Fabrication of Monolithic Sapphire Membranes for High Tc Bolometer Array Development

    NASA Technical Reports Server (NTRS)

    Pugel, D. E.; Lakew, B.; Aslam, S.; Wang, L.

    2003-01-01

    This paper examines the effectiveness of Pt/Cr thin film masks for the architecture of monolithic membrane structures in r-plane sapphire. The development of a pinhole-free Pt/Cr composite mask that is resistant to hot H2SO4:H3PO4 etchant, will lead to the fabrication of smooth sapphire membranes whose surfaces are well-suited for the growth of low-noise high Tc films. In particular, the relationship of thermal annealing conditions on the Pt/Cr composite mask system to: (1) changes in the surface morphology and elemental concentration of the Pt/Cr thin film layers and (2) etch pit formation on the sapphire surface will be presented.

  1. Fabrication of Monolithic Sapphire Membranes for High T(sub c) Bolometer Array Development

    NASA Technical Reports Server (NTRS)

    Pugel, D. E.; Lakew, B.; Aslam, S.; Wang, L.

    2004-01-01

    This paper examines the effectiveness of Pt/Cr thin film masks for the architecture of monolithic membrane structures in r-plane single crystal sapphire. The development of a pinhole-free Pt/Cr composite mask that is resistant to boiling H2SO4:H3PO4 etchant will lead to the fabrication of smooth sapphire membranes whose surfaces are well-suited for the growth of low-noise high Tc films. In particular, the relationship of thermal annealing conditions on the Pt/Cr composite mask system to: (1) changes in the surface morphology (2) elemental concentration of the Pt/Cr thin film layers and (3) etch pit formation on the sapphire surface will be presented.

  2. Inlay-Retained Fixed Dental Prosthesis: A Clinical Option Using Monolithic Zirconia

    PubMed Central

    Borgonovo, Andrea

    2014-01-01

    Different indirect restorations to replace a single missing tooth in the posterior region are available in dentistry: traditional full-coverage fixed dental prostheses (FDPs), implant-supported crowns (ISC), and inlay-retained FDPs (IRFDP). Resin bonded FDPs represent a minimally invasive procedure; preexisting fillings can minimize tooth structure removal and give retention to the IRFDP, transforming it into an ultraconservative option. New high strength zirconia ceramics, with their stiffness and high mechanical properties, could be considered a right choice for an IRFDP rehabilitation. The case report presented describes an IRFDP treatment using a CAD/CAM monolithic zirconia IRFDP; clinical and laboratory steps are illustrated, according to the most recent scientific protocols. Adhesive procedures are focused on the Y-TZP and tooth substrate conditioning methods. Nice esthetic and functional integration of indirect restoration at two-year follow-up confirmed the success of this conservative approach. PMID:24963420

  3. Monolithic porous graphitic carbons obtained through catalytic graphitization of carbon xerogels

    NASA Astrophysics Data System (ADS)

    Kiciński, Wojciech; Norek, Małgorzata; Bystrzejewski, Michał

    2013-01-01

    Pyrolysis of organic xerogels accompanied by catalytic graphitization and followed by selective-combustion purification was used to produce porous graphitic carbons. Organic gels impregnated with iron(III) chloride or nickel(II) acetate were obtained through polymerization of resorcinol and furfural. During the pyrolysis stage graphitization of the gel matrix occurs, which in turn develops mesoporosity of the obtained carbons. The evolution of the carbon into graphitic structures is strongly dependent on the concentrations of the transition metal. Pyrolysis leads to monoliths of carbon xerogel characterized by substantially enhanced mesoporosity resulting in specific surface areas up to 400 m2/g. Removal of the amorphous carbon by selective-combustion purification reduces the xerogels' mesoporosity, occasionally causing loss of their mechanical strength. The graphitized carbon xerogels were investigated by means of SEM, XRD, Raman scattering, TG-DTA and N2 physisorption. Through this procedure well graphitized carbonaceous materials can be obtained as bulk pieces.

  4. Inlay-retained fixed dental prosthesis: a clinical option using monolithic zirconia.

    PubMed

    Augusti, Davide; Augusti, Gabriele; Borgonovo, Andrea; Amato, Massimo; Re, Dino

    2014-01-01

    DIFFERENT INDIRECT RESTORATIONS TO REPLACE A SINGLE MISSING TOOTH IN THE POSTERIOR REGION ARE AVAILABLE IN DENTISTRY: traditional full-coverage fixed dental prostheses (FDPs), implant-supported crowns (ISC), and inlay-retained FDPs (IRFDP). Resin bonded FDPs represent a minimally invasive procedure; preexisting fillings can minimize tooth structure removal and give retention to the IRFDP, transforming it into an ultraconservative option. New high strength zirconia ceramics, with their stiffness and high mechanical properties, could be considered a right choice for an IRFDP rehabilitation. The case report presented describes an IRFDP treatment using a CAD/CAM monolithic zirconia IRFDP; clinical and laboratory steps are illustrated, according to the most recent scientific protocols. Adhesive procedures are focused on the Y-TZP and tooth substrate conditioning methods. Nice esthetic and functional integration of indirect restoration at two-year follow-up confirmed the success of this conservative approach.

  5. Solid oxide fuel cell having monolithic cross flow core and manifolding

    DOEpatents

    Poeppel, Roger B.; Dusek, Joseph T.

    1984-01-01

    This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageway and the oxidant passageways are disposed transverse to one another.

  6. Solid oxide fuel cell having monolithic cross flow core and manifolding

    DOEpatents

    Poeppel, R.B.; Dusek, J.T.

    1983-10-12

    This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageways and the oxidant passageways are disposed transverse to one another.

  7. Processing and characterization of multi-cellular monolithic bioceramics for bone regenerative scaffolds

    SciTech Connect

    Ari-Wahjoedi, Bambang; Ginta, Turnad Lenggo; Parman, Setyamartana; Abustaman, Mohd Zikri Ahmad

    2014-10-24

    Multicellular monolithic ceramic body is a ceramic material which has many gas or liquid passages partitioned by thin walls throughout the bulk material. There are many currently known advanced industrial applications of multicellular ceramics structures i.e. as supports for various catalysts, electrode support structure for solid oxide fuel cells, refractories, electric/electronic materials, aerospace vehicle re-entry heat shields and biomaterials for dental as well as orthopaedic implants by naming only a few. Multicellular ceramic bodies are usually made of ceramic phases such as mullite, cordierite, aluminum titanate or pure oxides such as silica, zirconia and alumina. What make alumina ceramics is excellent for the above functions are the intrinsic properties of alumina which are hard, wear resistant, excellent dielectric properties, resists strong acid and alkali attacks at elevated temperatures, good thermal conductivities, high strength and stiffness as well as biocompatible. In this work the processing technology leading to truly multicellular monolithic alumina ceramic bodies and their characterization are reported. Ceramic slip with 66 wt.% solid loading was found to be optimum as impregnant to the polyurethane foam template. Mullitic ceramic composite of alumina-sodium alumino disilicate-Leucite-like phases with bulk and true densities of 0.852 and 1.241 g cm{sup −3} respectively, pore linear density of ±35 cm{sup −1}, linear and bulk volume shrinkages of 7-16% and 32 vol.% were obtained. The compressive strength and elastic modulus of the bioceramics are ≈0.5-1.0 and ≈20 MPa respectively.

  8. Three-Dimensional Assembly of Yttrium Oxide Nanosheets into Luminescent Aerogel Monoliths with Outstanding Adsorption Properties.

    PubMed

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus

    2016-02-23

    The preparation of macroscopic materials from two-dimensional nanostructures represents a great challenge. Restacking and random aggregation to dense structures during processing prevents the preservation of the two-dimensional morphology of the nanobuilding blocks in the final body. Here we present a facile solution route to ultrathin, crystalline Y2O3 nanosheets, which can be assembled into a 3D network by a simple centrifugation-induced gelation method. The wet gels are converted into aerogel monoliths of macroscopic dimensions via supercritical drying. The as-prepared, fully crystalline Y2O3 aerogels show high surface areas of up to 445 m(2)/g and a very low density of 0.15 g/cm(3), which is only 3% of the bulk density of Y2O3. By doping and co-doping the Y2O3 nanosheets with Eu(3+) and Tb(3+), we successfully fabricated luminescent aerogel monoliths with tunable color emissions from red to green under UV excitation. Moreover, the as-prepared gels and aerogels exhibit excellent adsorption capacities for organic dyes in water without losing their structural integrity. For methyl blue we measured an unmatched adsorption capacity of 8080 mg/g. Finally, the deposition of gold nanoparticles on the nanosheets gave access to Y2O3-Au nanocomposite aerogels, proving that this approach may be used for the synthesis of catalytically active materials. The broad range of properties including low density, high porosity, and large surface area in combination with tunable photoluminescence makes these Y2O3 aerogels a truly multifunctional material with potential applications in optoelectronics, wastewater treatment, and catalysis. PMID:26756944

  9. Monolithic Microfluidic Mixing-Spraying Devices for Time-Resolved Cryo-Electron Microscopy

    PubMed Central

    Lu, Zonghuan; Shaikh, Tanvir R.; Barnard, David; Meng, Xing; Mohamed, Hisham; Yassin, Aymen; Mannella, Carmen A.; Agrawal, Rajendra K.; Lu, Toh-Ming

    2009-01-01

    The goal of time-resolved cryo-electron microscopy is to determine structural models for transient functional states of large macromolecular complexes such as ribosomes and viruses. The challenge of time-resolved cryo-electron microscopy is to rapidly mix reactants, and then, following a defined time interval, to rapidly deposit them as a thin film and freeze the sample to the vitreous state. Here we describe a methodology in which reaction components are mixed and allowed to react, and are then sprayed onto an EM grid as it is being plunged into cryogen. All steps are accomplished by a monolithic, microfabricated silicon device that incorporates a mixer, reaction channel, and pneumatic sprayer in a single chip. We have found that microdroplets produced by air atomization spread to sufficiently thin films on a millisecond time scale provided that the carbon supporting film is made suitably hydrophilic. The device incorporates two T-mixers flowing into a single channel of four butterfly-shaped mixing elements that ensure effective mixing, followed by a microfluidic reaction channel whose length can be varied to achieve the desired reaction time. The reaction channel is flanked by two ports connected to compressed humidified nitrogen gas (at 50 psi) to generate the spray. The monolithic mixer-sprayer is incorporated into a computer-controlled plunging apparatus. To test the mixing performance and the suitability of the device for preparation of biological macromolecules for cryo-EM, ribosomes and ferritin were mixed in the device and sprayed onto grids. Three-dimensional reconstructions of the ribosomes demonstrated retention of native structure, and 30S and 50S subunits were shown to be capable of reassociation into ribosomes after passage through the device. PMID:19683579

  10. Three-Dimensional Assembly of Yttrium Oxide Nanosheets into Luminescent Aerogel Monoliths with Outstanding Adsorption Properties.

    PubMed

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus

    2016-02-23

    The preparation of macroscopic materials from two-dimensional nanostructures represents a great challenge. Restacking and random aggregation to dense structures during processing prevents the preservation of the two-dimensional morphology of the nanobuilding blocks in the final body. Here we present a facile solution route to ultrathin, crystalline Y2O3 nanosheets, which can be assembled into a 3D network by a simple centrifugation-induced gelation method. The wet gels are converted into aerogel monoliths of macroscopic dimensions via supercritical drying. The as-prepared, fully crystalline Y2O3 aerogels show high surface areas of up to 445 m(2)/g and a very low density of 0.15 g/cm(3), which is only 3% of the bulk density of Y2O3. By doping and co-doping the Y2O3 nanosheets with Eu(3+) and Tb(3+), we successfully fabricated luminescent aerogel monoliths with tunable color emissions from red to green under UV excitation. Moreover, the as-prepared gels and aerogels exhibit excellent adsorption capacities for organic dyes in water without losing their structural integrity. For methyl blue we measured an unmatched adsorption capacity of 8080 mg/g. Finally, the deposition of gold nanoparticles on the nanosheets gave access to Y2O3-Au nanocomposite aerogels, proving that this approach may be used for the synthesis of catalytically active materials. The broad range of properties including low density, high porosity, and large surface area in combination with tunable photoluminescence makes these Y2O3 aerogels a truly multifunctional material with potential applications in optoelectronics, wastewater treatment, and catalysis.

  11. Towards porous polymer monoliths for the efficient, retention-independent performance in the isocratic separation of small molecules by means of nano-liquid chromatography.

    PubMed

    Nischang, Ivo; Teasdale, Ian; Brüggemann, Oliver

    2010-11-26

    flow velocity range at polymerization times significantly higher than that of phase separation. The performance of the optimized monoliths only becomes limited by fluid dispersion due to the poorly structured macroporous pore space.

  12. Monolithic electro-optic modulator array

    NASA Technical Reports Server (NTRS)

    Robinson, Deborah L. (Inventor); Marshall, William K. (Inventor); Katz, Joseph (Inventor)

    1988-01-01

    A PIN GaAlAs diode structure is provided with parameters for index guiding of light in a single mode. The index of refraction of the central layer I (which in practice may be lightly doped .pi. or .nu.) is greater than the p- and n-layers to create a slab waveguide in the transverse direction. Stripe contacts define separate waveguide channels that are separated electrically and optically by implanting protons or etching grooves between the stripe contacts in the upper layer. Separate reverse biasing voltages may be applied to the stripe contacts for modulation of the light in proportions to the voltage, either with absorption modulation, if the light wavelength is within about 500.ANG. of the bandgap of the .pi.-material, or phase-delay modulation, if the wavelength is separated from the bandgap of the .pi.-material by at least 900.ANG..

  13. The monolithic lawn-like CuO-based nanorods array used for diesel soot combustion under gravitational contact mode.

    PubMed

    Yu, Yifu; Meng, Ming; Dai, Fangfang

    2013-02-01

    A simple and feasible contact mode called gravitational contact mode (GCM) was developed for the first time to imitate the practical state between soot and catalyst. By simulating rainwater adsorption on a lawn in nature, we synthesized a lawn-like CuO nanorods array, which exhibited rather good catalytic activity for diesel soot combustion under GCM. Moreover, the CuO nanorods array could serve as a support for composite catalysts through a sequential chemical bath deposition method and exhibited higher catalytic activity than a traditional supported catalyst. The monolithic macroscopic structure of such a catalyst shows its potential for large-scale preparation and application. PMID:23254389

  14. Monolithic millimeter-wave diode grid frequency multiplier arrays

    NASA Technical Reports Server (NTRS)

    Liu, Hong-Xia L.; Qin, X.-H.; Sjogren, L. B.; Wu, W.; Chung, E.; Domier, C. W.; Luhmann, N. C., Jr.

    1992-01-01

    Monolithic diode frequency multiplier arrays, including barrier-N-N(+) (BNN) doubler, multi-quantum-barrier-varactor (MQBV) tripler, Schottky-quantum-barrier-varactor (SQBV) tripler, and resonant-tunneling-diode (RTD) tripler arrays, have been successfully fabricated with yields between 85 and 99 percent. Frequency doubling and/or tripling have been observed for all the arrays. Output powers of 2.4-2.6 W (eta = 10-18 percent) at 66 GHz with the BNN doubler and 3.8-10 W (eta = 1.7-4 percent) at 99 GHz with the SQBV tripler have been achieved.

  15. New Monolithic High Solar Rejection EUV Transmission Filter

    NASA Astrophysics Data System (ADS)

    Fleury-Frenette, Karl; Renotte, Etienne; Lenaerts, C.; Rossi, Laurence; Jacques, Lionel; Halain, Jean-Philippe; Rochus, Pierre

    A new high solar rejection transmission filter for the extreme UV has been developed for the Solar Orbiter Extreme Ultraviolet Imager (EUI). To provide enhanced resilience to high thermal load, a monolithic architecture approach has been taken in order to limit the thermal contact resistance between the filtering sub-micron thin film, its supporting mesh, and holding frame. Some aspects of the manufacturing process involving thin film deposition and photolithography will be presented along with optical performance and space environmental test results. New avenues for improving the thermo-optical properties of the filter will also be discussed.

  16. Frequency-doubled monolithic master oscillator power amplifier laser diode

    SciTech Connect

    Waarts, R.; Sanders, S.; Parke, R.; Mehuys, D.; Lang, R.; O'Brien, S.; Dzurko, K.; Welch, D.; Scifres, D. )

    1993-10-01

    Single-pass frequency doubling of laser diodes extends the wavelength range of infrared laser diodes to blue-green wavelengths. The authors describe the first experiments of frequency doubling of a coherent, high-power, monolithic master oscillator power amplifier (M-MOPA) laser diode. The output from a 1-W M-MOPA is frequency doubled in a single pass through an 8.2-mm-long KNbO[sub 3] crystal. They obtained 3.7-mW diffraction-limited output power at a wavelength of 491 nm and demonstrated modulation at 20 MHz.

  17. A novel carbon fiber based porous carbon monolith

    SciTech Connect

    Burchell, T.D.; Klett, J.W.; Weaver, C.E.

    1995-06-01

    A novel porous carbon material based on carbon fibers has been developed. The material, when activated, develops a significant micro- or mesopore volume dependent upon the carbon fiber type utilized (isotropic pitch or polyacrylonitrile). The materials will find applications in the field of fluid separations or as a catalyst support. Here, the manufacture and characterization of our porous carbon monoliths are described. A novel adsorbent carbon composite material has been developed comprising carbon fibers and a binder. The material, called carbon fiber composite molecular sieve (CFCMS), was developed through a joint research program between Oak Ridge National Laboratory (ORNL) and the University of Kentucky, Center for Applied Energy Research (UKCAER).

  18. Development of the multiwavelength monolithic integrated fiber optics terminal

    NASA Technical Reports Server (NTRS)

    Chubb, C. R.; Bryan, D. A.; Powers, J. K.; Rice, R. R.; Nettle, V. H.; Dalke, E. A.; Reed, W. R.

    1982-01-01

    This paper describes the development of the Multiwavelength Monolithic Integrated Fiber Optic Terminal (MMIFOT) for the NASA Johnson Space Center. The program objective is to utilize guided wave optical technology to develop wavelength-multiplexing and -demultiplexing units, using a single mode optical fiber for transmission between terminals. Intensity modulated injection laser diodes, chirped diffraction gratings and thin film lenses are used to achieve the wavelength-multiplexing and -demultiplexing. The video and audio data transmission test of an integrated optical unit with a Luneburg collimation lens, waveguide diffraction grating and step index condensing lens is described.

  19. A monolithically integrated torsional CMOS-MEMS relay

    NASA Astrophysics Data System (ADS)

    Riverola, M.; Sobreviela, G.; Torres, F.; Uranga, A.; Barniol, N.

    2016-11-01

    We report experimental demonstrations of a torsional microelectromechanical (MEM) relay fabricated using the CMOS-MEMS approach (or intra-CMOS) which exploits the full foundry inherent characteristics enabling drastic reduction of the fabrication costs and batch production. In particular, the relay is monolithically integrated in the back end of line of a commercial standard CMOS technology (AMS 0.35 μm) and released by means of a simple one-step mask-less wet etching. The fabricated torsional relay exhibits an extremely steep switching behaviour symmetrical about both contact sides with an on-state contact resistance in the k Ω -range throughout the on-off cycling test.

  20. Calibration Designs for Non-Monolithic Wind Tunnel Force Balances

    NASA Technical Reports Server (NTRS)

    Johnson, Thomas H.; Parker, Peter A.; Landman, Drew

    2010-01-01

    This research paper investigates current experimental designs and regression models for calibrating internal wind tunnel force balances of non-monolithic design. Such calibration methods are necessary for this class of balance because it has an electrical response that is dependent upon the sign of the applied forces and moments. This dependency gives rise to discontinuities in the response surfaces that are not easily modeled using traditional response surface methodologies. An analysis of current recommended calibration models is shown to lead to correlated response model terms. Alternative modeling methods are explored which feature orthogonal or near-orthogonal terms.

  1. Monolithic LED arrays, next generation smart lighting sources

    NASA Astrophysics Data System (ADS)

    Lagrange, Alexandre; Bono, Hubert; Templier, François

    2016-03-01

    LED have become the main light sources of the future as they open the path for intelligent use of light in time, intensity and color. In many usages, strong energy economy is done by adjusting these properties. The smart lighting has three dimensions, energy efficiency brought by GaN blue emitting LEDs, integration of electronics, sensors, microprocessors in the lighting system and development of new functionalities and services provided by the light. Monolithic LED arrays allow two major innovations, the spatial control of light emission and the adjustment of the electrical properties of the source.

  2. Monolithic device for modelocking and stabilization of frequency combs.

    PubMed

    Lee, C-C; Hayashi, Y; Silverman, K L; Feldman, A; Harvey, T; Mirin, R P; Schibli, T R

    2015-12-28

    We demonstrate a device that integrates a III-V semiconductor saturable absorber mirror with a graphene electro-optic modulator, which provides a monolithic solution to modelocking and noise suppression in a frequency comb. The device offers a pure loss modulation bandwidth exceeding 5 MHz and only requires a low voltage driver. This hybrid device provides not only compactness and simplicity in laser cavity design, but also small insertion loss, compared to the previous metallic-mirror-based modulators. We believe this work paves the way to portable and fieldable phase-coherent frequency combs.

  3. Microveneering technique for esthetic enhancement of monolithic zirconia restorations.

    PubMed

    Kurbad, Andreas

    2016-01-01

    The importance of monolithic ceramic restorations is growing, given the safe and cost-effective options for fabrication of such dental crowns and fixed dental prostheses. The optical characteristics of traditional zirconia do not suffice for this purpose. Improved restorative materials that can achieve satisfactory results in posterior restorations have been proposed to solve the problem. In the anterior region, however, even "esthetic" zirconia ceramic is unable to attain results comparable to those of glass-ceramic. Microveneering is a simple, reliable, and timesaving solution. Minimal reduction and veneering can significantly improve the results. A characteristic case is presented here. PMID:27274564

  4. Remote Sensing with Commutable Monolithic Laser and Detector

    PubMed Central

    2016-01-01

    The ubiquitous trend toward miniaturized sensing systems demands novel concepts for compact and versatile spectroscopic tools. Conventional optical sensing setups include a light source, an analyte interaction region, and a separate external detector. We present a compact sensor providing room-temperature operation of monolithic surface-active lasers and detectors integrated on the same chip. The differentiation between emitter and detector is eliminated, which enables mutual commutation. Proof-of-principle gas measurements with a limit of detection below 400 ppm are demonstrated. This concept enables a crucial miniaturization of sensing devices. PMID:27785455

  5. Development of fibrous monoliths from mullite, alumina, and zirconia powders

    SciTech Connect

    Polzin, B. J.; Cruse, T. A.; Singh, D.; Picciolo, J. J.; Tsaliagos, R. N.; Phelan, P. J.; Goretta, K. C.

    2000-06-29

    Fibrous monoliths (FMs) based on mullite combined with Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3}-stabilized ZrO{sub 2} have been produced. These FMs incorporate duplex cells in which compressive residual stresses were engineered into the surfaces of the cells. The residual stresses should increase average cell strength, which may allow them to achieve mechanical properties comparable to those of Si{sub 3}N{sub 4}/BN FMs. The expected residual stresses have been calculated, and data on sintering and thermal expansion have been gathered. Prototype FMs were produced and their microstructure examined.

  6. Ultracompact 100 Gbps coherent receiver monolithically integrated on silicon

    NASA Astrophysics Data System (ADS)

    Tu, Zhijuan; Gong, Pan; Zhou, Zhiping; Wang, Xingjun

    2016-04-01

    This work describes an ultracompact coherent receiver monolithically integrated on silicon. The coherent receiver integrates one 1D grating coupler, one 2D grating coupler, two 90° hybrids, and eight Ge photodetectors in an area of only 1.3 × 1.4 mm2, which is about half the size of the smallest previously reported receiver. The design and performances of the components and the integrated coherent receiver are presented. The receiving of 100 Gbps polarization-division-multiplexed quadrature phase-shift keying (PDM-QPSK) signals is also successfully demonstrated.

  7. Polyoxometalate incorporated porous polymer monoliths, a versatile separation media for nano liquid chromatography.

    PubMed

    Zhang, Zheng; Xu, Jing; Hussain, Dilshad; Feng, Yu-Qi

    2016-07-01

    Here in, we present a strategy to incorporate NBu4SiW11O39(SiCHCH2)2, an organic-modified polyoxometalates (POM) monomer, into the monolithic poly(butyl methacrylate-co-ethylene glycol dimethacrylate) capillary columns. SEM analysis and permeability test indicated that the addition of POM lead to larger skeleton size and better permeability. BET and pore size distribution test confirmed the uniform porosity of the resulting POM incorporated monoliths. Hydrophobic, strong cation-exchange and H-bond interactions of the prepared monolith were evaluated by testing a series of chromatographic probes. The performance of monolith was further elaborated by separating 5 nucleobases, and 6 neurotransmitters. Chromatographic separation results showed that POM incorporated monolith exhibited much better resolution for the analytes as compared to the monolith without POM. This type of monolithic material has been reported for the first time and the work provided a promising way for preparation and application of various POM-incorporated monolithic materials in separation science. PMID:27236481

  8. Polyoxometalate incorporated porous polymer monoliths, a versatile separation media for nano liquid chromatography.

    PubMed

    Zhang, Zheng; Xu, Jing; Hussain, Dilshad; Feng, Yu-Qi

    2016-07-01

    Here in, we present a strategy to incorporate NBu4SiW11O39(SiCHCH2)2, an organic-modified polyoxometalates (POM) monomer, into the monolithic poly(butyl methacrylate-co-ethylene glycol dimethacrylate) capillary columns. SEM analysis and permeability test indicated that the addition of POM lead to larger skeleton size and better permeability. BET and pore size distribution test confirmed the uniform porosity of the resulting POM incorporated monoliths. Hydrophobic, strong cation-exchange and H-bond interactions of the prepared monolith were evaluated by testing a series of chromatographic probes. The performance of monolith was further elaborated by separating 5 nucleobases, and 6 neurotransmitters. Chromatographic separation results showed that POM incorporated monolith exhibited much better resolution for the analytes as compared to the monolith without POM. This type of monolithic material has been reported for the first time and the work provided a promising way for preparation and application of various POM-incorporated monolithic materials in separation science.

  9. The fabrication of monolithic capillary column based on poly (bisphenol A epoxy vinyl ester resin-co-ethylene glycol dimethacrylate) and its applications for the separation of small molecules in high performance liquid chromatography.

    PubMed

    Niu, Wenjing; Wang, Lijuan; Bai, Ligai; Yang, Gengliang

    2013-07-01

    A new polymeric monolith was synthesized in fused-silica capillary by in situ polymerization technique. In the polymerization, bisphenol A epoxy vinyl ester resin (VER) was used as the functional monomer, ethylene glycol dimethacrylate (EDMA) as the crosslinking monomer, 1,4-butanediol, 1-propanol and water as the co-porogens, and azobisisobutyronitrile (AIBN) as the initiator. The conditions of polymerization have been optimized. Morphology of the prepared poly (VER-co-EDMA) monolith was investigated by the scanning electron microscopy (SEM); pore properties were assayed by mercury porosimetry and nitrogen adsorption. The optimized poly (VER-co-EDMA) monolith showed a uniform structure, good permeability and mechanical stability. Then, the column was used as the stationary phase of high performance liquid chromatography (HPLC) to separate the mixture of benzene derivatives. The best column efficiency achieved for phenol was 235790 theoretical plates per meter. Baseline separations of benzene derivatives and halogenated benzene compounds under optimized isocratic mode conditions were achieved with high column efficiency. The column showed good reproducibility: the relative standard deviation (RSD) values based on the retention times (n=3) for run-to-run, column-to-column and batch-to-batch were less than 0.98, 1.68, 5.48%, respectively. Compared with poly (BMA-co-EDMA) monolithic column, the proposed monolith exhibited more efficiency in the separation of small molecules. PMID:23726080

  10. Unique battery with a multi-functional, physicochemically active membrane separator/electrolyte-electrode monolith and a method making the same

    DOEpatents

    Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klinger, Robert J; Rathke, Jerome W

    2013-11-26

    The invention relates to a unique battery having a physicochemically active membrane separator/electrolyte-electrode monolith and method of making the same. The Applicant's invented battery employs a physicochemically active membrane separator/electrolyte-electrode that acts as a separator, electrolyte, and electrode, within the same monolithic structure. The chemical composition, physical arrangement of molecules, and physical geometry of the pores play a role in the sequestration and conduction of ions. In one preferred embodiment, ions are transported via the ion-hoping mechanism where the oxygens of the Al.sub.2O.sub.3 wall are available for positive ion coordination (i.e. Li.sup.+). This active membrane-electrode composite can be adjusted to a desired level of ion conductivity by manipulating the chemical composition and structure of the pore wall to either increase or decrease ion conduction.

  11. Unique battery with a multi-functional, physicochemically active membrane separator/electrolyte-electrode monolith and a method making the same

    DOEpatents

    Gerald II, Rex E.; Ruscic, Katarina J.; Sears, Devin N.; Smith, Luis J.; Klingler, Robert J.; Rathke, Jerome W.

    2012-07-24

    The invention relates to a unique battery having a physicochemically active membrane separator/electrolyte-electrode monolith and method of making the same. The Applicant's invented battery employs a physicochemically active membrane separator/electrolyte-electrode that acts as a separator, electrolyte, and electrode, within the same monolithic structure. The chemical composition, physical arrangement of molecules, and physical geometry of the pores play a role in the sequestration and conduction of ions. In one preferred embodiment, ions are transported via the ion-hoping mechanism where the oxygens of the Al2O3 wall are available for positive ion coordination (i.e. Li+). This active membrane-electrode composite can be adjusted to a desired level of ion conductivity by manipulating the chemical composition and structure of the pore wall to either increase or decrease ion conduction.

  12. Multi-functional composite structures

    DOEpatents

    Mulligan, Anthony C.; Halloran, John; Popovich, Dragan; Rigali, Mark J.; Sutaria, Manish P.; Vaidyanathan, K. Ranji; Fulcher, Michael L.; Knittel, Kenneth L.

    2010-04-27

    Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.

  13. Multi-functional composite structures

    DOEpatents

    Mulligan, Anthony C.; Halloran, John; Popovich, Dragan; Rigali, Mark J.; Sutaria, Manish P.; Vaidyanathan, K. Ranji; Fulcher, Michael L.; Knittel, Kenneth L.

    2004-10-19

    Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.

  14. Photopolymerized sol-gel monoliths for separations of glycosylated proteins and peptides in microfluidic chips.

    PubMed

    Levy, Miriam H; Plawsky, Joel; Cramer, Steven M

    2013-07-01

    Photopolymerized silica sol-gel monoliths, functionalized with boronic acid ligands, have been developed for protein and peptide separations in polydimethylsiloxane microfluidic devices. Pore size characterization of the monoliths was carried out with SEM, image analysis, and differential scanning calorimetry to evaluate both the micron-sized macropores and the nanometer-sized mesopores. Monoliths were functionalized with boronic acid using three different immobilization techniques. Batch experiments were conducted to determine the capacity of the monoliths and selectivity toward cis-diol-containing compounds. Conalbumin was used as a model glycoprotein, and a tryptic digest of the glycoprotein horseradish peroxidase was used as a peptide mixture to demonstrate proof-of-concept extraction of glycoproteins and glycopeptides by the monoliths formulated in polydimethylsiloxane microfluidic chips. For proteins, fluorescence detection was used, whereas the peptide separations employed off-line analysis using MALDI-MS. PMID:23703808

  15. Realization of a 10M/100Mbps CMOS monolithic optical receiver

    NASA Astrophysics Data System (ADS)

    Yan, Huangping; Li, Jifang; Cheng, Xiang; Lu, Jing; Huang, Yuanqing; Chen, Chao

    2009-11-01

    A monolithic optical receiver fabricated in standard 0.5μm CMOS process is presented. The fingered doublephotodetector with structure of P+/N-well and N-well/P-substrate is designed. Some critical characteristics of doublephotodetector are analyzed in detail. At 2.5V reverse voltage, the maximum dark current is 10 pA. The intrinsic cut-off frequency is above 100MHz. The measured and simulated responsivity is 0.04A/W and 0.03A/W at 850nm wavelength, respectively. In the testing of double-photodetector, the minimum and maximum of rise time is 2.67ns and 7.11ns while the minimum and maximum of fall time is 2.67ns and 31.78ns. A Spice model of DPD is established for the compatibledesign of OEIC. In simulation of pre-amplifier circuit, the pass-band gain is approximate 18.8 KΩ. The lower cut-off frequency is 7KHz while the upper cut-off frequency is 700MHz. The simulated eye diagram of OEIC at 100Mbps is featured of clear trace, wide eye-opening and small zero-crossing distortion. The small signal bandwidth of OEIC is about 54MHz. The eye diagram at 50Mbps and 250Mbps has some distortion due to direct current malajustment. In the point-to-point optical interconnection, the transmission bit rate of 72Mbps is achieved. The monolithic optical receiver can be applied in 10M/100Mbps optical data transmission.

  16. Towards positivity preservation for monolithic two-way solid-fluid coupling

    NASA Astrophysics Data System (ADS)

    Patkar, Saket; Aanjaneya, Mridul; Lu, Wenlong; Lentine, Michael; Fedkiw, Ronald

    2016-05-01

    We consider complex scenarios involving two-way coupled interactions between compressible fluids and solid bodies under extreme conditions where monolithic, as opposed to partitioned, schemes are preferred for maintaining stability. When considering such problems, spurious numerical cavitation can be quite common and have deleterious consequences on the flow field stability, accuracy, etc. Thus, it is desirable to devise numerical methods that maintain the positivity of important physical quantities such as density, internal energy and pressure. We begin by showing that for an arbitrary flux function, one can put conditions on the time step in order to preserve positivity by solving a linear equation for density fluxes and a quadratic equation for energy fluxes. Our formulation is independent of the underlying equation of state. After deriving the method for forward Euler time integration, we further extend it to higher order accurate Runge-Kutta methods. Although the scheme works well in general, there are some cases where no lower bound on the size of the allowable time step exists. Thus, to prevent the size of the time step from becoming arbitrarily small, we introduce a conservative flux clamping scheme which is also positivity preserving. Exploiting the generality of our formulation, we then design a positivity preserving scheme for a semi-implicit approach to time integration that solves a symmetric positive definite linear system to determine the pressure associated with an equation of state. Finally, this modified semi-implicit approach is extended to monolithic two-way solid-fluid coupling problems for modeling fluid structure interactions such as those generated by blast waves impacting complex solid objects.

  17. NUMERICAL SIMULATION FOR MECHANICAL BEHAVIOR OF U10MO MONOLITHIC MINIPLATES FOR RESEARCH AND TEST REACTORS

    SciTech Connect

    Hakan Ozaltun & Herman Shen

    2011-11-01

    This article presents assessment of the mechanical behavior of U-10wt% Mo (U10Mo) alloy based monolithic fuel plates subject to irradiation. Monolithic, plate-type fuel is a new fuel form being developed for research and test reactors to achieve higher uranium densities within the reactor core to allow the use of low-enriched uranium fuel in high-performance reactors. Identification of the stress/strain characteristics is important for understanding the in-reactor performance of these plate-type fuels. For this work, three distinct cases were considered: (1) fabrication induced residual stresses (2) thermal cycling of fabricated plates; and finally (3) transient mechanical behavior under actual operating conditions. Because the temperatures approach the melting temperature of the cladding during the fabrication and thermal cycling, high temperature material properties were incorporated to improve the accuracy. Once residual stress fields due to fabrication process were identified, solution was used as initial state for the subsequent simulations. For thermal cycling simulation, elasto-plastic material model with thermal creep was constructed and residual stresses caused by the fabrication process were included. For in-service simulation, coupled fluid-thermal-structural interaction was considered. First, temperature field on the plates was calculated and this field was used to compute the thermal stresses. For time dependent mechanical behavior, thermal creep of cladding, volumetric swelling and fission induced creep of the fuel foil were considered. The analysis showed that the stresses evolve very rapidly in the reactor. While swelling of the foil increases the stress of the foil, irradiation induced creep causes stress relaxation.

  18. Efficient adsorbents of nanoporous aluminosilicate monoliths for organic dyes from aqueous solution.

    PubMed

    El-Safty, Sherif A; Shahat, Ahmed; Awual, Md Rabiul

    2011-07-01

    Growing public awareness on the potential risk to humans of toxic chemicals in the environment has generated demand for new and improved methods for toxicity assessment and removal, rational means for health risk estimation. With the aim of controlling nanoscale adsorbents for functionality in molecular sieving of organic pollutants, we fabricated cubic Im3m mesocages with uniform entrance and large cavity pores of aluminosilicates as highly promising candidates for the colorimetric monitoring of organic dyes in an aqueous solution. However, a feasible control over engineering of three-dimensional (3D) mesopore cage structures with uniform entrance (~5 nm) and large cavity (~10 nm) allowed the development of nanoadsorbent membranes as a powerful tool for large-quantity and high-speed (in minutes) adsorption/removal of bulk molecules such as organic dyes. Incorporation of high aluminum contents (Si/Al=1) into 3D cubic Im3m cage mesoporous silica monoliths resulted in small, easy-to-use optical adsorbent strips. In such adsorption systems, natural surfaces of active acid sites of aluminosilicate strips strongly induced both physical adsorption of chemically responsive dyes and intraparticle diffusion into cubic Im3m mesocage monoliths. Results likewise indicated that although aluminosilicate strips with low Si/Al ratios exhibit distortion in pore ordering and decrease in surface area and pore volume, enhancement of both molecular converges and intraparticle diffusion onto the network surfaces and into the pore architectures of adsorbent membranes was achieved. Moreover, 3D mesopore cage adsorbents are reversible, offering potential for multiple adsorption assays.

  19. Optimization of human serum albumin monoliths for chiral separations and high-performance affinity chromatography

    PubMed Central

    Pfaunmiller, Erika L.; Hartmann, Mahli; Dupper, Courtney M.; Soman, Sony; Hage, David S.

    2012-01-01

    Various organic-based monoliths were prepared and optimized for immobilization of the protein human serum albumin (HSA) as a binding agent for chiral separations and high-performance affinity chromatography. These monoliths contained co-polymers based on glycidyl methacrylate (GMA) and ethylene glycol dimethacrylate (EDMA) or GMA and trimethylolpropane trimethacrylate (TRIM). A mixture of cyclohexanol and 1-dodecanol was used as the porogen, with the ratio of these solvents being varied along with the polymerization temperature to generate a library of monoliths. These monoliths were used with both the Schiff base and epoxy immobilization methods and measured for their final content of HSA. Monoliths showing the highest protein content were further evaluated in chromatographic studies using R/S-warfarin and d/l-tryptophan as model chiral solutes. A 2.6–2.7-fold increase in HSA content was obtained in the final monoliths when compared to similar HSA monoliths prepared according to the literature. The increased protein content made it possible for the new monoliths to provide higher retention and/or two-fold faster separations for the tested solutes when using 4.6 mm i.d. × 50 mm columns. These monoliths were also used to create 4.6 mm i.d. × 10 mm HSA microcolumns that could separate the same chiral solutes in only 1.5–6.0 min. The approaches used in this study could be extended to the separation of other chiral solutes and to the optimization of organic monoliths for use with additional proteins as binding agents. PMID:23010249

  20. The development of monolithic alternating current light-emitting diode

    NASA Astrophysics Data System (ADS)

    Yeh, Wen-Yung; Yen, Hsi-Hsuan; Chan, Yi-Jen

    2011-02-01

    The monolithic alternating current light emitting diode (ACLED) has been revealed for several years and was regarded as a potential device for solid state lighting. In this study, we will discuss the characteristics, development status, future challenges, and ITRI's development strategy about ACLED, especially focusing on the development progress of the monolithic GaN-based Schottky barrier diodes integrated ACLED (SBD-ACLED). The SBD-ACLED design can not only improve the chip area utilization ratio but also provide much higher reverse breakdown voltage by integrating four SBDs with the micro-LEDs array in a single chip, which was regarded as a good on-chip ACLED design. According to the experimental results, higher chip efficiency can be reached through SBD-ACLED design since the chip area utilization ratio was increased. Since the principle and the operation condition of ACLED is quite different from those of the typical DCLED, critical issues for ACLED like the current droops, the flicker phenomenon, the safety regulations, the measurement standards and the power fluctuation have been studied for getting a practical and reliable ACLED design. Besides, the "AC LED application and research alliance" (AARA) lead by ITRI in Taiwan for the commercialization works of ACLED has also been introduced.