Advanced local area network concepts
NASA Technical Reports Server (NTRS)
Grant, Terry
1985-01-01
Development of a good model of the data traffic requirements for Local Area Networks (LANs) onboard the Space Station is the driving problem in this work. A parameterized workload model is under development. An analysis contract has been started specifically to capture the distributed processing requirements for the Space Station and then to develop a top level model to simulate how various processing scenarios can handle the workload and what data communication patterns result. A summary of the Local Area Network Extendsible Simulator 2 Requirements Specification and excerpts from a grant report on the topological design of fiber optic local area networks with application to Expressnet are given.
NASA Technical Reports Server (NTRS)
Gibson, Jim; Jordan, Joe; Grant, Terry
1990-01-01
Local Area Network Extensible Simulator (LANES) computer program provides method for simulating performance of high-speed local-area-network (LAN) technology. Developed as design and analysis software tool for networking computers on board proposed Space Station. Load, network, link, and physical layers of layered network architecture all modeled. Mathematically models according to different lower-layer protocols: Fiber Distributed Data Interface (FDDI) and Star*Bus. Written in FORTRAN 77.
Gex-Model Using Local Area Fraction for Binary Electrolyte Systems
NASA Astrophysics Data System (ADS)
Haghtalab, Ali; Joda, Marzieh
2007-06-01
The correlation and prediction of phase equilibria of electrolyte systems are essential in the design and operation of many industrial processes such as downstream processing in biotechnology, desalination, hydrometallurgy, etc. In this research, the local composition non-random two liquid-nonrandom factor (NRTL-NRF) model of Haghtalab and Vera was extended for uni-univalent aqueous electrolyte solutions. Based on the assumptions of the NRTL-NRF model, excess Gibbs free energy ( g E) functions were derived for binary electrolyte systems. In this work, the local area fraction was applied and the modified model of NRTL-NRF was developed with either an equal or unequal surface area of an anion to the surface area of a cation. The modified NRTL-NRF models consist of two contributions, one due to long-range forces represented by the Debye-Hückel theory, and the other due to short-range forces, represented by local area fractions of species through nonrandom factors. Each model contains only two adjustable parameters per electrolyte. In addition, the model with unequal surface area of ionic species gives better results in comparison with the second new model with equal surface area of ions. The results for the mean activity coefficients for aqueous solutions of uni-univalent electrolytes at 298.15 K showed that the present model is more accurate than the original NRTL-NRF model.
Localized Multi-Model Extremes Metrics for the Fourth National Climate Assessment
NASA Astrophysics Data System (ADS)
Thompson, T. R.; Kunkel, K.; Stevens, L. E.; Easterling, D. R.; Biard, J.; Sun, L.
2017-12-01
We have performed localized analysis of scenario-based datasets for the Fourth National Climate Assessment (NCA4). These datasets include CMIP5-based Localized Constructed Analogs (LOCA) downscaled simulations at daily temporal resolution and 1/16th-degree spatial resolution. Over 45 temperature and precipitation extremes metrics have been processed using LOCA data, including threshold, percentile, and degree-days calculations. The localized analysis calculates trends in the temperature and precipitation extremes metrics for relatively small regions such as counties, metropolitan areas, climate zones, administrative areas, or economic zones. For NCA4, we are currently addressing metropolitan areas as defined by U.S. Census Bureau Metropolitan Statistical Areas. Such localized analysis provides essential information for adaptation planning at scales relevant to local planning agencies and businesses. Nearly 30 such regions have been analyzed to date. Each locale is defined by a closed polygon that is used to extract LOCA-based extremes metrics specific to the area. For each metric, single-model data at each LOCA grid location are first averaged over several 30-year historical and future periods. Then, for each metric, the spatial average across the region is calculated using model weights based on both model independence and reproducibility of current climate conditions. The range of single-model results is also captured on the same localized basis, and then combined with the weighted ensemble average for each region and each metric. For example, Boston-area cooling degree days and maximum daily temperature is shown below for RCP8.5 (red) and RCP4.5 (blue) scenarios. We also discuss inter-regional comparison of these metrics, as well as their relevance to risk analysis for adaptation planning.
A stochastic model for eye movements during fixation on a stationary target.
NASA Technical Reports Server (NTRS)
Vasudevan, R.; Phatak, A. V.; Smith, J. D.
1971-01-01
A stochastic model describing small eye movements occurring during steady fixation on a stationary target is presented. Based on eye movement data for steady gaze, the model has a hierarchical structure; the principal level represents the random motion of the image point within a local area of fixation, while the higher level mimics the jump processes involved in transitions from one local area to another. Target image motion within a local area is described by a Langevin-like stochastic differential equation taking into consideration the microsaccadic jumps pictured as being due to point processes and the high frequency muscle tremor, represented as a white noise. The transform of the probability density function for local area motion is obtained, leading to explicit expressions for their means and moments. Evaluation of these moments based on the model is comparable with experimental results.
NASA Astrophysics Data System (ADS)
Wahyono, H.; Wahdah, L.
2018-02-01
In Indonesia, according to Law No. 23/2014 on Local Government, a local government can conduct cooperation with other local governments that are based on considerations of efficiency and effectiveness of public services and mutual benefit, in order to improve people's welfare. Such cooperation can be categorized into mandatory and voluntary cooperation. Cooperation shall be developed jointly between the adjacent areas for the implementation of government affairs which have cross-local government externalities; and the provision of public services more efficient if managed together. One of the parts of the area that is directly related to the implementation of the policy liabilities of inter-local government cooperation which is mandated is the he province boundary areas. The public management of the provincial boundary areas is different from the central province area. While the central province area considers only their own interests, the management of boundary development must consider the neighboring regions. On one hand, the area is influenced only by its own province policy, while on the other influenced by neighboring regions. Meanwhile, a local government tends to resist the influence and intervention of neighboring regions. Likewise, neighboring local governments also tend to resist the influence and intervention of other local governments. Therefore, when interacting on the boundary, inter-local government interaction is not only the potential for cooperation, but also conflict-prone regions. One of the boundary area provinces attempt to implement the collaborative planning approach is the boundary area of Central Java Province and East Java Province, which is known as Ratubangnegoro Region. Ratubangnegoro region is one of the strategic areas of both provinces. In order to the interaction between the region could take place, there are regencies in the region have formed and joined the Inter-Local Government Cooperation Agency (BKAD-Badan Kerjasama Antar Daerah) Ratubangnegoro. Based on the explanation, this article explains the institutional model of collaborative planning contained in BKAD Ratubangnegoro. The model is much more complex, because it involves two different levels of government, provincial and regency government hierarchies. Institutional model of cooperation in the regency boundary area should be different from that of between provinces. The results of this are expected to be input from related parties of the inter-regional cooperation institution, particularly cooperation in the area of the provincial boundary with the province, which is implemented by the regencies contained therein.
NASA Astrophysics Data System (ADS)
José Polo, María; José Pérez-Palazón, María; Saénz de Rodrigáñez, Marta; Pimentel, Rafael; Arheimer, Berit
2017-04-01
Global hydrological models provide scientists and technicians with distributed data over medium to large areas from which assessment of water resource planning and use can be easily performed. However, scale conflicts between global models' spatial resolution and the local significant spatial scales in heterogeneous areas usually pose a constraint for the direct use and application of these models' results. The SWICCA (Service for Water Indicators in Climate Change Adaptation) Platform developed under the Copernicus Climate Change Service (C3S) offers a wide range of both climate and hydrological indicators obtained on a global scale with different time and spatial resolutions. Among the different study cases supporting the SWICCA demonstration of local impact assessment, the Sierra Nevada study case (South Spain) is a representative example of mountainous coastal catchments in the Mediterranean region. This work shows the lessons learnt during the study case development to derive local impact indicator tailored to suit the local end-users of water resource in this snow-dominated area. Different approaches were followed to select the most accurate method to downscale the global data and variables to the local level in a highly abrupt topography, in a sequential step approach. 1) SWICCA global climate variable downscaling followed by river flow simulation from a local hydrological model in selected control points in the catchment, together with 2) SWICCA global river flow values downscaling to the control points followed by corrections with local transfer functions were both tested against the available local river flow series of observations during the reference period. This test was performed for the different models and the available spatial resolutions included in the SWICCA platform. From the results, the second option, that is, the use of SWICCA river flow variables, performed the best approximations, once the local transfer functions were applied to the global values and an additional correction was performed based on the relative anomalies obtained instead of the absolute values. This approach was used to derive the future projections of selected local indicators for each end-user in the area under different climate change scenarios. Despite the spatial scale conflicts, the SWICCA river flow indicators (simulated by the E-HYPEv3.1.2 model) succeeded in approximating the observations during the reference period 1970-2000 when provided on a catchment scale, once local transfer functions and further anomaly correction were performed. Satisfactory results were obtained on a monthly scale for river flow in the main stream of the watershed, and on a daily scale for the headwater streams. The accessibility to the hydrological model WiMMed, which includes a snow module, locally validated in the study area has been crucial to downscale the SWICCA results and prove their usefulness.
Cross-scale assessment of potential habitat shifts in a rapidly changing climate
Jarnevich, Catherine S.; Holcombe, Tracy R.; Bella, Elizabeth S.; Carlson, Matthew L.; Graziano, Gino; Lamb, Melinda; Seefeldt, Steven S.; Morisette, Jeffrey T.
2014-01-01
We assessed the ability of climatic, environmental, and anthropogenic variables to predict areas of high-risk for plant invasion and consider the relative importance and contribution of these predictor variables by considering two spatial scales in a region of rapidly changing climate. We created predictive distribution models, using Maxent, for three highly invasive plant species (Canada thistle, white sweetclover, and reed canarygrass) in Alaska at both a regional scale and a local scale. Regional scale models encompassed southern coastal Alaska and were developed from topographic and climatic data at a 2 km (1.2 mi) spatial resolution. Models were applied to future climate (2030). Local scale models were spatially nested within the regional area; these models incorporated physiographic and anthropogenic variables at a 30 m (98.4 ft) resolution. Regional and local models performed well (AUC values > 0.7), with the exception of one species at each spatial scale. Regional models predict an increase in area of suitable habitat for all species by 2030 with a general shift to higher elevation areas; however, the distribution of each species was driven by different climate and topographical variables. In contrast local models indicate that distance to right-of-ways and elevation are associated with habitat suitability for all three species at this spatial level. Combining results from regional models, capturing long-term distribution, and local models, capturing near-term establishment and distribution, offers a new and effective tool for highlighting at-risk areas and provides insight on how variables acting at different scales contribute to suitability predictions. The combinations also provides easy comparison, highlighting agreement between the two scales, where long-term distribution factors predict suitability while near-term do not and vice versa.
Horowitz, A.J.; Elrick, K.A.; Demas, C.R.; Demcheck, D.K.
1991-01-01
Studies have demonstrated the utility of fluvial bed sediment chemical data in assesing local water-quality conditions. However, establishing local background trace element levels can be difficult. Reference to published average concentrations or the use of dated cores are often of little use in small areas of diverse local petrology, geology, land use, or hydrology. An alternative approach entails the construction of a series of sediment-trace element predictive models based on data from environmentally diverse but unaffected areas. Predicted values could provide a measure of local background concentrations and comparison with actual measured concentrations could identify elevated trace elements and affected sites. Such a model set was developed from surface bed sediments collected nationwide in the United States. Tests of the models in a small Louisiana basin indicated that they could be used to establish local trace element background levels, but required recalibration to account for local geochemical conditions outside the range of samples used to generate the nationwide models.
Mehl, Steffen W.; Hill, Mary C.
2007-01-01
This report documents the addition of the multiple-refined-areas capability to shared node Local Grid Refinement (LGR) and Boundary Flow and Head (BFH) Package of MODFLOW-2005, the U.S. Geological Survey modular, three-dimensional, finite-difference ground-water flow model. LGR now provides the capability to simulate ground-water flow by using one or more block-shaped, higher resolution local grids (child model) within a coarser grid (parent model). LGR accomplishes this by iteratively coupling separate MODFLOW-2005 models such that heads and fluxes are balanced across the shared interfacing boundaries. The ability to have multiple, nonoverlapping areas of refinement is important in situations where there is more than one area of concern within a regional model. In this circumstance, LGR can be used to simulate these distinct areas with higher resolution grids. LGR can be used in two-and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined ground-water systems. The BFH Package can be used to simulate these situations by using either the parent or child models independently.
Revisiting Gaussian Process Regression Modeling for Localization in Wireless Sensor Networks
Richter, Philipp; Toledano-Ayala, Manuel
2015-01-01
Signal strength-based positioning in wireless sensor networks is a key technology for seamless, ubiquitous localization, especially in areas where Global Navigation Satellite System (GNSS) signals propagate poorly. To enable wireless local area network (WLAN) location fingerprinting in larger areas while maintaining accuracy, methods to reduce the effort of radio map creation must be consolidated and automatized. Gaussian process regression has been applied to overcome this issue, also with auspicious results, but the fit of the model was never thoroughly assessed. Instead, most studies trained a readily available model, relying on the zero mean and squared exponential covariance function, without further scrutinization. This paper studies the Gaussian process regression model selection for WLAN fingerprinting in indoor and outdoor environments. We train several models for indoor/outdoor- and combined areas; we evaluate them quantitatively and compare them by means of adequate model measures, hence assessing the fit of these models directly. To illuminate the quality of the model fit, the residuals of the proposed model are investigated, as well. Comparative experiments on the positioning performance verify and conclude the model selection. In this way, we show that the standard model is not the most appropriate, discuss alternatives and present our best candidate. PMID:26370996
Integration of Heterogenous Digital Surface Models
NASA Astrophysics Data System (ADS)
Boesch, R.; Ginzler, C.
2011-08-01
The application of extended digital surface models often reveals, that despite an acceptable global accuracy for a given dataset, the local accuracy of the model can vary in a wide range. For high resolution applications which cover the spatial extent of a whole country, this can be a major drawback. Within the Swiss National Forest Inventory (NFI), two digital surface models are available, one derived from LiDAR point data and the other from aerial images. Automatic photogrammetric image matching with ADS80 aerial infrared images with 25cm and 50cm resolution is used to generate a surface model (ADS-DSM) with 1m resolution covering whole switzerland (approx. 41000 km2). The spatially corresponding LiDAR dataset has a global point density of 0.5 points per m2 and is mainly used in applications as interpolated grid with 2m resolution (LiDAR-DSM). Although both surface models seem to offer a comparable accuracy from a global view, local analysis shows significant differences. Both datasets have been acquired over several years. Concerning LiDAR-DSM, different flight patterns and inconsistent quality control result in a significantly varying point density. The image acquisition of the ADS-DSM is also stretched over several years and the model generation is hampered by clouds, varying illumination and shadow effects. Nevertheless many classification and feature extraction applications requiring high resolution data depend on the local accuracy of the used surface model, therefore precise knowledge of the local data quality is essential. The commercial photogrammetric software NGATE (part of SOCET SET) generates the image based surface model (ADS-DSM) and delivers also a map with figures of merit (FOM) of the matching process for each calculated height pixel. The FOM-map contains matching codes like high slope, excessive shift or low correlation. For the generation of the LiDAR-DSM only first- and last-pulse data was available. Therefore only the point distribution can be used to derive a local accuracy measure. For the calculation of a robust point distribution measure, a constrained triangulation of local points (within an area of 100m2) has been implemented using the Open Source project CGAL. The area of each triangle is a measure for the spatial distribution of raw points in this local area. Combining the FOM-map with the local evaluation of LiDAR points allows an appropriate local accuracy evaluation of both surface models. The currently implemented strategy ("partial replacement") uses the hypothesis, that the ADS-DSM is superior due to its better global accuracy of 1m. If the local analysis of the FOM-map within the 100m2 area shows significant matching errors, the corresponding area of the triangulated LiDAR points is analyzed. If the point density and distribution is sufficient, the LiDAR-DSM will be used in favor of the ADS-DSM at this location. If the local triangulation reflects low point density or the variance of triangle areas exceeds a threshold, the investigated location will be marked as NODATA area. In a future implementation ("anisotropic fusion") an anisotropic inverse distance weighting (IDW) will be used, which merges both surface models in the point data space by using FOM-map and local triangulation to derive a quality weight for each of the interpolation points. The "partial replacement" implementation and the "fusion" prototype for the anisotropic IDW make use of the Open Source projects CGAL (Computational Geometry Algorithms Library), GDAL (Geospatial Data Abstraction Library) and OpenCV (Open Source Computer Vision).
Greater sage-grouse population trends across Wyoming
Edmunds, David; Aldridge, Cameron L.; O'Donnell, Michael; Monroe, Adrian
2018-01-01
The scale at which analyses are performed can have an effect on model results and often one scale does not accurately describe the ecological phenomena of interest (e.g., population trends) for wide-ranging species: yet, most ecological studies are performed at a single, arbitrary scale. To best determine local and regional trends for greater sage-grouse (Centrocercus urophasianus) in Wyoming, USA, we modeled density-independent and -dependent population growth across multiple spatial scales relevant to management and conservation (Core Areas [habitat encompassing approximately 83% of the sage-grouse population on ∼24% of surface area in Wyoming], local Working Groups [7 regional areas for which groups of local experts are tasked with implementing Wyoming's statewide sage-grouse conservation plan at the local level], Core Area status (Core Area vs. Non-Core Area) by Working Groups, and Core Areas by Working Groups). Our goal was to determine the influence of fine-scale population trends (Core Areas) on larger-scale populations (Working Group Areas). We modeled the natural log of change in population size ( peak M lek counts) by time to calculate the finite rate of population growth (λ) for each population of interest from 1993 to 2015. We found that in general when Core Area status (Core Area vs. Non-Core Area) was investigated by Working Group Area, the 2 populations trended similarly and agreed with the overall trend of the Working Group Area. However, at the finer scale where Core Areas were analyzed separately, Core Areas within the same Working Group Area often trended differently and a few large Core Areas could influence the overall Working Group Area trend and mask trends occurring in smaller Core Areas. Relatively close fine-scale populations of sage-grouse can trend differently, indicating that large-scale trends may not accurately depict what is occurring across the landscape (e.g., local effects of gas and oil fields may be masked by increasing larger populations).
Epidemic Process over the Commute Network in a Metropolitan Area
Yashima, Kenta; Sasaki, Akira
2014-01-01
An understanding of epidemiological dynamics is important for prevention and control of epidemic outbreaks. However, previous studies tend to focus only on specific areas, indicating that application to another area or intervention strategy requires a similar time-consuming simulation. Here, we study the epidemic dynamics of the disease-spread over a commute network, using the Tokyo metropolitan area as an example, in an attempt to elucidate the general properties of epidemic spread over a commute network that could be used for a prediction in any metropolitan area. The model is formulated on the basis of a metapopulation network in which local populations are interconnected by actual commuter flows in the Tokyo metropolitan area and the spread of infection is simulated by an individual-based model. We find that the probability of a global epidemic as well as the final epidemic sizes in both global and local populations, the timing of the epidemic peak, and the time at which the epidemic reaches a local population are mainly determined by the joint distribution of the local population sizes connected by the commuter flows, but are insensitive to geographical or topological structure of the network. Moreover, there is a strong relation between the population size and the time that the epidemic reaches this local population and we are able to determine the reason for this relation as well as its dependence on the commute network structure and epidemic parameters. This study shows that the model based on the connection between the population size classes is sufficient to predict both global and local epidemic dynamics in metropolitan area. Moreover, the clear relation of the time taken by the epidemic to reach each local population can be used as a novel measure for intervention; this enables efficient intervention strategies in each local population prior to the actual arrival. PMID:24905831
Sheringham, Jessica; Asaria, Miqdad; Barratt, Helen; Raine, Rosalind; Cookson, Richard
2017-04-01
Objectives Reducing health inequalities is an explicit goal of England's health system. Our aim was to compare the performance of English local administrative areas in reducing socioeconomic inequality in emergency hospital admissions for ambulatory care sensitive chronic conditions. Methods We used local authority area as a stable proxy for health and long-term care administrative geography between 2004/5 and 2011/12. We linked inpatient hospital activity, deprivation, primary care, and population data to small area neighbourhoods (typical population 1500) within administrative areas (typical population 250,000). We measured absolute inequality gradients nationally and within each administrative area using neighbourhood-level linear models of the relationship between national deprivation and age-sex-adjusted emergency admission rates. We assessed local equity performance by comparing local inequality against national inequality to identify areas significantly more or less equal than expected; evaluated stability over time; and identified where equity performance was steadily improving or worsening. We then examined associations between change in socioeconomic inequalities and change in within-area deprivation (gentrification). Finally, we used administrative area-level random and fixed effects models to examine the contribution of primary care to inequalities in admissions. Results Data on 316 administrative areas were included in the analysis. Local inequalities were fairly stable between consecutive years, but 32 areas (10%) showed steadily improving or worsening equity. In the 21 improving areas, the gap between most and least deprived fell by 3.9 admissions per 1000 (six times the fall nationally) between 2004/5 and 2011/12, while in the 11 areas worsening, the gap widened by 2.4. There was no indication that measured improvements in local equity were an artefact of gentrification or that changes in primary care supply or quality contributed to changes in inequality. Conclusions Local equity performance in reducing inequality in emergency admissions varies both geographically and over time. Identifying this variation could provide insights into which local delivery strategies are most effective in reducing such inequalities.
Asaria, Miqdad; Barratt, Helen; Raine, Rosalind; Cookson, Richard
2016-01-01
Objectives Reducing health inequalities is an explicit goal of England’s health system. Our aim was to compare the performance of English local administrative areas in reducing socioeconomic inequality in emergency hospital admissions for ambulatory care sensitive chronic conditions. Methods We used local authority area as a stable proxy for health and long-term care administrative geography between 2004/5 and 2011/12. We linked inpatient hospital activity, deprivation, primary care, and population data to small area neighbourhoods (typical population 1500) within administrative areas (typical population 250,000). We measured absolute inequality gradients nationally and within each administrative area using neighbourhood-level linear models of the relationship between national deprivation and age–sex-adjusted emergency admission rates. We assessed local equity performance by comparing local inequality against national inequality to identify areas significantly more or less equal than expected; evaluated stability over time; and identified where equity performance was steadily improving or worsening. We then examined associations between change in socioeconomic inequalities and change in within-area deprivation (gentrification). Finally, we used administrative area-level random and fixed effects models to examine the contribution of primary care to inequalities in admissions. Results Data on 316 administrative areas were included in the analysis. Local inequalities were fairly stable between consecutive years, but 32 areas (10%) showed steadily improving or worsening equity. In the 21 improving areas, the gap between most and least deprived fell by 3.9 admissions per 1000 (six times the fall nationally) between 2004/5 and 2011/12, while in the 11 areas worsening, the gap widened by 2.4. There was no indication that measured improvements in local equity were an artefact of gentrification or that changes in primary care supply or quality contributed to changes in inequality. Conclusions Local equity performance in reducing inequality in emergency admissions varies both geographically and over time. Identifying this variation could provide insights into which local delivery strategies are most effective in reducing such inequalities. PMID:28429977
NASA Astrophysics Data System (ADS)
Roy, Nilanjan; Sharma, Auditya
2018-03-01
We numerically investigate the link between the delocalization-localization transition and entanglement in a disordered long-range hopping model of spinless fermions by studying various static and dynamical quantities. This includes the inverse participation ratio, level statistics, entanglement entropy, and number fluctuations in the subsystem along with quench and wave-packet dynamics. Finite systems show delocalized, quasilocalized, and localized phases. The delocalized phase shows strong area-law violation, whereas the (quasi)localized phase adheres to (for large subsystems) the strict area law. The idea of "entanglement contour" nicely explains the violation of area law and its relationship with "fluctuation contour" reveals a signature at the transition point. The relationship between entanglement entropy and number fluctuations in the subsystem also carries signatures for the transition in the model. Results from the Aubry-Andre-Harper model are compared in this context. The propagation of charge and entanglement are contrasted by studying quench and wave-packet dynamics at the single-particle and many-particle levels.
On Real-Time Systems Using Local Area Networks.
1987-07-01
87-35 July, 1987 CS-TR-1892 On Real - Time Systems Using Local Area Networks*I VShem-Tov Levi Department of Computer Science Satish K. Tripathit...1892 On Real - Time Systems Using Local Area Networks* Shem-Tov Levi Department of Computer Science Satish K. Tripathit Department of Computer Science...constraints and the clock systems that feed the time to real - time systems . A model for real-time system based on LAN communication is presented in
MODFLOW-LGR: Practical application to a large regional dataset
NASA Astrophysics Data System (ADS)
Barnes, D.; Coulibaly, K. M.
2011-12-01
In many areas of the US, including southwest Florida, large regional-scale groundwater models have been developed to aid in decision making and water resources management. These models are subsequently used as a basis for site-specific investigations. Because the large scale of these regional models is not appropriate for local application, refinement is necessary to analyze the local effects of pumping wells and groundwater related projects at specific sites. The most commonly used approach to date is Telescopic Mesh Refinement or TMR. It allows the extraction of a subset of the large regional model with boundary conditions derived from the regional model results. The extracted model is then updated and refined for local use using a variable sized grid focused on the area of interest. MODFLOW-LGR, local grid refinement, is an alternative approach which allows model discretization at a finer resolution in areas of interest and provides coupling between the larger "parent" model and the locally refined "child." In the present work, these two approaches are tested on a mining impact assessment case in southwest Florida using a large regional dataset (The Lower West Coast Surficial Aquifer System Model). Various metrics for performance are considered. They include: computation time, water balance (as compared to the variable sized grid), calibration, implementation effort, and application advantages and limitations. The results indicate that MODFLOW-LGR is a useful tool to improve local resolution of regional scale models. While performance metrics, such as computation time, are case-dependent (model size, refinement level, stresses involved), implementation effort, particularly when regional models of suitable scale are available, can be minimized. The creation of multiple child models within a larger scale parent model makes it possible to reuse the same calibrated regional dataset with minimal modification. In cases similar to the Lower West Coast model, where a model is larger than optimal for direct application as a parent grid, a combination of TMR and LGR approaches should be used to develop a suitable parent grid.
Phillips, Steven P.; Green, Christopher T.; Burow, Karen R.; Shelton, Jennifer L.; Rewis, Diane L.
2007-01-01
The transport and fate of agricultural chemicals in a variety of environmental settings is being evaluated as part of the U.S. Geological Survey (USGS) National Water-Quality Assessment Program. One of the locations being evaluated is a 2,700-km2 (square kilometer) regional study area in the northeastern San Joaquin Valley surrounding the city of Modesto, an area dominated by irrigated agriculture in a semi-arid climate. Ground water is a key source of water for irrigation and public supply, and exploitation of this resource has altered the natural flow system. The aquifer system is predominantly alluvial, and an unconfined to semiconfined aquifer overlies a confined aquifer in the southwestern part of the study area; these aquifers are separated by the lacustrine Corcoran Clay. A regional-scale 16-layer steady-state model of ground-water flow in the aquifer system in the regional study area was developed to provide boundary conditions for an embedded 110-layer steady-state local-scale model of part of the aquifer system overlying the Corcoran Clay along the Merced River. The purpose of the local-scale model was to develop a better understanding of the aquifer system and to provide a basis for simulation of reactive transport of agricultural chemicals. The heterogeneity of aquifer materials was explicitly incorporated into the regional and local models using information from geologic and drillers? logs of boreholes. Aquifer materials were differentiated in the regional model by the percentage of coarse-grained sediments in a cell, and in the local model by four hydrofacies (sand, silty sand, silt, and clay). The calibrated horizontal hydraulic conductivity values of the coarse-grained materials in the zone above the Corcoran Clay in the regional model and of the sand hydrofacies used in the local model were about equal (30?80 m/d [meter per day]), and the vertical hydraulic conductivity values in the same zone of the regional model (median of 0.012 m/d), which is dominated by the finer-grained materials, were about an order of magnitude less than that for the clay hydrofacies in the local model. Data used for calibrating both models included long-term hourly water-level measurements in 20 short-screened wells installed by the USGS in the Modesto and Merced River areas. Additional calibration data for the regional model included water-level measurements in 11 wells upslope and 17 wells downslope from these areas. The root mean square error was 2.3 m (meter) for all wells in the regional model and 0.8 m for only the USGS wells; the associated average errors were 0.9 m and 0.3 m, respectively. The root mean square error for the 12 USGS wells along a transect in the local model area was 0.08 m; the average error was 0.0 m. Particle tracking was used with the local model to estimate the concentration of an environmental tracer, sulfur hexafluoride, in 10 USGS transect wells near the Merced River that were sampled for this constituent. Measured and estimated concentrations in the mid-depth and deepest wells, which would be most sensitive to errors in hydraulic conductivity estimates, were consistent. The combined results of particle tracking and sulfur hexafluoride analysis suggest that most water sampled from the transect wells was recharged less that 25 years ago.
2013-01-01
Background This study addresses the growing academic and policy interest in the appropriate provision of local healthcare services to the healthcare needs of local populations to increase health status and decrease healthcare costs. However, for most local areas information on the demand for primary care and supply is missing. The research goal is to examine the construction of a decision tool which enables healthcare planners to analyse local supply and demand in order to arrive at a better match. Methods National sample-based medical record data of general practitioners (GPs) were used to predict the local demand for GP care based on local populations using a synthetic estimation technique. Next, the surplus or deficit in local GP supply were calculated using the national GP registry. Subsequently, a dynamic internet tool was built to present demand, supply and the confrontation between supply and demand regarding GP care for local areas and their surroundings in the Netherlands. Results Regression analysis showed a significant relationship between sociodemographic predictors of postcode areas and GP consultation time (F [14, 269,467] = 2,852.24; P <0.001). The statistical model could estimate GP consultation time for every postcode area with >1,000 inhabitants in the Netherlands covering 97% of the total population. Confronting these estimated demand figures with the actual GP supply resulted in the average GP workload and the number of full-time equivalent (FTE) GP too much/too few for local areas to cover the demand for GP care. An estimated shortage of one FTE GP or more was prevalent in about 19% of the postcode areas with >1,000 inhabitants if the surrounding postcode areas were taken into consideration. Underserved areas were mainly found in rural regions. Conclusions The constructed decision tool is freely accessible on the Internet and can be used as a starting point in the discussion on primary care service provision in local communities and it can make a considerable contribution to a primary care system which provides care when and where people need it. PMID:24161015
NASA Astrophysics Data System (ADS)
Skowronek, Sandra; Van De Kerchove, Ruben; Rombouts, Bjorn; Aerts, Raf; Ewald, Michael; Warrie, Jens; Schiefer, Felix; Garzon-Lopez, Carol; Hattab, Tarek; Honnay, Olivier; Lenoir, Jonathan; Rocchini, Duccio; Schmidtlein, Sebastian; Somers, Ben; Feilhauer, Hannes
2018-06-01
Remote sensing is a promising tool for detecting invasive alien plant species. Mapping and monitoring those species requires accurate detection. So far, most studies relied on models that are locally calibrated and validated against available field data. Consequently, detecting invasive alien species at new study areas requires the acquisition of additional field data which can be expensive and time-consuming. Model transfer might thus provide a viable alternative. Here, we mapped the distribution of the invasive alien bryophyte Campylopus introflexus to i) assess the feasibility of spatially transferring locally calibrated models for species detection between four different heathland areas in Germany and Belgium and ii) test the potential of combining calibration data from different sites in one species distribution model (SDM). In a first step, four different SDMs were locally calibrated and validated by combining field data and airborne imaging spectroscopy data with a spatial resolution ranging from 1.8 m to 4 m and a spectral resolution of about 10 nm (244 bands). A one-class classifier, Maxent, which is based on the comparison of probability densities, was used to generate all SDMs. In a second step, each model was transferred to the three other study areas and the performance of the models for predicting C. introflexus occurrences was assessed. Finally, models combining calibration data from three study areas were built and tested on the remaining fourth site. In this step, different combinations of Maxent modelling parameters were tested. For the local models, the area under the curve for a test dataset (test AUC) was between 0.57-0.78, while the test AUC for the single transfer models ranged between 0.45-0.89. For the combined models the test AUC was between 0.54-0.9. The success of transferring models calibrated in one site to another site highly depended on the respective study site; the combined models provided higher test AUC values than the locally calibrated models for three out of four study sites. Furthermore, we also demonstrated the importance of optimizing the Maxent modelling parameters. Overall, our results indicate the potential of a combined model to map C. introflexus without the need for new calibration data.
Unofficial Road Building in the Brazilian Amazon: Dilemmas and Models for Road Governance
NASA Technical Reports Server (NTRS)
Perz, Stephen G.; Overdevest, Christine; Caldas, Marcellus M.; Walker, Robert T.; Arima, Eugenio Y.
2007-01-01
Unofficial roads form dense networks in landscapes, generating a litany of negative ecological outcomes, but unofficial roads in frontier areas are also instrumental in local livelihoods and community development. This trade-off poses dilemmas for the governance of unofficial roads. Unofficial road building in frontier areas of the Brazilian Amazon illustrates the challenges of 'road governance.' Both state-based and community based governance models exhibit important liabilities for governing unofficial roads. Whereas state-based governance has experienced difficulties in adapting to specific local contexts and interacting effectively with local interest groups, community-based governance has a mixed record owing to social inequalities and conflicts among local interest groups. A state-community hybrid model may offer more effective governance of unofficial road building by combining the oversight capacity of the state with locally grounded community management via participatory decision-making.
Numerical simulation of terrain-induced mesoscale circulation in the Chiang Mai area, Thailand
NASA Astrophysics Data System (ADS)
Sathitkunarat, Surachai; Wongwises, Prungchan; Pan-Aram, Rudklao; Zhang, Meigen
2008-11-01
The regional atmospheric modeling system (RAMS) was applied to Chiang Mai province, a mountainous area in Thailand, to study terrain-induced mesoscale circulations. Eight cases in wet and dry seasons under different weather conditions were analyzed to show thermal and dynamic impacts on local circulations. This is the first study of RAMS in Thailand especially investigating the effect of mountainous area on the simulated meteorological data. Analysis of model results indicates that the model can reproduce major features of local circulation and diurnal variations in temperatures. For evaluating the model performance, model results were compared with observed wind speed, wind direction, and temperature monitored at a meteorological tower. Comparison shows that the modeled values are generally in good agreement with observations and that the model captured many of the observed features.
Models, Measurements, and Local Decisions: Assessing and ...
This presentation includes a combination of modeling and measurement results to characterize near-source air quality in Newark, New Jersey with consideration of how this information could be used to inform decision making to reduce risk of health impacts. Decisions could include either exposure or emissions reduction, and a host of stakeholders, including residents, academics, NGOs, local and federal agencies. This presentation includes results from the C-PORT modeling system, and from a citizen science project from the local area. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.
Lee, Jui-Huna; Wu, Chang-Fu; Hoek, Gerard; de Hoogh, Kees; Beelen, Rob; Brunekreef, Bert; Chan, Chang-Chuan
2015-05-01
Traffic intensity, length of road, and proximity to roads are the most common traffic indicators in the land use regression (LUR) models for particulate matter in ESCAPE study areas in Europe. This study explored what local variables can improve the performance of LUR models in an Asian metropolis with high densities of roads and strong activities of industry, commerce and construction. By following the ESCAPE procedure, we derived LUR models of PM₂.₅, PM₂.₅ absorbance, PM₁₀, and PMcoarse (PM₂.₅-₁₀) in Taipei. The overall annual average concentrations of PM₂.₅, PM₁₀, and PMcoarse were 26.0 ± 5.6, 48.6 ± 5.9, and 23.3 ± 3.1 μg/m(3), respectively, and the absorption coefficient of PM₂.₅ was 2.0 ± 0.4 × 10(-5)m(-1). Our LUR models yielded R(2) values of 95%, 96%, 87%, and 65% for PM₂.₅, PM₂.₅ absorbance, PM₁₀, and PMcoarse, respectively. PM₂.₅ levels were increased by local traffic variables, industrial, construction, and residential land-use variables and decreased by rivers; while PM₂.₅ absorbance levels were increased by local traffic variables, industrial, and commercial land-use variables in the models. PMcoarse levels were increased by elevated highways. Road area explained more variance than road length by increasing the incremental value of 27% and 6% adjusted R(2) for PM₂.₅ and PM₁₀ models, respectively. In the PM₂.₅ absorbance model, road area and transportation facility explain 29% more variance than road length. In the PMcoarse model, industrial and new local variables instead of road length improved the incremental value of adjusted R(2) from 39% to 60%. We concluded that road area can better explain the spatial distribution of PM₂.₅ and PM₂.₅ absorbance concentrations than road length. By incorporating road area and other new local variables, the performance of each PM LUR model was improved. The results suggest that road area is a better indicator of traffic intensity rather than road length in a city with high density of road network and traffic. Copyright © 2015 Elsevier B.V. All rights reserved.
Surface Gravity Data Contribution to the Puerto Rico and U.S. Virgin Islands Geoid Model
NASA Astrophysics Data System (ADS)
Li, X.; Gerhards, C.; Holmes, S. A.; Saleh, J.; Shaw, B.
2015-12-01
The Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project provides updated local gravity field information for the XGEOID15 models. In particular, its airborne gravity data in the area of Puerto Rico and U.S. Virgin Islands (PRVI) made substantial improvements (~60%) on the precision of the geoid models at the local GNSS/Leveling bench marks in the target area. Fortunately, PRVI is free of the huge systematic error in the North American Vertical Datum of 1988 (NAVD88). Thus, the airborne contribution was evaluated more realistically. In addition, the airborne data picked up more detailed gravity field information in the medium wavelength band (spherical harmonic degree 200 to 600) that are largely beyond the resolution of the current satellite missions, especially along the nearby ocean trench areas. Under this circumstance (significant airborne contributions in the medium band), local surface gravity data need to be examined more carefully than before during merging with the satellite and airborne information for local geoid improvement, especially considering the well-known systematic problems in the NGS historical gravity holdings (Saleh et al 2013 JoG). Initial tests showed that it is very important to maintain high consistency between the surface data sets and the airborne enhanced reference model. In addition, a new aggregation method (Gerhards 2014, Inverse Problems) will also be tested to optimally combine the local surface data with the reference model. The data cleaning and combining procedures in the target area will be summarized here as reference for future applications.
NASA Astrophysics Data System (ADS)
Ahmadlou, M.; Delavar, M. R.; Tayyebi, A.; Shafizadeh-Moghadam, H.
2015-12-01
Land use change (LUC) models used for modelling urban growth are different in structure and performance. Local models divide the data into separate subsets and fit distinct models on each of the subsets. Non-parametric models are data driven and usually do not have a fixed model structure or model structure is unknown before the modelling process. On the other hand, global models perform modelling using all the available data. In addition, parametric models have a fixed structure before the modelling process and they are model driven. Since few studies have compared local non-parametric models with global parametric models, this study compares a local non-parametric model called multivariate adaptive regression spline (MARS), and a global parametric model called artificial neural network (ANN) to simulate urbanization in Mumbai, India. Both models determine the relationship between a dependent variable and multiple independent variables. We used receiver operating characteristic (ROC) to compare the power of the both models for simulating urbanization. Landsat images of 1991 (TM) and 2010 (ETM+) were used for modelling the urbanization process. The drivers considered for urbanization in this area were distance to urban areas, urban density, distance to roads, distance to water, distance to forest, distance to railway, distance to central business district, number of agricultural cells in a 7 by 7 neighbourhoods, and slope in 1991. The results showed that the area under the ROC curve for MARS and ANN was 94.77% and 95.36%, respectively. Thus, ANN performed slightly better than MARS to simulate urban areas in Mumbai, India.
Experimental study on interfacial area transport in downward two-phase flow
NASA Astrophysics Data System (ADS)
Wang, Guanyi
In view of the importance of two group interfacial area transport equations and lack of corresponding accurate downward flow database that can reveal two group interfacial area transport, a systematic database for adiabatic, air-water, vertically downward two-phase flow in a round pipe with inner diameter of 25.4 mm was collected to gain an insight of interfacial structure and provide benchmarking data for two-group interfacial area transport models. A four-sensor conductivity probe was used to measure the local two phase flow parameters and data was collected with data sampling frequency much higher than conventional data sampling frequency to ensure the accuracy. Axial development of local flow parameter profiles including void fraction, interfacial area concentration, and Sauter mean diameter were presented. Drastic inter-group transfer of void fraction and interfacial area was observed at bubbly to slug transition flow. And the wall peaked interfacial area concentration profiles were observed in churn-turbulent flow. The importance of local data about these phenomenon on flow structure prediction and interfacial area transport equation benchmark was analyzed. Bedsides, in order to investigate the effect of inlet conditions, all experiments were repeated after installing the flow straightening facility, and the results were briefly analyzed. In order to check the accuracy of current data, the experiment results were cross-checked with rotameter measurement as well as drift-flux model prediction, the averaged error is less than 15%. Current models for two-group interfacial area transport equation were evaluated using these data. The results show that two-group interfacial area transport equations with current models can predict most flow conditions with error less than 20%, except some bubbly to slug transition flow conditions and some churn-turbulent flow conditions. The disagreement between models and experiments could result from underestimate of inter-group void transfer.
Carroll, Suzanne J; Niyonsenga, Theo; Coffee, Neil T; Taylor, Anne W; Daniel, Mark
2017-08-23
Associations between local-area residential features and glycosylated hemoglobin (HbA 1c ) may be mediated by individual-level health behaviors. Such indirect effects have rarely been tested. This study assessed whether individual-level self-reported physical activity mediated the influence of local-area descriptive norms and objectively expressed walkability on 10-year change in HbA 1c . HbA 1c was assessed three times for adults in a 10-year population-based biomedical cohort ( n = 4056). Local-area norms specific to each participant were calculated, aggregating responses from a separate statewide surveillance survey for 1600 m road-network buffers centered on participant addresses (local prevalence of overweight/obesity (body mass index ≥25 kg/m²) and physical inactivity (<150 min/week)). Separate latent growth models estimated direct and indirect (through physical activity) effects of local-area exposures on change in HbA 1c , accounting for spatial clustering and covariates (individual-level age, sex, smoking status, marital status, employment and education, and area-level median household income). HbA 1c worsened over time. Local-area norms directly and indirectly predicted worsening HbA 1c trajectories. Walkability was directly and indirectly protective of worsening HbA 1c . Local-area descriptive norms and walkability influence cardiometabolic risk trajectory through individual-level physical activity. Efforts to reduce population cardiometabolic risk should consider the extent of local-area unhealthful behavioral norms and walkability in tailoring strategies to improve physical activity.
Daniel, Mark
2017-01-01
Associations between local-area residential features and glycosylated hemoglobin (HbA1c) may be mediated by individual-level health behaviors. Such indirect effects have rarely been tested. This study assessed whether individual-level self-reported physical activity mediated the influence of local-area descriptive norms and objectively expressed walkability on 10-year change in HbA1c. HbA1c was assessed three times for adults in a 10-year population-based biomedical cohort (n = 4056). Local-area norms specific to each participant were calculated, aggregating responses from a separate statewide surveillance survey for 1600 m road-network buffers centered on participant addresses (local prevalence of overweight/obesity (body mass index ≥25 kg/m2) and physical inactivity (<150 min/week)). Separate latent growth models estimated direct and indirect (through physical activity) effects of local-area exposures on change in HbA1c, accounting for spatial clustering and covariates (individual-level age, sex, smoking status, marital status, employment and education, and area-level median household income). HbA1c worsened over time. Local-area norms directly and indirectly predicted worsening HbA1c trajectories. Walkability was directly and indirectly protective of worsening HbA1c. Local-area descriptive norms and walkability influence cardiometabolic risk trajectory through individual-level physical activity. Efforts to reduce population cardiometabolic risk should consider the extent of local-area unhealthful behavioral norms and walkability in tailoring strategies to improve physical activity. PMID:28832552
Méndez-López, María Elena; García-Frapolli, Eduardo; Pritchard, Diana J; Sánchez González, María Consuelo; Ruiz-Mallén, Isabel; Porter-Bolland, Luciana; Reyes-Garcia, Victoria
2014-12-01
In Mexico, biodiversity conservation is primarily implemented through three schemes: 1) protected areas, 2) payment-based schemes for environmental services, and 3) community-based conservation, officially recognized in some cases as Indigenous and Community Conserved Areas. In this paper we compare levels of local participation across conservation schemes. Through a survey applied to 670 households across six communities in Southeast Mexico, we document local participation during the creation, design, and implementation of the management plan of different conservation schemes. To analyze the data, we first calculated the frequency of participation at the three different stages mentioned, then created a participation index that characterizes the presence and relative intensity of local participation for each conservation scheme. Results showed that there is a low level of local participation across all the conservation schemes explored in this study. Nonetheless, the payment for environmental services had the highest local participation while the protected areas had the least. Our findings suggest that local participation in biodiversity conservation schemes is not a predictable outcome of a specific (community-based) model, thus implying that other factors might be important in determining local participation. This has implications on future strategies that seek to encourage local involvement in conservation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Case, Bradley S; Buckley, Hannah L
2015-01-01
Although treeline elevations are limited globally by growing season temperature, at regional scales treelines frequently deviate below their climatic limit. The cause of these deviations relate to a host of climatic, disturbance, and geomorphic factors that operate at multiple scales. The ability to disentangle the relative effects of these factors is currently hampered by the lack of reliable topoclimatic data, which describe how regional climatic characteristics are modified by topographic effects in mountain areas. In this study we present an analysis of the combined effects of local- and regional-scale factors on southern beech treeline elevation variability at 28 study areas across New Zealand. We apply a mesoscale atmospheric model to generate local-scale (200 m) meteorological data at these treelines and, from these data, we derive a set of topoclimatic indices that reflect possible detrimental and ameliorative influences on tree physiological functioning. Principal components analysis of meteorological data revealed geographic structure in how study areas were situated in multivariate space along gradients of topoclimate. Random forest and conditional inference tree modelling enabled us to tease apart the relative effects of 17 explanatory factors on local-scale treeline elevation variability. Overall, modelling explained about 50% of the variation in treeline elevation variability across the 28 study areas, with local landform and topoclimatic effects generally outweighing those from regional-scale factors across the 28 study areas. Further, the nature of the relationships between treeline elevation variability and the explanatory variables were complex, frequently non-linear, and consistent with the treeline literature. To our knowledge, this is the first study where model-generated meteorological data, and derived topoclimatic indices, have been developed and applied to explain treeline variation. Our results demonstrate the potential of such an approach for ecological research in mountainous environments.
Buckley, Hannah L.
2015-01-01
Although treeline elevations are limited globally by growing season temperature, at regional scales treelines frequently deviate below their climatic limit. The cause of these deviations relate to a host of climatic, disturbance, and geomorphic factors that operate at multiple scales. The ability to disentangle the relative effects of these factors is currently hampered by the lack of reliable topoclimatic data, which describe how regional climatic characteristics are modified by topographic effects in mountain areas. In this study we present an analysis of the combined effects of local- and regional-scale factors on southern beech treeline elevation variability at 28 study areas across New Zealand. We apply a mesoscale atmospheric model to generate local-scale (200 m) meteorological data at these treelines and, from these data, we derive a set of topoclimatic indices that reflect possible detrimental and ameliorative influences on tree physiological functioning. Principal components analysis of meteorological data revealed geographic structure in how study areas were situated in multivariate space along gradients of topoclimate. Random forest and conditional inference tree modelling enabled us to tease apart the relative effects of 17 explanatory factors on local-scale treeline elevation variability. Overall, modelling explained about 50% of the variation in treeline elevation variability across the 28 study areas, with local landform and topoclimatic effects generally outweighing those from regional-scale factors across the 28 study areas. Further, the nature of the relationships between treeline elevation variability and the explanatory variables were complex, frequently non-linear, and consistent with the treeline literature. To our knowledge, this is the first study where model-generated meteorological data, and derived topoclimatic indices, have been developed and applied to explain treeline variation. Our results demonstrate the potential of such an approach for ecological research in mountainous environments. PMID:26528407
NASA Astrophysics Data System (ADS)
Oanta, Emil M.; Dascalescu, Anca-Elena; Sabau, Adrian
2016-12-01
The paper presents an original analytical model of the hydrodynamic loads applied on the half-bridge of a circular settling tank. The calculus domain is defined using analytical geometry and the calculus of the local dynamic pressure is based on the radius from the center of the settling tank to the current area, i.e. the relative velocity of the fluid and the depth where the current area is located, i.e. the density of the fluid. Calculus of the local drag forces uses the discrete frontal cross sectional areas of the submerged structure in contact with the fluid. In the last stage is performed the reduction of the local drag forces in the appropriate points belonging to the main beam. This class of loads is producing the flexure of the main beam in a horizontal plane and additional twisting moments along this structure. Taking into account the hydrodynamic loads, the results of the theoretical models, i.e. the analytical model and the finite element model, may have an increased accuracy.
NASA Astrophysics Data System (ADS)
Quesnel, Benoît; de Veslud, Christian Le Carlier; Boulvais, Philippe; Gautier, Pierre; Cathelineau, Michel; Drouillet, Maxime
2017-10-01
Resulting from the weathering of the Peridotite Nappe, laterites are abundant in New Caledonia and host one of the largest nickel deposits worldwide. This work presents a 3D model of the Koniambo nickel laterite ore deposit. It shows that the laterites are located along the ridges of the massif and organized as hectometric-sized patches obliquely cut by the topography and distributed at various elevations. Three kinds of geometry were observed: (i) a thick laterite cover (between 20 and 40 m) overlying saprolite and mainly localized on topographic highs, (ii) a thin laterite cover (from a few meters to 20 m) mainly localized on areas with gentle slopes, and (iii) exposure of saprolite without laterite cover. Our data show that Ni-rich and Ni-poor areas are organized as hectometric-sized patches which broadly correlate with the distribution of the laterite thickness. The highest Ni areas are localized on slopes where laterite cover is thin or absent. The areas with lowest Ni are located in topographic highs under the thickest laterite cover. The vertical Ni mass balance for each borehole shows that, in areas with thick laterite cover, Ni is sub-equilibrated to slightly depleted whereas in areas with thin laterite cover, Ni is enriched. This suggests the existence of lateral infiltration of water rich in dissolved Ni, from areas such as topographic highs to downstream slope areas, in a process leading to enrichment of saprolite in Ni in slope areas. Mechanical transport and leaching of laterite material on slopes, including Ni-bearing material, could also contribute to local enrichment of Ni in the saprolite.
Networking DEC and IBM computers
NASA Technical Reports Server (NTRS)
Mish, W. H.
1983-01-01
Local Area Networking of DEC and IBM computers within the structure of the ISO-OSI Seven Layer Reference Model at a raw signaling speed of 1 Mops or greater are discussed. After an introduction to the ISO-OSI Reference Model nd the IEEE-802 Draft Standard for Local Area Networks (LANs), there follows a detailed discussion and comparison of the products available from a variety of manufactures to perform this networking task. A summary of these products is presented in a table.
Testing MODFLOW-LGR for simulating flow around buried Quaternary valleys - synthetic test cases
NASA Astrophysics Data System (ADS)
Vilhelmsen, T. N.; Christensen, S.
2009-12-01
In this study the Local Grid Refinement (LGR) method developed for MODFLOW-2005 (Mehl and Hill, 2005) is utilized to describe groundwater flow in areas containing buried Quaternary valley structures. The tests are conducted as comparative analysis between simulations run with a globally refined model, a locally refined model, and a globally coarse model, respectively. The models vary from simple one layer models to more complex ones with up to 25 model layers. The comparisons of accuracy are conducted within the locally refined area and focus on water budgets, simulated heads, and simulated particle traces. Simulations made with the globally refined model are used as reference (regarded as “true” values). As expected, for all test cases the application of local grid refinement resulted in more accurate results than when using the globally coarse model. A significant advantage of utilizing MODFLOW-LGR was that it allows increased numbers of model layers to better resolve complex geology within local areas. This resulted in more accurate simulations than when using either a globally coarse model grid or a locally refined model with lower geological resolution. Improved accuracy in the latter case could not be expected beforehand because difference in geological resolution between the coarse parent model and the refined child model contradicts the assumptions of the Darcy weighted interpolation used in MODFLOW-LGR. With respect to model runtimes, it was sometimes found that the runtime for the locally refined model is much longer than for the globally refined model. This was the case even when the closure criteria were relaxed compared to the globally refined model. These results are contradictory to those presented by Mehl and Hill (2005). Furthermore, in the complex cases it took some testing (model runs) to identify the closure criteria and the damping factor that secured convergence, accurate solutions, and reasonable runtimes. For our cases this is judged to be a serious disadvantage of applying MODFLOW-LGR. Another disadvantage in the studied cases was that the MODFLOW-LGR results proved to be somewhat dependent on the correction method used at the parent-child model interface. This indicates that when applying MODFLOW-LGR there is a need for thorough and case-specific considerations regarding choice of correction method. References: Mehl, S. and M. C. Hill (2005). "MODFLOW-2005, THE U.S. GEOLOGICAL SURVEY MODULAR GROUND-WATER MODEL - DOCUMENTATION OF SHARED NODE LOCAL GRID REFINEMENT (LGR) AND THE BOUNDARY FLOW AND HEAD (BFH) PACKAGE " U.S. Geological Survey Techniques and Methods 6-A12
NASA Astrophysics Data System (ADS)
Li, Xiaopeng
2016-04-01
Airborne gravimetry has been used as the primary method to quickly and economically obtain updated gravity field information over a region, targeted specifically. Thus, unlike the satellite missions that provide global or near global data coverage, the observables from airborne campaigns are apparently space limited. Moreover, they are also band limited in the frequency domain, considering that various filter banks and/or de-noising techniques have to be applied to overcome the low signal to noise ratio problem that are presented in the airborne systems due to mechanical and mathematical limitations in computing the accelerations, both the kinematic one and the dynamic one. As a result, in this study, a band-limited local function system based on the point mass model is used to process these airborne gravity data that have both a limited frequency domain and a limited space domain in the target area: Puerto Rico Island and its nearby ocean areas. The resulting geoid model show obvious middle to short wavelength geoid changes due to airborne gravity data contribution. In the land area, these changes improved the geoid precision from 3.27cm to 2.09cm at the local GNSS/Leveling bench marks. More importantly, the error trend in the geoid models is largely reduced if not completely removed. Various oceanographic models will be used to validate the geoid changes in the nearby open sea areas.
Goode, Daniel J.; Senior, Lisa A.
2000-01-01
The U.S. Geological Survey, as part of technical assistance to the U.S. Environmental Protection Agency, has constructed and calibrated models of local-scale ground-water flow in and near Lansdale, Pa., where numerous sources of industrial contamination have been consolidated into the North Penn Area 6 Superfund Site. The local-scale models incorporate hydrogeologic structure of northwest-dipping beds with uniform hydraulic properties identified in previous studies. Computations associated with mapping the dipping-bed structure into the three-dimensional model grid are handled by a preprocessor using a programmed geographic information system (GIS). Hydraulic properties are identified by calibration of the models using measured water levels during pumping and recovery from aquifer tests at three sites. Reduced flow across low-permeability beds is explicitly simulated. The dipping high-permeability beds are extensive in the strike direction but are of limited extent in the dip direction. This model structure yields ground-water-flow patterns characteristic of anisotropic aquifers; preferred flow is in the strike direction. The transmissivities of high-permeability beds in the local-scale models range from 142 to 1,900 ft2/d (feet squared per day) (13 to 177 m2/d). The hydraulic conductivities of low-permeability parts of the aquifer range from 9.6 x 10-4 to 0.26 ft/d (feet per day) (2.9 x 10-4 to 0.079 m/d). Storage coefficients and specific storage are very low, indicating the confined nature of the aquifer system. The calibrated models are used to simulate contributing areas of wells under alternative, hypothetical ground-water-management practices. Predictive contributing areas indicate the general characteristics of ground-water flow towards wells in the Lansdale area. Recharge to wells in Lansdale generally comes from infiltration near the well and over an area that extends upgradient from the well. The contributing areas for two wells pumping at 10 gal/min (gallons per minute) extend about 1,500 ft (feet) upgradient from the wells. The contributing area is more complex at ground-water divides and can extend in more than one direction to capture recharge from more than 3,300 ft away, for pumping at a rate of 30 gal/min. Locally, all recharge in the area of the pumping well is not captured; recharge in the downgradient direction about 150 ft from the pumping well will flow to other discharge locations.
Abo Sabah, Saddam Hussein; Kueh, Ahmad Beng Hong
2014-01-01
This paper investigates the effects of localized interface progressive delamination on the behavior of two-layer laminated composite plates when subjected to low velocity impact loading for various fiber orientations. By means of finite element approach, the laminae stiffnesses are constructed independently from their interface, where a well-defined virtually zero-thickness interface element is discreetly adopted for delamination simulation. The present model has the advantage of simulating a localized interfacial condition at arbitrary locations, for various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. In comparison, the model shows good agreement with existing results from the literature when modeled in a perfectly bonded state. It is found that as the local delamination area increases, so does the magnitude of the maximum displacement history. Also, as top and bottom fiber orientations deviation increases, both central deflection and energy absorption increase although the relative maximum displacement correspondingly decreases when in contrast to the laminates perfectly bonded state. PMID:24696668
Abo Sabah, Saddam Hussein; Kueh, Ahmad Beng Hong
2014-01-01
This paper investigates the effects of localized interface progressive delamination on the behavior of two-layer laminated composite plates when subjected to low velocity impact loading for various fiber orientations. By means of finite element approach, the laminae stiffnesses are constructed independently from their interface, where a well-defined virtually zero-thickness interface element is discreetly adopted for delamination simulation. The present model has the advantage of simulating a localized interfacial condition at arbitrary locations, for various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. In comparison, the model shows good agreement with existing results from the literature when modeled in a perfectly bonded state. It is found that as the local delamination area increases, so does the magnitude of the maximum displacement history. Also, as top and bottom fiber orientations deviation increases, both central deflection and energy absorption increase although the relative maximum displacement correspondingly decreases when in contrast to the laminates perfectly bonded state.
A Unified Model for BDS Wide Area and Local Area Augmentation Positioning Based on Raw Observations.
Tu, Rui; Zhang, Rui; Lu, Cuixian; Zhang, Pengfei; Liu, Jinhai; Lu, Xiaochun
2017-03-03
In this study, a unified model for BeiDou Navigation Satellite System (BDS) wide area and local area augmentation positioning based on raw observations has been proposed. Applying this model, both the Real-Time Kinematic (RTK) and Precise Point Positioning (PPP) service can be realized by performing different corrections at the user end. This algorithm was assessed and validated with the BDS data collected at four regional stations from Day of Year (DOY) 080 to 083 of 2016. When the users are located within the local reference network, the fast and high precision RTK service can be achieved using the regional observation corrections, revealing a convergence time of about several seconds and a precision of about 2-3 cm. For the users out of the regional reference network, the global broadcast State-Space Represented (SSR) corrections can be utilized to realize the global PPP service which shows a convergence time of about 25 min for achieving an accuracy of 10 cm. With this unified model, it can not only integrate the Network RTK (NRTK) and PPP into a seamless positioning service, but also recover the ionosphere Vertical Total Electronic Content (VTEC) and Differential Code Bias (DCB) values that are useful for the ionosphere monitoring and modeling.
A Unified Model for BDS Wide Area and Local Area Augmentation Positioning Based on Raw Observations
Tu, Rui; Zhang, Rui; Lu, Cuixian; Zhang, Pengfei; Liu, Jinhai; Lu, Xiaochun
2017-01-01
In this study, a unified model for BeiDou Navigation Satellite System (BDS) wide area and local area augmentation positioning based on raw observations has been proposed. Applying this model, both the Real-Time Kinematic (RTK) and Precise Point Positioning (PPP) service can be realized by performing different corrections at the user end. This algorithm was assessed and validated with the BDS data collected at four regional stations from Day of Year (DOY) 080 to 083 of 2016. When the users are located within the local reference network, the fast and high precision RTK service can be achieved using the regional observation corrections, revealing a convergence time of about several seconds and a precision of about 2–3 cm. For the users out of the regional reference network, the global broadcast State-Space Represented (SSR) corrections can be utilized to realize the global PPP service which shows a convergence time of about 25 min for achieving an accuracy of 10 cm. With this unified model, it can not only integrate the Network RTK (NRTK) and PPP into a seamless positioning service, but also recover the ionosphere Vertical Total Electronic Content (VTEC) and Differential Code Bias (DCB) values that are useful for the ionosphere monitoring and modeling. PMID:28273814
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Vassilakos, Gregory J.
2015-01-01
This report summarizes initial modeling of the local response of the Bigelow Expandable Activity Module (BEAM) to micrometeorite and orbital debris (MMOD) impacts using a structural, non-linear, transient dynamic finite element code. Complementary test results for a local BEAM structure are presented for both hammer and projectile impacts. Review of these data provided guidance for the transient dynamic model development. The local model is intended to support predictions using the global BEAM model, described in a companion report. Two types of local models were developed. One mimics the simplified Soft-Goods (fabric envelop) part of the BEAM NASTRAN model delivered by the project. The second investigates through-the-thickness modeling challenges for MMOD-type impacts. Both the testing and the analysis summaries contain lessons learned and areas for future efforts.
NASA Astrophysics Data System (ADS)
Tourigny, E.; Nobre, C.; Cardoso, M. F.
2012-12-01
Deforestation of tropical forests for logging and agriculture, associated to slash-and-burn practices, is a major source of CO2 emissions, both immediate due to biomass burning and future due to the elimination of a potential CO2 sink. Feedbacks between climate change and LUCC (Land-Use and Land-Cover Change) can potentially increase the loss of tropical forests and increase the rate of CO2 emissions, through mechanisms such as land and soil degradation and the increase in wildfire occurrence and severity. However, current understanding of the processes of fires (including ignition, spread and consequences) in tropical forests and climatic feedbacks are poorly understood and need further research. As the processes of LUCC and associated fires occur at local scales, linking them to large-scale atmospheric processes requires a means of up-scaling higher resolutions processes to lower resolutions. Our approach is to couple models which operate at various spatial and temporal scales: a Global Climate Model (GCM), Dynamic Global Vegetation Model (DGVM) and local-scale LUCC and fire spread model. The climate model resolves large scale atmospheric processes and forcings, which are imposed on the surface DGVM and fed-back to climate. Higher-resolution processes such as deforestation, land use management and associated (as well as natural) fires are resolved at the local level. A dynamic tiling scheme allows to represent local-scale heterogeneity while maintaining computational efficiency of the land surface model, compared to traditional landscape models. Fire behavior is modeled at the regional scale (~500m) to represent the detailed landscape using a semi-empirical fire spread model. The relatively coarse scale (as compared to other fire spread models) is necessary due to the paucity of detailed land-cover information and fire history (particularly in the tropics and developing countries). This work presents initial results of a spatially-explicit fire spread model coupled to the IBIS DGVM model. Our area of study comprises selected regions in and near the Brazilian "arc of deforestation". For model training and evaluation, several areas have been mapped using high-resolution imagery from the Landsat TM/ETM+ sensors (Figure 1). This high resolution reference data is used for local-scale simulations and also to evaluate the accuracy of the global MCD45 burned area product, which will be used in future studies covering the entire "arc of deforestation".; Area of study along the arc of deforestation and cerrado: landsat scenes used and burned area (2010) from MCD45 product.
1982-10-01
class queueing system with a preemptive -resume priority service discipline, as depicted in Figure 4.2. Concerning a SPLICLAN configuration a node can...processor can be modeled as a single resource, multi-class queueing system with a preemptive -resume priority structure as the one given in Figure 4.2. An...LOCAL AREA NETWORK DESIGN IN SUPPORT OF STOCK POINT LOGISTICS INTEGRATED COMMUNICATIONS ENVIRONMENT (SPLICE) by Ioannis Th. Mastrocostopoulos October
Additional Research Needs to Support the GENII Biosphere Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Napier, Bruce A.; Snyder, Sandra F.; Arimescu, Carmen
In the course of evaluating the current parameter needs for the GENII Version 2 code (Snyder et al. 2013), areas of possible improvement for both the data and the underlying models have been identified. As the data review was implemented, PNNL staff identified areas where the models can be improved both to accommodate the locally significant pathways identified and also to incorporate newer models. The areas are general data needs for the existing models and improved formulations for the pathway models.
Gogol-Prokurat, Melanie
2011-01-01
If species distribution models (SDMs) can rank habitat suitability at a local scale, they may be a valuable conservation planning tool for rare, patchily distributed species. This study assessed the ability of Maxent, an SDM reported to be appropriate for modeling rare species, to rank habitat suitability at a local scale for four edaphic endemic rare plants of gabbroic soils in El Dorado County, California, and examined the effects of grain size, spatial extent, and fine-grain environmental predictors on local-scale model accuracy. Models were developed using species occurrence data mapped on public lands and were evaluated using an independent data set of presence and absence locations on surrounding lands, mimicking a typical conservation-planning scenario that prioritizes potential habitat on unsurveyed lands surrounding known occurrences. Maxent produced models that were successful at discriminating between suitable and unsuitable habitat at the local scale for all four species, and predicted habitat suitability values were proportional to likelihood of occurrence or population abundance for three of four species. Unfortunately, models with the best discrimination (i.e., AUC) were not always the most useful for ranking habitat suitability. The use of independent test data showed metrics that were valuable for evaluating which variables and model choices (e.g., grain, extent) to use in guiding habitat prioritization for conservation of these species. A goodness-of-fit test was used to determine whether habitat suitability values ranked habitat suitability on a continuous scale. If they did not, a minimum acceptable error predicted area criterion was used to determine the threshold for classifying habitat as suitable or unsuitable. I found a trade-off between model extent and the use of fine-grain environmental variables: goodness of fit was improved at larger extents, and fine-grain environmental variables improved local-scale accuracy, but fine-grain variables were not available at large extents. No single model met all habitat prioritization criteria, and the best models were overlaid to identify consensus areas of high suitability. Although the four species modeled here co-occur and are treated together for conservation planning, model accuracy and predicted suitable areas varied among species.
Advances in wind erosion modelling in Europe
NASA Astrophysics Data System (ADS)
Borrelli, Pasquale; Lugato, Emanuele; Alewell, Christine; Montanarella, Luca; Panagos, Panos
2017-04-01
Soil erosion by wind is a serious environmental problem often resulting in severe forms of soil degradation. Wind erosion is also a phenomenon relevant for Europe, although this land degradation process has been overlooked until very recently. The state-of-the-art literature presents wind erosion as a process that locally affects the semi-arid areas of the Mediterranean region as well as the temperate climate areas of the northern European countries. Actual observations, field measurements and modelling assessments, however, are all extremely limited and highly unequally distributed across Europe. As a result, we currently lack comprehensive understanding about where and when wind erosion occurs in Europe, and the intensity of erosion that poses a threat to agricultural productivity. Today's challenge is to integrate the insights of local experiments and field-scale models into a new generation of large-scale wind erosion models. While naturally being less accurate than field-scale models, these large-scale modelling approaches still provide essential knowledge about where and when wind erosion occurs and can disclose the level of risk for agricultural productivity in specific areas. Here, we present a geographic information system (GIS) version of the RWEQ (named GIS-RWEQ) to quantitatively assess soil loss by wind over large study areas (Land Degradation & Development, DOI: 10.1002/ldr.2588). The model designed to predict the daily soil loss potential at a ca. 1 km2 spatial resolution shows high consistency with local measurements reported in literature. The average soil loss predicted by GIS-RWEQ for the European arable land totals 62 million Mg yr-1, with an average area-specific soil loss of 0.53 Mg yr-1. The JRC model RUSLE2015, for the same area estimates 295 million Mg yr-1 of soil loss due to water erosion. Notably, soil loss by wind erosion in the European arable land could be as high as 20% of water erosion, even though the areas affected are mainly concentrated in hotspots.
The CLAIR model: Extension of Brodmann areas based on brain oscillations and connectivity.
Başar, Erol; Düzgün, Aysel
2016-05-01
Since the beginning of the last century, the localization of brain function has been represented by Brodmann areas, maps of the anatomic organization of the brain. They are used to broadly represent cortical structures with their given sensory-cognitive functions. In recent decades, the analysis of brain oscillations has become important in the correlation of brain functions. Moreover, spectral connectivity can provide further information on the dynamic connectivity between various structures. In addition, brain responses are dynamic in nature and structural localization is almost impossible, according to Luria (1966). Therefore, brain functions are very difficult to localize; hence, a combined analysis of oscillation and event-related coherences is required. In this study, a model termed as "CLAIR" is described to enrich and possibly replace the concept of the Brodmann areas. A CLAIR model with optimum function may take several years to develop, but this study sets out to lay its foundation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Methodology Development of a Gas-Liquid Dynamic Flow Regime Transition Model
NASA Astrophysics Data System (ADS)
Doup, Benjamin Casey
Current reactor safety analysis codes, such as RELAP5, TRACE, and CATHARE, use flow regime maps or flow regime transition criteria that were developed for static fully-developed two-phase flows to choose interfacial transfer models that are necessary to solve the two-fluid model. The flow regime is therefore difficult to identify near the flow regime transitions, in developing two-phase flows, and in transient two-phase flows. Interfacial area transport equations were developed to more accurately predict the dynamic nature of two-phase flows. However, other model coefficients are still flow regime dependent. Therefore, an accurate prediction of the flow regime is still important. In the current work, the methodology for the development of a dynamic flow regime transition model that uses the void fraction and interfacial area concentration obtained by solving three-field the two-fluid model and two-group interfacial area transport equation is investigated. To develop this model, detailed local experimental data are obtained, the two-group interfacial area transport equations are revised, and a dynamic flow regime transition model is evaluated using a computational fluid dynamics model. Local experimental data is acquired for 63 different flow conditions in bubbly, cap-bubbly, slug, and churn-turbulent flow regimes. The measured parameters are the group-1 and group-2 bubble number frequency, void fraction, interfacial area concentration, and interfacial bubble velocities. The measurements are benchmarked by comparing the prediction of the superficial gas velocities, determined using the local measurements with those determined from volumetric flow rate measurements and the agreement is generally within +/-20%. The repeatability four-sensor probe construction process is within +/-10%. The repeatability of the measurement process is within +/-7%. The symmetry of the test section is examined and the average agreement is within +/-5.3% at z/D = 10 and +/-3.4% at z/D = 32. Revised source/sink terms for the two-group interfacial area transport equations are derived and fit to area-averaged experimental data to determine new model coefficients. The average agreement between this model and the experiment data for the void fraction and interfacial area concentration is 10.6% and 15.7%, respectively. This revised two-group interfacial area transport equation and the three-field two-fluid model are used to solve for the group-1 and group-2 interfacial area concentration and void fraction. These values and a dynamic flow regime transition model are used to classify the flow regimes. The flow regimes determined using this model are compared with the flow regimes based on the experimental data and on a flow regime map using Mishima and Ishii's (1984) transition criteria. The dynamic flow regime transition model is shown to predict the flow regimes dynamically and has improved the prediction of the flow regime over that using a flow regime map. Safety codes often employ the one-dimensional two-fluid model to model two-phase flows. The area-averaged relative velocity correlation necessary to close this model is derived from the drift flux model. The effects of the necessary assumptions used to derive this correlation are investigated using local measurements and these effects are found to have a limited impact on the prediction of the area-averaged relative velocity.
Hurtado, Johanna; Clark, David B
2011-12-01
Most field ecology is conceived and financed by scientists from urban areas but is actually carried out in rural areas. Field staff can either be imported from urban areas or recruited from local residents. We evaluated the advantages and disadvantages of involving rural residents as local technicians over a 25- year period at active field research site in Costa Rica. We defined "local technicians" as local residents with no university education who acquired significant experience in field data collection, data management and/or laboratory work. We analyzed the experiences of incorporating these technicians into field research in developing countries from the points of view of scientist and of the local technicians themselves. Primary data were written responses from to a standardized survey of 19 senior scientists and Ph.D. students,and results from standardized personal interviews with 22 local technicians. Researchers highlighted the advantages of highly-skilled technicians with minimal staff turnover, as well as the technicians' knowledge of local ecological conditions. Local technicians considered the primary advantages of their jobs to be opportunities for continuing education training in science as well as cultural enrichment through interactions with people of different cultures. The main challenges identified by researchers were the lack of long-term funding for projects and extended training required for local technicians. Local technicians can be of great benefit to research projects by providing high-quality data collection at reasonable costs with low staff turnover. Over the last 25 years the research model at the field station we studied has evolved to the point that most long-term projects now depend heavily on local technicians. This model of involving local technicians in long-term research has multiple benefits for the researchers, the technicians and the local community, and could be adapted to a variety of settings in rural areas of developing countries.
NASA Astrophysics Data System (ADS)
Noerwasito, Vincentius Totok; Nasution, Tanti Satriana Rosary
2017-11-01
Utilization of local building materials in a residential location in mountainous area is very important, considering local material as a low-energy building material because of low transport energy. The local building materials used in this study are walls made from soil blocks. The material was made by the surrounding community from compacted soil without burning process. To maximize the potential of soil block to the outdoor temperature in the mountains, it is necessary to add non-local building materials as an insulator from the influence of the outside air. The insulator was calcium silicate panel. The location of the research is Trawas sub-district, Mojokerto regency, which is a mountainous area. The research problem is on applying the composition of local materials and calcium silicate panels that it will be able to meet the requirements as a wall building material and finding to what extent the impact of the wall against indoor temperature. The result from this research was the application of soil block walls insulated by calcium silicate panels in a building model. Besides, because of the utilization of those materials, the building has a specific difference between indoor and outdoor temperature. Thus, this model can be applied in mountainous areas in Indonesia.
Runoff forecasting using a Takagi-Sugeno neuro-fuzzy model with online learning
NASA Astrophysics Data System (ADS)
Talei, Amin; Chua, Lloyd Hock Chye; Quek, Chai; Jansson, Per-Erik
2013-04-01
SummaryA study using local learning Neuro-Fuzzy System (NFS) was undertaken for a rainfall-runoff modeling application. The local learning model was first tested on three different catchments: an outdoor experimental catchment measuring 25 m2 (Catchment 1), a small urban catchment 5.6 km2 in size (Catchment 2), and a large rural watershed with area of 241.3 km2 (Catchment 3). The results obtained from the local learning model were comparable or better than results obtained from physically-based, i.e. Kinematic Wave Model (KWM), Storm Water Management Model (SWMM), and Hydrologiska Byråns Vattenbalansavdelning (HBV) model. The local learning algorithm also required a shorter training time compared to a global learning NFS model. The local learning model was next tested in real-time mode, where the model was continuously adapted when presented with current information in real time. The real-time implementation of the local learning model gave better results, without the need for retraining, when compared to a batch NFS model, where it was found that the batch model had to be retrained periodically in order to achieve similar results.
NASA Astrophysics Data System (ADS)
Kolbe, Tamara; Marçais, Jean; Thomas, Zahra; Abbott, Benjamin W.; de Dreuzy, Jean-Raynald; Rousseau-Gueutin, Pauline; Aquilina, Luc; Labasque, Thierry; Pinay, Gilles
2016-12-01
Nitrogen pollution of freshwater and estuarine environments is one of the most urgent environmental crises. Shallow aquifers with predominantly local flow circulation are particularly vulnerable to agricultural contaminants. Water transit time and flow path are key controls on catchment nitrogen retention and removal capacity, but the relative importance of hydrogeological and topographical factors in determining these parameters is still uncertain. We used groundwater dating and numerical modeling techniques to assess transit time and flow path in an unconfined aquifer in Brittany, France. The 35.5 km2 study catchment has a crystalline basement underneath a ∼60 m thick weathered and fractured layer, and is separated into a distinct upland and lowland area by an 80 m-high butte. We used groundwater discharge and groundwater ages derived from chlorofluorocarbon (CFC) concentration to calibrate a free-surface flow model simulating groundwater flow circulation. We found that groundwater flow was highly local (mean travel distance = 350 m), substantially smaller than the typical distance between neighboring streams (∼1 km), while CFC-based ages were quite old (mean = 40 years). Sensitivity analysis revealed that groundwater travel distances were not sensitive to geological parameters (i.e. arrangement of geological layers and permeability profile) within the constraints of the CFC age data. However, circulation was sensitive to topography in the lowland area where the water table was near the land surface, and to recharge rate in the upland area where water input modulated the free surface of the aquifer. We quantified these differences with a local groundwater ratio (rGW-LOCAL), defined as the mean groundwater travel distance divided by the mean of the reference surface distances (the distance water would have to travel across the surface of the digital elevation model). Lowland, rGW-LOCAL was near 1, indicating primarily topographical controls. Upland, rGW-LOCAL was 1.6, meaning the groundwater recharge area is almost twice as large as the topographically-defined catchment for any given point. The ratio rGW-LOCAL is sensitive to recharge conditions as well as topography and it could be used to compare controls on groundwater circulation within or between catchments.
Socio-economic benefits from protected areas in southeastern Australia.
Heagney, E C; Kovac, M; Fountain, J; Conner, N
2015-12-01
International case studies of protected area performance increasingly report that conservation and socio-economic outcomes are interdependent. Effective conservation requires support and cooperation from local governments and communities, which in turn requires that protected areas contribute to the economic well-being of the communities in which they are sited. Despite increasing recognition of their importance, robust studies that document the socio-economic impacts of protected areas are rare, especially in the developed world context. We proposed 3 potential pathways through which protected areas might benefit local communities in the developed world: the improved local housing value, local business stimulus, and increased local funding pathways. We examined these pathways by undertaking a statistical longitudinal analysis of 110 regional and rural communities covering an area of approximately 600,000 km(2) in southeastern Australia. We compared trends in 10 socio-economic indicators describing employment, income, housing, business development and local government revenue from 2000 to 2010. New protected areas acquisitions led to an increased number of new dwelling approvals and associated developer contributions, increased local business numbers, and increased local government revenue from user-pays services and grants. Longer-term effects of established protected areas included increased local council revenue from a variety of sources. Our findings provide support for each of our 3 proposed benefit pathways and contribute new insights into the cycling of benefits from protected areas through the economy over time. The business and legislative models in our study are typical of those operating in many other developed countries; thus, the benefit pathways reported in our study are likely to be generalizable. By identifying and communicating socio-economic benefits from terrestrial protected areas in a developed world context, our findings represent an important step in securing local support and ongoing high-level protection for key components of the world's biodiversity. © 2015 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Sharifi, Fereydoun; Arab-Amiri, Ali Reza; Kamkar-Rouhani, Abolghasem; Yousefi, Mahyar; Davoodabadi-Farahani, Meysam
2017-09-01
The purpose of this study is water prospectivity modeling (WPM) for recognizing karstic water-bearing zones by using analyses of geo-exploration data in Kal-Qorno valley, located in Tepal area, north of Iran. For this, a sequential exploration method applied on geo-evidential data to delineate target areas for further exploration. In this regard, two major exploration phases including regional and local scales were performed. In the first phase, indicator geological features, structures and lithological units, were used to model groundwater prospectivity as a regional scale. In this phase, for karstic WPM, fuzzy lithological and structural evidence layers were generated and combined using fuzzy operators. After generating target areas using WPM, in the second phase geophysical surveys including gravimetry and geoelectrical resistivity were carried out on the recognized high potential zones as a local scale exploration. Finally the results of geophysical analyses in the second phase were used to select suitable drilling locations to access and extract karstic groundwater in the study area.
Mapping air quality zones for coastal urban centers.
Freeman, Brian; Gharabaghi, Bahram; Thé, Jesse; Munshed, Mohammad; Faisal, Shah; Abdullah, Meshal; Al Aseed, Athari
2017-05-01
This study presents a new method that incorporates modern air dispersion models allowing local terrain and land-sea breeze effects to be considered along with political and natural boundaries for more accurate mapping of air quality zones (AQZs) for coastal urban centers. This method uses local coastal wind patterns and key urban air pollution sources in each zone to more accurately calculate air pollutant concentration statistics. The new approach distributes virtual air pollution sources within each small grid cell of an area of interest and analyzes a puff dispersion model for a full year's worth of 1-hr prognostic weather data. The difference of wind patterns in coastal and inland areas creates significantly different skewness (S) and kurtosis (K) statistics for the annually averaged pollutant concentrations at ground level receptor points for each grid cell. Plotting the S-K data highlights grouping of sources predominantly impacted by coastal winds versus inland winds. The application of the new method is demonstrated through a case study for the nation of Kuwait by developing new AQZs to support local air management programs. The zone boundaries established by the S-K method were validated by comparing MM5 and WRF prognostic meteorological weather data used in the air dispersion modeling, a support vector machine classifier was trained to compare results with the graphical classification method, and final zones were compared with data collected from Earth observation satellites to confirm locations of high-exposure-risk areas. The resulting AQZs are more accurate and support efficient management strategies for air quality compliance targets effected by local coastal microclimates. A novel method to determine air quality zones in coastal urban areas is introduced using skewness (S) and kurtosis (K) statistics calculated from grid concentrations results of air dispersion models. The method identifies land-sea breeze effects that can be used to manage local air quality in areas of similar microclimates.
MOVES (MOTOR VEHICLE EMISSION SIMULATOR) MODEL ...
A computer model, intended to eventually replace the MOBILE model and to incorporate the NONROAD model, that will provide the ability to estimate criteria and toxic air pollutant emission factors and emission inventories that are specific to the areas and time periods of interest, at scales ranging from local to national. Development of a new emission factor and inventory model for mobile source emissions. The model will be used by air pollution modelers within EPA, and at the State and local levels.
An Improved Nested Sampling Algorithm for Model Selection and Assessment
NASA Astrophysics Data System (ADS)
Zeng, X.; Ye, M.; Wu, J.; WANG, D.
2017-12-01
Multimodel strategy is a general approach for treating model structure uncertainty in recent researches. The unknown groundwater system is represented by several plausible conceptual models. Each alternative conceptual model is attached with a weight which represents the possibility of this model. In Bayesian framework, the posterior model weight is computed as the product of model prior weight and marginal likelihood (or termed as model evidence). As a result, estimating marginal likelihoods is crucial for reliable model selection and assessment in multimodel analysis. Nested sampling estimator (NSE) is a new proposed algorithm for marginal likelihood estimation. The implementation of NSE comprises searching the parameters' space from low likelihood area to high likelihood area gradually, and this evolution is finished iteratively via local sampling procedure. Thus, the efficiency of NSE is dominated by the strength of local sampling procedure. Currently, Metropolis-Hasting (M-H) algorithm and its variants are often used for local sampling in NSE. However, M-H is not an efficient sampling algorithm for high-dimensional or complex likelihood function. For improving the performance of NSE, it could be feasible to integrate more efficient and elaborated sampling algorithm - DREAMzs into the local sampling. In addition, in order to overcome the computation burden problem of large quantity of repeating model executions in marginal likelihood estimation, an adaptive sparse grid stochastic collocation method is used to build the surrogates for original groundwater model.
Model Information Exchange System (MIXS).
DOT National Transportation Integrated Search
2013-08-01
Many travel demand forecast models operate at state, regional, and local levels. While they share the same physical network in overlapping geographic areas, they use different and uncoordinated modeling networks. This creates difficulties for models ...
Simulation of ground-water flow in the Vevay Township area, Ingham County, Michigan
Luukkonen, Carol L.; Simard, Andreanne
2004-01-01
Ground water is the primary source of water for domestic, public-supply, and industrial use within the Tri-County region that includes Clinton, Eaton, and Ingham Counties in Michigan. Because of the importance of this ground-water resource, numerous communities, including the city of Mason in Ingham County, have begun local Wellhead Protection Programs. In these programs, communities protect their groundwater resource by identifying the areas that contribute water to production wells and potential sources of contamination, and by developing methods to manage and minimize threats to the water supply. In addition, some communities in Michigan are concerned about water availability, particularly in areas experiencing water-level declines in the vicinity of quarry dewatering operations. In areas where Wellhead Protection Programs are implemented and there are potential threats to the water supply, residents and communities need adequate information to protect the water supply.In 1996, a regional ground-water-flow model was developed by the U.S. Geological Survey to simulate ground-water flow in Clinton, Eaton, and Ingham Counties. This model was developed primarily to simulate the bedrock ground-waterflow system; ground-water flow in the unconsolidated glacial sediments was simulated to support analysis of flow in the underlying bedrock Saginaw aquifer. Since its development in 1996, regional model simulations have been conducted to address protection concerns and water availability questions of local water-resources managers. As a result of these continuing model simulations, additional hydrogeologic data have been acquired in the Tri-County region that has improved the characterization of the simulated ground-water-flow system and improved the model calibration. A major benefit of these updates and refinements is that the regional Tri-County model continues to be a useful tool that improves the understanding of the ground-water-flow system in the Tri-County region, provides local water-resources managers with a means to answer ground-water protection and availability questions, and serves as an example that can be applied in other areas of the state.A refined version of the 1996 Tri-County regional ground-water-flow model, developed in 1997, was modified with local hydrogeologic information in the Vevay Township area in Michigan. This model, updated in 2003 for this study, was used to simulate ground-water flow to address groundwater protection and availability questions in Vevay Township. The 2003 model included refinement of glacial and bedrock hydraulic characteristics, better representation of the degree of connection between the glacial deposits and the underlying Saginaw aquifer, and refinement of the model cell size.The 2003 model was used to simulate regional groundwater flow, to delineate areas contributing recharge and zones of contribution to production wells in the city of Mason, and to simulate the effects of present and possible future withdrawals. The areal extent of the 10- and 40-year areas contributing recharge and the zones of contribution for the city of Mason's production wells encompass about 2.3 and 6.2 square miles, respectively. Simulation results, where withdrawals for quarry operations were represented by one well pumping at 1.6 million gallons per day, indicate that water levels would decline slightly over 1 foot approximately 2 miles from the quarry in the glacial deposits and in the Saginaw aquifer. With a reduction of the local riverbed conductance or removal of local river model cells representing Mud Creek, water-level declines would extend further west of Mud Creek and further to the north, east, and south of the simulated quarry. Simulation results indicate that water withdrawn for quarry dewatering operations would decrease ground-water recharge to nearby Mud Creek, would increase ground-water discharge from Mud Creek, and that local water levels would be lowered as a result.
Environmental pollution has sex-dependent effects on local survival
Eeva, Tapio; Hakkarainen, Harri; Laaksonen, Toni; Lehikoinen, Esa
2006-01-01
Environmental pollutants cause a potential hazard for survival in free-living animal populations. We modelled local survival (including emigration) by using individual mark–recapture histories of males and females in a population of a small insectivorous passerine bird, the pied flycatcher (Ficedula hypoleuca) living around a point source of heavy metals (copper smelter). Local survival of F. hypoleuca females did not differ between polluted and unpolluted environments. Males, however, showed a one-third higher local-survival probability in the polluted area. Low fledgling production was generally associated with decreased local survival, but males in the polluted area showed relatively high local survival, irrespective of their fledgling number. A possible explanation of higher local survival of males in the polluted area could be a pollution-induced change in hormone (e.g. corticosterone or testosterone) levels of males. It could make them to invest more on their own survival or affect the hormonal control of breeding dispersal. The local survival of males decreased in the polluted area over the study period along with the simultaneous decrease in heavy metal emissions. This temporal trend is in agreement with the stress hormone hypothesis. PMID:17148387
Civil Tiltrotor Feasibility Study for the New York and Washington Terminal Areas
NASA Technical Reports Server (NTRS)
Stouffer, Virginia; Johnson, Jesse; Gribko, Joana; Yackovetsky, Robert (Technical Monitor)
2001-01-01
NASA tasked LMI to assess the potential contributions of a yet-undeveloped Civil Tiltrotor aircraft (CTR) in improving capacity in the National Airspace System in all weather conditions. The CTRs studied have assumed operating parameters beyond current CTR capabilities. LMI analyzed CTRs three ways: in fast-time terminal area modeling simulations of New York and Washington to determine delay and throughput impacts; in the Integrated Noise Model, to determine local environmental impact; and with an economic model, to determine the price viability of a CTR. The fast-time models encompassed a 250 nmi range and included traffic interactions from local airports. Both the fast-time simulation and the noise model assessed impacts from traffic levels projected for 1999, 2007, and 2017. Results: CTRs can reduce terminal area delays due to concrete congestion in all time frames. The maximum effect, the ratio of CTRs to jets and turboprop aircraft at a subject airport should be optimized. The economic model considered US traffic only and forecasted CTR sales beginning in 2010.
NASA Astrophysics Data System (ADS)
Pepe, N.; Pirovano, G.; Lonati, G.; Balzarini, A.; Toppetti, A.; Riva, G. M.; Bedogni, M.
2016-09-01
A hybrid modelling system (HMS) was developed to provide hourly concentrations at the urban local scale. The system is based on the combination of a meteorological model (WRF), a chemical and transport eulerian model (CAMx), which computes concentration levels over the regional domains, and a lagrangian dispersion model (AUSTAL2000), accounting for dispersion phenomena within the urban area due to local emission sources; a source apportionment algorithm is also included in the HMS in order to avoid the double counting of local emissions. The HMS was applied over a set of nested domains, the innermost covering a 1.6 × 1.6 km2 area in Milan city center with 20 m grid resolution, for NOX simulation in 2010. For this paper the innermost domain was defined as ;local;, excluding usual definition of urban areas. WRF model captured the overall evolution of the main meteorological features, except for some very stagnant situations, thus influencing the subsequent performance of regional scale model CAMx. Indeed, CAMx was able to reproduce the spatial and temporal evolution of NOX concentration over the regional domain, except a few episodes, when observed concentrations were higher than 100 ppb. The local scale model AUSTAL2000 provided high-resolution concentration fields that sensibly mirrored the road and traffic pattern in the urban domain. Therefore, the first important outcome of the work is that the application of the hybrid modelling system allowed a thorough and consistent description of urban air quality. This result represents a relevant starting point for future evaluation of pollution exposure within an urban context. However, the overall performance of the HMS did not provide remarkable improvements with respect to stand-alone CAMx at the two only monitoring sites in Milan city center. HMS results were characterized by a smaller average bias, that improved about 6-8 ppb corresponding to 12-13% of the observed concentration, but by a lower correlation, that worsened around 1-3% (e.g. from 0.84 to 0.81 at Senato site), due to the concentration peaks produced by AUSTAL2000 during nighttime stable conditions. Additionally, the HMS results showed that it was unable to correctly take into account some local scale features (e.g. urban canyon effects), pointing out that the emission spatialization and time modulation criteria, especially those from road traffic, need further improvement. Nevertheless, a second important outcome of the work is that some of the most relevant discrepancies between modelled and observed concentrations were not related to the horizontal resolution of the dispersion models but to larger scale meteorological features not captured by the meteorological model, especially during winter period. Finally, the estimated contribution of the local emission sources accounted on the annual average for about 25-30% of the computed concentration levels in the innermost urban domain. This confirmed that the whole Milan urban area as well as the outside background areas, accounting all sources outside the innermost domain, play a key role on air quality. The result suggests that strictly local emission policies could have a limited and indecisive effect on urban air quality, although this finding could be partially biased by model underestimation of the observed concentration.
Regional and local species richness in an insular environment: Serpentine plants in California
Harrison, S.; Safford, H.D.; Grace, J.B.; Viers, J.H.; Davies, K.F.
2006-01-01
We asked how the richness of the specialized (endemic) flora of serpentine rock outcrops in California varies at both the regional and local scales. Our study had two goals: first, to test whether endemic richness is affected by spatial habitat structure (e.g., regional serpentine area, local serpentine outcrop area, regional and local measures of outcrop isolation), and second, to conduct this test in the context of a broader assessment of environmental influences (e.g., climate, soils, vegetation, disturbance) and historical influences (e.g., geologic age, geographic province) on local and regional species richness. We measured endemic and total richness and environmental variables in 109 serpentine sites (1000-m2 paired plots) in 78 serpentine-containing regions of the state. We used structural equation modeling (SEM) to simultaneously relate regional richness to regionalscale predictors, and local richness to both local-scale and regional-scale predictors. Our model for serpentine endemics explained 66% of the variation in local endemic richness based on local environment (vegetation, soils, rock cover) and on regional endemic richness. It explained 73% of the variation in regional endemic richness based on regional environment (climate and productivity), historical factors (geologic age and geographic province), and spatial structure (regional total area of serpentine, the only significant spatial variable in our analysis). We did not find a strong influence of spatial structure on species richness. However, we were able to distinguish local vs. regional influences on species richness to a novel extent, despite the existence of correlations between local and regional conditions. ?? 2006 by the Ecological Society of America.
Assessing the Local Need for Family and Child Care Services: A Small Area Utilization Analysis.
ERIC Educational Resources Information Center
Percy, Andrew; Carr-Hill, Roy; Dixon, Paul; Jamison, James Q.
2000-01-01
Describes study of administrative data from Northern Ireland on the costs of family and child care services, using small area utilization modeling, to derive a new set of needs indicators that could be used within the family and child care capitation funding formula. Argues that small area utilization modeling produces a fairer and more equitable…
Slutske, Wendy S; Deutsch, Arielle R; Statham, Dixie J; Martin, Nicholas G
2015-08-01
Previous research has demonstrated that local area characteristics (such as disadvantage and gambling outlet density) and genetic risk factors are associated with gambling involvement and disordered gambling. These 2 lines of research were brought together in the present study by examining the extent to which genetic contributions to individual differences in gambling involvement and disorder contributed to being exposed to, and were also accentuated by, local area disadvantage. Participants were members of the national community-based Australian Twin Registry who completed a telephone interview in which the past-year frequency of gambling and symptoms of disordered gambling were assessed. Indicators of local area disadvantage were based on census data matched to the participants' postal codes. Univariate biometric model-fitting revealed that exposure to area disadvantage was partially explained by genetic factors. Bivariate biometric model-fitting was conducted to examine the evidence for gene-environment interaction while accounting for gene-environment correlation. These analyses demonstrated that: (a) a small portion of the genetic propensity to gamble was explained by moving to or remaining in a disadvantaged area, and (b) the remaining genetic and unique environmental variation in the frequency of participating in electronic machine gambling (among men and women) and symptoms of disordered gambling (among women) was greater in more disadvantaged localities. As the gambling industry continues to grow, it will be important to take into account the multiple contexts in which problematic gambling behavior can emerge-from genes to geography-as well as the ways in which such contexts may interact with each other. (c) 2015 APA, all rights reserved).
Slutske, Wendy S.; Deutsch, Arielle R.; Statham, Dixie B.; Martin, Nicholas G.
2015-01-01
Previous research has demonstrated that local area characteristics (such as disadvantage and gambling outlet density) and genetic risk factors are associated with gambling involvement and disordered gambling. These two lines of research were brought together in the present study by examining the extent to which genetic contributions to individual differences in gambling involvement and disorder contributed to being exposed to, and were also accentuated by, local area disadvantage. Participants were members of the national community-based Australian Twin Registry who completed a telephone interview in which the past-year frequency of gambling and symptoms of disordered gambling were assessed. Indicators of local area disadvantage were based on census data matched to the participants' postal codes. Univariate biometric model-fitting revealed that exposure to area disadvantage was partially explained by genetic factors. Bivariate biometric model-fitting was conducted to examine the evidence for gene-environment interaction while accounting for gene-environment correlation. These analyses demonstrated that: (a) a small portion of the genetic propensity to gamble was explained by moving to or remaining in a disadvantaged area, and (b) the remaining genetic and unique environmental variation in the frequency of participating in electronic machine gambling (among men and women) and symptoms of disordered gambling (among women) was greater in more disadvantaged localities. As the gambling industry continues to grow, it will be important to take into account the multiple contexts in which problematic gambling behavior can emerge -- from genes to geography -- as well as the ways in which such contexts may interact with each other. PMID:26147321
A new methodology for modeling of direct landslide costs for transportation infrastructures
NASA Astrophysics Data System (ADS)
Klose, Martin; Terhorst, Birgit
2014-05-01
The world's transportation infrastructure is at risk of landslides in many areas across the globe. A safe and affordable operation of traffic routes are the two main criteria for transportation planning in landslide-prone areas. The right balancing of these often conflicting priorities requires, amongst others, profound knowledge of the direct costs of landslide damage. These costs include capital investments for landslide repair and mitigation as well as operational expenditures for first response and maintenance works. This contribution presents a new methodology for ex post assessment of direct landslide costs for transportation infrastructures. The methodology includes tools to compile, model, and extrapolate landslide losses on different spatial scales over time. A landslide susceptibility model enables regional cost extrapolation by means of a cost figure obtained from local cost compilation for representative case study areas. On local level, cost survey is closely linked with cost modeling, a toolset for cost estimation based on landslide databases. Cost modeling uses Landslide Disaster Management Process Models (LDMMs) and cost modules to simulate and monetize cost factors for certain types of landslide damage. The landslide susceptibility model provides a regional exposure index and updates the cost figure to a cost index which describes the costs per km of traffic route at risk of landslides. Both indexes enable the regionalization of local landslide losses. The methodology is applied and tested in a cost assessment for highways in the Lower Saxon Uplands, NW Germany, in the period 1980 to 2010. The basis of this research is a regional subset of a landslide database for the Federal Republic of Germany. In the 7,000 km² large Lower Saxon Uplands, 77 km of highway are located in potential landslide hazard area. Annual average costs of 52k per km of highway at risk of landslides are identified as cost index for a local case study area in this region. The cost extrapolation for the Lower Saxon Uplands results in annual average costs for highways of 4.02mn. This test application as well as a validation of selected modeling tools verifies the functionality of this methodology.
Han, Xujun; Li, Xin; Rigon, Riccardo; Jin, Rui; Endrizzi, Stefano
2015-01-01
The observation could be used to reduce the model uncertainties with data assimilation. If the observation cannot cover the whole model area due to spatial availability or instrument ability, how to do data assimilation at locations not covered by observation? Two commonly used strategies were firstly described: One is covariance localization (CL); the other is observation localization (OL). Compared with CL, OL is easy to parallelize and more efficient for large-scale analysis. This paper evaluated OL in soil moisture profile characterizations, in which the geostatistical semivariogram was used to fit the spatial correlated characteristics of synthetic L-Band microwave brightness temperature measurement. The fitted semivariogram model and the local ensemble transform Kalman filter algorithm are combined together to weight and assimilate the observations within a local region surrounding the grid cell of land surface model to be analyzed. Six scenarios were compared: 1_Obs with one nearest observation assimilated, 5_Obs with no more than five nearest local observations assimilated, and 9_Obs with no more than nine nearest local observations assimilated. The scenarios with no more than 16, 25, and 36 local observations were also compared. From the results we can conclude that more local observations involved in assimilation will improve estimations with an upper bound of 9 observations in this case. This study demonstrates the potentials of geostatistical correlation representation in OL to improve data assimilation of catchment scale soil moisture using synthetic L-band microwave brightness temperature, which cannot cover the study area fully in space due to vegetation effects.
Han, Xujun; Li, Xin; Rigon, Riccardo; Jin, Rui; Endrizzi, Stefano
2015-01-01
The observation could be used to reduce the model uncertainties with data assimilation. If the observation cannot cover the whole model area due to spatial availability or instrument ability, how to do data assimilation at locations not covered by observation? Two commonly used strategies were firstly described: One is covariance localization (CL); the other is observation localization (OL). Compared with CL, OL is easy to parallelize and more efficient for large-scale analysis. This paper evaluated OL in soil moisture profile characterizations, in which the geostatistical semivariogram was used to fit the spatial correlated characteristics of synthetic L-Band microwave brightness temperature measurement. The fitted semivariogram model and the local ensemble transform Kalman filter algorithm are combined together to weight and assimilate the observations within a local region surrounding the grid cell of land surface model to be analyzed. Six scenarios were compared: 1_Obs with one nearest observation assimilated, 5_Obs with no more than five nearest local observations assimilated, and 9_Obs with no more than nine nearest local observations assimilated. The scenarios with no more than 16, 25, and 36 local observations were also compared. From the results we can conclude that more local observations involved in assimilation will improve estimations with an upper bound of 9 observations in this case. This study demonstrates the potentials of geostatistical correlation representation in OL to improve data assimilation of catchment scale soil moisture using synthetic L-band microwave brightness temperature, which cannot cover the study area fully in space due to vegetation effects. PMID:25635771
NASA Astrophysics Data System (ADS)
Wilson, R. I.; Barberopoulou, A.; Miller, K. M.; Goltz, J. D.; Synolakis, C. E.
2008-12-01
A consortium of tsunami hydrodynamic modelers, geologic hazard mapping specialists, and emergency planning managers is producing maximum tsunami inundation maps for California, covering most residential and transient populated areas along the state's coastline. The new tsunami inundation maps will be an upgrade from the existing maps for the state, improving on the resolution, accuracy, and coverage of the maximum anticipated tsunami inundation line. Thirty-five separate map areas covering nearly one-half of California's coastline were selected for tsunami modeling using the MOST (Method of Splitting Tsunami) model. From preliminary evaluations of nearly fifty local and distant tsunami source scenarios, those with the maximum expected hazard for a particular area were input to MOST. The MOST model was run with a near-shore bathymetric grid resolution varying from three arc-seconds (90m) to one arc-second (30m), depending on availability. Maximum tsunami "flow depth" and inundation layers were created by combining all modeled scenarios for each area. A method was developed to better define the location of the maximum inland penetration line using higher resolution digital onshore topographic data from interferometric radar sources. The final inundation line for each map area was validated using a combination of digital stereo photography and fieldwork. Further verification of the final inundation line will include ongoing evaluation of tsunami sources (seismic and submarine landslide) as well as comparison to the location of recorded paleotsunami deposits. Local governmental agencies can use these new maximum tsunami inundation lines to assist in the development of their evacuation routes and emergency response plans.
Lim, Han Chuen; Yoshizawa, Akio; Tsuchida, Hidemi; Kikuchi, Kazuro
2008-09-15
We present a theoretical model for the distribution of polarization-entangled photon-pairs produced via spontaneous parametric down-conversion within a local-area fiber network. This model allows an entanglement distributor who plays the role of a service provider to determine the photon-pair generation rate giving highest two-photon interference fringe visibility for any pair of users, when given user-specific parameters. Usefulness of this model is illustrated in an example and confirmed in an experiment, where polarization-entangled photon-pairs are distributed over 82 km and 132 km of dispersion-managed optical fiber. Experimentally observed visibilities and entanglement fidelities are in good agreement with theoretically predicted values.
NASA Astrophysics Data System (ADS)
Hu, Zhongjun; Guo, Ke; Jin, Shulan; Pan, Huahua
2018-01-01
The issue that climatic change has great influence on species distribution is currently of great interest in field of biogeography. Six typical Kobresia species are selected from alpine grassland of Tibetan Plateau (TP) as research objects which are the high-quality forage for local husbandry, and their distribution changes are modeled in four periods by using MaxEnt model and GIS technology. The modeling results have shown that the distribution of these six typical Kobresia species in TP was strongly affected by two factors of "the annual precipitation" and "the precipitation in the wettest and driest quarters of the year". The modeling results have also shown that the most suitable habitats of K. pygmeae were located in the area around Qinghai Lake, the Hengduan-Himalayan mountain area, and the hinterland of TP. The most suitable habitats of K. humilis were mainly located in the area around Qinghai Lake and the hinterland of TP during the Last Interglacial period, and gradually merged into a bigger area; K. robusta and K. tibetica were located in the area around Qinghai Lake and the hinterland of TP, but they did not integrate into one area all the time, and K. capillifolia were located in the area around Qinghai Lake and extended to the southwest of the original distributing area, whereas K. macrantha were mainly distributed along the area of the Himalayan mountain chain, which had the smallest distribution area among them, and all these six Kobresia species can be divided into four types of "retreat/expansion" styles according to the changes of suitable habitat areas during the four periods; all these change styles are the result of long-term adaptations of the different species to the local climate changes in regions of TP and show the complexity of relationships between different species and climate. The research results have positive reference value to the protection of species diversity and sustainable development of the local husbandry in TP.
NASA Astrophysics Data System (ADS)
Jourdain, Nicolas C.; Mathiot, Pierre; Gallée, Hubert; Barnier, Bernard
2011-04-01
Air-sea ice-ocean interactions in the Ross Sea sector form dense waters that feed the global thermohaline circulation. In this paper, we develop the new limited-area ocean-sea ice-atmosphere coupled model TANGO to simulate the Ross Sea sector. TANGO is built up by coupling the atmospheric limited-area model MAR to a regional configuration of the ocean-sea ice model NEMO. A method is then developed to identify the mechanisms by which local coupling affects the simulations. TANGO is shown to simulate realistic sea ice properties and atmospheric surface temperatures. These skills are mostly related to the skills of the stand alone atmospheric and oceanic models used to build TANGO. Nonetheless, air temperatures over ocean and winter sea ice thickness are found to be slightly improved in coupled simulations as compared to standard stand alone ones. Local atmosphere ocean feedbacks over the open ocean are found to significantly influence ocean temperature and salinity. In a stand alone ocean configuration, the dry and cold air produces an ocean cooling through sensible and latent heat loss. In a coupled configuration, the atmosphere is in turn moistened and warmed by the ocean; sensible and latent heat loss is therefore reduced as compared to the stand alone simulations. The atmosphere is found to be less sensitive to local feedbacks than the ocean. Effects of local feedbacks are increased in the coastal area because of the presence of sea ice. It is suggested that slow heat conduction within sea ice could amplify the feedbacks. These local feedbacks result in less sea ice production in polynyas in coupled mode, with a subsequent reduction in deep water formation.
Locally adaptive, spatially explicit projection of US population for 2030 and 2050.
McKee, Jacob J; Rose, Amy N; Bright, Edward A; Huynh, Timmy; Bhaduri, Budhendra L
2015-02-03
Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Building on the spatial interpolation technique previously developed for high-resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically informed spatial distribution of projected population of the contiguous United States for 2030 and 2050, depicting one of many possible population futures. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection model departs from these by accounting for multiple components that affect population distribution. Modeled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the US Census's projection methodology, with the US Census's official projection as the benchmark. Applications of our model include incorporating multiple various scenario-driven events to produce a range of spatially explicit population futures for suitability modeling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.
Stough-Hunter, Anjel; Lekies, Kristi S; Donnermeyer, Joseph F
2014-12-01
Little research has considered how residents' perceptions of their local environment may interact with efforts to increase environmental concern, particularly in areas in need of remediation. This study examined the process by which local environmental action may affect environmental concern. A model was presented for exploring the effects of community-based watershed organizations (CWOs) on environmental concern that also incorporates existing perceptions of the local environment. Survey data were collected from area residents in two watersheds in southwestern Pennsylvania, USA, an area affected by abandoned mine drainage. The findings suggest that residents' perceptions of local water quality and importance of improving water quality are important predictors of level of environmental concern and desire for action; however, in this case, having an active or inactive CWO did not influence these perceptions. The implications of these findings raise important questions concerning strategies and policy making around environmental remediation at the local level.
Prediction of forest fires occurrences with area-level Poisson mixed models.
Boubeta, Miguel; Lombardía, María José; Marey-Pérez, Manuel Francisco; Morales, Domingo
2015-05-01
The number of fires in forest areas of Galicia (north-west of Spain) during the summer period is quite high. Local authorities are interested in analyzing the factors that explain this phenomenon. Poisson regression models are good tools for describing and predicting the number of fires per forest areas. This work employs area-level Poisson mixed models for treating real data about fires in forest areas. A parametric bootstrap method is applied for estimating the mean squared errors of fires predictors. The developed methodology and software are applied to a real data set of fires in forest areas of Galicia. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ouyang, Min; Tian, Hui; Wang, Zhenghua; Hong, Liu; Mao, Zijun
2017-01-17
This article studies a general type of initiating events in critical infrastructures, called spatially localized failures (SLFs), which are defined as the failure of a set of infrastructure components distributed in a spatially localized area due to damage sustained, while other components outside the area do not directly fail. These failures can be regarded as a special type of intentional attack, such as bomb or explosive assault, or a generalized modeling of the impact of localized natural hazards on large-scale systems. This article introduces three SLFs models: node centered SLFs, district-based SLFs, and circle-shaped SLFs, and proposes a SLFs-induced vulnerability analysis method from three aspects: identification of critical locations, comparisons of infrastructure vulnerability to random failures, topologically localized failures and SLFs, and quantification of infrastructure information value. The proposed SLFs-induced vulnerability analysis method is finally applied to the Chinese railway system and can be also easily adapted to analyze other critical infrastructures for valuable protection suggestions. © 2017 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Ferrant, Sylvain; Caballero, Yvan; Perrin, Jérome; Gascoin, Simon; Dewandel, Benoit; Aulong, Stéphanie; Dazin, Fabrice; Ahmed, Shakeel; Maréchal, Jean-Christophe
2014-01-01
Local groundwater levels in South India are falling alarmingly. In the semi-arid crystalline Deccan plateau area, agricultural production relies on groundwater resources. Downscaled Global Climate Model (GCM) data are used to force a spatially distributed agro-hydrological model in order to evaluate Climate Change (CC) effects on local groundwater extraction (GWE). The slight increase of precipitation may alleviate current groundwater depletion on average, despite the increased evaporation due to warming. Nevertheless, projected climatic extremes create worse GWE shortages than for present climate. Local conditions may lead to opposing impacts on GWE, from increases to decreases (+/-20 mm/year), for a given spatially homogeneous CC forcing. Areas vulnerable to CC in terms of irrigation apportionment are thus identified. Our results emphasize the importance of accounting for local characteristics (water harvesting systems and maximal aquifer capacity versus GWE) in developing measures to cope with CC impacts in the South Indian region.
Ferrant, Sylvain; Caballero, Yvan; Perrin, Jérome; Gascoin, Simon; Dewandel, Benoit; Aulong, Stéphanie; Dazin, Fabrice; Ahmed, Shakeel; Maréchal, Jean-Christophe
2014-01-15
Local groundwater levels in South India are falling alarmingly. In the semi-arid crystalline Deccan plateau area, agricultural production relies on groundwater resources. Downscaled Global Climate Model (GCM) data are used to force a spatially distributed agro-hydrological model in order to evaluate Climate Change (CC) effects on local groundwater extraction (GWE). The slight increase of precipitation may alleviate current groundwater depletion on average, despite the increased evaporation due to warming. Nevertheless, projected climatic extremes create worse GWE shortages than for present climate. Local conditions may lead to opposing impacts on GWE, from increases to decreases (+/-20 mm/year), for a given spatially homogeneous CC forcing. Areas vulnerable to CC in terms of irrigation apportionment are thus identified. Our results emphasize the importance of accounting for local characteristics (water harvesting systems and maximal aquifer capacity versus GWE) in developing measures to cope with CC impacts in the South Indian region.
A Semi-Structured MODFLOW-USG Model to Evaluate Local Water Sources to Wells for Decision Support.
Feinstein, Daniel T; Fienen, Michael N; Reeves, Howard W; Langevin, Christian D
2016-07-01
In order to better represent the configuration of the stream network and simulate local groundwater-surface water interactions, a version of MODFLOW with refined spacing in the topmost layer was applied to a Lake Michigan Basin (LMB) regional groundwater-flow model developed by the U.S. Geological. Regional MODFLOW models commonly use coarse grids over large areas; this coarse spacing precludes model application to local management issues (e.g., surface-water depletion by wells) without recourse to labor-intensive inset models. Implementation of an unstructured formulation within the MODFLOW framework (MODFLOW-USG) allows application of regional models to address local problems. A "semi-structured" approach (uniform lateral spacing within layers, different lateral spacing among layers) was tested using the LMB regional model. The parent 20-layer model with uniform 5000-foot (1524-m) lateral spacing was converted to 4 layers with 500-foot (152-m) spacing in the top glacial (Quaternary) layer, where surface water features are located, overlying coarser resolution layers representing deeper deposits. This semi-structured version of the LMB model reproduces regional flow conditions, whereas the finer resolution in the top layer improves the accuracy of the simulated response of surface water to shallow wells. One application of the semi-structured LMB model is to provide statistical measures of the correlation between modeled inputs and the simulated amount of water that wells derive from local surface water. The relations identified in this paper serve as the basis for metamodels to predict (with uncertainty) surface-water depletion in response to shallow pumping within and potentially beyond the modeled area, see Fienen et al. (2015a). Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
A semi-structured MODFLOW-USG model to evaluate local water sources to wells for decision support
Feinstein, Daniel T.; Fienen, Michael N.; Reeves, Howard W.; Langevin, Christian D.
2016-01-01
In order to better represent the configuration of the stream network and simulate local groundwater-surface water interactions, a version of MODFLOW with refined spacing in the topmost layer was applied to a Lake Michigan Basin (LMB) regional groundwater-flow model developed by the U.S. Geological. Regional MODFLOW models commonly use coarse grids over large areas; this coarse spacing precludes model application to local management issues (e.g., surface-water depletion by wells) without recourse to labor-intensive inset models. Implementation of an unstructured formulation within the MODFLOW framework (MODFLOW-USG) allows application of regional models to address local problems. A “semi-structured” approach (uniform lateral spacing within layers, different lateral spacing among layers) was tested using the LMB regional model. The parent 20-layer model with uniform 5000-foot (1524-m) lateral spacing was converted to 4 layers with 500-foot (152-m) spacing in the top glacial (Quaternary) layer, where surface water features are located, overlying coarser resolution layers representing deeper deposits. This semi-structured version of the LMB model reproduces regional flow conditions, whereas the finer resolution in the top layer improves the accuracy of the simulated response of surface water to shallow wells. One application of the semi-structured LMB model is to provide statistical measures of the correlation between modeled inputs and the simulated amount of water that wells derive from local surface water. The relations identified in this paper serve as the basis for metamodels to predict (with uncertainty) surface-water depletion in response to shallow pumping within and potentially beyond the modeled area, see Fienen et al. (2015a).
Lewis, Valerie A; Colla, Carrie H; Carluzzo, Kathleen L; Kler, Sarah E; Fisher, Elliott S
2013-12-01
The Accountable Care Organization (ACO) model is rapidly being implemented by Medicare, private payers, and states, but little is known about the scope of ACO implementation. To determine the number of accountable care organizations in the United States, where they are located, and characteristics associated with ACO formation. Cross-sectional study of all ACOs in the United States as of August 2012. We identified ACOs from multiple sources; documented service locations (practices, clinics, hospitals); and linked service locations to local areas, defined as Dartmouth Atlas hospital service areas. We used multivariate analysis to assess what characteristics were associated with local ACO presence. We examined demographic characteristics (2010 American Community Survey) and health care system characteristics (2010 Medicare fee-for-service claims data). We identified 227 ACOs located in 27 percent of local areas. Fifty-five percent of the US population resides in these areas. HSA-level characteristics associated with ACO presence include higher performance on quality, higher Medicare per capita spending, fewer primary care physician groups, greater managed care penetration, lower poverty rates, and urban location. Much of the US population resides in areas where ACOs have been established. ACO formation has taken place where it may be easier to meet quality and cost targets. Wider adoption of the ACO model may require tailoring to local context. © Health Research and Educational Trust.
Local-area simulations of rotating compressible convection and associated mean flows
NASA Technical Reports Server (NTRS)
Hurlburt, Neal E.; Brummell, N. H.; Toomre, Juri
1995-01-01
The dynamics of compressible convection within a curved local segment of a rotating spherical shell are considered in relation to the turbulent redistribution of angular momentum within the solar convection zone. Current supercomputers permit fully turbulent flows to be considered within the restricted geometry of local area models. By considering motions in a curvilinear geometry in which the Coriolos parameters vary with latitude, Rossby waves which couple with the turbulent convection are thought of as being possible. Simulations of rotating convection are presented in such a curved local segment of a spherical shell using a newly developed, sixth-order accurate code based on compact finite differences.
NASA Astrophysics Data System (ADS)
Astuti, H. N.; Saputro, D. R. S.; Susanti, Y.
2017-06-01
MGWR model is combination of linear regression model and geographically weighted regression (GWR) model, therefore, MGWR model could produce parameter estimation that had global parameter estimation, and other parameter that had local parameter in accordance with its observation location. The linkage between locations of the observations expressed in specific weighting that is adaptive bi-square. In this research, we applied MGWR model with weighted adaptive bi-square for case of DHF in Surakarta based on 10 factors (variables) that is supposed to influence the number of people with DHF. The observation unit in the research is 51 urban villages and the variables are number of inhabitants, number of houses, house index, many public places, number of healthy homes, number of Posyandu, area width, level population density, welfare of the family, and high-region. Based on this research, we obtained 51 MGWR models. The MGWR model were divided into 4 groups with significant variable is house index as a global variable, an area width as a local variable and the remaining variables vary in each. Global variables are variables that significantly affect all locations, while local variables are variables that significantly affect a specific location.
Dynamic models of an earthquake and tsunami offshore Ventura, California
Kenny J. Ryan,; Geist, Eric L.; Barall, Michael; David D. Oglesby,
2015-01-01
The Ventura basin in Southern California includes coastal dip-slip faults that can likely produce earthquakes of magnitude 7 or greater and significant local tsunamis. We construct a 3-D dynamic rupture model of an earthquake on the Pitas Point and Lower Red Mountain faults to model low-frequency ground motion and the resulting tsunami, with a goal of elucidating the seismic and tsunami hazard in this area. Our model results in an average stress drop of 6 MPa, an average fault slip of 7.4 m, and a moment magnitude of 7.7, consistent with regional paleoseismic data. Our corresponding tsunami model uses final seafloor displacement from the rupture model as initial conditions to compute local propagation and inundation, resulting in large peak tsunami amplitudes northward and eastward due to site and path effects. Modeled inundation in the Ventura area is significantly greater than that indicated by state of California's current reference inundation line.
NASA Astrophysics Data System (ADS)
Kupila, Juho
2016-04-01
Finland is fully self-sufficient in clean groundwater and even has a capacity of exportation. There are approx. 6000 groundwater areas with a total yield of 5.4 million m3/day. Currently only 10% of this groundwater resource is in use. For the efficient and safe exploitation of these areas in the future, detailed modeling of soil structure is an important method in groundwater surveys. 3D -models improve the general knowledge of linkage between land use planning and groundwater protection. Results can be used as a base information in water supply service development and when performing the measures needed in case of environmental accidents. Also, when creating the groundwater flow models the collected information is utilized and is usually the main data source. Geological Survey of Finland has carried out soil structure studies in co-operation with authorities, municipalities and the local water suppliers. The main objectives of these projects are to determine the geological structure of groundwater area for estimating the validity of the present exclusion area, the quantity of ground water volume and recharge capability and possible risks to the groundwater. Research areas are usually under an active water supply service. Kauvonkangas groundwater area is located in the municipality of Tervola, in Southern part of Finnish Lapland. Extent of the area is 7.9 km2 and it is an important water source for the local and nearby population centers. There are two active water supply companies in the area. Field studies in the project will include general geological and hydrological mapping, soil drilling with observation pipe installation, test pumping and water sampling. Geophysical measures will play a key-role, including ground penetrating radar (GPR) and gravimetric measurements. Studies will be carried out in spring and summer 2016. The main results will be the models of the bedrock and groundwater level and main characteristics of the soil layers in the area. Results will also include the main flow directions of the groundwater. Structure models will be done with Groundhog -software. Kauvonkangas -project is funded by local water supply companies Meri-Lapin Vesi and Tervolan Vesi, Ministry of Agriculture and Forestry, and Geological Survey of Finland.
NASA Astrophysics Data System (ADS)
Bermúdez, María; Neal, Jeffrey C.; Bates, Paul D.; Coxon, Gemma; Freer, Jim E.; Cea, Luis; Puertas, Jerónimo
2016-04-01
Flood inundation models require appropriate boundary conditions to be specified at the limits of the domain, which commonly consist of upstream flow rate and downstream water level. These data are usually acquired from gauging stations on the river network where measured water levels are converted to discharge via a rating curve. Derived streamflow estimates are therefore subject to uncertainties in this rating curve, including extrapolating beyond the maximum observed ratings magnitude. In addition, the limited number of gauges in reach-scale studies often requires flow to be routed from the nearest upstream gauge to the boundary of the model domain. This introduces additional uncertainty, derived not only from the flow routing method used, but also from the additional lateral rainfall-runoff contributions downstream of the gauging point. Although generally assumed to have a minor impact on discharge in fluvial flood modeling, this local hydrological input may become important in a sparse gauge network or in events with significant local rainfall. In this study, a method to incorporate rating curve uncertainty and the local rainfall-runoff dynamics into the predictions of a reach-scale flood inundation model is proposed. Discharge uncertainty bounds are generated by applying a non-parametric local weighted regression approach to stage-discharge measurements for two gauging stations, while measured rainfall downstream from these locations is cascaded into a hydrological model to quantify additional inflows along the main channel. A regional simplified-physics hydraulic model is then applied to combine these inputs and generate an ensemble of discharge and water elevation time series at the boundaries of a local-scale high complexity hydraulic model. Finally, the effect of these rainfall dynamics and uncertain boundary conditions are evaluated on the local-scale model. Improvements in model performance when incorporating these processes are quantified using observed flood extent data and measured water levels from a 2007 summer flood event on the river Severn. The area of interest is a 7 km reach in which the river passes through the city of Worcester, a low water slope, subcritical reach in which backwater effects are significant. For this domain, the catchment area between flow gauging stations extends over 540 km2. Four hydrological models from the FUSE framework (Framework for Understanding Structural Errors) were set up to simulate the rainfall-runoff process over this area. At this regional scale, a 2-dimensional hydraulic model that solves the local inertial approximation of the shallow water equations was applied to route the flow, whereas the full form of these equations was solved at the local scale to predict the urban flow field. This nested approach hence allows an examination of water fluxes from the catchment to the building scale, while requiring short setup and computational times. An accurate prediction of the magnitude and timing of the flood peak was obtained with the proposed method, in spite of the unusual structure of the rain episode and the complexity of the River Severn system. The findings highlight the importance of estimating boundary condition uncertainty and local rainfall contribution for accurate prediction of river flows and inundation.
NASA Astrophysics Data System (ADS)
Li, Li; Guan, Weibing; He, Zhiguo; Yao, Yanming; Xia, Yuezhang
2017-11-01
Xiangshan Bay is a semi-enclosed bay in China, in which tidal flats have been substantially reclaimed to support the development of local economies and society over previous decades. The loss of tidal flats has led to changes of tides and locally suspended sediment in the bay. The effects of tidal flat reduction on locally suspended sediment dynamics was investigated using a numerical model forced by tidal data and calibrated by observed tidal elevation and currents. The model satisfactorily reproduces observed water levels, currents, and suspended sediment concentration in the estuary, and therefore is subsequently applied to analyze the impact of tidal flat reclamation on locally suspended sediment transport. After the loss of the tidal flats from 1963 to 2010, the suspended sediment concentrations (SSC) at the bottom boundary layer were reduced/increased in the outer bay/tidal flat areas due to weakened tidal currents. In the inner bay, the SSC values near the bottom level increased from 1963 to 2003 due to the narrowed bathymetry, and then decreased from 2003 to 2010 because of the reduced tidal prism. The model scenarios suggest that: (1) a reduction of tidal flat areas appears to be the main factor for enhancing the transport of sediments up-estuary, due to the increased Eulerian velocity and tidal pumping; (2) A reduction of tidal flat areas impacts on spatial and temporal SSC distribution: reducing the SSC values in the water areas due to the reduced current; and (3) a tidal flat reduction influences the net sediment fluxes: lessening the erosion and inducing higher/lower landward/seaward sediment transportation.
Impact of Rice Paddy Areas Decrease on Local Climate over Taiwan
NASA Astrophysics Data System (ADS)
Lo, M. H.; Wen, W. H.; Chen, C. C.
2014-12-01
Agricultural irrigation practice is one of the important anthropogenic processes in the land surface modeling. Irrigation can decrease local surface temperature with alternating surface energy partitioning. Rice paddy is the major food crop in Asian monsoon region and rice is grown under flooded conditions during the growing season; hence, the rice paddy can be considered as an open water body, which has more impacts on the surface energy budget than other cropland does. In this study, we explore how the rice paddy area changes affect Taiwan's regional climate from both observational data and numerical modeling exercise. The Weather Research and Forecasting (WRF) model is utilized to explore impacts of rice paddy area changes on the regional climate, and energy and water budget changes. In addition, temperature datasets from six automatic weather stations in the northern Taiwan and two stations in the southern Taiwan are analyzed in this study to explore how the Daily Temperature Range (DTR) changes with the decreased rice paddy areas. Previous studies show that due to the urban heat island effect, aerosol direct and indirect effects, and global warming, the DTR has decreased in the past 4 decades observed from most of the weather stations around Taiwan. However, the declined rice paddy area may increase the DTR with higher Bowen ratio during the daytime. Preliminary results show that DTR is decreased in weather stations near the urban area, but increased in weather stations near fallow areas in the past 20 years. It shows that different land use changes may have opposite impacts on local and regional climate.
NASA Astrophysics Data System (ADS)
Lorenzi, Marco; Simpson, Ivor J.; Mendelson, Alex F.; Vos, Sjoerd B.; Cardoso, M. Jorge; Modat, Marc; Schott, Jonathan M.; Ourselin, Sebastien
2016-04-01
The joint analysis of brain atrophy measured with magnetic resonance imaging (MRI) and hypometabolism measured with positron emission tomography with fluorodeoxyglucose (FDG-PET) is of primary importance in developing models of pathological changes in Alzheimer’s disease (AD). Most of the current multimodal analyses in AD assume a local (spatially overlapping) relationship between MR and FDG-PET intensities. However, it is well known that atrophy and hypometabolism are prominent in different anatomical areas. The aim of this work is to describe the relationship between atrophy and hypometabolism by means of a data-driven statistical model of non-overlapping intensity correlations. For this purpose, FDG-PET and MRI signals are jointly analyzed through a computationally tractable formulation of partial least squares regression (PLSR). The PLSR model is estimated and validated on a large clinical cohort of 1049 individuals from the ADNI dataset. Results show that the proposed non-local analysis outperforms classical local approaches in terms of predictive accuracy while providing a plausible description of disease dynamics: early AD is characterised by non-overlapping temporal atrophy and temporo-parietal hypometabolism, while the later disease stages show overlapping brain atrophy and hypometabolism spread in temporal, parietal and cortical areas.
Dust Storm Monitoring Using Satellite Observatory and Numerical Modeling Analysis
NASA Astrophysics Data System (ADS)
Taghavi, Farahnaz
In recent years, the frequency of dust pollution events in the Iran Southwest are increased which caused huge damage and imposed a negative impacts on air quality, airport traffic and people daily life in local areas. Dust storms in this area usually start with the formation of a low-pressure center over the Arabian Peninsula. The main objectives of this study is to asses and monitor the movement of aerosols and pollutions from origin source to local areas using satellite imagery and numerical modeling analysis. Observational analyses from NCEP such as synoptic data (Uwind,Vwind,Vorticity and Divergence Fields), upper air radiosonde, measured visibility distributions, land cover data are also used in model comparisons to show differences in occurrence of dust events. The evolution and dynamics of this phenomena are studied on the based a method to modify the initial state of NWP output using discrepancies between dynamic fields and WV imagery in a grid. Results show that satellite images offers a means to control the behavior of numeric models and also the model using land cover data improving the wind-blown dust modeling.
NASA Astrophysics Data System (ADS)
Acharya, S.; Kaplan, D. A.; Casey, S.; Cohen, M. J.; Jawitz, J. W.
2015-05-01
Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing-canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.
NASA Astrophysics Data System (ADS)
Acharya, S.; Kaplan, D. A.; Casey, S.; Cohen, M. J.; Jawitz, J. W.
2015-01-01
Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.
Increase Economic Valuation of Marine Ecotourism Spots In Small Islands
NASA Astrophysics Data System (ADS)
Rahakbauw, Siska D.; Teniwut, Wellem A.; Renjaan, Meiskyana R.; Hungan, Marselus
2017-10-01
Ecotourism is one of the fast-growing sectors especially in the developing country as a source of revenue. To get a sustainable development of ecotourism, it needs broad and comprehensive effort from central government and local government, perfect example in that regards in Indonesia is Bali and Lombok. For another area in Indonesia like Kei Islands which located in two administrative governments have a major problem to build a sustainable nature-based tourism because of the location of this area to the major cities in the country makes the travel cost is high. This situation makes the role of local community as the backbone of the growth and development of nature-based tourism is critical. By using structural equation modeling (SEM), we constructed a model to enhance local community perception on economic valuation of ecotourism spots in the area. Results showed that perceived quality as the mediation driven by the intensity of appearance on national television and the internet could increase community attachment to increase willingness to pay from the local community on ecotourism in Kei islands. Also, the result also indicated that WTP value for the local community on ecotourism in Kei Islands was 10.81 per trip, with average trip per month was 1 to 4 times.
Miconi, Thomas; Groomes, Laura; Kreiman, Gabriel
2016-01-01
When searching for an object in a scene, how does the brain decide where to look next? Visual search theories suggest the existence of a global “priority map” that integrates bottom-up visual information with top-down, target-specific signals. We propose a mechanistic model of visual search that is consistent with recent neurophysiological evidence, can localize targets in cluttered images, and predicts single-trial behavior in a search task. This model posits that a high-level retinotopic area selective for shape features receives global, target-specific modulation and implements local normalization through divisive inhibition. The normalization step is critical to prevent highly salient bottom-up features from monopolizing attention. The resulting activity pattern constitues a priority map that tracks the correlation between local input and target features. The maximum of this priority map is selected as the locus of attention. The visual input is then spatially enhanced around the selected location, allowing object-selective visual areas to determine whether the target is present at this location. This model can localize objects both in array images and when objects are pasted in natural scenes. The model can also predict single-trial human fixations, including those in error and target-absent trials, in a search task involving complex objects. PMID:26092221
Improving and Evaluating Nested Sampling Algorithm for Marginal Likelihood Estimation
NASA Astrophysics Data System (ADS)
Ye, M.; Zeng, X.; Wu, J.; Wang, D.; Liu, J.
2016-12-01
With the growing impacts of climate change and human activities on the cycle of water resources, an increasing number of researches focus on the quantification of modeling uncertainty. Bayesian model averaging (BMA) provides a popular framework for quantifying conceptual model and parameter uncertainty. The ensemble prediction is generated by combining each plausible model's prediction, and each model is attached with a model weight which is determined by model's prior weight and marginal likelihood. Thus, the estimation of model's marginal likelihood is crucial for reliable and accurate BMA prediction. Nested sampling estimator (NSE) is a new proposed method for marginal likelihood estimation. The process of NSE is accomplished by searching the parameters' space from low likelihood area to high likelihood area gradually, and this evolution is finished iteratively via local sampling procedure. Thus, the efficiency of NSE is dominated by the strength of local sampling procedure. Currently, Metropolis-Hasting (M-H) algorithm is often used for local sampling. However, M-H is not an efficient sampling algorithm for high-dimensional or complicated parameter space. For improving the efficiency of NSE, it could be ideal to incorporate the robust and efficient sampling algorithm - DREAMzs into the local sampling of NSE. The comparison results demonstrated that the improved NSE could improve the efficiency of marginal likelihood estimation significantly. However, both improved and original NSEs suffer from heavy instability. In addition, the heavy computation cost of huge number of model executions is overcome by using an adaptive sparse grid surrogates.
Barnett, Elizabeth; Halverson, Joel
2001-01-01
Objectives. This study analyzed coronary heart disease (CHD) mortality trends from 1985 to 1995, by race and sex, among Black and White adults 35 years and older to determine whether adverse trends were evident in any US localities. Methods. Log-linear regression models of annual age-adjusted death rates provided a quantitative measure of local mortality trends. Results. Increasing trends in CHD mortality were observed in 11 of 174 labor market areas for Black women, 23 of 175 areas for Black men, 10 of 394 areas for White women, and 4 of 394 areas for White men. Nationwide, adverse trends affected 1.7% of Black women, 8.0% of Black men, 1.1% of White women, and 0.3% of White men. Conclusions. From 1985 to 1995, moderate to strong local increases in CHD mortality were observed, predominantly in the southern United States. Black men evidenced the most unfavorable trends and were 25 times as likely as White men to be part of a local population experiencing increases in coronary heart disease mortality. PMID:11527788
Numerical modeling of local scour around hydraulic structure in sandy beds by dynamic mesh method
NASA Astrophysics Data System (ADS)
Fan, Fei; Liang, Bingchen; Bai, Yuchuan; Zhu, Zhixia; Zhu, Yanjun
2017-10-01
Local scour, a non-negligible factor in hydraulic engineering, endangers the safety of hydraulic structures. In this work, a numerical model for simulating local scour was constructed, based on the open source code computational fluid dynamics model OpenFOAM. We consider both the bedload and suspended load sediment transport in the scour model and adopt the dynamic mesh method to simulate the evolution of the bed elevation. We use the finite area method to project data between the three-dimensional flow model and the two-dimensional (2D) scour model. We also improved the 2D sand slide method and added it to the scour model to correct the bed bathymetry when the bed slope angle exceeds the angle of repose. Moreover, to validate our scour model, we conducted and compared the results of three experiments with those of the developed model. The validation results show that our developed model can reliably simulate local scour.
Probabilistic Priority Message Checking Modeling Based on Controller Area Networks
NASA Astrophysics Data System (ADS)
Lin, Cheng-Min
Although the probabilistic model checking tool called PRISM has been applied in many communication systems, such as wireless local area network, Bluetooth, and ZigBee, the technique is not used in a controller area network (CAN). In this paper, we use PRISM to model the mechanism of priority messages for CAN because the mechanism has allowed CAN to become the leader in serial communication for automobile and industry control. Through modeling CAN, it is easy to analyze the characteristic of CAN for further improving the security and efficiency of automobiles. The Markov chain model helps us to model the behaviour of priority messages.
NASA Astrophysics Data System (ADS)
Yano, S.; Kondo, H.; Tawara, Y.; Yamada, T.; Mori, K.; Yoshida, A.; Tada, K.; Tsujimura, M.; Tokunaga, T.
2017-12-01
It is important to understand groundwater systems, including their recharge, flow, storage, discharge, and withdrawal, so that we can use groundwater resources efficiently and sustainably. To examine groundwater recharge, several methods have been discussed based on water balance estimation, in situ experiments, and hydrological tracers. However, few studies have developed a concrete framework for quantifying groundwater recharge rates in an undefined area. In this study, we established a robust method to quantitatively determine water cycles and estimate the groundwater recharge rate by combining the advantages of field surveys and model simulations. We replicated in situ hydrogeological observations and three-dimensional modeling in a mountainous basin area in Japan. We adopted a general-purpose terrestrial fluid-flow simulator (GETFLOWS) to develop a geological model and simulate the local water cycle. Local data relating to topology, geology, vegetation, land use, climate, and water use were collected from the existing literature and observations to assess the spatiotemporal variations of the water balance from 2011 to 2013. The characteristic structures of geology and soils, as found through field surveys, were parameterized for incorporation into the model. The simulated results were validated using observed groundwater levels and resulted in a Nash-Sutcliffe Model Efficiency Coefficient of 0.92. The results suggested that local groundwater flows across the watershed boundary and that the groundwater recharge rate, defined as the flux of water reaching the local unconfined groundwater table, has values similar to the level estimated in the `the lower soil layers on a long-term basis. This innovative method enables us to quantify the groundwater recharge rate and its spatiotemporal variability with high accuracy, which contributes to establishing a foundation for sustainable groundwater management.
Cerretelli, Stefania; Poggio, Laura; Gimona, Alessandro; Yakob, Getahun; Boke, Shiferaw; Habte, Mulugeta; Coull, Malcolm; Peressotti, Alessandro; Black, Helaina
2018-07-01
Land degradation is a serious issue especially in dry and developing countries leading to ecosystem services (ESS) degradation due to soil functions' depletion. Reliably mapping land degradation spatial distribution is therefore important for policy decisions. The main objectives of this paper were to infer land degradation through ESS assessment and compare the modelling results obtained using different sets of data. We modelled important physical processes (sediment erosion and nutrient export) and the equivalent ecosystem services (sediment and nutrient retention) to infer land degradation in an area in the Ethiopian Great Rift Valley. To model soil erosion/retention capability, and nitrogen export/retention capability, two datasets were used: a 'global' dataset derived from existing global-coverage data and a hybrid dataset where global data were integrated with data from local surveys. The results showed that ESS assessments can be used to infer land degradation and identify priority areas for interventions. The comparison between the modelling results of the two different input datasets showed that caution is necessary if only global-coverage data are used at a local scale. In remote and data-poor areas, an approach that integrates global data with targeted local sampling campaigns might be a good compromise to use ecosystem services in decision-making. Copyright © 2018. Published by Elsevier B.V.
Observed Local Impacts of Global Irrigation on Surface Temperature
NASA Astrophysics Data System (ADS)
Chen, L.; Dirmeyer, P.
2017-12-01
Agricultural irrigation has significant potential for altering local climate through reducing soil albedo, increasing evapotranspiration, and enabling greater leaf area. Numerous studies using regional or global climate models have demonstrated the cooling effects of irrigation on mean and extreme temperature, especially over regions where irrigation is extensive. However, these model-based results have not been validated due to the limitations of observational datasets. In this study, multiple satellite-based products, including the Moderate Resolution Imaging Spectroradiometer (MODIS) and Soil Moisture Active Passive (SMAP) data sets, are used to isolate and quantify the local impacts of irrigation on surface climate over the irrigated regions, which are derived from the Global Map of Irrigation Areas (GMIA). The relationships among soil moisture, albedo, evapotranspiration, and surface temperature are explored. Strong evaporative cooling of irrigation on daytime surface temperature is found over the arid and semi-arid regions, such as California's Central Valley, the Great Plains, and central Asia. However, the cooling effects are less evident in most areas of eastern China, India, and the Lower Mississippi River Basin in spite of extensive irrigation over these regions. Results are also compared with irrigation experiments using the Community Earth System Model (CESM) to assess the model's ability to represent land-atmosphere interactions in regards to irrigation.
Spatially explicit shallow landslide susceptibility mapping over large areas
Bellugi, Dino; Dietrich, William E.; Stock, Jonathan D.; McKean, Jim; Kazian, Brian; Hargrove, Paul
2011-01-01
Recent advances in downscaling climate model precipitation predictions now yield spatially explicit patterns of rainfall that could be used to estimate shallow landslide susceptibility over large areas. In California, the United States Geological Survey is exploring community emergency response to the possible effects of a very large simulated storm event and to do so it has generated downscaled precipitation maps for the storm. To predict the corresponding pattern of shallow landslide susceptibility across the state, we have used the model Shalstab (a coupled steady state runoff and infinite slope stability model) which susceptibility spatially explicit estimates of relative potential instability. Such slope stability models that include the effects of subsurface runoff on potentially destabilizing pore pressure evolution require water routing and hence the definition of upslope drainage area to each potential cell. To calculate drainage area efficiently over a large area we developed a parallel framework to scale-up Shalstab and specifically introduce a new efficient parallel drainage area algorithm which produces seamless results. The single seamless shallow landslide susceptibility map for all of California was accomplished in a short run time, and indicates that much larger areas can be efficiently modelled. As landslide maps generally over predict the extent of instability for any given storm. Local empirical data on the fraction of predicted unstable cells that failed for observed rainfall intensity can be used to specify the likely extent of hazard for a given storm. This suggests that campaigns to collect local precipitation data and detailed shallow landslide location maps after major storms could be used to calibrate models and improve their use in hazard assessment for individual storms.
NASA Astrophysics Data System (ADS)
Glen, D. V.
1985-04-01
Local networks, related standards activities of the Institute of Electrical and Electronics Engineers the American National Standards Institute and other elements are presented. These elements include: (1) technology choices such as topology, transmission media, and access protocols; (2) descriptions of standards for the 802 local area networks (LAN's); high speed local networks (HSLN's) and military specification local networks; and (3) intra- and internetworking using bridges and gateways with protocols Interconnection (OSI) reference model. The convergence of LAN/PBX technology is also described.
Open solutions to distributed control in ground tracking stations
NASA Technical Reports Server (NTRS)
Heuser, William Randy
1994-01-01
The advent of high speed local area networks has made it possible to interconnect small, powerful computers to function together as a single large computer. Today, distributed computer systems are the new paradigm for large scale computing systems. However, the communications provided by the local area network is only one part of the solution. The services and protocols used by the application programs to communicate across the network are as indispensable as the local area network. And the selection of services and protocols that do not match the system requirements will limit the capabilities, performance, and expansion of the system. Proprietary solutions are available but are usually limited to a select set of equipment. However, there are two solutions based on 'open' standards. The question that must be answered is 'which one is the best one for my job?' This paper examines a model for tracking stations and their requirements for interprocessor communications in the next century. The model and requirements are matched with the model and services provided by the five different software architectures and supporting protocol solutions. Several key services are examined in detail to determine which services and protocols most closely match the requirements for the tracking station environment. The study reveals that the protocols are tailored to the problem domains for which they were originally designed. Further, the study reveals that the process control model is the closest match to the tracking station model.
NASA Astrophysics Data System (ADS)
Liu, J.; Wang, T.; Skidmore, A. K.; Heurich, M.
2016-12-01
The plant area index (PAI) profile is a quantitative description of how plants (including leaves and woody materials) are distributed vertically, as a function of height. PAI profiles can be used for many applications including biomass estimation, radiative transfer modelling, fire fuel modelling and wildlife habitat assessment. With airborne laser scanning (ALS), forest structure underneath the canopy surface can be detected. PAI profiles can be calculated through estimates of the vertically resolved gap fraction from ALS data. In this process, a gridding or aggregation step is often involved. Most current research neglects local topographic change, and utilizes a height normalization algorithm to achieve a local or relative height, implying a flat local terrain assumption inside the grid or aggregation area. However, in mountainous forest, this assumption is often not valid. Therefore, in this research, the local topographic effect on the PAI profile calculation was studied. Small footprint discrete multi-return ALS data was acquired over the Bavarian Forest National Park under leaf-off and leaf-on conditions. Ground truth data, including tree height, canopy cover, DBH as well as digital hemispherical photos, were collected in 30 plots. These plots covered a wide range of forest structure, plant species, local topography condition and understory coverage. PAI profiles were calculated both with and without height normalization. The difference between height normalized and non-normalized profiles were evaluated with the coefficient of variation of root mean squared difference (CV-RMSD). The derived metric PAI values from PAI profiles were also evaluated with ground truth PAI from the hemispherical photos. Results showed that change in local topography had significant effects on the PAI profile. The CV-RMSD between PAI profile results calculated with or without height normalization ranged from 24.5% to 163.9%. Height normalization (neglecting topography change) can lead to offsets in the height of plant material that could potentially cause large errors and uncertainty when used in applications utilizing absolute height such as radiative transfer modeling and fire fuel modelling. This research demonstrates that when calculating the PAI profile from ALS, local topography has to be taken into account.
Entanglement Area Law in Disordered Free Fermion Anderson Model in One, Two, and Three Dimensions
Pouranvari, Mohammad; Zhang, Yuhui; Yang, Kun
2015-01-01
We calculate numerically the entanglement entropy of free fermion ground states in one-, two-, and three-dimensional Anderson models and find that it obeys the area law as long as the linear size of the subsystem is sufficiently larger than the mean free path. This result holds in the metallic phase of the three-dimensional Anderson model, where the mean free path is finite although the localization length is infinite. Relation between the present results and earlier ones on area law violation in special one-dimensional models that support metallic phases is discussed.
Entanglement Area Law in Disordered Free Fermion Anderson Model in One, Two, and Three Dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pouranvari, Mohammad; Zhang, Yuhui; Yang, Kun
We calculate numerically the entanglement entropy of free fermion ground states in one-, two-, and three-dimensional Anderson models and find that it obeys the area law as long as the linear size of the subsystem is sufficiently larger than the mean free path. This result holds in the metallic phase of the three-dimensional Anderson model, where the mean free path is finite although the localization length is infinite. Relation between the present results and earlier ones on area law violation in special one-dimensional models that support metallic phases is discussed.
Little, Eliza; Bajwa, Waheed; Shaman, Jeffrey
2017-08-01
Ae. albopictus, an invasive mosquito vector now endemic to much of the northeastern US, is a significant public health threat both as a nuisance biter and vector of disease (e.g. chikungunya virus). Here, we aim to quantify the relationships between local environmental and meteorological conditions and the abundance of Ae. albopictus mosquitoes in New York City. Using statistical modeling, we create a fine-scale spatially explicit risk map of Ae. albopictus abundance and validate the accuracy of spatiotemporal model predictions using observational data from 2016. We find that the spatial variability of annual Ae. albopictus abundance is greater than its temporal variability in New York City but that both local environmental and meteorological conditions are associated with Ae. albopictus numbers. Specifically, key land use characteristics, including open spaces, residential areas, and vacant lots, and spring and early summer meteorological conditions are associated with annual Ae. albopictus abundance. In addition, we investigate the distribution of imported chikungunya cases during 2014 and use these data to delineate areas with the highest rates of arboviral importation. We show that the spatial distribution of imported arboviral cases has been mostly discordant with mosquito production and thus, to date, has provided a check on local arboviral transmission in New York City. We do, however, find concordant areas where high Ae. albopictus abundance and chikungunya importation co-occur. Public health and vector control officials should prioritize control efforts to these areas and thus more cost effectively reduce the risk of local arboviral transmission. The methods applied here can be used to monitor and identify areas of risk for other imported vector-borne diseases.
Bajwa, Waheed; Shaman, Jeffrey
2017-01-01
Ae. albopictus, an invasive mosquito vector now endemic to much of the northeastern US, is a significant public health threat both as a nuisance biter and vector of disease (e.g. chikungunya virus). Here, we aim to quantify the relationships between local environmental and meteorological conditions and the abundance of Ae. albopictus mosquitoes in New York City. Using statistical modeling, we create a fine-scale spatially explicit risk map of Ae. albopictus abundance and validate the accuracy of spatiotemporal model predictions using observational data from 2016. We find that the spatial variability of annual Ae. albopictus abundance is greater than its temporal variability in New York City but that both local environmental and meteorological conditions are associated with Ae. albopictus numbers. Specifically, key land use characteristics, including open spaces, residential areas, and vacant lots, and spring and early summer meteorological conditions are associated with annual Ae. albopictus abundance. In addition, we investigate the distribution of imported chikungunya cases during 2014 and use these data to delineate areas with the highest rates of arboviral importation. We show that the spatial distribution of imported arboviral cases has been mostly discordant with mosquito production and thus, to date, has provided a check on local arboviral transmission in New York City. We do, however, find concordant areas where high Ae. albopictus abundance and chikungunya importation co-occur. Public health and vector control officials should prioritize control efforts to these areas and thus more cost effectively reduce the risk of local arboviral transmission. The methods applied here can be used to monitor and identify areas of risk for other imported vector-borne diseases. PMID:28832586
Modeling abundance effects in distance sampling
Royle, J. Andrew; Dawson, D.K.; Bates, S.
2004-01-01
Distance-sampling methods are commonly used in studies of animal populations to estimate population density. A common objective of such studies is to evaluate the relationship between abundance or density and covariates that describe animal habitat or other environmental influences. However, little attention has been focused on methods of modeling abundance covariate effects in conventional distance-sampling models. In this paper we propose a distance-sampling model that accommodates covariate effects on abundance. The model is based on specification of the distance-sampling likelihood at the level of the sample unit in terms of local abundance (for each sampling unit). This model is augmented with a Poisson regression model for local abundance that is parameterized in terms of available covariates. Maximum-likelihood estimation of detection and density parameters is based on the integrated likelihood, wherein local abundance is removed from the likelihood by integration. We provide an example using avian point-transect data of Ovenbirds (Seiurus aurocapillus) collected using a distance-sampling protocol and two measures of habitat structure (understory cover and basal area of overstory trees). The model yields a sensible description (positive effect of understory cover, negative effect on basal area) of the relationship between habitat and Ovenbird density that can be used to evaluate the effects of habitat management on Ovenbird populations.
Validation of a 30 m resolution flood hazard model of the conterminous United States
NASA Astrophysics Data System (ADS)
Wing, Oliver E. J.; Bates, Paul D.; Sampson, Christopher C.; Smith, Andrew M.; Johnson, Kris A.; Erickson, Tyler A.
2017-09-01
This paper reports the development of a ˜30 m resolution two-dimensional hydrodynamic model of the conterminous U.S. using only publicly available data. The model employs a highly efficient numerical solution of the local inertial form of the shallow water equations which simulates fluvial flooding in catchments down to 50 km2 and pluvial flooding in all catchments. Importantly, we use the U.S. Geological Survey (USGS) National Elevation Dataset to determine topography; the U.S. Army Corps of Engineers National Levee Dataset to explicitly represent known flood defenses; and global regionalized flood frequency analysis to characterize return period flows and rainfalls. We validate these simulations against the complete catalogue of Federal Emergency Management Agency (FEMA) Special Flood Hazard Area (SFHA) maps and detailed local hydraulic models developed by the USGS. Where the FEMA SFHAs are based on high-quality local models, the continental-scale model attains a hit rate of 86%. This correspondence improves in temperate areas and for basins above 400 km2. Against the higher quality USGS data, the average hit rate reaches 92% for the 1 in 100 year flood, and 90% for all flood return periods. Given typical hydraulic modeling uncertainties in the FEMA maps and USGS model outputs (e.g., errors in estimating return period flows), it is probable that the continental-scale model can replicate both to within error. The results show that continental-scale models may now offer sufficient rigor to inform some decision-making needs with dramatically lower cost and greater coverage than approaches based on a patchwork of local studies.
Huang, Xiaodong; Clements, Archie C A; Williams, Gail; Mengersen, Kerrie; Tong, Shilu; Hu, Wenbiao
2016-04-01
A pandemic strain of influenza A spread rapidly around the world in 2009, now referred to as pandemic (H1N1) 2009. This study aimed to examine the spatiotemporal variation in the transmission rate of pandemic (H1N1) 2009 associated with changes in local socio-environmental conditions from May 7-December 31, 2009, at a postal area level in Queensland, Australia. We used the data on laboratory-confirmed H1N1 cases to examine the spatiotemporal dynamics of transmission using a flexible Bayesian, space-time, Susceptible-Infected-Recovered (SIR) modelling approach. The model incorporated parameters describing spatiotemporal variation in H1N1 infection and local socio-environmental factors. The weekly transmission rate of pandemic (H1N1) 2009 was negatively associated with the weekly area-mean maximum temperature at a lag of 1 week (LMXT) (posterior mean: -0.341; 95% credible interval (CI): -0.370--0.311) and the socio-economic index for area (SEIFA) (posterior mean: -0.003; 95% CI: -0.004--0.001), and was positively associated with the product of LMXT and the weekly area-mean vapour pressure at a lag of 1 week (LVAP) (posterior mean: 0.008; 95% CI: 0.007-0.009). There was substantial spatiotemporal variation in transmission rate of pandemic (H1N1) 2009 across Queensland over the epidemic period. High random effects of estimated transmission rates were apparent in remote areas and some postal areas with higher proportion of indigenous populations and smaller overall populations. Local SEIFA and local atmospheric conditions were associated with the transmission rate of pandemic (H1N1) 2009. The more populated regions displayed consistent and synchronized epidemics with low average transmission rates. The less populated regions had high average transmission rates with more variations during the H1N1 epidemic period. Copyright © 2016 Elsevier Inc. All rights reserved.
Ferrant, Sylvain; Caballero, Yvan; Perrin, Jérome; Gascoin, Simon; Dewandel, Benoit; Aulong, Stéphanie; Dazin, Fabrice; Ahmed, Shakeel; Maréchal, Jean-Christophe
2014-01-01
Local groundwater levels in South India are falling alarmingly. In the semi-arid crystalline Deccan plateau area, agricultural production relies on groundwater resources. Downscaled Global Climate Model (GCM) data are used to force a spatially distributed agro-hydrological model in order to evaluate Climate Change (CC) effects on local groundwater extraction (GWE). The slight increase of precipitation may alleviate current groundwater depletion on average, despite the increased evaporation due to warming. Nevertheless, projected climatic extremes create worse GWE shortages than for present climate. Local conditions may lead to opposing impacts on GWE, from increases to decreases (+/−20 mm/year), for a given spatially homogeneous CC forcing. Areas vulnerable to CC in terms of irrigation apportionment are thus identified. Our results emphasize the importance of accounting for local characteristics (water harvesting systems and maximal aquifer capacity versus GWE) in developing measures to cope with CC impacts in the South Indian region. PMID:24424295
Gateuille, David; Evrard, Olivier; Lefevre, Irène; Moreau-Guigon, Elodie; Alliot, Fabrice; Chevreuil, Marc; Mouchel, Jean-Marie
2014-06-01
Various sources supply PAHs that accumulate in soils. The methodology we developed provided an evaluation of the contribution of local sources (road traffic, local industries) versus remote sources (long range atmospheric transport, fallout and gaseous exchanges) to PAH stocks in two contrasting subcatchments (46-614 km²) of the Seine River basin (France). Soil samples (n = 336) were analysed to investigate the spatial pattern of soil contamination across the catchments and an original combination with radionuclide measurements provided new insights into the evolution of the contamination with depth. Relationships between PAH concentrations and the distance to the potential sources were modelled. Despite both subcatchments are mainly rural, roadside areas appeared to concentrate 20% of the contamination inside the catchment while a local industry was found to be responsible for up to 30% of the stocks. Those results have important implications for understanding and controlling PAH contamination in rural areas of early-industrialized regions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Distributed State Estimation Using a Modified Partitioned Moving Horizon Strategy for Power Systems.
Chen, Tengpeng; Foo, Yi Shyh Eddy; Ling, K V; Chen, Xuebing
2017-10-11
In this paper, a distributed state estimation method based on moving horizon estimation (MHE) is proposed for the large-scale power system state estimation. The proposed method partitions the power systems into several local areas with non-overlapping states. Unlike the centralized approach where all measurements are sent to a processing center, the proposed method distributes the state estimation task to the local processing centers where local measurements are collected. Inspired by the partitioned moving horizon estimation (PMHE) algorithm, each local area solves a smaller optimization problem to estimate its own local states by using local measurements and estimated results from its neighboring areas. In contrast with PMHE, the error from the process model is ignored in our method. The proposed modified PMHE (mPMHE) approach can also take constraints on states into account during the optimization process such that the influence of the outliers can be further mitigated. Simulation results on the IEEE 14-bus and 118-bus systems verify that our method achieves comparable state estimation accuracy but with a significant reduction in the overall computation load.
Holt, James B.; Zhang, Xingyou; Lu, Hua; Shah, Snehal N.; Dooley, Daniel P.; Matthews, Kevin A.; Croft, Janet B.
2017-01-01
Introduction Local health authorities need small-area estimates for prevalence of chronic diseases and health behaviors for multiple purposes. We generated city-level and census-tract–level prevalence estimates of 27 measures for the 500 largest US cities. Methods To validate the methodology, we constructed multilevel logistic regressions to predict 10 selected health indicators among adults aged 18 years or older by using 2013 Behavioral Risk Factor Surveillance System (BRFSS) data; we applied their predicted probabilities to census population data to generate city-level, neighborhood-level, and zip-code–level estimates for the city of Boston, Massachusetts. Results By comparing the predicted estimates with their corresponding direct estimates from a locally administered survey (Boston BRFSS 2010 and 2013), we found that our model-based estimates for most of the selected health indicators at the city level were close to the direct estimates from the local survey. We also found strong correlation between the model-based estimates and direct survey estimates at neighborhood and zip code levels for most indicators. Conclusion Findings suggest that our model-based estimates are reliable and valid at the city level for certain health outcomes. Local health authorities can use the neighborhood-level estimates if high quality local health survey data are not otherwise available. PMID:29049020
Kahlen, Katrin; Stützel, Hartmut
2011-10-01
Light quantity and quality affect internode lengths in cucumber (Cucumis sativus), whereby leaf area and the optical properties of the leaves mainly control light quality within a cucumber plant community. This modelling study aimed at providing a simple, non-destructive method to predict final internode lengths (FILs) using light quantity and leaf area data. Several simplifications of a light quantity and quality sensitive model for estimating FILs in cucumber have been tested. The direct simplifications substitute the term for the red : far-red (R : FR) ratios, by a term for (a) the leaf area index (LAI, m(2) m(-2)) or (b) partial LAI, the cumulative leaf area per m(2) ground, where leaf area per m(2) ground is accumulated from the top of each plant until a number, n, of leaves per plant is reached. The indirect simplifications estimate the input R : FR ratio based on partial leaf area and plant density. In all models, simulated FILs were in line with the measured FILs over various canopy architectures and light conditions, but the prediction quality varied. The indirect simplification based on leaf area of ten leaves revealed the best fit with measured data. Its prediction quality was even higher than of the original model. This study showed that for vertically trained cucumber plants, leaf area data can substitute local light quality data for estimating FIL data. In unstressed canopies, leaf area over the upper ten ranks seems to represent the feedback of the growing architecture on internode elongation with respect to light quality. This highlights the role of this domain of leaves as the primary source for the specific R : FR signal controlling the final length of an internode and could therefore guide future research on up-scaling local processes to the crop level.
NASA Astrophysics Data System (ADS)
Ovchinnikov, I. I.; Snezhkina, O. V.; Ovchinnikov, I. G.
2017-11-01
The task of modeling the kinetics of chloride-containing medium penetration into construction elements out of reinforced concrete that have partially damaged anti-corrosion protective coatings is being discussed. As a result, chlorides penetrate the construction element via local surface areas which leads to irregularities between chloride dispersion volumes. The kinetics of chloride penetration is described by the equation of diffusion to solve which the CONDUCT software complex by professor S. Patankar was used. The methodology used to solve the diffusional equation is described. The results of the evaluation of concentration field in the axial section of a cylindrical construction element, which was centrally reinforced, are given. The chloride diffusion was symmetrical to the axis, the medium was applied through the central ring area equal to one third of the side surface area while the rest of the surface was isolated. It was shown that the methodology of evaluation and its algorithm allow one to evaluate the concentration field of chlorides in reinforced concrete structural elements under local or asymmetrical action of the chloride - containing medium. The example given illustrates that after a certain time interval critical the concentration of chlorides develops even in protected areas which are located far from the initial damaged area. This means that the corrosion destruction of reinforced elements develops not only in the immediate damage area, but also further away from it.
ERIC Educational Resources Information Center
Li, Ying; Jiao, Hong; Lissitz, Robert W.
2012-01-01
This study investigated the application of multidimensional item response theory (IRT) models to validate test structure and dimensionality. Multiple content areas or domains within a single subject often exist in large-scale achievement tests. Such areas or domains may cause multidimensionality or local item dependence, which both violate the…
Greenwood, M J; Hunt, G L
1995-04-01
The authors use Standard Metropolitan Statistical Area (SMSA) data constructed from 1980 census microdata files and other sources to estimate a structural model of native/foreign-born labor demand and labor supply which distinguishes the effects upon real wages of each type of labor and on the employment of natives. The authors specify, econometrically estimate, and simulate the structural model which incorporates not only a production structure channel through which immigrants influence area real wages and employment, but also demand and native labor supply channels. It is noted that while these are not the only channels through which immigrants may affect native workers, the model nonetheless constitutes a step in the direction of a general equilibrium approach. In the production structure channel, immigrants and natives are found to be substitutes in production. Immigration lowers foreign-born wage rates and leads to lower wages for natives. The negative effects of the production channel usually are ameliorated through the demand channel. Further, immigrants add to local demand through their earnings and potentially through non-labor income, while also lowering unit costs and local prices which enhances real incomes and potentially net exports, and thus the demands for local output and area labor. The author discusses findings of interest from the simulation results based upon an analysis of all areas.
ERIC Educational Resources Information Center
Kuper, Irvin, Ed.
Located in the heart of the Mid-Hudson area, Poughkeepsie is in one of the fastest growing regions of New York State, but the city itself has grown very little in the last five decades. The local Model Cities agency has created a target area which includes most of the older part of the city. In July 1967, the population was 35,970. A total of…
Computational nanomedicine: modeling of nanoparticle-mediated hyperthermal cancer therapy
Kaddi, Chanchala D; Phan, John H; Wang, May D
2016-01-01
Nanoparticle-mediated hyperthermia for cancer therapy is a growing area of cancer nanomedicine because of the potential for localized and targeted destruction of cancer cells. Localized hyperthermal effects are dependent on many factors, including nanoparticle size and shape, excitation wavelength and power, and tissue properties. Computational modeling is an important tool for investigating and optimizing these parameters. In this review, we focus on computational modeling of magnetic and gold nanoparticle-mediated hyperthermia, followed by a discussion of new opportunities and challenges. PMID:23914967
NASA Astrophysics Data System (ADS)
Choi, Yu-Jin; Hyde, Peter; Fernando, H. J. S.
High (episodic) particulate matter (PM) events over the sister cities of Douglas (AZ) and Agua Prieta (Sonora), located in the US-Mexico border, were simulated using the 3D Eulerian air quality model, MODELS-3/CMAQ. The best available input information was used for the simulations, with pollution inventory specified on a fine grid. In spite of inherent uncertainties associated with the emission inventory as well as the chemistry and meteorology of the air quality simulation tool, model evaluations showed acceptable PM predictions, while demonstrating the need for including the interaction between meteorology and emissions in an interactive mode in the model, a capability currently unavailable in MODELS-3/CMAQ when dealing with PM. Sensitivity studies on boundary influence indicate an insignificant regional (advection) contribution of PM to the study area. The contribution of secondary particles to the occurrence of high PM events was trivial. High PM episodes in the study area, therefore, are purely local events that largely depend on local meteorological conditions. The major PM emission sources were identified as vehicular activities on unpaved/paved roads and wind-blown dust. The results will be of immediate utility in devising PM mitigation strategies for the study area, which is one of the US EPA-designated non-attainment areas with respect to PM.
The importance of regional models in assessing canine cancer incidences in Switzerland
Leyk, Stefan; Brunsdon, Christopher; Graf, Ramona; Pospischil, Andreas; Fabrikant, Sara Irina
2018-01-01
Fitting canine cancer incidences through a conventional regression model assumes constant statistical relationships across the study area in estimating the model coefficients. However, it is often more realistic to consider that these relationships may vary over space. Such a condition, known as spatial non-stationarity, implies that the model coefficients need to be estimated locally. In these kinds of local models, the geographic scale, or spatial extent, employed for coefficient estimation may also have a pervasive influence. This is because important variations in the local model coefficients across geographic scales may impact the understanding of local relationships. In this study, we fitted canine cancer incidences across Swiss municipal units through multiple regional models. We computed diagnostic summaries across the different regional models, and contrasted them with the diagnostics of the conventional regression model, using value-by-alpha maps and scalograms. The results of this comparative assessment enabled us to identify variations in the goodness-of-fit and coefficient estimates. We detected spatially non-stationary relationships, in particular, for the variables related to biological risk factors. These variations in the model coefficients were more important at small geographic scales, making a case for the need to model canine cancer incidences locally in contrast to more conventional global approaches. However, we contend that prior to undertaking local modeling efforts, a deeper understanding of the effects of geographic scale is needed to better characterize and identify local model relationships. PMID:29652921
The importance of regional models in assessing canine cancer incidences in Switzerland.
Boo, Gianluca; Leyk, Stefan; Brunsdon, Christopher; Graf, Ramona; Pospischil, Andreas; Fabrikant, Sara Irina
2018-01-01
Fitting canine cancer incidences through a conventional regression model assumes constant statistical relationships across the study area in estimating the model coefficients. However, it is often more realistic to consider that these relationships may vary over space. Such a condition, known as spatial non-stationarity, implies that the model coefficients need to be estimated locally. In these kinds of local models, the geographic scale, or spatial extent, employed for coefficient estimation may also have a pervasive influence. This is because important variations in the local model coefficients across geographic scales may impact the understanding of local relationships. In this study, we fitted canine cancer incidences across Swiss municipal units through multiple regional models. We computed diagnostic summaries across the different regional models, and contrasted them with the diagnostics of the conventional regression model, using value-by-alpha maps and scalograms. The results of this comparative assessment enabled us to identify variations in the goodness-of-fit and coefficient estimates. We detected spatially non-stationary relationships, in particular, for the variables related to biological risk factors. These variations in the model coefficients were more important at small geographic scales, making a case for the need to model canine cancer incidences locally in contrast to more conventional global approaches. However, we contend that prior to undertaking local modeling efforts, a deeper understanding of the effects of geographic scale is needed to better characterize and identify local model relationships.
Emissions, dispersion and human exposure of mercury from a Swedish chlor-alkali plant
NASA Astrophysics Data System (ADS)
Wängberg, I.; Barregard, L.; Sällsten, G.; Haeger-Eugensson, M.; Munthe, J.; Sommar, J.
Mercury in air near a mercury cell chlor-alkali plant in Sweden has been measured within the EU-project EMECAP. Based on the measurements and modelling the annual distributions of GEM and RGM have been calculated for the local area around the plant. The average concentration of GEM in residential areas near the plant was found to be 1-3.5 ng m -3 higher in comparison to the background concentration in this part of Sweden. The emission of RGM (0.55 kg year -1) results in elevated RGM concentrations close to the plant. The greatest impact on the local area is due to wet deposition of RGM. However, only a small fraction (0.4%) of all mercury being emitted was found to be deposited in the local area. No impact on urinary mercury could be demonstrated in the population living close to the plant.
Modeling Trip Duration for Mobile Source Emissions Forecasting
DOT National Transportation Integrated Search
2000-08-01
The distribution of the duration of trips in a metropolitan area is an important input to estimating area-wide running loss emissions, operating mode fractions and vehicle miles of travel (VMT) accumulated on local roads in the region. In the current...
Montgomery, D.R.; Schmidt, K.M.; Dietrich, W.E.; McKean, J.
2009-01-01
The middle of a hillslope hollow in the Oregon Coast Range failed and mobilized as a debris flow during heavy rainfall in November 1996. Automated pressure transducers recorded high spatial variability of pore water pressure within the area that mobilized as a debris flow, which initiated where local upward flow from bedrock developed into overlying colluvium. Postfailure observations of the bedrock surface exposed in the debris flow scar reveal a strong spatial correspondence between elevated piezometric response and water discharging from bedrock fractures. Measurements of apparent root cohesion on the basal (Cb) and lateral (Cl) scarp demonstrate substantial local variability, with areally weighted values of Cb = 0.1 and Cl = 4.6 kPa. Using measured soil properties and basal root strength, the widely used infinite slope model, employed assuming slope parallel groundwater flow, provides a poor prediction of hydrologie conditions at failure. In contrast, a model including lateral root strength (but neglecting lateral frictional strength) gave a predicted critical value of relative soil saturation that fell within the range defined by the arithmetic and geometric mean values at the time of failure. The 3-D slope stability model CLARA-W, used with locally observed pore water pressure, predicted small areas with lower factors of safety within the overall slide mass at sites consistent with field observations of where the failure initiated. This highly variable and localized nature of small areas of high pore pressure that can trigger slope failure means, however, that substantial uncertainty appears inevitable for estimating hydrologie conditions within incipient debris flows under natural conditions. Copyright 2009 by the American Geophysical Union.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Xiaohui; Liu, Cheng; Kim, Hoe Kyoung
2011-01-01
The variation of household attributes such as income, travel distance, age, household member, and education for different residential areas may generate different market penetration rates for plug-in hybrid electric vehicle (PHEV). Residential areas with higher PHEV ownership could increase peak electric demand locally and require utilities to upgrade the electric distribution infrastructure even though the capacity of the regional power grid is under-utilized. Estimating the future PHEV ownership distribution at the residential household level can help us understand the impact of PHEV fleet on power line congestion, transformer overload and other unforeseen problems at the local residential distribution network level.more » It can also help utilities manage the timing of recharging demand to maximize load factors and utilization of existing distribution resources. This paper presents a multi agent-based simulation framework for 1) modeling spatial distribution of PHEV ownership at local residential household level, 2) discovering PHEV hot zones where PHEV ownership may quickly increase in the near future, and 3) estimating the impacts of the increasing PHEV ownership on the local electric distribution network with different charging strategies. In this paper, we use Knox County, TN as a case study to show the simulation results of the agent-based model (ABM) framework. However, the framework can be easily applied to other local areas in the US.« less
NASA Astrophysics Data System (ADS)
Muhammad, Tufail; Kim, Kwan Myung
2018-04-01
Human-induced threats serve as potential hazards to cultural heritage assets, especially in developing areas where the local community, in general, is a deprived class. Sustainable tourism development is acknowledged as an economic activity to ensure careful management of assets along with local community empowerment and participation. As such, ICT-enabled development is applied in rural development projects to promote sustainable rural livelihood, but success is still limited due to a lack of community involvement and sharing in the economic gains of tourism. With this perspective in mind, the present study focuses on emerging marketing models (e-commerce) that can provide new business ventures for local communities by identifying critical online marketing elements driven by local residents.
Mehl, S.; Hill, M.C.
2002-01-01
Models with local grid refinement, as often required in groundwater models, pose special problems for model calibration. This work investigates the calculation of sensitivities and the performance of regression methods using two existing and one new method of grid refinement. The existing local grid refinement methods considered are: (a) a variably spaced grid in which the grid spacing becomes smaller near the area of interest and larger where such detail is not needed, and (b) telescopic mesh refinement (TMR), which uses the hydraulic heads or fluxes of a regional model to provide the boundary conditions for a locally refined model. The new method has a feedback between the regional and local grids using shared nodes, and thereby, unlike the TMR methods, balances heads and fluxes at the interfacing boundary. Results for sensitivities are compared for the three methods and the effect of the accuracy of sensitivity calculations are evaluated by comparing inverse modelling results. For the cases tested, results indicate that the inaccuracies of the sensitivities calculated using the TMR approach can cause the inverse model to converge to an incorrect solution.
Mehl, S.; Hill, M.C.
2002-01-01
Models with local grid refinement, as often required in groundwater models, pose special problems for model calibration. This work investigates the calculation of sensitivities and performance of regression methods using two existing and one new method of grid refinement. The existing local grid refinement methods considered are (1) a variably spaced grid in which the grid spacing becomes smaller near the area of interest and larger where such detail is not needed and (2) telescopic mesh refinement (TMR), which uses the hydraulic heads or fluxes of a regional model to provide the boundary conditions for a locally refined model. The new method has a feedback between the regional and local grids using shared nodes, and thereby, unlike the TMR methods, balances heads and fluxes at the interfacing boundary. Results for sensitivities are compared for the three methods and the effect of the accuracy of sensitivity calculations are evaluated by comparing inverse modelling results. For the cases tested, results indicate that the inaccuracies of the sensitivities calculated using the TMR approach can cause the inverse model to converge to an incorrect solution.
Using spatial mark-recapture for conservation monitoring of grizzly bear populations in Alberta.
Boulanger, John; Nielsen, Scott E; Stenhouse, Gordon B
2018-03-26
One of the challenges in conservation is determining patterns and responses in population density and distribution as it relates to habitat and changes in anthropogenic activities. We applied spatially explicit capture recapture (SECR) methods, combined with density surface modelling from five grizzly bear (Ursus arctos) management areas (BMAs) in Alberta, Canada, to assess SECR methods and to explore factors influencing bear distribution. Here we used models of grizzly bear habitat and mortality risk to test local density associations using density surface modelling. Results demonstrated BMA-specific factors influenced density, as well as the effects of habitat and topography on detections and movements of bears. Estimates from SECR were similar to those from closed population models and telemetry data, but with similar or higher levels of precision. Habitat was most associated with areas of higher bear density in the north, whereas mortality risk was most associated (negatively) with density of bears in the south. Comparisons of the distribution of mortality risk and habitat revealed differences by BMA that in turn influenced local abundance of bears. Combining SECR methods with density surface modelling increases the resolution of mark-recapture methods by directly inferring the effect of spatial factors on regulating local densities of animals.
Economic analysis of a herpes zoster vaccination program in 19 affiliated supermarket pharmacies.
Hedden, Megan A; Kuehl, Peggy G; Liu, Yifei
2014-01-01
To examine the economic impact of providing herpes zoster vaccine (ZOS) in 19 affiliated supermarket pharmacies in a midwestern metropolitan area from the perspective of the pharmacy and to identify factors associated with greater rates of vaccine delivery and profitability. 19 affiliated supermarket pharmacies in the Kansas City metropolitan area. Immunizations with ZOS were expanded from 2 pharmacies to all 19 affiliated pharmacies. Various methods to promote the vaccine were used, including personal selling, store signage, and circular ads. In addition to a broad perspective pharmacoeconomic model, a localized perspective model is proposed to determine profitability for the service. Factors associated with greater success in vaccine delivery and profitability were identified. Net financial gains or losses were calculated for each vaccine administered for each of the 19 pharmacies and for the entire supermarket chain. 662 vaccines were given during the study period, accounting for 6.7% of all eligible patients. The profit per vaccine averaged $9.60 (5.7%) and $28.37 (18.9%) using the broad and localized perspective models, respectively. Success of the ZOS program was demonstrated using both models. Certain factors correlated with greater profits when using the localized perspective model.
Ensemble simulations to study the impact of land use change of Atlanta to regional climate
NASA Astrophysics Data System (ADS)
Liu, P.; Hu, Y.; Stone, B.; Vargo, J.; Nenes, A.; Russell, A.; Trail, M.; Tsimpidi, A.
2012-12-01
Studies show that urban areas may be the "first responders" to climate change (Rosenzweig et al., 2010). Of particular interest is the potential increased temperatures in urban areas, due to use of structures and surfaces that increase local heating, and how that may impact health, air quality and other environmental factors. In response, interest has grown as to how the modification of land use in urban areas, in order to mitigate the adverse effects of urbanization can serve to reduce local temperatures, and how climate is impacted more regionally. Studies have been conducted to investigate the impact of land use change on local or regional climate by dynamic downscaling using regional climate models (RCMs), the boundary conditions (BCs) and initial conditions (ICs) of which result from coarser-resolution reanalysis data or general circulation models (GCMs). However, few studies have focused on demonstrating whether the land use change in local areas significantly impacts the climate of the larger region of the domain, and the spatial scale of the impact from urban-scale changes. This work investigated the significance of the impact of land use change in the Atlanta city area on different scales, using a range of modeling resolutions, including the contiguous US (with 36km resolution), the southeastern US (with 12km resolution) and the state of Georgia (with 4km resolution). We used WRF version 3.1.1 with and ran continuous from June to August of a simulated year 2050, driven by GISS ModelE with inputs corresponding to RCP4.5. During the simulation, spectral nudging is used in the 36km resolution domain to maintain the climate patterns with scales larger than 2000km. Two-way nesting is also used in order to take into account the feedback of nesting domains across model domains. Two land use cases over the Atlanta city are chosen. For the base case, most of the urban area of Atlanta is covered with forest; while for the second, "impervious" case, all the urban area within 30 miles of the center of Atlanta is replaced with asphalt. This choice is made to maximize the potential effects and scales of impact. To make the two cases different as much as possible, a constant green vegetation fraction of 1.0 is assigned to the forest over the Atlanta; while 0.0 is assigned to the asphalt. To test the significance of the impact of land use change, 5 ensemble members were generated for each land use case using different initial conditions. The results of student's t test found that the impact of land use change in Atlanta city has a very local impact. This finding indicates that using WRF, applied at continental and regional scales, with BCs from the GCM and with spectral nudging, is appropriate. Although our results showed the impact is very local, results may change when meteorological conditions change or the area where land use changes is increased. Therefore, when investigating the land use change relevant issues, similar testing is suggested in order to demonstrate that the domain is large enough so that downscaling by RCMs is an appropriate approach. References: Rosenzweig, C., W. Solecki, S.A. Hammer, and S. Mehrotra, 2010: Cities lead the way in climate-change action. Nature, 467, 909-911, doi:10.1038/467909a
Simón, Luis; Afonin, Alexandr; López-Díez, Lucía Isabel; González-Miguel, Javier; Morchón, Rodrigo; Carretón, Elena; Montoya-Alonso, José Alberto; Kartashev, Vladimir; Simón, Fernando
2014-03-01
Zoonotic filarioses caused by Dirofilaria immitis and Dirofilaria repens are transmitted by culicid mosquitoes. Therefore Dirofilaria transmission depends on climatic factors like temperature and humidity. In spite of the dry climate of most of the Spanish territory, there are extensive irrigated crops areas providing moist habitats favourable for mosquito breeding. A GIS model to predict the risk of Dirofilaria transmission in Spain, based on temperatures and rainfall data as well as in the distribution of irrigated crops areas, is constructed. The model predicts that potential risk of Dirofilaria transmission exists in all the Spanish territory. Highest transmission risk exists in several areas of Andalucía, Extremadura, Castilla-La Mancha, Murcia, Valencia, Aragón and Cataluña, where moderate/high temperatures coincide with extensive irrigated crops. High risk in Balearic Islands and in some points of Canary Islands, is also predicted. The lowest risk is predicted in Northern cold and scarcely or non-irrigated dry Southeastern areas. The existence of irrigations locally increases transmission risk in low rainfall areas of the Spanish territory. The model can contribute to implement rational preventive therapy guidelines in accordance with the transmission characteristics of each local area. Moreover, the use of humidity-related factors could be of interest in future predictions to be performed in countries with similar environmental characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.
Counselling for HIV infection and AIDS: the past and the future.
Green, J
1989-01-01
The history of counselling in HIV infection and AIDS is reviewed and the stages in the development of the area are set out. The way in which the area has developed in the West is related to local circumstances and the need for the development of models suited to local circumstances elsewhere in the world is stressed. There are many areas of of HIV/AIDS counselling where considerable uncertainty about the right approach remains, for instance with injecting drug users and with HIV-infected pregnant women. There is a great and largely unmet need for further research in the area and some of the questions which need to be addressed are set out.
Stanley, W.D.; Benz, H.M.; Walters, M.A.; Villasenor, A.; Rodriguez, B.D.
1998-01-01
In order to study magmatism and geothermal systems in The Geysers-Clear Lake region, we developed a detailed three-dimensional tomographic velocity model based on local earthquakes. This high-resolution model resolves the velocity structure of the crust in the region to depths of approximately 12 km. The most significant velocity contrasts in The Geysers-Clear Lake region occur in the steam production area, where high velocities are associated with a Quaternary granitic pluton, and in the Mount Hannah region, where low velocities occur in a 5-km-thick section of Mesozoic argillites. In addition, a more regional tomographic model was developed using traveltimes from earthquakes covering most of northern California. This regional model sampled the whole crust, but at a lower resolution than the local model. The regional model outlines low velocities at depths of 8-12 km in The Geysers-Clear Lake area, which extend eastward to the Coast Range thrust. These low velocities are inferred to be related to unmetamorphosed Mesozoic sedimentary rocks. In addition, the regional velocity model indicates high velocities in the lower crust beneath the Clear Lake volcanic field, which we interpret to be associated with mafic underplating. No large silicic magma chamber is noted in either the local or regional tomographic models. A three-dimensional gravity model also has been developed in the area of the tomographic imaging. Our gravity model demonstrates that all density contrasts can be accounted for in the upper 5-7 km of the crust. Two-dimensional magnetotelluric models of data from a regional, east-west profile indicate high resistivities associated with the granitic pluton in The Geysers production area and low resistivities in the low-velocity section of Mesozoic argillites near Mount Hannah. No indication of midcrustal magma bodies is present in the magnetotelluric data. On the basis of heat flow and geologic evidence, Holocene intrusive activity is thought to have occurred near the Northwest Geysers, Mount Hannah, Sulphur Bank Mine, and perhaps other areas. The geophysical data provide no conclusive evidence for such activity, but the detailed velocity model is suggestive of intrusive activity near Mount Hannah similar to that in the 'felsite' of The Geysers production area. The geophysical models, seismicity patterns, distribution of volcanic vents, heat flow, and other data indicate that small, young intrusive bodies that were injected along a northeast trend from The Geysers to Clear Lake probably control the thermal regime.
NASA Astrophysics Data System (ADS)
Chen, Y.; Zhang, Y.; Gao, J.; Yuan, Y.; Lv, Z.
2018-04-01
Recently, built-up area detection from high-resolution satellite images (HRSI) has attracted increasing attention because HRSI can provide more detailed object information. In this paper, multi-resolution wavelet transform and local spatial autocorrelation statistic are introduced to model the spatial patterns of built-up areas. First, the input image is decomposed into high- and low-frequency subbands by wavelet transform at three levels. Then the high-frequency detail information in three directions (horizontal, vertical and diagonal) are extracted followed by a maximization operation to integrate the information in all directions. Afterward, a cross-scale operation is implemented to fuse different levels of information. Finally, local spatial autocorrelation statistic is introduced to enhance the saliency of built-up features and an adaptive threshold algorithm is used to achieve the detection of built-up areas. Experiments are conducted on ZY-3 and Quickbird panchromatic satellite images, and the results show that the proposed method is very effective for built-up area detection.
Implementing new models of care: Lessons from the new care models programme in England.
Starling, Anna
2018-06-01
In 2014, the body that leads the National Health Service in England published a new strategic vision for the National Health Service. A major part of this strategy was a three-year-long national programme to develop new care models to coordinate care across primary care, community services and hospitals that could be replicated across the country. Local 'vanguard sites' were selected to develop five types of new care model with support from a national team. The new care models programme provided support for local leaders to enable them to collaborate to improve care for their local populations. We interviewed leaders in the vanguard sites to better understand how they made changes to care locally. Drawing on the insights from these interviews and the literature on cross-organisational change and improvement we devised a framework of 10 lessons for health and care leaders seeking to develop and implement new models of care. The framework emphasises the importance of developing relationships and building capability locally to enable areas to continuously develop and test new ideas.
NASA Astrophysics Data System (ADS)
Wylie, Scott; Watson, Simon
2013-04-01
Any past, current or projected future wind farm developments are highly dependent on localised climatic conditions. For example the mean wind speed, one of the main factors in assessing the economic feasibility of a wind farm, can vary significantly over length scales no greater than the size of a typical wind farm. Any additional heterogeneity at a potential site, such as forestry, can affect the wind resource further not accounting for the additional difficulty of installation. If a wind farm is sited in an environmentally sensitive area then the ability to predict the wind farm performance and possible impacts on the important localised climatic conditions are of increased importance. Siting of wind farms in environmentally sensitive areas is not uncommon, such as areas of peat-land as in this example. Areas of peat-land are important sinks for carbon in the atmosphere but their ability to sequester carbon is highly dependent on the local climatic conditions. An operational wind farm's impact on such an area was investigated using CFD. Validation of the model outputs were carried out using field measurements from three automatic weather stations (AWS) located throughout the site. The study focuses on validation of both wind speed and turbulence measurement, whilst also assessing the models ability to predict wind farm performance. The use of CFD to model the variation in wind speed over heterogeneous terrain, including wind turbines effects, is increasing in popularity. Encouraging results have increased confidence in the ability of CFD performance in complex terrain with features such as steep slopes and forests, which are not well modelled by the widely used linear models such as WAsP and MS-Micro. Using concurrent measurements from three stationary AWS across the wind farm will allow detailed validation of the model predicted flow characteristics, whilst aggregated power output information will allow an assessment of how accurate the model setup can predict wind farm performance. Given the dependence of the local climatic conditions influence on the peat-land's ability to sequester carbon, accurate predictions of the local wind and turbulence features will allow us to quantify any possible wind farm influences. This work was carried out using the commercially available Reynolds Averaged Navier-Stokes (RANS) CFD package ANSYS CFX. Utilising the Windmodeller add-on in CFX, a series of simulations were carried out to assess wind flow interactions through and around the wind farm, incorporating features such as terrain, forestry and rotor wake interactions. Particular attention was paid to forestry effects, as the AWS are located close to the vicinity of forestry. Different Leaf Area Densities (LAD) were tested to assess how sensitive the models output was to this change.
Bourne, Amanda; Holness, Stephen; Holden, Petra; Scorgie, Sarshen; Donatti, Camila I.; Midgley, Guy
2016-01-01
Climate change adds an additional layer of complexity to existing sustainable development and biodiversity conservation challenges. The impacts of global climate change are felt locally, and thus local governance structures will increasingly be responsible for preparedness and local responses. Ecosystem-based adaptation (EbA) options are gaining prominence as relevant climate change solutions. Local government officials seldom have an appropriate understanding of the role of ecosystem functioning in sustainable development goals, or access to relevant climate information. Thus the use of ecosystems in helping people adapt to climate change is limited partially by the lack of information on where ecosystems have the highest potential to do so. To begin overcoming this barrier, Conservation South Africa in partnership with local government developed a socio-ecological approach for identifying spatial EbA priorities at the sub-national level. Using GIS-based multi-criteria analysis and vegetation distribution models, the authors have spatially integrated relevant ecological and social information at a scale appropriate to inform local level political, administrative, and operational decision makers. This is the first systematic approach of which we are aware that highlights spatial priority areas for EbA implementation. Nodes of socio-ecological vulnerability are identified, and the inclusion of areas that provide ecosystem services and ecological resilience to future climate change is innovative. The purpose of this paper is to present and demonstrate a methodology for combining complex information into user-friendly spatial products for local level decision making on EbA. The authors focus on illustrating the kinds of products that can be generated from combining information in the suggested ways, and do not discuss the nuance of climate models nor present specific technical details of the model outputs here. Two representative case studies from rural South Africa demonstrate the replicability of this approach in rural and peri-urban areas of other developing and least developed countries around the world. PMID:27227671
Bourne, Amanda; Holness, Stephen; Holden, Petra; Scorgie, Sarshen; Donatti, Camila I; Midgley, Guy
2016-01-01
Climate change adds an additional layer of complexity to existing sustainable development and biodiversity conservation challenges. The impacts of global climate change are felt locally, and thus local governance structures will increasingly be responsible for preparedness and local responses. Ecosystem-based adaptation (EbA) options are gaining prominence as relevant climate change solutions. Local government officials seldom have an appropriate understanding of the role of ecosystem functioning in sustainable development goals, or access to relevant climate information. Thus the use of ecosystems in helping people adapt to climate change is limited partially by the lack of information on where ecosystems have the highest potential to do so. To begin overcoming this barrier, Conservation South Africa in partnership with local government developed a socio-ecological approach for identifying spatial EbA priorities at the sub-national level. Using GIS-based multi-criteria analysis and vegetation distribution models, the authors have spatially integrated relevant ecological and social information at a scale appropriate to inform local level political, administrative, and operational decision makers. This is the first systematic approach of which we are aware that highlights spatial priority areas for EbA implementation. Nodes of socio-ecological vulnerability are identified, and the inclusion of areas that provide ecosystem services and ecological resilience to future climate change is innovative. The purpose of this paper is to present and demonstrate a methodology for combining complex information into user-friendly spatial products for local level decision making on EbA. The authors focus on illustrating the kinds of products that can be generated from combining information in the suggested ways, and do not discuss the nuance of climate models nor present specific technical details of the model outputs here. Two representative case studies from rural South Africa demonstrate the replicability of this approach in rural and peri-urban areas of other developing and least developed countries around the world.
Năpăruş, Magdalena; Kuntner, Matjaž
2012-01-01
Although numerous studies model species distributions, these models are almost exclusively on single species, while studies of evolutionary lineages are preferred as they by definition study closely related species with shared history and ecology. Hermit spiders, genus Nephilengys, represent an ecologically important but relatively species-poor lineage with a globally allopatric distribution. Here, we model Nephilengys global habitat suitability based on known localities and four ecological parameters. We geo-referenced 751 localities for the four most studied Nephilengys species: N. cruentata (Africa, New World), N. livida (Madagascar), N. malabarensis (S-SE Asia), and N. papuana (Australasia). For each locality we overlaid four ecological parameters: elevation, annual mean temperature, annual mean precipitation, and land cover. We used linear backward regression within ArcGIS to select two best fit parameters per species model, and ModelBuilder to map areas of high, moderate and low habitat suitability for each species within its directional distribution. For Nephilengys cruentata suitable habitats are mid elevation tropics within Africa (natural range), a large part of Brazil and the Guianas (area of synanthropic spread), and even North Africa, Mediterranean, and Arabia. Nephilengys livida is confined to its known range with suitable habitats being mid-elevation natural and cultivated lands. Nephilengys malabarensis, however, ranges across the Equator throughout Asia where the model predicts many areas of high ecological suitability in the wet tropics. Its directional distribution suggests the species may potentially spread eastwards to New Guinea where the suitable areas of N. malabarensis largely surpass those of the native N. papuana, a species that prefers dry forests of Australian (sub)tropics. Our model is a customizable GIS tool intended to predict current and future potential distributions of globally distributed terrestrial lineages. Its predictive potential may be tested in foreseeing species distribution shifts due to habitat destruction and global climate change.
Năpăruş, Magdalena; Kuntner, Matjaž
2012-01-01
Background Although numerous studies model species distributions, these models are almost exclusively on single species, while studies of evolutionary lineages are preferred as they by definition study closely related species with shared history and ecology. Hermit spiders, genus Nephilengys, represent an ecologically important but relatively species-poor lineage with a globally allopatric distribution. Here, we model Nephilengys global habitat suitability based on known localities and four ecological parameters. Methodology/Principal Findings We geo-referenced 751 localities for the four most studied Nephilengys species: N. cruentata (Africa, New World), N. livida (Madagascar), N. malabarensis (S-SE Asia), and N. papuana (Australasia). For each locality we overlaid four ecological parameters: elevation, annual mean temperature, annual mean precipitation, and land cover. We used linear backward regression within ArcGIS to select two best fit parameters per species model, and ModelBuilder to map areas of high, moderate and low habitat suitability for each species within its directional distribution. For Nephilengys cruentata suitable habitats are mid elevation tropics within Africa (natural range), a large part of Brazil and the Guianas (area of synanthropic spread), and even North Africa, Mediterranean, and Arabia. Nephilengys livida is confined to its known range with suitable habitats being mid-elevation natural and cultivated lands. Nephilengys malabarensis, however, ranges across the Equator throughout Asia where the model predicts many areas of high ecological suitability in the wet tropics. Its directional distribution suggests the species may potentially spread eastwards to New Guinea where the suitable areas of N. malabarensis largely surpass those of the native N. papuana, a species that prefers dry forests of Australian (sub)tropics. Conclusions Our model is a customizable GIS tool intended to predict current and future potential distributions of globally distributed terrestrial lineages. Its predictive potential may be tested in foreseeing species distribution shifts due to habitat destruction and global climate change. PMID:22238692
Juckem, Paul F.; Hunt, Randall J.
2007-01-01
A two-dimensional, steady-state ground-water-flow model of Grindstone Creek, the New Post community, and the surrounding areas was developed using the analytic element computer code GFLOW. The parameter estimation code UCODE was used to obtain a best fit of the model to measured water levels and streamflows. The calibrated model was then used to simulate the effect of ground-water pumping on base flow in Grindstone Creek. Local refinements to the regional model were subsequently added in the New Post area, and local water-level data were used to evaluate the regional model calibration. The locally refined New Post model was also used to simulate the areal extent of capture for two existing water-supply wells and two possible replacement wells. Calibration of the regional Grindstone Creek simulation resulted in horizontal hydraulic conductivity values of 58.2 feet per day (ft/d) for the regional glacial and sandstone aquifer and 7.9 ft/d for glacial thrust-mass areas. Ground-water recharge in the calibrated regional model was 10.1 inches per year. Simulation of a golf-course irrigation well, located roughly 4,000 feet away from the creek, and pumping at 46 gallons per minute (0.10 cubic feet per second, ft3/s), reduced base flow in Grindstone Creek by 0.05 ft3/s, or 0.6 percent of the median base flow during water year 2003, compared to the calibrated model simulation without pumping. A simulation of peak pumping periods (347 gallons per minute or 0.77 ft3/s) reduced base flow in Grindstone Creek by 0.4 ft3/s (4.9 percent of the median base flow). Capture zones for existing and possible replacement wells delineated by the local New Post simulation extend from the well locations to an area south of the pumping well locations. Shallow crystalline bedrock, generally located south of the community, limits the extent of the aquifer and thus the southerly extent of the capture zones. Simulated steady-state pumping at a rate of 9,600 gallons per day (gal/d) from a possible replacement well near the Chippewa Flowage induced 70 gal/d of water from the flowage to enter the aquifer. Although no water-quality samples were collected from the Chippewa Flowage or the ground-water system, surface-water leakage into the ground-water system could potentially change the local water quality in the aquifer.
Meyerson, Beth E; Sayegh, M Aaron
2016-01-01
To explore relationships between local health department policy behaviors, levels of government activity, policy focus areas, and selected health department characteristics. Cross-sectional analysis of secondary data from the 2013 National Association of County & City Health Officials (NACCHO) Profile Survey. Local health departments throughout the United States. A total of 2000 local health departments responding to the 2013 Profile Survey of Local Health Departments. Survey data were gathered by the NACCHO. Secondary analysis of reported policy behaviors for the 2013 NACCHO Profile Survey. A structural equation model tested effects on and between state population size, rurality, census region and policy focus, and the latent variables of policy behavior formed from a confirmatory factor analysis. Policy behaviors, levels of government activity (local, state, and federal), policy focus areas, and selected local health department characteristics. The majority (85.1%) of health departments reported at least one of the possible policy behaviors. State population size increased the probability of local policy behavior, and local behavior increased the probability of state policy behavior. State size increased the likelihood of federal policy behavior and the focus on tobacco, emergency preparedness, and obesity/chronic disease. However, the more rural a state was, the more likely policy behavior was at the state and federal levels and not at local levels. Specific policy behaviors mattered less than the level of government activity. Size of state and rurality of health departments influence the government level of policy behavior.
Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050
McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.; ...
2015-02-03
Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection modelmore » departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.« less
Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.
Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection modelmore » departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.« less
Harms and benefits from social imitation
NASA Astrophysics Data System (ADS)
Slanina, František
2001-10-01
We study the role of imitation within a model of economics with adaptive agents. The basic ingredients are those of the minority game. We add the possibility of local information exchange and imitation of the neighbour's strategy. Imitators should pay a fee to the imitated. Connected groups are formed, which act as if they were single players. Coherent spatial areas of rich and poor agents result, leading to the decrease of local social tensions. Size and stability of these areas depends on the parameters of the model. Global performance measured by the attendance volatility is optimised at certain value of the imitation probability. The social tensions are suppressed for large imitation probability, but due to the price paid by the imitators the requirements of high global effectivity and low social tensions are in conflict, as well as the requirements of low global and low local wealth differences.
Sources of Intermodel Spread in the Lapse Rate and Water Vapor Feedbacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Po-Chedley, Stephen; Armour, Kyle C.; Bitz, Cecilia M.
Sources of intermodel differences in the global lapse rate (LR) and water vapor (WV) feedbacks are assessed using CO 2 forcing simulations from 28 general circulation models. Tropical surface warming leads to significant warming and moistening in the tropical and extratropical upper troposphere, signifying a nonlocal, tropical influence on extratropical radiation and feedbacks. Model spread in the locally defined LR and WV feedbacks is pronounced in the Southern Ocean because of large-scale ocean upwelling, which reduces surface warming and decouples the surface from the tropospheric response. The magnitude of local extratropical feedbacks across models and over time is well characterizedmore » using the ratio of tropical to extratropical surface warming. It is shown that model differences in locally defined LR and WV feedbacks, particularly over the southern extratropics, drive model variability in the global feedbacks. The cross-model correlation between the global LR and WV feedbacks therefore does not arise from their covariation in the tropics, but rather from the pattern of warming exerting a common control on extratropical feedback responses. Because local feedbacks over the Southern Hemisphere are an important contributor to the global feedback, the partitioning of surface warming between the tropics and the southern extratropics is a key determinant of the spread in the global LR and WV feedbacks. It is also shown that model Antarctic sea ice climatology influences sea ice area changes and southern extratropical surface warming. In conclusion, as a result, model discrepancies in climatological Antarctic sea ice area have a significant impact on the intermodel spread of the global LR and WV feedbacks.« less
Sources of Intermodel Spread in the Lapse Rate and Water Vapor Feedbacks
Po-Chedley, Stephen; Armour, Kyle C.; Bitz, Cecilia M.; ...
2018-03-23
Sources of intermodel differences in the global lapse rate (LR) and water vapor (WV) feedbacks are assessed using CO 2 forcing simulations from 28 general circulation models. Tropical surface warming leads to significant warming and moistening in the tropical and extratropical upper troposphere, signifying a nonlocal, tropical influence on extratropical radiation and feedbacks. Model spread in the locally defined LR and WV feedbacks is pronounced in the Southern Ocean because of large-scale ocean upwelling, which reduces surface warming and decouples the surface from the tropospheric response. The magnitude of local extratropical feedbacks across models and over time is well characterizedmore » using the ratio of tropical to extratropical surface warming. It is shown that model differences in locally defined LR and WV feedbacks, particularly over the southern extratropics, drive model variability in the global feedbacks. The cross-model correlation between the global LR and WV feedbacks therefore does not arise from their covariation in the tropics, but rather from the pattern of warming exerting a common control on extratropical feedback responses. Because local feedbacks over the Southern Hemisphere are an important contributor to the global feedback, the partitioning of surface warming between the tropics and the southern extratropics is a key determinant of the spread in the global LR and WV feedbacks. It is also shown that model Antarctic sea ice climatology influences sea ice area changes and southern extratropical surface warming. In conclusion, as a result, model discrepancies in climatological Antarctic sea ice area have a significant impact on the intermodel spread of the global LR and WV feedbacks.« less
47 CFR 54.803 - Universal service zones.
Code of Federal Regulations, 2013 CFR
2013-10-01
... developing this transitional estimate, the loop and port costs estimated by the FCC cost model, or other... chapter. (b) In a price cap study area where the price cap local exchange carrier has not established state-approved prices for UNE loops by zone, the Administrator shall develop an estimate of the local...
47 CFR 54.803 - Universal service zones.
Code of Federal Regulations, 2011 CFR
2011-10-01
... developing this transitional estimate, the loop and port costs estimated by the FCC cost model, or other... chapter. (b) In a price cap study area where the price cap local exchange carrier has not established state-approved prices for UNE loops by zone, the Administrator shall develop an estimate of the local...
47 CFR 54.803 - Universal service zones.
Code of Federal Regulations, 2014 CFR
2014-10-01
... developing this transitional estimate, the loop and port costs estimated by the FCC cost model, or other... chapter. (b) In a price cap study area where the price cap local exchange carrier has not established state-approved prices for UNE loops by zone, the Administrator shall develop an estimate of the local...
47 CFR 54.803 - Universal service zones.
Code of Federal Regulations, 2012 CFR
2012-10-01
... developing this transitional estimate, the loop and port costs estimated by the FCC cost model, or other... chapter. (b) In a price cap study area where the price cap local exchange carrier has not established state-approved prices for UNE loops by zone, the Administrator shall develop an estimate of the local...
47 CFR 54.803 - Universal service zones.
Code of Federal Regulations, 2010 CFR
2010-10-01
... developing this transitional estimate, the loop and port costs estimated by the FCC cost model, or other... chapter. (b) In a price cap study area where the price cap local exchange carrier has not established state-approved prices for UNE loops by zone, the Administrator shall develop an estimate of the local...
Modelling of physical influences in sea level records for vertical crustal movement detection
NASA Technical Reports Server (NTRS)
Anderson, E. G.
1978-01-01
Attempts to specify and evaluate such physical influences are reviewed with the intention of identifying problem areas and promising approaches. An example of linear modelling based on air/water temperatures, atmospheric pressure, river discharges, geostrophic and/or local wind velocities, and including forced period terms to allow for the long period tides and Chandlerian polar motion is evaluated and applied to monthly mean sea levels recorded in Atlantic Canada. Refinement of the model to admit phase lag in the response to some of the driving phenomena is demonstrated. Spectral analysis of the residuals is employed to assess the model performance. The results and associated statistical parameters are discussed with emphasis on elucidating the sensitivity of the technique for detection of local episodic and secular vertical crustal movements, the problem areas most critical to the type of approach, and possible further developments.
Probability model for atmospheric sulfur dioxide concentrations in the area of Venice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buttazzoni, C.; Lavagnini, I.; Marani, A.
1986-09-01
This paper deals with a comparative screening of existing air quality models based on their ability to simulate the distribution of sulfur dioxide data in the Venetian area. Investigations have been carried out on sulfur dioxide dispersion in the atmosphere of the Venetian area. The studies have been mainly focused on transport models (Gaussian, plume and K-models) aiming at meaningful correlations of sources and receptors. Among the results, a noteworthy disagreement of simulated and experimental data, due to the lack of thorough knowledge of source field conditions and of local meteorology of the sea-land transition area, has been shown. Investigationsmore » with receptor oriented models (based, e.g., on time series analysis, Fourier analysis, or statistical distributions) have also been performed.« less
Feuillet, Thierry; Charreire, Hélène; Menai, Mehdi; Salze, Paul; Simon, Chantal; Dugas, Julien; Hercberg, Serge; Andreeva, Valentina A; Enaux, Christophe; Weber, Christiane; Oppert, Jean-Michel
2015-03-25
According to the social ecological model of health-related behaviors, it is now well accepted that environmental factors influence habitual physical activity. Most previous studies on physical activity determinants have assumed spatial homogeneity across the study area, i.e. that the association between the environment and physical activity is the same whatever the location. The main novelty of our study was to explore geographical variation in the relationships between active commuting (walking and cycling to/from work) and residential environmental characteristics. 4,164 adults from the ongoing Nutrinet-Santé web-cohort, residing in and around Paris, France, were studied using a geographically weighted Poisson regression (GWPR) model. Objective environmental variables, including both the built and the socio-economic characteristics around the place of residence of individuals, were assessed by GIS-based measures. Perceived environmental factors (index including safety, aesthetics, and pollution) were reported by questionnaires. Our results show that the influence of the overall neighborhood environment appeared to be more pronounced in the suburban southern part of the study area (Val-de-Marne) compared to Paris inner city, whereas more complex patterns were found elsewhere. Active commuting was positively associated with the built environment only in the southern and northeastern parts of the study area, whereas positive associations with the socio-economic environment were found only in some specific locations in the southern and northern parts of the study area. Similar local variations were observed for the perceived environmental variables. These results suggest that: (i) when applied to active commuting, the social ecological conceptual framework should be locally nuanced, and (ii) local rather than global targeting of public health policies might be more efficient in promoting active commuting.
A high-resolution computational localization method for transcranial magnetic stimulation mapping.
Aonuma, Shinta; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa; Takakura, Tomokazu; Tamura, Manabu; Muragaki, Yoshihiro
2018-05-15
Transcranial magnetic stimulation (TMS) is used for the mapping of brain motor functions. The complexity of the brain deters determining the exact localization of the stimulation site using simplified methods (e.g., the region below the center of the TMS coil) or conventional computational approaches. This study aimed to present a high-precision localization method for a specific motor area by synthesizing computed non-uniform current distributions in the brain for multiple sessions of TMS. Peritumoral mapping by TMS was conducted on patients who had intra-axial brain neoplasms located within or close to the motor speech area. The electric field induced by TMS was computed using realistic head models constructed from magnetic resonance images of patients. A post-processing method was implemented to determine a TMS hotspot by combining the computed electric fields for the coil orientations and positions that delivered high motor-evoked potentials during peritumoral mapping. The method was compared to the stimulation site localized via intraoperative direct brain stimulation and navigated TMS. Four main results were obtained: 1) the dependence of the computed hotspot area on the number of peritumoral measurements was evaluated; 2) the estimated localization of the hand motor area in eight non-affected hemispheres was in good agreement with the position of a so-called "hand-knob"; 3) the estimated hotspot areas were not sensitive to variations in tissue conductivity; and 4) the hand motor areas estimated by this proposal and direct electric stimulation (DES) were in good agreement in the ipsilateral hemisphere of four glioma patients. The TMS localization method was validated by well-known positions of the "hand-knob" in brains for the non-affected hemisphere, and by a hotspot localized via DES during awake craniotomy for the tumor-containing hemisphere. Copyright © 2018 Elsevier Inc. All rights reserved.
Benthic processes and coastal aquaculture: merging models and field data at a local scale
NASA Astrophysics Data System (ADS)
Brigolin, Daniele; Rabouille, Christophe; Bombled, Bruno; Colla, Silvia; Pastres, Roberto; Pranovi, Fabio
2016-04-01
Shellfish farming is regarded as an organic extractive aquaculture activity. However, the production of faeces and pseudofaeces, in fact, leads to a net transfer of organic matter from the water column to the surface sediment. This process, which is expected to locally affect the sediment biogeochemistry, may also cause relevant changes in coastal areas characterized by a high density of farms. In this paper, we present the result of a study recently carried out in the Gulf of Venice (northern Adriatic sea), combining mathematical modelling and field sampling efforts. The work aimed at using a longline mussel farm as an in-situ test-case for modelling the differences in soft sediments biogeochemical processes along a gradient of organic deposition. We used an existing integrated model, allowing to describe biogeochemical fluxes towards the mussel farm and to predict the extent of the deposition area underneath it. The model framework includes an individual-based population dynamic model of the Mediterranean mussel coupled with a Lagrangian deposition model and a 1D benthic model of early diagenesis. The work was articulated in 3 steps: 1) the integrated model allowed to simulate the downward fluxes of organic matter originated by the farm, and the extent of its deposition area; 2) based on the first model application, two stations were localized, at which sediment cores were collected during a field campaign, carried out in June 2015. Measurements included O2 and pH microprofiling, porosity and micro-porosity, Total Organic Carbon, and pore waters NH4, PO4, SO4, Alkalinity, and Dissolved Inorganic Carbon; 3) two distinct early diagenesis models were set-up, reproducing observed field data in the sampled cores. Observed oxygen microprofiles showed a different behavior underneath the farm with respect to the outside reference station. In particular, a remarkable decrease in the oxygen penetration depth, and an increase in the O2 influx calculated from the concentration gradients were observed. The integrated model described above allowed to extend the simulation over the entire farmed area, and to explore the response of the prediction to changes in water temperature.
Transport pathway and source area for Artemisia pollen in Beijing, China
NASA Astrophysics Data System (ADS)
Qin, Xiaoxin; Li, Yiyin; Sun, Xu; Meng, Ling; Wang, Xiaoke
2017-12-01
Artemisia pollen is an important allergen responsible for allergic rhinitis in Beijing, China. To explore the transport pathways and source areas of Artemisia pollen, we used Burkard 7-day traps to monitor daily pollen concentrations in 2016 in an urban and suburban locality. Backward trajectories of 24- and 96-h and their cluster analysis were performed to identify transport pathways of Artemisia pollen using the HYSPLIT model on 0.5° × 0.5° GADS meteorological data. The potential source contribution function (PSCF) and concentration weighted trajectory (CWT) were calculated to further identify the major potential source areas at local, regional, and long-range scales. Our results showed significant differences in Artemisia pollen concentration between urban and suburban areas, attributed to differences in plant distribution and altitude of the sampling locality. Such differences arisen from both pollen emission and air mass movements, hence pollen dispersal. At local or regional scales, source area of northwestern parts of Beijing City, Hebei Province and northern and northwestern parts of Inner Mongolia influenced the major transport pathways of Artemisia pollen. Transport pathway at a long-range scale and its corresponding source area extended to northwestern parts of Mongolia. The regional-scale transport affected by wind and altitude is more profound for Artemisia pollen at the suburban than at the urban station.
NASA Astrophysics Data System (ADS)
Psikuta, Agnes; Mert, Emel; Annaheim, Simon; Rossi, René M.
2018-02-01
To evaluate the quality of new energy-saving and performance-supporting building and urban settings, the thermal sensation and comfort models are often used. The accuracy of these models is related to accurate prediction of the human thermo-physiological response that, in turn, is highly sensitive to the local effect of clothing. This study aimed at the development of an empirical regression model of the air gap thickness and the contact area in clothing to accurately simulate human thermal and perceptual response. The statistical model predicted reliably both parameters for 14 body regions based on the clothing ease allowances. The effect of the standard error in air gap prediction on the thermo-physiological response was lower than the differences between healthy humans. It was demonstrated that currently used assumptions and methods for determination of the air gap thickness can produce a substantial error for all global, mean, and local physiological parameters, and hence, lead to false estimation of the resultant physiological state of the human body, thermal sensation, and comfort. Thus, this model may help researchers to strive for improvement of human thermal comfort, health, productivity, safety, and overall sense of well-being with simultaneous reduction of energy consumption and costs in built environment.
An analytical optimization model for infrared image enhancement via local context
NASA Astrophysics Data System (ADS)
Xu, Yongjian; Liang, Kun; Xiong, Yiru; Wang, Hui
2017-12-01
The requirement for high-quality infrared images is constantly increasing in both military and civilian areas, and it is always associated with little distortion and appropriate contrast, while infrared images commonly have some shortcomings such as low contrast. In this paper, we propose a novel infrared image histogram enhancement algorithm based on local context. By constraining the enhanced image to have high local contrast, a regularized analytical optimization model is proposed to enhance infrared images. The local contrast is determined by evaluating whether two intensities are neighbors and calculating their differences. The comparison on 8-bit images shows that the proposed method can enhance the infrared images with more details and lower noise.
NASA Astrophysics Data System (ADS)
Ueberham, Maximilian; Hertel, Daniel; Schlink, Uwe
2017-04-01
Deeper knowledge about urban climate conditions is getting more important in the context of climate change, urban population growth, urban compaction and continued surface sealing. Especially the urban heat island effect (UHI) is one of the most significant human induced alterations of Earth's surface climate. According to this the appearance frequency of heat waves in cities will increase with deep impacts on personal thermal comfort, human health and local residential quality of citizens. UHI can be very heterogenic within a city and research needs to focus more on the neighborhood scale perspective to get further insights about the heat burden of individuals. However, up to now, few is known about local thermal environmental variances and personal exposure loads. To monitor these processes and the impact on individuals, improved monitoring approaches are crucial, complementing data recorded at conventional fixed stations. Therefore we emphasize the importance of micro-meteorological modelling and mobile measurements to shed new light on the nexus of urban human-climate interactions. Contributing to this research we jointly present the approaches of our two PhD-projects. Firstly we illustrate on the basis of an example site, how local thermal conditions in an urban district can be simulated and predicted by a micro-meteorological model. Secondly we highlight the potentials of personal exposure measurements based on an evaluation of mobile micro-sensing devices (MSDs) and analyze and explain differences between model predictions and mobile records. For the examination of local thermal conditions we calculated ENVI-met simulations within the "Bayerischer Bahnhof" quarter in Leipzig (Saxony, Germany; 51°20', 12°22'). To accomplish the maximum temperature contrasts within the diverse built-up structures we chose a hot summer day (25 Aug 2016) under autochthonous weather conditions. From these simulations we analyzed a UHI effect between the model core (urban area) and the surrounding nesting area (rural area). Preparing for the outdoor application of mobile MSDs we tested their accuracy and performance between several MSDs and reliable sophisticated devices under laboratory conditions. We found that variations mainly depend on the device design and technology (e.g. active/passive ventilation). The standard deviation of the temperature records was quite stable over the whole range of values and the MSDs proved to be applicable for the purpose of our study. In conclusion the benefit of integrating mobile data and micrometeorological predictions is manifold. Mobile data can be used for the investigation of personal exposure in the context of heat stress and for the verification and training of micrometeorological models. Otherwise, model predictions can identify local areas of special climate interest where additional mobile measurements would be beneficial to provide new information for mitigation and adaptation actions.
Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B
2016-01-01
Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas. DOI: http://dx.doi.org/10.7554/eLife.15252.001 PMID:27596931
Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B
2016-09-06
Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas.
Bemanian, Amin; Beyer, Kirsten M.M.
2017-01-01
Background The Black to White disparity in breast cancer survival is increasing, and racial residential segregation is a potential driver for this trend. However, study findings have been mixed, and no study has comprehensively compared the effectiveness of different local level segregation metrics in explaining cancer survival. Methods We proposed a set of new local segregation metrics named LEx/Is (Local Exposure and Isolation) and compared our new local isolation metric to two related metrics - the location quotient (LQ) and the index of concentration at extremes (ICE) - across the 102 largest US metropolitan areas. Then, using case data from the Milwaukee, WI metropolitan area, we used proportional hazards models to explore associations between segregation and breast cancer survival. Results Across the 102 metropolitan areas, the new local isolation metric was less skewed than the LQ or ICE. Across all races, Hispanic isolation was associated with poorer all-cause survival, and Hispanic LQ and Hispanic-White ICE were found to be associated with poorer survival for both breast cancer specific and all-cause mortality. For Black patients, Black LQ was associated with lower all-cause mortality and Black local isolation was associated with reduced all-cause and breast cancer specific mortality. ICE was found to suffer from high multicollinearity. Conclusions Local segregation is associated with breast cancer survival, but associations varied based on patient race and metric employed. Impact We highlight how selection of a segregation measure can alter study findings. These relationships need to be validated in other geographic areas. PMID:28325737
High-resolution Local Gravity Model of the South Pole of the Moon from GRAIL Extended Mission Data
NASA Technical Reports Server (NTRS)
Goossens, Sander Johannes; Sabaka, Terence J.; Nicholas, Joseph B.; Lemoine, Frank G.; Rowlands, David D.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.
2014-01-01
We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6deg by 1/6deg (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40deg. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models.
Applied environmental fluid mechanics: what's the weather in your backyard?
NASA Astrophysics Data System (ADS)
Chow, F. K.
2011-12-01
The microclimates of the San Francisco Bay Area can lead to 30-40F differences in temperature from the coast to just 30 miles inland. The reasons for this include local topography which affects development of the atmospheric boundary layer. A Bay Area resident's experience of fog, air pollution, and weather events therefore differs greatly depending on exactly where they live. Such local weather phenomena provide a natural topic for introduction to boundary layer processes and are the basis of a new course developed at the University of California, Berkeley. This course complements the PI's research focus on numerical methods applied to atmospheric boundary layer flow over complex terrain. This new outreach and research-based course was created to teach students about the boundary layer and teach them how to use a community weather prediction model, WRF, to simulate conditions in the local area, while at the same time being actively involved in public outreach. The course was offered in the Civil and Environmental Engineering department with the collaboration and support of the Lawrence Hall of Science, Berkeley's public science museum. The students chose topics such as air quality, wind energy, climate change, and plume dispersion, all applied to the local San Francisco Bay Area. The students conducted independent research on their team projects, involving literature reviews, numerical model setup, and analysis of model results through comparison with field observations. The outreach component of the course included website design and culminated in demonstrations at the Lawrence Hall of Science. The seven student teams presented hands-on demos to 300-400 visitors, mostly kids 4-9 years old and their parents. Involving students directly in outreach efforts is hoped to encourage continued integration of research and education in their own careers. Early exposure to numerical modeling also improves student technical skills for future career experiences . Given positive feedback from students, the course will now be offered regularly as a senior design class which will also fulfill engineering graduation requirements.
Local Fiscal Allocation for Public Health Departments.
McCullough, J Mac; Leider, Jonathon P; Riley, William J
2015-12-01
We examined the percentage of local government taxes ("fiscal allocation") dedicated to local health departments on a national level, as well as correlates of local investment in public health. Using the most recent data available--the 2008 National Association of City and County Health Officials Profile survey and the 2007 U.S. Census Bureau Census of Local Governments-generalized linear regression models examined associations between fiscal allocation and local health department setting, governance, finance, and service provision. Models were stratified by the extent of long-term debt for the jurisdiction. Analyses were performed in 2014. Average fiscal allocation for public health was 3.31% of total local taxes. In multivariate regressions, per capita expenditures, having a local board of health and public health service provision were associated with higher fiscal allocation. Stratified models showed that local board of health and local health department taxing authority were associated with fiscal allocation in low and high long-term debt areas, respectively. The proportion of all local taxes allocated to local public health is related to local health department expenditures, service provision, and governance. These relationships depend upon the extent of long-term debt in the jurisdiction. Copyright © 2015 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
The Large Local Hole in the Galaxy Distribution: The 2MASS Galaxy Angular Power Spectrum
NASA Astrophysics Data System (ADS)
Frith, W. J.; Outram, P. J.; Shanks, T.
2005-06-01
We present new evidence for a large deficiency in the local galaxy distribution situated in the ˜4000 deg2 APM survey area. We use models guided by the 2dF Galaxy Redshift Survey (2dFGRS) n(z) as a probe of the underlying large-scale structure. We first check the usefulness of this technique by comparing the 2dFGRS n(z) model prediction with the K-band and B-band number counts extracted from the 2MASS and 2dFGRS parent catalogues over the 2dFGRS Northern and Southern declination strips, before turning to a comparison with the APM counts. We find that the APM counts in both the B and K-bands indicate a deficiency in the local galaxy distribution of ˜30% to z ≈ 0.1 over the entire APM survey area. We examine the implied significance of such a large local hole, considering several possible forms for the real-space correlation function. We find that such a deficiency in the APM survey area indicates an excess of power at large scales over what is expected from the correlation function observed in 2dFGRS correlation function or predicted from ΛCDM Hubble Volume mock catalogues. In order to check further the clustering at large scales in the 2MASS data, we have calculated the angular power spectrum for 2MASS galaxies. Although in the linear regime (l<30), ΛCDM models can give a good fit to the 2MASS angular power spectrum, over a wider range (l<100) the power spectrum from Hubble Volume mock catalogues suggests that scale-dependent bias may be needed for ΛCDM to fit. However, the modest increase in large-scale power observed in the 2MASS angular power spectrum is still not enough to explain the local hole. If the APM survey area really is 25% deficient in galaxies out to z≈0.1, explanations for the disagreement with observed galaxy clustering statistics include the possibilities that the galaxy clustering is non-Gaussian on large scales or that the 2MASS volume is still too small to represent a `fair sample' of the Universe. Extending the 2dFGRS redshift survey over the whole APM area would resolve many of the remaining questions about the existence and interpretation of this local hole.
Predictive modelling of contagious deforestation in the Brazilian Amazon.
Rosa, Isabel M D; Purves, Drew; Souza, Carlos; Ewers, Robert M
2013-01-01
Tropical forests are diminishing in extent due primarily to the rapid expansion of agriculture, but the future magnitude and geographical distribution of future tropical deforestation is uncertain. Here, we introduce a dynamic and spatially-explicit model of deforestation that predicts the potential magnitude and spatial pattern of Amazon deforestation. Our model differs from previous models in three ways: (1) it is probabilistic and quantifies uncertainty around predictions and parameters; (2) the overall deforestation rate emerges "bottom up", as the sum of local-scale deforestation driven by local processes; and (3) deforestation is contagious, such that local deforestation rate increases through time if adjacent locations are deforested. For the scenarios evaluated-pre- and post-PPCDAM ("Plano de Ação para Proteção e Controle do Desmatamento na Amazônia")-the parameter estimates confirmed that forests near roads and already deforested areas are significantly more likely to be deforested in the near future and less likely in protected areas. Validation tests showed that our model correctly predicted the magnitude and spatial pattern of deforestation that accumulates over time, but that there is very high uncertainty surrounding the exact sequence in which pixels are deforested. The model predicts that under pre-PPCDAM (assuming no change in parameter values due to, for example, changes in government policy), annual deforestation rates would halve between 2050 compared to 2002, although this partly reflects reliance on a static map of the road network. Consistent with other models, under the pre-PPCDAM scenario, states in the south and east of the Brazilian Amazon have a high predicted probability of losing nearly all forest outside of protected areas by 2050. This pattern is less strong in the post-PPCDAM scenario. Contagious spread along roads and through areas lacking formal protection could allow deforestation to reach the core, which is currently experiencing low deforestation rates due to its isolation.
Predictive Modelling of Contagious Deforestation in the Brazilian Amazon
Rosa, Isabel M. D.; Purves, Drew; Souza, Carlos; Ewers, Robert M.
2013-01-01
Tropical forests are diminishing in extent due primarily to the rapid expansion of agriculture, but the future magnitude and geographical distribution of future tropical deforestation is uncertain. Here, we introduce a dynamic and spatially-explicit model of deforestation that predicts the potential magnitude and spatial pattern of Amazon deforestation. Our model differs from previous models in three ways: (1) it is probabilistic and quantifies uncertainty around predictions and parameters; (2) the overall deforestation rate emerges “bottom up”, as the sum of local-scale deforestation driven by local processes; and (3) deforestation is contagious, such that local deforestation rate increases through time if adjacent locations are deforested. For the scenarios evaluated–pre- and post-PPCDAM (“Plano de Ação para Proteção e Controle do Desmatamento na Amazônia”)–the parameter estimates confirmed that forests near roads and already deforested areas are significantly more likely to be deforested in the near future and less likely in protected areas. Validation tests showed that our model correctly predicted the magnitude and spatial pattern of deforestation that accumulates over time, but that there is very high uncertainty surrounding the exact sequence in which pixels are deforested. The model predicts that under pre-PPCDAM (assuming no change in parameter values due to, for example, changes in government policy), annual deforestation rates would halve between 2050 compared to 2002, although this partly reflects reliance on a static map of the road network. Consistent with other models, under the pre-PPCDAM scenario, states in the south and east of the Brazilian Amazon have a high predicted probability of losing nearly all forest outside of protected areas by 2050. This pattern is less strong in the post-PPCDAM scenario. Contagious spread along roads and through areas lacking formal protection could allow deforestation to reach the core, which is currently experiencing low deforestation rates due to its isolation. PMID:24204776
NASA Astrophysics Data System (ADS)
Magnani, Federico; Dewar, Roderick C.; Borghetti, Marco
2009-04-01
Leakage (spillover) refers to the unintended negative (positive) consequences of forest carbon (C) management in one area on C storage elsewhere. For example, the local C storage benefit of less intensive harvesting in one area may be offset, partly or completely, by intensified harvesting elsewhere in order to meet global timber demand. We present the results of a theoretical study aimed at identifying the key factors determining leakage and spillover, as a prerequisite for more realistic numerical studies. We use a simple model of C storage in managed forest ecosystems and their wood products to derive approximate analytical expressions for the leakage induced by decreasing the harvesting frequency of existing forest, and the spillover induced by establishing new plantations, assuming a fixed total wood production from local and remote (non-local) forests combined. We find that leakage and spillover depend crucially on the growth rates, wood product lifetimes and woody litter decomposition rates of local and remote forests. In particular, our results reveal critical thresholds for leakage and spillover, beyond which effects of forest management on remote C storage exceed local effects. Order of magnitude estimates of leakage indicate its potential importance at global scales.
Craig, Pippa L; Phillips, Christine; Hall, Sally
2016-08-01
To describe outcomes of a model of service learning in interprofessional learning (IPL) aimed at developing a sustainable model of training that also contributed to service strengthening. A total of 57 semi-structured interviews with key informants and document review exploring the impacts of interprofessional student teams engaged in locally relevant IPL activities. Six rural towns in South East New South Wales. Local facilitators, staff of local health and other services, health professionals who supervised the 89 students in 37 IPL teams, and academic and administrative staff. Perceived benefits as a consequence of interprofessional, service-learning interventions in these rural towns. Reported outcomes included increased local awareness of a particular issue addressed by the team; improved communication between different health professions; continued use of the team's product or a changed procedure in response to the teams' work; and evidence of improved use of a particular local health service. Given the limited workforce available in rural areas to supervise clinical IPL placements, a service-learning IPL model that aims to build social capital may be a useful educational model. © 2015 National Rural Health Alliance Inc.
Myklebust, Lars Henrik; Sørgaard, Knut; Wynn, Rolf
2015-01-01
In the last few decades, there has been a restructuring of the psychiatric services in many countries. The complexity of these systems may represent a challenge to patients that suffer from serious psychiatric disorders. We examined whether local integration of inpatient and outpatient services in contrast to centralized institutions strengthened continuity of care. Two different service-systems were compared. Service-utilization over a 4-year period for 690 inpatients was extracted from the patient registries. The results were controlled for demographic variables, model of service-system, central inpatient admission or local inpatient admission, diagnoses, and duration of inpatient stays. The majority of inpatients in the area with local integration of inpatient and outpatient services used both types of care. In the area that did not have beds locally, many patients that had been hospitalized did not receive outpatient follow-up. Predictors of inpatients' use of outpatient psychiatric care were: Model of service-system (centralized vs decentralized), a diagnosis of affective disorder, central inpatient admission only, and duration of inpatient stays. Psychiatric centers with local inpatient units may positively affect continuity of care for patients with severe psychiatric disorders, probably because of a high functional integration of inpatient and outpatient care.
Myklebust, Lars Henrik; Sørgaard, Knut; Wynn, Rolf
2015-01-01
Objectives In the last few decades, there has been a restructuring of the psychiatric services in many countries. The complexity of these systems may represent a challenge to patients that suffer from serious psychiatric disorders. We examined whether local integration of inpatient and outpatient services in contrast to centralized institutions strengthened continuity of care. Methods Two different service-systems were compared. Service-utilization over a 4-year period for 690 inpatients was extracted from the patient registries. The results were controlled for demographic variables, model of service-system, central inpatient admission or local inpatient admission, diagnoses, and duration of inpatient stays. Results The majority of inpatients in the area with local integration of inpatient and outpatient services used both types of care. In the area that did not have beds locally, many patients that had been hospitalized did not receive outpatient follow-up. Predictors of inpatients’ use of outpatient psychiatric care were: Model of service-system (centralized vs decentralized), a diagnosis of affective disorder, central inpatient admission only, and duration of inpatient stays. Conclusion Psychiatric centers with local inpatient units may positively affect continuity of care for patients with severe psychiatric disorders, probably because of a high functional integration of inpatient and outpatient care. PMID:26604843
Modelling the Health Impact of an English Sugary Drinks Duty at National and Local Levels.
Collins, Brendan; Capewell, Simon; O'Flaherty, Martin; Timpson, Hannah; Razzaq, Abdul; Cheater, Sylvia; Ireland, Robin; Bromley, Helen
2015-01-01
Increasing evidence associates excess refined sugar intakes with obesity, Type 2 diabetes and heart disease. Worryingly, the estimated volume of sugary drinks purchased in the UK has more than doubled between 1975 and 2007, from 510 ml to 1140 ml per person per week. We aimed to estimate the potential impact of a duty on sugar sweetened beverages (SSBs) at a local level in England, hypothesising that a duty could reduce obesity and related diseases. We modelled the potential impact of a 20% sugary drinks duty on local authorities in England between 2010 and 2030. We synthesised data obtained from the British National Diet and Nutrition Survey (NDNS), drinks manufacturers, Office for National Statistics, and from previous studies. This produced a modelled population of 41 million adults in 326 lower tier local authorities in England. This analysis suggests that a 20% SSB duty could result in approximately 2,400 fewer diabetes cases, 1,700 fewer stroke and coronary heart disease cases, 400 fewer cancer cases, and gain some 41,000 Quality Adjusted Life Years (QALYs) per year across England. The duty might have the biggest impact in urban areas with young populations. This study adds to the growing body of evidence suggesting health benefits for a duty on sugary drinks. It might also usefully provide results at an area level to inform local price interventions in England.
Human impacts and changes in the coastal waters of south China.
Wang, Linlin; Li, Qiang; Bi, Hongsheng; Mao, Xian-Zhong
2016-08-15
Human impact on the environment remains at the center of the debate on global environmental change. Using the Hong Kong-Shenzhen corridor in south China as an example, we present evidence that rapid urbanization and economic development in coastal areas were the dominant factors causing rapid changes in coastal waters. From 1990 to 2012, coastal seawater temperature increased ~0.060°C per year, sea level rose 4.4mm per year and pH decreased from 8.2 to 7.7, much faster than global averages. In the same period, there were exponential increases in the local population, gross domestic product and land fill area. Empirical analyses suggest that the large increase in the population affected local temperature, and economic development had a major impact on local pH. Results also show that pH and temperature were significantly correlated with local sea level rise, but pH had more predictive power, suggesting it could be considered a predictor for changes in local sea level. We conclude that human activities could significantly exacerbate local environmental changes which should be considered in predictive models and future development plans in coastal areas. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Robinson, Julie A.; Tate-Brown, Judy M.
2009-01-01
Using a commercial software CD and minimal up-mass, SNFM monitors the Payload local area network (LAN) to analyze and troubleshoot LAN data traffic. Validating LAN traffic models may allow for faster and more reliable computer networks to sustain systems and science on future space missions. Research Summary: This experiment studies the function of the computer network onboard the ISS. On-orbit packet statistics are captured and used to validate ground based medium rate data link models and enhance the way that the local area network (LAN) is monitored. This information will allow monitoring and improvement in the data transfer capabilities of on-orbit computer networks. The Serial Network Flow Monitor (SNFM) experiment attempts to characterize the network equivalent of traffic jams on board ISS. The SNFM team is able to specifically target historical problem areas including the SAMS (Space Acceleration Measurement System) communication issues, data transmissions from the ISS to the ground teams, and multiple users on the network at the same time. By looking at how various users interact with each other on the network, conflicts can be identified and work can begin on solutions. SNFM is comprised of a commercial off the shelf software package that monitors packet traffic through the payload Ethernet LANs (local area networks) on board ISS.
Numerical Model of Transitory Flood Flow in 2005 on River Timis
NASA Astrophysics Data System (ADS)
Ghitescu, Marie-Alice; Lazar, Gheorghe; Titus Constantin, Albert; Nicoara, Serban-Vlad
2017-10-01
The paper presents numerical modelling of fluid flow transiting on the Timis River, downstream Lugoj section - N.H. COSTEIU, the occurrence of accidental flood waves from 4 April to 11 April 2005. Numerical simulation aims to estimate water levels on the route pattern on some areas and areas associated respectively floodplain adjacent construction site on the right bank of Timis river, on existing conditions in 2005. The model simulation from 2005 flood event shows that the model can be used for future inundation studies in this locality.
Palynology after Y2K--Understanding the Source Area of Pollen in Sediments
NASA Astrophysics Data System (ADS)
Davis, M. B.
Pollen grains preserved in lake and bog sediment provide a record of past vegetation that has been an important source of information about climate and land cover during the Quaternary Period. Yet from the beginning, questions have been raised about the source area of pollen in sediment. Interpretation has been hampered by the lack of well-developed theory treating the relationship between the spatial distribution of trees on the landscape and the percentages of pollen in sediment. Within the past decade, however, new theory, models, and empirical data show how heterogeneous vegetation is represented by pollen. The distinction between "local" and "regional" pollen is explained by the Prentice-Sugita dispersal/deposition models, which predict how the ratio of regional to local pollen changes with lake size. Sugita's model simulating a landscape with heterogeneous vegetation predicts the size of the relevant source area-the area of vegetation reflected in between-lake variations in pollen loading-while demonstrating that regional pollen from beyond this distance is homogeneous at all lakes of similar size. By predicting the way landscape patterns will be reflected in pollen records, simulation models can improve research design and lead to more detailed and spatially precise records of past vegetation, enhancing continental-scale climate reconstructions.
The presentation summarizes developments of ongoing applications of fine-scale (geometry specific) CFD simulations to urban areas within atmospheric boundary layers. Enabling technology today and challenges for the future are discussed. There is a challenging need to develop a ...
Econonmic effects of river recreation on local economies
H. Ken Cordell; John C. Bergstrom; Gregory A. Ashley; John Karish
1990-01-01
Outdoor recreation is a major, growing use of water resources in the United States. The economic effects of expenditures by visitors to three recreational river sites on local economies surrounding the sites were estimated using an input-output model (IMPLAN). Expenditure data were from the Public Area Recreation Visitors Study (PARVS). Results indicate that visitor...
Preschool Guidelines: Rural Model (Trimble Local School District).
ERIC Educational Resources Information Center
Ohio State Dept. of Education, Columbus. Div. of Educational Services.
The purpose of this handbook is to guide rural school districts intending to establish a preschool program. The program described was established in the Trimble Local School District in the rural Appalachian area of northern Athens County, the third poorest district in Ohio. Contents concern: (1) the district's beliefs about children; (2)…
NASA Astrophysics Data System (ADS)
Grossi, Claudia; Morguí, Josep Anton; Curcoll, Roger; Àgueda, Alba; Arnold, Delia; Batet, Oscar; Cañas, Lidia; Nofuentes, Manel; Occhipinti, Paola; Vogel, Felix; Vargas, Arturo; Rodó, Xavier
2014-05-01
The Gredos and Iruelas station (GIC3) is part of the IC3 (Institut Català de Ciències del Clima) atmospheric monitoring network. This station is located in the Gredos Natural Park (40.22º N; -5.14º E) in the Spanish central plateau. The IC3 network consists of 8 stations distributed across Spain. It has been developed with the aim of studying climatic processes and the responses of impacted systems at different temporal and spatial scales. Since 2012, CO2, CH4, 222Rn (a natural radioactive gas) and meteorological variables are continuously measured at GIC3 at 20 m a.g.l. (1100 m a.s.l.). Furthermore, 4-days backward simulations are run daily for each IC3 station using the FLEXPART model. Simulations use ECMWF meteorological data as input and a horizontal spatial resolution of 0.2 degrees. The Laboratory of the Atmosphere and the Oceans (LAO) of the IC3 has elaborated a new approach to evaluate the local or remote greenhouse gases emissions using the radon gas as tracer and the atmospheric particles transport model FLEXPART under nocturnal and winter conditions. The ratios between the normalized and rescaled measured concentrations of CH4 and 222Rn during nocturnal hours (21h, 00h, 03h and 06h) and in the winter season, in order to reduce local radon flux and methane source due to seasonal livestock migration and to get stable atmospheric conditions, have been analyzed in relation to the influence of the local area (set to an initial dimension of 20x20 km2). The influence area (IA) has been defined as the percentage of the ratio between the residence time of the fictitious particles released in FLEXPART simulations over the area of interest (TLocal Area) and the residence time of these fictitious particles over the total area included in the simulation (TTotal Area ), i.e. IA = (TLocal Area/TTotal Area * 100). First results considering an area of interest of 20x20 km2 show a linear increase of the radon concentration with IA until reaching a maximum when IA is about 50%. This can be explained taking into consideration that GIC3 station area has high radon exhalation rates according to the literature and the radon uptake from air masses can reach a plateau. On the other hand, CH4 concentrations do not seem to be significantly influenced by IA. The log-log plot between the ratio of normalized and rescaled gases concentrations (CH4/222Rn) and the percentage of the influence of the local area shows a negative linear relation under nocturnal and winter conditions which could depend on the increase of the radon not compensated by the methane increase. Indeed, when the influence of the local area of Gredos and Iruelas station is under the 20% the major methane contribution seems to come from outside the 20x20 km2 IA. Results considering a larger area of interest (up to 80x80 km2) may indicate possible methane sources detected at the GIC3 station.
Area-to-point regression kriging for pan-sharpening
NASA Astrophysics Data System (ADS)
Wang, Qunming; Shi, Wenzhong; Atkinson, Peter M.
2016-04-01
Pan-sharpening is a technique to combine the fine spatial resolution panchromatic (PAN) band with the coarse spatial resolution multispectral bands of the same satellite to create a fine spatial resolution multispectral image. In this paper, area-to-point regression kriging (ATPRK) is proposed for pan-sharpening. ATPRK considers the PAN band as the covariate. Moreover, ATPRK is extended with a local approach, called adaptive ATPRK (AATPRK), which fits a regression model using a local, non-stationary scheme such that the regression coefficients change across the image. The two geostatistical approaches, ATPRK and AATPRK, were compared to the 13 state-of-the-art pan-sharpening approaches summarized in Vivone et al. (2015) in experiments on three separate datasets. ATPRK and AATPRK produced more accurate pan-sharpened images than the 13 benchmark algorithms in all three experiments. Unlike the benchmark algorithms, the two geostatistical solutions precisely preserved the spectral properties of the original coarse data. Furthermore, ATPRK can be enhanced by a local scheme in AATRPK, in cases where the residuals from a global regression model are such that their spatial character varies locally.
Rodents and climate: A new model for estimating past temperatures [rapid communication
NASA Astrophysics Data System (ADS)
Legendre, Serge; Montuire, Sophie; Maridet, Olivier; Escarguel, Gilles
2005-06-01
Based on the high correlation between species richness in sigmodontine rodents and temperatures, we propose a new model in order to quantify past climates. Because of the close phylogenetic relationship and the tooth morphological similarity between extant New World cricetids (Sigmodontinae) and fossil European cricetids (Cricetinae s.l.), extant New World sigmodontines are taken as analogues for Old World fossil cricetines. Sigmodontine species richness has been compiled for 282 extant local faunas from North, Central and South America, with corresponding climatic data (temperatures and precipitations). There is almost no correlation between areas covered by local faunas (ranging from 1 km 2 up to 46,000 km 2) and numbers of sigmodontine species in localities ( R2 = 0.027). Number of sigmodontine species in local faunas and mean annual daily temperatures are highly correlated ( R2 = 0.88). The relationships of species richness and precipitation is low ( R2 = 0.19 for mean annual precipitation). The method is exemplified for Old World cricetines using well documented Miocene rodent faunas located in the Lyon area (France MN4-5 to MN10).
Branches Global Climate & Weather Modeling Mesoscale Modeling Marine Modeling and Analysis Contact EMC , state and local government Web resources and services. Real-time, global, sea surface temperature (RTG_SST_HR) analysis For a regional map, click the desired area in the global SST analysis and anomaly maps
A comparison of random draw and locally neutral models for the avifauna of an English woodland.
Dolman, Andrew M; Blackburn, Tim M
2004-06-03
Explanations for patterns observed in the structure of local assemblages are frequently sought with reference to interactions between species, and between species and their local environment. However, analyses of null models, where non-interactive local communities are assembled from regional species pools, have demonstrated that much of the structure of local assemblages remains in simulated assemblages where local interactions have been excluded. Here we compare the ability of two null models to reproduce the breeding bird community of Eastern Wood, a 16-hectare woodland in England, UK. A random draw model, in which there is complete annual replacement of the community by immigrants from the regional pool, is compared to a locally neutral community model, in which there are two additional parameters describing the proportion of the community replaced annually (per capita death rate) and the proportion of individuals recruited locally rather than as immigrants from the regional pool. Both the random draw and locally neutral model are capable of reproducing with significant accuracy several features of the observed structure of the annual Eastern Wood breeding bird community, including species relative abundances, species richness and species composition. The two additional parameters present in the neutral model result in a qualitatively more realistic representation of the Eastern Wood breeding bird community, particularly of its dynamics through time. The fact that these parameters can be varied, allows for a close quantitative fit between model and observed communities to be achieved, particularly with respect to annual species richness and species accumulation through time. The presence of additional free parameters does not detract from the qualitative improvement in the model and the neutral model remains a model of local community structure that is null with respect to species differences at the local scale. The ability of this locally neutral model to describe a larger number of woodland bird communities with either little variation in its parameters or with variation explained by features local to the woods themselves (such as the area and isolation of a wood) will be a key subsequent test of its relevance.
Modeled effects of irrigation on surface climate in the Heihe River Basin, Northwest China
NASA Astrophysics Data System (ADS)
Zhang, Xuezhen; Xiong, Zhe; Tang, Qiuhong
2017-08-01
In Northwest China, water originates from the mountain area and is largely used for irrigation agriculture in the middle reaches. This study investigates the local and remote impact of irrigation on regional climate in the Heihe River Basin, the second largest inland river basin in Northwest China. An irrigation scheme was developed and incorporated into the Weather Research and Forecasting (WRF) model with the Noah-MP land surface scheme (WRF/Noah-MP). The effects of irrigation is assessed by comparing the model simulations with and without consideration of irrigation (hereafter, IRRG and NATU simulations, respectively) for five growth seasons (May to September) from 2009 to 2013. As consequences of irrigation, daily mean temperature decreased by 1.7°C and humidity increased by 2.3 g kg-1 (corresponding to 38.5%) over irrigated area. The temperature and humidity of IRRG simulation matched well with the observations, whereas NATU simulation overestimated temperature and underestimated humidity over irrigated area. The effects on temperature and humidity are generally small outside the irrigated area. The cooling and wetting effects have opposing impacts on convective precipitation, resulting in a negligible change in localized precipitation over irrigated area. However, irrigation may induce water vapor convergence and enhance precipitation remotely in the southeastern portion of the Heihe River Basin.
Effect of local administration of simvastatin on postorthodontic relapse in a rabbit model.
AlSwafeeri, Hani; ElKenany, Walid; Mowafy, Mohamed; Karam, Sahar
2018-06-01
Posttreatment relapse is a major challenging clinical issue. The objective of this study was to evaluate the effect of local administration of simvastatin on posttreatment relapse. Orthodontic tooth movement was induced in 10 white New Zealand rabbits. After 21 days of active tooth movement, the orthodontic appliances were removed, and the experimental teeth were allowed to relapse for 21 days. During the relapse phase, 1 mandibular quadrant received local simvastatin administration, and the other received the control vehicle solution on a weekly basis. Three-dimensional models of the experimental teeth were created to allow the measurement of experimental tooth movement and posttreatment relapse. The animals were killed at the end of the relapse phase for histomorphometric analysis of alveolar bone remodeling. The mean relapse percentages were 75.83% in the quadrant receiving the control vehicle solution and 62.01% in the quadrant receiving simvastatin. Neither the relapse magnitude nor the relapse percentage showed a significant difference between the 2 quadrants. Histomorphometric analyses showed that local simvastatin administration yielded a significant reduction in the area of active bone-resorptive lacunae and a significant increase in newly formed bone area. Although local administration of simvastatin aids in bone remodeling associated with posttreatment relapse by reducing the area of active bone resorption and upregulating bone formation, it did not significantly minimize posttreatment relapse. Copyright © 2018 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Geographical inequalities in suicide rates and area deprivation in South Korea.
Hong, Jihyung; Knapp, Martin
2013-09-01
Recent years have witnessed growing interest in determinants of suicide in South Korea. While much of the research has paid attention to the role of individual factors in explaining suicide mortality, another potentially important dimension of health inequality is geography. To describe the geographical distribution of suicide rates in South Korea, and to examine to what extent the distribution is shaped by area deprivation. Using 2004-2006 mortality data and 2005 population census data, the study first described the spatial mapping of age-standardised suicide rates and level of area deprivation across 250 districts in South Korea. A spatial lag model was also employed to examine the association between the two, taking into account the spatial dependence and interactions between neighbouring districts, as indicated by Moran's I and Geary' C statistics. In addition to level of area deprivation, population density, welfare spending, and rates of divorce, marriage and fertility at district-level were added to the model. The spatial mapping of suicide rates across 250 districts exhibited a different pattern between males and females. While the highest suicide rates tended to cluster in the north-east region of South Korea for males, no clear pattern was observed for females. On the other hand, the lowest suicide rates for both males and females were found in most districts of the capital city. The results of the spatial lag model revealed a significant association between suicide rates and area deprivation, particularly for male suicide. Compared to the least deprived area, there were about 12-13 more male suicide cases (per 100,000 males) in highly deprived areas. The association with area deprivation was less clear for females. Population density was negatively associated with suicide rates for both males and females. While suicide rates were in general positively associated with divorce rates and negatively associated with fertility rates, the coefficients of both were not significant in the model for females. The study highlighted substantial geographical variation in suicide rates across South Korea. Such variation can be largely explained by level of area deprivation, especially for males. The level of excess suicides (i.e. 12-13 per 100,000 males) in highly deprived areas was similar to the average suicide rates of OECD countries. Due to the paucity of individual-level data however, the study was unable to test whether or not these associations were independent of population composition. Prioritising development in relatively more deprived areas would potentially minimise resource barriers. Since such area-based approaches focus on a body with clear responsibility (i.e. local authority) and a greater relevance for local residents, programmes and services can be more effectively tailored to local needs and also more effectively delivered to local residents. Alternative sources of data with individual-level data should be explored to strengthen the basis of the present findings, and also to examine the exact mechanism underlying the associations between suicide rates and area deprivation.
Local and regional smokefree and tobacco-free action in New Zealand: highlights and directions.
Thomson, George; Wilson, Nick
2017-09-22
In this viewpoint we highlight and discuss some recent local and regional level advances in tobacco control in Aotearoa/New Zealand. In this country a wide range of local actors are helping drive smokefree and tobacco-free policies, with an increasing presence of businesses in this field. There has been progress in the areas of smokefree dining, large outdoor worksites and ski fields, and parts of downtown areas such as squares and streets. In 2015 and 2016, three councils (Palmerston North, Napier and Hastings) have used pavement lease policies and bylaws to start introducing an element of requirement into smokefree outdoor dining. Elsewhere (eg, Rotorua, Ashburton, Westland and Christchurch) significant smokefree outdoor dining moves have been made by, or in conjunction with, local councils. Tobacco-free retailing continues to expand, particularly in Northland. In the absence of meaningful central government action on smokefree places in the last decade (despite the Smokefree 2025 goal), local activity is leading the way. It is particularly important in providing models for smokefree outdoor hospitality areas, where smoking normalisation and relapse are significant health risks. Nevertheless, there is a need for the local smokefree and tobacco-free activity to be nationally evaluated, particularly for assessing the prevalence of smoking in areas covered by 'smokefree' policies. Action by central government could help local actors by providing a more definite legislative basis for bylaws, by minimum outdoor smokefree laws and by the funding of effective tobacco control mass media.
Outside and inside noise exposure in urban and suburban areas
Dwight E. Bishop; Myles A. Simpson
1977-01-01
In urban and suburban areas of the United States (away from major airports), the outdoor noise environment usually depends strongly on local vehicular traffic. By relating traffic flow to population density, a model of outdoor noise exposure has been developed for estimating the cumulative 24-hour noise exposure based upon the population density of the area. This noise...
Modelling landscape change in paddy fields using logistic regression and GIS
NASA Astrophysics Data System (ADS)
Franjaya, E. E.; Syartinilia; Setiawan, Y.
2018-05-01
Paddy field in karawang district, as an important agricultural land in west java, has been decreased since 1994. From previous study, paddy fields dominantly turned into built area. The changes were almost occured in the middle area of the district where roadways, industries, settlements, and commercial buildings were existed. These were estimated as driving forces. But, we still need to prove it. This study aimed to construct the paddy field probability change model, subsequently the driving forces will be obtained. GIS combined with logistic regression using environmental variables were used as main method in this study. Ten environmental variables were elevation 0–500 m, elevation>500 m, slope<8%, slope>8%, CBD, build up area, river, irrigation, toll and national roadway, and collector and local roadway. The result indicated that four variables were significantly played as driving forces (slope>8%, CBD area, build up area, and collector and local roadway). Paddy field has high, medium, and low probability to change which covered about 27.8%, 7.8%, and 64.4% area in Karawang respectively. Based on landscape ecology, the recommendation that suitable with landscape change is adaptive management.
Agency and Market Area Factors Affecting Home Health Agency Supply Changes
Porell, Frank W; Liu, Korbin; Brungo, David P
2006-01-01
Objective To use the natural experiment created by the Medicare interim payment system (IPS) to study supply change behavior of home health agencies (HHAs) in local market areas. Data Sources One hundred percent Medicare home health claims for 1996 and 1999, linked with Medicare Provider of Service and Denominator files, and the Area Resource File. Study Design Medicare home health care (HHC) claims data were used to distinguish HHAs that changed the local market supply of Medicare HHC by their market exit or by significant expansion or contraction of their geographic service area between 1996 and 1999 from other HHAs. Multinomial logit models were estimated to analyze how characteristics of agencies and the market areas in which they served were associated with these different agency-level supply changes. Principal Findings Changes in local HHA supply stemming from geographic service area expansions and contractions rivaled those owing to agency closures and market entries. Agencies at greater risk of closure and service area contraction tended to be smaller, newer, freestanding agencies, operating with more visit-intensive practice styles in markets with more competitor agencies. Except for having much less visit-intensive practice styles, similar attributes characterized agencies that increased local supply through service area expansion. Conclusions Supply changes by HHAs largely reflected rational market responses by agencies to significant changes in financial incentives associated with the Medicare IPS. Recently certified agencies were among the most dynamic providers. Supply changes were more likely among agencies operating in more competitive market environments. PMID:16987305
Agency and market area factors affecting home health agency supply changes.
Porell, Frank W; Liu, Korbin; Brungo, David P
2006-10-01
To use the natural experiment created by the Medicare interim payment system (IPS) to study supply change behavior of home health agencies (HHAs) in local market areas. One hundred percent Medicare home health claims for 1996 and 1999, linked with Medicare Provider of Service and Denominator files, and the Area Resource File. Medicare home health care (HHC) claims data were used to distinguish HHAs that changed the local market supply of Medicare HHC by their market exit or by significant expansion or contraction of their geographic service area between 1996 and 1999 from other HHAs. Multinomial logit models were estimated to analyze how characteristics of agencies and the market areas in which they served were associated with these different agency-level supply changes. Changes in local HHA supply stemming from geographic service area expansions and contractions rivaled those owing to agency closures and market entries. Agencies at greater risk of closure and service area contraction tended to be smaller, newer, freestanding agencies, operating with more visit-intensive practice styles in markets with more competitor agencies. Except for having much less visit-intensive practice styles, similar attributes characterized agencies that increased local supply through service area expansion. Supply changes by HHAs largely reflected rational market responses by agencies to significant changes in financial incentives associated with the Medicare IPS. Recently certified agencies were among the most dynamic providers. Supply changes were more likely among agencies operating in more competitive market environments.
Public Health Spending and Medicare Resource Use: A Longitudinal Analysis of U.S. Communities.
Mays, Glen P; Mamaril, Cezar B
2017-12-01
To examine whether local expenditures for public health activities influence area-level medical spending for Medicare beneficiaries. Six census surveys of the nation's 2,900 local public health agencies were conducted between 1993 and 2013, linked with contemporaneous information on population demographics, socioeconomic characteristics, and area-level Medicare spending estimates from the Dartmouth Atlas of Health Care. Measures derive from agency survey data and aggregated Medicare claims. A longitudinal cohort design follows the geographic areas served by local public health agencies. Multivariate, fixed-effects, and instrumental-variables regression models estimate how area-level Medicare spending changes in response to shifts in local public health spending, controlling for observed and unmeasured confounders. A 10 percent increase in local public health spending per capita was associated with 0.8 percent reduction in adjusted Medicare expenditures per person after 1 year (p < .01) and a 1.1 percent reduction after 5 years (p < .05). Estimated Medicare spending offsets were larger in communities with higher rates of poverty, lower health insurance coverage, and health professional shortages. Expanded financing for public health activities may provide an effective way of constraining Medicare spending, particularly in low-resource communities. © Health Research and Educational Trust.
Baldock, Katherine; Paquet, Catherine; Howard, Natasha; Coffee, Neil; Hugo, Graeme; Taylor, Anne; Adams, Robert; Daniel, Mark
2012-01-01
A substantial body of research has arisen concerning the relationships between objective residential area features, particularly area-level socioeconomic status and cardiometabolic outcomes. Little research has explored residents' perceptions of such features and how these might relate to cardiometabolic outcomes. Perceptions of environments are influenced by individual and societal factors, and may not correspond to objective reality. Understanding relations between environmental perceptions and health is important for the development of environment interventions. This study evaluated associations between perceptions of local built and social environmental attributes and metabolic syndrome, and tested whether walking behaviour mediated these associations. Individual-level data were drawn from a population-based biomedical cohort study of adults in Adelaide, South Australia (North West Adelaide Health Study). Participants' local-area perceptions were analysed in cross-sectional associations with metabolic syndrome using multilevel regression models (n = 1, 324). A nonparametric bootstrapping procedure evaluated whether walking mediated these associations. Metabolic syndrome was negatively associated with greater local land-use mix, positive aesthetics, and greater infrastructure for walking, and was positively associated with greater perceived crime and barriers to walking. Walking partially mediated associations between metabolic syndrome and perceived environmental features. Initiatives targeting residents' perceptions of local areas may enhance the utility of environmental interventions to improve population health.
Baldock, Katherine; Paquet, Catherine; Howard, Natasha; Coffee, Neil; Hugo, Graeme; Taylor, Anne; Adams, Robert; Daniel, Mark
2012-01-01
A substantial body of research has arisen concerning the relationships between objective residential area features, particularly area-level socioeconomic status and cardiometabolic outcomes. Little research has explored residents' perceptions of such features and how these might relate to cardiometabolic outcomes. Perceptions of environments are influenced by individual and societal factors, and may not correspond to objective reality. Understanding relations between environmental perceptions and health is important for the development of environment interventions. This study evaluated associations between perceptions of local built and social environmental attributes and metabolic syndrome, and tested whether walking behaviour mediated these associations. Individual-level data were drawn from a population-based biomedical cohort study of adults in Adelaide, South Australia (North West Adelaide Health Study). Participants' local-area perceptions were analysed in cross-sectional associations with metabolic syndrome using multilevel regression models (n = 1, 324). A nonparametric bootstrapping procedure evaluated whether walking mediated these associations. Metabolic syndrome was negatively associated with greater local land-use mix, positive aesthetics, and greater infrastructure for walking, and was positively associated with greater perceived crime and barriers to walking. Walking partially mediated associations between metabolic syndrome and perceived environmental features. Initiatives targeting residents' perceptions of local areas may enhance the utility of environmental interventions to improve population health. PMID:23049574
Analysis of Composite Panel-Stiffener Debonding Using a Shell/3D Modeling Technique
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Ratcliffe, James; Minguet, Pierre J.
2007-01-01
Interlaminar fracture mechanics has proven useful for characterizing the onset of delaminations in composites and has been used successfully primarily to investigate onset in fracture toughness specimens and laboratory size coupon type specimens. Future acceptance of the methodology by industry and certification authorities, however, requires the successful demonstration of the methodology on the structural level. For this purpose, a panel was selected that is reinforced with stiffeners. Shear loading causes the panel to buckle, and the resulting out-of-plane deformations initiate skin/stiffener separation at the location of an embedded defect. A small section of the stiffener foot, web and noodle as well as the panel skin in the vicinity of the delamination front were modeled with a local 3D solid model. Across the width of the stiffener foot, the mixedmode strain energy release rates were calculated using the virtual crack closure technique. A failure index was calculated by correlating the results with a mixed-mode failure criterion of the graphite/epoxy material. Computed failure indices were compared to corresponding results where the entire web was modeled with shell elements and only a small section of the stiffener foot and panel were modeled locally with solid elements. Including the stiffener web in the local 3D solid model increased the computed failure index. Further including the noodle and transition radius in the local 3D solid model changed the local distribution across the width. The magnitude of the failure index decreased with increasing transition radius and noodle area. For the transition radii modeled, the material properties used for the noodle area had a negligible effect on the results. The results of this study are intended to be used as a guide for conducting finite element and fracture mechanics analyses of delamination and debonding in complex structures such as integrally stiffened panels.
Regional/Urban Air Quality Modeling Assessment over China Using the Models-3/CMAQ System
NASA Astrophysics Data System (ADS)
Fu, J. S.; Jang, C. C.; Streets, D. G.; Li, Z.; Wang, L.; Zhang, Q.; Woo, J.; Wang, B.
2004-12-01
China is the world's most populous country with a fast growing economy that surges in energy comsumption. It has become the second largest energy consumer after the United States although the per capita level is much lower than those found in developed or developing countries. Air pollution has become one of the most important problems of megacities such as Beijing and Shanghai and has serious impacts on public health, causes urban and regional haze. The Models-3/CMAQ modeling application that has been conducted to simulate multi-pollutants in China is presented. The modeling domains cover East Asia (36-kmx36-km) including Japan, South Korea, Korea DPR, Indonesia, Thailand, India and Mongolia, East China (12-kmx12-km) and Beijing/Tianjing, Shanghai (4-kmx4-km). For this study, the Asian emission inventory based on the emission estimates of the year 2000 that supported the NASA TRACE-P program is used. However, the TRACE-P emission inventory was developed for a different purpose such as global modeling. TRACE-P emission inventory may not be practical in urban area. There is no China national emission inventory available. Therefore, TRACE-P emission inventory is used on the East Asia and East China domains. The 8 districts of Beijing and Shanghai local emissions inventory are used to replace TRACE-P in 4-km domains. The meteorological data for the Models-3/CMAQ run are extracted from MM5. The model simulation is performed during the period January 1-20 and July 1-20, 2001 that presented the winter and summer time for China areas. The preliminary model results are shown O3 concentrations are in the range of 80 -120 ppb in the urban area. Lower urban O3 concentrations are shown in Beijing areas, possibly due to underestimation of urban man-made VOC emissions in the TRACE-P inventory and local inventory. High PM2.5 (70ug/m3 in summer and 150ug/m3 in winter) were simulated over metropolitan & downwind areas with significant secondary constituents. More comprehensive simulations in the Beijing, Shanghai areas are presented with sensitivity analysis. A comparison against available ozone and PM measurement data in Beijing, Shanghai is presented. The local emission inventory improvement in China is to be suggested to investigate. The modeling configuration of the Beijing 4-km x 4-km domain is to demonstrate the development of cost-effective control strategies for the air pollution control such as 2008 Olympic Game air quality management plan.
Space-Time Urban Air Pollution Forecasts
NASA Astrophysics Data System (ADS)
Russo, A.; Trigo, R. M.; Soares, A.
2012-04-01
Air pollution, like other natural phenomena, may be considered a space-time process. However, the simultaneous integration of time and space is not an easy task to perform, due to the existence of different uncertainties levels and data characteristics. In this work we propose a hybrid method that combines geostatistical and neural models to analyze PM10 time series recorded in the urban area of Lisbon (Portugal) for the 2002-2006 period and to produce forecasts. Geostatistical models have been widely used to characterize air pollution in urban areas, where the pollutant sources are considered diffuse, and also to industrial areas with localized emission sources. It should be stressed however that most geostatistical models correspond basically to an interpolation methodology (estimation, simulation) of a set of variables in a spatial or space-time domain. The temporal prediction of a pollutant usually requires knowledge of the main trends and complex patterns of physical dispersion phenomenon. To deal with low resolution problems and to enhance reliability of predictions, an approach based on neural network short term predictions in the monitoring stations which behave as a local conditioner to a fine grid stochastic simulation model is presented here. After the pollutant concentration is predicted for a given time period at the monitoring stations, we can use the local conditional distributions of observed values, given the predicted value for that period, to perform the spatial simulations for the entire area and consequently evaluate the spatial uncertainty of pollutant concentration. To attain this objective, we propose the use of direct sequential simulations with local distributions. With this approach one succeed to predict the space-time distribution of pollutant concentration that accounts for the time prediction uncertainty (reflecting the neural networks efficiency at each local monitoring station) and the spatial uncertainty as revealed by the spatial variograms. The dataset used consists of PM10 concentrations recorded hourly by 12 monitoring stations within the Lisbon's area, for the period 2002-2006. In addition, meteorological data recorded at 3 monitoring stations and boundary layer height (BLH) daily values from the ECMWF (European Centre for Medium Weather Forecast), ERA Interim, were also used. Based on the large-scale standard pressure fields from the ERA40/ECMWF, prevailing circulation patterns at regional scale where determined and used on the construction of the models. After the daily forecasts were produced, the difference between the average maps based on real observations and predicted values were determined and the model's performance was assessed. Based on the analysis of the results, we conclude that the proposed approach shows to be a very promising alternative for urban air quality characterization because of its good results and simplicity of application.
A recurrent neural model for proto-object based contour integration and figure-ground segregation.
Hu, Brian; Niebur, Ernst
2017-12-01
Visual processing of objects makes use of both feedforward and feedback streams of information. However, the nature of feedback signals is largely unknown, as is the identity of the neuronal populations in lower visual areas that receive them. Here, we develop a recurrent neural model to address these questions in the context of contour integration and figure-ground segregation. A key feature of our model is the use of grouping neurons whose activity represents tentative objects ("proto-objects") based on the integration of local feature information. Grouping neurons receive input from an organized set of local feature neurons, and project modulatory feedback to those same neurons. Additionally, inhibition at both the local feature level and the object representation level biases the interpretation of the visual scene in agreement with principles from Gestalt psychology. Our model explains several sets of neurophysiological results (Zhou et al. Journal of Neuroscience, 20(17), 6594-6611 2000; Qiu et al. Nature Neuroscience, 10(11), 1492-1499 2007; Chen et al. Neuron, 82(3), 682-694 2014), and makes testable predictions about the influence of neuronal feedback and attentional selection on neural responses across different visual areas. Our model also provides a framework for understanding how object-based attention is able to select both objects and the features associated with them.
NASA Astrophysics Data System (ADS)
Logvinov, Igor M.; Tarasov, Viktor N.
2018-03-01
Previously obtained magnetotelluric 2D models for 30 profiles made it possible to create an overview model of electric resistivity for the territory between 28°E and 36°E and between 44.5°N and 52.5°N. It allows us to distinguish a number of low resistivity objects (LRO) with resistivities lower than 100 Ω m the Earth's crust and mantle. Two regional conductivity anomalies are traced. The Kirovograd conductivity anomaly extends south to the Crimea mountains. A new regional conductivity anomaly (Konkskaya) can be distinguished along the southern slope of the Ukrainian Shield from 29° to 34°E. In addition, many local LROs have been identified. According to the modeling results, the local low resistivity objects on the East European Platform appear along fault zones activated during last 5-7 M years and the model suggests their relation to known zones of graphitization and polymetallic ore deposits. Local LROs in the Dnieper-Donets Basin correlate with the main oil and natural gas fields in this area. The depth of the anomalous objects amounts to 5-22 km. This is consistent with the hypotheses that hydrocarbon deposits are related to generation and transport zones of carbon-bearing fluids.
Li, Xue-Ming; Chen, Ying-Dan; Xu, Long-Qi; Zhou, Chang-Hai; Ou-Yang, Yi; Lin, Rui; Yang, Fang-Fang; Zhang, Xiao-Juan; Wang, Ge; Liu, Teng; Wang, Jing
2011-12-01
To explore a new prevention and control model on soil-borne parasitic diseases in rural areas of China. Eight provinces and autonomous regions were selected in China as demonstration areas implementing integrated control on soil-borne parasitic diseases. The integrated control measures included authority organization and harmonization, health education, deworming, and environment modification. After three years, the infection rates of soil-borne parasitic diseases were significantly decreased in these areas. There were three safe guard and organization modes, three health education modes, four mass worming medication modes, and two modes of water, toilet and environment changes. The work in the various demonstration areas was summarized which pointed out a new model with efficiency and local characteristics on soil-borne parasitic disease prevention and control.
GRAVTool, a Package to Compute Geoid Model by Remove-Compute-Restore Technique
NASA Astrophysics Data System (ADS)
Marotta, G. S.; Blitzkow, D.; Vidotti, R. M.
2015-12-01
Currently, there are several methods to determine geoid models. They can be based on terrestrial gravity data, geopotential coefficients, astro-geodetic data or a combination of them. Among the techniques to compute a precise geoid model, the Remove-Compute-Restore (RCR) has been widely applied. It considers short, medium and long wavelengths derived from altitude data provided by Digital Terrain Models (DTM), terrestrial gravity data and global geopotential coefficients, respectively. In order to apply this technique, it is necessary to create procedures that compute gravity anomalies and geoid models, by the integration of different wavelengths, and that adjust these models to one local vertical datum. This research presents a developed package called GRAVTool based on MATLAB software to compute local geoid models by RCR technique and its application in a study area. The studied area comprehends the federal district of Brazil, with ~6000 km², wavy relief, heights varying from 600 m to 1340 m, located between the coordinates 48.25ºW, 15.45ºS and 47.33ºW, 16.06ºS. The results of the numerical example on the studied area show the local geoid model computed by the GRAVTool package (Figure), using 1377 terrestrial gravity data, SRTM data with 3 arc second of resolution, and geopotential coefficients of the EIGEN-6C4 model to degree 360. The accuracy of the computed model (σ = ± 0.071 m, RMS = 0.069 m, maximum = 0.178 m and minimum = -0.123 m) matches the uncertainty (σ =± 0.073) of 21 points randomly spaced where the geoid was computed by geometrical leveling technique supported by positioning GNSS. The results were also better than those achieved by Brazilian official regional geoid model (σ = ± 0.099 m, RMS = 0.208 m, maximum = 0.419 m and minimum = -0.040 m).
Research in network management techniques for tactical data communications networks
NASA Astrophysics Data System (ADS)
Boorstyn, R.; Kershenbaum, A.; Maglaris, B.; Sarachik, P.
1982-09-01
This is the final technical report for work performed on network management techniques for tactical data networks. It includes all technical papers that have been published during the control period. Research areas include Packet Network modelling, adaptive network routing, network design algorithms, network design techniques, and local area networks.
The effects of habitat, climate, and Barred Owls on long-term demography of Northern Spotted Owls
Dugger, Catherine; Forsman, Eric D.; Franklin, Alan B.; Davis, Raymond J.; White, Gary C.; Schwarz, Carl J.; Burnham, Kenneth P.; Nichols, James D.; Hines, James E.; Yackulic, Charles B.; Doherty, Paul F.; Bailey, Larissa; Clark, Darren A.; Ackers, Steven H.; Andrews, Lawrence S.; Augustine, Benjamin; Biswell, Brian L.; Blakesley, Jennifer; Carlson, Peter C.; Clement, Matthew J.; Diller, Lowell V.; Glenn, Elizabeth M.; Green, Adam; Gremel, Scott A.; Herter, Dale R.; Higley, J. Mark; Hobson, Jeremy; Horn, Rob B.; Huyvaert, Kathryn P.; McCafferty, Christopher; McDonald, Trent; McDonnell, Kevin; Olson, Gail S.; Reid, Janice A.; Rockweit, Jeremy; Ruiz, Viviana; Saenz, Jessica; Sovern, Stan G.
2016-01-01
Estimates of species' vital rates and an understanding of the factors affecting those parameters over time and space can provide crucial information for management and conservation. We used mark–recapture, reproductive output, and territory occupancy data collected during 1985–2013 to evaluate population processes of Northern Spotted Owls (Strix occidentalis caurina) in 11 study areas in Washington, Oregon, and northern California, USA. We estimated apparent survival, fecundity, recruitment, rate of population change, and local extinction and colonization rates, and investigated relationships between these parameters and the amount of suitable habitat, local and regional variation in meteorological conditions, and competition with Barred Owls (Strix varia). Data were analyzed for each area separately and in a meta-analysis of all areas combined, following a strict protocol for data collection, preparation, and analysis. We used mixed effects linear models for analyses of fecundity, Cormack-Jolly-Seber open population models for analyses of apparent annual survival (ϕ), and a reparameterization of the Jolly-Seber capture–recapture model (i.e. reverse Jolly-Seber; RJS) to estimate annual rates of population change (λRJS) and recruitment. We also modeled territory occupancy dynamics of Northern Spotted Owls and Barred Owls in each study area using 2-species occupancy models. Estimated mean annual rates of population change (λ) suggested that Spotted Owl populations declined from 1.2% to 8.4% per year depending on the study area. The weighted mean estimate of λ for all study areas was 0.962 (± 0.019 SE; 95% CI: 0.925–0.999), indicating an estimated range-wide decline of 3.8% per year from 1985 to 2013. Variation in recruitment rates across the range of the Spotted Owl was best explained by an interaction between total winter precipitation and mean minimum winter temperature. Thus, recruitment rates were highest when both total precipitation (29 cm) and minimum winter temperature (−9.5°C) were lowest. Barred Owl presence was associated with increased local extinction rates of Spotted Owl pairs for all 11 study areas. Habitat covariates were related to extinction rates for Spotted Owl pairs in 8 of 11 study areas, and a greater amount of suitable owl habitat was generally associated with decreased extinction rates. We observed negative effects of Barred Owl presence on colonization rates of Spotted Owl pairs in 5 of 11 study areas. The total amount of suitable Spotted Owl habitat was positively associated with colonization rates in 5 areas, and more habitat disturbance was associated with lower colonization rates in 2 areas. We observed strong declines in derived estimates of occupancy in all study areas. Mean fecundity of females was highest for adults (0.309 ± 0.027 SE), intermediate for 2-yr-olds (0.179 ± 0.040 SE), and lowest for 1-yr-olds (0.065 ± 0.022 SE). The presence of Barred Owls and habitat covariates explained little of the temporal variation in fecundity in most study areas. Climate covariates occurred in competitive fecundity models in 8 of 11 study areas, but support for these relationships was generally weak. The fecundity meta-analysis resulted in 6 competitive models, all of which included the additive effects of geographic region and annual time variation. The 2 top-ranked models also weakly supported the additive negative effects of the amount of suitable core area habitat, Barred Owl presence, and the amount of edge habitat on fecundity. We found strong support for a negative effect of Barred Owl presence on apparent survival of Spotted Owls in 10 of 11 study areas, but found few strong effects of habitat on survival at the study area scale. Climate covariates occurred in top or competitive survival models for 10 of 11 study areas, and in most cases the relationships were as predicted; however, there was little consistency among areas regarding the relative importance of specific climate covariates. In contrast, meta-analysis results suggested that Spotted Owl survival was higher across all study areas when the Pacific Decadal Oscillation (PDO) was in a warming phase and the Southern Oscillation Index (SOI) was negative, with a strongly negative SOI indicative of El Niño events. The best model that included the Barred Owl covariate (BO) was ranked 4th and also included the PDO covariate, but the BO effect was strongly negative. Our results indicated that Northern Spotted Owl populations were declining throughout the range of the subspecies and that annual rates of decline were accelerating in many areas. We observed strong evidence that Barred Owls negatively affected Spotted Owl populations, primarily by decreasing apparent survival and increasing local territory extinction rates. However, the amount of suitable owl habitat, local weather, and regional climatic patterns also were related to survival, occupancy (via colonization rate), recruitment, and, to a lesser extent, fecundity, although there was inconsistency in regard to which covariates were important for particular demographic parameters or across study areas. In the study areas where habitat was an important source of variation for Spotted Owl demographics, vital rates were generally positively associated with a greater amount of suitable owl habitat. However, Barred Owl densities may now be high enough across the range of the Northern Spotted Owl that, despite the continued management and conservation of suitable owl habitat on federal lands, the long-term prognosis for the persistence of Northern Spotted Owls may be in question without additional management intervention. Based on our study, the removal of Barred Owls from the Green Diamond Resources (GDR) study area had rapid, positive effects on Northern Spotted Owl survival and the rate of population change, supporting the hypothesis that, along with habitat conservation and management, Barred Owl removal may be able to slow or reverse Northern Spotted Owl population declines on at least a localized scale.
Horn, Folkert K; Mardin, Christian Y; Laemmer, Robert; Baleanu, Delia; Juenemann, Anselm M; Kruse, Friedrich E; Tornow, Ralf P
2009-05-01
To study the correlation between local perimetric field defects and glaucoma-induced thickness reduction of the nerve layer measured in the peripapillary area with scanning laser polarimetry (SLP) and spectral domain optical coherence tomography (SOCT) and to compare the results with those of a theoretical model. The thickness of the retinal nerve fiber layer was determined in 32 sectors (11.25 degrees each) by using SLP with variable cornea compensation (GDxVCC; Laser Diagnostics, San Diego, CA) and the newly introduced high-resolution SOCT (Spectralis; Heidelberg Engineering, Heidelberg, Germany). Eighty-eight healthy subjects served as control subjects, to determine the thickness deviation in patients with glaucoma. The relationship between glaucomatous nerve fiber reduction and visual field losses was calculated in six nerve fiber bundle-related areas. Sixty-four patients at different stages of open-angle glaucoma and 26 patients with ocular hypertension underwent perimetry (Octopus G1; Haag-Streit, Köniz, Switzerland) and measurements with the two morphometric techniques. Sector-shaped analyses between local perimetric losses and reduction of the retinal nerve fiber layer thickness showed a significant association for corresponding areas except for the central visual field in SLP. Correlation coefficients were highest in the area of the nasal inferior visual field (SOCT, -0.81; SLP, -0.57). A linear model describes the association between structural and functional damage. Localized perimetric defects can be explained by reduced nerve fiber layer thickness. The data indicate that the present SOCT is useful for determining the functional-structural relationship in peripapillary areas and that association between perimetric defects and corresponding nerve fiber losses is stronger for SOCT than for the present SLP. (ClinicalTrials.gov number, NCT00494923.).
Automatic Coregistration for Multiview SAR Images in Urban Areas
NASA Astrophysics Data System (ADS)
Xiang, Y.; Kang, W.; Wang, F.; You, H.
2017-09-01
Due to the high resolution property and the side-looking mechanism of SAR sensors, complex buildings structures make the registration of SAR images in urban areas becomes very hard. In order to solve the problem, an automatic and robust coregistration approach for multiview high resolution SAR images is proposed in the paper, which consists of three main modules. First, both the reference image and the sensed image are segmented into two parts, urban areas and nonurban areas. Urban areas caused by double or multiple scattering in a SAR image have a tendency to show higher local mean and local variance values compared with general homogeneous regions due to the complex structural information. Based on this criterion, building areas are extracted. After obtaining the target regions, L-shape structures are detected using the SAR phase congruency model and Hough transform. The double bounce scatterings formed by wall and ground are shown as strong L- or T-shapes, which are usually taken as the most reliable indicator for building detection. According to the assumption that buildings are rectangular and flat models, planimetric buildings are delineated using the L-shapes, then the reconstructed target areas are obtained. For the orignal areas and the reconstructed target areas, the SAR-SIFT matching algorithm is implemented. Finally, correct corresponding points are extracted by the fast sample consensus (FSC) and the transformation model is also derived. The experimental results on a pair of multiview TerraSAR images with 1-m resolution show that the proposed approach gives a robust and precise registration performance, compared with the orignal SAR-SIFT method.
NASA Astrophysics Data System (ADS)
Revuelto, J.; Dumont, M.; Tuzet, F.; Vionnet, V.; Lafaysse, M.; Lecourt, G.; Vernay, M.; Morin, S.; Cosme, E.; Six, D.; Rabatel, A.
2017-12-01
Nowadays snowpack models show a good capability in simulating the evolution of snow in mountain areas. However singular deviations of meteorological forcing and shortcomings in the modelling of snow physical processes, when accumulated on time along a snow season, could produce large deviations from real snowpack state. The evaluation of these deviations is usually assessed with on-site observations from automatic weather stations. Nevertheless the location of these stations could strongly influence the results of these evaluations since local topography may have a marked influence on snowpack evolution. Despite the evaluation of snowpack models with automatic weather stations usually reveal good results, there exist a lack of large scale evaluations of simulations results on heterogeneous alpine terrain subjected to local topographic effects.This work firstly presents a complete evaluation of the detailed snowpack model Crocus over an extended mountain area, the Arve upper catchment (western European Alps). This catchment has a wide elevation range with a large area above 2000m a.s.l. and/or glaciated. The evaluation compares results obtained with distributed and semi-distributed simulations (the latter nowadays used on the operational forecasting). Daily observations of the snow covered area from MODIS satellite sensor, seasonal glacier surface mass balance evolution measured in more than 65 locations and the galciers annual equilibrium line altitude from Landsat/Spot/Aster satellites, have been used for model evaluation. Additionally the latest advances in producing ensemble snowpack simulations for assimilating satellite reflectance data over extended areas will be presented. These advances comprises the generation of an ensemble of downscaled high-resolution meteorological forcing from meso-scale meteorological models and the application of a particle filter scheme for assimilating satellite observations. Despite the results are prefatory, they show a good potential improving snowpack forecasting capabilities.
A Symmetric Time-Varying Cluster Rate of Descent Model
NASA Technical Reports Server (NTRS)
Ray, Eric S.
2015-01-01
A model of the time-varying rate of descent of the Orion vehicle was developed based on the observed correlation between canopy projected area and drag coefficient. This initial version of the model assumes cluster symmetry and only varies the vertical component of velocity. The cluster fly-out angle is modeled as a series of sine waves based on flight test data. The projected area of each canopy is synchronized with the primary fly-out angle mode. The sudden loss of projected area during canopy collisions is modeled at minimum fly-out angles, leading to brief increases in rate of descent. The cluster geometry is converted to drag coefficient using empirically derived constants. A more complete model is under development, which computes the aerodynamic response of each canopy to its local incidence angle.
Chimera regimes in a ring of oscillators with local nonlinear interaction
NASA Astrophysics Data System (ADS)
Shepelev, Igor A.; Zakharova, Anna; Vadivasova, Tatiana E.
2017-03-01
One of important problems concerning chimera states is the conditions of their existence and stability. Until now, it was assumed that chimeras could arise only in ensembles with nonlocal character of interactions. However, this assumption is not exactly right. In some special cases chimeras can be realized for local type of coupling [1-3]. We propose a simple model of ensemble with local coupling when chimeras are realized. This model is a ring of linear oscillators with the local nonlinear unidirectional interaction. Chimera structures in the ring are found using computer simulations for wide area of values of parameters. Diagram of the regimes on plane of control parameters is plotted and scenario of chimera destruction are studied when the parameters are changed.
Thornton, Lukar E; Lamb, Karen E; Ball, Kylie
2016-12-01
Features of the built environment provide opportunities to engage in both healthy and unhealthy behaviours. Access to a high number of fast food restaurants may encourage greater consumption of fast food products. The distribution of fast food restaurants at a state-level has not previously been reported in Australia. Using the location of 537 fast food restaurants from four major chains (McDonald׳s, KFC, Hungry Jacks, and Red Rooster), this study examined fast food restaurant locations across the state of Victoria relative to area-level disadvantage, urban-regional locality (classified as Major Cities, Inner Regional, or Outer Regional), and around schools. Findings revealed greater locational access to fast food restaurants in more socioeconomically disadvantaged areas (compared to areas with lower levels of disadvantage), nearby to secondary schools (compared to primary schools), and nearby to primary and secondary schools within the most disadvantaged areas of the major city region (compared to primary and secondary schools in areas with lower levels of disadvantage). Adjusted models showed no significant difference in location according to urban-regional locality. Knowledge of the distribution of fast food restaurants in Australia will assist local authorities to target potential policy mechanisms, such as planning regulations, where they are most needed.
Bemanian, Amin; Beyer, Kirsten M M
2017-04-01
Background: The Black-to-White disparity in breast cancer survival is increasing, and racial residential segregation is a potential driver for this trend. However, study findings have been mixed, and no study has comprehensively compared the effectiveness of different local-level segregation metrics in explaining cancer survival. Methods: We proposed a set of new local segregation metrics named local exposure and isolation (LEx/Is) and compared our new local isolation metric with two related metrics, the location quotient (LQ) and the index of concentration at extremes (ICE), across the 102 largest U.S. metropolitan areas. Then, using case data from the Milwaukee, WI, metropolitan area, we used proportional hazards models to explore associations between segregation and breast cancer survival. Results: Across the 102 metropolitan areas, the new local isolation metric was less skewed than the LQ or ICE. Across all races, Hispanic isolation was associated with poorer all-cause survival, and Hispanic LQ and Hispanic-White ICE were found to be associated with poorer survival for both breast cancer-specific and all-cause mortality. For Black patients, Black LQ was associated with lower all-cause mortality and Black local isolation was associated with reduced all-cause and breast cancer-specific mortality. ICE was found to suffer from high multicollinearity. Conclusions: Local segregation is associated with breast cancer survival, but associations varied based on patient race and metric employed. Impact: We highlight how selection of a segregation measure can alter study findings. These relationships need to be validated in other geographic areas. Cancer Epidemiol Biomarkers Prev; 26(4); 516-24. ©2017 AACR See all the articles in this CEBP Focus section, "Geospatial Approaches to Cancer Control and Population Sciences." ©2017 American Association for Cancer Research.
fMRI activation patterns in an analytic reasoning task: consistency with EEG source localization
NASA Astrophysics Data System (ADS)
Li, Bian; Vasanta, Kalyana C.; O'Boyle, Michael; Baker, Mary C.; Nutter, Brian; Mitra, Sunanda
2010-03-01
Functional magnetic resonance imaging (fMRI) is used to model brain activation patterns associated with various perceptual and cognitive processes as reflected by the hemodynamic (BOLD) response. While many sensory and motor tasks are associated with relatively simple activation patterns in localized regions, higher-order cognitive tasks may produce activity in many different brain areas involving complex neural circuitry. We applied a recently proposed probabilistic independent component analysis technique (PICA) to determine the true dimensionality of the fMRI data and used EEG localization to identify the common activated patterns (mapped as Brodmann areas) associated with a complex cognitive task like analytic reasoning. Our preliminary study suggests that a hybrid GLM/PICA analysis may reveal additional regions of activation (beyond simple GLM) that are consistent with electroencephalography (EEG) source localization patterns.
Psychophysics and Neuronal Bases of Sound Localization in Humans
Ahveninen, Jyrki; Kopco, Norbert; Jääskeläinen, Iiro P.
2013-01-01
Localization of sound sources is a considerable computational challenge for the human brain. Whereas the visual system can process basic spatial information in parallel, the auditory system lacks a straightforward correspondence between external spatial locations and sensory receptive fields. Consequently, the question how different acoustic features supporting spatial hearing are represented in the central nervous system is still open. Functional neuroimaging studies in humans have provided evidence for a posterior auditory “where” pathway that encompasses non-primary auditory cortex areas, including the planum temporale (PT) and posterior superior temporal gyrus (STG), which are strongly activated by horizontal sound direction changes, distance changes, and movement. However, these areas are also activated by a wide variety of other stimulus features, posing a challenge for the interpretation that the underlying areas are purely spatial. This review discusses behavioral and neuroimaging studies on sound localization, and some of the competing models of representation of auditory space in humans. PMID:23886698
Geletič, Jan; Lehnert, Michal; Savić, Stevan; Milošević, Dragan
2018-05-15
This study uses the MUKLIMO_3 urban climate model (in German, Mikroskaliges Urbanes KLImaMOdell in 3-Dimensionen) and measurements from an urban climate network in order to simulate, validate and analyse the spatiotemporal pattern of human thermal comfort outdoors in the city of Brno (Czech Republic) during a heat-wave period. HUMIDEX, a heat index designed to quantify human heat exposure, was employed to assess thermal comfort, employing air temperature and relative humidity data. The city was divided into local climate zones (LCZs) in order to access differences in intra-urban thermal comfort. Validation of the model results, based on the measurement dates within the urban monitoring network, confirmed that the MUKLIMO_3 micro-scale model had the capacity to simulate the main spatiotemporal patterns of thermal comfort in an urban area and its vicinity. The results suggested that statistically significant differences in outdoor thermal comfort exist in the majority of cases between different LCZs. The most built-up LCZ types (LCZs 2, 3, 5, 8 and 10) were disclosed as the most uncomfortable areas of the city. Hence, conditions of great discomfort (HUMIDEX >40) were recorded in these areas, mainly in the afternoon hours (from 13.00 to 18.00 CEST), while some thermal discomfort continued overnight. In contrast, HUMIDEX values in sparsely built-up LCZ 9 and non-urban LCZs were substantially lower and indicated better thermal conditions for the urban population. Interestingly, the model captured a local increase of HUMIDEX values arising out of air humidity in LCZs with the presence of more vegetation (LCZs A and B) and in the vicinity of larger bodies of water (LCZ G). Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Imhoff, Marc L.; Bounoua, Lahouari; Harriss, Robert; Harriss, Robert; Wells, Gordon; Glantz, Michael; Dukhovny, Victor A.; Orlovsky, Leah
2007-01-01
An inverse process approach using satellite-driven (MODIS) biophysical modeling was used to quantitatively assess water resource demand in semi-arid and arid agricultural lands by comparing the carbon and water flux modeled under both equilibrium (in balance with prevailing climate) and non-equilibrium (irrigated) conditions. Since satellite observations of irrigated areas show higher leaf area indices (LAI) than is supportable by local precipitation, we postulate that the degree to which irrigated lands vary from equilibrium conditions is related to the amount of irrigation water used. For an observation year we used MODIS vegetation indices, local climate data, and the SiB2 photosynthesis-conductance model to examine the relationship between climate and the water stress function for a given grid-cell and observed leaf area. To estimate the minimum amount of supplemental water required for an observed cell, we added enough precipitation to the prevailing climatology at each time step to minimize the water stress function and bring the soil to field capacity. The experiment was conducted on irrigated lands on the U.S. Mexico border and Central Asia and compared to estimates of irrigation water used.
Equity in Educational Resources at the School Level in Korea
ERIC Educational Resources Information Center
Woo, Myung Suk
2010-01-01
This paper analyzed the equity of resources at the elementary school level in Korea using hierarchical linear modeling (HLM). The data included 2,327 Korean public elementary schools in 101 Local Governments within five Local Educational Offices (LEOs). This study found that schools in low property tax per resident areas receive fewer grants,…
Educational Mismatch and Spatial Flexibility in Italian Local Labour Markets
ERIC Educational Resources Information Center
Croce, Giuseppe; Ghignoni, Emanuela
2015-01-01
According to recent literature, this paper highlights the relevance of spatial mobility as an explanatory factor of the individual risk of job-education mismatch. To investigate this causal link, we use individual information about daily home-to-work commuting time and choices to relocate in a different local area to get a job. Our model takes…
NASA Technical Reports Server (NTRS)
Kidd, Chris; Chapman, Lee
2012-01-01
Meteorological measurements within urban areas are becoming increasingly important due to the accentuating effects of climate change upon the Urban Heat Island (UHI). However, ensuring that such measurements are representative of the local area is often difficult due to the diversity of the urban environment. The evaluation of sites is important for both new sites and for the relocation of established sites to ensure that long term changes in the meteorological and climatological conditions continue to be faithfully recorded. Site selection is traditionally carried out in the field using both local knowledge and visual inspection. This paper exploits and assesses the use of lidar-derived digital surface models (DSMs) to quantitatively aid the site selection process. This is acheived by combining the DSM with a solar model, first to generate spatial maps of sky view factors and sun-hour potential and second, to generate site-specific views of the horizon. The results show that such a technique is a useful first-step approach to identify key sites that may be further evaluated for the location of meteorological stations within urban areas.
Decentralized control experiments on NASA's flexible grid
NASA Technical Reports Server (NTRS)
Ozguner, U.; Yurkowich, S.; Martin, J., III; Al-Abbass, F.
1986-01-01
Methods arising from the area of decentralized control are emerging for analysis and control synthesis for large flexible structures. In this paper the control strategy involves a decentralized model reference adaptive approach using a variable structure control. Local models are formulated based on desired damping and response time in a model-following scheme for various modal configurations. Variable structure controllers are then designed employing co-located angular rate and position feedback. In this scheme local control forces the system to move on a local sliding mode in some local error space. An important feature of this approach is that the local subsystem is made insensitive to dynamical interactions with other subsystems once the sliding surface is reached. Experiments based on the above have been performed for NASA's flexible grid experimental apparatus. The grid is designed to admit appreciable low-frequency structural dynamics, and allows for implementation of distributed computing components, inertial sensors, and actuation devices. A finite-element analysis of the grid provides the model for control system design and simulation; results of several simulations are reported on here, and a discussion of application experiments on the apparatus is presented.
Model-based analysis of pattern motion processing in mouse primary visual cortex
Muir, Dylan R.; Roth, Morgane M.; Helmchen, Fritjof; Kampa, Björn M.
2015-01-01
Neurons in sensory areas of neocortex exhibit responses tuned to specific features of the environment. In visual cortex, information about features such as edges or textures with particular orientations must be integrated to recognize a visual scene or object. Connectivity studies in rodent cortex have revealed that neurons make specific connections within sub-networks sharing common input tuning. In principle, this sub-network architecture enables local cortical circuits to integrate sensory information. However, whether feature integration indeed occurs locally in rodent primary sensory areas has not been examined directly. We studied local integration of sensory features in primary visual cortex (V1) of the mouse by presenting drifting grating and plaid stimuli, while recording the activity of neuronal populations with two-photon calcium imaging. Using a Bayesian model-based analysis framework, we classified single-cell responses as being selective for either individual grating components or for moving plaid patterns. Rather than relying on trial-averaged responses, our model-based framework takes into account single-trial responses and can easily be extended to consider any number of arbitrary predictive models. Our analysis method was able to successfully classify significantly more responses than traditional partial correlation (PC) analysis, and provides a rigorous statistical framework to rank any number of models and reject poorly performing models. We also found a large proportion of cells that respond strongly to only one stimulus class. In addition, a quarter of selectively responding neurons had more complex responses that could not be explained by any simple integration model. Our results show that a broad range of pattern integration processes already take place at the level of V1. This diversity of integration is consistent with processing of visual inputs by local sub-networks within V1 that are tuned to combinations of sensory features. PMID:26300738
The Impacts of Miyun Reservoirs on Local Climate: A Modeling Study Using WRF-Lake Model
NASA Astrophysics Data System (ADS)
Wang, F.; Xing, Y.; Sun, T.; Ni, G.
2016-12-01
Large reservoirs, where a great volume of water is stored for various purposes (e.g. hydropower generation, irrigation, transportation, recreation, etc.), play a key role in regional hydrological cycles as well as in modulating the local climate. In particular, to understand the impacts of reservoirs on local climate, numeric simulations are widely conducted using different weather prediction (NWP) models. However, some of these NWP models treat reservoirs as water surfaces with prescribed surface temperatures and thus the hydrothermal dynamics within water bodies are missing. In this study, we use the Weather Research Forecasting (WRF) model coupled with a lake module, which is equipped with the ability to simulate full thermal dynamics of water, to examine the impacts of Miyun Reservoir, the largest reservoir in Beijing, on the local climate. Simulations are conducted from July 1 to August 1, 2010 in a one-way nesting mode of three spatial resolutions (i.e., 9 km, 3 km and 1 km). Comparison between the simulation results and observations shows a general agreement and demonstrates the ability of WRF-Lake in simulating the summertime climate in the study area. The simulation results indicate the Miyun Reservoir significantly reduces daytime air temperature at 2 m above the water surface and its surroundings by a maximum of 4 K as compared with the case without a reservoir, and such impacts diminish at a distance of 90 km from the reservoir center (a decrease of 0.2 K). At night, a maximum increase of 1.4 K is simulated for the air temperature above the reservoir, but the influencing area is very limited. The reservoir also increases the local air specific humidity by 0.0025 kg kg-1. In addition to near surface meteorology, surface energy balance is remarkably changed as compared to the case without a reservoir: a daytime decrease of 100 W m-2 and a nighttime increase of 15 W m-2are simulated for the sensible heat flux. It is noteworthy that the latent heat flux decreases in the daytime and slightly increases at night. It should also be noted that the influencing area is strongly dependent on the wind direction. This study provides a better understanding of the water-atmosphere interactions by reservoirs and their impacts on local climate.
On the Visual Input Driving Human Smooth-Pursuit Eye Movements
NASA Technical Reports Server (NTRS)
Stone, Leland S.; Beutter, Brent R.; Lorenceau, Jean
1996-01-01
Current computational models of smooth-pursuit eye movements assume that the primary visual input is local retinal-image motion (often referred to as retinal slip). However, we show that humans can pursue object motion with considerable accuracy, even in the presence of conflicting local image motion. This finding indicates that the visual cortical area(s) controlling pursuit must be able to perform a spatio-temporal integration of local image motion into a signal related to object motion. We also provide evidence that the object-motion signal that drives pursuit is related to the signal that supports perception. We conclude that current models of pursuit should be modified to include a visual input that encodes perceived object motion and not merely retinal image motion. Finally, our findings suggest that the measurement of eye movements can be used to monitor visual perception, with particular value in applied settings as this non-intrusive approach would not require interrupting ongoing work or training.
Miao, Yucong; Liu, Shuhua; Zheng, Yijia; Wang, Shu; Chen, Bicheng; Zheng, Hui; Zhao, Jingchuan
2015-04-01
Currently, the Chinese central government is considering plans to build a trilateral economic sphere in the Bohai Bay area, including Beijing, Tianjin and Hebei (BTH), where haze pollution frequently occurs. To achieve sustainable development, it is necessary to understand the physical mechanism of the haze pollution there. Therefore, the pollutant transport mechanisms of a haze event over the BTH region from 23 to 24 September 2011 were studied using the Weather Research and Forecasting model and the FLEXible-PARTicle dispersion model to understand the effects of the local atmospheric circulations and atmospheric boundary layer structure. Results suggested that the penetration by sea-breeze could strengthen the vertical dispersion by lifting up the planetary boundary layer height (PBLH) and carry the local pollutants to the downstream areas; in the early night, two elevated pollution layers (EPLs) may be generated over the mountain areas: the pollutants in the upper EPL at the altitude of 2-2.5 km were favored to disperse by long-range transport, while the lower EPL at the altitude of 1 km may serve as a reservoir, and the pollutants there could be transported downward and contribute to the surface air pollution. The intensity of the sea-land and mountain-valley breeze circulations played an important role in the vertical transport and distribution of pollutants. It was also found that the diurnal evolution of the PBLH is important for the vertical dispersion of the pollutants, which is strongly affected by the local atmospheric circulations and the distribution of urban areas. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Panzera, Francesco; D'Amico, Sebastiano; Lombardo, Giuseppe; Longo, Emanuela
2016-07-01
The Siracusa area, located in the southeastern coast of Sicily (Italy), is mainly characterized by the outcropping of a limestone formation. This lithotype, which is overlain by soft sediments such as sandy clays and detritus, can be considered as the local bedrock. Records of ambient noise, processed through spectral ratio techniques, were used to assess the dynamic properties of a sample survey of both reinforced concrete and masonry buildings. The results show that experimental periods of existing buildings are always lower than those proposed by the European seismic code. This disagreement could be related to the role played by stiff masonry infills, as well as the influence of adjacent buildings, especially in downtown Siracusa. Numerical modeling was also used to study the effect of local geology on the seismic site response of the Siracusa area. Seismic urban scenarios were simulated considering a moderate magnitude earthquake (December 13th, 1990) to assess the shaking level of the different outcropping formations. Spectral acceleration at different periods, peak ground acceleration, and velocity were obtained through a stochastic approach adopting an extended source model code. Seismic ground motion scenario highlighted that amplification mainly occurs in the sedimentary deposits that are widespread to the south of the study area as well as on some spot areas where coarse detritus and sandy clay outcrop. On the other hand, the level of shaking appears moderate in all zones with outcropping limestone and volcanics.
Mehl, Steffen W.; Hill, Mary C.
2011-01-01
This report documents modifications to the Streamflow-Routing Package (SFR2) to route streamflow through grids constructed using the multiple-refined-areas capability of shared node Local Grid Refinement (LGR) of MODFLOW-2005. MODFLOW-2005 is the U.S. Geological Survey modular, three-dimensional, finite-difference groundwater-flow model. LGR provides the capability to simulate groundwater flow by using one or more block-shaped, higher resolution local grids (child model) within a coarser grid (parent model). LGR accomplishes this by iteratively coupling separate MODFLOW-2005 models such that heads and fluxes are balanced across the shared interfacing boundaries. Compatibility with SFR2 allows for streamflow routing across grids. LGR can be used in two- and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined groundwater systems.
Automated map sharpening by maximization of detail and connectivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terwilliger, Thomas C.; Sobolev, Oleg V.; Afonine, Pavel V.
An algorithm for automatic map sharpening is presented that is based on optimization of the detail and connectivity of the sharpened map. The detail in the map is reflected in the surface area of an iso-contour surface that contains a fixed fraction of the volume of the map, where a map with high level of detail has a high surface area. The connectivity of the sharpened map is reflected in the number of connected regions defined by the same iso-contour surfaces, where a map with high connectivity has a small number of connected regions. By combining these two measures inmore » a metric termed the `adjusted surface area', map quality can be evaluated in an automated fashion. This metric was used to choose optimal map-sharpening parameters without reference to a model or other interpretations of the map. Map sharpening by optimization of the adjusted surface area can be carried out for a map as a whole or it can be carried out locally, yielding a locally sharpened map. To evaluate the performance of various approaches, a simple metric based on map–model correlation that can reproduce visual choices of optimally sharpened maps was used. The map–model correlation is calculated using a model withBfactors (atomic displacement factors; ADPs) set to zero. Finally, this model-based metric was used to evaluate map sharpening and to evaluate map-sharpening approaches, and it was found that optimization of the adjusted surface area can be an effective tool for map sharpening.« less
Automated map sharpening by maximization of detail and connectivity
Terwilliger, Thomas C.; Sobolev, Oleg V.; Afonine, Pavel V.; ...
2018-05-18
An algorithm for automatic map sharpening is presented that is based on optimization of the detail and connectivity of the sharpened map. The detail in the map is reflected in the surface area of an iso-contour surface that contains a fixed fraction of the volume of the map, where a map with high level of detail has a high surface area. The connectivity of the sharpened map is reflected in the number of connected regions defined by the same iso-contour surfaces, where a map with high connectivity has a small number of connected regions. By combining these two measures inmore » a metric termed the `adjusted surface area', map quality can be evaluated in an automated fashion. This metric was used to choose optimal map-sharpening parameters without reference to a model or other interpretations of the map. Map sharpening by optimization of the adjusted surface area can be carried out for a map as a whole or it can be carried out locally, yielding a locally sharpened map. To evaluate the performance of various approaches, a simple metric based on map–model correlation that can reproduce visual choices of optimally sharpened maps was used. The map–model correlation is calculated using a model withBfactors (atomic displacement factors; ADPs) set to zero. Finally, this model-based metric was used to evaluate map sharpening and to evaluate map-sharpening approaches, and it was found that optimization of the adjusted surface area can be an effective tool for map sharpening.« less
Aeolian dunes as ground truth for atmospheric modeling on Mars
Hayward, R.K.; Titus, T.N.; Michaels, T.I.; Fenton, L.K.; Colaprete, A.; Christensen, P.R.
2009-01-01
Martian aeolian dunes preserve a record of atmosphere/surface interaction on a variety of scales, serving as ground truth for both Global Climate Models (GCMs) and mesoscale climate models, such as the Mars Regional Atmospheric Modeling System (MRAMS). We hypothesize that the location of dune fields, expressed globally by geographic distribution and locally by dune centroid azimuth (DCA), may record the long-term integration of atmospheric activity across a broad area, preserving GCM-scale atmospheric trends. In contrast, individual dune morphology, as expressed in slipface orientation (SF), may be more sensitive to localized variations in circulation, preserving topographically controlled mesoscale trends. We test this hypothesis by comparing the geographic distribution, DCA, and SF of dunes with output from the Ames Mars GCM and, at a local study site, with output from MRAMS. When compared to the GCM: 1) dunes generally lie adjacent to areas with strongest winds, 2) DCA agrees fairly well with GCM modeled wind directions in smooth-floored craters, and 3) SF does not agree well with GCM modeled wind directions. When compared to MRAMS modeled winds at our study site: 1) DCA generally coincides with the part of the crater where modeled mean winds are weak, and 2) SFs are consistent with some weak, topographically influenced modeled winds. We conclude that: 1) geographic distribution may be valuable as ground truth for GCMs, 2) DCA may be useful as ground truth for both GCM and mesoscale models, and 3) SF may be useful as ground truth for mesoscale models. Copyright 2009 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Hellén, Heidi; Kangas, Leena; Kousa, Anu; Vestenius, Mika; Teinilä, Kimmo; Karppinen, Ari; Kukkonen, Jaakko; Niemi, Jarkko V.
2017-03-01
Even though emission inventories indicate that wood combustion is a major source of polycyclic aromatic hydrocarbons (PAHs), estimating its impacts on PAH concentration in ambient air remains challenging. In this study the effect of local small-scale wood combustion on the benzo[a]pyrene (BaP) concentrations in ambient air in the Helsinki metropolitan area in Finland is evaluated, using ambient air measurements, emission estimates, and dispersion modeling. The measurements were conducted at 12 different locations during the period from 2007 to 2015. The spatial distributions of annual average BaP concentrations originating from wood combustion were predicted for four of those years: 2008, 2011, 2013, and 2014. According to both the measurements and the dispersion modeling, the European Union target value for the annual average BaP concentrations (1 ng m-3) was clearly exceeded in certain suburban detached-house areas. However, in most of the other urban areas, including the center of Helsinki, the concentrations were below the target value. The measured BaP concentrations highly correlated with the measured levoglucosan concentrations in the suburban detached-house areas. In street canyons, the measured concentrations of BaP were at the same level as those in the urban background, clearly lower than those in suburban detached-house areas. The predicted annual average concentrations matched with the measured concentrations fairly well. Both the measurements and the modeling clearly indicated that wood combustion was the main local source of ambient air BaP in the Helsinki metropolitan area.
Silveira, Maria J; Copeland, Laurel A; Feudtner, Chris
2006-07-01
We tested whether local cultural and social values regarding the use of health care are associated with the likelihood of home death, using variation in local rates of home births as a proxy for geographic variation in these values. For each of 351110 adult decedents in Washington state who died from 1989 through 1998, we calculated the home birth rate in each zip code during the year of death and then used multivariate regression modeling to estimate the relation between the likelihood of home death and the local rate of home births. Individuals residing in local areas with higher home birth rates had greater adjusted likelihood of dying at home (odds ratio [OR]=1.04 for each percentage point increase in home birth rate; 95% confidence interval [CI] = 1.03, 1.05). Moreover, the likelihood of dying at home increased with local wealth (OR=1.04 per $10000; 95% CI=1.02, 1.06) but decreased with local hospital bed availability (OR=0.96 per 1000 beds; 95% CI=0.95, 0.97). The likelihood of home death is associated with local rates of home births, suggesting the influence of health care use preferences.
Reyes-Garcia, Victoria; Ruiz-Mallen, Isabel; Porter-Bolland, Luciana; Garcia-Frapolli, Eduardo; Ellis, Edward A; Mendez, Maria-Elena; Pritchard, Diana J; Sanchez-Gonzalez, María-Consuelo
2013-08-01
Since the 1990s national and international programs have aimed to legitimize local conservation initiatives that might provide an alternative to the formal systems of state-managed or otherwise externally driven protected areas. We used discourse analysis (130 semistructured interviews with key informants) and descriptive statistics (679 surveys) to compare local perceptions of and experiences with state-driven versus community-driven conservation initiatives. We conducted our research in 6 communities in southeastern Mexico. Formalization of local conservation initiatives did not seem to be based on local knowledge and practices. Although interviewees thought community-based initiatives generated less conflict than state-managed conservation initiatives, the community-based initiatives conformed to the biodiversity conservation paradigm that emphasizes restricted use of and access to resources. This restrictive approach to community-based conservation in Mexico, promoted through state and international conservation organizations, increased the area of protected land and had local support but was not built on locally relevant and multifunctional landscapes, a model that community-based conservation is assumed to advance. © 2013 Society for Conservation Biology.
Dynamic fuzzy modeling of storm water infiltration in urban fractured aquifers
Hong, Y.-S.; Rosen, Michael R.; Reeves, R.R.
2002-01-01
In an urban fractured-rock aquifer in the Mt. Eden area of Auckland, New Zealand, disposal of storm water is via "soakholes" drilled directly into the top of the fractured basalt rock. The dynamic response of the groundwater level due to the storm water infiltration shows characteristics of a strongly time-varying system. A dynamic fuzzy modeling approach, which is based on multiple local models that are weighted using fuzzy membership functions, has been developed to identify and predict groundwater level fluctuations caused by storm water infiltration. The dynamic fuzzy model is initialized by the fuzzy clustering algorithm and optimized by the gradient-descent algorithm in order to effectively derive the multiple local models-each of which is associated with a locally valid model that represents the groundwater level state as a response to different intensities of rainfall events. The results have shown that even if the number of fuzzy local models derived is small, the fuzzy modeling approach developed provides good prediction results despite the highly time-varying nature of this urban fractured-rock aquifer system. Further, it allows interpretable representations of the dynamic behavior of the groundwater system due to storm water infiltration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henson, Kriste M; Gou; ias, Konstadinos G
The ability to transfer national travel patterns to a local population is of interest when attempting to model megaregions or areas that exceed metropolitan planning organization (MPO) boundaries. At the core of this research are questions about the connection between travel behavior and land use, urban form, and accessibility. As a part of this process, a group of land use variables have been identified to define activity and travel patterns for individuals and households. The 2001 National Household Travel Survey (NHTS) participants are divided into categories comprised of a set of latent cluster models representing persons, travel, and land use.more » These are compared to two sets of cluster models constructed for two local travel surveys. Comparison of means statistical tests are used to assess differences among sociodemographic groups residing in localities with similar land uses. The results show that the NHTS and the local surveys share mean population activity and travel characteristics. However, these similarities mask behavioral heterogeneity that are shown when distributions of activity and travel behavior are examined. Therefore, data from a national household travel survey cannot be used to model local population travel characteristics if the goal to model the actual distributions and not mean travel behavior characteristics.« less
Anemone, Robert; Emerson, Charles; Conroy, Glenn
2011-01-01
Chance and serendipity have long played a role in the location of productive fossil localities by vertebrate paleontologists and paleoanthropologists. We offer an alternative approach, informed by methods borrowed from the geographic information sciences and using recent advances in computer science, to more efficiently predict where fossil localities might be found. Our model uses an artificial neural network (ANN) that is trained to recognize the spectral characteristics of known productive localities and other land cover classes, such as forest, wetlands, and scrubland, within a study area based on the analysis of remotely sensed (RS) imagery. Using these spectral signatures, the model then classifies other pixels throughout the study area. The results of the neural network classification can be examined and further manipulated within a geographic information systems (GIS) software package. While we have developed and tested this model on fossil mammal localities in deposits of Paleocene and Eocene age in the Great Divide Basin of southwestern Wyoming, a similar analytical approach can be easily applied to fossil-bearing sedimentary deposits of any age in any part of the world. We suggest that new analytical tools and methods of the geographic sciences, including remote sensing and geographic information systems, are poised to greatly enrich paleoanthropological investigations, and that these new methods should be embraced by field workers in the search for, and geospatial analysis of, fossil primates and hominins. Copyright © 2011 Wiley-Liss, Inc.
Modelling the Health Impact of an English Sugary Drinks Duty at National and Local Levels
Collins, Brendan; Capewell, Simon; O’Flaherty, Martin; Timpson, Hannah; Razzaq, Abdul; Cheater, Sylvia; Ireland, Robin; Bromley, Helen
2015-01-01
Background Increasing evidence associates excess refined sugar intakes with obesity, Type 2 diabetes and heart disease. Worryingly, the estimated volume of sugary drinks purchased in the UK has more than doubled between 1975 and 2007, from 510ml to 1140ml per person per week. We aimed to estimate the potential impact of a duty on sugar sweetened beverages (SSBs) at a local level in England, hypothesising that a duty could reduce obesity and related diseases. Methods and Findings We modelled the potential impact of a 20% sugary drinks duty on local authorities in England between 2010 and 2030. We synthesised data obtained from the British National Diet and Nutrition Survey (NDNS), drinks manufacturers, Office for National Statistics, and from previous studies. This produced a modelled population of 41 million adults in 326 lower tier local authorities in England. This analysis suggests that a 20% SSB duty could result in approximately 2,400 fewer diabetes cases, 1,700 fewer stroke and coronary heart disease cases, 400 fewer cancer cases, and gain some 41,000 Quality Adjusted Life Years (QALYs) per year across England. The duty might have the biggest impact in urban areas with young populations. Conclusions This study adds to the growing body of evidence suggesting health benefits for a duty on sugary drinks. It might also usefully provide results at an area level to inform local price interventions in England. PMID:26121677
A general framework for predicting delayed responses of ecological communities to habitat loss.
Chen, Youhua; Shen, Tsung-Jen
2017-04-20
Although biodiversity crisis at different spatial scales has been well recognised, the phenomena of extinction debt and immigration credit at a crossing-scale context are, at best, unclear. Based on two community patterns, regional species abundance distribution (SAD) and spatial abundance distribution (SAAD), Kitzes and Harte (2015) presented a macroecological framework for predicting post-disturbance delayed extinction patterns in the entire ecological community. In this study, we further expand this basic framework to predict diverse time-lagged effects of habitat destruction on local communities. Specifically, our generalisation of KH's model could address the questions that could not be answered previously: (1) How many species are subjected to delayed extinction in a local community when habitat is destructed in other areas? (2) How do rare or endemic species contribute to extinction debt or immigration credit of the local community? (3) How will species differ between two local areas? From the demonstrations using two SAD models (single-parameter lognormal and logseries), the predicted patterns of the debt, credit, and change in the fraction of unique species can vary, but with consistencies and depending on several factors. The general framework deepens the understanding of the theoretical effects of habitat loss on community dynamic patterns in local samples.
Fois, Mauro; Fenu, Giuseppe; Cañadas, Eva Maria; Bacchetta, Gianluigi
2017-01-01
Due to the impelling urgency of plant conservation and the increasing availability of high resolution spatially interpolated (e.g. climate variables) and categorical data (e.g. land cover and vegetation type), many recent studies have examined relationships among plant species distributions and a diversified set of explanatory factors; nevertheless, global and regional patterns of endemic plant richness remain in many cases unexplained. One such pattern is the 294 endemic vascular plant taxa recorded on a 1 km resolution grid on the environmentally heterogeneous island of Sardinia. Sixteen predictors, including topographic, geological, climatic and anthropogenic factors, were used to model local (number of taxa inside each 1 km grid cell) Endemic Vascular Plant Richness (EVPR). Generalized Linear Models were used to evaluate how each factor affected the distribution of local EVPR. Significant relationships with local EVPR and topographic, geological, climatic and anthropogenic factors were found. In particular, elevation explained the larger fraction of variation in endemic richness but other environmental factors (e.g. precipitation seasonality and slope) and human-related factors (e.g. the Human Influence Index (HII) and the proportion of anthropogenic land uses) were, respectively, positively and negatively correlated with local EVPR. Regional EVPR (number of endemic taxa inside each 100 m elevation interval) was also measured to compare local and regional EVPR patterns along the elevation gradient. In contrast to local, regional EVPR tended to decrease with altitude partly due to the decreasing area covered along altitude. The contrasting results between local and regional patterns suggest that local richness increases as a result of increased interspecific aggregation along altitude, whereas regional richness may depend on the interaction between area and altitude. This suggests that the shape and magnitude of the species-area relationship might vary with elevation. This work provides-for the first time in Sardinia-a comprehensive analysis of the influence of environmental factors on the pattern of EVPR in the entire territory, from sea level to the highest peaks. Elevation, as well as other environmental and human-related variables, were confirmed to be influencing factors. In addition, variations of EVPR patterns at regional-to-local spatial scales inspire next investigations on the possible interaction between elevation and area in explaining patterns of plant species richness.
Critical Source Area Delineation: The representation of hydrology in effective erosion modeling.
NASA Astrophysics Data System (ADS)
Fowler, A.; Boll, J.; Brooks, E. S.; Boylan, R. D.
2017-12-01
Despite decades of conservation and millions of conservation dollars, nonpoint source sediment loading associated with agricultural disturbance continues to be a significant problem in many parts of the world. Local and national conservation organizations are interested in targeting critical source areas for control strategy implementation. Currently, conservation practices are selected and located based on the Revised Universal Soil Loss Equation (RUSLE) hillslope erosion modeling, and the National Resource Conservation Service will soon be transiting to the Watershed Erosion Predict Project (WEPP) model for the same purpose. We present an assessment of critical source areas targeted with RUSLE, WEPP and a regionally validated hydrology model, the Soil Moisture Routing (SMR) model, to compare the location of critical areas for sediment loading and the effectiveness of control strategies. The three models are compared for the Palouse dryland cropping region of the inland northwest, with un-calibrated analyses of the Kamiache watershed using publicly available soils, land-use and long-term simulated climate data. Critical source areas were mapped and the side-by-side comparison exposes the differences in the location and timing of runoff and erosion predictions. RUSLE results appear most sensitive to slope driving processes associated with infiltration excess. SMR captured saturation excess driven runoff events located at the toe slope position, while WEPP was able to capture both infiltration excess and saturation excess processes depending on soil type and management. A methodology is presented for down-scaling basin level screening to the hillslope management scale for local control strategies. Information on the location of runoff and erosion, driven by the runoff mechanism, is critical for effective treatment and conservation.
10 CFR 420.15 - Minimum criteria for required program activities for plans.
Code of Federal Regulations, 2010 CFR
2010-01-01
... standards shall be adopted by the State as a model code for those local governments of the State for which... employees; (x) Urban area traffic restrictions; (xi) Geographical or time restrictions on automobile use; or... Organization, unless no Metropolitan Planning Organization exists in the urbanized area, and not be...
Providing Services for Handicapped Persons in Rural/Sparsely Populated Areas.
ERIC Educational Resources Information Center
Weatherman, Richard
The experiences of the 3-year Minnesota Severely Handicapped Delivery System Project have led to a model which utilizes resources of regional systems as key elements of a differentiated system for educational service delivery to the handicapped in rural areas and involves state education agencies, statewide regional centers, local education units,…
Sun, Jared H; Shing, Rachel; Twomey, Michele; Wallis, Lee A
2014-01-01
Resource-constrained countries are in extreme need of pre-hospital emergency care systems. However, current popular strategies to provide pre-hospital emergency care are inappropriate for and beyond the means of a resource-constrained country, and so new ones are needed-ones that can both function in an under-developed area's particular context and be done with the area's limited resources. In this study, we used a two-location pilot and consensus approach to develop a strategy to implement and support pre-hospital emergency care in one such developing, resource-constrained area: the Western Cape province of South Africa. Local community members are trained to be emergency first aid responders who can provide immediate, on-scene care until a Transporter can take the patient to the hospital. Management of the system is done through local Community Based Organizations, which can adapt the model to their communities as needed to ensure local appropriateness and feasibility. Within a community, the system is implemented in a graduated manner based on available resources, and is designed to not rely on the whole system being implemented first to provide partial function. The University of Cape Town's Division of Emergency Medicine and the Western Cape's provincial METRO EMS intend to follow this model, along with sharing it with other South African provinces. Copyright © 2012 Elsevier Ltd. All rights reserved.
First results from a temporary seismological network in the Southern Dead Sea area
NASA Astrophysics Data System (ADS)
Braeuer, B.; Asch, G.; Hofstetter, A.; Haberland, C.; Darwish, J.; El-Kelani, R.; Weber, M.
2008-12-01
Within the framework of the international project DESIRE (Dead Sea Integrated Research Project) a local seismological network was operated in the Southern Dead Sea area as a co-operation between the GFZ Germany, GII Israel, NRA Jordan and An-Najah National Univer-sity Palestine. From October 2006 to March 2008 about 65 short period (38) and broadband (27) instruments recorded continuously the seismicity of the Dead Sea basin. This investiga-tion aims in studying the deeper structure of the Dead Sea area based on the distribution of the local seismicity. About 500 local events have been recorded and more than 300 have been processed up to now. A dominant feature in this first part of the dataset we found a cluster of 78 earthquakes, occurring in February 2007, including multiplets. We determined a 1D-reference model of P- and S-velocities using Velest (Kissling et al., 1994). The model shows a high velocity increase between 6 and 10 km depth. This could be related to a prominent reflector found in the results of the wide angle reflection experiment in the area in 2006 (Mechie et al., 2008). The station corrections suggest a 2D structure with the basin in the middle and the shoulders on the east and west. Additionally the results are compared with receiver function and magnetotelluric studies, part of the DESIRE project.
An assessment of the effects of cell size on AGNPS modeling of watershed runoff
Wu, S.-S.; Usery, E.L.; Finn, M.P.; Bosch, D.D.
2008-01-01
This study investigates the changes in simulated watershed runoff from the Agricultural NonPoint Source (AGNPS) pollution model as a function of model input cell size resolution for eight different cell sizes (30 m, 60 m, 120 m, 210 m, 240 m, 480 m, 960 m, and 1920 m) for the Little River Watershed (Georgia, USA). Overland cell runoff (area-weighted cell runoff), total runoff volume, clustering statistics, and hot spot patterns were examined for the different cell sizes and trends identified. Total runoff volumes decreased with increasing cell size. Using data sets of 210-m cell size or smaller in conjunction with a representative watershed boundary allows one to model the runoff volumes within 0.2 percent accuracy. The runoff clustering statistics decrease with increasing cell size; a cell size of 960 m or smaller is necessary to indicate significant high-runoff clustering. Runoff hot spot areas have a decreasing trend with increasing cell size; a cell size of 240 m or smaller is required to detect important hot spots. Conclusions regarding cell size effects on runoff estimation cannot be applied to local watershed areas due to the inconsistent changes of runoff volume with cell size; but, optimal cells sizes for clustering and hot spot analyses are applicable to local watershed areas due to the consistent trends.
Neubauer, Florian B; Sederberg, Audrey; MacLean, Jason N
2014-01-01
During the generalization of epileptic seizures, pathological activity in one brain area recruits distant brain structures into joint synchronous discharges. However, it remains unknown whether specific changes in local circuit activity are related to the aberrant recruitment of anatomically distant structures into epileptiform discharges. Further, it is not known whether aberrant areas recruit or entrain healthy ones into pathological activity. Here we study the dynamics of local circuit activity during the spread of epileptiform discharges in the zero-magnesium in vitro model of epilepsy. We employ high-speed multi-photon imaging in combination with dual whole-cell recordings in acute thalamocortical (TC) slices of the juvenile mouse to characterize the generalization of epileptic activity between neocortex and thalamus. We find that, although both structures are exposed to zero-magnesium, the initial onset of focal epileptiform discharge occurs in cortex. This suggests that local recurrent connectivity that is particularly prevalent in cortex is important for the initiation of seizure activity. Subsequent recruitment of thalamus into joint, generalized discharges is coincident with an increase in the coherence of local cortical circuit activity that itself does not depend on thalamus. Finally, the intensity of population discharges is positively correlated between both brain areas. This suggests that during and after seizure generalization not only the timing but also the amplitude of epileptiform discharges in thalamus is entrained by cortex. Together these results suggest a central role of neocortical activity for the onset and the structure of pathological recruitment of thalamus into joint synchronous epileptiform discharges.
Neubauer, Florian B.; Sederberg, Audrey; MacLean, Jason N.
2014-01-01
During the generalization of epileptic seizures, pathological activity in one brain area recruits distant brain structures into joint synchronous discharges. However, it remains unknown whether specific changes in local circuit activity are related to the aberrant recruitment of anatomically distant structures into epileptiform discharges. Further, it is not known whether aberrant areas recruit or entrain healthy ones into pathological activity. Here we study the dynamics of local circuit activity during the spread of epileptiform discharges in the zero-magnesium in vitro model of epilepsy. We employ high-speed multi-photon imaging in combination with dual whole-cell recordings in acute thalamocortical (TC) slices of the juvenile mouse to characterize the generalization of epileptic activity between neocortex and thalamus. We find that, although both structures are exposed to zero-magnesium, the initial onset of focal epileptiform discharge occurs in cortex. This suggests that local recurrent connectivity that is particularly prevalent in cortex is important for the initiation of seizure activity. Subsequent recruitment of thalamus into joint, generalized discharges is coincident with an increase in the coherence of local cortical circuit activity that itself does not depend on thalamus. Finally, the intensity of population discharges is positively correlated between both brain areas. This suggests that during and after seizure generalization not only the timing but also the amplitude of epileptiform discharges in thalamus is entrained by cortex. Together these results suggest a central role of neocortical activity for the onset and the structure of pathological recruitment of thalamus into joint synchronous epileptiform discharges. PMID:25232306
Queueing models for token and slotted ring networks. Thesis
NASA Technical Reports Server (NTRS)
Peden, Jeffery H.
1990-01-01
Currently the end-to-end delay characteristics of very high speed local area networks are not well understood. The transmission speed of computer networks is increasing, and local area networks especially are finding increasing use in real time systems. Ring networks operation is generally well understood for both token rings and slotted rings. There is, however, a severe lack of queueing models for high layer operation. There are several factors which contribute to the processing delay of a packet, as opposed to the transmission delay, e.g., packet priority, its length, the user load, the processor load, the use of priority preemption, the use of preemption at packet reception, the number of processors, the number of protocol processing layers, the speed of each processor, and queue length limitations. Currently existing medium access queueing models are extended by adding modeling techniques which will handle exhaustive limited service both with and without priority traffic, and modeling capabilities are extended into the upper layers of the OSI model. Some of the model are parameterized solution methods, since it is shown that certain models do not exist as parameterized solutions, but rather as solution methods.
NASA Astrophysics Data System (ADS)
Taufik, Ahmad
2007-10-01
This article discusses a formulation of problem mapping and preliminary surveys of total people participation in a local wind pump (LWP) water supply in term of technological implementation of renewable energy (RE) in rural-isolated areas and small-medium islands in Indonesia. The formulation was constructed in order to enhance and to promote the local product of RE across Indonesia. It was also addressed to accommodate local potencies, barriers and opportunities into a priority map. Moreover, it was designed into five aspects such as (1) local technology of the RE: a case of pilot project of the LWP; (2) environmental-cultural aspects related to global issues of energy-renewable energy; (3) potencies and barriers corresponding to local, national, regional and international contents; (4) education and training and (5) gender participation. To focus the formulation, serial preliminary surveys were conducted in five major areas, namely: (1) survey on support and barrier factors of the aspects; (2) strategic planning model, a concept A-B-G which stands for Academician-Business people-Government; (3) survey on background based knowledge on energy conservation; (4) survey on gender participation in energy conservation and (5) survey on local stakeholder involvement. Throughout the surveys, it has been notified that the concept needs to be developed to any level of its component since its elements were identified in tolerance values such as high potency value of the LWP development (95%); a strong potency of rural area application (88%); a medium background of energy, energy conservation (EC) identified in a range of 56%-72%, sufficient support from local stakeholders and gender participation.
A Practical, Robust and Fast Method for Location Localization in Range-Based Systems.
Huang, Shiping; Wu, Zhifeng; Misra, Anil
2017-12-11
Location localization technology is used in a number of industrial and civil applications. Real time location localization accuracy is highly dependent on the quality of the distance measurements and efficiency of solving the localization equations. In this paper, we provide a novel approach to solve the nonlinear localization equations efficiently and simultaneously eliminate the bad measurement data in range-based systems. A geometric intersection model was developed to narrow the target search area, where Newton's Method and the Direct Search Method are used to search for the unknown position. Not only does the geometric intersection model offer a small bounded search domain for Newton's Method and the Direct Search Method, but also it can self-correct bad measurement data. The Direct Search Method is useful for the coarse localization or small target search domain, while the Newton's Method can be used for accurate localization. For accurate localization, by utilizing the proposed Modified Newton's Method (MNM), challenges of avoiding the local extrema, singularities, and initial value choice are addressed. The applicability and robustness of the developed method has been demonstrated by experiments with an indoor system.
Monahan, William B.; Cook, Tammy; Melton, Forrest; Connor, Jeff; Bobowski, Ben
2013-01-01
Resource managers at parks and other protected areas are increasingly expected to factor climate change explicitly into their decision making frameworks. However, most protected areas are small relative to the geographic ranges of species being managed, so forecasts need to consider local adaptation and community dynamics that are correlated with climate and affect distributions inside protected area boundaries. Additionally, niche theory suggests that species' physiological capacities to respond to climate change may be underestimated when forecasts fail to consider the full breadth of climates occupied by the species rangewide. Here, using correlative species distribution models that contrast estimates of climatic sensitivity inferred from the two spatial extents, we quantify the response of limber pine (Pinus flexilis) to climate change in Rocky Mountain National Park (Colorado, USA). Models are trained locally within the park where limber pine is the community dominant tree species, a distinct structural-compositional vegetation class of interest to managers, and also rangewide, as suggested by niche theory. Model forecasts through 2100 under two representative concentration pathways (RCP 4.5 and 8.5 W/m2) show that the distribution of limber pine in the park is expected to move upslope in elevation, but changes in total and core patch area remain highly uncertain. Most of this uncertainty is biological, as magnitudes of projected change are considerably more variable between the two spatial extents used in model training than they are between RCPs, and novel future climates only affect local model predictions associated with RCP 8.5 after 2091. Combined, these results illustrate the importance of accounting for unknowns in species' climatic sensitivities when forecasting distributional scenarios that are used to inform management decisions. We discuss how our results for limber pine may be interpreted in the context of climate change vulnerability and used to help guide adaptive management. PMID:24391742
Tear-Film Evaporation Rate from Simultaneous Ocular-Surface Temperature and Tear-Breakup Area.
Dursch, Thomas J; Li, Wing; Taraz, Baseem; Lin, Meng C; Radke, Clayton J
2018-01-01
A corneal heat-transfer model is presented to quantify simultaneous measurements of fluorescein tear-breakup area (TBA) and ocular-surface temperature (OST). By accounting for disruption of the tear-film lipid layer (TFLL), we report evaporation rates through lipid-covered tear. The modified heat-transfer model provides new insights into evaporative dry eye. A quantitative analysis is presented to assess human aqueous tear evaporation rate (TER) through intact TFLLs from simultaneous in vivo measurement of time-dependent infrared OST and fluorescein TBA. We interpret simultaneous OST and TBA measurements using an extended heat-transfer model. We hypothesize that TBAs are ineffectively insulated by the TFLL and therefore exhibit higher TER than does that for a well-insulting TFLL-covered tear. As time proceeds, TBAs increase in number and size, thereby increasing the cornea area-averaged TER and decreasing OST. Tear-breakup areas were assessed from image analysis of fluorescein tear-film-breakup video recordings and are included in the heat-transfer description of OST. Model-predicted OSTs agree well with clinical experiments. Percent reductions in TER of lipid-covered tear range from 50 to 95% of that for pure water, in good agreement with literature. The physical picture of noninsulating or ruptured TFLL spots followed by enhanced evaporation from underlying cooler tear-film ruptures is consistent with the evaporative-driven mechanism for local tear rupture. A quantitative analysis is presented of in vivo TER from simultaneous clinical measurement of transient OST and TBA. The new heat-transfer model accounts for increased TER through expanding TBAs. Tear evaporation rate varies strongly across the cornea because lipid is effectively missing over tear-rupture troughs. The result is local faster evaporation compared with nonruptured, thick lipid-covered tear. Evaporative-driven tear-film ruptures deepen to a thickness where fluorescein quenching commences and local salinity rises to uncomfortable levels. Mitigation of tear-film rupture may therefore reduce dry eye-related symptoms.
Monahan, William B; Cook, Tammy; Melton, Forrest; Connor, Jeff; Bobowski, Ben
2013-01-01
Resource managers at parks and other protected areas are increasingly expected to factor climate change explicitly into their decision making frameworks. However, most protected areas are small relative to the geographic ranges of species being managed, so forecasts need to consider local adaptation and community dynamics that are correlated with climate and affect distributions inside protected area boundaries. Additionally, niche theory suggests that species' physiological capacities to respond to climate change may be underestimated when forecasts fail to consider the full breadth of climates occupied by the species rangewide. Here, using correlative species distribution models that contrast estimates of climatic sensitivity inferred from the two spatial extents, we quantify the response of limber pine (Pinus flexilis) to climate change in Rocky Mountain National Park (Colorado, USA). Models are trained locally within the park where limber pine is the community dominant tree species, a distinct structural-compositional vegetation class of interest to managers, and also rangewide, as suggested by niche theory. Model forecasts through 2100 under two representative concentration pathways (RCP 4.5 and 8.5 W/m(2)) show that the distribution of limber pine in the park is expected to move upslope in elevation, but changes in total and core patch area remain highly uncertain. Most of this uncertainty is biological, as magnitudes of projected change are considerably more variable between the two spatial extents used in model training than they are between RCPs, and novel future climates only affect local model predictions associated with RCP 8.5 after 2091. Combined, these results illustrate the importance of accounting for unknowns in species' climatic sensitivities when forecasting distributional scenarios that are used to inform management decisions. We discuss how our results for limber pine may be interpreted in the context of climate change vulnerability and used to help guide adaptive management.
Fukushima Daiichi Nuclear Plant accident: Atmospheric and oceanic impacts over the five years.
Hirose, Katsumi
2016-06-01
The Fukushima Daiichi Nuclear Plant (FDNPP) accident resulted in huge environmental and socioeconomic impacts to Japan. To document the actual environmental and socioeconomic effects of the FDNPP accident, we describe here atmospheric and marine contamination due to radionuclides released from the FDNPP accident using papers published during past five years, in which temporal and spatial variations of FDNPP-derived radionuclides in air, deposition and seawater and their mapping are recorded by local, regional and global monitoring activities. High radioactivity-contaminated area in land were formed by the dispersion of the radioactive cloud and precipitation, depending on land topography and local meteorological conditions, whereas extremely high concentrations of (131)I and radiocesium in seawater occurred due to direct release of radioactivity-contaminated stagnant water in addition to atmospheric deposition. For both of atmosphere and ocean, numerical model simulations, including local, regional and global-scale modeling, were extensively employed to evaluate source terms of the FDNPP-derived radionuclides from the monitoring data. These models also provided predictions of the dispersion and high deposition areas of the FDNPP-derived radionuclides. However, there are significant differences between the observed and simulated values. Then, the monitoring data would give a good opportunity to improve numerical modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dew, Angela; Bulkeley, Kim; Veitch, Craig; Bundy, Anita; Lincoln, Michelle; Brentnall, Jennie; Gallego, Gisselle; Griffiths, Scott
2013-07-01
There is a global movement for people with a disability towards person-centred practices with opportunities for self-determination and choice. Person-centred approaches may involve individual funding (IF) for the purchase of required support. A shift to a person-centred model and IF should allow people with a disability and their carers greater choice in therapy access. However, individuals who live in rural and remote areas have less choice and access to therapy services than their metropolitan counterparts. Drawing on data from a larger study into therapy service delivery in a rural and remote area of New South Wales, Australia, this study describes some benefits and barriers to using IF to access therapy services in rural areas. Ten carers and 60 service providers participated in audio-recorded focus groups and individual interviews during which IF was discussed. Transcribed data were analysed using thematic analysis and constant comparison. Greater access to and choice of therapy providers were identified as benefits of IF. Four barriers were identified: (i) lack of information and advice; (ii) limited local service options and capacity; (iii) higher costs and fewer services and (iv) complexity of self-managing packages. A range of strategies is required to address the barriers to using IF in rural and remote areas. Carers indicated a need for: accessible information; a local contact person for support and guidance; adequate financial compensation to offset additional travel expenses and coordinated eligibility and accountability systems. Service providers required: coordinated cross-sector approaches; local workforce planning to address therapist shortages; certainty around service viability and growth; clear policies and procedures around implementation of IF. This study highlights the need for further discussion and research about how to overcome the barriers to the optimal use of an IF model for those living in rural and remote areas. © 2013 John Wiley & Sons Ltd.
Jia, Peng; Xierali, Imam M
2015-09-17
Congestive heart failure (CHF) is a major public health problem in the United States and is a leading cause of hospitalization in the elderly population. Understanding the health care travel patterns of CHF patients and their underlying cause is important to balance the supply and demand for local hospital resources. This article explores the nonclinical factors that prompt CHF patients to seek distant instead of local hospitalization. Local hospitalization was defined as inpatients staying within hospital service areas, and distant hospitalization was defined as inpatients traveling outside hospital service areas, based on individual hospital discharge data in 2011 generated by a Dartmouth-Swiss hybrid approach. Multiple logistic and linear regression models were used to compare the travel patterns of different groups of inpatients in Florida. Black patients, no-charge patients, patients living in large metropolitan areas, and patients with a low socioeconomic status were more likely to seek local hospitalization than were white patients, those who were privately insured, those who lived in rural areas, and those with a high socioeconomic status, respectively. Findings indicate that different populations diagnosed with CHF had different travel patterns for hospitalization. Changes or disruptions in local hospital supply could differentially affect different groups in a population. Policy makers could target efforts to CHF patients who are less likely to travel to seek treatment.
Xierali, Imam M.
2015-01-01
Introduction Congestive heart failure (CHF) is a major public health problem in the United States and is a leading cause of hospitalization in the elderly population. Understanding the health care travel patterns of CHF patients and their underlying cause is important to balance the supply and demand for local hospital resources. This article explores the nonclinical factors that prompt CHF patients to seek distant instead of local hospitalization. Methods Local hospitalization was defined as inpatients staying within hospital service areas, and distant hospitalization was defined as inpatients traveling outside hospital service areas, based on individual hospital discharge data in 2011 generated by a Dartmouth–Swiss hybrid approach. Multiple logistic and linear regression models were used to compare the travel patterns of different groups of inpatients in Florida. Results Black patients, no-charge patients, patients living in large metropolitan areas, and patients with a low socioeconomic status were more likely to seek local hospitalization than were white patients, those who were privately insured, those who lived in rural areas, and those with a high socioeconomic status, respectively. Conclusion Findings indicate that different populations diagnosed with CHF had different travel patterns for hospitalization. Changes or disruptions in local hospital supply could differentially affect different groups in a population. Policy makers could target efforts to CHF patients who are less likely to travel to seek treatment. PMID:26378896
Instantons and entanglement entropy
NASA Astrophysics Data System (ADS)
Bhattacharyya, Arpan; Hung, Ling-Yan; Melby-Thompson, Charles M.
2017-10-01
We would like to put the area law — believed to be obeyed by entanglement entropies in the ground state of a local field theory — to scrutiny in the presence of nonperturbative effects. We study instanton corrections to entanglement entropy in various models whose instanton contributions are well understood, including U(1) gauge theory in 2+1 dimensions and false vacuum decay in ϕ 4 theory, and we demonstrate that the area law is indeed obeyed in these models. We also perform numerical computations for toy wavefunctions mimicking the theta vacuum of the (1+1)-dimensional Schwinger model. Our results indicate that such superpositions exhibit no more violation of the area law than the logarithmic behavior of a single Fermi surface.
Modelling tidal current energy extraction in large area using a three-dimensional estuary model
NASA Astrophysics Data System (ADS)
Chen, Yaling; Lin, Binliang; Lin, Jie
2014-11-01
This paper presents a three-dimensional modelling study for simulating tidal current energy extraction in large areas, with a momentum sink term being added into the momentum equations. Due to the limits of computational capacity, the grid size of the numerical model is generally much larger than the turbine rotor diameter. Two models, i.e. a local grid refinement model and a coarse grid model, are employed and an idealized estuary is set up. The local grid refinement model is constructed to simulate the power generation of an isolated turbine and its impacts on hydrodynamics. The model is then used to determine the deployment of turbine farm and quantify a combined thrust coefficient for multiple turbines located in a grid element of coarse grid model. The model results indicate that the performance of power extraction is affected by array deployment, with more power generation from outer rows than inner rows due to velocity deficit influence of upstream turbines. Model results also demonstrate that the large-scale turbine farm has significant effects on the hydrodynamics. The tidal currents are attenuated within the turbine swept area, and both upstream and downstream of the array. While the currents are accelerated above and below turbines, which is contributed to speeding up the wake mixing process behind the arrays. The water levels are heightened in both low and high water levels as the turbine array spanning the full width of estuary. The magnitude of water level change is found to increase with the array expansion, especially at the low water level.
Projected change in East Asian summer monsoon by dynamic downscaling: Moisture budget analysis
NASA Astrophysics Data System (ADS)
Jung, Chun-Yong; Shin, Ho-Jeong; Jang, Chan Joo; Kim, Hyung-Jin
2015-02-01
The summer monsoon considerably affects water resource and natural hazards including flood and drought in East Asia, one of the world's most densely populated area. In this study, we investigate future changes in summer precipitation over East Asia induced by global warming through dynamical downscaling with the Weather Research and Forecast model. We have selected a global model from the Coupled Model Intercomparison Project Phase 5 based on an objective evaluation for East Asian summer monsoon and applied its climate change under Representative Concentration Pathway 4.5 scenario to a pseudo global warming method. Unlike the previous studies that focused on a qualitative description of projected precipitation changes over East Asia, this study tried to identify the physical causes of the precipitation changes by analyzing a local moisture budget. Projected changes in precipitation over the eastern foothills area of Tibetan Plateau including Sichuan Basin and Yangtze River displayed a contrasting pattern: a decrease in its northern area and an increase in its southern area. A local moisture budget analysis indicated the precipitation increase over the southern area can be mainly attributed to an increase in horizontal wind convergence and surface evaporation. On the other hand, the precipitation decrease over the northern area can be largely explained by horizontal advection of dry air from the northern continent and by divergent wind flow. Regional changes in future precipitation in East Asia are likely to be attributed to different mechanisms which can be better resolved by regional dynamical downscaling.
Damage identification in beams using speckle shearography and an optimal spatial sampling
NASA Astrophysics Data System (ADS)
Mininni, M.; Gabriele, S.; Lopes, H.; Araújo dos Santos, J. V.
2016-10-01
Over the years, the derivatives of modal displacement and rotation fields have been used to localize damage in beams. Usually, the derivatives are computed by applying finite differences. The finite differences propagate and amplify the errors that exist in real measurements, and thus, it is necessary to minimize this problem in order to get reliable damage localizations. A way to decrease the propagation and amplification of the errors is to select an optimal spatial sampling. This paper presents a technique where an optimal spatial sampling of modal rotation fields is computed and used to obtain the modal curvatures. Experimental measurements of modal rotation fields of a beam with single and multiple damages are obtained with shearography, which is an optical technique allowing the measurement of full-fields. These measurements are used to test the validity of the optimal sampling technique for the improvement of damage localization in real structures. An investigation on the ability of a model updating technique to quantify the damage is also reported. The model updating technique is defined by the variations of measured natural frequencies and measured modal rotations and aims at calibrating the values of the second moment of area in the damaged areas, which were previously localized.
Tracking the sources and sinks of local marine debris in Hawai'i.
Carson, Henry S; Lamson, Megan R; Nakashima, Davis; Toloumu, Derek; Hafner, Jan; Maximenko, Nikolai; McDermid, Karla J
2013-03-01
Plastic pollution has biological, chemical, and physical effects on marine environments and economic effects on coastal communities. These effects are acute on southeastern Hawai'i Island, where volunteers remove 16 metric tons of debris annually from a 15 km coastline. Although the majority is foreign-origin, a portion is locally-generated. We used floating debris-retention booms in two urban waterways to measure the input of debris from Hilo, the island's largest community, and released wooden drifters in nearby coastal waters to track the fate of that debris. In 205 days, 30 kilograms of debris (73.6% plastic) were retained from two watersheds comprising 10.2% of Hilo's developed land area. Of 851 wooden drifters released offshore of Hilo in four events, 23.3% were recovered locally, 1.4% at distant locations, and 6.5% on other islands. Comparisons with modeled surface currents and wind were mixed, indicating the importance of nearshore and tidal dynamics not included in the model. This study demonstrated that local pollutants can be retained nearby, contribute to the island's debris-accumulation area, and quickly contaminate other islands. Copyright © 2012 Elsevier Ltd. All rights reserved.
Rapid tsunami models and earthquake source parameters: Far-field and local applications
Geist, E.L.
2005-01-01
Rapid tsunami models have recently been developed to forecast far-field tsunami amplitudes from initial earthquake information (magnitude and hypocenter). Earthquake source parameters that directly affect tsunami generation as used in rapid tsunami models are examined, with particular attention to local versus far-field application of those models. First, validity of the assumption that the focal mechanism and type of faulting for tsunamigenic earthquakes is similar in a given region can be evaluated by measuring the seismic consistency of past events. Second, the assumption that slip occurs uniformly over an area of rupture will most often underestimate the amplitude and leading-wave steepness of the local tsunami. Third, sometimes large magnitude earthquakes will exhibit a high degree of spatial heterogeneity such that tsunami sources will be composed of distinct sub-events that can cause constructive and destructive interference in the wavefield away from the source. Using a stochastic source model, it is demonstrated that local tsunami amplitudes vary by as much as a factor of two or more, depending on the local bathymetry. If other earthquake source parameters such as focal depth or shear modulus are varied in addition to the slip distribution patterns, even greater uncertainty in local tsunami amplitude is expected for earthquakes of similar magnitude. Because of the short amount of time available to issue local warnings and because of the high degree of uncertainty associated with local, model-based forecasts as suggested by this study, direct wave height observations and a strong public education and preparedness program are critical for those regions near suspected tsunami sources.
Traffic-related particulate air pollution exposure in urban areas
NASA Astrophysics Data System (ADS)
Borrego, C.; Tchepel, O.; Costa, A. M.; Martins, H.; Ferreira, J.; Miranda, A. I.
In the last years, there has been an increase of scientific studies confirming that long- and short-term exposure to particulate matter (PM) pollution leads to adverse health effects. The development of a methodology for the determination of accumulated human exposure in urban areas is the main objective of the current work, combining information on concentrations at different microenvironments and population time-activity pattern data. A link between a mesoscale meteorological and dispersion model and a local scale air quality model was developed to define the boundary conditions for the local scale application. The time-activity pattern of the population was derived from statistical information for different sub-population groups and linked to digital city maps. Finally, the hourly PM 10 concentrations for indoor and outdoor microenvironments were estimated for the Lisbon city centre, which was chosen as the case-study, based on the local scale air quality model application for a selected period. This methodology is a first approach to estimate population exposure, calculated as the total daily values above the thresholds recommended for long- and short-term health effects. Obtained results reveal that in Lisbon city centre a large number of persons are exposed to PM levels exceeding the legislated limit value.
A coarse-to-fine approach for pericardial effusion localization and segmentation in chest CT scans
NASA Astrophysics Data System (ADS)
Liu, Jiamin; Chellamuthu, Karthik; Lu, Le; Bagheri, Mohammadhadi; Summers, Ronald M.
2018-02-01
Pericardial effusion on CT scans demonstrates very high shape and volume variability and very low contrast to adjacent structures. This inhibits traditional automated segmentation methods from achieving high accuracies. Deep neural networks have been widely used for image segmentation in CT scans. In this work, we present a two-stage method for pericardial effusion localization and segmentation. For the first step, we localize the pericardial area from the entire CT volume, providing a reliable bounding box for the more refined segmentation step. A coarse-scaled holistically-nested convolutional networks (HNN) model is trained on entire CT volume. The resulting HNN per-pixel probability maps are then threshold to produce a bounding box covering the pericardial area. For the second step, a fine-scaled HNN model is trained only on the bounding box region for effusion segmentation to reduce the background distraction. Quantitative evaluation is performed on a dataset of 25 CT scans of patient (1206 images) with pericardial effusion. The segmentation accuracy of our two-stage method, measured by Dice Similarity Coefficient (DSC), is 75.59+/-12.04%, which is significantly better than the segmentation accuracy (62.74+/-15.20%) of only using the coarse-scaled HNN model.
Integrated Modeling of the Human-Natural System to Improve Local Water Management and Planning
NASA Astrophysics Data System (ADS)
Gutowski, W. J., Jr.; Dziubanski, D.; Franz, K.; Goodwin, J.; Rehmann, C. R.; Simpkins, W. W.; Tesfastion, L.; Wanamaker, A. D.; Jie, Y.
2015-12-01
Communities across the world are experiencing the effects of unsustainable water management practices. Whether the problem is a lack of water, too much water, or water of degraded quality, finding acceptable solutions requires community-level efforts that integrate sound science with local needs and values. Our project develops both a software technology (agent-based hydrological modeling) and a social technology (a participatory approach to model development) that will allow communities to comprehensively address local water challenges. Using agent-based modeling (ABM), we are building a modeling system that includes a semi-distributed hydrologic process model coupled with agent (stakeholder) models. Information from the hydrologic model is conveyed to the agent models, which, along with economic information, determine appropriate agent actions that subsequently affect hydrology within the model. The iterative participatory modeling (IPM) process will assist with the continual development of the agent models. Further, IPM creates a learning environment in which all participants, including researchers, are co-exploring relevant data, possible scenarios and solutions, and viewpoints through continuous interactions. Our initial work focuses on the impact of flood mitigation and conservation efforts on reducing flooding in an urban area. We are applying all research elements above to the Squaw Creek watershed that flows through parts of four counties in central Iowa. The watershed offers many of the typical tensions encountered in Iowa, such as different perspectives on water management between upstream farmers and downstream urban areas, competition for various types of recreational services, and increasing absentee land ownership that may conflict with community values. Ultimately, climate change scenarios will be incorporated into the model to determine long term patterns that may develop within the social or natural system.
Population demographics of two local South Carolina mourning dove populations
McGowan, D.P.; Otis, D.L.
1998-01-01
The mourning dove (Zenaida macroura) call-count index had a significant (P 2,300 doves and examined >6,000 individuals during harvest bag checks. An age-specific band recovery model with time- and area-specific recovery rates, and constant survival rates, was chosen for estimation via Akaike's Information Criterion (AIC), likelihood ratio, and goodness-of-fit criteria. After-hatching-year (AHY) annual survival rate was 0.359 (SE = 0.056), and hatching-year (HY) annual survival rate was 0.118 (SE = 0.042). Average estimated recruitment per adult female into the prehunting season population was 3.40 (SE = 1.25) and 2.32 (SE = 0.46) for the 2 study areas. Our movement data support earlier hypotheses of nonmigratory breeding and harvested populations in South Carolina. Low survival rates and estimated population growth rate in the study areas may be representative only of small-scale areas that are heavily managed for dove hunting. Source-sink theory was used to develop a model of region-wide populations that is composed of source areas with positive growth rates and sink areas of declining growth. We suggest management of mourning doves in the Southeast might benefit from improved understanding of local population dynamics, as opposed to regional-scale population demographics.
A Satellite Model for Rural and Remote Social Work Field Education
ERIC Educational Resources Information Center
Bowles, Wendy; Duncombe, Rohena
2005-01-01
Social work field education is expanding in rural areas at a time when rural social work is under great strain. This paper discusses a new model for rural field education. In this "satellite" model, the university employs local senior social workers as university liaison staff to locate, organise, resource, support and assess social work…
Predicting diameters inside bark for 10 important hardwood species
Donald E. Hilt; Everette D. Rast; Herman J. Bailey
1983-01-01
General models for predicting DIB/DOB ratios up the stem, applicable over wide geographic areas, have been developed for 10 important hardwood species. Results indicate that the ratios either decrease or remain constant up the stem. Methods for adjusting the general models to local conditions are presented. The prediction models can be used in conjunction with optical...
Lassi, Zohra S; Aftab, Wafa; Ariff, Shabina; Kumar, Rohail; Hussain, Imtiaz; Musavi, Nabiha B; Memon, Zahid; Soofi, Sajid B; Bhutta, Zulfiqar A
2015-01-01
Various models and strategies have been implemented over the years in different parts of the world to improve maternal and newborn health (MNH) in conflict affected areas. These strategies are based on specific needs and acceptability of local communities. This paper has undertaken a systematic review of global and local (Pakistan) information from conflict areas on platforms of health service provision in the last 10 years and information on acceptability from local stakeholders on effective models of service delivery; and drafted key recommendations for improving coverage of health services in conflict affected areas. The literature search revealed ten studies that described MNH service delivery platforms. The results from the systematic review showed that with utilisation of community outreach services, the greatest impacts were observed in skilled birth attendance and antenatal consultation rates. Facility level services, on the other hand, showed that labour room services for an internally displaced population (IDP) improved antenatal care coverage, contraceptive prevalence rate and maternal mortality. Consultative meetings and discussions conducted in Quetta and Peshawar (capitals of conflict affected provinces) with relevant stakeholders revealed that no systematic models of MNH service delivery, especially tailored for conflict areas, are available. During conflict, even previously available services and infrastructure suffered due to various barriers specific to times of conflict and unrest. A number of barriers that hinder MNH services were discussed. Suggestions for improving MNH services in conflict areas were also laid down by participants. The review identified some important steps that can be undertaken to mitigate the effects of conflict on MNH services, which include: improve provision and access to infrastructure and equipment; development and training of healthcare providers; and advocacy at different levels for free access to healthcare services and for the introduction of the programme model in existing healthcare system. The obligation is enormous, however, for a sustainable programme, it is important to work closely with both the IDP and host community, and collaborating with the government and non-government organisations.
Gerardin, Jaline; Bever, Caitlin A; Bridenbecker, Daniel; Hamainza, Busiku; Silumbe, Kafula; Miller, John M; Eisele, Thomas P; Eckhoff, Philip A; Wenger, Edward A
2017-06-12
Reactive case detection could be a powerful tool in malaria elimination, as it selectively targets transmission pockets. However, field operations have yet to demonstrate under which conditions, if any, reactive case detection is best poised to push a region to elimination. This study uses mathematical modelling to assess how baseline transmission intensity and local interconnectedness affect the impact of reactive activities in the context of other possible intervention packages. Communities in Southern Province, Zambia, where elimination operations are currently underway, were used as representatives of three archetypes of malaria transmission: low-transmission, high household density; high-transmission, low household density; and high-transmission, high household density. Transmission at the spatially-connected household level was simulated with a dynamical model of malaria transmission, and local variation in vectorial capacity and intervention coverage were parameterized according to data collected from the area. Various potential intervention packages were imposed on each of the archetypical settings and the resulting likelihoods of elimination by the end of 2020 were compared. Simulations predict that success of elimination campaigns in both low- and high-transmission areas is strongly dependent on stemming the flow of imported infections, underscoring the need for regional-scale strategies capable of reducing transmission concurrently across many connected areas. In historically low-transmission areas, treatment of clinical malaria should form the cornerstone of elimination operations, as most malaria infections in these areas are symptomatic and onward transmission would be mitigated through health system strengthening; reactive case detection has minimal impact in these settings. In historically high-transmission areas, vector control and case management are crucial for limiting outbreak size, and the asymptomatic reservoir must be addressed through reactive case detection or mass drug campaigns. Reactive case detection is recommended only for settings where transmission has recently been reduced rather than all low-transmission settings. This is demonstrated in a modelling framework with strong out-of-sample accuracy across a range of transmission settings while including methodologies for understanding the most resource-effective allocations of health workers. This approach generalizes to providing a platform for planning rational scale-up of health systems based on locally-optimized impact according to simplified stratification.
A fingerprint classification algorithm based on combination of local and global information
NASA Astrophysics Data System (ADS)
Liu, Chongjin; Fu, Xiang; Bian, Junjie; Feng, Jufu
2011-12-01
Fingerprint recognition is one of the most important technologies in biometric identification and has been wildly applied in commercial and forensic areas. Fingerprint classification, as the fundamental procedure in fingerprint recognition, can sharply decrease the quantity for fingerprint matching and improve the efficiency of fingerprint recognition. Most fingerprint classification algorithms are based on the number and position of singular points. Because the singular points detecting method only considers the local information commonly, the classification algorithms are sensitive to noise. In this paper, we propose a novel fingerprint classification algorithm combining the local and global information of fingerprint. Firstly we use local information to detect singular points and measure their quality considering orientation structure and image texture in adjacent areas. Furthermore the global orientation model is adopted to measure the reliability of singular points group. Finally the local quality and global reliability is weighted to classify fingerprint. Experiments demonstrate the accuracy and effectivity of our algorithm especially for the poor quality fingerprint images.
McConville, Anna; Law, Bradley S.; Mahony, Michael J.
2013-01-01
Habitat modelling and predictive mapping are important tools for conservation planning, particularly for lesser known species such as many insectivorous bats. However, the scale at which modelling is undertaken can affect the predictive accuracy and restrict the use of the model at different scales. We assessed the validity of existing regional-scale habitat models at a local-scale and contrasted the habitat use of two morphologically similar species with differing conservation status (Mormopterus norfolkensis and Mormopterus species 2). We used negative binomial generalised linear models created from indices of activity and environmental variables collected from systematic acoustic surveys. We found that habitat type (based on vegetation community) best explained activity of both species, which were more active in floodplain areas, with most foraging activity recorded in the freshwater wetland habitat type. The threatened M. norfolkensis avoided urban areas, which contrasts with M. species 2 which occurred frequently in urban bushland. We found that the broad habitat types predicted from local-scale models were generally consistent with those from regional-scale models. However, threshold-dependent accuracy measures indicated a poor fit and we advise caution be applied when using the regional models at a fine scale, particularly when the consequences of false negatives or positives are severe. Additionally, our study illustrates that habitat type classifications can be important predictors and we suggest they are more practical for conservation than complex combinations of raw variables, as they are easily communicated to land managers. PMID:23977296
NASA Astrophysics Data System (ADS)
von Brömssen, Mattias; Markussen, Lars; Bhattacharya, Prosun; Ahmed, Kazi Matin; Hossain, Mohammed; Jacks, Gunnar; Sracek, Ondra; Thunvik, Roger; Hasan, M. Aziz; Islam, M. Mainul; Rahman, M. Mokhlesur
2014-10-01
Exploitation of groundwater from shallow, high prolific Holocene sedimentary aquifers has been a main element for achieving safe drinking water and food security in Bangladesh. However, the presence of elevated levels of geogenic arsenic (As) in these aquifers has undermined this success. Except for targeting safe aquifers through installations of tubewells to greater depth, no mitigation option has been successfully implemented on a larger scale. The objective of this study has been to characterise the hydrostratigraphy, groundwater flow patterns, the hydraulic properties to assess the vulnerability of low-arsenic aquifers at Matlab, in south-eastern Bangladesh, one of the worst arsenic-affected areas of the country. Groundwater modelling, conventional pumping test using multilevel piezometers, hydraulic head monitoring in piezometer nests, 14C dating of groundwater and assessment of groundwater abstraction were used. A model comprising of three aquifers covering the top 250 m of the model domain showed the best fit for the calibration evaluation criteria. Irrigation wells in the Matlab area are mostly installed in clusters and account for most of the groundwater abstraction. Even though the hydraulic heads are affected locally by seasonal pumping, the aquifer system is fully recharged from the monsoonal replenishment. Groundwater simulations demonstrated the presence of deep regional flow systems with recharge areas in the eastern, hilly part of Bangladesh and shallow small local flow systems driven by local topography. Based on modelling results and 14C groundwater data, it can be concluded that the natural local flow systems reach a depth of 30 m b.g.l. in the study area. A downward vertical gradient of roughly 0.01 down to 200 m b.g.l. was observed and reproduced by calibrated models. The vertical gradient is mainly the result of the aquifer system and properties rather than abstraction rate, which is too limited at depth to make an imprint. Although irrigation wells substantially change local flow pattern, targeting low-As aquifers seems to be a suitable mitigation option for providing people with safe drinking water. However, installing additional irrigation- or high capacity production wells at the same depth is strongly discouraged as these could substantially change the groundwater flow pattern. The results from the present study and other similar studies can further contribute to develop a rational management and mitigation policy for the future use of the groundwater resources for drinking water supplies.
Meneguzzi, Viviane Coutinho; dos Santos, Claudiney Biral; Leite, Gustavo Rocha; Fux, Blima; Falqueto, Aloísio
2016-01-01
Cutaneous leishmaniasis (CL) is caused by a protozoan of the genus Leishmania and is transmitted by sand flies. The state of Espírito Santo (ES), an endemic area in southeast Brazil, has shown a considerably high prevalence in recent decades. Environmental niche modelling (ENM) is a useful tool for predicting potential disease risk. In this study, ENM was applied to sand fly species and CL cases in ES to identify the principal vector and risk areas of the disease. Sand flies were collected in 466 rural localities between 1997 and 2013 using active and passive capture. Insects were identified to the species level, and the localities were georeferenced. Twenty-one bioclimatic variables were selected from WorldClim. Maxent was used to construct models projecting the potential distribution for five Lutzomyia species and CL cases. ENMTools was used to overlap the species and the CL case models. The Kruskal–Wallis test was performed, adopting a 5% significance level. Approximately 250,000 specimens were captured, belonging to 43 species. The area under the curve (AUC) was considered acceptable for all models. The slope was considered relevant to the construction of the models for all the species identified. The overlay test identified Lutzomyia intermedia as the main vector of CL in southeast Brazil. ENM tools enable an analysis of the association among environmental variables, vector distributions and CL cases, which can be used to support epidemiologic and entomological vigilance actions to control the expansion of CL in vulnerable areas. PMID:27783641
Custom map projections for regional groundwater models
Kuniansky, Eve L.
2017-01-01
For regional groundwater flow models (areas greater than 100,000 km2), improper choice of map projection parameters can result in model error for boundary conditions dependent on area (recharge or evapotranspiration simulated by application of a rate using cell area from model discretization) and length (rivers simulated with head-dependent flux boundary). Smaller model areas can use local map coordinates, such as State Plane (United States) or Universal Transverse Mercator (correct zone) without introducing large errors. Map projections vary in order to preserve one or more of the following properties: area, shape, distance (length), or direction. Numerous map projections are developed for different purposes as all four properties cannot be preserved simultaneously. Preservation of area and length are most critical for groundwater models. The Albers equal-area conic projection with custom standard parallels, selected by dividing the length north to south by 6 and selecting standard parallels 1/6th above or below the southern and northern extent, preserves both area and length for continental areas in mid latitudes oriented east-west. Custom map projection parameters can also minimize area and length error in non-ideal projections. Additionally, one must also use consistent vertical and horizontal datums for all geographic data. The generalized polygon for the Floridan aquifer system study area (306,247.59 km2) is used to provide quantitative examples of the effect of map projections on length and area with different projections and parameter choices. Use of improper map projection is one model construction problem easily avoided.
Stone, J.R.; Barlow, P.M.; Starn, J.J.
1996-01-01
Degradation of ground-water quality has been identified in an area of the north-central part of the town of Cheshire, Connecticut. An investigation by the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, was done during 1994-95 to characterize the unconsolidated glacial deposits and the sedimentary bedrock, integrate the local geohydrologic conditions with the regional geohydrologic system, and develop a conceptual understanding of ground-water flow in the study area. A regional ground-water-flow model developed for the region near the study area indicates that perennial streams, including Judd Brook and the Tenmile River, form hydrologic divides that separate the larger region into hydraulically independent flow systems. In the local study area, synoptic water-level measurements made in June 1995 indicate that ground water near the water table flows west and southwestward from the low hill on the eastern side of the area toward the pond and wetlands along Judd Brook. Water-level data indicate that there is good hydraulic connection between the unconsolidated materials and underlying fractured bedrock. Unconsolidated materials in the study area consist principally of glacial stratified deposits that are fine sand, silt, and clay of glaci- olacustrine origin; locally these overlie thin glacial till. The glacial sediments range in thickness from a few feet to about 25 ft in the eastern part of the study area and are as much as 100 ft thick in the western and southern part of the study area beneath the Judd Brook and Tenmile River valleys. Fluvial redbeds of the New Haven Arkose underlie the glacial deposits in the region; in the study area, the redbeds consist of (1) channel sandstone units, which are coarse sandstone to fine conglomerate, generally in 6- to 15-ft- thick sequences; and (2) overbank mudstone units, which are siltstone and silty sandstone with some fine sandstone, generally in 6- to 50-ft-thick sequences. Thin-bedded zones of siltstone that are particularly fissile are present locally within the mudstone units. Rock units strike northward and dip eastward at about 20. The eastward-dipping strata are cut by a consistent set of west to west-northwest dipping, high-angle fractures. These fractures are oriented perpendicular to bedding and are present mostly in the channel sandstone units, but locally extend into the mudstone units as well. Borehole-geophysical logging indicates that ground water flows along bedding planes in fissile zones and between fissile zones in high-angle fractures, which are perpendicular to bedding. The combined fracture types form an aquifer system in which ground water follows a stair-step flowpath, flowing horizontally through fissile zones and vertically through high-angle fractures. Heat-pulse flow meter measurements and borehole fluid-conductivity and temperature logs indicate that only a small subset of the fissile zones and some high-angle fractures are hydraulically significant. A generalized local-scale ground-water flow model based on a nonspecific, but realistic, rock and fracture geometry was developed for the study area. Simulations show that under nonpumping conditions at a hypothetical well located in the middle of the model, ground-water flow was separated into upper and lower zones in which flow paths differed but were generally from northeast to southwest. Several short-duration aquifer tests conducted in the study area indicate that there is good hydraulic connection in the fractures between the pumping well (CS-221) and two bedrock wells located approximately 100 ft to the north and south along bedding strike. During the short duration of the aquifer tests, there was no hydraulic connection in bedrock wells located to the east, perpendicular to the strike. A range of transmissivity of 27 to 46 ft2/d was calculated from the aquifer-test data for the fractured-bedrock aquifer at CS-221 and TH-2. Individual fracture zones identified by bo
Modeling local chemistry in PWR steam generator crevices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millett, P.J.
1997-02-01
Over the past two decades steam generator corrosion damage has been a major cost impact to PWR owners. Crevices and occluded regions create thermal-hydraulic conditions where aggressive impurities can become highly concentrated, promoting localized corrosion of the tubing and support structure materials. The type of corrosion varies depending on the local conditions, with stress corrosion cracking being the phenomenon of most current concern. A major goal of the EPRI research in this area has been to develop models of the concentration process and resulting crevice chemistry conditions. These models may then be used to predict crevice chemistry based on knowledgemore » of bulk chemistry, thereby allowing the operator to control corrosion damage. Rigorous deterministic models have not yet been developed; however, empirical approaches have shown promise and are reflected in current versions of the industry-developed secondary water chemistry guidelines.« less
Wisconsin's Model Academic Standards for Music.
ERIC Educational Resources Information Center
Nikolay, Pauli; Grady, Susan; Stefonek, Thomas
To assist parents and educators in preparing students for the 21st century, Wisconsin citizens have become involved in the development of challenging academic standards in 12 curricular areas. Having clear standards for students and teachers makes it possible to develop rigorous local curricula and valid, reliable assessments. This model of…
What is the effect of area size when using local area practice style as an instrument?
Brooks, John M; Tang, Yuexin; Chapman, Cole G; Cook, Elizabeth A; Chrischilles, Elizabeth A
2013-08-01
Discuss the tradeoffs inherent in choosing a local area size when using a measure of local area practice style as an instrument in instrumental variable estimation when assessing treatment effectiveness. Assess the effectiveness of angiotensin converting-enzyme inhibitors and angiotensin receptor blockers on survival after acute myocardial infarction for Medicare beneficiaries using practice style instruments based on different-sized local areas around patients. We contrasted treatment effect estimates using different local area sizes in terms of the strength of the relationship between local area practice styles and individual patient treatment choices; and indirect assessments of the assumption violations. Using smaller local areas to measure practice styles exploits more treatment variation and results in smaller standard errors. However, if treatment effects are heterogeneous, the use of smaller local areas may increase the risk that local practice style measures are dominated by differences in average treatment effectiveness across areas and bias results toward greater effectiveness. Local area practice style measures can be useful instruments in instrumental variable analysis, but the use of smaller local area sizes to generate greater treatment variation may result in treatment effect estimates that are biased toward higher effectiveness. Assessment of whether ecological bias can be mitigated by changing local area size requires the use of outside data sources. Copyright © 2013 Elsevier Inc. All rights reserved.
Negative Stress Margins - Are They Real?
NASA Technical Reports Server (NTRS)
Raju, Ivatury S.; Lee, Darlene S.; Mohaghegh, Michael
2011-01-01
Advances in modeling and simulation, new finite element software, modeling engines and powerful computers are providing opportunities to interrogate designs in a very different manner and in a more detailed approach than ever before. Margins of safety are also often evaluated using local stresses for various design concepts and design parameters quickly once analysis models are defined and developed. This paper suggests that not all the negative margins of safety evaluated are real. The structural areas where negative margins are frequently encountered are often near stress concentrations, point loads and load discontinuities, near locations of stress singularities, in areas having large gradients but with insufficient mesh density, in areas with modeling issues and modeling errors, and in areas with connections and interfaces, in two-dimensional (2D) and three-dimensional (3D) transitions, bolts and bolt modeling, and boundary conditions. Now, more than ever, structural analysts need to examine and interrogate their analysis results and perform basic sanity checks to determine if these negative margins are real.
Development and verification of global/local analysis techniques for laminated composites
NASA Technical Reports Server (NTRS)
Thompson, Danniella Muheim; Griffin, O. Hayden, Jr.
1991-01-01
A two-dimensional to three-dimensional global/local finite element approach was developed, verified, and applied to a laminated composite plate of finite width and length containing a central circular hole. The resulting stress fields for axial compression loads were examined for several symmetric stacking sequences and hole sizes. Verification was based on comparison of the displacements and the stress fields with those accepted trends from previous free edge investigations and a complete three-dimensional finite element solution of the plate. The laminates in the compression study included symmetric cross-ply, angle-ply and quasi-isotropic stacking sequences. The entire plate was selected as the global model and analyzed with two-dimensional finite elements. Displacements along a region identified as the global/local interface were applied in a kinematically consistent fashion to independent three-dimensional local models. Local areas of interest in the plate included a portion of the straight free edge near the hole, and the immediate area around the hole. Interlaminar stress results obtained from the global/local analyses compares well with previously reported trends, and some new conclusions about interlaminar stress fields in plates with different laminate orientations and hole sizes are presented for compressive loading. The effectiveness of the global/local procedure in reducing the computational effort required to solve these problems is clearly demonstrated through examination of the computer time required to formulate and solve the linear, static system of equations which result for the global and local analyses to those required for a complete three-dimensional formulation for a cross-ply laminate. Specific processors used during the analyses are described in general terms. The application of this global/local technique is not limited software system, and was developed and described in as general a manner as possible.
NASA Astrophysics Data System (ADS)
Yang, Dikun; Oldenburg, Douglas W.; Haber, Eldad
2014-03-01
Airborne electromagnetic (AEM) methods are highly efficient tools for assessing the Earth's conductivity structures in a large area at low cost. However, the configuration of AEM measurements, which typically have widely distributed transmitter-receiver pairs, makes the rigorous modelling and interpretation extremely time-consuming in 3-D. Excessive overcomputing can occur when working on a large mesh covering the entire survey area and inverting all soundings in the data set. We propose two improvements. The first is to use a locally optimized mesh for each AEM sounding for the forward modelling and calculation of sensitivity. This dedicated local mesh is small with fine cells near the sounding location and coarse cells far away in accordance with EM diffusion and the geometric decay of the signals. Once the forward problem is solved on the local meshes, the sensitivity for the inversion on the global mesh is available through quick interpolation. Using local meshes for AEM forward modelling avoids unnecessary computing on fine cells on a global mesh that are far away from the sounding location. Since local meshes are highly independent, the forward modelling can be efficiently parallelized over an array of processors. The second improvement is random and dynamic down-sampling of the soundings. Each inversion iteration only uses a random subset of the soundings, and the subset is reselected for every iteration. The number of soundings in the random subset, determined by an adaptive algorithm, is tied to the degree of model regularization. This minimizes the overcomputing caused by working with redundant soundings. Our methods are compared against conventional methods and tested with a synthetic example. We also invert a field data set that was previously considered to be too large to be practically inverted in 3-D. These examples show that our methodology can dramatically reduce the processing time of 3-D inversion to a practical level without losing resolution. Any existing modelling technique can be included into our framework of mesh decoupling and adaptive sampling to accelerate large-scale 3-D EM inversions.
Luizza, Matthew; Wakie, Tewodros; Evangelista, Paul; Jarnevich, Catherine S.
2016-01-01
The threats posed by invasive plants span ecosystems and economies worldwide. Local knowledge of biological invasions has proven beneficial for invasive species research, but to date no work has integrated this knowledge with species distribution modeling for invasion risk assessments. In this study, we integrated pastoral knowledge with Maxent modeling to assess the suitable habitat and potential impacts of invasive Cryptostegia grandiflora Robx. Ex R.Br. (rubber vine) in Ethiopia’s Afar region. We conducted focus groups with seven villages across the Amibara and Awash-Fentale districts. Pastoral knowledge revealed the growing threat of rubber vine, which to date has received limited attention in Ethiopia, and whose presence in Afar was previously unknown to our team. Rubber vine occurrence points were collected in the field with pastoralists and processed in Maxent with MODIS-derived vegetation indices, topographic data, and anthropogenic variables. We tested model fit using a jackknife procedure and validated the final model with an independent occurrence data set collected through participatory mapping activities with pastoralists. A Multivariate Environmental Similarity Surface analysis revealed areas with novel environmental conditions for future targeted surveys. Model performance was evaluated using area under the receiver-operating characteristic curve (AUC) and showed good fit across the jackknife models (average AUC = 0.80) and the final model (test AUC = 0.96). Our results reveal the growing threat rubber vine poses to Afar, with suitable habitat extending downstream of its current known location in the middle Awash River basin. Local pastoral knowledge provided important context for its rapid expansion due to acute changes in seasonality and habitat alteration, in addition to threats posed to numerous endemic tree species that provide critical provisioning ecosystem services. This work demonstrates the utility of integrating local ecological knowledge with species distribution modeling for early detection and targeted surveying of recently established invasive species.
NASA Astrophysics Data System (ADS)
Delgado, Francisco
2017-12-01
Quantum information is an emergent area merging physics, mathematics, computer science and engineering. To reach its technological goals, it is requiring adequate approaches to understand how to combine physical restrictions, computational approaches and technological requirements to get functional universal quantum information processing. This work presents the modeling and the analysis of certain general type of Hamiltonian representing several physical systems used in quantum information and establishing a dynamics reduction in a natural grammar for bipartite processing based on entangled states.
A wireless sensor network based personnel positioning scheme in coal mines with blind areas.
Liu, Zhigao; Li, Chunwen; Wu, Danchen; Dai, Wenhan; Geng, Shaobo; Ding, Qingqing
2010-01-01
This paper proposes a novel personnel positioning scheme for a tunnel network with blind areas, which compared with most existing schemes offers both low-cost and high-precision. Based on the data models of tunnel networks, measurement networks and mobile miners, the global positioning method is divided into four steps: (1) calculate the real time personnel location in local areas using a location engine, and send it to the upper computer through the gateway; (2) correct any localization errors resulting from the underground tunnel environmental interference; (3) determine the global three-dimensional position by coordinate transformation; (4) estimate the personnel locations in the blind areas. A prototype system constructed to verify the positioning performance shows that the proposed positioning system has good reliability, scalability, and positioning performance. In particular, the static localization error of the positioning system is less than 2.4 m in the underground tunnel environment and the moving estimation error is below 4.5 m in the corridor environment. The system was operated continuously over three months without any failures.
A Wireless Sensor Network Based Personnel Positioning Scheme in Coal Mines with Blind Areas
Liu, Zhigao; Li, Chunwen; Wu, Danchen; Dai, Wenhan; Geng, Shaobo; Ding, Qingqing
2010-01-01
This paper proposes a novel personnel positioning scheme for a tunnel network with blind areas, which compared with most existing schemes offers both low-cost and high-precision. Based on the data models of tunnel networks, measurement networks and mobile miners, the global positioning method is divided into four steps: (1) calculate the real time personnel location in local areas using a location engine, and send it to the upper computer through the gateway; (2) correct any localization errors resulting from the underground tunnel environmental interference; (3) determine the global three-dimensional position by coordinate transformation; (4) estimate the personnel locations in the blind areas. A prototype system constructed to verify the positioning performance shows that the proposed positioning system has good reliability, scalability, and positioning performance. In particular, the static localization error of the positioning system is less than 2.4 m in the underground tunnel environment and the moving estimation error is below 4.5 m in the corridor environment. The system was operated continuously over three months without any failures. PMID:22163446
NASA Astrophysics Data System (ADS)
Sokolov, Anton; Dmitriev, Egor; Delbarre, Hervé; Augustin, Patrick; Gengembre, Cyril; Fourmenten, Marc
2016-04-01
The problem of atmospheric contamination by principal air pollutants was considered in the industrialized coastal region of English Channel in Dunkirk influenced by north European metropolitan areas. MESO-NH nested models were used for the simulation of the local atmospheric dynamics and the online calculation of Lagrangian backward trajectories with 15-minute temporal resolution and the horizontal resolution down to 500 m. The one-month mesoscale numerical simulation was coupled with local pollution measurements of volatile organic components, particulate matter, ozone, sulphur dioxide and nitrogen oxides. Principal atmospheric pathways were determined by clustering technique applied to backward trajectories simulated. Six clusters were obtained which describe local atmospheric dynamics, four winds blowing through the English Channel, one coming from the south, and the biggest cluster with small wind speeds. This last cluster includes mostly sea breeze events. The analysis of meteorological data and pollution measurements allows relating the principal atmospheric pathways with local air contamination events. It was shown that contamination events are mostly connected with a channelling of pollution from local sources and low-turbulent states of the local atmosphere.
Martino, Steven C; Ellickson, Phyllis L; McCaffrey, Daniel F
2008-05-01
This study investigated differences in the development of heavy drinking and marijuana use among students in urban and rural areas and assessed whether any such differences can be accounted for by locality differences in racial/ethnic makeup, social disorganization/low social bonding, feelings of despondency and escapism, and the availability of drugs. Drawn from 62 South Dakota middle schools involved in a drug prevention field trial, participating students were assigned to a locality category based on the location of their seventh-grade school. Schools in metropolitan areas were distinguished from schools in nonmetropolitan areas. Schools in nonmetropolitan areas were further distinguished into those in micropolitan (medium and large towns) and noncore (rural areas without towns and with small towns) areas. We used latent growth curve analysis to model the influence of locality on the development of heavy drinking and marijuana use from ages 13 to 19 and to determine whether differences in development across locality were attributable to location-based differences in race/ethnicity, social disorganization/bonding, feelings of despondency and escapism, and alcohol and marijuana availability. Heavy drinking increased at a faster rate among youth living in micropolitan areas compared with youth living in metropolitan areas. Marijuana use increased at a faster rate among youth living in metropolitan and micropolitan areas compared with youth living in noncore areas. Differences in the rate of change in heavy drinking were attributable to differences in the racial/ethnic composition of metropolitan and micropolitan areas. Differences in the rate of change in marijuana use were attributable to differences in residential instability and marijuana availability. This study underscores the diversity of drug use within rural communities, suggesting that living in a very rural area is protective against some forms of drug use but that living in a rural area that includes a medium or large town is not.
MARTINO, STEVEN C.; ELLICKSON, PHYLLIS L.; McCAFFREY, DANIEL F.
2013-01-01
Objective This study investigated differences in the development of heavy drinking and marijuana use among students in urban and rural areas and assessed whether any such differences can be accounted for by locality differences in racial/ethnic makeup, social disorganization/low social bonding, feelings of despondency and escapism, and the availability of drugs. Method Drawn from 62 South Dakota middle schools involved in a drug prevention field trial, participating students were assigned to a locality category based on the location of their seventh-grade school. Schools in metropolitan areas were distinguished from schools in nonmetropolitan areas. Schools in nonmetropolitan areas were further distinguished into those in micropolitan (medium and large towns) and noncore (rural areas without towns and with small towns) areas. We used latent growth curve analysis to model the influence of locality on the development of heavy drinking and marijuana use from ages 13 to 19 and to determine whether differences in development across locality were attributable to location-based differences in race/ethnicity, social disorganization/bonding, feelings of despondency and escapism, and alcohol and marijuana availability. Results Heavy drinking increased at a faster rate among youth living in micropolitan areas compared with youth living in metropolitan areas. Marijuana use increased at a faster rate among youth living in metropolitan and micropolitan areas compared with youth living in noncore areas. Differences in the rate of change in heavy drinking were attributable to differences in the racial/ethnic composition of metropolitan and micropolitan areas. Differences in the rate of change in marijuana use were attributable to differences in residential instability and marijuana availability. Conclusions This study underscores the diversity of drug use within rural communities, suggesting that living in a very rural area is protective against some forms of drug use but that living in a rural area that includes a medium or large town is not. PMID:18432386
ERIC Educational Resources Information Center
De la Cruz-Novey, H. Alicia
2012-01-01
In the last two decades protected area management approaches have experienced a shift from top-down management models to more diverse governance approaches that involve various forms and degrees of participation from local populations. These new participatory approaches seek to reaffirm cultural values, maintain cultural landscapes, recognize the…
Local Integration Ontological Model of Creative Class Migrants for Creative Cities
ERIC Educational Resources Information Center
Sangkakorn, Korawan; Chakpitak, Nopasit; Yodmongkol, Pitipong
2015-01-01
An innovative creative class drives creative cities, urban areas in which diverse cultures are integrated into social and economic functions. The creative city of Chiang Mai, Thailand is renowned for its vibrant Lan Na culture and traditions, and draws new migrants from other areas in Thailand seeking to become part of the creative class. This…
A Planning Model for the Development of Programs for Abused and Neglected Children in Rural Areas.
ERIC Educational Resources Information Center
Chamberlain, William A.
Described are planning steps involved in developing programs for abused and neglected children in rural areas. Among barriers cited are economic factors and resistance to social planning. Emphasized is the need for congruence among local and regional agencies and organizations. Analyzed are six planning stages: entry, in which consultants gain…
NASA Technical Reports Server (NTRS)
Pocinki, L. S.
1979-01-01
A status report is presented on the assessment of the risk at Washington National Airport and the surrounding Washington, D.C. area associated with commercial operations of aircraft with graphite fiber composite in their structures. The presentation is outlined as follows: (1) overall strategy; (2) need for individual airport results; (3) airport-metro area model - submodels, method, assumptions and data; and (4) preliminary results for National Airport - D.C. area.
NASA Astrophysics Data System (ADS)
Pola, Marco; Cacace, Mauro; Fabbri, Paolo; Piccinini, Leonardo; Zampieri, Dario; Dalla Libera, Nico
2017-04-01
As one of the largest and most extensive utilized geothermal system in northern Italy, the Euganean Geothermal System (EGS, Veneto region, NE Italy) has long been the subject of still ongoing studies. Hydrothermal waters feeding the system are of meteoric origin and infiltrate in the Veneto Prealps, to the north of the main geothermal area. The waters circulate for approximately 100 km in the subsurface of the central Veneto, outflowing with temperatures from 65°C to 86°C to the southwest near the cities of Abano Terme and Montegrotto Terme. The naturally emerging waters are mainly used for balneotherapeutic purposes, forming the famous Euganean spa district. This preferential outflow is thought to have a relevant structural component producing a high secondary permeability localized within an area of limited extent (approx. 25 km2). This peculiar structure is associated with a local network of fractures resulting from transtentional tectonics of the regional Schio-Vicenza fault system (SVFS) bounding the Euganean Geothermal Field (EGF). In the present study, a revised conceptual hydrothermal model for the EGS based on the regional hydrogeology and structural geology is proposed. Particularly, this work aims to quantify: (1) the role of the regional SVFS, and (2) the impact of the high density local fractures mesh beneath the EGF on the regional-to-local groundwater flow circulation at depths and its thermal configuration. 3D coupled flow and heat transport numerical simulations inspired by the newly developed conceptual model are carried out to properly quantify the results from these interactions. Consistently with the observations, the obtained results provide indication for temperatures in the EGF reservoir being higher than in the surrounding areas, despite a uniform basal regional crustal heat inflow. In addition, they point to the presence of a structural causative process for the localized outflow, in which deep-seated groundwater is preferentially conducted to the surface, warming up on its way, by the high level of connected fractures beneath the EGF, thus corroborating the proposed conceptual model.
Estimating the Cumulative Ecological Effect of Local Scale Landscape Changes in South Florida
Hogan, Dianna M.; Labiosa, William; Pearlstine, Leonard; Hallac, David; Strong, David; Hearn, Paul; Bernknopf, Richard
2012-01-01
Ecosystem restoration in south Florida is a state and national priority centered on the Everglades wetlands. However, urban development pressures affect the restoration potential and remaining habitat functions of the natural undeveloped areas. Land use (LU) planning often focuses at the local level, but a better understanding of the cumulative effects of small projects at the landscape level is needed to support ecosystem restoration and preservation. The South Florida Ecosystem Portfolio Model (SFL EPM) is a regional LU planning tool developed to help stakeholders visualize LU scenario evaluation and improve communication about regional effects of LU decisions. One component of the SFL EPM is ecological value (EV), which is evaluated through modeled ecological criteria related to ecosystem services using metrics for (1) biodiversity potential, (2) threatened and endangered species, (3) rare and unique habitats, (4) landscape pattern and fragmentation, (5) water quality buffer potential, and (6) ecological restoration potential. In this article, we demonstrate the calculation of EV using two case studies: (1) assessing altered EV in the Biscayne Gateway area by comparing 2004 LU to potential LU in 2025 and 2050, and (2) the cumulative impact of adding limestone mines south of Miami. Our analyses spatially convey changing regional EV resulting from conversion of local natural and agricultural areas to urban, industrial, or extractive use. Different simulated local LU scenarios may result in different alterations in calculated regional EV. These case studies demonstrate methods that may facilitate evaluation of potential future LU patterns and incorporate EV into decision making.
On a common critical state in localized and diffuse failure modes
NASA Astrophysics Data System (ADS)
Zhu, Huaxiang; Nguyen, Hien N. G.; Nicot, François; Darve, Félix
2016-10-01
Accurately modeling the critical state mechanical behavior of granular material largely relies on a better understanding and characterizing the critical state fabric in different failure modes, i.e. localized and diffuse failure modes. In this paper, a mesoscopic scale is introduced, in which the organization of force-transmission paths (force-chains) and cells encompassed by contacts (meso-loops) can be taken into account. Numerical drained biaxial tests using a discrete element method are performed with different initial void ratios, in order to investigate the critical state fabric on the meso-scale in both localized and diffuse failure modes. According to the displacement and strain fields extracted from tests, the failure mode and failure area of each specimen are determined. Then convergent critical state void ratios are observed in failure area of specimens. Different mechanical features of two kinds of meso-structures (force-chains and meso-loops) are investigated, to clarify whether there exists a convergent meso-structure inside the failure area of granular material, as the signature of critical state. Numerical results support a positive answer. Failure area of both localized and diffuse failure modes therefore exhibits the same fabric in critical state. Hence, these two failure modes prove to be homological with respect to the concept of the critical state.
Landscape matrix mediates occupancy dynamics of Neotropical avian insectivores
Kennedy, Christina M.; Campbell Grant, Evan H.; Neel, Maile C.; Fagan, William F.; Marpa, Peter P.
2011-01-01
In addition to patch-level attributes (i.e., area and isolation), the nature of land cover between habitat patches (the matrix) may drive colonization and extinction dynamics in fragmented landscapes. Despite a long-standing recognition of matrix effects in fragmented systems, an understanding of the relative impacts of different types of land cover on patterns and dynamics of species occurrence remains limited. We employed multi-season occupancy models to determine the relative influence of patch area, patch isolation, within-patch vegetation structure, and landscape matrix on occupancy dynamics of nine Neotropical nsectivorous birds in 99 forest patches embedded in four matrix types (agriculture, suburban evelopment, bauxite mining, and forest) in central Jamaica. We found that within-patch vegetation structure and the matrix type between patches were more important than patch area and patch isolation in determining local colonization and local extinction probabilities, and that the effects of patch area, isolation, and vegetation structure on occupancy dynamics tended to be matrix and species dependent. Across the avian community, the landscape matrix influenced local extinction more than local colonization, indicating that extinction processes, rather than movement, likely drive interspecific differences in occupancy dynamics. These findings lend crucial empirical support to the hypothesis that species occupancy dynamics in fragmented systems may depend greatly upon the landscape context.
Challenges Facing Design and Analysis Tools
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Broduer, Steve (Technical Monitor)
2001-01-01
The design and analysis of future aerospace systems will strongly rely on advanced engineering analysis tools used in combination with risk mitigation procedures. The implications of such a trend place increased demands on these tools to assess off-nominal conditions, residual strength, damage propagation, and extreme loading conditions in order to understand and quantify these effects as they affect mission success. Advances in computer hardware such as CPU processing speed, memory, secondary storage, and visualization provide significant resources for the engineer to exploit in engineering design. The challenges facing design and analysis tools fall into three primary areas. The first area involves mechanics needs such as constitutive modeling, contact and penetration simulation, crack growth prediction, damage initiation and progression prediction, transient dynamics and deployment simulations, and solution algorithms. The second area involves computational needs such as fast, robust solvers, adaptivity for model and solution strategies, control processes for concurrent, distributed computing for uncertainty assessments, and immersive technology. Traditional finite element codes still require fast direct solvers which when coupled to current CPU power enables new insight as a result of high-fidelity modeling. The third area involves decision making by the analyst. This area involves the integration and interrogation of vast amounts of information - some global in character while local details are critical and often drive the design. The proposed presentation will describe and illustrate these areas using composite structures, energy-absorbing structures, and inflatable space structures. While certain engineering approximations within the finite element model may be adequate for global response prediction, they generally are inadequate in a design setting or when local response prediction is critical. Pitfalls to be avoided and trends for emerging analysis tools will be described.
A range-based predictive localization algorithm for WSID networks
NASA Astrophysics Data System (ADS)
Liu, Yuan; Chen, Junjie; Li, Gang
2017-11-01
Most studies on localization algorithms are conducted on the sensor networks with densely distributed nodes. However, the non-localizable problems are prone to occur in the network with sparsely distributed sensor nodes. To solve this problem, a range-based predictive localization algorithm (RPLA) is proposed in this paper for the wireless sensor networks syncretizing the RFID (WSID) networks. The Gaussian mixture model is established to predict the trajectory of a mobile target. Then, the received signal strength indication is used to reduce the residence area of the target location based on the approximate point-in-triangulation test algorithm. In addition, collaborative localization schemes are introduced to locate the target in the non-localizable situations. Simulation results verify that the RPLA achieves accurate localization for the network with sparsely distributed sensor nodes. The localization accuracy of the RPLA is 48.7% higher than that of the APIT algorithm, 16.8% higher than that of the single Gaussian model-based algorithm and 10.5% higher than that of the Kalman filtering-based algorithm.
Comprehensive analytical model for locally contacted rear surface passivated solar cells
NASA Astrophysics Data System (ADS)
Wolf, Andreas; Biro, Daniel; Nekarda, Jan; Stumpp, Stefan; Kimmerle, Achim; Mack, Sebastian; Preu, Ralf
2010-12-01
For optimum performance of solar cells featuring a locally contacted rear surface, the metallization fraction as well as the size and distribution of the local contacts are crucial, since Ohmic and recombination losses have to be balanced. In this work we present a set of equations which enable to calculate this trade off without the need of numerical simulations. Our model combines established analytical and empirical equations to predict the energy conversion efficiency of a locally contacted device. For experimental verification, we fabricate devices from float zone silicon wafers of different resistivity using the laser fired contact technology for forming the local rear contacts. The detailed characterization of test structures enables the determination of important physical parameters, such as the surface recombination velocity at the contacted area and the spreading resistance of the contacts. Our analytical model reproduces the experimental results very well and correctly predicts the optimum contact spacing without the use of free fitting parameters. We use our model to estimate the optimum bulk resistivity for locally contacted devices fabricated from conventional Czochralski-grown silicon material. These calculations use literature values for the stable minority carrier lifetime to account for the bulk recombination caused by the formation of boron-oxygen complexes under carrier injection.
Analysing Local Sparseness in the Macaque Brain Network
Singh, Raghavendra; Nagar, Seema; Nanavati, Amit A.
2015-01-01
Understanding the network structure of long distance pathways in the brain is a necessary step towards developing an insight into the brain’s function, organization and evolution. Dense global subnetworks of these pathways have often been studied, primarily due to their functional implications. Instead we study sparse local subnetworks of the pathways to establish the role of a brain area in enabling shortest path communication between its non-adjacent topological neighbours. We propose a novel metric to measure the topological communication load on a vertex due to its immediate neighbourhood, and show that in terms of distribution of this local communication load, a network of Macaque long distance pathways is substantially different from other real world networks and random graph models. Macaque network contains the entire range of local subnetworks, from star-like networks to clique-like networks, while other networks tend to contain a relatively small range of subnetworks. Further, sparse local subnetworks in the Macaque network are not only found across topographical super-areas, e.g., lobes, but also within a super-area, arguing that there is conservation of even relatively short-distance pathways. To establish the communication role of a vertex we borrow the concept of brokerage from social science, and present the different types of brokerage roles that brain areas play, highlighting that not only the thalamus, but also cingulate gyrus and insula often act as “relays” for areas in the neocortex. These and other analysis of communication load and roles of the sparse subnetworks of the Macaque brain provide new insights into the organisation of its pathways. PMID:26437077
Outbreaks of Tularemia in a Boreal Forest Region Depends on Mosquito Prevalence
Rydén, Patrik; Björk, Rafael; Schäfer, Martina L.; Lundström, Jan O.; Petersén, Bodil; Lindblom, Anders; Forsman, Mats; Sjöstedt, Anders
2012-01-01
Background. We aimed to evaluate the potential association of mosquito prevalence in a boreal forest area with transmission of the bacterial disease tularemia to humans, and model the annual variation of disease using local weather data. Methods. A prediction model for mosquito abundance was built using weather and mosquito catch data. Then a negative binomial regression model based on the predicted mosquito abundance and local weather data was built to predict annual numbers of humans contracting tularemia in Dalarna County, Sweden. Results. Three hundred seventy humans were diagnosed with tularemia between 1981 and 2007, 94% of them during 7 summer outbreaks. Disease transmission was concentrated along rivers in the area. The predicted mosquito abundance was correlated (0.41, P < .05) with the annual number of human cases. The predicted mosquito peaks consistently preceded the median onset time of human tularemia (temporal correlation, 0.76; P < .05). Our final predictive model included 5 environmental variables and identified 6 of the 7 outbreaks. Conclusions. This work suggests that a high prevalence of mosquitoes in late summer is a prerequisite for outbreaks of tularemia in a tularemia-endemic boreal forest area of Sweden and that environmental variables can be used as risk indicators. PMID:22124130
Rakowski, Andrzej Z; Nakamura, Toshio; Pazdur, Anna
2008-10-01
Radiocarbon concentration in the atmosphere is significantly lower in areas where man-made emissions of carbon dioxide occur. This phenomenon is known as Suess effect, and is caused by the contamination of clean air with non-radioactive carbon from fossil fuel combustion. The effect is more strongly observed in industrial and densely populated urban areas. Measurements of carbon isotope concentrations in a study area can be compared to those from areas of clear air in order to estimate the amount of carbon dioxide emission from fossil fuel combustion by using a simple mathematical model. This can be calculated using the simple mathematical model. The result of the mathematical model followed in this study suggests that the use of annual rings of trees to obtain the secular variations of 14C concentration of atmospheric CO2 can be useful and efficient for environmental monitoring and modeling of the carbon distribution in local scale.
NASA Astrophysics Data System (ADS)
Yang, J.; Zammit, C.; McMillan, H. K.
2016-12-01
As in most countries worldwide, water management in lowland areas is a big concern for New Zealand due to its economic importance for water related human activities. As a result, the estimation of available water resources in these areas (e.g., for irrigation and water supply purpose) is crucial and often requires an understanding of complex hydrological processes, which are often characterized by strong interactions between surface water and groundwater (usually expressed as losing and gaining rivers). These processes are often represented and simulated using integrated physically based hydrological models. However models with physically based groundwater modules typically require large amount of non-readily available geologic and aquifer information and are computationally intensive. Instead, this paper presents a conceptual groundwater model that is fully integrated into New Zealand's national hydrological model TopNet based on TopModel concepts (Beven, 1992). Within this conceptual framework, the integrated model can simulate not only surface processes, but also groundwater processes and surface water-groundwater interaction processes (including groundwater flow, river-groundwater interaction, and groundwater interaction with external watersheds). The developed model was applied to two New Zealand catchments with different hydro-geological and climate characteristics (Pareora catchment in the Canterbury Plains and Grey catchment on the West Coast). Previous studies have documented strong interactions between the river and groundwater, based on the analysis of a large number of concurrent flow measurements and associated information along the river main stem. Application of the integrated hydrological model indicates flow simulation (compared to the original hydrological model conceptualisation) during low flow conditions are significantly improved and further insights on local river dynamics are gained. Due to its conceptual characteristics and low level of data requirement, the integrated model could be used at local and national scales to improve the simulation of hydrological processes in non-topographically driven areas (where groundwater processes are important), and to assess impact of climate change on the integrated hydrological cycle in these areas.
Ahlfeld, David P.; Baker, Kristine M.; Barlow, Paul M.
2009-01-01
This report describes the Groundwater-Management (GWM) Process for MODFLOW-2005, the 2005 version of the U.S. Geological Survey modular three-dimensional groundwater model. GWM can solve a broad range of groundwater-management problems by combined use of simulation- and optimization-modeling techniques. These problems include limiting groundwater-level declines or streamflow depletions, managing groundwater withdrawals, and conjunctively using groundwater and surface-water resources. GWM was initially released for the 2000 version of MODFLOW. Several modifications and enhancements have been made to GWM since its initial release to increase the scope of the program's capabilities and to improve its operation and reporting of results. The new code, which is called GWM-2005, also was designed to support the local grid refinement capability of MODFLOW-2005. Local grid refinement allows for the simulation of one or more higher resolution local grids (referred to as child models) within a coarser grid parent model. Local grid refinement is often needed to improve simulation accuracy in regions where hydraulic gradients change substantially over short distances or in areas requiring detailed representation of aquifer heterogeneity. GWM-2005 can be used to formulate and solve groundwater-management problems that include components in both parent and child models. Although local grid refinement increases simulation accuracy, it can also substantially increase simulation run times.
NASA Astrophysics Data System (ADS)
Prokhoda-Shumskikh, L.
2012-04-01
Sochi region is the unique subtropical resort on the Black Sea coast of Russia. Nowadays due to Sochi is the capital of the Olympic game 2014, the government of the Russian Federation accepts the special federal program of Black Sea coast development. Program foresees the existing and creation of new coastal recreational and touristic complexes along the Russian Black Sea coast, such as complex of yacht harbors, water centers (aqua-centers), network of port localities and etc. These coastal projects are different, but the main problems of the environmental impact assessment are the same. The environmental impact and the relative damage should be assessed at the stage of construction as well as at the stage of operation. The key problem for the recreation coastal zone is water quality management. The port localities network as example is considered. To increase the accuracy and informative of forecasts for the coastal zone conditions the system-dynamic model has been developed, what allows to estimate the quality of the sea water, including that in the semi-enclosed coastal water areas with the limited water exchange. The model of water quality in the coastal zone includes the equations of deposit concentration changes and chemical substances evolution in the studied areas. The model incorporates joint description of cycles of two biogenic elements - nitrogen and phosphorus. The system is completely defined by the biogeochemical reactions. The sizes of such water areas allow the applying the full mixing and zero-dimensional models of water quality. The circulation of water inside the area is taken into account additionally. Water exchange in the semi-enclosed coastal water areas is defined by the discharge through the open parts of area border. The novelty of the offered model is its adaptation to the specific conditions of semi-enclosed coastal water areas. At the same time, the model contains details of the biogeochemical processes to complete modelling of the water quality. The developed system dynamics model is realized in the «PowerSim Studio» media. The data of natural measurements of water quality are applied for the model verification, and the correlated numerical results for the Russian Black Sea coast are presented. The main objective of the present paper is to present the actual examples, and to generalise the problems and to discuss the possible approaches of their solution.
A local scale assessment of the climate change sensitivity of snow in Pyrenean ski resorts
NASA Astrophysics Data System (ADS)
Pesado, Cristina; Pons, Marc; Vilella, Marc; López-Moreno, Juan Ignacio
2016-04-01
The Pyrenees host one of the largest ski area in Europe after the Alps that encompasses the mountain area of the south of France, the north of Spain and the small country of Andorra. In this region, winter tourism is one of the main source of income and driving force of local development on these mountain communities. However, this activity was identified as one of the most vulnerable to a future climate change due to the projected decrease of natural snow and snowmaking capacity. However, within the same ski resorts different areas showed to have a very different vulnerability within the same resort based on the geographic features of the area and the technical management of the slopes. Different areas inside a same ski resort could have very different vulnerability to future climate change based on aspect, steepness or elevation. Furthermore, the technical management of ski resorts, such as snowmaking and grooming were identified to have a significant impact on the response of the snowpack in a warmer climate. In this line, two different ski resorts were deeply analyzed taken into account both local geographical features as well as the effect of the technical management of the runs. Principal Component Analysis was used to classify the main areas of the resort based on the geographic features (elevation, aspect and steepness) and identify the main representative areas with different local features. Snow energy and mass balance was simulated in the different representative areas using the Cold Regions Hydrological Model (CRHM) assuming different magnitudes of climate warming (increases of 2°C and 4°C in the mean winter temperature) both in natural conditions and assuming technical management of the slopes. Theses first results showed the different sensitivity and vulnerability to climate changes based on the local geography of the resort and the management of the ski runs, showing the importance to include these variables when analyzing the local vulnerability of a ski resort and the potential adaptation measures in each particular case.
Burned area detection based on Landsat time series in savannas of southern Burkina Faso
NASA Astrophysics Data System (ADS)
Liu, Jinxiu; Heiskanen, Janne; Maeda, Eduardo Eiji; Pellikka, Petri K. E.
2018-02-01
West African savannas are subject to regular fires, which have impacts on vegetation structure, biodiversity and carbon balance. An efficient and accurate mapping of burned area associated with seasonal fires can greatly benefit decision making in land management. Since coarse resolution burned area products cannot meet the accuracy needed for fire management and climate modelling at local scales, the medium resolution Landsat data is a promising alternative for local scale studies. In this study, we developed an algorithm for continuous monitoring of annual burned areas using Landsat time series. The algorithm is based on burned pixel detection using harmonic model fitting with Landsat time series and breakpoint identification in the time series data. This approach was tested in a savanna area in southern Burkina Faso using 281 images acquired between October 2000 and April 2016. An overall accuracy of 79.2% was obtained with balanced omission and commission errors. This represents a significant improvement in comparison with MODIS burned area product (67.6%), which had more omission errors than commission errors, indicating underestimation of the total burned area. By observing the spatial distribution of burned areas, we found that the Landsat based method misclassified cropland and cloud shadows as burned areas due to the similar spectral response, and MODIS burned area product omitted small and fragmented burned areas. The proposed algorithm is flexible and robust against decreased data availability caused by clouds and Landsat 7 missing lines, therefore having a high potential for being applied in other landscapes in future studies.
Flint, Paul L.; Grand, James B.; Petersen, Margaret; Rockwell, Robert F.
2016-01-01
Spectacled eider Somateria fischeri numbers have declined and they are considered threatened in accordance with the US Endangered Species Act throughout their range. We synthesized the available information for spectacled eiders to construct deterministic, stochastic, and metapopulation models for this species that incorporated current estimates of vital rates such as nest success, adult survival, and the impact of lead poisoning on survival. Elasticities of our deterministic models suggested that the populations would respond most dramatically to changes in adult female survival and that the reductions in adult female survival related to lead poisoning were locally important. We also examined the sensitivity of the population to changes in lead exposure rates. With the knowledge that some vital rates vary with environmental conditions, we cast stochastic models that mimicked observed variation in productivity. We also used the stochastic model to examine the probability that a specific population will persist for periods of up to 50 y. Elasticity analysis of these models was consistent with that for the deterministic models, with perturbations to adult female survival having the greatest effect on population projections. When used in single population models, demographic data for some localities predicted rapid declines that were inconsistent with our observations in the field. Thus, we constructed a metapopulation model and examined the predictions for local subpopulations and the metapopulation over a wide range of dispersal rates. Using the metapopulation model, we were able to simulate the observed stability of local subpopulations as well as that of the metapopulation. Finally, we developed a global metapopulation model that simulates periodic winter habitat limitation, similar to that which might be experienced in years of heavy sea ice in the core wintering area of spectacled eiders in the central Bering Sea. Our metapopulation analyses suggested that no subpopulation is independent and that future management actions may be improved through a metapopulation framework. For example, management actions could include displacement of breeding females from"sink" areas that reduce the growth potential of the population as a whole. However, this action is contingent upon dispersal among local populations, for which there is limited information. Thus, we recommend that researchers examine dispersal behavior among areas on the Yukon-Kuskokwim Delta in western Alaska. The metapopulation framework could also be applied at the rangewide scale to address the density-dependent limitation of available polynya habitat during winter that may limit the recovery of small subpopulations, such as that on the Yukon-Kuskokwim Delta. Reductions in other subpopulations may be necessary to ensure an increase in the Yukon-Kuskokwim Delta population. Thus, we recommend that managers consider the interpopulation dynamics of spectacled eiders at different spatial scales in future management actions.
NASA Astrophysics Data System (ADS)
Podhorský, Dušan; Fabo, Peter
2016-12-01
The article deals with a method of acquiring the temporal and spatial distribution of local precipitation from measurement of performance characteristics of local sources of high frequency electromagnetic radiation in the 1-3GHz frequency range in the lower layers of the troposphere up to 100 m. The method was experimentally proven by monitoring the GSM G2 base stations of cell phone providers in the frequency range of 920-960MHz using methods of frequential and spatial diversity reception. Modification of the SART method for localization of precipitation was also proposed. The achieved results allow us to obtain the timeframe of the intensity of local precipitation in the observed area with a temporal resolution of 10 sec. A spatial accuracy of 100m in localization of precipitation is expected, after a network of receivers is built. The acquired data can be used as one of the inputs for meteorological forecasting models, in agriculture, hydrology as a supplementary method to ombrograph stations and measurements for the weather radar network, in transportation as part of a warning system and in many other areas.
NASA Astrophysics Data System (ADS)
Del Pozzo, W.; Berry, C. P. L.; Ghosh, A.; Haines, T. S. F.; Singer, L. P.; Vecchio, A.
2018-06-01
We reconstruct posterior distributions for the position (sky area and distance) of a simulated set of binary neutron-star gravitational-waves signals observed with Advanced LIGO and Advanced Virgo. We use a Dirichlet Process Gaussian-mixture model, a fully Bayesian non-parametric method that can be used to estimate probability density functions with a flexible set of assumptions. The ability to reliably reconstruct the source position is important for multimessenger astronomy, as recently demonstrated with GW170817. We show that for detector networks comparable to the early operation of Advanced LIGO and Advanced Virgo, typical localization volumes are ˜104-105 Mpc3 corresponding to ˜102-103 potential host galaxies. The localization volume is a strong function of the network signal-to-noise ratio, scaling roughly ∝ϱnet-6. Fractional localizations improve with the addition of further detectors to the network. Our Dirichlet Process Gaussian-mixture model can be adopted for localizing events detected during future gravitational-wave observing runs, and used to facilitate prompt multimessenger follow-up.
A statistical model to estimate the local vulnerability to severe weather
NASA Astrophysics Data System (ADS)
Pardowitz, Tobias
2018-06-01
We present a spatial analysis of weather-related fire brigade operations in Berlin. By comparing operation occurrences to insured losses for a set of severe weather events we demonstrate the representativeness and usefulness of such data in the analysis of weather impacts on local scales. We investigate factors influencing the local rate of operation occurrence. While depending on multiple factors - which are often not available - we focus on publicly available quantities. These include topographic features, land use information based on satellite data and information on urban structure based on data from the OpenStreetMap project. After identifying suitable predictors such as housing coverage or local density of the road network we set up a statistical model to be able to predict the average occurrence frequency of local fire brigade operations. Such model can be used to determine potential hotspots
for weather impacts even in areas or cities where no systematic records are available and can thus serve as a basis for a broad range of tools or applications in emergency management and planning.
NASA Astrophysics Data System (ADS)
Eladawy, Ahmed; Shaltout, Mohamed; Sousa, Magda Catarina; Dias, João Miguel; Nadaoka, Kazuo
2018-05-01
The Gulf of Suez, Northern Islands protected area, and Hurghada zone are experiencing mega developments in all sectors including tourism, industry, and logistics. The need for moderately accurate near-shore hydrodynamic models is increasing to support the sustainable development of this oceanic area. This can be accomplished by following a nesting approach including the downscaling of global atmospheric and oceanic models into local models using higher resolution datasets. This work aims to present the development of a one-way coupling between atmospheric and hydrodynamic models for the Gulf of Suez (GOS) to understand the local oceanic characteristics and processes. The Regional Climate Model system (RegCM4) is used to simulate moderate resolution atmospheric features and its results are used to force a local dedicated application of Delft3D model. The results indicate that the predicted water level, water temperature, and evaporation accurately follow in situ measurements, remotely sensed data, and re-analysis data. The results suggest that the annual sea surface temperature is averaged at 23 °C, while the annual average of evaporation rates equals 8.02 mm/day. The study suggests that the water level displays a marked seasonal and spatial variation. Moreover, the water balance in the Gulf of Suez was controlled by the difference between inflows and outflows through the Straits of Gubal and by the net precipitation. In addition, the water balance indicated a net loss of approximately 3.9 × 10-3 m of water during 2013. Moreover, the exchange through the Straits of Gubal showed a two-way exchange with a net inflow of 0.0007 Sv, where the outflow dominated in the surface layer along the western coast and the inflow dominated in the lower layers along the middle of the Straits. To conclude, the one-way coupling modeling technique proved to be a reliable tool for studying local features of the GOS region.
Beatty, William S.; Webb, Elisabeth B.; Kesler, Dylan C.; Raedeke, Andrew H.; Naylor, Luke W.; Humburg, Dale D.
2014-01-01
Previous studies that evaluated effects of landscape-scale habitat heterogeneity on migratory waterbird distributions were spatially limited and temporally restricted to one major life-history phase. However, effects of landscape-scale habitat heterogeneity on long-distance migratory waterbirds can be studied across the annual cycle using new technologies, including global positioning system satellite transmitters. We used Bayesian discrete choice models to examine the influence of local habitats and landscape composition on habitat selection by a generalist dabbling duck, the mallard (Anas platyrhynchos), in the midcontinent of North America during the non-breeding period. Using a previously published empirical movement metric, we separated the non-breeding period into three seasons, including autumn migration, winter, and spring migration. We defined spatial scales based on movement patterns such that movements >0.25 and <30.00 km were classified as local scale and movements >30.00 km were classified as relocation scale. Habitat selection at the local scale was generally influenced by local and landscape-level variables across all seasons. Variables in top models at the local scale included proximities to cropland, emergent wetland, open water, and woody wetland. Similarly, variables associated with area of cropland, emergent wetland, open water, and woody wetland were also included at the local scale. At the relocation scale, mallards selected resource units based on more generalized variables, including proximity to wetlands and total wetland area. Our results emphasize the role of landscape composition in waterbird habitat selection and provide further support for local wetland landscapes to be considered functional units of waterbird conservation and management.
Ozkurt, Nesimi; Sari, Deniz; Akalin, Nuray; Hilmioglu, Bilgin
2013-07-01
The characterization and assessment of air-quality in this region are essential steps for the implementation of the "Clean Air Action Plan" as this is set by the Turkish Regulation on Ambient Air-Quality Assessment and Management. This study area intends to shed a light on use of modeling tools as an alternative method for the assessment of local atmospheric pollution and the determination of the importance of local emissions. This modeling approach can be also used for the consistent geographic representation of air-quality concentration as well as for assessing the future air-quality condition after the implementation of emission reduction measures in a certain area. With this article we evaluate the impact of sulfur dioxide and nitrogen dioxide emissions on the ambient air-quality in the Çan-Bayramiç region of Turkey. The emission rates of sulfur dioxide and nitrogen dioxide were calculated by using the CALPUFF model. The concentration of these pollutants had also been monitored at ten air-quality locations during 2007-2008 in the research area. The measured data were also utilized for testing the model performance. Results showed that the air-quality in this important rural region of Turkey can be evaluated effectively by using the current numerical modeling system. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Prediction of lake depth across a 17-state region in the United States
Oliver, Samantha K.; Soranno, Patricia A.; Fergus, C. Emi; Wagner, Tyler; Winslow, Luke A.; Scott, Caren E.; Webster, Katherine E.; Downing, John A.; Stanley, Emily H.
2016-01-01
Lake depth is an important characteristic for understanding many lake processes, yet it is unknown for the vast majority of lakes globally. Our objective was to develop a model that predicts lake depth using map-derived metrics of lake and terrestrial geomorphic features. Building on previous models that use local topography to predict lake depth, we hypothesized that regional differences in topography, lake shape, or sedimentation processes could lead to region-specific relationships between lake depth and the mapped features. We therefore used a mixed modeling approach that included region-specific model parameters. We built models using lake and map data from LAGOS, which includes 8164 lakes with maximum depth (Zmax) observations. The model was used to predict depth for all lakes ≥4 ha (n = 42 443) in the study extent. Lake surface area and maximum slope in a 100 m buffer were the best predictors of Zmax. Interactions between surface area and topography occurred at both the local and regional scale; surface area had a larger effect in steep terrain, so large lakes embedded in steep terrain were much deeper than those in flat terrain. Despite a large sample size and inclusion of regional variability, model performance (R2 = 0.29, RMSE = 7.1 m) was similar to other published models. The relative error varied by region, however, highlighting the importance of taking a regional approach to lake depth modeling. Additionally, we provide the largest known collection of observed and predicted lake depth values in the United States.
Objective classification of atmospheric circulation over southern Scandinavia
NASA Astrophysics Data System (ADS)
Linderson, Maj-Lena
2001-02-01
A method for calculating circulation indices and weather types following the Lamb classification is applied to southern Scandinavia. The main objective is to test the ability of the method to describe the atmospheric circulation over the area, and to evaluate the extent to which the pressure patterns determine local precipitation and temperature in Scania, southernmost Sweden. The weather type classification method works well and produces distinct groups. However, the variability within the group is large with regard to the location of the low pressure centres, which may have implications for the precipitation over the area. The anticyclonic weather type dominates, together with the cyclonic and westerly types. This deviates partly from the general picture for Sweden and may be explained by the southerly location of the study area. The cyclonic type is most frequent in spring, although cloudiness and amount of rain are lowest during this season. This could be explained by the occurrence of weaker cyclones or low air humidity during this time of year. Local temperature and precipitation were modelled by stepwise regression for each season, designating weather types as independent variables. Only the winter season-modelled temperature and precipitation show a high and robust correspondence to the observed temperature and precipitation, even though <60% of the precipitation variance is explained. In the other seasons, the connection between atmospheric circulation and the local temperature and precipitation is low. Other meteorological parameters may need to be taken into account. The time and space resolution of the mean sea level pressure (MSLP) grid may affect the results, as many important features might not be covered by the classification. Local physiography may also influence the local climate in a way that cannot be described by the atmospheric circulation pattern alone, stressing the importance of using more than one observation series.
NASA Astrophysics Data System (ADS)
Seyoum, Wondwosen M.; Milewski, Adam M.
2017-12-01
Investigating terrestrial water cycle dynamics is vital for understanding the recent climatic variability and human impacts in the hydrologic cycle. In this study, a downscaling approach was developed and tested, to improve the applicability of terrestrial water storage (TWS) anomaly data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission for understanding local terrestrial water cycle dynamics in the Northern High Plains region. A non-parametric, artificial neural network (ANN)-based model, was utilized to downscale GRACE data by integrating it with hydrological variables (e.g. soil moisture) derived from satellite and land surface model data. The downscaling model, constructed through calibration and sensitivity analysis, was used to estimate TWS anomaly for watersheds ranging from 5000 to 20,000 km2 in the study area. The downscaled water storage anomaly data were evaluated using water storage data derived from an (1) integrated hydrologic model, (2) land surface model (e.g. Noah), and (3) storage anomalies calculated from in-situ groundwater level measurements. Results demonstrate the ANN predicts monthly TWS anomaly within the uncertainty (conservative error estimate = 34 mm) for most of the watersheds. Seasonal derived groundwater storage anomaly (GWSA) from the ANN correlated well (r = ∼0.85) with GWSAs calculated from in-situ groundwater level measurements for a watershed size as small as 6000 km2. ANN downscaled TWSA matches closely with Noah-based TWSA compared to standard GRACE extracted TWSA at a local scale. Moreover, the ANN-downscaled change in TWS replicated the water storage variability resulting from the combined effect of climatic and human impacts (e.g. abstraction). The implications of utilizing finer resolution GRACE data for improving local and regional water resources management decisions and applications are clear, particularly in areas lacking in-situ hydrologic monitoring networks.
NASA Astrophysics Data System (ADS)
Yang, B.; Lee, D. K.
2016-12-01
Understanding spatial distribution of irrigation requirement is critically important for agricultural water management. However, many studies considering future agricultural water management in Korea assessed irrigation requirement on watershed or administrative district scale, but have not accounted the spatial distribution. Lumped hydrologic model has typically used in Korea for simulating watershed scale irrigation requirement, while distribution hydrologic model can simulate the spatial distribution grid by grid. To overcome this shortcoming, here we applied a grid base global hydrologic model (H08) into local scale to estimate spatial distribution under future irrigation requirement of Korean Peninsula. Korea is one of the world's most densely populated countries, with also high produce and demand of rice which requires higher soil moisture than other crops. Although, most of the precipitation concentrate in particular season and disagree with crop growth season. This precipitation character makes management of agricultural water which is approximately 60% of total water usage critical issue in Korea. Furthermore, under future climate change, the precipitation predicted to be more concentrated and necessary need change of future water management plan. In order to apply global hydrological model into local scale, we selected appropriate major crops under social and local climate condition in Korea to estimate cropping area and yield, and revised the cropping area map more accurately. As a result, future irrigation requirement estimation varies under each projection, however, slightly decreased in most case. The simulation reveals, evapotranspiration increase slightly while effective precipitation also increase to balance the irrigation requirement. This finding suggest practical guideline to decision makers for further agricultural water management plan including future development of water supply plan to resolve water scarcity.
NASA Astrophysics Data System (ADS)
Kvile, Kristina Øie; Fiksen, Øyvind; Prokopchuk, Irina; Opdal, Anders Frugård
2017-01-01
The copepod Calanus finmarchicus is an important part of the diet for several large fish stocks feeding in the Atlantic waters of the Barents Sea. Determining the origin of the new generation copepodites present on the Barents Sea shelf in spring can shed light on the importance of local versus imported production of C. finmarchicus biomass in this region. In this study, we couple large-scale spatiotemporal survey data (> 30 years in both Norwegian Sea and Barents Sea areas) with drift trajectories from a hydrodynamic model to back-calculate and map the spatial distribution of C. finmarchicus from copepod to egg, allowing us to identify potential adult spawning areas. Assuming the adult stage emerges from overwintering in the Norwegian Sea, our results suggest that copepodites sampled at the Barents Sea entrance are a mix of locally spawned individuals and long-distance-travellers advected northwards along the Norwegian shelf edge. However, copepodites sampled farther east in the Barents Sea (33°30‧E) are most likely spawned on the Barents Sea shelf, potentially from females that have overwintered locally. Our results support that C. finmarchicus dynamics in the Barents Sea are not, at least in the short-term, solely driven by advection from the Norwegian Sea, but that local production may be more important than commonly believed.
NASA Astrophysics Data System (ADS)
Bernardo, Lawrence Patrick C.; Nadaoka, Kazuo; Nakamura, Takashi; Watanabe, Atsushi
2017-11-01
While widely known for their destructive power, typhoon events can also bring benefit to coral reef ecosystems through typhoon-induced cooling which can mitigate against thermally stressful conditions causing coral bleaching. Sensor deployments in Sekisei Lagoon, Japan's largest coral reef area, during the summer months of 2013, 2014, and 2015 were able to capture local hydrodynamic features of numerous typhoon passages. In particular, typhoons 2015-13 and 2015-15 featured steep drops in near-bottom temperature of 5 °C or more in the north and south sides of Sekisei Lagoon, respectively, indicating local cooling patterns which appeared to depend on the track and intensity of the passing typhoon. This was further investigated using Regional Ocean Modeling System (ROMS) numerical simulations conducted for the summer of 2015. The modeling results showed a cooling trend to the north of the Yaeyama Islands during the passage of typhoon 2015-13, and a cooling trend that moved clockwise from north to south of the islands during the passage of typhoon 2015-15. These local cooling events may have been initiated by the Yaeyama Islands acting as an obstacle to a strong typhoon-generated flow which was modulated and led to prominent cooling of waters on the leeward sides. These lower temperature waters from offshore may then be transported to the shallower inner parts of the lagoon area, which may partly be due to density-driven currents generated by the offshore-inner area temperature difference.
NASA Astrophysics Data System (ADS)
Zhou, Qianqian; Panduro, Toke Emil; Thorsen, Bo Jellesmark; Arnbjerg-Nielsen, Karsten
2013-03-01
This paper presents a cross-disciplinary framework for assessment of climate change adaptation to increased precipitation extremes considering pluvial flood risk as well as additional environmental services provided by some of the adaptation options. The ability of adaptation alternatives to cope with extreme rainfalls is evaluated using a quantitative flood risk approach based on urban inundation modeling and socio-economic analysis of corresponding costs and benefits. A hedonic valuation model is applied to capture the local economic gains or losses from more water bodies in green areas. The framework was applied to the northern part of the city of Aarhus, Denmark. We investigated four adaptation strategies that encompassed laissez-faire, larger sewer pipes, local infiltration units, and open drainage system in the urban green structure. We found that when taking into account environmental amenity effects, an integration of open drainage basins in urban recreational areas is likely the best adaptation strategy, followed by pipe enlargement and local infiltration strategies. All three were improvements compared to the fourth strategy of no measures taken.
Zhou, Qianqian; Panduro, Toke Emil; Thorsen, Bo Jellesmark; Arnbjerg-Nielsen, Karsten
2013-03-01
This paper presents a cross-disciplinary framework for assessment of climate change adaptation to increased precipitation extremes considering pluvial flood risk as well as additional environmental services provided by some of the adaptation options. The ability of adaptation alternatives to cope with extreme rainfalls is evaluated using a quantitative flood risk approach based on urban inundation modeling and socio-economic analysis of corresponding costs and benefits. A hedonic valuation model is applied to capture the local economic gains or losses from more water bodies in green areas. The framework was applied to the northern part of the city of Aarhus, Denmark. We investigated four adaptation strategies that encompassed laissez-faire, larger sewer pipes, local infiltration units, and open drainage system in the urban green structure. We found that when taking into account environmental amenity effects, an integration of open drainage basins in urban recreational areas is likely the best adaptation strategy, followed by pipe enlargement and local infiltration strategies. All three were improvements compared to the fourth strategy of no measures taken.
Human impact on sediment fluxes within the Blue Nile and Atbara River basins
NASA Astrophysics Data System (ADS)
Balthazar, Vincent; Vanacker, Veerle; Girma, Atkilt; Poesen, Jean; Golla, Semunesh
2013-01-01
A regional assessment of the spatial variability in sediment yields allows filling the gap between detailed, process-based understanding of erosion at field scale and empirical sediment flux models at global scale. In this paper, we focus on the intrabasin variability in sediment yield within the Blue Nile and Atbara basins as biophysical and anthropogenic factors are presumably acting together to accelerate soil erosion. The Blue Nile and Atbara River systems are characterized by an important spatial variability in sediment fluxes, with area-specific sediment yield (SSY) values ranging between 4 and 4935 t/km2/y. Statistical analyses show that 41% of the observed variation in SSY can be explained by remote sensing proxy data of surface vegetation cover, rainfall intensity, mean annual temperature, and human impact. The comparison of a locally adapted regression model with global predictive sediment flux models indicates that global flux models such as the ART and BQART models are less suited to capture the spatial variability in area-specific sediment yields (SSY), but they are very efficient to predict absolute sediment yields (SY). We developed a modified version of the BQART model that estimates the human influence on sediment yield based on a high resolution composite measure of local human impact (human footprint index) instead of countrywide estimates of GNP/capita. Our modified version of the BQART is able to explain 80% of the observed variation in SY for the Blue Nile and Atbara basins and thereby performs only slightly less than locally adapted regression models.
48 CFR 26.202 - Local area preference.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Local area preference. 26... PROGRAMS OTHER SOCIOECONOMIC PROGRAMS Disaster or Emergency Assistance Activities 26.202 Local area... feasible and practicable, to local firms. Preference may be given through a local area set-aside or an...
48 CFR 26.202 - Local area preference.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Local area preference. 26... PROGRAMS OTHER SOCIOECONOMIC PROGRAMS Disaster or Emergency Assistance Activities 26.202 Local area... feasible and practicable, to local firms. Preference may be given through a local area set-aside or an...
About JEDI | Jobs and Economic Development Impact Models | NREL
About JEDI About JEDI The Jobs and Economic Development Impact (JEDI) models are user-friendly screening tools that estimate the economic impacts of constructing and operating power plants, fuel from industry norms), JEDI estimates the number of jobs and economic impacts to a local area that can
The United States Environmental Protection Agency’s Environmental Sciences and Atmospheric Modeling Analysis Divisions are investigating the viability of simulated (i.e., ‘modeled’) leaf area index (LAI) inputs into various regional and local scale air quality models. Satellite L...
Recent modeling and field studies have demonstrated that roadside structures such as noise barriers or tree stands, may significantly affect the local-scale transport of on-road emissions to areas located adjacent to major roadways. When directly downwind of a major roadway, conc...
Speed of feedforward and recurrent processing in multilayer networks of integrate-and-fire neurons.
Panzeri, S; Rolls, E T; Battaglia, F; Lavis, R
2001-11-01
The speed of processing in the visual cortical areas can be fast, with for example the latency of neuronal responses increasing by only approximately 10 ms per area in the ventral visual system sequence V1 to V2 to V4 to inferior temporal visual cortex. This has led to the suggestion that rapid visual processing can only be based on the feedforward connections between cortical areas. To test this idea, we investigated the dynamics of information retrieval in multiple layer networks using a four-stage feedforward network modelled with continuous dynamics with integrate-and-fire neurons, and associative synaptic connections between stages with a synaptic time constant of 10 ms. Through the implementation of continuous dynamics, we found latency differences in information retrieval of only 5 ms per layer when local excitation was absent and processing was purely feedforward. However, information latency differences increased significantly when non-associative local excitation was included. We also found that local recurrent excitation through associatively modified synapses can contribute significantly to processing in as little as 15 ms per layer, including the feedforward and local feedback processing. Moreover, and in contrast to purely feed-forward processing, the contribution of local recurrent feedback was useful and approximately this rapid even when retrieval was made difficult by noise. These findings suggest that cortical information processing can benefit from recurrent circuits when the allowed processing time per cortical area is at least 15 ms long.
Tidal marsh susceptibility to sea-level rise: importance of local-scale models
Thorne, Karen M.; Buffington, Kevin J.; Elliott-Fisk, Deborah L.; Takekawa, John Y.
2015-01-01
Increasing concern over sea-level rise impacts to coastal tidal marsh ecosystems has led to modeling efforts to anticipate outcomes for resource management decision making. Few studies on the Pacific coast of North America have modeled sea-level rise marsh susceptibility at a scale relevant to local wildlife populations and plant communities. Here, we use a novel approach in developing an empirical sea-level rise ecological response model that can be applied to key management questions. Calculated elevation change over 13 y for a 324-ha portion of San Pablo Bay National Wildlife Refuge, California, USA, was used to represent local accretion and subsidence processes. Next, we coupled detailed plant community and elevation surveys with measured rates of inundation frequency to model marsh state changes to 2100. By grouping plant communities into low, mid, and high marsh habitats, we were able to assess wildlife species vulnerability and to better understand outcomes for habitat resiliency. Starting study-site conditions were comprised of 78% (253-ha) high marsh, 7% (30-ha) mid marsh, and 4% (18-ha) low marsh habitats, dominated by pickleweed Sarcocornia pacifica and cordgrass Spartina spp. Only under the low sea-level rise scenario (44 cm by 2100) did our models show persistence of some marsh habitats to 2100, with the area dominated by low marsh habitats. Under mid (93 cm by 2100) and high sea-level rise scenarios (166 cm by 2100), most mid and high marsh habitat was lost by 2070, with only 15% (65 ha) remaining, and a complete loss of these habitats by 2080. Low marsh habitat increased temporarily under all three sea-level rise scenarios, with the peak (286 ha) in 2070, adding habitat for the endemic endangered California Ridgway’s rail Rallus obsoletus obsoletus. Under mid and high sea-level rise scenarios, an almost complete conversion to mudflat occurred, with most of the area below mean sea level. Our modeling assumed no marsh migration upslope due to human levee and infrastructure preventing these types of processes. Other modeling efforts done for this area have projected marsh persistence to 2100, but our modeling effort with site-specific datasets allowed us to model at a finer resolution with much higher local confidence, resulting in different results for management. Our results suggest that projected sea-level rise will have significant impacts on marsh plant communities and obligate wildlife, including those already under federal and state protection. Comprehensive modeling as done here improves the potential to implement adaptive management strategies and prevent marsh habitat and wildlife loss in the future.
The forward modelling and analysis of magnetic field on the East Asia area using tesseroids
NASA Astrophysics Data System (ADS)
Chen, Z.; Meng, X.; Xu, G.
2017-12-01
As the progress of airborne and satellite magnetic survey, high-resolution magnetic data could be measured at different scale. In order to test and improve the accuracy of the existing crustal model, the forward modeling method is usually used to simulate the magnetic field of the lithosphere. Traditional models to forward modelling the magnetic field are based on the Cartesian coordinate system, and are always used to calculate the magnetic field of the local and small area. However, the Cartesian coordinate system is not an ideal choice for calculating the magnetic field of the global or continental area at the height of the satellite and Earth's curvature cannot be ignored in this situation. The spherical element (called tesseroids) can be used as a model element in the spherical coordinate system to solve this problem. On the basis of studying the principle of this forward method, we focus the selection of data source and the mechanism of adaptive integration. Then we calculate the magnetic anomaly data of East Asia area based on the model Crust1.0. The results presented the crustal susceptibility distribution, which was well consistent with the basic tectonic features in the study area.
Reef-coral refugia in a rapidly changing ocean.
Cacciapaglia, Chris; van Woesik, Robert
2015-06-01
This study sought to identify climate-change thermal-stress refugia for reef corals in the Indian and Pacific Oceans. A species distribution modeling approach was used to identify refugia for 12 coral species that differed considerably in their local response to thermal stress. We hypothesized that the local response of coral species to thermal stress might be similarly reflected as a regional response to climate change. We assessed the contemporary geographic range of each species and determined their temperature and irradiance preferences using a k-fold algorithm to randomly select training and evaluation sites. That information was applied to downscaled outputs of global climate models to predict where each species is likely to exist by the year 2100. Our model was run with and without a 1°C capacity to adapt to the rising ocean temperature. The results show a positive exponential relationship between the current area of habitat that coral species occupy and the predicted area of habitat that they will occupy by 2100. There was considerable decoupling between scales of response, however, and with further ocean warming some 'winners' at local scales will likely become 'losers' at regional scales. We predicted that nine of the 12 species examined will lose 24-50% of their current habitat. Most reductions are predicted to occur between the latitudes 5-15°, in both hemispheres. Yet when we modeled a 1°C capacity to adapt, two ubiquitous species, Acropora hyacinthus and Acropora digitifera, were predicted to retain much of their current habitat. By contrast, the thermally tolerant Porites lobata is expected to increase its current distribution by 14%, particularly southward along the east and west coasts of Australia. Five areas were identified as Indian Ocean refugia, and seven areas were identified as Pacific Ocean refugia for reef corals under climate change. All 12 of these reef-coral refugia deserve high-conservation status. © 2015 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Scambos, Theodore A.; Frezzotti, Massimo; Haran, T.; Bohlander, J.; Lenaerts, J. T. M.; Van Den Broeke, M. R.; Jezek, K.; Long, D.; Urbini, S.; Farness, K.;
2012-01-01
Persistent katabatic winds form widely distributed localized areas of near-zero net surface accumulation on the East Antarctic ice sheet (EAIS) plateau. These areas have been called 'glaze' surfaces due to their polished appearance. They are typically 2-200 square kilometers in area and are found on leeward slopes of ice-sheet undulations and megadunes. Adjacent, leeward high-accumulation regions (isolated dunes) are generally smaller and do not compensate for the local low in surface mass balance (SMB). We use a combination of satellite remote sensing and field-gathered datasets to map the extent of wind glaze in the EAIS above 1500m elevation. Mapping criteria are derived from distinctive surface and subsurface characteristics of glaze areas resulting from many years of intense annual temperature cycling without significant burial. Our results show that 11.2 plus or minus 1.7%, or 950 plus or minus 143 x 10(exp 3) square kilometers, of the EAIS above 1500m is wind glaze. Studies of SMB interpolate values across glaze regions, leading to overestimates of net mass input. Using our derived wind-glaze extent, we estimate this excess in three recent models of Antarctic SMB at 46-82 Gt. The lowest-input model appears to best match the mean in regions of extensive wind glaze.
Analysis of supply chain management of shallots in Medan
NASA Astrophysics Data System (ADS)
Alam, M. C.; Supriana, T.
2018-02-01
Supply chain is important for business. One of supply chain that needs to be studied is the shallots supply chain. Medan have high demand while the supply of shallots is limited. This study aims to analyze the flow of shallots supply chain distribution in Medan. The method used was survey by using questionnaires to shallots producers, collecting traders, distributors, traders as well as government involved in shallots supply chain. Descriptive analysis was used to explain the shallots supply chain distribution flow. The results showed that there are two shallots supply chain model in Medan that was local shallots model and imported shallots model. Local shallots model could be distinguished based on three producer area, those were models of Medan Marelan, Samosir, and Simalungun. Medan Marelan and Simalungun models have seven supply chains, while the Samosir Model has eight supply chains. This condition indicates that the local shallots supply chain management in Medan was not efficient because of the length of the distribution channel. Supply chain imported shallots was more efficient because it had a shorter distribution flow with five supply chains.
Dem Local Accuracy Patterns in Land-Use/Land-Cover Classification
NASA Astrophysics Data System (ADS)
Katerji, Wassim; Farjas Abadia, Mercedes; Morillo Balsera, Maria del Carmen
2016-01-01
Global and nation-wide DEM do not preserve the same height accuracy throughout the area of study. Instead of assuming a single RMSE value for the whole area, this study proposes a vario-model that divides the area into sub-regions depending on the land-use / landcover (LULC) classification, and assigns a local accuracy per each zone, as these areas share similar terrain formation and roughness, and tend to have similar DEM accuracies. A pilot study over Lebanon using the SRTM and ASTER DEMs, combined with a set of 1,105 randomly distributed ground control points (GCPs) showed that even though the inputDEMs have different spatial and temporal resolution, and were collected using difierent techniques, their accuracy varied similarly when changing over difierent LULC classes. Furthermore, validating the generated vario-models proved that they provide a closer representation of the accuracy to the validating GCPs than the conventional RMSE, by 94% and 86% for the SRTMand ASTER respectively. Geostatistical analysis of the input and output datasets showed that the results have a normal distribution, which support the generalization of the proven hypothesis, making this finding applicable to other input datasets anywhere around the world.
Hällfors, Maria Helena; Liao, Jishan; Dzurisin, Jason D. K.; Grundel, Ralph; Hyvärinen, Marko; Towle, Kevin; Wu, Grace C.; Hellmann, Jessica J.
2016-01-01
Species distribution models (SDMs) have been criticized for involving assumptions that ignore or categorize many ecologically relevant factors such as dispersal ability and biotic interactions. Another potential source of model error is the assumption that species are ecologically uniform in their climatic tolerances across their range. Typically, SDMs to treat a species as a single entity, although populations of many species differ due to local adaptation or other genetic differentiation. Not taking local adaptation into account, may lead to incorrect range prediction and therefore misplaced conservation efforts. A constraint is that we often do not know the degree to which populations are locally adapted, however. Lacking experimental evidence, we still can evaluate niche differentiation within a species' range to promote better conservation decisions. We explore possible conservation implications of making type I or type II errors in this context. For each of two species, we construct three separate MaxEnt models, one considering the species as a single population and two of disjunct populations. PCA analyses and response curves indicate different climate characteristics in the current environments of the populations. Model projections into future climates indicate minimal overlap between areas predicted to be climatically suitable by the whole species versus population-based models. We present a workflow for addressing uncertainty surrounding local adaptation in SDM application and illustrate the value of conducting population-based models to compare with whole-species models. These comparisons might result in more cautious management actions when alternative range outcomes are considered.
NASA Astrophysics Data System (ADS)
Shaman, J.; Stieglitz, M.; Zebiak, S.; Cane, M.; Day, J. F.
2002-12-01
We present an ensemble local hydrologic forecast derived from the seasonal forecasts of the International Research Institute (IRI) for Climate Prediction. Three- month seasonal forecasts were used to resample historical meteorological conditions and generate ensemble forcing datasets for a TOPMODEL-based hydrology model. Eleven retrospective forecasts were run at a Florida and New York site. Forecast skill was assessed for mean area modeled water table depth (WTD), i.e. near surface soil wetness conditions, and compared with WTD simulated with observed data. Hydrology model forecast skill was evident at the Florida site but not at the New York site. At the Florida site, persistence of hydrologic conditions and local skill of the IRI seasonal forecast contributed to the local hydrologic forecast skill. This forecast will permit probabilistic prediction of future hydrologic conditions. At the Florida site, we have also quantified the link between modeled WTD (i.e. drought) and the amplification and transmission of St. Louis Encephalitis virus (SLEV). We derive an empirical relationship between modeled land surface wetness and levels of SLEV transmission associated with human clinical cases. We then combine the seasonal forecasts of local, modeled WTD with this empirical relationship and produce retrospective probabilistic seasonal forecasts of epidemic SLEV transmission in Florida. Epidemic SLEV transmission forecast skill is demonstrated. These findings will permit real-time forecast of drought and resultant SLEV transmission in Florida.
NASA Astrophysics Data System (ADS)
Werren, G.; Balin, D.; Reynard, E.; Lane, S. N.
2012-04-01
Flood modelling is essential for flood hazard assessment. Modelling becomes a challenge in small, ungauged watersheds prone to flash floods, like the ones draining the town of Beni Mellal (Morocco). Four temporary streams meet in the urban area of Beni Mellal, producing every year sheet floods, harmful to infrastructure and to people. Here, statistical analysis may not give realistic results, but the study of these repeated real flash flood events may provide a better understanding of watershed specific hydrology. This study integrates a larger cooperation project between Switzerland and Morroco, aimed at knowledge transfer in disaster risk reduction, especially through hazard mapping and land-use planning, related to implementation of hazard maps. Hydrologic and hydraulic modelling was carried out to obtain hazard maps. An important point was to find open source data and methods that could still produce a realistic model for the area concerned, in order to provide easy-to-use, cost-effective tools for risk management in developing countries like Morocco, where routine data collection is largely lacking. The data used for modelling is the Web available TRMM 3-Hour 0.25 degree rainfall data provided by the Tropical Rainfall Measurement Mission Project (TRMM). Hydrologic modelling for discharge estimation was undertaken using methods available in the HEC-HMS software provided by the US Army Corps of Engineers® (USACE). Several transfer models were used, so as to choose the best-suited method available. As no model calibration was possible for no measured flow data was available, a one-at-the-time sensitivity analysis was performed on the parameters chosen, in order to detect their influence on the results. But the most important verification method remained field observation, through post-flood field campaigns aimed at mapping water surfaces and depths in the flooded areas, as well as river section monitoring, where rough discharge estimates could be obtained using empirical equations. Another information source was local knowledge, as people could give a rough estimation of concentration time by describing flood evolution. Finally, hydraulic modelling of the flooded areas in the urban perimeter was performed using the USACE HEC-RAS® software capabilities. A specific challenge at this stage was field morphology, as the flooded areas form large alluvial fans, with very different flood behaviour compared to flood plains. Model "calibration" at this stage was undertaken using the mapped water surfaces and depths. Great care was taken for field geometry design, where field observations, measured cross sections and field images were used to improve the existing DTM data. The model included protection dikes already built by local authorities in their flood-fight effort. Because of flash-flood specific behaviour, only maximal flooded surfaces and flow velocities were simulated through steady flow analysis in HEC-RAS. The discharge estimates obtained for the chosen event were comparable to 10-year return periods as estimated by the watershed authorities. Times of concentration correspond to this previous estimation and to local people descriptions. The modelled water surfaces reflect field reality. Flash-flood modelling demands extensive knowledge of the studied field in order to compensate data scarcity. However, more precise data, like radar rainfall estimates available in Morocco, would definitely improve outputs. In this perspective, better data access at the local level and good use of the available methods could benefit the disaster risk reduction effort as a whole.
3D robust Chan-Vese model for industrial computed tomography volume data segmentation
NASA Astrophysics Data System (ADS)
Liu, Linghui; Zeng, Li; Luan, Xiao
2013-11-01
Industrial computed tomography (CT) has been widely applied in many areas of non-destructive testing (NDT) and non-destructive evaluation (NDE). In practice, CT volume data to be dealt with may be corrupted by noise. This paper addresses the segmentation of noisy industrial CT volume data. Motivated by the research on the Chan-Vese (CV) model, we present a region-based active contour model that draws upon intensity information in local regions with a controllable scale. In the presence of noise, a local energy is firstly defined according to the intensity difference within a local neighborhood. Then a global energy is defined to integrate local energy with respect to all image points. In a level set formulation, this energy is represented by a variational level set function, where a surface evolution equation is derived for energy minimization. Comparative analysis with the CV model indicates the comparable performance of the 3D robust Chan-Vese (RCV) model. The quantitative evaluation also shows the segmentation accuracy of 3D RCV. In addition, the efficiency of our approach is validated under several types of noise, such as Poisson noise, Gaussian noise, salt-and-pepper noise and speckle noise.
A benders decomposition approach to multiarea stochastic distributed utility planning
NASA Astrophysics Data System (ADS)
McCusker, Susan Ann
Until recently, small, modular generation and storage options---distributed resources (DRs)---have been installed principally in areas too remote for economic power grid connection and sensitive applications requiring backup capacity. Recent regulatory changes and DR advances, however, have lead utilities to reconsider the role of DRs. To a utility facing distribution capacity bottlenecks or uncertain load growth, DRs can be particularly valuable since they can be dispersed throughout the system and constructed relatively quickly. DR value is determined by comparing its costs to avoided central generation expenses (i.e., marginal costs) and distribution investments. This requires a comprehensive central and local planning and production model, since central system marginal costs result from system interactions over space and time. This dissertation develops and applies an iterative generalized Benders decomposition approach to coordinate models for optimal DR evaluation. Three coordinated models exchange investment, net power demand, and avoided cost information to minimize overall expansion costs. Local investment and production decisions are made by a local mixed integer linear program. Central system investment decisions are made by a LP, and production costs are estimated by a stochastic multi-area production costing model with Kirchhoff's Voltage and Current Law constraints. The nested decomposition is a new and unique method for distributed utility planning that partitions the variables twice to separate local and central investment and production variables, and provides upper and lower bounds on expected expansion costs. Kirchhoff's Voltage Law imposes nonlinear, nonconvex constraints that preclude use of LP if transmission capacity is available in a looped transmission system. This dissertation develops KVL constraint approximations that permit the nested decomposition to consider new transmission resources, while maintaining linearity in the three individual models. These constraints are presented as a heuristic for the given examples; future research will investigate conditions for convergence. A ten-year multi-area example demonstrates the decomposition approach and suggests the ability of DRs and new transmission to modify capacity additions and production costs by changing demand and power flows. Results demonstrate that DR and new transmission options may lead to greater capacity additions, but resulting production cost savings more than offset extra capacity costs.
NASA Astrophysics Data System (ADS)
Tate, Z.; Dusenge, D.; Elliot, T. S.; Hafashimana, P.; Medley, S.; Porter, R. P.; Rajappan, R.; Rodriguez, P.; Spangler, J.; Swaminathan, R. S.; VanGundy, R. D.
2014-12-01
The majority of the population in southwest Virginia depends economically on coal mining. In 2011, coal mining generated $2,000,000 in tax revenue to Wise County alone. However, surface mining completely removes land cover and leaves the land exposed to erosion. The destruction of the forest cover directly impacts local species, as some are displaced and others perish in the mining process. Even though surface mining has a negative impact on the environment, land reclamation efforts are in place to either restore mined areas to their natural vegetated state or to transform these areas for economic purposes. This project aimed to monitor the progress of land reclamation and the effect on the return of local species. By incorporating NASA Earth observations, such as Landsat 8 Operational Land Imager (OLI) and Landsat 5 Thematic Mapper (TM), re-vegetation process in reclamation sites was estimated through a Time series analysis using the Normalized Difference Vegetation Index (NDVI). A continuous source of cloud free images was accomplished by utilizing the Spatial and Temporal Adaptive Reflectance Fusion Model (STAR-FM). This model developed synthetic Landsat imagery by integrating the high-frequency temporal information from Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and high-resolution spatial information from Landsat sensors In addition, the Maximum Entropy Modeling (MaxENT), an eco-niche model was used to estimate the adaptation of animal species to the newly formed habitats. By combining factors such as land type, precipitation from Tropical Rainfall Measuring Mission (TRMM), and slope from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the MaxENT model produced a statistical analysis on the probability of species habitat. Altogether, the project compiled the ecological information which can be used to identify suitable habitats for local species in reclaimed mined areas.
Database assessment of CMIP5 and hydrological models to determine flood risk areas
NASA Astrophysics Data System (ADS)
Limlahapun, Ponthip; Fukui, Hiromichi
2016-11-01
Solutions for water-related disasters may not be solved with a single scientific method. Based on this premise, we involved logic conceptions, associate sequential result amongst models, and database applications attempting to analyse historical and future scenarios in the context of flooding. The three main models used in this study are (1) the fifth phase of the Coupled Model Intercomparison Project (CMIP5) to derive precipitation; (2) the Integrated Flood Analysis System (IFAS) to extract amount of discharge; and (3) the Hydrologic Engineering Center (HEC) model to generate inundated areas. This research notably focused on integrating data regardless of system-design complexity, and database approaches are significantly flexible, manageable, and well-supported for system data transfer, which makes them suitable for monitoring a flood. The outcome of flood map together with real-time stream data can help local communities identify areas at-risk of flooding in advance.
Freisthler, Bridget; Gaidus, Andrew; Tam, Christina; Ponicki, William R; Gruenewald, Paul J
2017-06-01
A movement from medical to recreational marijuana use allows for a larger base of potential users who have easier access to marijuana, because they do not have to visit a physician before using marijuana. This study examines whether changes in the density of marijuana outlets were related to violent, property, and marijuana-specific crimes in Denver, CO during a time in which marijuana outlets began selling marijuana for recreational, and not just medical, use. We collected data on locations of crimes, marijuana outlets and covariates for 481 Census block groups over 34 months (N = 16,354 space-time units). A Bayesian Poisson space-time model assessed statistical relationships between independent measures and crime counts within "local" Census block groups. We examined spatial "lag" effects to assess whether crimes in Census block groups adjacent to locations of outlets were also affected. Independent of the effects of covariates, densities of marijuana outlets were unrelated to property and violent crimes in local areas. However, the density of marijuana outlets in spatially adjacent areas was positively related to property crime in spatially adjacent areas over time. Further, the density of marijuana outlets in local and spatially adjacent blocks groups was related to higher rates of marijuana-specific crime. This study suggests that the effects of the availability of marijuana outlets on crime do not necessarily occur within the specific areas within which these outlets are located, but may occur in adjacent areas. Thus studies assessing the effects of these outlets in local areas alone may risk underestimating their true effects.
NASA Astrophysics Data System (ADS)
Kolmykova, Lyudmila; Korobova, Elena; Ryzhenko, Boris
2015-04-01
Water is one of the main natural agents providing chemical elements' migration in the environment and food chains. In our opinion a study of spatial variation of the essential trace elements in local drinking water is worth considering as the factor that may contribute to variation of the health risk in areas contaminated by radionuclides and radioiodine in particular. Radioiodine was proved to increase the risk of thyroid cancer among children who lived in areas contaminated during the Chernobyl accident. It was also shown that low stable iodine status of the contaminated area and population also contributed to the risk of this disease in case of radionuclide contamination. The goal of the study was to investigate chemical composition of the drinking water in rural settlements of the Bryansk oblast' subjected to radioiodine contamination and to evaluate speciation of stable I and Se on the basis of their total concentration and chemical composition of the real water samples with the help of thermodynamic modelling. Water samples were collected from different aquifers discharging at different depths (dug wells, local private bore holes and water pipes) in rural settlements located in areas with contrasting soil iodine status. Thermodynamic modelling was performed using original software (HCh code of Y.Shvarov, Moscow State University, RUSSIA) incorporating the measured pH, Corg and elements' concentration values. Performed modelling showed possibility of formation of complex CaI+ ion in aqueous phase, I sorption by goethite and transfer of Se to solid phase as FeSe in the observed pH-Eh conditions. It helped to identify environmental conditions providing high I and Se mobility and their depletion from natural waters. Both the experimental data and modeling showed that I and Se migration and deficiency in natural water is closely connected to pH, Eh conditions and the concentration of typomorphic chemical elements (Ca, Mg, Fe) defining the class of water migration in landscapes (according Perel'man, 1975). Obtained data will be used for evaluation of contribution of I and Se status of drinking water to the risk of thyroid diseases among local population.
NASA Astrophysics Data System (ADS)
Usoltseva, Olga; Kozlovskaya, Elena
2016-07-01
Earthquakes in areas within continental plates are still not completely understood, and progress on understanding intraplate seismicity is slow due to a short history of instrumental seismology and sparse regional seismic networks in seismically non-active areas. However, knowledge about position and depth of seismogenic structures in such areas is necessary in order to estimate seismic hazard for such critical facilities such as nuclear power plants and nuclear waste deposits. In the present paper we address the problem of seismicity in the intraplate area of northern Fennoscandia using the information on local events recorded by the POLENET/LAPNET (Polar Earth Observing Network) temporary seismic array during the International Polar Year 2007-2009. We relocate the seismic events using the program HYPOELLIPS (a computer program for determining local earthquake hypocentral parameters) and grid search method. We use the first arrivals of P waves of local events in order to calculate a 3-D tomographic P wave velocity model of the uppermost crust (down to 20 km) for a selected region inside the study area and show that the velocity heterogeneities in the upper crust correlate well with known tectonic units. We compare the position of the velocity heterogeneities with the seismogenic structures delineated by epicentres of relocated events and demonstrate that these structures generally do not correlate with the crustal units formed as a result of crustal evolution in the Archaean and Palaeoproterozoic. On the contrary, they correlate well with the postglacial faults located in the area of the Baltic-Bothnia Megashear (BBMS). Hypocentres of local events have depths down to 30 km. We also obtain the focal mechanism of a selected event with good data quality. The focal mechanism is of oblique type with strike-slip prevailing. Our results demonstrate that the Baltic-Bothnia Megashear is an important large-scale, reactivated tectonic structure that has to be taken into account when estimating seismic hazard in northern Fennoscandia.
NASA Astrophysics Data System (ADS)
Seithel, Robin; Peters, Max; Lesueur, Martin; Kohl, Thomas
2017-04-01
Overpressured reservoir conditions, local stress concentrations or a locally rotated stress field can initiate substantial problems during drilling or reservoir exploitation. Increasing geothermal utilization in the Molasse basin area in S-Germany is faced with such problems of deeply seated reservoir sections. In several wells, radial fluid flow systems are interpreted as highly porous layers. However, in nearby wells a combination of linear fluid flow, local stress heterogeneities and structural geology hint to a rather fault dominated reservoir (Seithel et al. 2015). Due to missing knowledge of the stress magnitude, stress orientation and their coupling to reservoir response, we will present a THMC model of critical formations and the geothermal reservoir targeting nearby faults. In an area south of Munich, where several geothermal wells are constructed, such wells are interpreted and integrated into a 30 x 30 km simulated model area. One of the main objectives here is to create a geomechanical reservoir model in a thermo-mechanical manner in order to understand the coupling between reservoir heterogeneities and stress distributions. To this end, stress analyses of wellbore data and laboratory tests will help to calibrate a reliable model. In order to implement the complex geological structure of the studied wedge-shaped foreland basin, an automatic export of lithology, fault and borehole data (e.g. from Petrel) into a FE mesh is used. We will present a reservoir-scale model that considers thermo-mechanic effects and analyze their influence on reservoir deformation, fluid flow and stress concentration. We use the currently developed finite element application REDBACK (https://github.com/pou036/redback), inside the MOOSE framework (Poulet et al. 2016). We show that mechanical heterogeneities nearby fault zones and their orientation within the stress field correlate to fracture pattern, interpreted stress heterogeneities or variegated flow systems within the reservoir. REFERENCES Poulet, T.; Paesold, M.; Veveakis, M. (2016), Multi-Physics Modelling of Fault Mechanics Using REDBACK. A Parallel Open-Source Simulator for Tightly Coupled Problems. Rock Mechanics and Rock Engineering. doi: 10.1007/s00603-016-0927-y. Seithel, R.; Steiner, U.; Müller, B.I.R.; Hecht, Ch.; Kohl, T. (2015), Local stress anomaly in the Bavarian Molasse Basin, Geothermal Energy 3(1), p.77. doi:10.1186/s40517-014-0023-z
High-resolution local gravity model of the south pole of the Moon from GRAIL extended mission data.
Goossens, Sander; Sabaka, Terence J; Nicholas, Joseph B; Lemoine, Frank G; Rowlands, David D; Mazarico, Erwan; Neumann, Gregory A; Smith, David E; Zuber, Maria T
2014-05-28
We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6° by 1/6° (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40°. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models. We present a high-resolution gravity model of the south pole of the Moon Improved correlations with topography to higher degrees than global models Improved fits to the data and reduced striping that is present in global models.
High-resolution local gravity model of the south pole of the Moon from GRAIL extended mission data
Goossens, Sander; Sabaka, Terence J; Nicholas, Joseph B; Lemoine, Frank G; Rowlands, David D; Mazarico, Erwan; Neumann, Gregory A; Smith, David E; Zuber, Maria T
2014-01-01
We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6° by 1/6° (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40°. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models. Key Points We present a high-resolution gravity model of the south pole of the Moon Improved correlations with topography to higher degrees than global models Improved fits to the data and reduced striping that is present in global models PMID:26074637
NASA Astrophysics Data System (ADS)
Almurshedi, Ahmed; Ismail, Abd Khamim
2015-04-01
EEG source localization was studied in order to determine the location of the brain sources that are responsible for the measured potentials at the scalp electrodes using EEGLAB with Independent Component Analysis (ICA) algorithm. Neuron source locations are responsible in generating current dipoles in different states of brain through the measured potentials. The current dipole sources localization are measured by fitting an equivalent current dipole model using a non-linear optimization technique with the implementation of standardized boundary element head model. To fit dipole models to ICA components in an EEGLAB dataset, ICA decomposition is performed and appropriate components to be fitted are selected. The topographical scalp distributions of delta, theta, alpha, and beta power spectrum and cross coherence of EEG signals are observed. In close eyes condition it shows that during resting and action states of brain, alpha band was activated from occipital (O1, O2) and partial (P3, P4) area. Therefore, parieto-occipital area of brain are active in both resting and action state of brain. However cross coherence tells that there is more coherence between right and left hemisphere in action state of brain than that in the resting state. The preliminary result indicates that these potentials arise from the same generators in the brain.
Homan, Tobias; Maire, Nicolas; Hiscox, Alexandra; Di Pasquale, Aurelio; Kiche, Ibrahim; Onoka, Kelvin; Mweresa, Collins; Mukabana, Wolfgang R; Ross, Amanda; Smith, Thomas A; Takken, Willem
2016-01-04
Large reductions in malaria transmission and mortality have been achieved over the last decade, and this has mainly been attributed to the scale-up of long-lasting insecticidal bed nets and indoor residual spraying with insecticides. Despite these gains considerable residual, spatially heterogeneous, transmission remains. To reduce transmission in these foci, researchers need to consider the local demographical, environmental and social context, and design an appropriate set of interventions. Exploring spatially variable risk factors for malaria can give insight into which human and environmental characteristics play important roles in sustaining malaria transmission. On Rusinga Island, western Kenya, malaria infection was tested by rapid diagnostic tests during two cross-sectional surveys conducted 3 months apart in 3632 individuals from 790 households. For all households demographic data were collected by means of questionnaires. Environmental variables were derived using Quickbird satellite images. Analyses were performed on 81 project clusters constructed by a traveling salesman algorithm, each containing 50-51 households. A standard linear regression model was fitted containing multiple variables to determine how much of the spatial variation in malaria prevalence could be explained by the demographic and environmental data. Subsequently, a geographically-weighted regression (GWR) was performed assuming non-stationarity of risk factors. Special attention was taken to investigate the effect of residual spatial autocorrelation and local multicollinearity. Combining the data from both surveys, overall malaria prevalence was 24%. Scan statistics revealed two clusters which had significantly elevated numbers of malaria cases compared to the background prevalence across the rest of the study area. A multivariable linear model including environmental and household factors revealed that higher socioeconomic status, outdoor occupation and population density were associated with increased malaria risk. The local GWR model improved the model fit considerably and the relationship of malaria with risk factors was found to vary spatially over the island; in different areas of the island socio-economic status, outdoor occupation and population density were found to be positively or negatively associated with malaria prevalence. Identification of risk factors for malaria that vary geographically can provide insight into the local epidemiology of malaria. Examining spatially variable relationships can be a helpful tool in exploring which set of targeted interventions could locally be implemented. Supplementary malaria control may be directed at areas, which are identified as at risk. For instance, areas with many people that work outdoors at night may need more focus in terms of vector control. Trialregister.nl NTR3496-SolarMal, registered on 20 June 2012.
Model regulations and plan amendments for multimodal transportation districts
DOT National Transportation Integrated Search
2004-02-01
In 1999, the Florida legislature enabled local governments to establish Multimodal Transportation Districts (MMTD) in their comprehensive plan as a means of promoting a high quality multimodal environment within selected urban areas. The Florida Depa...
Propagation Characteristics of International Space Station Wireless Local Area Network
NASA Technical Reports Server (NTRS)
Sham, Catherine C.; Hwn, Shian U.; Loh, Yin-Chung
2005-01-01
This paper describes the application of the Uniform Geometrical Theory of Diffraction (UTD) for Space Station Wireless Local Area Networks (WLANs) indoor propagation characteristics analysis. The verification results indicate good correlation between UTD computed and measured signal strength. It is observed that the propagation characteristics are quite different in the Space Station modules as compared with those in the typical indoor WLANs environment, such as an office building. The existing indoor propagation models are not readily applicable to the Space Station module environment. The Space Station modules can be regarded as oversized imperfect waveguides. Two distinct propagation regions separated by a breakpoint exist. The propagation exhibits the guided wave characteristics. The propagation loss in the Space Station, thus, is much smaller than that in the typical office building. The path loss model developed in this paper is applicable for Space Station WLAN RF coverage and link performance analysis.
Pratt, Bethany; Chang, Heejun
2012-03-30
The relationship among land cover, topography, built structure and stream water quality in the Portland Metro region of Oregon and Clark County, Washington areas, USA, is analyzed using ordinary least squares (OLS) and geographically weighted (GWR) multiple regression models. Two scales of analysis, a sectional watershed and a buffer, offered a local and a global investigation of the sources of stream pollutants. Model accuracy, measured by R(2) values, fluctuated according to the scale, season, and regression method used. While most wet season water quality parameters are associated with urban land covers, most dry season water quality parameters are related topographic features such as elevation and slope. GWR models, which take into consideration local relations of spatial autocorrelation, had stronger results than OLS regression models. In the multiple regression models, sectioned watershed results were consistently better than the sectioned buffer results, except for dry season pH and stream temperature parameters. This suggests that while riparian land cover does have an effect on water quality, a wider contributing area needs to be included in order to account for distant sources of pollutants. Copyright © 2012 Elsevier B.V. All rights reserved.
Cloherty, Shaun L; Hietanen, Markus A; Suaning, Gregg J; Ibbotson, Michael R
2010-01-01
We performed optical intrinsic signal imaging of cat primary visual cortex (Area 17 and 18) while delivering bipolar electrical stimulation to the retina by way of a supra-choroidal electrode array. Using a general linear model (GLM) analysis we identified statistically significant (p < 0.01) activation in a localized region of cortex following supra-threshold electrical stimulation at a single retinal locus. (1) demonstrate that intrinsic signal imaging combined with linear model analysis provides a powerful tool for assessing cortical responses to prosthetic stimulation, and (2) confirm that supra-choroidal electrical stimulation can achieve localized activation of the cortex consistent with focal activation of the retina.
[Ecotourism exploitation model in Bita Lake Natural Reserve of Yunnan].
Yang, G; Wang, Y; Zhong, L
2000-12-01
Bita lake provincial natural reserve is located in Shangri-La region of North-western Yunnan, and was set as a demonstrating area for ecotourism exploitation in 1998. After a year's exploitation construction and half a year's operation as a branch of the 99' Kunming International Horticulture Exposition to accept tourists, it was proved that the ecotourism demonstrating area attained four integrated functions of ecotourism, i.e., tourism, protection, poverty clearing and environment education. Five exploitation and management models including function zoned exploitation model, featured tourism communication model signs system designing model, local Tibetan family reception model and environmental monitoring model, were also successful, which were demonstrated and spreaded to the whole province. Bita lake provincial natural reserve could be a good sample for the ecotourism exploitation natural reserves of the whole country.
Guerbois, Chloe; Dufour, Anne-Beatrice; Mtare, Godfrey; Fritz, Herve
2013-08-01
Increase in human settlements at the edge of protected areas (PAs) is perceived as a major threat to conservation of biodiversity. Although it is crucial to integrate the interests of surrounding communities into PA management, key drivers of changes in local populations and the effects of conservation on local livelihoods and perceptions remain poorly understood. We assessed population changes from 1990 to 2010 in 9 villages located between 2 PAs with different management policies (access to natural resources or not). We conducted semi-directive interviews at the household level (n =217) to document reasons for settlement in the area and villager's attitudes toward the PAs. We examined drivers of these attitudes relative to household typology, feelings about conservation, and concerns for the future with mixed linear models. Population increased by 61% from 2000 to 2010, a period of political and economic crisis in Zimbabwe. Forty-seven percent of immigrants were attracted by the area; others had been resettled from other villages or were returning to family lands. Attitudes toward PAs were generally positive, but immigrants attracted by the area and who used resources within the PA with fewer restrictions expressed more negative attitudes toward PAs. Household location, losses due to wild animals, and restrictions on access to natural resources were the main drivers of this negative attitude. Profit-seeking migrants did not expect these constraints and were particularly concerned with local overpopulation and access to natural resources. To avoid socio-ecological traps near PAs (i.e., unforeseen reduced adaptive capacity) integrated conservation should address mismatches between management policy and local expectations. This requires accounting for endogenous processes, for example, local socio-ecological dynamics and values that shape the coexistence between humans and wildlife. © 2013 Society for Conservation Biology.
Conservation reaches new heights.
Pepall, J; Khanal, P
1992-10-01
The conservation program with the management assistance of the Woodlands Mountain Institute in 2 contiguous parks, the Mount Everest National Park in Nepal and the Qomolangma Nature Reserve in China, in 2 countries is described. The focus is on conservation of the complex ecosystem with sustainable development by showing local people how to benefit from the park without environmental damage. Cultural diversity is as important as biological diversity. The area has been designated by UNESCO as a World Heritage Site with the "last pure ecological seed" of the Himalayas. The regional geography and culture are presented. Population growth has impacted natural resources through overgrazing, cultivation of marginal land, and deforestation; future plans to build a dam and road bordering the nature reserve pose other threats. Proposed management plans for the Makalu-Barun Nature Park (established in November 1991) and Conservation Area include a division of the park into nature reserve areas free of human activity, protected areas which permit traditional land use, and special sites and trail for tourists and religious pilgrims. The conservation area will act as a buffer for the park and provide economic opportunities; further subdivisions include land use for biodiversity protection, community forest and pasture, agroforestry, and agriculture and settlement. Efforts will be made to increase the welfare of women and local people; proposed projects include the introduction of higher milk-producing animals for stall feeding. Also proposed is a cultural and natural history museum. 70% of the project's resources will be directed to local community participation in consultation and park maintenance. The project is a model of how conservation and protection of natural resources can coexist with local economic development and participation; an integration of preservation of biological diversity, mountain wisdom, and the value of local people as resources for conservation.
A local time stepping algorithm for GPU-accelerated 2D shallow water models
NASA Astrophysics Data System (ADS)
Dazzi, Susanna; Vacondio, Renato; Dal Palù, Alessandro; Mignosa, Paolo
2018-01-01
In the simulation of flooding events, mesh refinement is often required to capture local bathymetric features and/or to detail areas of interest; however, if an explicit finite volume scheme is adopted, the presence of small cells in the domain can restrict the allowable time step due to the stability condition, thus reducing the computational efficiency. With the aim of overcoming this problem, the paper proposes the application of a Local Time Stepping (LTS) strategy to a GPU-accelerated 2D shallow water numerical model able to handle non-uniform structured meshes. The algorithm is specifically designed to exploit the computational capability of GPUs, minimizing the overheads associated with the LTS implementation. The results of theoretical and field-scale test cases show that the LTS model guarantees appreciable reductions in the execution time compared to the traditional Global Time Stepping strategy, without compromising the solution accuracy.
Static Footprint Local Forces, Areas, and Aspect Ratios for Three Type 7 Aircraft Tires
NASA Technical Reports Server (NTRS)
Howell, William E.; Perez, Sharon E.; Vogler, William A.
1991-01-01
The National Tire Modeling Program (NTMP) is a joint NASA/industry effort to improve the understanding of tire mechanics and develop accurate analytical design tools. This effort includes fundamental analytical and experimental research on the structural mechanics of tires. Footprint local forces, areas, and aspect ratios were measured. Local footprint forces in the vertical, lateral, and drag directions were measured with a special footprint force transducer. Measurements of the local forces in the footprint were obtained by positioning the transducer at specified locations within the footprint and externally loading the tires. Three tires were tested: (1) one representative of those used on the main landing gear of B-737 and DC-9 commercial transport airplanes, (2) a nose landing gear tire for the Space Shuttle Orbiter, and (3) a main landing gear tire for the Space Shuttle Orbiter. Data obtained for various inflation pressures and vertical loads are presented for two aircraft tires. The results are presented in graphical and tabulated forms.
NASA Astrophysics Data System (ADS)
Broennimann, C.; Tacher, L.
2009-04-01
To assess hill slope stability and landslide triggering mechanisms, it is essential to understand the hydrogeological regime in slopes. In this work finite element models are elaborated and field experiments are carried out to study particularly shallow landslides with thickness of a few meters. The basis hypothesis of the presented research assumes that even for shallow landslides the hydrogeological role of the substratum, mostly bedrock, is determinant for the slopes behaviour, either it is draining or feeding the overlaying unstable mass. The investigated area of about 1 square kilometre is situated next to the villages Buchberg and Rüdlingen (canton Schaffhausen, Switzerland) at the border of the river Rhine. The lithology in this region is characterized mainly by horizontally layered sandstones intersected by marls from the upper seawater and the lower freshwater molasse, overlaid by soil and weathered bedrock of about 1 to 4 m thickness, both classified as silty sands. With a slope inclination of locally up to 40° the area is rather steep and characterized by continuous regressive erosion processes. During heavy rainfall events, such as the one from May 2002, shallow landslides occurred in the area affecting afforested soils as well as woodless areas. Geological field observations, infiltration and tracer tests show a fairly complicated hydrogeological character of the region. Along the slope, in the first few meters of depth, no groundwater table was found. However, seasonally controlled sources can be observed in-between outcropping bedrock. Within the sandstone, vertical faults in decametre scale oriented parallel to the Rhine that most likely opened during decompression due to the cutting of the river affect locally the hydrogeological regime by draining the slope. This implies a high grade of heterogeneity in the water flows in a local scale. Based on these conceptual hydrological and geological models, a numerical flow model was obtained using finite element software. Different scenarios of groundwater flow pattern and hydraulic head distribution in the saturated and unsaturated zones were modelled considering transient hydraulic conditions. The hydraulic pressure boundary conditions can then be introduced in a geomechanical model in order to evaluate mass movements and to estimate the soil stability. In a next step, a 10 x 30 m large test side situated inside the above mentioned study area was chosen to investigate the slopes behaviour during a triggering field experiment carried out in October 2008. With the aim to provoke a shallow landslide the test site with a mean inclination of 35° was intensely irrigated with sprinklers during 5 days (20 - 30 mm/hr). Transient soil parameters such as suction, pore water pressure and saturation at different depth, water infiltration rate, ground water table and soil movements in a mm-scale were measured. During this first field experiment, the slope remained stable. At this state the results of experiment and models suggest that: - At the experiment scale, heavy rainfall is not sufficient to trigger a mass movement if the hydrogeological conditions inside the substratum (bedrock) are not in a critical state as well. During the experiment, the bedrock was not saturated and played a draining role. - The behaviour of the local area, at the experiment scale, must be modelled within a regional scale (e.g. kilometric) to consider the role of hydraulic pressures inside the bedrock. The results obtained from the experiment will be used to refine the numeric models and to design future field experiments.
Business Centre Development Model of Airport Area in Supporting Airport Sustainability in Indonesia
NASA Astrophysics Data System (ADS)
Setiawan, MI; Surjokusumo, S.; Ma'soem, DM; Johan, J.; Hasyim, C.; Kurniasih, N.; Sukoco, A.; Dhaniarti, I.; Suyono, J.; Sudapet, IN; Nasihien, RD; Mudjanarko, SW; Wulandari, A.; Ahmar, Ansari S.; Wajdi, MBN
2018-01-01
Airport is expected to play the role in enhancing the economic level of the region, especially the local people around the airport. The Aero City concept in developing an airport might also develop a city centreed in the airport that combining airport oriented business development, business actors and local people around the airport area. This study aims to generate development model of business centre at the airports in Indonesia. This is a mixed method based study. The population includes 296 airports under government management, government subsidiary and military. By using stratified random sampling, there were 151 sample airports. The results show that business centre development in the airport area will be related with the airport management and the commercial property (business centre) growth at the airport. Aero City in Indonesia can be developed by partnership system between government and private sector that consists of construction, development, and implementation of commercial property such as hotel, apartment, retail, office, etc. Based on the result of T-Value test, Airport Performance variable predicted to have significant influence on Gross Regional Domestic Product Central Business District performance.
Network Interactions Explain Sensitivity to Dynamic Faces in the Superior Temporal Sulcus.
Furl, Nicholas; Henson, Richard N; Friston, Karl J; Calder, Andrew J
2015-09-01
The superior temporal sulcus (STS) in the human and monkey is sensitive to the motion of complex forms such as facial and bodily actions. We used functional magnetic resonance imaging (fMRI) to explore network-level explanations for how the form and motion information in dynamic facial expressions might be combined in the human STS. Ventral occipitotemporal areas selective for facial form were localized in occipital and fusiform face areas (OFA and FFA), and motion sensitivity was localized in the more dorsal temporal area V5. We then tested various connectivity models that modeled communication between the ventral form and dorsal motion pathways. We show that facial form information modulated transmission of motion information from V5 to the STS, and that this face-selective modulation likely originated in OFA. This finding shows that form-selective motion sensitivity in the STS can be explained in terms of modulation of gain control on information flow in the motion pathway, and provides a substantial constraint for theories of the perception of faces and biological motion. © The Author 2014. Published by Oxford University Press.
Modeling Nonresident Seabird Foraging Distributions to Inform Ocean Zoning in Central California.
Studwell, Anna J; Hines, Ellen; Elliott, Meredith L; Howar, Julie; Holzman, Barbara; Nur, Nadav; Jahncke, Jaime
2017-01-01
Seabird aggregations at sea have been shown to be associated with concentrations of prey. Previous research identified Central California as a highly used foraging area for seabirds, with locally breeding seabirds foraging close to their colonies on Southeast Farallon Island. Herein, we focus on nonresident (i.e. non-locally breeding) seabird species off of Central California. We hypothesized that high-use foraging areas for nonresident seabirds would be influenced by oceanographic and bathymetric factors and that spatial and temporal distributions would be similar within planktivorous and generalist foraging guilds but would differ between them. With data collected by the Applied California Current Ecosystem Studies (ACCESS) partnership during cruises between April and October from 2004-2013, we developed generalized linear models to identify high-use foraging areas for each of six nonresident seabird species. The four generalist species are Phoebastria nigripes (black-footed albatross), Ardenna griseus (sooty shearwater), Ardenna creatopus (pink-footed shearwater), and Fulmarus glacialis (northern fulmar). The two planktivorous species are Phalaropus lobatus (red-necked phalarope) and Phalaropus fulicarius (red phalarope). Sea surface temperature was significant for generalist species and sea surface salinity was important for planktivorous species. The distance to the 200-m isobath was significant in five of six models, Pacific Decadal Oscillation with a 3-month lag in four models, and sea surface fluorescence, the distance to Cordell Bank, and depth in three models. We did not find statistically significant differences between distributions of individual seabird species within a foraging guild or between guilds, with the exception of the sooty shearwater. Model results for a multi-use seabird foraging area highlighted the continental shelf break, particularly within the vicinity of Cordell Bank, as the highest use areas as did Marxan prioritization. Our research methods can be implemented elsewhere to identify critical habitat that needs protection as human development pressures continue to expand to the ocean.
Spatial surplus production modeling of Atlantic tunas and billfish.
Carruthers, Thomas R; McAllister, Murdoch K; Taylor, Nathan G
2011-10-01
We formulate and simulation-test a spatial surplus production model that provides a basis with which to undertake multispecies, multi-area, stock assessment. Movement between areas is parameterized using a simple gravity model that includes a "residency" parameter that determines the degree of stock mixing among areas. The model is deliberately simple in order to (1) accommodate nontarget species that typically have fewer available data and (2) minimize computational demand to enable simulation evaluation of spatial management strategies. Using this model, we demonstrate that careful consideration of spatial catch and effort data can provide the basis for simple yet reliable spatial stock assessments. If simple spatial dynamics can be assumed, tagging data are not required to reliably estimate spatial distribution and movement. When applied to eight stocks of Atlantic tuna and billfish, the model tracks regional catch data relatively well by approximating local depletions and exchange among high-abundance areas. We use these results to investigate and discuss the implications of using spatially aggregated stock assessment for fisheries in which the distribution of both the population and fishing vary over time.
NASA Astrophysics Data System (ADS)
Wolf-Grosse, Tobias; Esau, Igor; Reuder, Joachim
2017-06-01
Street-level urban air pollution is a challenging concern for modern urban societies. Pollution dispersion models assume that the concentrations decrease monotonically with raising wind speed. This convenient assumption breaks down when applied to flows with local recirculations such as those found in topographically complex coastal areas. This study looks at a practically important and sufficiently common case of air pollution in a coastal valley city. Here, the observed concentrations are determined by the interaction between large-scale topographically forced and local-scale breeze-like recirculations. Analysis of a long observational dataset in Bergen, Norway, revealed that the most extreme cases of recurring wintertime air pollution episodes were accompanied by increased large-scale wind speeds above the valley. Contrary to the theoretical assumption and intuitive expectations, the maximum NO2 concentrations were not found for the lowest 10 m ERA-Interim wind speeds but in situations with wind speeds of 3 m s-1. To explain this phenomenon, we investigated empirical relationships between the large-scale forcing and the local wind and air quality parameters. We conducted 16 large-eddy simulation (LES) experiments with the Parallelised Large-Eddy Simulation Model (PALM) for atmospheric and oceanic flows. The LES accounted for the realistic relief and coastal configuration as well as for the large-scale forcing and local surface condition heterogeneity in Bergen. They revealed that emerging local breeze-like circulations strongly enhance the urban ventilation and dispersion of the air pollutants in situations with weak large-scale winds. Slightly stronger large-scale winds, however, can counteract these local recirculations, leading to enhanced surface air stagnation. Furthermore, this study looks at the concrete impact of the relative configuration of warmer water bodies in the city and the major transport corridor. We found that a relatively small local water body acted as a barrier for the horizontal transport of air pollutants from the largest street in the valley and along the valley bottom, transporting them vertically instead and hence diluting them. We found that the stable stratification accumulates the street-level pollution from the transport corridor in shallow air pockets near the surface. The polluted air pockets are transported by the local recirculations to other less polluted areas with only slow dilution. This combination of relatively long distance and complex transport paths together with weak dispersion is not sufficiently resolved in classical air pollution models. The findings have important implications for the air quality predictions over urban areas. Any prediction not resolving these, or similar local dynamic features, might not be able to correctly simulate the dispersion of pollutants in cities.
Evaluating meteo marine climatic model inputs for the investigation of coastal hydrodynamics
NASA Astrophysics Data System (ADS)
Bellafiore, D.; Bucchignani, E.; Umgiesser, G.
2010-09-01
One of the major aspects discussed in the recent works on climate change is how to provide information from the global scale to the local one. In fact the influence of sea level rise and changes in the meteorological conditions due to climate change in strategic areas like the coastal zone is at the base of the well known mitigation and risk assessment plans. The investigation of the coastal zone hydrodynamics, from a modeling point of view, has been the field for the connection between hydraulic models and ocean models and, in terms of process studies, finite element models have demonstrated their suitability in the reproduction of complex coastal morphology and in the capability to reproduce different spatial scale hydrodynamic processes. In this work the connection between two different model families, the climate models and the hydrodynamic models usually implemented for process studies, is tested. Together, they can be the most suitable tool for the investigation of climate change on coastal systems. A finite element model, SHYFEM (Shallow water Hydrodynamic Finite Element Model), is implemented on the Adriatic Sea, to investigate the effect of wind forcing datasets produced by different downscaling from global climate models in terms of surge and its coastal effects. The wind datasets are produced by the regional climate model COSMO-CLM (CIRA), and by EBU-POM model (Belgrade University), both downscaling from ECHAM4. As a first step the downscaled wind datasets, that have different spatial resolutions, has been analyzed for the period 1960-1990 to compare what is their capability to reproduce the measured wind statistics in the coastal zone in front of the Venice Lagoon. The particularity of the Adriatic Sea meteo climate is connected with the influence of the orography in the strengthening of winds like Bora, from North-East. The increase in spatial resolution permits the more resolved wind dataset to better reproduce meteorology and to provide a more realistic forcing for hydrodynamic simulations. After this analysis, effects on water level variations, under different wind forcing, has been analyzed to define what is the local effect on sea level changes in the coastal area of the North Adriatic. Surge statistics produced from different climate model forcings for the IPCC A1B scenario have been studied to provide local information on climate change effects on coastal hydrodynamics due to meteorological effect. This typology of application has been considered a suitable tool for coastal management and can be considered a study field that will increase its importance in the more general investigation on scale interaction processes as the effects of global scale climate phenomena on local areas.
Seismic Tomography of the Arabian-Eurasian Collision Zone and Surrounding Areas
2010-05-20
zone. The crustal models correlate well with geologic and tectonic features. The upper mantle tomograms show the images of the subducted Neotethys...We first obtain Pn and Sn velocities using local and regional arrival time data. Second, we obtain the 3-D crustal P and S velocity models...teleseismic tomography provides a high-resolution, 3-D P-wave velocity model for the crust, upper mantle, and the transition zone. The crustal models
NASA Astrophysics Data System (ADS)
'Ainullotfi, A. A.; Ibrahim, A. L.; Masron, T.
2014-02-01
This study is conducted to establish a community based flood management system that is integrated with remote sensing technique. To understand local knowledge, the demographic of the local society is obtained by using the survey approach. The local authorities are approached first to obtain information regarding the society in the study areas such as the population, the gender and the tabulation of settlement. The information about age, religion, ethnic, occupation, years of experience facing flood in the area, are recorded to understand more on how the local knowledge emerges. Then geographic data is obtained such as rainfall data, land use, land elevation, river discharge data. This information is used to establish a hydrological model of flood in the study area. Analysis were made from the survey approach to understand the pattern of society and how they react to floods while the analysis of geographic data is used to analyse the water extent and damage done by the flood. The final result of this research is to produce a flood mitigation method with a community based framework in the state of Kelantan. With the flood mitigation that involves the community's understanding towards flood also the techniques to forecast heavy rainfall and flood occurrence using remote sensing, it is hope that it could reduce the casualties and damage that might cause to the society and infrastructures in the study area.
Local Helicity Injection Systems for Non-solenoidal Startup in the PEGASUS Toroidal Experiment
NASA Astrophysics Data System (ADS)
Perry, J. M.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Lewicki, B. T.; Redd, A. J.
2013-10-01
Local helicity injection is being developed in the PEGASUS Toroidal Experiment for non-solenoidal startup in spherical tokamaks. The effective loop voltage due to helicity injection scales with the area of the injectors, requiring the development of electron current injectors with areas much larger than the 2 cm2 plasma arc injectors used to date. Solid and gas-effused metallic electrodes were found to be unusable due to reduced injector area utilization from localized cathode spots and narrow operational regimes. An integrated array of 8 compact plasma arc sources is thus being developed for high current startup. It employs two monolithic power systems, for the plasma arc sources and the bias current extraction system. The array effectively eliminates impurity fueling from plasma-material interaction by incorporating a local scraper-limiter and conical-frustum bias electrodes to mitigate the effects of cathode spots. An energy balance model of helicity injection indicates that the resulting 20 cm2 of total injection area should provide sufficient current drive to reach 0.3 MA. At that level, helicity injection drive exceeds that from poloidal induction, which is the relevant operational regime for large-scale spherical tokamaks. Future placement of the injector array near an expanded boundary divertor region will test simultaneous optimization of helicity drive and the Taylor relaxation current limit. Work supported by US DOE Grant DE-FG02-96ER54375.
Russell, G.M.; Wexler, E.J.
1993-01-01
The Lantana landfill in Palm Beach County has a surface that is 40 to 50 feet above original ground level and consists of about 250 acres of compacted garbage and trash. Parts of the landfill are below the water table. Surface-resistivity measurements and water-quality analyses indicate that leachate-enriched ground water along the eastern perimeter of the landfill has moved about 500 feet eastward toward an adjacent lake. Concentrations of chloride and nutrients within the leachate-enriched ground water were greater than background concentrations. The surficial aquifer system in the area of the landfill consists primarily of sand of moderate permeability, from land surface to a depth of about 68 feet deep, and consists of sand interbedded with sandstone and limestone of high permeability from a depth of about 68 feet to a depth of 200 feet. The potentiometric surface in the landfill is higher than that in adjacent areas to the east, indicating ground-water movement from the landfill toward a lake to the east. Steady-state simulation of ground-water flow was made using a telescoping-grid technique where a model covering a large area is used to determine boundaries and fluxes for a finer scale model. A regional flow model encompassing a 500-square mile area in southeastern Palm Beach County was used to calculate ground-water fluxes in a 126.5-square mile subregional area. Boundary fluxes calculated by the subregional model were then used to calculate boundary fluxes for a local model of the 3.75-square mile area representing the Lantana landfill site and vicinity. Input data required for simulating ground-water flow in the study area were obtained from the regional flow models, thus, effectively coupling the models. Additional simulations were made using the local flow model to predict effects of possible remedial actions on the movement of solutes in the ground-water system. Possible remedial actions simulated included capping the landfill with an impermeable layer and pumping five leachate recovery wells. Results of the flow analysis indicate that the telescoping grid modeling approach can be used to simulate ground-water flow in small areas such as the Lantana landfill site and to simulate the effects of possible remedial actions. Water-quality data indicate the leachate-enriched ground water is divided vertically into two parts by a fine sand layer at about 40 to 50 feet below land surface. Data also indicate the extent of the leachate-enriched ground-water contamination and concentrations of constituents seem to be decreasing over time.
NASA Technical Reports Server (NTRS)
Wei, Jiangfeng; Dirmeyer, Paul A.; Wisser, Dominik; Bosilovich, Michael G.; Mocko, David M.
2013-01-01
Irrigation is an important human activity that may impact local and regional climate, but current climate model simulations and data assimilation systems generally do not explicitly include it. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) shows more irrigation signal in surface evapotranspiration (ET) than the Modern-Era Retrospective Analysis for Research and Applications (MERRA) because ERA-Interim adjusts soil moisture according to the observed surface temperature and humidity while MERRA has no explicit consideration of irrigation at the surface. But, when compared with the results from a hydrological model with detailed considerations of agriculture, the ET from both reanalyses show large deficiencies in capturing the impact of irrigation. Here, a back-trajectory method is used to estimate the contribution of irrigation to precipitation over local and surrounding regions, using MERRA with observation-based corrections and added irrigation-caused ET increase from the hydrological model. Results show substantial contributions of irrigation to precipitation over heavily irrigated regions in Asia, but the precipitation increase is much less than the ET increase over most areas, indicating that irrigation could lead to water deficits over these regions. For the same increase in ET, precipitation increases are larger over wetter areas where convection is more easily triggered, but the percentage increase in precipitation is similar for different areas. There are substantial regional differences in the patterns of irrigation impact, but, for all the studied regions, the highest percentage contribution to precipitation is over local land.
NASA Astrophysics Data System (ADS)
Akinwumiju, Akinola S.; Olorunfemi, Martins O.
2018-05-01
This study attempted to model the groundwater flow system of a drainage basin within the Basement Complex environment of Southwestern Nigeria. Four groundwater models were derived from Vertical Electrical Sounding (VES) Data, remotely sensed data, geological information (hydrolineaments and lithology) and borehole data. Subsequently, two sub-surface (local and regional) flow systems were delineated in the study area. While the local flow system is controlled by surface topography, the regional flow system is controlled by the networks of intermediate and deep seated faults/fractures. The local flow system is characterized by convergence, divergence, inflow and outflow in places, while the regional flow system is dominated by NNE-SSW and W-E flow directions. Minor flow directions include NNW-SSE and E-W with possible linkages to the main flow-paths. The NNE-SSW regional flow system is a double open ended flow system with possible linkage to the Niger Trough. The W-E regional flow system is a single open ended system that originates within the study area (with possible linkage to the NNE-SSW regional flow system) and extends to Ikogosi in the adjoining drainage basin. Thus, the groundwater drainage basin of the study area is much larger and extensive than its surface drainage basin. The all year round flowing (perennial) rivers are linked to groundwater outcrops from faults/fractures and contact zones. Consequently, larger percentage of annual rainwater usually leaves the basin in form of runoff and base flow. Therefore, the basin is categorized as a donor basin but with suspected subsurface water input at its northeastern axis.
Non-susceptible landslide areas in Italy and in the Mediterranean region
NASA Astrophysics Data System (ADS)
Marchesini, I.; Ardizzone, F.; Alvioli, M.; Rossi, M.; Guzzetti, F.
2014-08-01
We used landslide information for 13 study areas in Italy and morphometric information obtained from the 3-arcseconds shuttle radar topography mission digital elevation model (SRTM DEM) to determine areas where landslide susceptibility is expected to be negligible in Italy and in the landmasses surrounding the Mediterranean Sea. The morphometric information consisted of the local terrain slope which was computed in a square 3 × 3-cell moving window, and in the regional relative relief computed in a circular 15 × 15-cell moving window. We tested three different models to classify the "non-susceptible" landslide areas, including a linear model (LNR), a quantile linear model (QLR), and a quantile, non-linear model (QNL). We tested the performance of the three models using independent landslide information presented by the Italian Landslide Inventory (Inventario Fenomeni Franosi in Italia - IFFI). Best results were obtained using the QNL model. The corresponding zonation of non-susceptible landslide areas was intersected in a geographic information system (GIS) with geographical census data for Italy. The result determined that 57.5% of the population of Italy (in 2001) was located in areas where landslide susceptibility is expected to be negligible. We applied the QNL model to the landmasses surrounding the Mediterranean Sea, and we tested the synoptic non-susceptibility zonation using independent landslide information for three study areas in Spain. Results showed that the QNL model was capable of determining where landslide susceptibility is expected to be negligible in the validation areas in Spain. We expect our results to be applicable in similar study areas, facilitating the identification of non-susceptible landslide areas, at the synoptic scale.
High Resolution Forecasting System for Mountain area based on KLAPS-WRF
NASA Astrophysics Data System (ADS)
Chun, Ji Min; Rang Kim, Kyu; Lee, Seon-Yong; Kang, Wee Soo; Park, Jong Sun; Yi, Chae Yeon; Choi, Young-jean; Park, Eun Woo; Hong, Soon Sung; Jung, Hyun-Sook
2013-04-01
This paper reviews the results of recent observations and simulations on the thermal belt and cold air drainage, which are outstanding in local climatic phenomena in mountain areas. In a mountain valley, cold air pool and thermal belt were simulated with the Weather and Research Forecast (WRF) model and the Korea Local Analysis and Prediction System (KLAPS) to determine the impacts of planetary boundary layer (PBL) schemes and topography resolution on model performance. Using the KLAPS-WRF models, an information system was developed for 12 hour forecasting of cold air damage in orchard. This system was conducted on a three level nested grid from 1 km to 111 m horizontal resolution. Results of model runs were verified by the data from automated weather stations, which were installed at twelve sites in a valley at Yeonsuri, Yangpyeonggun, Gyeonggido to measure temperature and wind speed and direction during March to May 2012. The potential of the numerical model to simulate these local features was found to be dependent on the planetary boundary layer schemes. Statistical verification results indicate that Mellor-Yamada-Janjic (MYJ) PBL scheme was in good agreement with night time temperature, while the no-PBL scheme produced predictions similar to the day time temperature observation. Although the KLAPS-WRF system underestimates temperature in mountain areas and overestimates wind speed, it produced an accurate description of temperature, with an RMSE of 1.67 ˚C in clear daytime. Wind speed and direction were not forecasted well in precision (RMSE: 5.26 m/s and 10.12 degree). It might have been caused by the measurement uncertainty and spatial variability. Additionally, the performance of KLAPS-WRF was performed to evaluate for different terrain resolution: Topography data were improved from USGS (United States Geological Survey) 30" to NGII (National Geographic Information Institute) 10 m. The simulated results were quantitatively compared to observations and there was a significant improvement (RMSE: 2.06 ˚C -> 1.73 ˚C) in the temperature prediction in the study area. The results will provide useful guidance of grid size selection on high resolution simulation over the mountain regions in Korea.
NASA Astrophysics Data System (ADS)
Defrance, Dimitri; Javelle, Pierre; Ecrepont, Stéphane; Andreassian, Vazken
2013-04-01
In Europe, flash floods mainly occur in the Mediterranean area on small catchments with a short concentration time. Anticipating this kind of events is a major issue in order to reduce the resulting damages. But for many of the impacted catchments, no data are available to calibrate and evaluate hydrological models. In this context, the aims of this study is to develop and evaluate a warning method for the Southern French Alps. This area is of particular interest, because it regroups different hydrological regimes, from purely Mediterranean to purely Alpine influences. Two main issues should be addressed: - How to define the hydrological model and its parameterization for an application in an ungauged context? - How to evaluate the final results on 'real' ungauged catchments? The first issue is a classic one. Using a 'observed' data set (154 streamflow stations with catchment areas ranging from 5 to 1000 km² and distributed rainfall available on the 1997-2006 period), we developed a regional model specifically for the studied area. For this purpose, the AIGA method, initially developed for Mediterranean catchments was adapted, in order to take into account snowmelt and to produce baseflows. Then, different parameterizations were tested, derived from different simple regionalisation techniques: - the same parameters set for the whole area defined as the median of the local calibrated parameters; - the same technique as the previous case, but by considering different sub-areas, defined as "hydro-climatically" homogeneous by previous studies; - and finally the neighbour's method. The second issue is more original. Indeed, in most studies the final evaluation is done using gauged stations as they were 'ungauged', ie keeping the at-site discharge data only for validation ant not for calibration. The main disadvantage of this approach is that the evaluation is made at the scale of the gauged catchments, which are in general greater than the catchments impacted by flash floods. Furthermore, many events are missed, since flash floods can occur very locally. In this study, we try to evaluate the results on observations collected by witnesses on 'real' ungauged catchments. The proposed method consists to use an historical data-base of flood damages reports. These data have been collected by local authorities (RTM). Finally, 139 ungauged locations were considered, where we simulated discharges for the entire 1997-2006 period. The comparison of these modelled discharges with the occurrence of an observed discharge makes it possible to determine a local 'modelled' discharge threshold above it most of the damages are observed. The pertinence of this threshold (and consequently of the model used for the simulation) is assessed by considering classical contingency statistics: probability of detection (POD), false alarm rate (FAR) and critical success index (CSI). The main advantage of this historical approach is the availability of many events in the database on very small catchments (50% less than 20 km²). The preliminary results show that on gauged basins, the base flow and the snowmelt added modules improve the performance of the AIGA method when locally calibrated. But when results are applied on real ungauged catchments, improvements become less obvious, with a small advantage for neighbour's method. These results shows the difficulty arising with ungauged catchments, specially when target catchments are smaller than the gauged 'parents'. It also illustrates the interest of the damages database used as 'proxy' data to investigate the model performances at smaller scales. This work has been done in the framework of the RHYTMME project, with the financial support of the European Union, the Provence-Alpes-Côte d'Azur Region and the French Ministry in charge of Ecology.
Non-susceptible landslide areas in Italy and in the Mediterranean region
NASA Astrophysics Data System (ADS)
Marchesini, I.; Ardizzone, F.; Alvioli, M.; Rossi, M.; Guzzetti, F.
2014-04-01
We used landslide information for 13 study areas in Italy and morphometric information obtained from the 3 arc-second SRTM DEM to determine areas where landslide susceptibility is expected to be null or negligible in Italy, and in the landmasses surrounding the Mediterranean Sea. The morphometric information consisted in the local terrain slope computed in a square 3 × 3 cell moving window, and in the regional relative relief computed in a circular 15 × 15 cell moving window. We tested three different models to determine the non-susceptible landslide areas, including a linear model (LR), a quantile linear model (QLR), and a quantile non-linear model (QNL). We tested the performance of the three models using independent landslide information represented by the Italian Landslide Inventory (Inventario Fenomeni Franosi in Italia - IFFI). Best results were obtained using the QNL model. The corresponding zonation of non-susceptible landslide areas was intersected in a GIS with geographical census data for Italy. The result allowed determining that 57.5% of the population of Italy (in 2001) was located in areas where landslide susceptibility is expected to be null or negligible, and that the remaining 42.5% was located in areas where some landslide susceptibility is expected. We applied the QNL model to the landmasses surrounding the Mediterranean Sea, and we tested the synoptic non-susceptibility zonation using independent landslide information for three study areas in Spain. Results proved that the QNL model was capable of determining where landslide susceptibility is expected to be negligible in the Mediterranean area. We expect our results to be applicable in similar study areas, facilitating the identification of non-susceptible and susceptible landslide areas, at the synoptic scale.
NASA Astrophysics Data System (ADS)
Mammarella, M. C.; Grandoni, G.; Fernando, J.; Cacciani, M.; di Sabatino, S.; Favaron, M.; Fedele, P.
2010-09-01
The connection among boundary layer phenomena, atmospheric pollutant dynamics and human health is an established fact, taking many different forms depending on local characteristics, including slope and position of relief and/or coastline, surface roughness, emission patterns. The problem is especially interesting in complex and coastal terrain, where concurrence of slope and sea induced local circulation interact reciprocally, yielding a complex pattern whose interpretation may go beyond pure modeling, and devise specific measurements among which the planetary boundary layer (PBL) height. An occasion for studying this important theme has been offered by Regione Molise and Valle del Biferno Consortium (COSIB), for the specific case of the industrial complex of Valle del Biferno, 3 km inland of Termoli, in Central Italy, on the Adriatic coast. The local government, sensitive to air quality and public health in the industrial area, together with COSIB has co-financed a research project aimed at gaining knowledge about local meteorology, PBL phenomena and atmospheric pollutant dispersion in the area. Expected results include new air quality monitoring and control methodologies in Valle del Biferno for a sustainable development in an environmentally respectful manner, at a site already characterized by a high environmental and landscape value. The research project, developed by ENEA, has began in 2007 and will conclude in December 2010. Project activities involve research group from Europe, the United States of America, and the Russian Federation. Scientific and practical results will be published and presented in occasion of the final workshop to be held on project conclusion. The scientific interest of Valle del Biferno case stems from the specific local characteristics at site. Given the valley orientation respect to mean synoptic circulation, local effects as sea and slope breezes are dominant, and a complex wind regime develops affecting local transport and diffusion of pollutants emitted in the area of the industrial complex. All effects studied, although influenced by local conditions, characterize not only this industrial area but all areas located along the coastline. This location is highly frequent in Italy and the World, as most industrial complexes in the World occur at coastal sites, where access to harbors and transport networks are facilitated. The Valle del Biferno case may then yield important data to many industrial sites.
Xu, Peng; Tian, Yin; Lei, Xu; Hu, Xiao; Yao, Dezhong
2008-12-01
How to localize the neural electric activities within brain effectively and precisely from the scalp electroencephalogram (EEG) recordings is a critical issue for current study in clinical neurology and cognitive neuroscience. In this paper, based on the charge source model and the iterative re-weighted strategy, proposed is a new maximum neighbor weight based iterative sparse source imaging method, termed as CMOSS (Charge source model based Maximum neighbOr weight Sparse Solution). Different from the weight used in focal underdetermined system solver (FOCUSS) where the weight for each point in the discrete solution space is independently updated in iterations, the new designed weight for each point in each iteration is determined by the source solution of the last iteration at both the point and its neighbors. Using such a new weight, the next iteration may have a bigger chance to rectify the local source location bias existed in the previous iteration solution. The simulation studies with comparison to FOCUSS and LORETA for various source configurations were conducted on a realistic 3-shell head model, and the results confirmed the validation of CMOSS for sparse EEG source localization. Finally, CMOSS was applied to localize sources elicited in a visual stimuli experiment, and the result was consistent with those source areas involved in visual processing reported in previous studies.
NASA Astrophysics Data System (ADS)
Nyman, Petter; Sherwin, Christopher; Sheridan, Gary; Lane, Patrick
2015-04-01
This study uses aerial imagery and field surveys to develop a statistical model for determining debris flow susceptibility in a landscape with variable terrain, soil and vegetation properties. A measure of landscape scale debris flow response was obtained by recording all debris flow affected drainage lines in the first year after fire in a ~258 000 ha forested area that was burned by the 2009 Black Saturday Wildfire in Victoria. A total of 12 500 points along the drainage network were sampled from catchments ranging in size from 0.0001 km2to 75 km2. Local slope and the attributes of the drainage areas (including the spatially averaged peak intensity) were extracted for each sample point. A logistic regression was used to model how debris flow susceptibility varies with the normalised burn ratio (dNBR, from Landsat imagery), rainfall intensity (from rainfall radar), slope (from DEM) and aridity (from long-term radiation, temperature and rainfall data).The model of debris flow susceptibility produced a good fit with the observed debris flow response of drainage networks within the burned area and was reliable in distinguishing between drainage lines which produced debris flows and those which didn't. The performance of the models was tested through multiple iterations of fitting and testing using unseen data. The local channel slope captured the effect of scale on debris flow susceptibility with debris flow probability approaching zero as the channel slope decreased with increasing drainage area. Aridity emerged as an important predictor of debris flow susceptibility, with increased likelihood of debris flows in drier parts of the landscape, thus reinforcing previous research in the region showing that post-fire surface runoff from wet Eucalypt forests is insufficient for initiating debris flows. Fire severity, measured as dNBR, was also a very important predictor. The inclusion of local channel slope as a predictor of debris flow susceptibility proved to be an effective approach for implicitly incorporating scale and relief as parameters. When combined with models of debris flow magnitude the results from this study can be used obtain continuous probability-magnitude relations of sediment flux from debris flows for drainage networks across entire burned areas.
High level cognitive information processing in neural networks
NASA Technical Reports Server (NTRS)
Barnden, John A.; Fields, Christopher A.
1992-01-01
Two related research efforts were addressed: (1) high-level connectionist cognitive modeling; and (2) local neural circuit modeling. The goals of the first effort were to develop connectionist models of high-level cognitive processes such as problem solving or natural language understanding, and to understand the computational requirements of such models. The goals of the second effort were to develop biologically-realistic model of local neural circuits, and to understand the computational behavior of such models. In keeping with the nature of NASA's Innovative Research Program, all the work conducted under the grant was highly innovative. For instance, the following ideas, all summarized, are contributions to the study of connectionist/neural networks: (1) the temporal-winner-take-all, relative-position encoding, and pattern-similarity association techniques; (2) the importation of logical combinators into connection; (3) the use of analogy-based reasoning as a bridge across the gap between the traditional symbolic paradigm and the connectionist paradigm; and (4) the application of connectionism to the domain of belief representation/reasoning. The work on local neural circuit modeling also departs significantly from the work of related researchers. In particular, its concentration on low-level neural phenomena that could support high-level cognitive processing is unusual within the area of biological local circuit modeling, and also serves to expand the horizons of the artificial neural net field.
NASA Astrophysics Data System (ADS)
Wang, Xuemei; Situ, Shuping; Guenther, Alex; Chen, Fei; Wu, Zhiyong; Xia, Beicheng; Wang, Tijian
2011-04-01
This study intended to provide 4-km gridded, hourly, year-long, regional estimates of terpenoid emissions in the Pearl River Delta (PRD), China. It combined Thematic Mapper images and local-survey data to characterize plant functional types, and used observed emission potential of biogenic volatile organic compounds (BVOC) from local plant species and high-resolution meteorological outputs from the MM5 model to constrain the MEGAN BVOC-emission model. The estimated annual emissions for isoprene, monoterpene and sesquiterpene are 95.55 × 106 kg C, 117.35 × 106 kg C and 9.77 × 106 kg C, respectively. The results show strong variabilities of terpenoid emissions spanning diurnal and seasonal time scales, which are mainly distributed in the remote areas (with more vegetation and less economic development) in PRD. Using MODIS PFTs data reduced terpenoid emissions by 27% in remote areas. Using MEGAN-model default emission factors led to a 24% increase in BVOC emission. The model errors of temperature and radiation in MM5 output were used to assess impacts of uncertainties in meteorological forcing on emissions: increasing (decreasing) temperature and downward shortwave radiation produces more (less) terpenoid emissions for July and January. Strong temporal variability of terpenoid emissions leads to enhanced ozone formation during midday in rural areas where the anthropogenic VOC emissions are limited.
Estimating the volume of glaciers in the Himalayan-Karakoram region using different methods
NASA Astrophysics Data System (ADS)
Frey, H.; Machguth, H.; Huss, M.; Huggel, C.; Bajracharya, S.; Bolch, T.; Kulkarni, A.; Linsbauer, A.; Salzmann, N.; Stoffel, M.
2014-12-01
Ice volume estimates are crucial for assessing water reserves stored in glaciers. Due to its large glacier coverage, such estimates are of particular interest for the Himalayan-Karakoram (HK) region. In this study, different existing methodologies are used to estimate the ice reserves: three area-volume relations, one slope-dependent volume estimation method, and two ice-thickness distribution models are applied to a recent, detailed, and complete glacier inventory of the HK region, spanning over the period 2000-2010 and revealing an ice coverage of 40 775 km2. An uncertainty and sensitivity assessment is performed to investigate the influence of the observed glacier area and important model parameters on the resulting total ice volume. Results of the two ice-thickness distribution models are validated with local ice-thickness measurements at six glaciers. The resulting ice volumes for the entire HK region range from 2955 to 4737 km3, depending on the approach. This range is lower than most previous estimates. Results from the ice thickness distribution models and the slope-dependent thickness estimations agree well with measured local ice thicknesses. However, total volume estimates from area-related relations are larger than those from other approaches. The study provides evidence on the significant effect of the selected method on results and underlines the importance of a careful and critical evaluation.
Evaluation of local site effect from microtremor measurements in Babol City, Iran
NASA Astrophysics Data System (ADS)
Rezaei, Sadegh; Choobbasti, Asskar Janalizadeh
2018-03-01
Every year, numerous casualties and a large deal of financial losses are incurred due to earthquake events. The losses incurred by an earthquake vary depending on local site effect. Therefore, in order to conquer drastic effects of an earthquake, one should evaluate urban districts in terms of the local site effect. One of the methods for evaluating the local site effect is microtremor measurement and analysis. Aiming at evaluation of local site effect across the city of Babol, the study area was gridded and microtremor measurements were performed with an appropriate distribution. The acquired data was analyzed through the horizontal-to-vertical noise ratio (HVNR) method, and fundamental frequency and associated amplitude of the H/V peak were obtained. The results indicate that fundamental frequency of the study area is generally lower than 1.25 Hz, which is acceptably in agreement with the findings of previous studies. Also, in order to constrain and validate the seismostratigraphic model obtained with this method, the results were compared with geotechnical, geological, and seismic data. Comparing the results of different methods, it was observed that the presented geophysical method can successfully determine the values of fundamental frequency across the study area as well as local site effect. Using the data obtained from the analysis of microtremor, a microzonation map of fundamental frequency across the city of Babol was prepared. This map has numerous applications in designing high-rise building and urban development plans.
Shapes of embedded minimal surfaces
Colding, Tobias H.; Minicozzi, William P.
2006-01-01
Surfaces that locally minimize area have been extensively used to model physical phenomena, including soap films, black holes, compound polymers, protein folding, etc. The mathematical field dates to the 1740s but has recently become an area of intense mathematical and scientific study, specifically in the areas of molecular engineering, materials science, and nanotechnology because of their many anticipated applications. In this work, we show that all minimal surfaces are built out of pieces of the surfaces in Figs. 1 and 2. PMID:16847265
Neuro-inspired smart image sensor: analog Hmax implementation
NASA Astrophysics Data System (ADS)
Paindavoine, Michel; Dubois, Jérôme; Musa, Purnawarman
2015-03-01
Neuro-Inspired Vision approach, based on models from biology, allows to reduce the computational complexity. One of these models - The Hmax model - shows that the recognition of an object in the visual cortex mobilizes V1, V2 and V4 areas. From the computational point of view, V1 corresponds to the area of the directional filters (for example Sobel filters, Gabor filters or wavelet filters). This information is then processed in the area V2 in order to obtain local maxima. This new information is then sent to an artificial neural network. This neural processing module corresponds to area V4 of the visual cortex and is intended to categorize objects present in the scene. In order to realize autonomous vision systems (consumption of a few milliwatts) with such treatments inside, we studied and realized in 0.35μm CMOS technology prototypes of two image sensors in order to achieve the V1 and V2 processing of Hmax model.
RANS modeling of scalar dispersion from localized sources within a simplified urban-area model
NASA Astrophysics Data System (ADS)
Rossi, Riccardo; Capra, Stefano; Iaccarino, Gianluca
2011-11-01
The dispersion of a passive scalar downstream a localized source within a simplified urban-like geometry is examined by means of RANS scalar flux models. The computations are conducted under conditions of neutral stability and for three different incoming wind directions (0°, 45°, 90°) at a roughness Reynolds number of Ret = 391. A Reynolds stress transport model is used to close the flow governing equations whereas both the standard eddy-diffusivity closure and algebraic flux models are employed to close the transport equation for the passive scalar. The comparison with a DNS database shows improved reliability from algebraic scalar flux models towards predicting both the mean concentration and the plume structure. Since algebraic flux models do not increase substantially the computational effort, the results indicate that the use of tensorial-diffusivity can be promising tool for dispersion simulations for the urban environment.
Yang, Wei; You, Kaiming; Li, Wei; Kim, Young-il
2017-01-01
This paper presents a vehicle autonomous localization method in local area of coal mine tunnel based on vision sensors and ultrasonic sensors. Barcode tags are deployed in pairs on both sides of the tunnel walls at certain intervals as artificial landmarks. The barcode coding is designed based on UPC-A code. The global coordinates of the upper left inner corner point of the feature frame of each barcode tag deployed in the tunnel are uniquely represented by the barcode. Two on-board vision sensors are used to recognize each pair of barcode tags on both sides of the tunnel walls. The distance between the upper left inner corner point of the feature frame of each barcode tag and the vehicle center point can be determined by using a visual distance projection model. The on-board ultrasonic sensors are used to measure the distance from the vehicle center point to the left side of the tunnel walls. Once the spatial geometric relationship between the barcode tags and the vehicle center point is established, the 3D coordinates of the vehicle center point in the tunnel’s global coordinate system can be calculated. Experiments on a straight corridor and an underground tunnel have shown that the proposed vehicle autonomous localization method is not only able to quickly recognize the barcode tags affixed to the tunnel walls, but also has relatively small average localization errors in the vehicle center point’s plane and vertical coordinates to meet autonomous unmanned vehicle positioning requirements in local area of coal mine tunnel. PMID:28141829
Xu, Zirui; Yang, Wei; You, Kaiming; Li, Wei; Kim, Young-Il
2017-01-01
This paper presents a vehicle autonomous localization method in local area of coal mine tunnel based on vision sensors and ultrasonic sensors. Barcode tags are deployed in pairs on both sides of the tunnel walls at certain intervals as artificial landmarks. The barcode coding is designed based on UPC-A code. The global coordinates of the upper left inner corner point of the feature frame of each barcode tag deployed in the tunnel are uniquely represented by the barcode. Two on-board vision sensors are used to recognize each pair of barcode tags on both sides of the tunnel walls. The distance between the upper left inner corner point of the feature frame of each barcode tag and the vehicle center point can be determined by using a visual distance projection model. The on-board ultrasonic sensors are used to measure the distance from the vehicle center point to the left side of the tunnel walls. Once the spatial geometric relationship between the barcode tags and the vehicle center point is established, the 3D coordinates of the vehicle center point in the tunnel's global coordinate system can be calculated. Experiments on a straight corridor and an underground tunnel have shown that the proposed vehicle autonomous localization method is not only able to quickly recognize the barcode tags affixed to the tunnel walls, but also has relatively small average localization errors in the vehicle center point's plane and vertical coordinates to meet autonomous unmanned vehicle positioning requirements in local area of coal mine tunnel.
NASA Astrophysics Data System (ADS)
Han, Haejin; Hwang, YunSeop; Ha, Sung Ryong; Kim, Byung Sik
2015-05-01
This study developed three scenarios of future land use/land cover on a local level for the Kyung-An River Basin and its vicinity in South Korea at a 30-m resolution based on the two scenario families of the Intergovernmental Panel on Climate Change (IPCC) Special Report Emissions Scenarios (SRES): A2 and B1, as well as a business-as-usual scenario. The IPCC SRES A2 and B1 were used to define future local development patterns and associated land use change. We quantified the population-driven demand for urban land use for each qualitative storyline and allocated the urban demand in geographic space using the SLEUTH model. The model results demonstrate the possible land use/land cover change scenarios for the years from 2000 to 2070 by examining the broad narrative of each SRES within the context of a local setting, such as the Kyoungan River Basin, constructing narratives of local development shifts and modeling a set of `best guess' approximations of the future land use conditions in the study area. This study found substantial differences in demands and patterns of land use changes among the scenarios, indicating compact development patterns under the SRES B1 compared to the rapid and dispersed development under the SRES A2.
Han, Haejin; Hwang, YunSeop; Ha, Sung Ryong; Kim, Byung Sik
2015-05-01
This study developed three scenarios of future land use/land cover on a local level for the Kyung-An River Basin and its vicinity in South Korea at a 30-m resolution based on the two scenario families of the Intergovernmental Panel on Climate Change (IPCC) Special Report Emissions Scenarios (SRES): A2 and B1, as well as a business-as-usual scenario. The IPCC SRES A2 and B1 were used to define future local development patterns and associated land use change. We quantified the population-driven demand for urban land use for each qualitative storyline and allocated the urban demand in geographic space using the SLEUTH model. The model results demonstrate the possible land use/land cover change scenarios for the years from 2000 to 2070 by examining the broad narrative of each SRES within the context of a local setting, such as the Kyoungan River Basin, constructing narratives of local development shifts and modeling a set of 'best guess' approximations of the future land use conditions in the study area. This study found substantial differences in demands and patterns of land use changes among the scenarios, indicating compact development patterns under the SRES B1 compared to the rapid and dispersed development under the SRES A2.
2010-01-01
Background There is growing concern in communities surrounding airports regarding the contribution of various emission sources (such as aircraft and ground support equipment) to nearby ambient concentrations. We used extensive monitoring of nitrogen dioxide (NO2) in neighborhoods surrounding T.F. Green Airport in Warwick, RI, and land-use regression (LUR) modeling techniques to determine the impact of proximity to the airport and local traffic on these concentrations. Methods Palmes diffusion tube samplers were deployed along the airport's fence line and within surrounding neighborhoods for one to two weeks. In total, 644 measurements were collected over three sampling campaigns (October 2007, March 2008 and June 2008) and each sampling location was geocoded. GIS-based variables were created as proxies for local traffic and airport activity. A forward stepwise regression methodology was employed to create general linear models (GLMs) of NO2 variability near the airport. The effect of local meteorology on associations with GIS-based variables was also explored. Results Higher concentrations of NO2 were seen near the airport terminal, entrance roads to the terminal, and near major roads, with qualitatively consistent spatial patterns between seasons. In our final multivariate model (R2 = 0.32), the local influences of highways and arterial/collector roads were statistically significant, as were local traffic density and distance to the airport terminal (all p < 0.001). Local meteorology did not significantly affect associations with principal GIS variables, and the regression model structure was robust to various model-building approaches. Conclusion Our study has shown that there are clear local variations in NO2 in the neighborhoods that surround an urban airport, which are spatially consistent across seasons. LUR modeling demonstrated a strong influence of local traffic, except the smallest roads that predominate in residential areas, as well as proximity to the airport terminal. PMID:21083910
Adamkiewicz, Gary; Hsu, Hsiao-Hsien; Vallarino, Jose; Melly, Steven J; Spengler, John D; Levy, Jonathan I
2010-11-17
There is growing concern in communities surrounding airports regarding the contribution of various emission sources (such as aircraft and ground support equipment) to nearby ambient concentrations. We used extensive monitoring of nitrogen dioxide (NO2) in neighborhoods surrounding T.F. Green Airport in Warwick, RI, and land-use regression (LUR) modeling techniques to determine the impact of proximity to the airport and local traffic on these concentrations. Palmes diffusion tube samplers were deployed along the airport's fence line and within surrounding neighborhoods for one to two weeks. In total, 644 measurements were collected over three sampling campaigns (October 2007, March 2008 and June 2008) and each sampling location was geocoded. GIS-based variables were created as proxies for local traffic and airport activity. A forward stepwise regression methodology was employed to create general linear models (GLMs) of NO2 variability near the airport. The effect of local meteorology on associations with GIS-based variables was also explored. Higher concentrations of NO2 were seen near the airport terminal, entrance roads to the terminal, and near major roads, with qualitatively consistent spatial patterns between seasons. In our final multivariate model (R2 = 0.32), the local influences of highways and arterial/collector roads were statistically significant, as were local traffic density and distance to the airport terminal (all p < 0.001). Local meteorology did not significantly affect associations with principal GIS variables, and the regression model structure was robust to various model-building approaches. Our study has shown that there are clear local variations in NO2 in the neighborhoods that surround an urban airport, which are spatially consistent across seasons. LUR modeling demonstrated a strong influence of local traffic, except the smallest roads that predominate in residential areas, as well as proximity to the airport terminal.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-29
... for OMB Review; Comment Request; Local Area Unemployment Statistics Program ACTION: Notice. SUMMARY... collection request (ICR) titled, ``Local Area Unemployment Statistics Program,'' to the Office of Management... of Collection: Local Area Unemployment Statistics Program. OMB Control Number: 1220-0017. Affected...
Hoard, C.J.
2010-01-01
The U.S. Geological Survey is evaluating water availability and use within the Great Lakes Basin. This is a pilot effort to develop new techniques and methods to aid in the assessment of water availability. As part of the pilot program, a regional groundwater-flow model for the Lake Michigan Basin was developed using SEAWAT-2000. The regional model was used as a framework for assessing local-scale water availability through grid-refinement techniques. Two grid-refinement techniques, telescopic mesh refinement and local grid refinement, were used to illustrate the capability of the regional model to evaluate local-scale problems. An intermediate model was developed in central Michigan spanning an area of 454 square miles (mi2) using telescopic mesh refinement. Within the intermediate model, a smaller local model covering an area of 21.7 mi2 was developed and simulated using local grid refinement. Recharge was distributed in space and time using a daily output from a modified Thornthwaite-Mather soil-water-balance method. The soil-water-balance method derived recharge estimates from temperature and precipitation data output from an atmosphere-ocean coupled general-circulation model. The particular atmosphere-ocean coupled general-circulation model used, simulated climate change caused by high global greenhouse-gas emissions to the atmosphere. The surface-water network simulated in the regional model was refined and simulated using a streamflow-routing package for MODFLOW. The refined models were used to demonstrate streamflow depletion and potential climate change using five scenarios. The streamflow-depletion scenarios include (1) natural conditions (no pumping), (2) a pumping well near a stream; the well is screened in surficial glacial deposits, (3) a pumping well near a stream; the well is screened in deeper glacial deposits, and (4) a pumping well near a stream; the well is open to a deep bedrock aquifer. Results indicated that a range of 59 to 50 percent of the water pumped originated from the stream for the shallow glacial and deep bedrock pumping scenarios, respectively. The difference in streamflow reduction between the shallow and deep pumping scenarios was compensated for in the deep well by deriving more water from regional sources. The climate-change scenario only simulated natural conditions from 1991-2044, so there was no pumping stress simulated. Streamflows were calculated for the simulated period and indicated that recharge over the period generally increased from the start of the simulation until approximately 2017, and decreased from then to the end of the simulation. Streamflow was highly correlated with recharge so that the lowest streamflows occurred in the later stress periods of the model when recharge was lowest.
Exploiting Spatial Channel Occupancy Information in WLANs
2014-05-15
transmit signal UDP user datagram protocol WLAN wireless local area network ix Acknowledgements I owe a great debt of gratitude to my advisor, Professor...information. Unlike in wired networks , each node in a wireless network observes a different medium depending on its location. As a result, standard local... wireless LANs [15, 23, 29]. In [23], Li et. al. model the throughput of an 802.11 network using full spatial information. Their approach is from a
NASA Astrophysics Data System (ADS)
Pickett, Vernon; Prasetya, Gegar
2011-07-01
Whitianga is a small coastal town located on the eastern coastline of the Coromandel Peninsula, New Zealand. Historical evidence has shown that the town and surrounding area is susceptible to tsunami events, in particular to those tsunami generated in the far field, with up to three events occurring since European settlement in the middle to late 19th Century (1868, 1877, and 1960). The last event in May 1960 impacted much of the North Island's eastern coastline and resulted in waves of ˜1.8-C2.5m at Whitianga that inundated waterfront roads, several houses, and buildings, and resulted in many boats being swept from their moorings. However, more recent work identified that the area is also susceptible to locally generated tsunami from sources located along the Kermadec subduction system and associated volcanic arc that extends north eastward from New Zealand toward Tonga. The core of the study involves the application of a tsunami hydrodynamic model to provide detailed wave propagation and inundation information using a range of likely scenarios and to present this information so that that the community can understand the associated risks involved as a prelude to the development of a local emergency plan. This study shows that while source definition requires careful consideration, high resolution bathymetry and topographic data are also necessary to adequately assess the risk at a local level. The model used in this study incorporates a combination of multibeam, and ground and non-ground striking LIDAR data, with the results of the modeling providing useful information for stakeholders involved in the emergency planning process.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G.; Lo, C. P.; Kidder, Stanley Q.; Hafner, Jan; Taha, Haider; Bornstein, Robert D.; Gillies, Robert R.; Gallo, Kevin P.
1998-01-01
It is our intent through this investigation to help facilitate measures that can be Project ATLANTA (ATlanta Land-use ANalysis: applied to mitigate climatological or air quality Temperature and Air-quality) is a NASA Earth degradation, or to design alternate measures to sustain Observing System (EOS) Interdisciplinary Science or improve the overall urban environment in the future. investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta. The primary objectives for this research effort are: 1) To In the last half of the 20th century, Atlanta, investigate and model the relationship between Atlanta Georgia has risen as the premier commercial, urban growth, land cover change, and the development industrial, and transportation urban area of the of the urban heat island phenomenon through time at southeastern United States. The rapid growth of the nested spatial scales from local to regional; 2) To Atlanta area, particularly within the last 25 years, has investigate and model the relationship between Atlanta made Atlanta one of the fastest growing metropolitan urban growth and land cover change on air quality areas in the United States. The population of the through time at nested spatial scales from local to Atlanta metropolitan area increased 27% between 1970 regional; and 3) To model the overall effects of urban and 1980, and 33% between 1980-1990 (Research development on surface energy budget characteristics Atlanta, Inc., 1993). Concomitant with this high rate of across the Atlanta urban landscape through time at population growth, has been an explosive growth in nested spatial scales from local to regional. Our key retail, industrial, commercial, and transportation goal is to derive a better scientific understanding of how services within the Atlanta region. This has resulted in land cover changes associated with urbanization in the tremendous land cover change dynamics within the Atlanta area, principally in transforming forest lands to metropolitan region, wherein urbanization has urban land covers through time, has, and will, effect consumed vast acreas of land adjacent to the city local and regional climate, surface energy flux, and air proper and has pushed the rural/urban fringe farther quality characteristics. Allied with this goal is the and farther away from the original Atlanta urban core. prospect that the results from this research can be An enormous transition of land from forest and applied by urban planners, environmental managers agriculture to urban land uses has occurred in the and other decision-makers, for determining how Atlanta area in the last 25 years, along with subsequent urbanization has impacted the climate and overall
Adherent Raindrop Modeling, Detectionand Removal in Video.
You, Shaodi; Tan, Robby T; Kawakami, Rei; Mukaigawa, Yasuhiro; Ikeuchi, Katsushi
2016-09-01
Raindrops adhered to a windscreen or window glass can significantly degrade the visibility of a scene. Modeling, detecting and removing raindrops will, therefore, benefit many computer vision applications, particularly outdoor surveillance systems and intelligent vehicle systems. In this paper, a method that automatically detects and removes adherent raindrops is introduced. The core idea is to exploit the local spatio-temporal derivatives of raindrops. To accomplish the idea, we first model adherent raindrops using law of physics, and detect raindrops based on these models in combination with motion and intensity temporal derivatives of the input video. Having detected the raindrops, we remove them and restore the images based on an analysis that some areas of raindrops completely occludes the scene, and some other areas occlude only partially. For partially occluding areas, we restore them by retrieving as much as possible information of the scene, namely, by solving a blending function on the detected partially occluding areas using the temporal intensity derivative. For completely occluding areas, we recover them by using a video completion technique. Experimental results using various real videos show the effectiveness of our method.
The economic effect of a physician assistant or nurse practitioner in rural America.
Eilrich, Fred C
2016-10-01
Revenues generated by physician assistants (PAs) and NPs in clinics and hospitals create employment opportunities and wages, salaries, and benefits for staff, which in turn are circulated throughout the local economy. An input-output model was used to estimate the direct and secondary effects of a rural primary care PA or NP on the community and surrounding area. This type of model explains how input/output from one sector of industry can be the output/input for another sector. Given two example scenarios, a rural PA or NP can have an employment effect of 4.4 local jobs and labor income of $280,476 from the clinic. The total effect to a community with a hospital increases to 18.5 local jobs and $940,892 of labor income.
Familiar route loyalty implies visual pilotage in the homing pigeon
Biro, Dora; Meade, Jessica; Guilford, Tim
2004-01-01
Wide-ranging animals, such as birds, regularly traverse large areas of the landscape efficiently in the course of their local movement patterns, which raises fundamental questions about the cognitive mechanisms involved. By using precision global-positioning-system loggers, we show that homing pigeons (Columba livia) not only come to rely on highly stereotyped yet surprisingly inefficient routes within the local area but are attracted directly back to their individually preferred routes even when released from novel sites off-route. This precise route loyalty demonstrates a reliance on familiar landmarks throughout the flight, which was unexpected under current models of avian navigation. We discuss how visual landmarks may be encoded as waypoints within familiar route maps. PMID:15572457
Implementation of a Prototype Generalized Network Technology for Hospitals *
Tolchin, S. G.; Stewart, R. L.; Kahn, S. A.; Bergan, E. S.; Gafke, G. P.; Simborg, D. W.; Whiting-O'Keefe, Q. E.; Chadwick, M. G.; McCue, G. E.
1981-01-01
A demonstration implementation of a distributed data processing hospital information system using an intelligent local area communications network (LACN) technology is described. This system is operational at the UCSF Medical Center and integrates four heterogeneous, stand-alone minicomputers. The applications systems are PID/Registration, Outpatient Pharmacy, Clinical Laboratory and Radiology/Medical Records. Functional autonomy of these systems has been maintained, and no operating system changes have been required. The LACN uses a fiber-optic communications medium and provides extensive communications protocol support within the network, based on the ISO/OSI Model. The architecture is reconfigurable and expandable. This paper describes system architectural issues, the applications environment and the local area network.
NASA Astrophysics Data System (ADS)
Sugumaran, Ramanathan; Meyer, James C.; Davis, Jim
2004-10-01
Local governments often struggle to balance competing demands for residential, commercial and industrial development with imperatives to minimize environmental degradation. In order to effectively manage this development process on a sustainable basis, local planners and government agencies are increasingly seeking better tools and techniques. In this paper, we describe the development of a Web-Based Environmental Decision Support System (WEDSS), which helps to prioritize local watersheds in terms of environmental sensitivity using multiple criteria identified by planners and local government staff in the city of Columbia, and Boone County, Missouri. The development of the system involved three steps, the first was to establish the relevant environmental criteria and develop data layers for each criterion, then a spatial model was developed for analysis, and lastly a Web-based interface with analysis tools was developed using client-server technology. The WEDSS is an example of a way to run spatial models over the Web and represents a significant increase in capability over other WWW-based GIS applications that focus on database querying and map display. The WEDSS seeks to aid in the development of agreement regarding specific local areas deserving increased protection and the public policies to be pursued in minimizing the environmental impact of future development. The tool is also intended to assist ongoing public information and education efforts concerning watershed management and water quality issues for the City of Columbia, Missouri and adjacent developing areas within Boone County, Missouri.
Fennell, Mark; Murphy, James E; Gallagher, Tommy; Osborne, Bruce
2013-04-01
The growing economic and ecological damage associated with biological invasions, which will likely be exacerbated by climate change, necessitates improved projections of invasive spread. Generally, potential changes in species distribution are investigated using climate envelope models; however, the reliability of such models has been questioned and they are not suitable for use at local scales. At this scale, mechanistic models are more appropriate. This paper discusses some key requirements for mechanistic models and utilises a newly developed model (PSS[gt]) that incorporates the influence of habitat type and related features (e.g., roads and rivers), as well as demographic processes and propagule dispersal dynamics, to model climate induced changes in the distribution of an invasive plant (Gunnera tinctoria) at a local scale. A new methodology is introduced, dynamic baseline benchmarking, which distinguishes climate-induced alterations in species distributions from other potential drivers of change. Using this approach, it was concluded that climate change, based on IPCC and C4i projections, has the potential to increase the spread-rate and intensity of G. tinctoria invasions. Increases in the number of individuals were primarily due to intensification of invasion in areas already invaded or in areas projected to be invaded in the dynamic baseline scenario. Temperature had the largest influence on changes in plant distributions. Water availability also had a large influence and introduced the most uncertainty in the projections. Additionally, due to the difficulties of parameterising models such as this, the process has been streamlined by utilising methods for estimating unknown variables and selecting only essential parameters. © 2012 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Delorme, Mathieu; Le Doussal, Pierre; Wiese, Kay Jörg
2016-05-01
The Brownian force model is a mean-field model for local velocities during avalanches in elastic interfaces of internal space dimension d , driven in a random medium. It is exactly solvable via a nonlinear differential equation. We study avalanches following a kick, i.e., a step in the driving force. We first recall the calculation of the distributions of the global size (total swept area) and of the local jump size for an arbitrary kick amplitude. We extend this calculation to the joint density of local and global sizes within a single avalanche in the limit of an infinitesimal kick. When the interface is driven by a single point, we find new exponents τ0=5 /3 and τ =7 /4 , depending on whether the force or the displacement is imposed. We show that the extension of a "single avalanche" along one internal direction (i.e., the total length in d =1 ) is finite, and we calculate its distribution following either a local or a global kick. In all cases, it exhibits a divergence P (ℓ ) ˜ℓ-3 at small ℓ . Most of our results are tested in a numerical simulation in dimension d =1 .
Simulation of Boreal Ecosystem Carbon and Water Budgets: Scaling from Local to Regional Extents
NASA Technical Reports Server (NTRS)
Wood, Eric F.
1997-01-01
A coupled water and energy balance model is developed. This model can predict the partitioning of water and energy between major source, sink and storage elements within the Boreal-Ecosystem-Atmospheric Study (BOREAS) areas. The results of testing the model against data collected at BOREAS tower sites during Intensive Field Campaigns and remotely sensed data collected across the BOREAS region are presented.
Root, Elisabeth Dowling; Lucero, Marilla; Nohynek, Hanna; Anthamatten, Peter; Thomas, Deborah S K; Tallo, Veronica; Tanskanen, Antti; Quiambao, Beatriz P; Puumalainen, Taneli; Lupisan, Socorro P; Ruutu, Petri; Ladesma, Erma; Williams, Gail M; Riley, Ian; Simões, Eric A F
2014-03-04
Pneumococcal conjugate vaccines (PCVs) have demonstrated efficacy against childhood pneumococcal disease in several regions globally. We demonstrate how spatial epidemiological analysis of a PCV trial can assist in developing vaccination strategies that target specific geographic subpopulations at greater risk for pneumococcal pneumonia. We conducted a secondary analysis of a randomized, placebo-controlled, double-blind vaccine trial that examined the efficacy of an 11-valent PCV among children less than 2 y of age in Bohol, Philippines. Trial data were linked to the residential location of each participant using a geographic information system. We use spatial interpolation methods to create smoothed surface maps of vaccination rates and local-level vaccine efficacy across the study area. We then measure the relationship between distance to the main study hospital and local-level vaccine efficacy, controlling for ecological factors, using spatial autoregressive models with spatial autoregressive disturbances. We find a significant amount of spatial variation in vaccination rates across the study area. For the primary study endpoint vaccine efficacy increased with distance from the main study hospital from -14% for children living less than 1.5 km from Bohol Regional Hospital (BRH) to 55% for children living greater than 8.5 km from BRH. Spatial regression models indicated that after adjustment for ecological factors, distance to the main study hospital was positively related to vaccine efficacy, increasing at a rate of 4.5% per kilometer distance. Because areas with poor access to care have significantly higher VE, targeted vaccination of children in these areas might allow for a more effective implementation of global programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, P.
A model of the solar chromosphere that consists of two fundamentally different regions, a lower region and an upper region, is proposed. The lower region is covered mostly by weak locally closed magnetic field and small network areas of extremely strong, locally open field. The field in the upper region is relatively uniform and locally open, connecting to the corona. The chromosphere is heated by strong collisional damping of Alfvén waves, which are driven by turbulent motions below the photosphere. The heating rate depends on the field strength, wave power from the photosphere, and altitude in the chromosphere. The wavesmore » in the internetwork area are mostly damped in the lower region, supporting radiation in the lower chromosphere. The waves in the network area, carrying more Poynting flux, are only weakly damped in the lower region. They propagate into the upper region. As the thermal pressure decreases with height, the network field expands to form the magnetic canopy where the damping of the waves from the network area supports radiation in the whole upper region. Because of the vertical stratification and horizontally nonuniform distribution of the magnetic field and heating, one circulation cell is formed in each of the upper and lower regions. The two circulation cells distort the magnetic field and reinforce the funnel-canopy-shaped magnetic geometry. The model is based on classical processes and is semi-quantitative. The estimates are constrained according to observational knowledge. No anomalous process is invoked or needed. Overall, the heating mechanism is able to damp 50% of the total wave energy.« less
NASA Astrophysics Data System (ADS)
Zuvela-Aloise, Maja; Weyss, Gernot; Aloise, Giulliano; Mifka, Boris; Löffelmann, Philemon; Hollosi, Brigitta; Nemec, Johana; Vucetic, Visnja
2014-05-01
In the recent years there has been a strong interest in exploring the potential of low-cost measurement devices as alternative source of meteorological monitoring data, especially in the urban areas where high-density observations become crucial for appropriate heat load assessment. One of the simple, but efficient approaches for gathering large amount of spatial data is through mobile measurement campaigns in which the sensors are attached to driving vehicles. However, non-standardized data collecting procedure, instrument quality, their response-time and design, variable device ventilation and radiation protection influence the reliability of the gathered data. We investigate what accuracy can be expected from the data collected through low-cost mobile measurements and whether the achieved quality of the data is sufficient for validation of the state-of-the-art local-scale climate models. We tested 5 types of temperature sensors and data loggers: Maxim iButton, Lascar EL-USB-2-LCD+ and Onset HOBO UX100-003 as market available devices and self-designed solar powered Arduino-based data loggers combined with the AOSONG AM2315 and Sensirion SHT21 temperature and humidity sensors. The devices were calibrated and tested in stationary mode at the Austrian Weather Service showing accuracy between 0.1°C and 0.8°C, which was mostly within the device specification range. In mobile mode, the best response-time was found for self-designed device with Arduino-based data logger and Sensirion SHT21 sensor. However, the device lacks the mechanical robustness and should be further improved for broad-range applications. We organized 4 measurement tours: two taking place in urban environment (Vienna, Austria in July 2011 and July 2013) and two in countryside with complex terrain of Mid-Adriatic islands (Hvar and Korcula, Croatia in August 2013). Measurements were taken on clear-sky, dry and hot days. We combined multiple devices attached to bicycle and cars with different radiation protection. Duration of each measurement tour lasted approximately 2 hours covering the distances in radius of about 10-30 km, logging the air temperature and geographical positioning in intervals of 1-5 seconds. The collected data were aggregated on a 100 m horizontal resolution grid and compared with the local-scale climate modelling simulations with the urban climate model MUKLIMO3 initialized with the atmospheric conditions for a given day. Both measurement and modelling results show similar features for distinct local climate zones (built-up area, near water environment, forest, parks, agricultural area, etc). The spatial gradients in temperature can be assigned to different orographical and land use characteristics. Even if many ambiguities remain in both modelling and the measurement approach, the collected data provide useful information for local-scale heat assessment and can serve as a base to increase the model reliability, especially in areas with low data coverage.
NASA Astrophysics Data System (ADS)
Barthélémy, S.; Ricci, S.; Morel, T.; Goutal, N.; Le Pape, E.; Zaoui, F.
2018-07-01
In the context of hydrodynamic modeling, the use of 2D models is adapted in areas where the flow is not mono-dimensional (confluence zones, flood plains). Nonetheless the lack of field data and the computational cost constraints limit the extensive use of 2D models for operational flood forecasting. Multi-dimensional coupling offers a solution with 1D models where the flow is mono-dimensional and with local 2D models where needed. This solution allows for the representation of complex processes in 2D models, while the simulated hydraulic state is significantly better than that of the full 1D model. In this study, coupling is implemented between three 1D sub-models and a local 2D model for a confluence on the Adour river (France). A Schwarz algorithm is implemented to guarantee the continuity of the variables at the 1D/2D interfaces while in situ observations are assimilated in the 1D sub-models to improve results and forecasts in operational mode as carried out by the French flood forecasting services. An implementation of the coupling and data assimilation (DA) solution with domain decomposition and task/data parallelism is proposed so that it is compatible with operational constraints. The coupling with the 2D model improves the simulated hydraulic state compared to a global 1D model, and DA improves results in 1D and 2D areas.
Occupancy as a surrogate for abundance estimation
MacKenzie, D.I.; Nichols, J.D.
2004-01-01
In many monitoring programmes it may be prohibitively expensive to estimate the actual abundance of a bird species in a defined area, particularly at large spatial scales, or where birds occur at very low densities. Often it may be appropriate to consider the proportion of area occupied by the species as an alternative state variable. However, as with abundance estimation, issues of detectability must be taken into account in order to make accurate inferences: the non?detection of the species does not imply the species is genuinely absent. Here we review some recent modelling developments that permit unbiased estimation of the proportion of area occupied, colonization and local extinction probabilities. These methods allow for unequal sampling effort and enable covariate information on sampling locations to be incorporated. We also describe how these models could be extended to incorporate information from marked individuals, which would enable finer questions of population dynamics (such as turnover rate of nest sites by specific breeding pairs) to be addressed. We believe these models may be applicable to a wide range of bird species and may be useful for investigating various questions of ecological interest. For example, with respect to habitat quality, we might predict that a species is more likely to have higher local extinction probabilities, or higher turnover rates of specific breeding pairs, in poor quality habitats.
Muška, Milan; Tušer, Michal; Frouzová, Jaroslava; Mrkvička, Tomáš; Ricard, Daniel; Seďa, Jaromír; Morelli, Federico; Kubečka, Jan
2018-03-29
Understanding spatial distribution of organisms in heterogeneous environment remains one of the chief issues in ecology. Spatial organization of freshwater fish was investigated predominantly on large-scale, neglecting important local conditions and ecological processes. However, small-scale processes are of an essential importance for individual habitat preferences and hence structuring trophic cascades and species coexistence. In this work, we analysed the real-time spatial distribution of pelagic freshwater fish in the Římov Reservoir (Czechia) observed by hydroacoustics in relation to important environmental predictors during 48 hours at 3-h interval. Effect of diurnal cycle was revealed of highest significance in all spatial models with inverse trends between fish distribution and predictors in day and night in general. Our findings highlighted daytime pelagic fish distribution as highly aggregated, with general fish preferences for central, deep and highly illuminated areas, whereas nighttime distribution was more disperse and fish preferred nearshore steep sloped areas with higher depth. This turnover suggests prominent movements of significant part of fish assemblage between pelagic and nearshore areas on a diel basis. In conclusion, hydroacoustics, GIS and spatial modelling proved as valuable tool for predicting local fish distribution and elucidate its drivers, which has far reaching implications for understanding freshwater ecosystem functioning.
Temperate marine protected area provides recruitment subsidies to local fisheries.
Le Port, A; Montgomery, J C; Smith, A N H; Croucher, A E; McLeod, I M; Lavery, S D
2017-10-25
The utility of marine protected areas (MPAs) as a means of protecting exploited species and conserving biodiversity within MPA boundaries is supported by strong empirical evidence. However, the potential contribution of MPAs to fished populations beyond their boundaries is still highly controversial; empirical measures are scarce and modelling studies have produced a range of predictions, including both positive and negative effects. Using a combination of genetic parentage and relatedness analysis, we measured larval subsidies to local fisheries replenishment for Australasian snapper ( Chrysophrys auratus : Sparidae) from a small (5.2 km 2 ), well-established, temperate, coastal MPA in northern New Zealand. Adult snapper within the MPA contributed an estimated 10.6% (95% CI: 5.5-18.1%) of newly settled juveniles to surrounding areas (approx. 400 km 2 ), with no decreasing trend in contributions up to 40 km away. Biophysical modelling of larval dispersal matched experimental data, showing larvae produced inside the MPA dispersed over a comparable distance. These results demonstrate that temperate MPAs have the potential to provide recruitment subsidies at magnitudes and spatial scales relevant to fisheries management. The validated biophysical model provides a cost-efficient opportunity to generalize these findings to other locations and climate conditions, and potentially informs the design of MPA networks for enhancing fisheries management. © 2017 The Author(s).
Setting up a hydrological model based on global data for the Ayeyarwady basin in Myanmar
NASA Astrophysics Data System (ADS)
ten Velden, Corine; Sloff, Kees; Nauta, Tjitte
2017-04-01
The use of global datasets in local hydrological modelling can be of great value. It opens up the possibility to include data for areas where local data is not or only sparsely available. In hydrological modelling the existence of both static physical data such as elevation and land use, and dynamic meteorological data such as precipitation and temperature, is essential for setting up a hydrological model, but often such data is difficult to obtain at the local level. For the Ayeyarwady catchment in Myanmar a distributed hydrological model (Wflow: https://github.com/openstreams/wflow) was set up with only global datasets, as part of a water resources study. Myanmar is an emerging economy, which has only recently become more receptive to foreign influences. It has a very limited hydrometeorological measurement network, with large spatial and temporal gaps, and data that are of uncertain quality and difficult to obtain. The hydrological model was thus set up based on resampled versions of the SRTM digital elevation model, the GlobCover land cover dataset and the HWSD soil dataset. Three global meteorological datasets were assessed and compared for use in the hydrological model: TRMM, WFDEI and MSWEP. The meteorological datasets were assessed based on their conformity with several precipitation station measurements, and the overall model performance was assessed by calculating the NSE and RVE based on discharge measurements of several gauging stations. The model was run for the period 1979-2012 on a daily time step, and the results show an acceptable applicability of the used global datasets in the hydrological model. The WFDEI forcing dataset gave the best results, with a NSE of 0.55 at the outlet of the model and a RVE of 8.5%, calculated over the calibration period 2006-2012. As a general trend the modelled discharge at the upstream stations tends to be underestimated, and at the downstream stations slightly overestimated. The quality of the discharge measurements that form the basis for the performance calculations is uncertain; data analysis suggests that rating curves are not frequently updated. The modelling results are not perfect and there is ample room for improvement, but the results are reasonable given the notion that setting up a hydrological model for this area would not have been possible without the use of global datasets due to the lack of available local data. The resulting hydrological model then enabled the set-up of the RIBASIM water allocation model for the Ayeyarwady basin in order to assess its water resources. The study discussed here is a first step; ideally this is followed up by a more thorough calibration and validation with the limited local measurements available, e.g. a precipitation correction based on the available rainfall measurements, to ensure the integration of global and local data.
Decoupling global biases and local interactions between cell biological variables
Zaritsky, Assaf; Obolski, Uri; Gan, Zhuo; Reis, Carlos R; Kadlecova, Zuzana; Du, Yi; Schmid, Sandra L; Danuser, Gaudenz
2017-01-01
Analysis of coupled variables is a core concept of cell biological inference, with co-localization of two molecules as a proxy for protein interaction being a ubiquitous example. However, external effectors may influence the observed co-localization independently from the local interaction of two proteins. Such global bias, although biologically meaningful, is often neglected when interpreting co-localization. Here, we describe DeBias, a computational method to quantify and decouple global bias from local interactions between variables by modeling the observed co-localization as the cumulative contribution of a global and a local component. We showcase four applications of DeBias in different areas of cell biology, and demonstrate that the global bias encapsulates fundamental mechanistic insight into cellular behavior. The DeBias software package is freely accessible online via a web-server at https://debias.biohpc.swmed.edu. DOI: http://dx.doi.org/10.7554/eLife.22323.001 PMID:28287393
Exploring new topography-based subgrid spatial structures for improving land surface modeling
Tesfa, Teklu K.; Leung, Lai-Yung Ruby
2017-02-22
Topography plays an important role in land surface processes through its influence on atmospheric forcing, soil and vegetation properties, and river network topology and drainage area. Land surface models with a spatial structure that captures spatial heterogeneity, which is directly affected by topography, may improve the representation of land surface processes. Previous studies found that land surface modeling, using subbasins instead of structured grids as computational units, improves the scalability of simulated runoff and streamflow processes. In this study, new land surface spatial structures are explored by further dividing subbasins into subgrid structures based on topographic properties, including surface elevation,more » slope and aspect. Two methods (local and global) of watershed discretization are applied to derive two types of subgrid structures (geo-located and non-geo-located) over the topographically diverse Columbia River basin in the northwestern United States. In the global method, a fixed elevation classification scheme is used to discretize subbasins. The local method utilizes concepts of hypsometric analysis to discretize each subbasin, using different elevation ranges that also naturally account for slope variations. The relative merits of the two methods and subgrid structures are investigated for their ability to capture topographic heterogeneity and the implications of this on representations of atmospheric forcing and land cover spatial patterns. Results showed that the local method reduces the standard deviation (SD) of subgrid surface elevation in the study domain by 17 to 19 % compared to the global method, highlighting the relative advantages of the local method for capturing subgrid topographic variations. The comparison between the two types of subgrid structures showed that the non-geo-located subgrid structures are more consistent across different area threshold values than the geo-located subgrid structures. Altogether the local method and non-geo-located subgrid structures effectively and robustly capture topographic, climatic and vegetation variability, which is important for land surface modeling.« less
Exploring new topography-based subgrid spatial structures for improving land surface modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tesfa, Teklu K.; Leung, Lai-Yung Ruby
Topography plays an important role in land surface processes through its influence on atmospheric forcing, soil and vegetation properties, and river network topology and drainage area. Land surface models with a spatial structure that captures spatial heterogeneity, which is directly affected by topography, may improve the representation of land surface processes. Previous studies found that land surface modeling, using subbasins instead of structured grids as computational units, improves the scalability of simulated runoff and streamflow processes. In this study, new land surface spatial structures are explored by further dividing subbasins into subgrid structures based on topographic properties, including surface elevation,more » slope and aspect. Two methods (local and global) of watershed discretization are applied to derive two types of subgrid structures (geo-located and non-geo-located) over the topographically diverse Columbia River basin in the northwestern United States. In the global method, a fixed elevation classification scheme is used to discretize subbasins. The local method utilizes concepts of hypsometric analysis to discretize each subbasin, using different elevation ranges that also naturally account for slope variations. The relative merits of the two methods and subgrid structures are investigated for their ability to capture topographic heterogeneity and the implications of this on representations of atmospheric forcing and land cover spatial patterns. Results showed that the local method reduces the standard deviation (SD) of subgrid surface elevation in the study domain by 17 to 19 % compared to the global method, highlighting the relative advantages of the local method for capturing subgrid topographic variations. The comparison between the two types of subgrid structures showed that the non-geo-located subgrid structures are more consistent across different area threshold values than the geo-located subgrid structures. Altogether the local method and non-geo-located subgrid structures effectively and robustly capture topographic, climatic and vegetation variability, which is important for land surface modeling.« less
Philibert, M D; Pampalon, R; Hamel, D; Daniel, M
2013-10-01
Disability is understood to arise from person-environment interactions. Hence, heterogeneity in local-area characteristics should be associated with local-area variation in disability prevalence. This study evaluated the associations of disability prevalence with local-area socioeconomic status and contextual features. Disability prevalence was obtained from the Canada census of 2001 for the entire province of Québec at the level of dissemination areas (617 individuals on average) based on responses from 20% of the population. Data on local-area characteristics were urban-rural denomination, social and material deprivation, active and collective commuting, residential stability, and housing quality. Associations between local-area characteristics and disability prevalence were assessed using multilevel logistic regressions. Disability was associated with local-area socioeconomic status and contextual characteristics, and heterogeneity in these factors accounted for urban-rural differences in disability prevalence. Associations between contextual features and disability prevalence were confounded by local-area socioeconomic status. Some associations between local-area socioeconomic status and disability prevalence were moderated by contextual characteristics. The importance of this effect modification is greater when expressed in terms of the absolute magnitude of disability than in the relative likelihood of disability. Explanation of rural-urban differences by the contribution of other local-area characteristics is consistent with the conceptualization of urban-rural categories as the reflection of spatially varying ensembles of compositional and contextual factors. Although local-area socioeconomic status explains most variability in disability prevalence, this study shows that contextual characteristics are relevant to analyses of the spatial patterning of disability as they predict spatial variations of disability, sometimes in interaction with socioeconomic status. This study demonstrates that absolute and relative perspectives on effect modification may lead to differing conclusions. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
The CARIPANDA project: Climate change and water resources in the Adamello Natural Park of Italy
NASA Astrophysics Data System (ADS)
Bocchiola, D.
2009-04-01
The three years (2007-2009) CARIPANDA project funded by the Cariplo Foundation of Italy is aimed to evaluate scenarios for water resources in the Adamello natural Park of Italy in a window of 50 years or so (until 2050). The project is led by Ente Parco Adamello and involves Politecnico di Milano, Università Statale di Milano, Università di Brescia, and ARPA Lombardia as scientific partners, while ENEL hydropower Company of Italy joins the project as stake holder. The Adamello Natural Park is a noteworthy resource in the Italian Alps. The Adamello Group is made of several glacierized areas (c. 24 km2), of both debris covered and free ice types, including the widest Italian Glacier, named Adamello, spreading on an area of about c. 18 km2. Also the Adamello Natural Reserve, covering 217 km2 inside the Adamello Park and including the Adamello glaciers, hosts a number of high altitude safeguarded vegetal and animal species, the safety of which is a primary task of the Reserve. Project's activity involves analysis of local climate trend, field campaigns on glaciers, hydrological modelling and remote sensing of snow and ice covered areas, aimed to build a consistent model of the present hydrological conditions and of the areas. Then, properly tailored climate change projections for the area, obtained using local data driven downscaling of climate change projections from GCMs model, are used to infer the likely response to expected climate change conditions. With two years in the project now some preliminary findings can be highlighted and some preliminary trend analysis carried out. The proposed poster provides a resume of the main results of the project insofar, of interest as a benchmark for similar ongoing and foregoing projects about climate change impact on European mountainous natural areas.
Liddicoat, Craig; Bi, Peng; Waycott, Michelle; Glover, John; Breed, Martin; Weinstein, Philip
2018-06-01
Human contact with soil may be important for building and maintaining normal healthy immune defence mechanisms, however this idea remains untested at the population-level. In this continent-wide, cross-sectional study we examine the possible public health benefit of ambient exposures to soil of high cation exchange capacity (CEC), a surrogate for potential immunomodulatory soil microbial diversity. We compare distributions of normalized mean 2011/12-2012/13 age-standardized public hospital admission rates (cumulative incidence) for infectious and parasitic diseases across regional Australia (representing an average of 29,516 patients/year in 228 local government areas), within tertiles of socioeconomic status and soil exposure. To test the significance of soil CEC, we use probabilistic individual-level environmental exposure data (with or without soil), and group-level variables, in robust non-parametric multilevel modelling to predict disease rates in unseen groups. Our results show that in socioeconomically-deprived areas with high CEC soils, rates of infectious and parasitic disease are significantly lower than areas with low CEC soils. Also, health inequality (relative risk) due to socioeconomic status is significantly lower in areas with high CEC soils compared to low CEC soils (Δ relative risk = 0.47; 95% CI: 0.13, 0.82). Including soil exposure when modelling rates of infectious and parasitic disease significantly improves prediction performance, explaining an additional 7.5% (Δ r 2 = 0.075; 95% CI: 0.05, 0.10) of variation in disease risk, in local government areas that were not used for model building. Our findings suggest that exposure to high CEC soils (typically high soil biodiversity) associates with reduced risk of infectious and parasitic diseases, particularly in lower socioeconomic areas. Copyright © 2018 Elsevier B.V. All rights reserved.
Utilizing Visual Effects Software for Efficient and Flexible Isostatic Adjustment Modelling
NASA Astrophysics Data System (ADS)
Meldgaard, A.; Nielsen, L.; Iaffaldano, G.
2017-12-01
The isostatic adjustment signal generated by transient ice sheet loading is an important indicator of past ice sheet extent and the rheological constitution of the interior of the Earth. Finite element modelling has proved to be a very useful tool in these studies. We present a simple numerical model for 3D visco elastic Earth deformation and a new approach to the design of such models utilizing visual effects software designed for the film and game industry. The software package Houdini offers an assortment of optimized tools and libraries which greatly facilitate the creation of efficient numerical algorithms. In particular, we make use of Houdini's procedural work flow, the SIMD programming language VEX, Houdini's sparse matrix creation and inversion libraries, an inbuilt tetrahedralizer for grid creation, and the user interface, which facilitates effortless manipulation of 3D geometry. We mitigate many of the time consuming steps associated with the authoring of efficient algorithms from scratch while still keeping the flexibility that may be lost with the use of commercial dedicated finite element programs. We test the efficiency of the algorithm by comparing simulation times with off-the-shelf solutions from the Abaqus software package. The algorithm is tailored for the study of local isostatic adjustment patterns, in close vicinity to present ice sheet margins. In particular, we wish to examine possible causes for the considerable spatial differences in the uplift magnitude which are apparent from field observations in these areas. Such features, with spatial scales of tens of kilometres, are not resolvable with current global isostatic adjustment models, and may require the inclusion of local topographic features. We use the presented algorithm to study a near field area where field observations are abundant, namely, Disko Bay in West Greenland with the intention of constraining Earth parameters and ice thickness. In addition, we assess how local topographic features may influence the differential isostatic uplift in the area.
Source apportion of atmospheric particulate matter: a joint Eulerian/Lagrangian approach.
Riccio, A; Chianese, E; Agrillo, G; Esposito, C; Ferrara, L; Tirimberio, G
2014-12-01
PM2.5 samples were collected during an annual monitoring campaign (January 2012-January 2013) in the urban area of Naples, one of the major cities in Southern Italy. Samples were collected by means of a standard gravimetric sampler (Tecora Echo model) and characterized from a chemical point of view by ion chromatography. As a result, 143 samples together with their ionic composition have been collected. We extend traditional source apportionment techniques, usually based on multivariate factor analysis, interpreting the chemical analysis results within a Lagrangian framework. The Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT) model was used, providing linkages to the source regions in the upwind areas. Results were analyzed in order to quantify the relative weight of different source types/areas. Model results suggested that PM concentrations are strongly affected not only by local emissions but also by transboundary emissions, especially from the Eastern and Northern European countries and African Saharan dust episodes.
Structural Analysis of the Redesigned Ice/Frost Ramp Bracket
NASA Technical Reports Server (NTRS)
Phillips, D. R.; Dawicke, D. S.; Gentz, S. J.; Roberts, P. W.; Raju, I. S.
2007-01-01
This paper describes the interim structural analysis of a redesigned Ice/Frost Ramp bracket for the Space Shuttle External Tank (ET). The proposed redesigned bracket consists of mounts for attachment to the ET wall, supports for the electronic/instrument cables and propellant repressurization lines that run along the ET, an upper plate, a lower plate, and complex bolted connections. The eight nominal bolted connections are considered critical in the summarized structural analysis. Each bolted connection contains a bolt, a nut, four washers, and a non-metallic spacer and block that are designed for thermal insulation. A three-dimensional (3D) finite element model of the bracket is developed using solid 10-node tetrahedral elements. The loading provided by the ET Project is used in the analysis. Because of the complexities associated with accurately modeling the bolted connections in the bracket, the analysis is performed using a global/local analysis procedure. The finite element analysis of the bracket identifies one of the eight bolted connections as having high stress concentrations. A local area of the bracket surrounding this bolted connection is extracted from the global model and used as a local model. Within the local model, the various components of the bolted connection are refined, and contact is introduced along the appropriate interfaces determined by the analysts. The deformations from the global model are applied as boundary conditions to the local model. The results from the global/local analysis show that while the stresses in the bolts are well within yield, the spacers fail due to compression. The primary objective of the interim structural analysis is to show concept viability for static thermal testing. The proposed design concept would undergo continued design optimization to address the identified analytical assumptions and concept shortcomings, assuming successful thermal testing.
NASA Astrophysics Data System (ADS)
Tonini, R.; Lorito, S.; Orefice, S.; Graziani, L.; Brizuela, B.; Smedile, A.; Volpe, M.; Romano, F.; De Martini, P. M.; Maramai, A.; Selva, J.; Piatanesi, A.; Pantosti, D.
2016-12-01
Site-specific probabilistic tsunami hazard analyses demand very high computational efforts that are often reduced by introducing approximations on tsunami sources and/or tsunami modeling. On one hand, the large variability of source parameters implies the definition of a huge number of potential tsunami scenarios, whose omission could easily lead to important bias in the analysis. On the other hand, detailed inundation maps computed by tsunami numerical simulations require very long running time. When tsunami effects are calculated at regional scale, a common practice is to propagate tsunami waves in deep waters (up to 50-100 m depth) neglecting non-linear effects and using coarse bathymetric meshes. Then, maximum wave heights on the coast are empirically extrapolated, saving a significant amount of computational time. However, moving to local scale, such assumptions drop out and tsunami modeling would require much greater computational resources. In this work, we perform a local Seismic Probabilistic Tsunami Hazard Analysis (SPTHA) for the 50 km long coastal segment between Augusta and Siracusa, a touristic and commercial area placed along the South-Eastern Sicily coast, Italy. The procedure consists in using the outcomes of a regional SPTHA as input for a two-step filtering method to select and substantially reduce the number of scenarios contributing to the specific target area. These selected scenarios are modeled using high resolution topo-bathymetry for producing detailed inundation maps. Results are presented as probabilistic hazard curves and maps, with the goal of analyze, compare and highlight the different results provided by regional and local hazard assessments. Moreover, the analysis is enriched by the use of local observed tsunami data, both geological and historical. Indeed, tsunami data-sets available for the selected target areas are particularly rich with respect to the scarce and heterogeneous data-sets usually available elsewhere. Therefore, they can represent valuable benchmarks for testing and strengthening the results of such kind of studies. The work is funded by the Italian Flagship Project RITMARE, the two EC FP7 projects ASTARTE (Grant agreement 603839) and STREST (Grant agreement 603389), and the INGV-DPC Agreement.
5 CFR 531.603 - Locality pay areas.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Locality pay areas. 531.603 Section 531.603 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PAY UNDER THE GENERAL SCHEDULE Locality-Based Comparability Payments § 531.603 Locality pay areas. (a) Locality rates of...
NASA Astrophysics Data System (ADS)
Various papers on global telecommunications are presented. The general topics addressed include: multiservice integration with optical fibers, multicompany owned telecommunication networks, softworks quality and reliability, advanced on-board processing, impact of new services and systems on operations and maintenance, analytical studies of protocols for data communication networks, topics in packet radio networking, CCITT No. 7 to support new services, document processing and communication, antenna technology and system aspects in satellite communications. Also considered are: communication systems modelling methodology, experimental integrated local area voice/data nets, spread spectrum communications, motion video at the DS-0 rate, optical and data communications, intelligent work stations, switch performance analysis, novel radio communication systems, wireless local networks, ISDN services, LAN communication protocols, user-system interface, radio propagation and performance, mobile satellite system, software for computer networks, VLSI for ISDN terminals, quality management, man-machine interfaces in switching, and local area network performance.
NASA Technical Reports Server (NTRS)
Emerson, Charles W.; Sig-NganLam, Nina; Quattrochi, Dale A.
2004-01-01
The accuracy of traditional multispectral maximum-likelihood image classification is limited by the skewed statistical distributions of reflectances from the complex heterogenous mixture of land cover types in urban areas. This work examines the utility of local variance, fractal dimension and Moran's I index of spatial autocorrelation in segmenting multispectral satellite imagery. Tools available in the Image Characterization and Modeling System (ICAMS) were used to analyze Landsat 7 imagery of Atlanta, Georgia. Although segmentation of panchromatic images is possible using indicators of spatial complexity, different land covers often yield similar values of these indices. Better results are obtained when a surface of local fractal dimension or spatial autocorrelation is combined as an additional layer in a supervised maximum-likelihood multispectral classification. The addition of fractal dimension measures is particularly effective at resolving land cover classes within urbanized areas, as compared to per-pixel spectral classification techniques.
Pyle, J. A.; Warwick, N. J.; Harris, N. R. P.; Abas, Mohd Radzi; Archibald, A. T.; Ashfold, M. J.; Ashworth, K.; Barkley, Michael P.; Carver, G. D.; Chance, K.; Dorsey, J. R.; Fowler, D.; Gonzi, S.; Gostlow, B.; Hewitt, C. N.; Kurosu, T. P.; Lee, J. D.; Langford, S. B.; Mills, G.; Moller, S.; MacKenzie, A. R.; Manning, A. J.; Misztal, P.; Nadzir, Mohd Shahrul Mohd; Nemitz, E.; Newton, H. M.; O'Brien, L. M.; Ong, Simon; Oram, D.; Palmer, P. I.; Peng, Leong Kok; Phang, Siew Moi; Pike, R.; Pugh, T. A. M.; Rahman, Noorsaadah Abdul; Robinson, A. D.; Sentian, J.; Samah, Azizan Abu; Skiba, U.; Ung, Huan Eng; Yong, Sei Eng; Young, P. J.
2011-01-01
We present results from the OP3 campaign in Sabah during 2008 that allow us to study the impact of local emission changes over Borneo on atmospheric composition at the regional and wider scale. OP3 constituent data provide an important constraint on model performance. Treatment of boundary layer processes is highlighted as an important area of model uncertainty. Model studies of land-use change confirm earlier work, indicating that further changes to intensive oil palm agriculture in South East Asia, and the tropics in general, could have important impacts on air quality, with the biggest factor being the concomitant changes in NOx emissions. With the model scenarios used here, local increases in ozone of around 50 per cent could occur. We also report measurements of short-lived brominated compounds around Sabah suggesting that oceanic (and, especially, coastal) emission sources dominate locally. The concentration of bromine in short-lived halocarbons measured at the surface during OP3 amounted to about 7 ppt, setting an upper limit on the amount of these species that can reach the lower stratosphere. PMID:22006963
Pyle, J A; Warwick, N J; Harris, N R P; Abas, Mohd Radzi; Archibald, A T; Ashfold, M J; Ashworth, K; Barkley, Michael P; Carver, G D; Chance, K; Dorsey, J R; Fowler, D; Gonzi, S; Gostlow, B; Hewitt, C N; Kurosu, T P; Lee, J D; Langford, S B; Mills, G; Moller, S; MacKenzie, A R; Manning, A J; Misztal, P; Nadzir, Mohd Shahrul Mohd; Nemitz, E; Newton, H M; O'Brien, L M; Ong, Simon; Oram, D; Palmer, P I; Peng, Leong Kok; Phang, Siew Moi; Pike, R; Pugh, T A M; Rahman, Noorsaadah Abdul; Robinson, A D; Sentian, J; Samah, Azizan Abu; Skiba, U; Ung, Huan Eng; Yong, Sei Eng; Young, P J
2011-11-27
We present results from the OP3 campaign in Sabah during 2008 that allow us to study the impact of local emission changes over Borneo on atmospheric composition at the regional and wider scale. OP3 constituent data provide an important constraint on model performance. Treatment of boundary layer processes is highlighted as an important area of model uncertainty. Model studies of land-use change confirm earlier work, indicating that further changes to intensive oil palm agriculture in South East Asia, and the tropics in general, could have important impacts on air quality, with the biggest factor being the concomitant changes in NO(x) emissions. With the model scenarios used here, local increases in ozone of around 50 per cent could occur. We also report measurements of short-lived brominated compounds around Sabah suggesting that oceanic (and, especially, coastal) emission sources dominate locally. The concentration of bromine in short-lived halocarbons measured at the surface during OP3 amounted to about 7 ppt, setting an upper limit on the amount of these species that can reach the lower stratosphere.
NASA Astrophysics Data System (ADS)
Sokolov, Anton; Gengembre, Cyril; Dmitriev, Egor; Delbarre, Hervé
2017-04-01
The problem is considered of classification of local atmospheric meteorological events in the coastal area such as sea breezes, fogs and storms. The in-situ meteorological data as wind speed and direction, temperature, humidity and turbulence are used as predictors. Local atmospheric events of 2013-2014 were analysed manually to train classification algorithms in the coastal area of English Channel in Dunkirk (France). Then, ultrasonic anemometer data and LIDAR wind profiler data were used as predictors. A few algorithms were applied to determine meteorological events by local data such as a decision tree, the nearest neighbour classifier, a support vector machine. The comparison of classification algorithms was carried out, the most important predictors for each event type were determined. It was shown that in more than 80 percent of the cases machine learning algorithms detect the meteorological class correctly. We expect that this methodology could be applied also to classify events by climatological in-situ data or by modelling data. It allows estimating frequencies of each event in perspective of climate change.
Divergent evolution in fluviokarst landscapes of central Kentucky
Phillips, J.D.; Martin, L.L.; Nordberg, V.G.; Andrews, W.A.
2004-01-01
Central Kentucky is characterized by a mixture of karst and fluvial features, typically manifested as mosaic of karst-rich/ channel-poor (KRCP) and channel-rich/karst-poor (CRKP) environments. At the regional scale the location and distribution of KRCP and CRKP areas are not always systematically related to structural, lithological, topographic, or other controls. This study examines the relationship of KRCP and CRKP zones along the Kentucky River gorge area, where rapid incision in the last 1??5 million years has lowered local base levels and modified slopes on the edge of the inner bluegrass plateau. At the scale of detailed field mapping on foot within a 4 km2 area, the development of karst and fluvial features is controlled by highly localized structural and topographic constraints, and can be related to slope changes associated with retreat of the Kentucky River gorge escarpment. A conceptual model of karst/fluvial transitions is presented, which suggests that minor, localized variations are sufficient to trigger a karst-fluvial or fluvial-karst switch when critical slope thresholds are crossed. ?? 2004 John Wiley and Sons, Ltd.
Extracting valley-ridge lines from point-cloud-based 3D fingerprint models.
Pang, Xufang; Song, Zhan; Xie, Wuyuan
2013-01-01
3D fingerprinting is an emerging technology with the distinct advantage of touchless operation. More important, 3D fingerprint models contain more biometric information than traditional 2D fingerprint images. However, current approaches to fingerprint feature detection usually must transform the 3D models to a 2D space through unwrapping or other methods, which might introduce distortions. A new approach directly extracts valley-ridge features from point-cloud-based 3D fingerprint models. It first applies the moving least-squares method to fit a local paraboloid surface and represent the local point cloud area. It then computes the local surface's curvatures and curvature tensors to facilitate detection of the potential valley and ridge points. The approach projects those points to the most likely valley-ridge lines, using statistical means such as covariance analysis and cross correlation. To finally extract the valley-ridge lines, it grows the polylines that approximate the projected feature points and removes the perturbations between the sampled points. Experiments with different 3D fingerprint models demonstrate this approach's feasibility and performance.
Carroll, Suzanne J; Paquet, Catherine; Howard, Natasha J; Coffee, Neil T; Taylor, Anne W; Niyonsenga, Theo; Daniel, Mark
2016-10-01
Descriptive norms vary between places. Spatial variation in health-related descriptive norms may predict individual-level health outcomes. Such relationships have rarely been investigated. This study assessed 10-year change in glycosylated haemoglobin (HbA1c) in relation to local descriptive norms for overweight/obesity (n = 1890) and physical inactivity (n = 1906) in models accounting for features of the built environment. HbA1c was measured three times over 10 years for a population-based biomedical cohort of adults in Adelaide, South Australia. Environmental exposures were expressed for cohort participants using 1600 m road-network buffers centred on participants' residential address. Local descriptive norms (prevalence of overweight/obesity [body mass index ≥25 kg/m(2)] and of physical inactivity [<150 min/week]) were aggregated from responses to a separate geocoded population survey. Built environment measures were public open space (POS) availability (proportion of buffer area) and walkability. Separate sets of multilevel models analysed different predictors of 10-year change in HbA1c. Each model featured one local descriptive norm and one built environment variable with area-level education and individual-level covariates (age, sex, employment status, education, marital status, and smoking status). Interactions between local descriptive norms and built environment measures were assessed. HbA1c increased over time. POS availability and local descriptive norms for overweight/obesity and physical inactivity were each associated with greater rates of HbA1c increase. Greater walkability was associated with a reduced rate of HbA1c increase, and reduced the influence of the overweight/obesity norm on the rate of increase in HbA1c. Local descriptive health-related norms and features of the built environment predict 10-year change in HbA1c. The impact of local descriptive norms can vary according to built environment features. Little researched thus far, local descriptive norms may play an important role in the evolution of HbA1c and thus cardiometabolic risk, over time. Further empirical research on local descriptive norms is necessary to understand how residential environments shape chronic disease risk. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sustainable Development: The Challenge for Community Development.
ERIC Educational Resources Information Center
Gamble, Dorothy N.; Weil, Marie O.
1997-01-01
Five areas of inquiry shape the sustainable development movement: environmental movement, women's movement, overpopulation concerns, critique of development models, and new indicators of social progress. Community development workers are challenged to prepare local development projects within a sustainable development framework. (SK)
Sugiyama, Takemi; Niyonsenga, Theo; Howard, Natasha J; Coffee, Neil T; Paquet, Catherine; Taylor, Anne W; Daniel, Mark
2016-12-01
Consistent associations have been observed between macro-level urban sprawl and overweight/obesity, but whether residential proximity to urban centres predicts adiposity change over time has not been established. Further, studies of local-area walkability and overweight/obesity have generated mixed results. This study examined 4-year change in adults' waist circumference in relation to proximity to city centre, proximity to closest suburban centre, and local-area walkability. Data were from adult participants (n=2080) of a cohort study on chronic conditions and health risk factors in Adelaide, Australia. Baseline data were collected in 2000-03 with a follow-up in 2005-06. Multilevel regression models examined in 2015 the independent and joint associations of the three environmental measures with change in waist circumference, accounting for socio-demographic covariates. On average, waist circumference rose by 1.8cm over approximately 4years. Greater distance to city centre was associated with a greater increase in waist circumference. Participants living in distal areas (20km or further from city centre) had a greater increase in waist circumference (mean increase: 2.4cm) compared to those in proximal areas (9km or less, mean increase: 1.2cm). Counterintuitively, living in the vicinity of a suburban centre was associated with a greater increase in adiposity. Local-area walkability was not significantly associated with the outcome. Residential proximity to city centre appears to be protective against excessive increases in waist circumference. Controlled development and targeted interventions in the urban fringe may be needed to tackle obesity. Additional research needs to assess behaviours that mediate relationships between sprawl and obesity. Copyright © 2016 Elsevier Inc. All rights reserved.
A real-time biomimetic acoustic localizing system using time-shared architecture
NASA Astrophysics Data System (ADS)
Nourzad Karl, Marianne; Karl, Christian; Hubbard, Allyn
2008-04-01
In this paper a real-time sound source localizing system is proposed, which is based on previously developed mammalian auditory models. Traditionally, following the models, which use interaural time delay (ITD) estimates, the amount of parallel computations needed by a system to achieve real-time sound source localization is a limiting factor and a design challenge for hardware implementations. Therefore a new approach using a time-shared architecture implementation is introduced. The proposed architecture is a purely sample-base-driven digital system, and it follows closely the continuous-time approach described in the models. Rather than having dedicated hardware on a per frequency channel basis, a specialized core channel, shared for all frequency bands is used. Having an optimized execution time, which is much less than the system's sample rate, the proposed time-shared solution allows the same number of virtual channels to be processed as the dedicated channels in the traditional approach. Hence, the time-shared approach achieves a highly economical and flexible implementation using minimal silicon area. These aspects are particularly important in efficient hardware implementation of a real time biomimetic sound source localization system.
48 CFR 26.202-1 - Local area set-aside.
Code of Federal Regulations, 2010 CFR
2010-10-01
... shall also determine whether a local area set-aside should be further restricted to small business... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Local area set-aside. 26... area set-aside. The contracting officer may set aside solicitations to allow only local firms within a...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 6 2013-07-01 2013-07-01 false Area. 1605.51 Section 1605.51 National Defense... ORGANIZATION Local Boards § 1605.51 Area. (a) The Director of Selective Service shall divide each State into local board areas and establish local boards. There shall be at least one local board in each county...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 6 2010-07-01 2010-07-01 false Area. 1605.51 Section 1605.51 National Defense... ORGANIZATION Local Boards § 1605.51 Area. (a) The Director of Selective Service shall divide each State into local board areas and establish local boards. There shall be at least one local board in each county...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 6 2012-07-01 2012-07-01 false Area. 1605.51 Section 1605.51 National Defense... ORGANIZATION Local Boards § 1605.51 Area. (a) The Director of Selective Service shall divide each State into local board areas and establish local boards. There shall be at least one local board in each county...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 6 2014-07-01 2014-07-01 false Area. 1605.51 Section 1605.51 National Defense... ORGANIZATION Local Boards § 1605.51 Area. (a) The Director of Selective Service shall divide each State into local board areas and establish local boards. There shall be at least one local board in each county...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 6 2011-07-01 2011-07-01 false Area. 1605.51 Section 1605.51 National Defense... ORGANIZATION Local Boards § 1605.51 Area. (a) The Director of Selective Service shall divide each State into local board areas and establish local boards. There shall be at least one local board in each county...
Modeling Malaria Vector Distribution under Climate Change Scenarios in Kenya
NASA Astrophysics Data System (ADS)
Ngaina, J. N.
2017-12-01
Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control strategies for sustaining elimination and preventing reintroduction of malaria. However, in Kenya, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of future climate change on locally dominant Anopheles vectors including Anopheles gambiae, Anopheles arabiensis, Anopheles merus, Anopheles funestus, Anopheles pharoensis and Anopheles nili. Environmental data (Climate, Land cover and elevation) and primary empirical geo-located species-presence data were identified. The principle of maximum entropy (Maxent) was used to model the species' potential distribution area under paleoclimate, current and future climates. The Maxent model was highly accurate with a statistically significant AUC value. Simulation-based estimates suggest that the environmentally suitable area (ESA) for Anopheles gambiae, An. arabiensis, An. funestus and An. pharoensis would increase under all two scenarios for mid-century (2016-2045), but decrease for end century (2071-2100). An increase in ESA of An. Funestus was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios for mid-century. Our findings can be applied in various ways such as the identification of additional localities where Anopheles malaria vectors may already exist, but has not yet been detected and the recognition of localities where it is likely to spread to. Moreover, it will help guide future sampling location decisions, help with the planning of vector control suites nationally and encourage broader research inquiry into vector species niche modeling
NASA Astrophysics Data System (ADS)
Li, Jing; Xie, Weixin; Pei, Jihong
2018-03-01
Sea-land segmentation is one of the key technologies of sea target detection in remote sensing images. At present, the existing algorithms have the problems of low accuracy, low universality and poor automatic performance. This paper puts forward a sea-land segmentation algorithm based on multi-feature fusion for a large-field remote sensing image removing island. Firstly, the coastline data is extracted and all of land area is labeled by using the geographic information in large-field remote sensing image. Secondly, three features (local entropy, local texture and local gradient mean) is extracted in the sea-land border area, and the three features combine a 3D feature vector. And then the MultiGaussian model is adopted to describe 3D feature vectors of sea background in the edge of the coastline. Based on this multi-gaussian sea background model, the sea pixels and land pixels near coastline are classified more precise. Finally, the coarse segmentation result and the fine segmentation result are fused to obtain the accurate sea-land segmentation. Comparing and analyzing the experimental results by subjective vision, it shows that the proposed method has high segmentation accuracy, wide applicability and strong anti-disturbance ability.
Efficacy of two lion conservation programs in Maasailand, Kenya.
Hazzah, Leela; Dolrenry, Stephanie; Naughton-Treves, Lisa; Naughton, Lisa; Edwards, Charles T T; Mwebi, Ogeto; Kearney, Fiachra; Frank, Laurence
2014-06-01
Lion (Panthera leo) populations are in decline throughout most of Africa. The problem is particularly acute in southern Kenya, where Maasai pastoralists have been spearing and poisoning lions at a rate that will ensure near term local extinction. We investigated 2 approaches for improving local tolerance of lions: compensation payments for livestock lost to predators and Lion Guardians, which draws on local cultural values and knowledge to mitigate livestock-carnivore conflict and monitor carnivores. To gauge the overall influence of conservation intervention, we combined both programs into a single conservation treatment variable. Using 8 years of lion killing data, we applied Manski's partial identification approach with bounded assumptions to investigate the effect of conservation treatment on lion killing in 4 contiguous areas. In 3 of the areas, conservation treatment was positively associated with a reduction in lion killing. We then applied a generalized linear model to assess the relative efficacy of the 2 interventions. The model estimated that compensation resulted in an 87-91% drop in the number of lions killed, whereas Lion Guardians (operating in combination with compensation and alone) resulted in a 99% drop in lion killing. © 2014 Society for Conservation Biology.
A rapid local singularity analysis algorithm with applications
NASA Astrophysics Data System (ADS)
Chen, Zhijun; Cheng, Qiuming; Agterberg, Frits
2015-04-01
The local singularity model developed by Cheng is fast gaining popularity in characterizing mineralization and detecting anomalies of geochemical, geophysical and remote sensing data. However in one of the conventional algorithms involving the moving average values with different scales is time-consuming especially while analyzing a large dataset. Summed area table (SAT), also called as integral image, is a fast algorithm used within the Viola-Jones object detection framework in computer vision area. Historically, the principle of SAT is well-known in the study of multi-dimensional probability distribution functions, namely in computing 2D (or ND) probabilities (area under the probability distribution) from the respective cumulative distribution functions. We introduce SAT and it's variation Rotated Summed Area Table in the isotropic, anisotropic or directional local singularity mapping in this study. Once computed using SAT, any one of the rectangular sum can be computed at any scale or location in constant time. The area for any rectangular region in the image can be computed by using only 4 array accesses in constant time independently of the size of the region; effectively reducing the time complexity from O(n) to O(1). New programs using Python, Julia, matlab and C++ are implemented respectively to satisfy different applications, especially to the big data analysis. Several large geochemical and remote sensing datasets are tested. A wide variety of scale changes (linear spacing or log spacing) for non-iterative or iterative approach are adopted to calculate the singularity index values and compare the results. The results indicate that the local singularity analysis with SAT is more robust and superior to traditional approach in identifying anomalies.
NASA Astrophysics Data System (ADS)
Liu, Jing; Skidmore, Andrew K.; Heurich, Marco; Wang, Tiejun
2017-10-01
As an important metric for describing vertical forest structure, the plant area index (PAI) profile is used for many applications including biomass estimation and wildlife habitat assessment. PAI profiles can be estimated with the vertically resolved gap fraction from airborne LiDAR data. Most research utilizes a height normalization algorithm to retrieve local or relative height by assuming the terrain to be flat. However, for many forests this assumption is not valid. In this research, the effect of topographic normalization of airborne LiDAR data on the retrieval of PAI profile was studied in a mountainous forest area in Germany. Results show that, although individual tree height may be retained after topographic normalization, the spatial arrangement of trees is changed. Specifically, topographic normalization vertically condenses and distorts the PAI profile, which consequently alters the distribution pattern of plant area density in space. This effect becomes more evident as the slope increases. Furthermore, topographic normalization may also undermine the complexity (i.e., canopy layer number and entropy) of the PAI profile. The decrease in PAI profile complexity is not solely determined by local topography, but is determined by the interaction between local topography and the spatial distribution of each tree. This research demonstrates that when calculating the PAI profile from airborne LiDAR data, local topography needs to be taken into account. We therefore suggest that for ecological applications, such as vertical forest structure analysis and modeling of biodiversity, topographic normalization should not be applied in non-flat areas when using LiDAR data.
On the averaging area for incident power density for human exposure limits at frequencies over 6 GHz
NASA Astrophysics Data System (ADS)
Hashimoto, Yota; Hirata, Akimasa; Morimoto, Ryota; Aonuma, Shinta; Laakso, Ilkka; Jokela, Kari; Foster, Kenneth R.
2017-04-01
Incident power density is used as the dosimetric quantity to specify the restrictions on human exposure to electromagnetic fields at frequencies above 3 or 10 GHz in order to prevent excessive temperature elevation at the body surface. However, international standards and guidelines have different definitions for the size of the area over which the power density should be averaged. This study reports computational evaluation of the relationship between the size of the area over which incident power density is averaged and the local peak temperature elevation in a multi-layer model simulating a human body. Three wave sources are considered in the frequency range from 3 to 300 GHz: an ideal beam, a half-wave dipole antenna, and an antenna array. 1D analysis shows that averaging area of 20 mm × 20 mm is a good measure to correlate with the local peak temperature elevation when the field distribution is nearly uniform in that area. The averaging area is different from recommendations in the current international standards/guidelines, and not dependent on the frequency. For a non-uniform field distribution, such as a beam with small diameter, the incident power density should be compensated by multiplying a factor that can be derived from the ratio of the effective beam area to the averaging area. The findings in the present study suggest that the relationship obtained using the 1D approximation is applicable for deriving the relationship between the incident power density and the local temperature elevation.
NASA Astrophysics Data System (ADS)
Tamazian, A.; Nguyen, V. D.; Markelov, O. A.; Bogachev, M. I.
2016-07-01
We suggest a universal phenomenological description for the collective access patterns in the Internet traffic dynamics both at local and wide area network levels that takes into account erratic fluctuations imposed by cooperative user behaviour. Our description is based on the superstatistical approach and leads to the q-exponential inter-session time and session size distributions that are also in perfect agreement with empirical observations. The validity of the proposed description is confirmed explicitly by the analysis of complete 10-day traffic traces from the WIDE backbone link and from the local campus area network downlink from the Internet Service Provider. Remarkably, the same functional forms have been observed in the historic access patterns from single WWW servers. The suggested approach effectively accounts for the complex interplay of both “calm” and “bursty” user access patterns within a single-model setting. It also provides average sojourn time estimates with reasonable accuracy, as indicated by the queuing system performance simulation, this way largely overcoming the failure of Poisson modelling of the Internet traffic dynamics.
Hester, Nathan; Li, Ke; Schramski, John R; Crittenden, John
2012-04-30
Globally, residential energy consumption continues to rise due to a variety of trends such as increasing access to modern appliances, overall population growth, and the overall increase of electricity distribution. Currently, residential energy consumption accounts for approximately one-fifth of total U.S. energy consumption. This research analyzes the effectiveness of a range of energy-saving measures for residential houses in semi-arid climates. These energy-saving measures include: structural insulated panels (SIP) for exterior wall construction, daylight control, increased window area, efficient window glass suitable for the local weather, and several combinations of these. Our model determined that energy consumption is reduced by up to 6.1% when multiple energy savings technologies are combined. In addition, pre-construction technologies (structural insulated panels (SIPs), daylight control, and increased window area) provide roughly 4 times the energy savings when compared to post-construction technologies (window blinds and efficient window glass). The model also illuminated the importance variations in local climate and building configuration; highlighting the site-specific nature of this type of energy consumption quantification for policy and building code considerations. Published by Elsevier Ltd.
Monitoring corrosion of rebar embedded in mortar using guided ultrasonic waves
NASA Astrophysics Data System (ADS)
Ervin, Benjamin Lee
This thesis investigates the use of guided mechanical waves for monitoring uniform and localized corrosion in steel reinforcing bars embedded in concrete. The main forms of structural deterioration from uniform corrosion in reinforced concrete are the destruction of the bond between steel and concrete, the loss of steel cross-sectional area, and the loss of concrete cross-sectional area from cracking and spalling. Localized corrosion, or pitting, leads to severe loss of steel cross-sectional area, creating a high risk of bar tensile failure and unintended transfer of loads to the surrounding concrete. Reinforcing bars were used to guide the waves, rather than bulk concrete, allowing for longer inspection distances due to lower material absorption, scattering, and divergence. Guided mechanical waves in low frequency ranges (50-200 kHz) and higher frequency ranges (2-8 MHz) were monitored in reinforced mortar specimens undergoing accelerated uniform corrosion. The frequency ranges chosen contain wave modes with varying amounts of interaction, i.e. displacement profile, at the material interface. Lower frequency modes were shown to be sensitive to the accumulation of corrosion product and the level of bond between the surrounding mortar and rebar. This allows for the onset of corrosion and bond deterioration to be monitored. Higher frequency modes were shown to be sensitive to changes in the bar profile surface, allowing for the loss of cross-sectional area to be monitored. Guided mechanical waves in the higher frequency range were also used to monitor reinforced mortar specimens undergoing accelerated localized corrosion. The high frequency modes were sensitive to the localized attack. Also promising was the unique frequency spectrum response for both uniform and localized corrosion, allowing the two corrosion types to be differentiated from through-transmission evaluation. The isolated effects of the reinforcing ribs, simulated debonding, simulated pitting, water surrounding, and mortar surrounding were also investigated using guided mechanical waves. Results are presented and discussed within the framework of a corrosion process degradation model and service life. A thorough review and discussion of the corrosion process, modeling the propagation of corrosion, nondestructive methods for monitoring corrosion in reinforced concrete, and guided mechanical waves have also been presented.
Assertive outreach handbook will aid mental health staff in maintaining client engagement.
Gregory, Nathan; Macpherson, Rob
The model of assertive outreach is one of the most internationally researched areas of community mental healthcare. An assertive outreach team at a mental health trust developed a handbook on the model, involving contributions from service users, carers, local clinicians and the voluntary sector. This article outlines the process of developing the handbook, summarises its content and user feedback.
Working Memory and Decision-Making in a Frontoparietal Circuit Model
2017-01-01
Working memory (WM) and decision-making (DM) are fundamental cognitive functions involving a distributed interacting network of brain areas, with the posterior parietal cortex (PPC) and prefrontal cortex (PFC) at the core. However, the shared and distinct roles of these areas and the nature of their coordination in cognitive function remain poorly understood. Biophysically based computational models of cortical circuits have provided insights into the mechanisms supporting these functions, yet they have primarily focused on the local microcircuit level, raising questions about the principles for distributed cognitive computation in multiregional networks. To examine these issues, we developed a distributed circuit model of two reciprocally interacting modules representing PPC and PFC circuits. The circuit architecture includes hierarchical differences in local recurrent structure and implements reciprocal long-range projections. This parsimonious model captures a range of behavioral and neuronal features of frontoparietal circuits across multiple WM and DM paradigms. In the context of WM, both areas exhibit persistent activity, but, in response to intervening distractors, PPC transiently encodes distractors while PFC filters distractors and supports WM robustness. With regard to DM, the PPC module generates graded representations of accumulated evidence supporting target selection, while the PFC module generates more categorical responses related to action or choice. These findings suggest computational principles for distributed, hierarchical processing in cortex during cognitive function and provide a framework for extension to multiregional models. SIGNIFICANCE STATEMENT Working memory and decision-making are fundamental “building blocks” of cognition, and deficits in these functions are associated with neuropsychiatric disorders such as schizophrenia. These cognitive functions engage distributed networks with prefrontal cortex (PFC) and posterior parietal cortex (PPC) at the core. It is not clear, however, what the contributions of PPC and PFC are in light of the computations that subserve working memory and decision-making. We constructed a biophysical model of a reciprocally connected frontoparietal circuit that revealed shared and distinct functions for the PFC and PPC across working memory and decision-making tasks. Our parsimonious model connects circuit-level properties to cognitive functions and suggests novel design principles beyond those of local circuits for cognitive processing in multiregional brain networks. PMID:29114071
Working Memory and Decision-Making in a Frontoparietal Circuit Model.
Murray, John D; Jaramillo, Jorge; Wang, Xiao-Jing
2017-12-13
Working memory (WM) and decision-making (DM) are fundamental cognitive functions involving a distributed interacting network of brain areas, with the posterior parietal cortex (PPC) and prefrontal cortex (PFC) at the core. However, the shared and distinct roles of these areas and the nature of their coordination in cognitive function remain poorly understood. Biophysically based computational models of cortical circuits have provided insights into the mechanisms supporting these functions, yet they have primarily focused on the local microcircuit level, raising questions about the principles for distributed cognitive computation in multiregional networks. To examine these issues, we developed a distributed circuit model of two reciprocally interacting modules representing PPC and PFC circuits. The circuit architecture includes hierarchical differences in local recurrent structure and implements reciprocal long-range projections. This parsimonious model captures a range of behavioral and neuronal features of frontoparietal circuits across multiple WM and DM paradigms. In the context of WM, both areas exhibit persistent activity, but, in response to intervening distractors, PPC transiently encodes distractors while PFC filters distractors and supports WM robustness. With regard to DM, the PPC module generates graded representations of accumulated evidence supporting target selection, while the PFC module generates more categorical responses related to action or choice. These findings suggest computational principles for distributed, hierarchical processing in cortex during cognitive function and provide a framework for extension to multiregional models. SIGNIFICANCE STATEMENT Working memory and decision-making are fundamental "building blocks" of cognition, and deficits in these functions are associated with neuropsychiatric disorders such as schizophrenia. These cognitive functions engage distributed networks with prefrontal cortex (PFC) and posterior parietal cortex (PPC) at the core. It is not clear, however, what the contributions of PPC and PFC are in light of the computations that subserve working memory and decision-making. We constructed a biophysical model of a reciprocally connected frontoparietal circuit that revealed shared and distinct functions for the PFC and PPC across working memory and decision-making tasks. Our parsimonious model connects circuit-level properties to cognitive functions and suggests novel design principles beyond those of local circuits for cognitive processing in multiregional brain networks. Copyright © 2017 the authors 0270-6474/17/3712167-20$15.00/0.
On the kinematics of scalar iso-surfaces in turbulent flow
NASA Astrophysics Data System (ADS)
Blakeley, Brandon C.; Riley, James J.; Storti, Duane W.; Wang, Weirong
2017-11-01
The behavior of scalar iso-surfaces in turbulent flows is of fundamental interest and importance in a number of problems, e.g., the stoichiometric surface in non-premixed reactions, and the turbulent/non-turbulent interface in localized turbulent shear flows. Of particular interest here is the behavior of the average surface area per unit volume, Σ. We report on the use of direct numerical simulations and sophisticated surface tracking techniques to directly compute Σ and model its evolution. We consider two different scalar configurations in decaying, isotropic turbulence: first, the iso-surface is initially homogenous and isotropic in space, second, the iso-surface is initially planar. A novel method of computing integral properties from regularly-sampled values of a scalar function is leveraged to provide accurate estimates of Σ. Guided by simulation results, modeling is introduced from two perspectives. The first approach models the various terms in the evolution equation for Σ, while the second uses Rice's theorem to model Σ directly. In particular, the two principal effects on the evolution of Σ, i.e., the growth of the surface area due to local surface stretching, and the ultimate decay due to molecular destruction, are addressed.
Cognitive Mapping Based on Conjunctive Representations of Space and Movement
Zeng, Taiping; Si, Bailu
2017-01-01
It is a challenge to build robust simultaneous localization and mapping (SLAM) system in dynamical large-scale environments. Inspired by recent findings in the entorhinal–hippocampal neuronal circuits, we propose a cognitive mapping model that includes continuous attractor networks of head-direction cells and conjunctive grid cells to integrate velocity information by conjunctive encodings of space and movement. Visual inputs from the local view cells in the model provide feedback cues to correct drifting errors of the attractors caused by the noisy velocity inputs. We demonstrate the mapping performance of the proposed cognitive mapping model on an open-source dataset of 66 km car journey in a 3 km × 1.6 km urban area. Experimental results show that the proposed model is robust in building a coherent semi-metric topological map of the entire urban area using a monocular camera, even though the image inputs contain various changes caused by different light conditions and terrains. The results in this study could inspire both neuroscience and robotic research to better understand the neural computational mechanisms of spatial cognition and to build robust robotic navigation systems in large-scale environments. PMID:29213234
High-resolution gravity field modeling using GRAIL mission data
NASA Astrophysics Data System (ADS)
Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Neumann, G. A.; Loomis, B.; Chinn, D. S.; Smith, D. E.; Zuber, M. T.
2015-12-01
The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft were designed to map the structure of the Moon through high-precision global gravity mapping. The mission consisted of two spacecraft with Ka-band inter-satellite tracking complemented by tracking from Earth. The mission had two phases: a primary mapping mission from March 1 until May 29, 2012 at an average altitude of 50 km, and an extended mission from August 30 until December 14, 2012, with an average altitude of 23 km before November 18, and 20 and 11 km after. High-resolution gravity field models using both these data sets have been estimated, with the current resolution being degree and order 1080 in spherical harmonics. Here, we focus on aspects of the analysis of the GRAIL data: we investigate eclipse modeling, the influence of empirical accelerations on the results, and we discuss the inversion of large-scale systems. In addition to global models we also estimated local gravity adjustments in areas of particular interest such as Mare Orientale, the south pole area, and the farside. We investigate the use of Ka-band Range Rate (KBRR) data versus numerical derivatives of KBRR data, and show that the latter have the capability to locally improve correlations with topography.
Crop Monitoring as a Tool for Modelling the Genesis of Millet Prices in Senegal
NASA Astrophysics Data System (ADS)
Jacques, D.; Marinho, E.; Defourny, P.; Waldner, F.; d'Andrimont, R.
2015-12-01
Food security in Sahelian countries strongly relies on the ability of markets to transfer staplesfrom surplus to deficit areas. Market failures, leading to the inefficient geographical allocation of food,are expected to emerge from high transportation costs and information asymmetries that are commonin moderately developed countries. As a result, important price differentials are observed betweenproducing and consuming areas which damages both poor producers and food insecure consumers. Itis then vital for policy makers to understand how the prices of agricultural commodities are formed byaccounting for the existing market imperfections in addition to local demand and supply considerations. To address this issue, we have gathered an unique and diversified set of data for Senegal andintegrated it in a spatially explicit model that simulates the functioning of agricultural markets, that isfully consistent with the economic theory. Our departure point is a local demand and supply modelaround each market having its catchment areas determined by the road network. We estimate the localsupply of agricultural commodities from satellite imagery while the demand is assumed to be a functionof the population living in the area. From this point on, profitable transactions between areas with lowprices to areas with high prices are simulated for different levels of per kilometer transportation costand information flows (derived from call details records i.e. mobile phone data). The simulated prices are then comparedwith the actual millet prices. Despite the parsimony of the model that estimates only two parameters, i.e. the per kilometertransportation cost and the information asymmetry resulting from low levels of mobile phone activitybetween markets, it impressively explains more than 80% of the price differentials observed in the 40markets included in the analysis. In one hand these results can be used in the assessment of the socialwelfare impacts of the further development of both road and mobile phone networks in the country. Onthe other hand, the model could be further developed as a precious tool for the prediction of futurestaple prices in the country.
NASA Astrophysics Data System (ADS)
Yuan, Shihao; Fuji, Nobuaki; Singh, Satish; Borisov, Dmitry
2017-06-01
We present a methodology to invert seismic data for a localized area by combining source-side wavefield injection and receiver-side extrapolation method. Despite the high resolving power of seismic full waveform inversion, the computational cost for practical scale elastic or viscoelastic waveform inversion remains a heavy burden. This can be much more severe for time-lapse surveys, which require real-time seismic imaging on a daily or weekly basis. Besides, changes of the structure during time-lapse surveys are likely to occur in a small area rather than the whole region of seismic experiments, such as oil and gas reservoir or CO2 injection wells. We thus propose an approach that allows to image effectively and quantitatively the localized structure changes far deep from both source and receiver arrays. In our method, we perform both forward and back propagation only inside the target region. First, we look for the equivalent source expression enclosing the region of interest by using the wavefield injection method. Second, we extrapolate wavefield from physical receivers located near the Earth's surface or on the ocean bottom to an array of virtual receivers in the subsurface by using correlation-type representation theorem. In this study, we present various 2-D elastic numerical examples of the proposed method and quantitatively evaluate errors in obtained models, in comparison to those of conventional full-model inversions. The results show that the proposed localized waveform inversion is not only efficient and robust but also accurate even under the existence of errors in both initial models and observed data.
Amburgey, Staci M.; Miller, David A. W.; Grant, Evan H. Campbell; Rittenhouse, Tracy A. G.; Benard, Michael F.; Richardson, Jonathan L.; Urban, Mark C.; Hughson, Ward; Brand, Adrianne B,; Davis, Christopher J.; Hardin, Carmen R.; Paton, Peter W. C.; Raithel, Christopher J.; Relyea, Rick A.; Scott, A. Floyd; Skelly, David K.; Skidds, Dennis E.; Smith, Charles K.; Werner, Earl E.
2018-01-01
Species’ distributions will respond to climate change based on the relationship between local demographic processes and climate and how this relationship varies based on range position. A rarely tested demographic prediction is that populations at the extremes of a species’ climate envelope (e.g., populations in areas with the highest mean annual temperature) will be most sensitive to local shifts in climate (i.e., warming). We tested this prediction using a dynamic species distribution model linking demographic rates to variation in temperature and precipitation for wood frogs (Lithobates sylvaticus) in North America. Using long-term monitoring data from 746 populations in 27 study areas, we determined how climatic variation affected population growth rates and how these relationships varied with respect to long-term climate. Some models supported the predicted pattern, with negative effects of extreme summer temperatures in hotter areas and positive effects on recruitment for summer water availability in drier areas. We also found evidence of interacting temperature and precipitation influencing population size, such as extreme heat having less of a negative effect in wetter areas. Other results were contrary to predictions, such as positive effects of summer water availability in wetter parts of the range and positive responses to winter warming especially in milder areas. In general, we found wood frogs were more sensitive to changes in temperature or temperature interacting with precipitation than to changes in precipitation alone. Our results suggest that sensitivity to changes in climate cannot be predicted simply by knowing locations within the species’ climate envelope. Many climate processes did not affect population growth rates in the predicted direction based on range position. Processes such as species-interactions, local adaptation, and interactions with the physical landscape likely affect the responses we observed. Our work highlights the need to measure demographic responses to changing climate.
Parliman, D.J.
1987-01-01
The Groveland-Collins area near Blackfoot, Idaho, has a history of either periodic or persistent localized groundwater contamination. Water users in the area report offensive smell, metallic taste, rust deposits, and bacteria in water supplies. During 1984 and 1985, data were collected to define regional and local geologic, hydrologic, and groundwater quality conditions, and to identify factors that may have affected local groundwater quality. Infiltration or leakage of irrigation water is the major source of groundwater recharge, and water levels may fluctuate 15 ft or more during the irrigation season. Groundwater movement is generally northwestward. Groundwater contains predominantly calcium, magnesium, and bicarbonate ions and characteristically has more than 200 mg/L hardness. Groundwater near the Groveland-Collins area may be contaminated from one or more sources, including infiltration of sewage effluent, gasoline or liquid fertilizer spillage, or land application of food processing wastewater. Subsurface basalt ridges impede lateral movement of water in localized areas. Groundwater pools temporarily behind these ridges and anomalously high water levels result. Maximum concentrations or values of constituents that indicate contamination were 1,450 microsiemens/cm specific conductance, 630 mg/L bicarbonate (as HCO3), 11 mg/L nitrite plus nitrate (as nitrogen), 7.3 mg/L ammonia (as nitrogen), 5.9 mg/L organic nitrogen, 4.4 mg/L dissolved organic carbon, 7,000 micrograms/L dissolved iron, 5 ,100 microgram/L dissolved manganese, and 320 microgram/L dissolved zinc. Dissolved oxygen concentrations ranged from 8.9 mg/L in uncontaminated areas to 0 mg/L in areas where food processing wastewater is applied to the land surface. Stable-isotope may be useful in differentiating between contamination from potato-processing wastewater and whey in areas where both are applied to the land surface. Development of a ground-water model to evaluate effects of land applications of organic wastewater and organic solute loading rates on subsurface water quality is not feasible at this time.
Velasco, H; Astorga, R Torres; Joseph, D; Antoine, J S; Mabit, L; Toloza, A; Dercon, G; Walling, Des E
2018-03-01
Large-scale deforestation, intensive land use and unfavourable rainfall conditions are responsible for significant continuous degradation of the Haitian uplands. To develop soil conservation strategies, simple and cost-effective methods are needed to assess rates of soil loss from farmland in Haiti. The fallout radionuclide caesium-137 ( 137 Cs) provides one such means of documenting medium-term soil redistribution rates. In this contribution, the authors report the first use in Haiti of 137 Cs measurements to document soil redistribution rates and the associated pattern of erosion/sedimentation rates along typical hillslopes within a traditional upland Haitian farming area. The local 137 Cs reference inventory, measured at an adjacent undisturbed flat area, was 670 Bq m -2 (SD = 100 Bq m -2 , CV = 15%, n = 7). Within the study area, where cultivation commenced in 1992 after deforestation, three representative downslope transects were sampled. These were characterized by 137 Cs inventories ranging from 190 to 2200 Bq m -2 . Although, the study area was cultivated by the local farmers, the 137 Cs depth distributions obtained from the area differed markedly from those expected from a cultivated area. They showed little evidence of tillage mixing within the upper part of the soil or, more particularly, of the near-uniform activities normally associated with the plough layer or cultivation horizon. They were very similar to that found at the reference site and were characterized by high 137 Cs activities at the surface and much lower activities at greater depths. This situation is thought to reflect the traditional manual tillage practices which cause limited disturbance and mixing of the upper part of the soil. It precluded the use of the conversion models normally used to estimate soil redistribution rates from 137 Cs measurements on cultivated soils and the Diffusion and Migration conversion model frequently used for uncultivated soils was modified for application to the cultivated soils of the study area, in order to take account of the unusual local conditions. The model was also modified to take account of the fact that cultivation in the study area commenced in 1992, rather than predating the period of weapons test fallout which extended from the mid 1950s to the 1970s. Erosion rates on the upper parts of the hillside involved in the study were found to be relatively high and ca. -23 t ha -1 y -1 with low spatial variability. In the lower, flatter areas at the bottom of the slope, deposition occurred. Deposition rates were characterized by high spatial variability, ranging from 6.0 to 71 t ha -1 y -1 . Soil redistribution rates of this magnitude are a cause for concern and there is an urgent need to implement soil conservation measures to ensure the longer-term sustainability of the local agricultural practices. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lamontagne, M.; Thomas, M.; Silliker, J.; Jobin, D.
2011-11-01
In this study, measurements of gravity were made to map and model the thickness of Quaternary deposits (sand and clay) overlying Ordovician limestones in a suburb of Ottawa (Orléans, Ontario). Because ground motion amplification is partly related to the thickness of unconsolidated deposits, this work helps refine the assessment of the earthquake damage potential of the area. It also helps the mapping of clay basins, which can locally exceed 100 m in thickness, where ground motion amplification can occur. Previous work, including well log data and seismic methods, have yielded a wealth of information on near-surface geology in Orléans, thereby providing the necessary constraints to test the applicability of gravity modeling in other locations where other methods cannot always be used. Some 104 gravity stations were occupied in an 8 × 12 km test area in the Orléans. Stations were accurately located with differential GPS that provided centimetric accuracy in elevation. Densities of the unconsolidated Quaternary deposits (Champlain Sea clay) determined on core samples and densities determined on limestone samples from outcrops were used to constrain models of the clay layer overlying the higher density bedrock formations (limestone). The gravity anomaly map delineates areas where clay basins attain > 100 m depth. Assuming a realistic density for the Champlain Sea clays (1.9-2.1 g/cm 3), the thickness over the higher density bedrock formations (Ordovician carbonate rocks) was modeled and compared with well logs and two seismic reflection profiles. The models match quite well with the information determined from well logs and seismic methods. It was found that gravity and the thickness of unconsolidated deposits are correlated but the uncertainties in both data sets preclude the definition of a direct correlation between the two. We propose that gravity measurements at a local scale be used as an inexpensive means of mapping the thickness of unconsolidated deposits in low-density urban areas. To obtain meaningful results, three conditions must exist. Firstly, elevations of gravity stations must be measured accurately using differential GPS; secondly, that the regional gravity field must be well defined, and thirdly, that the local geology be simple enough to be realistically represented with a two-layer model.
Parsa, Soroush; Ccanto, Raúl; Olivera, Edgar; Scurrah, María; Alcázar, Jesús; Rosenheim, Jay A.
2012-01-01
Background Pest impact on an agricultural field is jointly influenced by local and landscape features. Rarely, however, are these features studied together. The present study applies a “facilitated ecoinformatics” approach to jointly screen many local and landscape features of suspected importance to Andean potato weevils (Premnotrypes spp.), the most serious pests of potatoes in the high Andes. Methodology/Principal Findings We generated a comprehensive list of predictors of weevil damage, including both local and landscape features deemed important by farmers and researchers. To test their importance, we assembled an observational dataset measuring these features across 138 randomly-selected potato fields in Huancavelica, Peru. Data for local features were generated primarily by participating farmers who were trained to maintain records of their management operations. An information theoretic approach to modeling the data resulted in 131,071 models, the best of which explained 40.2–46.4% of the observed variance in infestations. The best model considering both local and landscape features strongly outperformed the best models considering them in isolation. Multi-model inferences confirmed many, but not all of the expected patterns, and suggested gaps in local knowledge for Andean potato weevils. The most important predictors were the field's perimeter-to-area ratio, the number of nearby potato storage units, the amount of potatoes planted in close proximity to the field, and the number of insecticide treatments made early in the season. Conclusions/Significance Results underscored the need to refine the timing of insecticide applications and to explore adjustments in potato hilling as potential control tactics for Andean weevils. We believe our study illustrates the potential of ecoinformatics research to help streamline IPM learning in agricultural learning collaboratives. PMID:22693551
5 CFR 531.603 - Locality pay areas.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Locality pay areas. 531.603 Section 531.603 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PAY UNDER THE GENERAL SCHEDULE Locality-Based Comparability Payments § 531.603 Locality pay areas. (a) Locality rates of pay under this subpart shall be payable to...
ERIC Educational Resources Information Center
Gareau, Brian J.
2007-01-01
Local peoples living in protected areas often have a different understanding about their natural space than do non-local groups that promote and declare such areas "protected." By designing protected areas without local involvement, or understandings of local social differentiation and power, natural resources management schemes will…
Local Area Co-Ordination: Strengthening Support for People with Learning Disabilities in Scotland
ERIC Educational Resources Information Center
Stalker, Kirsten Ogilvie; Malloch, Margaret; Barry, Monica Anne; Watson, June Ann
2008-01-01
This paper reports the findings of a study commissioned by the Scottish Executive which examined the introduction and implementation of local area co-ordination (LAC) in Scotland. A questionnaire about their posts was completed by 44 local area co-ordinators, interviews were conducted with 35 local area co-ordinators and 14 managers and case…
75 FR 34923 - General Schedule Locality Pay Areas
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-21
...;Prices of new books are listed in the first FEDERAL REGISTER issue of each #0;week. #0; #0; #0; #0;#0... area to the New York locality pay area. We received no comments on the interim rule and adopt the final... Philadelphia locality pay area while Lakehurst, in Ocean County, New Jersey, was in the New York locality pay...
Settlement Relocation Modeling: Reacting to Merapi’s Eruption Incident
NASA Astrophysics Data System (ADS)
Pramitasari, A.; Buchori, I.
2018-02-01
Merapi eruption has made severe damages in Central Java Province. Klaten was one of the most affected area, specifically in Balerante Village. This research is made to comprehend GIS model on finding alternative locations for impacted settlement in hazardous zones of eruption. The principal objective of the research study is to identify and analyze physical condition, community characteristics, and local government regulation related to settlements relocation plan for impacted area of eruption. The output is location map which classified into four categories, i.e. not available, available with low accessibility, available with medium accessibility, and available with high accessibility.
Haney, James P.
1984-01-01
The essence of a local area network (LAN) is that the whole is greater than the sum of its parts. A local area network can save in hardware costs when expensive peripherals are shared; it can save time when large blocks of data are rapidly exchanged among users. The need for more cost-effective and capable communications has inspired the emergence of rapidly developing markets and technologies for local area networks. The purpose of this paper is to provide an understanding of the characteristics, components, costs, and implementation considerations of local area networks. The paper does not compare or define specific vendor offerings; however, recent IBM announcements regarding local area networks are summarized in the last section of the paper.
The return of the Iberian lynx to Portugal: local voices.
Lopes-Fernandes, Margarida; Espírito-Santo, Clara; Frazão-Moreira, Amélia
2018-01-11
Ethnographic research can help to establish dialog between conservationists and local people in reintroduction areas. Considering that predator reintroductions may cause local resistance, we assessed attitudes of different key actor profiles to the return of the Iberian lynx (Lynx pardinus) to Portugal before reintroduction started in 2015. We aimed to characterize a social context from an ethnoecological perspective, including factors such as local knowledge, perceptions, emotions, and opinions. We conducted semi-structured interviews (n = 131) in three different protected areas and observed practices and public meetings in order to describe reintroduction contestation, emotional involvement with the species, and local perceptions about conservation. Detailed content data analysis was undertaken and an open-ended codification of citations was performed with the support of ATLAS.ti. Besides the qualitative analyses, we further explored statistic associations between knowledge and opinions and compared different geographical areas and hunters with non-hunters among key actors. Local ecological knowledge encompassed the lynx but was not shared by the whole community. Both similarities and differences between local and scientific knowledge about the lynx were found. The discrepancies with scientific findings were not necessarily a predictor of negative attitudes towards reintroduction. Contestation issues around reintroduction differ between geographical areas but did not hinder an emotional attachment to the species and its identification as a territory emblem. Among local voices, financial compensation was significantly associated to hunters and nature tourism was cited the most frequent advantage of lynx presence. Materialistic discourses existed in parallel with non-economic factors and the existence of moral agreement with its protection. The considerable criticism and reference to restrictions by local actors concerning protected areas and conservation projects indicated the experience of an imposed model of nature conservation. Opinions about participation in the reintroduction process highlighted the need for a closer dialog between all actors and administration. Local voices analyzed through an ethnoecological perspective provide several views on reintroduction and nature conservation. They follow two main global trends of environmental discourse: (1) nature becomes a commodified object to exploit while contestation about wildlife is centered on financial return and (2) emblematic wild species create an emotional attachment, become symbolic, and gather moral agreement for nature protection. Lynx reintroduction has been not only just a nature protection theme but also a negotiation process with administration. Western rural communities are not the "noble savages" and nature protectors as are other traditional groups, and actors tend to claim for benefits in a situation of reintroduction. Both parties comprehend a similar version of appropriated nature. Understanding complexity and diverse interests in local communities are useful in not oversimplifying local positions towards predator conservation. We recommend that professional conservation teams rethink their image among local populations and increase proximity with different types of key actors.
NASA Astrophysics Data System (ADS)
Ardalan, A. A.; Safari, A.
2004-09-01
An operational algorithm for computation of terrain correction (or local gravity field modeling) based on application of closed-form solution of the Newton integral in terms of Cartesian coordinates in multi-cylindrical equal-area map projection of the reference ellipsoid is presented. Multi-cylindrical equal-area map projection of the reference ellipsoid has been derived and is described in detail for the first time. Ellipsoidal mass elements with various sizes on the surface of the reference ellipsoid are selected and the gravitational potential and vector of gravitational intensity (i.e. gravitational acceleration) of the mass elements are computed via numerical solution of the Newton integral in terms of geodetic coordinates {λ,ϕ,h}. Four base- edge points of the ellipsoidal mass elements are transformed into a multi-cylindrical equal-area map projection surface to build Cartesian mass elements by associating the height of the corresponding ellipsoidal mass elements to the transformed area elements. Using the closed-form solution of the Newton integral in terms of Cartesian coordinates, the gravitational potential and vector of gravitational intensity of the transformed Cartesian mass elements are computed and compared with those of the numerical solution of the Newton integral for the ellipsoidal mass elements in terms of geodetic coordinates. Numerical tests indicate that the difference between the two computations, i.e. numerical solution of the Newton integral for ellipsoidal mass elements in terms of geodetic coordinates and closed-form solution of the Newton integral in terms of Cartesian coordinates, in a multi-cylindrical equal-area map projection, is less than 1.6×10-8 m2/s2 for a mass element with a cross section area of 10×10 m and a height of 10,000 m. For a mass element with a cross section area of 1×1 km and a height of 10,000 m the difference is less than 1.5×10-4m2/s2. Since 1.5× 10-4 m2/s2 is equivalent to 1.5×10-5m in the vertical direction, it can be concluded that a method for terrain correction (or local gravity field modeling) based on closed-form solution of the Newton integral in terms of Cartesian coordinates of a multi-cylindrical equal-area map projection of the reference ellipsoid has been developed which has the accuracy of terrain correction (or local gravity field modeling) based on the Newton integral in terms of ellipsoidal coordinates.
Sediment transport in the area of the Sopot pier
NASA Astrophysics Data System (ADS)
Przyborska, Anna; Jakacki, Jaromir; Andrzejewski, Jan
2017-04-01
Coastal sediment transport is a natural process that appears when energy of waves is sufficient for moving solid particles from the bottom. Sediment transport rate depends on the median diameter of local sand and it is compatible with the direction of wave propagation. Also it is natural, that any protruded from the beach construction disturbs continuity of beach transport caused by waves. The Sopot pier has been built over 100 years ago and it is the longest wooden pier on the Baltic Sea coast, it is about half kilometre long. The pier is located at the end of the Monte Casino street and it is one of the biggest attractions of the city as well as in the country. In the past and now we have observed the disturbed sediment transport in the area of the Sopot pier. But during recent years, this process has gained greater momentum. The beach at the Sopot pier has been growing by several meters. All indicates that the cause of the observed phenomenon is the marina. The marina structure which is in some distance from the shore, has been acting as a powerful, emerged breakwater boundary. As a tool the sediment transport model was implemented for Sopot pier area. The implemented numerical forecasting sediment transport model in the area of the Sopot pier reflects well the deposit growth rate for the archived data from 2010 to 2015. On the basis of differences in bathymetry data provided by the Maritime office and the analysis the model results the average deposits in accumulation in the pear area was determined to be about 16,000 m3 / year for the assumed area of analysis, the model have shown similar result. The analysis suggests that strong winds generating significant waves as well as meaningful sediment transport dominate in the autumn and winter. You cannot, however, rule out strong waves in summer. Under moderate waves the sediment transport is insignificant. The most intense movement of the sediment is observed in the vicinity of the shoreline, it disappears with distance from the shoreline. Numerical sediment transport model DHI MIKE also shows that the Sopot marina generates a 'shadow' of waves. The shadow causes a disturbance in the continuity of natural sediment transport along the beach, the consequence of which is the creation of the sand shapes at the bottom in the form of convexity of coastline known as a spit. The model results also shows that 80% of the accumulated sand near the pier come from local beaches south-east of the pier. The remaining 20% was transported from the north-west. The direction of sediment transport corresponds to the directions of local waves
NASA Astrophysics Data System (ADS)
Jacobs, Liesbet; Dewitte, Olivier; Poesen, Jean; Sekajugo, John; Nobile, Adriano; Rossi, Mauro; Thiery, Wim; Kervyn, Matthieu
2018-01-01
The inhabited zone of the Ugandan Rwenzori Mountains is affected by landslides, frequently causing loss of life, damage to infrastructure and loss of livelihood. This area of ca. 1230 km2 is characterized by contrasting geomorphologic, climatic and lithological patterns, resulting in different landslide types. In this study, the spatial pattern of landslide susceptibility is investigated based on an extensive field inventory constructed for five representative areas within the region (153 km2) and containing over 450 landslides. To achieve a reliable susceptibility assessment, the effects of (1) using different topographic data sources and spatial resolutions and (2) changing the scale of assessment by comparing local and regional susceptibility models on the susceptibility model performances are investigated using a pixel-based logistic regression approach. Topographic data are extracted from different digital elevation models (DEMs) based on radar interferometry (SRTM and TanDEM-X) and optical stereophotogrammetry (ASTER DEM). Susceptibility models using the radar-based DEMs tend to outperform the ones using the ASTER DEM. The model spatial resolution is varied between 10, 20, 30 and 90 m. The optimal resolution depends on the location of the investigated area within the region but the lowest model resolution (90 m) rarely yields the best model performances while the highest model resolution (10 m) never results in significant increases in performance compared to the 20 m resolution. Models built for the local case studies generally have similar or better performances than the regional model and better reflect site-specific controlling factors. At the regional level the effect of distinguishing landslide types between shallow and deep-seated landslides is investigated. The separation of landslide types allows us to improve model performances for the prediction of deep-seated landslides and to better understand factors influencing the occurrence of shallow landslides such as tangent curvature and total rainfall. Finally, the landslide susceptibility assessment is overlaid with a population density map in order to identify potential landslide risk hotspots, which could direct research and policy action towards reduced landslide risk in this under-researched, landslide-prone region.
NASA Astrophysics Data System (ADS)
Teel, Alexander C.
The Sacramento -- San Joaquin River Delta (SSJRD) is an area that has been identified as having high seismic hazard but has resolution gaps in the seismic velocity models of the area due to a scarcity of local seismic stations and earthquakes. I present new three-dimensional (3D) P-wave velocity (Vp) and S-wave velocity (Vs) models for the SSJRD which fill in the sampling gaps of previous studies. I have created a new 3D seismic velocity model for the SSJRD, addressing an identified need for higher resolution velocity models in the region, using a new joint gravity/body-wave tomography algorithm. I am able to fit gravity and arrival-time residuals jointly using an empirical density-velocity relationship to take advantage of existing gravity data in the region to help fill in the resolution gaps of previous velocity models in the area. I find that the method enhances the ability to resolve the relief of basin structure relative to seismic-only tomography at this location. I find the depth to the basement to be the greatest in the northwest portion of the SSJRD and that there is a plateau in the basement structure beneath the southeast portion of the SSJRD. From my findings I infer that the SSJRD may be prone to focusing effects and basin amplification of ground motion. A 3D, Vs model for the SSJRD and surrounding area was created using ambient noise tomography. The empirical Green's functions are in good agreement with published cross-correlations and match earthquake waveforms sharing similar paths. The group velocity and shear velocity maps are in good agreement with published regional scale models. The new model maps velocity values on a local scale and successfully recovers the basin structure beneath the Delta. From this Vs model I find the maximum depth of the basin to reach approximately 15 km with the Great Valley Ophiolite body rising to a depth of 10 km east of the SSJRD. We consider our basement-depth estimates from the Vp model to be more robust than from the Vs model.
Student involvement in wellness policies: a study of Pennsylvania local education agencies.
Jomaa, Lamis H; McDonnell, Elaine; Weirich, Elaine; Hartman, Terryl; Jensen, Leif; Probart, Claudia
2010-01-01
Explore student-involvement goals in local wellness policies (LWPs) of local education agencies (LEAs) in Pennsylvania (PA) and investigate associations with LEA characteristics. An observational study that helped examine student-involvement goals. Public PA LEAs. LWPs submitted by 539 PA public LEAs. Six student-involvement goals analyzed as dependent variables. Correlations between demographic and policy characteristics of LEAs and student-involvement goals were measured. Policies developed by LEAs were abstracted and analyzed. Logistic regression models were developed to analyze relationships between student-involvement goals and the demographic and policy characteristics of LEAs. Majority of LEAs included policy goals that address student involvement in an array of activities related to wellness policy, food service, and role modeling. Regression models showed that LEAs with comprehensive and strong policies were most likely to include student-involvement goals regardless of LEA location, enrollment, or socioeconomic status of students. Student engagement in school nutrition policies has been shown to increase student acceptance in an array of health-related areas and is therefore promising in the area of obesity prevention. Comprehensiveness and rigor of LWPs were strongly correlated with the inclusion of student-involvement goals on LWPs. The upcoming reauthorization of the Child Nutrition programs in 2010 creates a good opportunity to address student involvement in LWPs. Copyright © 2010 Society for Nutrition Education. Published by Elsevier Inc. All rights reserved.
2012-01-01
Objective Odor exposure is an environmental stressor that is responsible of many citizens complains about air pollution in non-urban areas. However, information about the exposure-response relation is scarce. One of the main challenges is to identify a measurable compound that can be related with odor annoyance responses. We investigated the association between regional and temporal variation of ammonia (NH3) concentrations in five Danish non-urban regions and environmental odor annoyance as perceived by the local residents. Methods A cross-sectional study where NH3 concentration was obtained from the national air quality monitoring program and from emission-dispersion modelling, and odor pollution perception from questionnaires. The exposure-response model was a sigmoid model. Linear regression analyses were used to estimate the model constants after equation transformations. The model was validated using leave-one-out cross validation (LOOCV) statistical method. Results About 45% of the respondents were annoyed by odor pollution at their residential areas. The perceived odor was characterized by all respondents as animal waste odor. The exposure-annoyance sigmoid model showed that the prevalence of odor annoyance was significantly associated with NH3 concentrations (measured and estimated) at the local air quality monitoring stations (p < 0.01,R2 = 0.99; and p < 0.05,R2 = 0.93; respectively). Prediction errors were below 5.1% and 20% respectively. The seasonal pattern of odor perception was associated with the seasonal variation in NH3 concentrations (p < 0.001, adjusted R2 = 0.68). Conclusion The results suggest that atmospheric NH3 levels at local air quality stations could be used as indicators of prevalence of odor annoyance in non-urban residential communities. PMID:22513250
Let your fingers do the walking: A simple spectral signature model for "remote" fossil prospecting.
Conroy, Glenn C; Emerson, Charles W; Anemone, Robert L; Townsend, K E Beth
2012-07-01
Even with the most meticulous planning, and utilizing the most experienced fossil-hunters, fossil prospecting in remote and/or extensive areas can be time-consuming, expensive, logistically challenging, and often hit or miss. While nothing can predict or guarantee with 100% assurance that fossils will be found in any particular location, any procedures or techniques that might increase the odds of success would be a major benefit to the field. Here we describe, and test, one such technique that we feel has great potential for increasing the probability of finding fossiliferous sediments - a relatively simple spectral signature model using the spatial analysis and image classification functions of ArcGIS(®)10 that creates interactive thematic land cover maps that can be used for "remote" fossil prospecting. Our test case is the extensive Eocene sediments of the Uinta Basin, Utah - a fossil prospecting area encompassing ∼1200 square kilometers. Using Landsat 7 ETM+ satellite imagery, we "trained" the spatial analysis and image classification algorithms using the spectral signatures of known fossil localities discovered in the Uinta Basin prior to 2005 and then created interactive probability models highlighting other regions in the Basin having a high probability of containing fossiliferous sediments based on their spectral signatures. A fortuitous "post-hoc" validation of our model presented itself. Our model identified several paleontological "hotspots", regions that, while not producing any fossil localities prior to 2005, had high probabilities of being fossiliferous based on the similarities of their spectral signatures to those of previously known fossil localities. Subsequent fieldwork found fossils in all the regions predicted by the model. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pacskó, Vivien; Székely, Balázs; Stibrányi, Máté; Koma, Zsófia
2016-04-01
Hungary is situated in the crossroad of several large-scale infrastructural pathways like transnational pipelines and transcontinental motorways. At the same time the country is rich in known and potential archaeological sites. Archaeological prediction techniques aided by remote sensing are intended to help increase preparedness for archaeological surveying and rescue activities in response to planned new infrastructural developments (e.g., a new pipeline), as they try to estimate the number of potential archaeological sites, area to be surveyed, potential cost and time needed for these activities. In very low-relief areas microtopographic forms may indicate sites, high-resolution LiDAR DTMs are suitable for their detection. Main sources of archaeological prediction models are known archaeological sites, where optimal environmental conditions of settling down existed at historic ages. Hydrological characteristics, relief, geology, vegetation cover and soil are considered to be as most important natural factors. Sorting of the factors and accuracy of the sampling differentiate our models. Resolution of an inductive model depends on the spatial properties of the integrated data: a raster data set can be generated that contains probability values and the reliability of the estimation. The information content of the predictive model is highly influenced by the resolution of the used digital terrain model (DTM): its derivatives (slope, aspect, topographic features) are important inputs of the modelling. The quality of the DTM is even more important in low-relief areas as microtopographic features may indicate archaeological sites. The conventional digital elevation models (SRTM, ASTER GDEM) provide unsatisfying resolution (both in horizontal and vertical senses) as they are rather digital surface models containing the vegetation and the built-up structures. Processed multiecho LiDAR data can be used instead. Our study area is situated in the foothills of the Transdanubian Range characterized by NNW-SSE directed valleys. One of the largest valleys is a conspicuously straight valley section of the River Sárvíz between Székesfehérvár and Szekszárd. Archaeological surveys revealed various settlement remains since the Neolithic. LiDAR data acquisition has been carried out in the framework of an EUFAR project supported by the European Union. Although the weather conditions were not optimal during the flight, sophisticated processing (carried out with of OPALS software) removed most of the artifacts. The resulting 1 m resolution digital terrain model (DTM) has been used to out. This DTM and the known archaeological site locations were integrated in a GIS system for qualitative and quantitative analysis. The processing aimed at analyzing elevation patterns of archaeological sites: local microtopographic features have been outlined and local low-relief elevation data have been extracted and analysed along the Sárvíz valley. Sites have been grouped according to the age of the artifacts identified by the quick-look archaeological walkthrough surveys. The topographic context of these elevation patterns were compared to the relative relief positions of the sites. Some ages groups have confined elevation ranges that may indicate hydrological/climate dependency of the settlement site selection, whereas some long-lived sites can also be identified, typically further away from the local erosional base. Extremely low-relief areas are supposed to have had swampy or partly inundated environmental conditions in ancient times; these areas were unsuitable for human settlement for long time periods. Such areas can be typically attributed by low predictive probabilities, whereas small mounds, patches of topographic unevenness would get higher model probabilities. The final the models can be used for focused field surveys that can improve our archaeological knowledge of the area. The data used were acquired in the framework of the EUFAR ARMSRACE project (to MS), the studies were carried out in project OTKA NK83400 financed by the Hungarian Scientific Research Fund. BS contributed as an Alexander von Humboldt Research Fellow.
Urban air quality estimation study, phase 1
NASA Technical Reports Server (NTRS)
Diamante, J. M.; Englar, T. S., Jr.; Jazwinski, A. H.
1976-01-01
Possibilities are explored for applying estimation theory to the analysis, interpretation, and use of air quality measurements in conjunction with simulation models to provide a cost effective method of obtaining reliable air quality estimates for wide urban areas. The physical phenomenology of real atmospheric plumes from elevated localized sources is discussed. A fluctuating plume dispersion model is derived. Individual plume parameter formulations are developed along with associated a priori information. Individual measurement models are developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yajun, E, E-mail: eyj7681@yahoo.com.cn; He Nengshu, E-mail: eyajun@hotmail.com; Fan Hailun, E-mail: mydream510@yahoo.com.cn
2013-08-01
PurposeTo evaluate the effects of short-term intra-arterial delivery of paclitaxel on neointimal hyperplasia and the local thrombotic environment after angioplasty.MethodsAn experimental common carotid artery injury model was established in 60 rats, which were divided into experimental groups (40 rats) and controls (20 rats). Local intra-arterial administration of paclitaxel was applied at 2 doses (90 and 180 {mu}g/30 {mu}l), and the effects of short-term delivery of paclitaxel on neointimal hyperplasia and the expression of tissue factor (TF), plasminogen activator inhibitor-1 (PAI-1) and tissue-type plasminogen activator (t-PA) were evaluated at days 15 and 30 by hematoxylin and eosin staining and immunohistochemistry.ResultsAt 15more » and 30 days after injury, neointimal thickness and area, the ratio of intimal area to medial area and the stenotic rate were all significantly decreased in the group provided the high concentrations (180 {mu}g/30 {mu}l) of paclitaxel for 2 min or 10 min and in the group provided the low concentration (90 {mu}g/30 {mu}l) of paclitaxel for 10 min (p < 0.05). At 30 days after injury, there were no significant changes in TF expression among all experimental groups. PAI-1 expression increased in the neointima of the high concentration 10 min group (p < 0.05), while t-PA expression decreased in the neointima of the high concentration 2 min group (p < 0.05).ConclusionIn the rat common carotid artery injury model, the short-term delivery of paclitaxel could effectively inhibit neointimal hyperplasia in the long term, with very little influence on the local expression of TF and PAI-1.« less
Sherley, Richard B; Botha, Philna; Underhill, Les G; Ryan, Peter G; van Zyl, Danie; Cockcroft, Andrew C; Crawford, Robert J M; Dyer, Bruce M; Cook, Timothée R
2017-12-01
Human activities are important drivers of marine ecosystem functioning. However, separating the synergistic effects of fishing and environmental variability on the prey base of nontarget predators is difficult, often because prey availability estimates on appropriate scales are lacking. Understanding how prey abundance at different spatial scales links to population change can help integrate the needs of nontarget predators into fisheries management by defining ecologically relevant areas for spatial protection. We investigated the local population response (number of breeders) of the Bank Cormorant (Phalacrocorax neglectus), a range-restricted endangered seabird, to the availability of its prey, the heavily fished west coast rock lobster (Jasus lalandii). Using Bayesian state-space modeled cormorant counts at 3 colonies, 22 years of fisheries-independent data on local lobster abundance, and generalized additive modeling, we determined the spatial scale pertinent to these relationships in areas with different lobster availability. Cormorant numbers responded positively to lobster availability in the regions with intermediate and high abundance but not where regime shifts and fishing pressure had depleted lobster stocks. The relationships were strongest when lobsters 20-30 km offshore of the colony were considered, a distance greater than the Bank Cormorant's foraging range when breeding, and may have been influenced by prey availability for nonbreeding birds, prey switching, or prey ecology. Our results highlight the importance of considering the scale of ecological relationships in marine spatial planning and suggest that designing spatial protection around focal species can benefit marine predators across their full life cycle. We propose the precautionary implementation of small-scale marine protected areas, followed by robust assessment and adaptive-management, to confirm population-level benefits for the cormorants, their prey, and the wider ecosystem, without negative impacts on local fisheries. © 2017 Society for Conservation Biology.
Users guide for the hydroacoustic coverage assessment model (HydroCAM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, T., LLNL
1997-12-01
A model for predicting the detection and localization performance of hydroacoustic monitoring networks has been developed. The model accounts for major factors affecting global-scale acoustic propagation in the ocean. including horizontal refraction, travel time variability due to spatial and temporal fluctuations in the ocean, and detailed characteristics of the source. Graphical user interfaces are provided to setup the models and visualize the results. The model produces maps of network detection coverage and localization area of uncertainty, as well as intermediate results such as predicted path amplitudes, travel time and travel time variance. This Users Guide for the model is organizedmore » into three sections. First a summary of functionality available in the model is presented, including example output products. The second section provides detailed descriptions of each of models contained in the system. The last section describes how to run the model, including a summary of each data input form in the user interface.« less
Predicting Periodontitis at State and Local Levels in the United States.
Eke, P I; Zhang, X; Lu, H; Wei, L; Thornton-Evans, G; Greenlund, K J; Holt, J B; Croft, J B
2016-05-01
The objective of the study was to estimate the prevalence of periodontitis at state and local levels across the United States by using a novel, small area estimation (SAE) method. Extended multilevel regression and poststratification analyses were used to estimate the prevalence of periodontitis among adults aged 30 to 79 y at state, county, congressional district, and census tract levels by using periodontal data from the National Health and Nutrition Examination Survey (NHANES) 2009-2012, population counts from the 2010 US census, and smoking status estimates from the Behavioral Risk Factor Surveillance System in 2012. The SAE method used age, race, gender, smoking, and poverty variables to estimate the prevalence of periodontitis as defined by the Centers for Disease Control and Prevention/American Academy of Periodontology case definitions at the census block levels and aggregated to larger administrative and geographic areas of interest. Model-based SAEs were validated against national estimates directly from NHANES 2009-2012. Estimated prevalence of periodontitis ranged from 37.7% in Utah to 52.8% in New Mexico among the states (mean, 45.1%; median, 44.9%) and from 33.7% to 68% among counties (mean, 46.6%; median, 45.9%). Severe periodontitis ranged from 7.27% in New Hampshire to 10.26% in Louisiana among the states (mean, 8.9%; median, 8.8%) and from 5.2% to 17.9% among counties (mean, 9.2%; median, 8.8%). Overall, the predicted prevalence of periodontitis was highest for southeastern and southwestern states and for geographic areas in the Southeast along the Mississippi Delta, as well as along the US and Mexico border. Aggregated model-based SAEs were consistent with national prevalence estimates from NHANES 2009-2012. This study is the first-ever estimation of periodontitis prevalence at state and local levels in the United States, and this modeling approach complements public health surveillance efforts to identify areas with a high burden of periodontitis. © International & American Associations for Dental Research 2016.
Improving the Velocity Structure in the Delaware Basin of West Texas for Seismicity Monitoring
NASA Astrophysics Data System (ADS)
Huang, D.; Aiken, C.; Savvaidis, A.; Young, B.; Walter, J. I.
2017-12-01
The State of Texas has commissioned the Bureau of Economic Geology to install a seismic network (TexNet) which, when complete, will employ 22 permanent and 33 portable new stations. In the area of west Texas, where it consists of two major sedimentary basins - the Delaware and Midland basins, 7 new permanent stations have been deployed. Starting from January 2017, TexNet has detected several hundreds of small-sized earthquakes in the area adjacent to the Pecos township. In response to the detection of a surprisingly high occurrence of seismicity in this area, we have increased the number of seismic stations through the addition of portable deployments. The depth range of the detected seismicity is from subsurface down to 14 km depth. Based on the initial hypocentral information determined by the TexNet's routine process, we further relocated these earthquakes using the double-difference relocation method (i.e., hypoDD). At the same time, we employed statistic regression (i.e., the Wadati diagram) to constrain the origin times of these relocated earthquakes, while their hypocentral locations have been better constrained by hypoDD relocation. The constrained origin times and relocated earthquake hypocenters, along with the velocity information of subsurface from a local sonic-log profile, are used in tomographic inversion to update the crustal velocity model for the Delaware basin and surrounding area. Preliminary results suggest that both local topography and subsurface structures have strong influence on locating earthquakes that occurred at a shallower depth range in west Texas. A subsurface layer with Vp of 4.5-5.0 km/s is suggested to corroborate the regional tectonic setting as a sedimentary basin. Our next steps are to include more local and teleseismic data recorded by TexNet as well as by stations from the previous US Transportable Array. Inclusion of these data will increase ray-crossing coverage within the volume of the velocity model, resulting in a better model resolution.
NASA Astrophysics Data System (ADS)
Beghin, P.; Charbit, S.; Kageyama, M.; Combourieu-Nebout, N.; Hatté, C.; Dumas, C.; Peterschmitt, J.-Y.
2016-04-01
The evolution of precipitation is a key question concerning future climatic changes, especially in regions like the Mediterranean area which are currently prone to droughts. The influence of atmospheric circulation changes (in the mid-latitude westerlies or in the strength of the subtropical subsidence), along with changes in local mechanisms generating precipitation (such as convection) make it difficult to predict precipitation changes confidently over this area. Understanding its governing mechanisms is crucial. A possible approach is to test our understanding on different documented past climatic contexts. This paper focuses on the Last Glacial Maximum period (LGM) over the western Mediterranean region and puts in perspective the available information inferred from paleo-climatic records and the outputs of nine global climate models. We first review the available information on LGM precipitation in this region and find that the environmental conditions prevailing at this period range from humid to semi-arid, depending on the proxies. Model outputs from the PMIP3-CMIP5 database also yield a wide range of mean annual responses in this area, from wetter to drier conditions with respect to the pre-industrial period. This variety of responses allows to investigate the mechanisms governing LGM precipitation in the western Mediterranean area. Over the Iberian Peninsula and northern Morocco, most models simulate a larger amount of LGM precipitation in winter w.r.t. the pre-industrial period. This feature is mainly due to the large-scale effect of the southward shift of the North Atlantic jet stream, which is closely associated with the surface air temperature changes over the northwestern North Atlantic. In summer, precipitation changes mainly result from convection and are correlated to local surface air temperature anomalies, highlighting the key role of local processes. These contrasted changes in winter and summer, linked to different mechanisms, could explain the range of various signals derived from paleo-climatic archives, especially if the climatic indicators are sensitive to seasonal precipitation.
Numerical analysis of diffusion around a suspended expressway by a multi-scale CFD model
NASA Astrophysics Data System (ADS)
kondo, Hiroaki; Asahi, Kazutake; Tomizuka, Takayuki; Suzuki, Motoo
The diffusion of NO x around Ikegami-Shinmachi crossroads, which are among the most polluted roadside areas in Japan, was analyzed with a CFD model. This is a suspended four-lane express road with a six-lane ground-level road under the expressway and another four-lane ground-level road intersecting the two roads. Three types of boundary conditions for the CFD model were tested. In the first case, the boundary conditions were given with the results from the mesoscale meteorological model; in other words, the model was multi-scale. In the second case, the boundary conditions were given with the local one-point observation. In the third case, the conditions for the wind were given with the observation, and those for the turbulence were given with the mesoscale numerical model. All of the calculations indicated high concentrations in the morning and low ones in the afternoon, but they did not indicate high concentrations in the evening. The reasons for such time variations of NO x concentrations were investigated from the viewpoints of the wind direction, velocity, and boundary layer height. The results suggested that the extremely high concentration was generated by local sources and advection from the large source area of Tokyo. On the whole, the calculation with the boundary condition with the mesoscale model appears to be better than the other calculations.
You are lost without a map: Navigating the sea of protein structures.
Lamb, Audrey L; Kappock, T Joseph; Silvaggi, Nicholas R
2015-04-01
X-ray crystal structures propel biochemistry research like no other experimental method, since they answer many questions directly and inspire new hypotheses. Unfortunately, many users of crystallographic models mistake them for actual experimental data. Crystallographic models are interpretations, several steps removed from the experimental measurements, making it difficult for nonspecialists to assess the quality of the underlying data. Crystallographers mainly rely on "global" measures of data and model quality to build models. Robust validation procedures based on global measures now largely ensure that structures in the Protein Data Bank (PDB) are largely correct. However, global measures do not allow users of crystallographic models to judge the reliability of "local" features in a region of interest. Refinement of a model to fit into an electron density map requires interpretation of the data to produce a single "best" overall model. This process requires inclusion of most probable conformations in areas of poor density. Users who misunderstand this can be misled, especially in regions of the structure that are mobile, including active sites, surface residues, and especially ligands. This article aims to equip users of macromolecular models with tools to critically assess local model quality. Structure users should always check the agreement of the electron density map and the derived model in all areas of interest, even if the global statistics are good. We provide illustrated examples of interpreted electron density as a guide for those unaccustomed to viewing electron density. Copyright © 2014 Elsevier B.V. All rights reserved.