Science.gov

Sample records for local chain order

  1. Localization protected quantum order

    NASA Astrophysics Data System (ADS)

    Nandkishore, Rahul

    2015-03-01

    Many body localization occurs in isolated quantum systems, usually with strong disorder, and is marked by absence of dissipation, absence of thermal equilibration, and a memory of the initial conditions that survives in local observables for arbitrarily long times. The many body localized regime is a non-equilibrium, strongly disordered, non-self averaging regime that presents a new frontier for quantum statistical mechanics. In this talk, I point out that there exists a vast zoo of correlated many body localized states of matter, which may be classified using familiar notions of spontaneous symmetry breaking and topological order. I will point out that in the many body localized regime, spontaneous symmetry breaking can occur even at high energy densities in one dimensional systems, and topological order can occur even without a bulk gap. I will also discuss the phenomenology of imperfectly isolated many body localized systems, which are weakly coupled to a heat bath. I will conclude with a brief discussion of how these phenomena may best be detected in experiments. Collaborators: David Huse, S.L. Sondhi, Arijeet Pal, Vadim Oganesyan, A.C. Potter, Sarang Gopalakrishnan, S. Johri, R.N. Bhatt.

  2. Vigorous thermal excitations in a double-tetrahedral chain of localized Ising spins and mobile electrons mimic a temperature-driven first-order phase transition

    NASA Astrophysics Data System (ADS)

    Gálisová, Lucia; Strečka, Jozef

    2015-02-01

    A hybrid spin-electron system defined on a one-dimensional double-tetrahedral chain, in which the localized Ising spin regularly alternates with two mobile electrons delocalized over a triangular plaquette, is exactly solved with the help of generalized decoration-iteration transformation. It is shown that a macroscopic degeneracy of ferromagnetic and ferrimagnetic ground states arising from chiral degrees of freedom of the mobile electrons cannot be lifted by a magnetic field in contrast to a macroscopic degeneracy of the frustrated ground state, which appears due to a kinetically driven frustration of the localized Ising spins. An anomalous behavior of all basic thermodynamic quantities can be observed on account of massive thermal excitations, which mimic a temperature-driven first-order phase transition from the nondegenerate frustrated state to the highly degenerate ferrimagnetic state at nonzero magnetic fields. A substantial difference in the respective degeneracies is responsible for an immense low-temperature peak of the specific heat and very abrupt (almost discontinuous) thermal variations of the entropy and sublattice magnetizations.

  3. Emerging magnetic order in platinum atomic contacts and chains

    PubMed Central

    Strigl, Florian; Espy, Christopher; Bückle, Maximilian; Scheer, Elke; Pietsch, Torsten

    2015-01-01

    The development of atomic-scale structures revealing novel transport phenomena is a major goal of nanotechnology. Examples include chains of atoms that form while stretching a transition metal contact or the predicted formation of magnetic order in these chains, the existence of which is still debated. Here we report an experimental study of the magneto-conductance (MC) and anisotropic MC with atomic-size contacts and mono-atomic chains of the nonmagnetic metal platinum. We find a pronounced and diverse MC behaviour, the amplitude and functional dependence change when stretching the contact by subatomic distances. These findings can be interpreted as a signature of local magnetic order in the chain, which may be of particular importance for the application of atomic-sized contacts in spintronic devices of the smallest possible size. PMID:25649440

  4. Many-body localization in infinite chains

    NASA Astrophysics Data System (ADS)

    Enss, T.; Andraschko, F.; Sirker, J.

    2017-01-01

    We investigate the phase transition between an ergodic and a many-body localized phase in infinite anisotropic spin-1 /2 Heisenberg chains with binary disorder. Starting from the Néel state, we analyze the decay of antiferromagnetic order ms(t ) and the growth of entanglement entropy Sent(t ) during unitary time evolution. Near the phase transition we find that ms(t ) decays exponentially to its asymptotic value ms(∞ ) ≠0 in the localized phase while the data are consistent with a power-law decay at long times in the ergodic phase. In the localized phase, ms(∞ ) shows an exponential sensitivity on disorder with a critical exponent ν ˜0.9 . The entanglement entropy in the ergodic phase grows subballistically, Sent(t ) ˜tα , α ≤1 , with α varying continuously as a function of disorder. Exact diagonalizations for small systems, on the other hand, do not show a clear scaling with system size and attempts to determine the phase boundary from these data seem to overestimate the extent of the ergodic phase.

  5. Step Density Profiles in Localized Chains

    NASA Astrophysics Data System (ADS)

    De Roeck, Wojciech; Dhar, Abhishek; Huveneers, François; Schütz, Marius

    2017-06-01

    We consider two types of strongly disordered one-dimensional Hamiltonian systems coupled to baths (energy or particle reservoirs) at the boundaries: strongly disordered quantum spin chains and disordered classical harmonic oscillators. These systems are believed to exhibit localization, implying in particular that the conductivity decays exponentially in the chain length L. We ask however for the profile of the (very slowly) transported quantity in the steady state. We find that this profile is a step-function, jumping in the middle of the chain from the value set by the left bath to the value set by the right bath. This is confirmed by numerics on a disordered quantum spin chain of 9 spins and on much longer chains of harmonic oscillators. From theoretical arguments, we find that the width of the step grows not faster than √{L}, and we confirm this numerically for harmonic oscillators. In this case, we also observe a drastic breakdown of local equilibrium at the step, resulting in a heavily oscillating temperature profile.

  6. Side-chain and backbone ordering in homopolymers.

    PubMed

    Wei, Yanjie; Nadler, Walter; Hansmann, Ulrich H E

    2007-04-26

    In order to study the relation between backbone and side-chain ordering in proteins, we have performed multicanonical simulations of deka-peptide chains with various side groups. Glu(10), Gln(10), Asp(10), Asn(10), and Lys(10) were selected to cover a wide variety of possible interactions between the side chains of the monomers. All homopolymers undergo helix-coil transitions. We found that peptides with long side chains that are capable of hydrogen bonding, i.e., Glu(10), and Gln(10), exhibit a second transition at lower temperatures connected with side-chain ordering. This occurs in the gas phase as well as in solvent, although the character of the side-chain structure is different in each case. However, in polymers with short side chains capable of hydrogen bonding, i.e., Asp(10) and Asn(10), side-chain ordering takes place over a wide temperature range and exhibits no phase transition-like character. Moreover, non-backbone hydrogen bonds show enhanced formation and fluctuations already at the helix-coil transition temperature, indicating competition between side-chain and backbone hydrogen bond formation. Again, these results are qualitatively independent of the environment. Side-chain ordering in Lys(10), whose side groups are long and polar, also takes place over a wide temperature range and exhibits no phase transition-like character in both environments. Reasons for the observed chain length threshold and consequences from these results for protein folding are discussed.

  7. Side-chain and backbone ordering in a polypeptide.

    PubMed

    Wei, Yanjie; Nadler, Walter; Hansmann, Ulrich H E

    2006-10-28

    We report results from multicanonical simulations of polyglutamic acid chains of length of ten residues. For this simple polypeptide we observe a decoupling of backbone and side-chain ordering in the folding process. While the details of the two transitions vary between the peptide in gas phase and in an implicit solvent, our results indicate that, independent of the specific surroundings, upon continuously lowering the temperature side-chain ordering occurs only after the backbone topology is completely formed.

  8. Markov chain order estimation with conditional mutual information

    NASA Astrophysics Data System (ADS)

    Papapetrou, M.; Kugiumtzis, D.

    2013-04-01

    We introduce the Conditional Mutual Information (CMI) for the estimation of the Markov chain order. For a Markov chain of K symbols, we define CMI of order m, Ic(m), as the mutual information of two variables in the chain being m time steps apart, conditioning on the intermediate variables of the chain. We find approximate analytic significance limits based on the estimation bias of CMI and develop a randomization significance test of Ic(m), where the randomized symbol sequences are formed by random permutation of the components of the original symbol sequence. The significance test is applied for increasing m and the Markov chain order is estimated by the last order for which the null hypothesis is rejected. We present the appropriateness of CMI-testing on Monte Carlo simulations and compare it to the Akaike and Bayesian information criteria, the maximal fluctuation method (Peres-Shields estimator) and a likelihood ratio test for increasing orders using ϕ-divergence. The order criterion of CMI-testing turns out to be superior for orders larger than one, but its effectiveness for large orders depends on data availability. In view of the results from the simulations, we interpret the estimated orders by the CMI-testing and the other criteria on genes and intergenic regions of DNA chains.

  9. Spin and topological order in a periodically driven spin chain

    NASA Astrophysics Data System (ADS)

    Russomanno, Angelo; Friedman, Bat-el; Dalla Torre, Emanuele G.

    2017-07-01

    The periodically driven quantum Ising chain has recently attracted a large attention in the context of Floquet engineering. In addition to the common paramagnet and ferromagnet, this driven model can give rise to new topological phases. In this work, we systematically explore its quantum phase diagram by examining the properties of its Floquet ground state. We specifically focus on driving protocols with time-reversal invariant points, and demonstrate the existence of an infinite number of distinct phases. These phases are separated by second-order quantum phase transitions, accompanied by continuous changes of local and string order parameters, as well as sudden changes of a topological winding number and of the number of protected edge states. When one of these phase transitions is adiabatically crossed, the correlator associated to the order parameter is nonvanishing over a length scale which shows a Kibble-Zurek scaling. In some phases, the Floquet ground state spontaneously breaks the discrete time-translation symmetry of the Hamiltonian. Our findings provide a better understanding of topological phases in periodically driven clean integrable models.

  10. Spin and Chiral Orderings of Frustrated Quantum Spin Chains

    NASA Astrophysics Data System (ADS)

    Kaburagi, Makoto; Kawamura, Hikaru; Hikihara, Toshiya

    1999-10-01

    The ordering offrustrated S=1/2 and 1 XY and Heisenberg spin chains with the competing nearest- and next-nearest-neighbor antiferromagneticcouplings is studied by the exact diagonalization and density-matrix renormalization-group methods. It is found that theS=1 XY chain exhibits both gapless and gapped `chiral' phases characterizedby the spontaneous breaking of parity, in which thelong-range order parameter is a chirality, κi=SixSi+1y-SiySi+1x, whereas the spin correlation decays either algebraically or exponentially. Such chiral phases are not realized in the S=1/2 XY chainor in the Heisenberg chains.

  11. Enhancing supply chain performance with improved order-control policies

    NASA Astrophysics Data System (ADS)

    Nilakantan, K.

    2010-09-01

    This article takes up the study of the dynamics of a single product in a prototype three-stage supply chain system, at the downstream warehouse end of the chain, under a responsive chain strategy. The dynamics under various ordering policies and the parameters which will yield desired responses are systematically analysed, both for deterministic and stochastic systems. Higher-order control policies are then proposed and analysed. The considered key performance criteria are the permanent inventory deviations from the desired levels, or the offset, the maximum dip in inventory, the 'undershoot', the damping effect and decay rates, and the duration of time in the negative region, for deterministic systems; and additionally, the inventory variance for stochastic systems. It is shown that the disadvantages of the conventional (proportional-integral-derivative) control policies, like large negative deviations, low decay rates, and high inventory variance, can be overcome by the use of higher-order control policies proposed herein.

  12. Universal quantum computation with ordered spin-chain networks

    SciTech Connect

    Tserkovnyak, Yaroslav; Loss, Daniel

    2011-09-15

    It is shown that anisotropic spin chains with gapped bulk excitations and magnetically ordered ground states offer a promising platform for quantum computation, which bridges the conventional single-spin-based qubit concept with recently developed topological Majorana-based proposals. We show how to realize the single-qubit Hadamard, phase, and {pi}/8 gates as well as the two-qubit controlled-not (cnot) gate, which together form a fault-tolerant universal set of quantum gates. The gates are implemented by judiciously controlling Ising exchange and magnetic fields along a network of spin chains, with each individual qubit furnished by a spin-chain segment. A subset of single-qubit operations is geometric in nature, relying on control of anisotropy of spin interactions rather than their strength. We contrast topological aspects of the anisotropic spin-chain networks to those of p-wave superconducting wires discussed in the literature.

  13. Finding local order in cellular systems

    NASA Astrophysics Data System (ADS)

    Schneck, Emanuel; Wagermaier, Wolfgang

    2017-01-01

    Specific local arrangements of molecules are the structural fingerprints of important biological processes in cells and tissues but difficult to access experimentally. In the recent work by Bernhardt et al (2017 New J. Phys. 19 013012) such order on the nanometer scale has been investigated by in situ correlation of fluorescence-based cell visualization and nano-focused x-ray diffraction. This approach enables selective diffraction analysis guided by fluorescence imaging and opens new perspectives for the investigation of ordered nanostructures in living matter such as fiber bundles, membrane architectures, and newly-formed biominerals.

  14. National supply-chain survey of drug manufacturer back orders.

    PubMed

    Wellman, G S

    2001-07-01

    The impact of manufacturer back orders on the supply chain for pharmaceuticals in the institutional setting was studied. A questionnaire was distributed during May and June 2000 to 600 institutional pharmacies affiliated with a major national drug and supply group purchasing organization. The instrument included questions on basic institutional demographics, perceptions about the frequency of manufacturer back orders for pharmaceuticals, the quality of communication with manufacturers and wholesalers about back orders, the two most significant back orders that had occurred in the 12 months preceding the survey, and the reasons for and impact of back orders. A total of 170 usable surveys were returned (net response rate, 28.3%). Reported manufacturer back orders included an array of drug classes, including blood products, antimicrobials, antiarrhythmics, benzodiazepine antagonists, thrombolytics, corticosteroids, and antihypertensives. Respondents perceived significant back orders as increasing in frequency. Communication by manufacturers and wholesalers about back orders was reported to be relatively poor. A raw-material shortage was the most common reason given by manufacturers for back orders (36.5%), followed by a regulatory issue (23.2%). In most cases (92%), medical staff members had to be contacted, indicating an interruption in the normal drug distribution process. In over a third of instances, respondents stated that the back order resulted in less optimal therapy. A survey found that manufacturer back orders for pharmaceuticals were increasing in frequency and that information flow within the supply chain was insufficient to meet the needs of end users.

  15. Order Parameter Theory for Anderson Localization

    NASA Astrophysics Data System (ADS)

    Dobrosavljevic, Vladimir; Pastor, Andrei

    2001-03-01

    The Anderson metal-insulator transition is well known to display many similarities to standard critical phenomena, yet an obvious order parameter has remained difficult to find. In this work, we demonstrate that a relevant local order parameter can be defined and self-consistently determined, providing a simple and physically transparent picture of the Anderson transition. Our formulation proceeds in close analogy with the well-known coherent potential approximation (CPA), with a small but crucial difference. Our theory self-consistently calculates not the average but instead the typical local density of states, which serves as the order parameter, and is found to vanish at the Anderson transition. As a result, we show that both the escape rate of an electron from a given site, and the conductivity vanish in the insulating phase, which emerges for disorder strengths comparable to the electronic bandwidth. Due to the local character of our theory, it can easily be combined with standard dynamical mean-field approaches for strong electronic correlations, thus opening an attractive avenue for the study of the interplay (A. A. Pastor and V. Dobrosavljevic, Phys. Rev. Lett. 83), 4642 (1999) ( V. Dobrosavljevic and G. Kotliar, Phys. Rev. Lett. 78), 3943 (1997) of interaction and disorder.

  16. Building Higher-Order Markov Chain Models with EXCEL

    ERIC Educational Resources Information Center

    Ching, Wai-Ki; Fung, Eric S.; Ng, Michael K.

    2004-01-01

    Categorical data sequences occur in many applications such as forecasting, data mining and bioinformatics. In this note, we present higher-order Markov chain models for modelling categorical data sequences with an efficient algorithm for solving the model parameters. The algorithm can be implemented easily in a Microsoft EXCEL worksheet. We give a…

  17. Spin Order and Phase Transitions in Chains of Polariton Condensates.

    PubMed

    Ohadi, H; Ramsay, A J; Sigurdsson, H; Del Valle-Inclan Redondo, Y; Tsintzos, S I; Hatzopoulos, Z; Liew, T C H; Shelykh, I A; Rubo, Y G; Savvidis, P G; Baumberg, J J

    2017-08-11

    We demonstrate that multiply coupled spinor polariton condensates can be optically tuned through a sequence of spin-ordered phases by changing the coupling strength between nearest neighbors. For closed four-condensate chains these phases span from ferromagnetic (FM) to antiferromagnetic (AFM), separated by an unexpected crossover phase. This crossover phase is composed of alternating FM-AFM bonds. For larger eight-condensate chains, we show the critical role of spatial inhomogeneities and demonstrate a scheme to overcome them and prepare any desired spin state. Our observations thus demonstrate a fully controllable nonequilibrium spin lattice.

  18. Spin Order and Phase Transitions in Chains of Polariton Condensates

    NASA Astrophysics Data System (ADS)

    Ohadi, H.; Ramsay, A. J.; Sigurdsson, H.; del Valle-Inclan Redondo, Y.; Tsintzos, S. I.; Hatzopoulos, Z.; Liew, T. C. H.; Shelykh, I. A.; Rubo, Y. G.; Savvidis, P. G.; Baumberg, J. J.

    2017-08-01

    We demonstrate that multiply coupled spinor polariton condensates can be optically tuned through a sequence of spin-ordered phases by changing the coupling strength between nearest neighbors. For closed four-condensate chains these phases span from ferromagnetic (FM) to antiferromagnetic (AFM), separated by an unexpected crossover phase. This crossover phase is composed of alternating FM-AFM bonds. For larger eight-condensate chains, we show the critical role of spatial inhomogeneities and demonstrate a scheme to overcome them and prepare any desired spin state. Our observations thus demonstrate a fully controllable nonequilibrium spin lattice.

  19. Spectral gaps and mode localization in Fibonacci chains of metal nanoparticles.

    PubMed

    Dal Negro, Luca; Feng, Ning-Ning

    2007-10-29

    In this paper we study the spectral, localization and dispersion properties of dipolar modes in quasi-periodically modulated nanoparticle chains based on the Fibonacci sequence. By developing a transfer matrix approach for the calculation of resonant frequencies, oscillation eigenvectors and integrated density of states (IDS) of spatially-modulated dipole chains, we demonstrate the presence of large spectral gaps and calculate the pseudo-dispersion diagram of Fibonacci plasmonic chains. The presence of plasmonic band-gaps and localized states in metal nanoparticle chains based on quasi-periodic order can have a large impact in the design and fabrication of novel nanophotonics devices.

  20. Mitochondrial respiratory chain disorders in the Old Order Amish population.

    PubMed

    Ghaloul-Gonzalez, Lina; Goldstein, Amy; Walsh Vockley, Catherine; Dobrowolski, Steven F; Biery, Amy; Irani, Afifa; Ibarra, Jordan; Morton, D Holmes; Mohsen, Al-Walid; Vockley, Jerry

    2016-08-01

    The Old Order Amish populations in the US are one of the Plain People groups and are descendants of the Swiss Anabaptist immigrants who came to North America in the early eighteenth century. They live in numerous small endogamous demes that have resulted in reduced genetic diversity along with a high prevalence of specific genetic disorders, many of them autosomal recessive. Mitochondrial respiratory chain deficiencies arising from mitochondrial or nuclear DNA mutations have not previously been reported in the Plain populations. Here we present four different Amish families with mitochondrial respiratory chain disorders. Mutations in two mitochondrial encoded genes leading to mitochondrial respiratory chain disorder were identified in two patients. In the first case, MELAS syndrome caused by a mitochondrial DNA (mtDNA) mutation (m.3243A>G) was identified in an extended Amish pedigree following a presentation of metabolic strokes in the proband. Characterization of the extended family of the proband by a high resolution melting assay identified the same mutation in many previously undiagnosed family members with a wide range of clinical symptoms. A MELAS/Leigh syndrome phenotype caused by a mtDNA mutation [m.13513G>A; p.Asp393Asn] in the ND5 gene encoding the ND5 subunit of respiratory chain complex I was identified in a patient in a second family. Mutations in two nuclear encoded genes leading to mitochondrial respiratory chain disorder were also identified in two patients. One patient presented with Leigh syndrome and had a homozygous deletion in the NDUFAF2 gene, while the second patient had a homozygous mutation in the POLG gene, [c.1399G>A; p.Ala467Thr]. Our findings identify mitochondrial respiratory chain deficiency as a cause of disease in the Old Order Amish that must be considered in the context of otherwise unexplained systemic disease, especially if neuromuscular symptoms are present. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Parity-dependent localization in N strongly coupled chains

    NASA Astrophysics Data System (ADS)

    Weinmann, Dietmar; Evangelou, S. N.

    2014-10-01

    Anderson localization of wave functions at zero energy in quasi-one-dimensional (1D) systems of N disordered chains with interchain coupling t is examined. Localization becomes weaker than for the 1D disordered chain (t =0) when t is smaller than the longitudinal hopping t'=1, and localization becomes usually much stronger when t ≫t'. This is not so for all N. We find "immunity" to strong localization for open (periodic) lateral boundary conditions when N is odd (a multiple of 4), with localization that is weaker than for t =0 and rather insensitive to t when t ≫t'. The peculiar N dependence and a critical scaling with N are explained by a perturbative treatment in t'/t, and the correspondence to a weakly disordered effective chain is shown. Our results could be relevant for experimental studies of localization in photonic waveguide arrays.

  2. Controlling chaos with localized heterogeneous forces in oscillator chains.

    PubMed

    Chacón, Ricardo

    2006-10-01

    The effects of decreasing the impulse transmitted by localized periodic pulses on the chaotic behavior of homogeneous chains of coupled nonlinear oscillators are studied. It is assumed that when the oscillators are driven synchronously, i.e., all driving pulses transmit the same impulse, the chains display chaotic dynamics. It is shown that decreasing the impulse transmitted by the pulses of the two free end oscillators results in regularization with the whole array exhibiting frequency synchronization, irrespective of the chain size. A maximum level of amplitude desynchrony as the pulses of the two end oscillators narrow is typically found, which is explained as the result of two competing universal mechanisms: desynchronization induced by localized heterogeneous pulses and oscillation death of the complete chain induced by drastic decreasing of the impulse transmitted by such localized pulses. These findings demonstrate that decreasing the impulse transmitted by localized external forces can suppress chaos and lead to frequency-locked states in networks of dissipative systems.

  3. Local structure in hard-sphere chain-molecule fluids

    NASA Astrophysics Data System (ADS)

    Wasti, Sambid; Taylor, Mark

    2012-04-01

    The conformation of a polymer chain in solvent is coupled to the local structure of the solvent environment. For hard-sphere systems, a monomeric solvent acts to compress a flexible hard-sphere-solute chain and, for a dense system, the local solvent structure is imprinted onto the chain. Here we use Monte Carlo simulation, including bond-rebridging moves, to study the size and conformation of a hard sphere chain in a hard-sphere solvent as a function of both solvent density and solvent diameter. We also study the structure of a hard-sphere-chain solute in a hard-sphere-chain solvent. In the case of a 5-mer chain in 5-mer solvent we show that the effects of solvent can be mapped to a set of two-body solvation potentials. Following our previous work on hard-sphere chains in monomeric solvent [1], we explore the application of these short chain potentials to the study of longer chain-molecule fluids. [4pt] [1] M.P. Taylor and S. Ichida, J. Polym. Sci. B: Polym. Phys. 45, 3319 (2007).

  4. Local structure in hard-sphere chain-molecule fluids

    NASA Astrophysics Data System (ADS)

    Wasti, Sambid; Taylor, Mark

    2011-10-01

    The conformation of a polymer chain in solvent is coupled to the local structure of the solvent environment. For hard-sphere systems, a monomeric solvent acts to compress a flexible hard-sphere-solute chain and, for a dense system, the local solvent structure is imprinted onto the chain. Here we use Monte Carlo simulation, including bond-rebridging moves, to study the size and conformation of a hard sphere chain in a hard-sphere solvent as a function of both solvent density and solvent diameter. We also study the structure of a hard-sphere-chain solute in a hard-sphere-chain solvent. In the case of a 5-mer chain in 5-mer solvent we show that the effects of solvent can be mapped to a set of two-body solvation potentials. Following our previous work on hard-sphere chains in monomeric solvent [1], we explore the application of these short chain potentials to the study of longer chain-molecule fluids. [4pt] [1] M.P. Taylor and S. Ichida, J. Polym. Sci. B: Polym. Phys. 45, 3319 (2007).

  5. Topological quantum order: Stability under local perturbations

    SciTech Connect

    Bravyi, Sergey; Hastings, Matthew B.; Michalakis, Spyridon

    2010-09-15

    We study zero-temperature stability of topological phases of matter under weak time-independent perturbations. Our results apply to quantum spin Hamiltonians that can be written as a sum of geometrically local commuting projectors on a D-dimensional lattice with certain topological order conditions. Given such a Hamiltonian H{sub 0}, we prove that there exists a constant threshold {epsilon}>0 such that for any perturbation V representable as a sum of short-range bounded-norm interactions, the perturbed Hamiltonian H=H{sub 0}+{epsilon}V has well-defined spectral bands originating from low-lying eigenvalues of H{sub 0}. These bands are separated from the rest of the spectra and from each other by a constant gap. The band originating from the smallest eigenvalue of H{sub 0} has exponentially small width (as a function of the lattice size). Our proof exploits a discrete version of Hamiltonian flow equations, the theory of relatively bounded operators, and the Lieb-Robinson bound.

  6. Community-local homology of force chains in granular materials

    NASA Astrophysics Data System (ADS)

    Giusti, Chad; Owens, Eli; Daniels, Karen; Bassett, Danielle

    2015-03-01

    The development of robust quantitative measurements of the structure of force chains in granular materials remains an open problem. Recent work of Bassett, et. al. applies community detection algorithms to extract subnetworks of strongly interacting particles, and then computes geometric measures of these networks to characterize local branching. Separately, Kramar, et. al. apply persistent homology to extract robust global signatures of chains in terms of their Betti numbers. Here, we investigate a hybrid of these two approaches, computing low-dimensional persistent homology of the clique complexes of communities in force-chain graphs. Such invariants measure the tendency of core chain sections to branch while remaining insensitive to the presence of tightly-packed collections of particles, thus making them natural candidates for both local and global stability analysis.

  7. Algorithm Optimally Orders Forward-Chaining Inference Rules

    NASA Technical Reports Server (NTRS)

    James, Mark

    2008-01-01

    People typically develop knowledge bases in a somewhat ad hoc manner by incrementally adding rules with no specific organization. This often results in a very inefficient execution of those rules since they are so often order sensitive. This is relevant to tasks like Deep Space Network in that it allows the knowledge base to be incrementally developed and have it automatically ordered for efficiency. Although data flow analysis was first developed for use in compilers for producing optimal code sequences, its usefulness is now recognized in many software systems including knowledge-based systems. However, this approach for exhaustively computing data-flow information cannot directly be applied to inference systems because of the ubiquitous execution of the rules. An algorithm is presented that efficiently performs a complete producer/consumer analysis for each antecedent and consequence clause in a knowledge base to optimally order the rules to minimize inference cycles. An algorithm was developed that optimally orders a knowledge base composed of forwarding chaining inference rules such that independent inference cycle executions are minimized, thus, resulting in significantly faster execution. This algorithm was integrated into the JPL tool Spacecraft Health Inference Engine (SHINE) for verification and it resulted in a significant reduction in inference cycles for what was previously considered an ordered knowledge base. For a knowledge base that is completely unordered, then the improvement is much greater.

  8. Local Chain Segregation and Entanglements in a Confined Polymer Melt

    NASA Astrophysics Data System (ADS)

    Lee, Nam-Kyung; Diddens, Diddo; Meyer, Hendrik; Johner, Albert

    2017-02-01

    The reptation mechanism, introduced by de Gennes and Edwards, where a polymer diffuses along a fluffy tube, defined by the constraints imposed by its surroundings, convincingly describes the relaxation of long polymers in concentrated solutions and melts. We propose that the scale for the tube diameter is set by local chain segregation, which we study analytically. We show that the concept of local segregation is especially operational for confined geometries, where segregation extends over mesoscopic domains, drastically reducing binary contacts, and provide an estimate of the entanglement length. Our predictions are quantitatively supported by extensive molecular dynamics simulations on systems consisting of long, entangled chains.

  9. Kinetics and thermodynamics of first-order Markov chain copolymerization

    NASA Astrophysics Data System (ADS)

    Gaspard, P.; Andrieux, D.

    2014-07-01

    We report a theoretical study of stochastic processes modeling the growth of first-order Markov copolymers, as well as the reversed reaction of depolymerization. These processes are ruled by kinetic equations describing both the attachment and detachment of monomers. Exact solutions are obtained for these kinetic equations in the steady regimes of multicomponent copolymerization and depolymerization. Thermodynamic equilibrium is identified as the state at which the growth velocity is vanishing on average and where detailed balance is satisfied. Away from equilibrium, the analytical expression of the thermodynamic entropy production is deduced in terms of the Shannon disorder per monomer in the copolymer sequence. The Mayo-Lewis equation is recovered in the fully irreversible growth regime. The theory also applies to Bernoullian chains in the case where the attachment and detachment rates only depend on the reacting monomer.

  10. Spontaneous ordering of magnetic particles in liquid crystals: From chains to biaxial lamellae.

    PubMed

    Peroukidis, Stavros D; Klapp, Sabine H L

    2015-07-01

    Using Monte Carlo computer simulations we explore the self-assembly and ordering behavior of a hybrid, soft magnetic system consisting of small magnetic nanospheres in a liquid-crystalline (LC) matrix. Inspired by recent experiments with colloidal rod matrices, we focus on conditions where the sphere and rod diameters are comparable. Already in the absence of a magnetic field, the nematic ordering of the LC can stabilize the formation of magnetic chains along the nematic or smectic director, yielding a state with local (yet no macroscopic) magnetic order. The chains, in turn, increase the overall nematic order, reflecting the complex interplay of the structure formation of the two components. When increasing the sphere diameter, the spontaneous uniaxial ordering is replaced by biaxial lamellar morphologies characterized by alternating layers of rods and magnetic chains oriented perpendicular to the rod's director. These ordering scenarios at zero field suggest a complex response of the resulting hybrid to external stimuli, such as magnetic fields and shear forces.

  11. Some aspects of the orientational order distribution of flexible chains in a diblock mesophase

    SciTech Connect

    Lorthioir, Cédric Randriamahefa, Solo

    2013-12-14

    The segmental motions of flexible chains in the lamellar structure of a strongly segregated poly(styrene)-poly(dimethylsiloxane) (PS-PDMS) diblock were investigated over a time scale of a few tens of microseconds. {sup 2}H NMR experiments were performed on the PDMS block, selectively perdeuterated. Transverse relaxation measurements show that the main part of the PDMS repeat units display anisotropic reorientational motions within the diblock lamellae and such a segmental ordering essentially results from interchain steric repulsions. {sup 2}H double quantum-based experiments evidenced a non-uniform local stretching of PDMS chains and enabled the underlying distribution of the orientational order parameter to be determined quantitatively. Besides, a fraction of the PDMS chain segments, about 14%, were found to display isotropic – or nearly isotropic – reorientations, which could be assigned to repeat units located within a thin sublayer (about 1–2 nm) at the lamellae midplane, but also deeper in the lamellae, close to folded parts of the chains. These experimental results were confronted to theoretical descriptions of opposing polymer brushes and, in particular, to the strong-stretching theory (SST) including the entropic contribution of free chain ends.

  12. Entropy based fingerprint for local crystalline order.

    PubMed

    Piaggi, Pablo M; Parrinello, Michele

    2017-09-21

    We introduce a new fingerprint that allows distinguishing between liquid-like and solid-like atomic environments. This fingerprint is based on an approximate expression for the entropy projected on individual atoms. When combined with local enthalpy, this fingerprint acquires an even finer resolution and it is capable of discriminating between different crystal structures.

  13. Entropy based fingerprint for local crystalline order

    NASA Astrophysics Data System (ADS)

    Piaggi, Pablo M.; Parrinello, Michele

    2017-09-01

    We introduce a new fingerprint that allows distinguishing between liquid-like and solid-like atomic environments. This fingerprint is based on an approximate expression for the entropy projected on individual atoms. When combined with local enthalpy, this fingerprint acquires an even finer resolution and it is capable of discriminating between different crystal structures.

  14. Localization in finite vibroimpact chains: Discrete breathers and multibreathers

    NASA Astrophysics Data System (ADS)

    Grinberg, Itay; Gendelman, Oleg V.

    2016-09-01

    We explore the dynamics of strongly localized periodic solutions (discrete solitons or discrete breathers) in a finite one-dimensional chain of oscillators. Localization patterns with both single and multiple localization sites (breathers and multibreathers) are considered. The model involves parabolic on-site potential with rigid constraints (the displacement domain of each particle is finite) and a linear nearest-neighbor coupling. When the particle approaches the constraint, it undergoes an inelastic impact according to Newton's impact model. The rigid nonideal impact constraints are the only source of nonlinearity and damping in the system. We demonstrate that this vibro-impact model allows derivation of exact analytic solutions for the breathers and multibreathers with an arbitrary set of localization sites, both in conservative and in forced-damped settings. Periodic boundary conditions are considered; exact solutions for other types of boundary conditions are also available. Local character of the nonlinearity permits explicit derivation of a monodromy matrix for the breather solutions. Consequently, the stability of the derived breather and multibreather solutions can be efficiently studied in the framework of simple methods of linear algebra, and with rather moderate computational efforts. One reveals that that the finiteness of the chain fragment and possible proximity of the localization sites strongly affect both the existence and the stability patterns of these localized solutions.

  15. Localization in finite vibroimpact chains: Discrete breathers and multibreathers.

    PubMed

    Grinberg, Itay; Gendelman, Oleg V

    2016-09-01

    We explore the dynamics of strongly localized periodic solutions (discrete solitons or discrete breathers) in a finite one-dimensional chain of oscillators. Localization patterns with both single and multiple localization sites (breathers and multibreathers) are considered. The model involves parabolic on-site potential with rigid constraints (the displacement domain of each particle is finite) and a linear nearest-neighbor coupling. When the particle approaches the constraint, it undergoes an inelastic impact according to Newton's impact model. The rigid nonideal impact constraints are the only source of nonlinearity and damping in the system. We demonstrate that this vibro-impact model allows derivation of exact analytic solutions for the breathers and multibreathers with an arbitrary set of localization sites, both in conservative and in forced-damped settings. Periodic boundary conditions are considered; exact solutions for other types of boundary conditions are also available. Local character of the nonlinearity permits explicit derivation of a monodromy matrix for the breather solutions. Consequently, the stability of the derived breather and multibreather solutions can be efficiently studied in the framework of simple methods of linear algebra, and with rather moderate computational efforts. One reveals that that the finiteness of the chain fragment and possible proximity of the localization sites strongly affect both the existence and the stability patterns of these localized solutions.

  16. Highly Ordered Single Conjugated Polymer Chain Rod Morphologies

    SciTech Connect

    Adachi, Takuji; Brazard, Johanna; Chokshi, Paresh; Ganesan, Venkat; Bolinger, Joshua; Barbara, Paul F.

    2010-10-15

    We have reexamined the fluorescence polarization anisotropy of single polymer chains of the prototypical conjugated polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) isolated in a poly(methyl methacrylate) (PMMA) matrix employing improved synthetic samples that contain a much smaller number of tetrahedral chemical defects per chain. The new measurements reveal a much larger fraction of highly anisotropic MEH-PPV chains, with >70% of the chains exhibiting polarization anisotropy values falling in the range of 0.6-0.9. High anisotropy is strong evidence for a rod-shaped conformation. A comparison of the experimental results with coarse grain, beads on a chain simulations reveals that simulations with the usual bead-bead pairwise additive potentials cannot reproduce the observed large fraction of high polarization values. Apparently, this type of potential lacks some yet to be identified molecular feature that is necessary to accurately simulate the experimental results.

  17. Many-body localization and thermalization in disordered Hubbard chains

    NASA Astrophysics Data System (ADS)

    Mondaini, Rubem; Rigol, Marcos

    Recently, a lot of attention has been given to the aspects that lead isolated interacting quantum systems to thermalize. In the presence of disorder, however, the thermalization process fails resulting in a phenomena where transport is suppressed known as many-body localization. Unlike the standard Anderson localization for non-interacting systems, the delocalized (ergodic) phase is very robust against disorder even for moderate values of interaction. Another interesting aspect of the many-body localization phase is that under the time evolution of the quenched disorder, information present in the initial state may survive for arbitrarily long times. This was recently used as a probe of many-body localization of ultracold fermions in optical lattices with quasi-periodic disorder. Here, we will use numerical results in one-dimensional Hubbard chains to show that this analysis may suffer from substantial finite-size effects. We will also compare different types of disorder to see how the ergodicity is affected.

  18. Local Topological Order Inhibits Thermal Stability in 2D

    NASA Astrophysics Data System (ADS)

    Landon-Cardinal, Olivier; Poulin, David

    2013-03-01

    We study the robustness of quantum information stored in the degenerate ground space of a local, frustration-free Hamiltonian with commuting terms on a 2D spin lattice. On one hand, a macroscopic energy barrier separating the distinct ground states under local transformations would protect the information from thermal fluctuations. On the other hand, local topological order would shield the ground space from static perturbations. Here we demonstrate that local topological order implies a constant energy barrier, thus inhibiting thermal stability.

  19. Dynamical behavior of fractional-order Hastings-Powell food chain model and its discretization

    NASA Astrophysics Data System (ADS)

    Matouk, A. E.; Elsadany, A. A.; Ahmed, E.; Agiza, H. N.

    2015-10-01

    In this work, the dynamical behavior of fractional-order Hastings-Powell food chain model is investigated and a new discretization method of the fractional-order system is introduced. A sufficient condition for existence and uniqueness of the solution of the proposed system is obtained. Local stability of the equilibrium points of the fractional-order system is studied. Furthermore, the necessary and sufficient conditions of stability of the discretized system are also studied. It is shown that the system's fractional parameter has effect on the stability of the discretized system which shows rich variety of dynamical behaviors such as Hopf bifurcation, an attractor crisis and chaotic attractors. Numerical simulations show the tea-cup chaotic attractor of the fractional-order system and the richer dynamical behavior of the corresponding discretized system.

  20. Localized Single Frequency Lasing States in a Finite Parity-Time Symmetric Resonator Chain

    PubMed Central

    Phang, Sendy; Vukovic, Ana; Creagh, Stephen C.; Sewell, Phillip D.; Gradoni, Gabriele; Benson, Trevor M.

    2016-01-01

    In this paper a practical case of a finite periodic Parity Time chain made of resonant dielectric cylinders is considered. The paper analyzes a more general case where PT symmetry is achieved by modulating both the real and imaginary part of the material refractive index along the resonator chain. The band-structure of the finite periodic PT resonator chains is compared to infinite chains in order to understand the complex interdependence of the Bloch phase and the amount of the gain/loss in the system that causes the PT symmetry to break. The results show that the type of the modulation along the unit cell can significantly affect the position of the threshold point of the PT system. In all cases the lowest threshold is achieved near the end of the Brillouin zone. In the case of finite PT-chains, and for a particular type of modulation, early PT symmetry breaking is observed and shown to be caused by the presence of termination states localized at the edges of the finite chain resulting in localized lasing and dissipative modes at each end of the chain. PMID:26848095

  1. Local Spin Relaxation within the Random Heisenberg Chain

    NASA Astrophysics Data System (ADS)

    Herbrych, J.; Kokalj, J.; Prelovšek, P.

    2013-10-01

    Finite-temperature local dynamical spin correlations Snn(ω) are studied numerically within the random spin-1/2 antiferromagnetic Heisenberg chain. The aim is to explain measured NMR spin-lattice relaxation times in BaCu2(Si0.5Ge0.5)2O7, which is the realization of a random spin chain. In agreement with experiments we find that the distribution of relaxation times within the model shows a very large span similar to the stretched-exponential form. The distribution is strongly reduced with increasing T, but stays finite also in the high-T limit. Anomalous dynamical correlations can be associated with the random singlet concept but not directly with static quantities. Our results also reveal the crucial role of the spin anisotropy (interaction), since the behavior is in contrast with the ones for the XX model, where we do not find any significant T dependence of the distribution.

  2. Breathers in a locally resonant granular chain with precompression

    SciTech Connect

    Liu, Lifeng; James, Guillaume; Kevrekidis, Panayotis; Vainchtein, Anna

    2016-09-01

    Here we study a locally resonant granular material in the form of a precompressed Hertzian chain with linear internal resonators. Using an asymptotic reduction, we derive an effective nonlinear Schrödinger (NLS) modulation equation. In turn, this leads us to provide analytical evidence, subsequently corroborated numerically, for the existence of two distinct types of discrete breathers related to acoustic or optical modes: (a) traveling bright breathers with a strain profile exponentially vanishing at infinity and (b) stationary and traveling dark breathers, exponentially localized, time-periodic states mounted on top of a non-vanishing background. Moreover, the stability and bifurcation structure of numerically computed exact stationary dark breathers is also examined. Stationary bright breathers cannot be identified using the NLS equation, which is defocusing at the upper edges of the phonon bands and becomes linear at the lower edge of the optical band.

  3. Breathers in a locally resonant granular chain with precompression

    DOE PAGES

    Liu, Lifeng; James, Guillaume; Kevrekidis, Panayotis; ...

    2016-09-01

    Here we study a locally resonant granular material in the form of a precompressed Hertzian chain with linear internal resonators. Using an asymptotic reduction, we derive an effective nonlinear Schrödinger (NLS) modulation equation. In turn, this leads us to provide analytical evidence, subsequently corroborated numerically, for the existence of two distinct types of discrete breathers related to acoustic or optical modes: (a) traveling bright breathers with a strain profile exponentially vanishing at infinity and (b) stationary and traveling dark breathers, exponentially localized, time-periodic states mounted on top of a non-vanishing background. Moreover, the stability and bifurcation structure of numerically computedmore » exact stationary dark breathers is also examined. Stationary bright breathers cannot be identified using the NLS equation, which is defocusing at the upper edges of the phonon bands and becomes linear at the lower edge of the optical band.« less

  4. Strong and weak localization in a ballistic quantum chain

    NASA Astrophysics Data System (ADS)

    Pedrosa, Victor; Almeida, F. A. G.; de Sena, M. I., Jr.; Macêdo, A. M. S.

    2015-10-01

    We study coherent electron transport in a quantum network or superlattice formed by connecting chaotic ballistic quantum dots via barriers of arbitrary transparencies in a chain topology. We show that the emergence of localization effects, both weak and strong, depend on the way the infinite dot scaling limit is taken. In the localized regime, we found evidence of single parameter scaling and deviations from uniformity in the distribution of the unitary matrices in the polar decomposition of the system’s transfer-matrix. In the metallic regime, we show that recent predictions of anomalous properties in a double scaling limit, in which the barriers’ transparencies are changed along with the number of dots, can be interpreted as a two-parameter scaling theory, which cannot be derived from the Dorokhov-Mello-Pereyra-Kumar equation.

  5. Breathers in a locally resonant granular chain with precompression

    SciTech Connect

    Liu, Lifeng; James, Guillaume; Kevrekidis, Panayotis; Vainchtein, Anna

    2016-09-01

    Here we study a locally resonant granular material in the form of a precompressed Hertzian chain with linear internal resonators. Using an asymptotic reduction, we derive an effective nonlinear Schrödinger (NLS) modulation equation. In turn, this leads us to provide analytical evidence, subsequently corroborated numerically, for the existence of two distinct types of discrete breathers related to acoustic or optical modes: (a) traveling bright breathers with a strain profile exponentially vanishing at infinity and (b) stationary and traveling dark breathers, exponentially localized, time-periodic states mounted on top of a non-vanishing background. Moreover, the stability and bifurcation structure of numerically computed exact stationary dark breathers is also examined. Stationary bright breathers cannot be identified using the NLS equation, which is defocusing at the upper edges of the phonon bands and becomes linear at the lower edge of the optical band.

  6. Local dynamic stability of the lifting kinematic chain.

    PubMed

    Graham, Ryan B; Costigan, Patrick A; Sadler, Erin M; Stevenson, Joan M

    2011-10-01

    While a stable trunk and centre of mass (CoM) trajectory are required during lifting, it is unclear how stability is controlled. Thirty healthy participants (15M, 15F) performed repetitive, symmetric lifting at 10 cycles per minute for 3 min with a load-in-hands equivalent to 10% of their maximum back strength. Short- and long-term maximum finite-time Lyapunov exponents (λ(max-s) and λ(max-l)), describing responses to small (local) perturbations, estimated the local dynamic stability of the foot, shank, thigh, pelvis, lower back, and upper back segments. Instability (λ(max-s)) significantly increased when moving up the kinematic chain (p<0.001). Therefore, to maintain trunk equilibrium and accurately regulate CoM trajectory during lifting, stability of the distal (fixed) lower limb segments is prioritized. This is contrary to previous results observed during gait, indicating that trunk control via kinematic chain stability is accomplished differently for walking and lifting.

  7. Many-body localization in spin chain systems with quasiperiodic fields

    NASA Astrophysics Data System (ADS)

    Lee, Mac; Look, Thomas R.; Lim, S. P.; Sheng, D. N.

    2017-08-01

    We study the many-body localization of spin chain systems with quasiperiodic fields. We identify the lower bound for the critical disorder necessary to drive the transition between the thermal and many-body localized phase to be Wc>1.85 , based on finite-size scaling of entanglement entropy and fluctuations of the bipartite magnetization. We also examine the time evolution of the entanglement entropy of an initial product state where we find power-law and logarithmic growth for the thermal and many-body localized phases, respectively, with a transition point Wc˜2.5 . For larger disorder strength, both imbalance and spin-glass order are preserved at long times, while spin-glass order shows dependence on system size. Quasiperiodic fields have been applied in different experimental systems, and our study finds that such fields are very efficient at driving the many-body localized phase transition.

  8. Defect Dynamics of the Dipole Ordered Water Chain in a Polar Nanochannel

    NASA Astrophysics Data System (ADS)

    Matsui, Hiroshi; Suzuki, Yuta; Fukumochi, Hiroyuki; Tadokoro, Makoto

    2014-05-01

    Using large single molecular porous crystals of ({[CoIII(H2bim)3](TATC)•7H2O}n), we have studied the dynamics of hydrated protons and configurational defects via the water chain by measuring the Raman and infrared spectra, and microwave conductivity. The highly one-dimensional water chain is affected by the periodic arrangement of charged groups, which yield short- and long-range interfacial interactions. Below a critical temperature (Tc) of about 270 K, the electric dipole of water molecules forming the water chain exhibits antiferroelectric ordering through weak long-range interpore correlation with spatial anisotropy. Above Tc, the small dielectric constant indicates that the antiferroelectric correlation remains, and the configuration of the oxygen atoms in the water molecules is restricted by the short-range interfacial interactions. The anisotropic microwave response with respect to the water chain originates from the Eigen-type hydrated proton (protonic hole) accompanying local distortions, which mutually couples to the mobile configurational D (L) defect. The proton and protonic hole are introduced by self-dissociation of water molecules hydrogen bonded to the carboxylate, and the configurational defect is caused by the rotation of water molecules violating an ice rule. The effective mass of the hydrated proton (protonic hole) is enhanced, in combination with the configurational defect that behaves as the rate-determining step, and consequently the mobility is suppressed by two orders of magnitude compared with the water nanotube in the TMA salt. Owing to the integration of periodic charge-modulation effect during the transfer, we have experimentally clarified the dramatic suppression of one-dimensional proton conductivity and mobility for the first time.

  9. Local conservation laws in spin-\\frac{1}{2} XY chains with open boundary conditions

    NASA Astrophysics Data System (ADS)

    Fagotti, Maurizio

    2016-06-01

    We revisit the conserved quantities of the spin-\\frac{1}{2} XY model with open boundary conditions. In the absence of a transverse field, we find new families of local charges and show that half of the seeming conservation laws are conserved only if the number of sites is odd. In even chains the set of noninteracting charges is abelian, like in the periodic case when the number of sites is odd. In odd chains the set is doubled and becomes non-abelian, like in even periodic chains. The dependence of the charges on the parity of the chain’s size undermines the common belief that the thermodynamic limit of diagonal ensembles exists. We consider also the transverse-field Ising chain, where the situation is more ordinary. The generalization to the XY model in a transverse field is not straightforward and we propose a general framework to carry out similar calculations. We conjecture the form of the bulk part of the local charges and discuss the emergence of quasilocal conserved quantities. We provide evidence that in a region of the parameter space there is a reduction of the number of quasilocal conservation laws invariant under chain inversion. As a by-product, we study a class of block-Toeplitz-plus-Hankel operators and identify the conditions that their symbols satisfy in order to commute with a given block-Toeplitz.

  10. Local Magnetic Order vs Superconductivity in a Layered Cuprate

    NASA Astrophysics Data System (ADS)

    Ichikawa, N.; Uchida, S.; Tranquada, J. M.; Niemöller, T.; Gehring, P. M.; Lee, S.-H.; Schneider, J. R.

    2000-08-01

    We report on the phase diagram for charge-stripe order in La1.6-xNd0.4SrxCuO4, determined by neutron and x-ray scattering studies and resistivity measurements. From an analysis of the in-plane resistivity motivated by recent nuclear-quadrupole-resonance studies, we conclude that the transition temperature for local charge ordering decreases monotonically with x, and hence that local antiferromagnetic order is uniquely correlated with the anomalous depression of superconductivity at x~18. This result is consistent with theories in which superconductivity depends on the existence of charge-stripe correlations.

  11. Local magnetic order vs superconductivity in a layered cuprate

    PubMed

    Ichikawa; Uchida; Tranquada; Niemoller; Gehring; Lee; Schneider

    2000-08-21

    We report on the phase diagram for charge-stripe order in La1.6-xNd0. 4SrxCuO4, determined by neutron and x-ray scattering studies and resistivity measurements. From an analysis of the in-plane resistivity motivated by recent nuclear-quadrupole-resonance studies, we conclude that the transition temperature for local charge ordering decreases monotonically with x, and hence that local antiferromagnetic order is uniquely correlated with the anomalous depression of superconductivity at x approximately 1 / 8. This result is consistent with theories in which superconductivity depends on the existence of charge-stripe correlations.

  12. Fingerprint of local disorder in long range ordered isometric pyrochlores.

    PubMed

    Martel, Laura; Naji, Mohamed; Popa, Karin; Vigier, Jean-François; Somers, Joseph

    2017-09-25

    The detailed characterization of local order and disorder in isometric A2B2O7 crystalline pyrochlores is of significant importance in view of their wide range and sensitive technological applications. Nevertheless, much remains to be understood concerning their atomic scale structures. Here we specifically pinpoint local order and disorder in four stoichiometric Ln2Zr2O7 (Ln = La, Nd, Sm and Eu) pyrochlores using a combination of three standard easily available laboratory techniques: XRD, (17)O solid-state MAS NMR and Raman spectroscopy. The evolution of the oxygen sub-lattice identifies specific features (extra (17)O NMR signals and Raman bands) which undoubtedly reveal local oxygen order and disorder in these stoichiometric long range ordered crystalline pyrochlores. These results complete the understanding of the atomic scale in these stoichiometric pyrochlores necessitating the need for new microscopic structural models.

  13. Competition of the connectivity with the local and the global order in polymer melts and crystals

    SciTech Connect

    Bernini, S.; Puosi, F.; Barucco, M.; Leporini, D.

    2013-11-14

    The competition between the connectivity and the local or global order in model fully flexible chain molecules is investigated by molecular-dynamics simulations. States with both missing (melts) and high (crystal) global order are considered. Local order is characterized within the first coordination shell (FCS) of a tagged monomer and found to be lower than in atomic systems in both melt and crystal. The role played by the bonds linking the tagged monomer to FCS monomers (radial bonds), and the bonds linking two FCS monomers (shell bonds) is investigated. The detailed analysis in terms of Steinhardt's orientation order parameters Q{sub l} (l = 2 − 10) reveals that increasing the number of shell bonds decreases the FCS order in both melt and crystal. Differently, the FCS arrangements organize the radial bonds. Even if the molecular chains are fully flexible, the distribution of the angle formed by adjacent radial bonds exhibits sharp contributions at the characteristic angles θ ≈ 70°, 122°, 180°. The fractions of adjacent radial bonds with θ ≈ 122°, 180° are enhanced by the global order of the crystal, whereas the fraction with 70° ≲ θ ≲ 110° is nearly unaffected by the crystallization. Kink defects, i.e., large lateral displacements of the chains, are evidenced in the crystalline state.

  14. Strongly nonlinear waves in locally resonant granular chains

    SciTech Connect

    Liu, Lifeng; James, Guillaume; Kevrekidis, Panayotis; Vainchtein, Anna

    2016-09-23

    In this paper, we explore a recently proposed locally resonant granular system bearing harmonic internal resonators in a chain of beads interacting via Hertzian elastic contacts. In this system, we propose the existence of two types of configurations: (a) small-amplitude periodic traveling waves and (b) dark-breather solutions, i.e. exponentially localized, time-periodic states mounted on top of a non-vanishing background. A remarkable feature distinguishing our results from other settings where dark breathers are observed is the complete absence of precompression in the system, i.e. the absence of a linear spectral band. We also identify conditions under which the system admits long-lived bright breather solutions. Our results are obtained by means of an asymptotic reduction to a suitably modified version of the so-called discrete p-Schrödinger (DpS) equation, which is established as controllably approximating the solutions of the original system for large but finite times (under suitable assumptions on the solution amplitude and the resonator mass). The findings are also corroborated by detailed numerical computations. Long-lived bright breathers are proved to exist over long but finite times, after which numerical simulations indicate that the breathers disintegrate. Finally, in line with these results, we prove that the only exact time-periodic bright breathers consist of trivial linear oscillations, without contact interactions between discrete elements.

  15. Strongly nonlinear waves in locally resonant granular chains

    DOE PAGES

    Liu, Lifeng; James, Guillaume; Kevrekidis, Panayotis; ...

    2016-09-23

    In this paper, we explore a recently proposed locally resonant granular system bearing harmonic internal resonators in a chain of beads interacting via Hertzian elastic contacts. In this system, we propose the existence of two types of configurations: (a) small-amplitude periodic traveling waves and (b) dark-breather solutions, i.e. exponentially localized, time-periodic states mounted on top of a non-vanishing background. A remarkable feature distinguishing our results from other settings where dark breathers are observed is the complete absence of precompression in the system, i.e. the absence of a linear spectral band. We also identify conditions under which the system admits long-livedmore » bright breather solutions. Our results are obtained by means of an asymptotic reduction to a suitably modified version of the so-called discrete p-Schrödinger (DpS) equation, which is established as controllably approximating the solutions of the original system for large but finite times (under suitable assumptions on the solution amplitude and the resonator mass). The findings are also corroborated by detailed numerical computations. Long-lived bright breathers are proved to exist over long but finite times, after which numerical simulations indicate that the breathers disintegrate. Finally, in line with these results, we prove that the only exact time-periodic bright breathers consist of trivial linear oscillations, without contact interactions between discrete elements.« less

  16. Strongly nonlinear waves in locally resonant granular chains

    NASA Astrophysics Data System (ADS)

    Liu, Lifeng; James, Guillaume; Kevrekidis, Panayotis; Vainchtein, Anna

    2016-11-01

    We explore a recently proposed locally resonant granular system bearing harmonic internal resonators in a chain of beads interacting via Hertzian elastic contacts. In this system, we propose the existence of two types of configurations: (a) small-amplitude periodic traveling waves and (b) dark-breather solutions, i.e. exponentially localized, time-periodic states mounted on top of a non-vanishing background. A remarkable feature distinguishing our results from other settings where dark breathers are observed is the complete absence of precompression in the system, i.e. the absence of a linear spectral band. We also identify conditions under which the system admits long-lived bright breather solutions. Our results are obtained by means of an asymptotic reduction to a suitably modified version of the so-called discrete p-Schrödinger (DpS) equation, which is established as controllably approximating the solutions of the original system for large but finite times (under suitable assumptions on the solution amplitude and the resonator mass). The findings are also corroborated by detailed numerical computations. Long-lived bright breathers are proved to exist over long but finite times, after which numerical simulations indicate that the breathers disintegrate. In line with these results, we prove that the only exact time-periodic bright breathers consist of trivial linear oscillations, without contact interactions between discrete elements.

  17. Infinitely robust order and local order-parameter tulips in Apollonian networks with quenched disorder.

    PubMed

    Kaplan, C Nadir; Hinczewski, Michael; Berker, A Nihat

    2009-06-01

    For a variety of quenched random spin systems on an Apollonian network, including ferromagnetic and antiferromagnetic bond percolation and the Ising spin glass, we find the persistence of ordered phases up to infinite temperature over the entire range of disorder. We develop a renormalization-group technique that yields highly detailed information, including the exact distributions of local magnetizations and local spin-glass order parameters, which turn out to exhibit, as function of temperature, complex and distinctive tulip patterns.

  18. Infinitely robust order and local order-parameter tulips in Apollonian networks with quenched disorder

    NASA Astrophysics Data System (ADS)

    Kaplan, C. Nadir; Hinczewski, Michael; Berker, A. Nihat

    2009-06-01

    For a variety of quenched random spin systems on an Apollonian network, including ferromagnetic and antiferromagnetic bond percolation and the Ising spin glass, we find the persistence of ordered phases up to infinite temperature over the entire range of disorder. We develop a renormalization-group technique that yields highly detailed information, including the exact distributions of local magnetizations and local spin-glass order parameters, which turn out to exhibit, as function of temperature, complex and distinctive tulip patterns.

  19. Room temperature ordering of dipalmitoyl phosphatidylserine bilayers induced by short chain alcohols.

    PubMed

    Wachtel, E; Bach, D; Miller, I R

    2013-01-01

    Using differential scanning calorimetry and small and wide angle X-ray diffraction, we show that, following extended incubation at room temperature, methanol, propanol, and three of the isomers of butanol can induce ordering in dipalmitoyl phosphatidylserine (DPPS) gel phase bilayers. The organization of the bilayers in the presence of ethanol, described previously, is now observed to be a general effect of short chain alcohols. Evidence is presented for tilting of the acyl chains with respect to the bilayer normal in the presence of ethanol or propanol. However, the different chain lengths of the alcohols, and isomeric form, influence the thermal stability of the ordered gel to different extents. This behavior is unlike that of the gel state phosphatidylcholine analog which, in the presence of short chain alcohols, undergoes hydrocarbon chain interdigitation. Dipalmitoyl phosphatidylcholine added to DPPS in the presence of 20 vol% ethanol, acts to suppress the ordered gel phase.

  20. Human {beta}2 chain of laminin (formerly S chain): cDNA cloning, chromosomal localization, and expression in carcinomas

    SciTech Connect

    Wewer, U.M.; Durkin, M.E.; Albrechtsen, R.

    1994-11-15

    Overlapping cDNA clones that encode the full-length human laminin {beta}2 chain, formerly called the S chain, were isolated. The cDNA of 5680 nt contains a 5391-nt open reading frame encoding 1797 amino acids. At the amino terminus is a 32-amino-acid signal peptide that is followed by the mature {beta}2 chain polypeptide of 1765 amino acids with a calculated molecular mass of 192,389 Da. The human {beta}2 chain is predicted to have all of the seven structural domains typical of the {beta} chains of laminin, including the short cysteine-rich {alpha} region. The amino acid sequence of human {beta}2 chain showed 86.1% sequence identity to the rat {beta}2 chain, 50.0% to human {beta}1 chain, and 36.3% to the human {beta}3 chain. The greatest sequence identity was in domains VI, V, and III. The sequence of a 24-amino-acid peptide fragment isolated from the {beta}2 chain of laminin purified from human amniotic basement membrane matched the sequence predicted from the cDNA, confirming that the cDNA encodes human {beta}2 laminin. The cDNA was used to assign the gene (LAMB2) to human chromosome 3p21 by in situ hybridization. It is not linked to genes for human laminin chains {alpha}1, {beta}1, and {gamma}1 or other known laminin genes. Immunostaining showed that the {beta}2 chain is localized to the smooth muscle basement membranes of the arteries, while the homologous {beta}1 chain is confined to the subendothelial basement membranes. The {beta}2 chain was found in the basement membranes of ovarian carcinomas but not colon carcinomas. These results indicate that the expression of the {beta}2 chain gene is tightly regulated in normal human tissues and in disease. 43 refs., 6 figs., 1 tab.

  1. Exact ground states and topological order in interacting Kitaev/Majorana chains

    NASA Astrophysics Data System (ADS)

    Katsura, Hosho; Schuricht, Dirk; Takahashi, Masahiro

    2015-09-01

    We study a system of interacting spinless fermions in one dimension that, in the absence of interactions, reduces to the Kitaev chain [Kitaev, Phys. Usp. 44, 131 (2001), 10.1070/1063-7869/44/10S/S29]. In the noninteracting case, a signal of topological order appears as zero-energy modes localized near the edges. We show that the exact ground states can be obtained analytically even in the presence of nearest-neighbor repulsive interactions when the on-site (chemical) potential is tuned to a particular function of the other parameters. As with the noninteracting case, the obtained ground states are twofold degenerate and differ in fermionic parity. We prove the uniqueness of the obtained ground states and show that they can be continuously deformed to the ground states of the noninteracting Kitaev chain without gap closing. We also demonstrate explicitly that there exists a set of operators each of which maps one of the ground states to the other with opposite fermionic parity. These operators can be thought of as an interacting generalization of Majorana edge zero modes.

  2. Broadband frequency tripling in locally ordered nonlinear photonic crystal.

    PubMed

    Sheng, Yan; Krolikowski, Wieslaw

    2013-02-25

    We propose and fabricate a LiNbO₃-based nonlinear photonic crystal with locally ordered ferroelectric domains. The nonlinearity modulation provides sets of uniformly distributed reciprocal lattice vectors, ensuring broadband high frequency conversion efficiency. Frequency tripling via cascading is demonstrated in the range of 1400-1830 nm, with energy conversion efficiency up to ∼15%.

  3. Controlling local order of athermal self-propelled particles

    NASA Astrophysics Data System (ADS)

    Dougan, Niamh; Crowther, Peter; Royall, C. Patrick; Turci, Francesco

    2016-12-01

    We consider a model of self-propelled dynamics for athermal active particles, where the non-equilibrium active forces are modelled by a Ornstein-Uhlenbeck process. In the limit of no-driving force, the model reduces to the passive, Brownian dynamics of an atomistic glass forming fluid, the Wahnström binary mixture. The Wahnström mixture is known to show strong correlations between the emergence of slow dynamics and the formation of locally favoured structures based on icosahedra. Here, we study how the non-equilibrium driving affects the local structure of the system, and find that it strongly promotes icosahedral order. The states rich in local icosahedral order correspond to configurations of very low potential energy, suggesting that the non-equilibrium dynamics in the self propelled model can be effectively exploited to explore the potential energy surface of the binary mixture and have access to states that are difficult to attain using passive dynamics.

  4. The Analysis of Rush Orders Risk in Supply Chain: A Simulation Approach

    NASA Technical Reports Server (NTRS)

    Mahfouz, Amr; Arisha, Amr

    2011-01-01

    Satisfying customers by delivering demands at agreed time, with competitive prices, and in satisfactory quality level are crucial requirements for supply chain survival. Incidence of risks in supply chain often causes sudden disruptions in the processes and consequently leads to customers losing their trust in a company's competence. Rush orders are considered to be one of the main types of supply chain risks due to their negative impact on the overall performance, Using integrated definition modeling approaches (i.e. IDEF0 & IDEF3) and simulation modeling technique, a comprehensive integrated model has been developed to assess rush order risks and examine two risk mitigation strategies. Detailed functions sequence and objects flow were conceptually modeled to reflect on macro and micro levels of the studied supply chain. Discrete event simulation models were then developed to assess and investigate the mitigation strategies of rush order risks, the objective of this is to minimize order cycle time and cost.

  5. Decomposition of conditional probability for high-order symbolic Markov chains

    NASA Astrophysics Data System (ADS)

    Melnik, S. S.; Usatenko, O. V.

    2017-07-01

    The main goal of this paper is to develop an estimate for the conditional probability function of random stationary ergodic symbolic sequences with elements belonging to a finite alphabet. We elaborate on a decomposition procedure for the conditional probability function of sequences considered to be high-order Markov chains. We represent the conditional probability function as the sum of multilinear memory function monomials of different orders (from zero up to the chain order). This allows us to introduce a family of Markov chain models and to construct artificial sequences via a method of successive iterations, taking into account at each step increasingly high correlations among random elements. At weak correlations, the memory functions are uniquely expressed in terms of the high-order symbolic correlation functions. The proposed method fills the gap between two approaches, namely the likelihood estimation and the additive Markov chains. The obtained results may have applications for sequential approximation of artificial neural network training.

  6. Quantum order, entanglement and localization in many-body systems

    NASA Astrophysics Data System (ADS)

    Khemani, Vedika

    The interplay of disorder and interactions can have remarkable effects on the physics of quantum systems. A striking example is provided by the long conjectured--and recently confirmed--phenomenon of many-body localization. Many-body localized (MBL) phases violate foundational assumptions about ergodicity and thermalization in interacting systems, and represent a new frontier for non-equilibrium quantum statistical mechanics. We start with a study of the dynamical response of MBL phases to time-dependent perturbations. We find that that an asymptotically slow, local perturbation induces a highly non-local response, a surprising result for a localized insulator. A complementary calculation in the linear-response regime elucidates the structure of many-body resonances contributing to the dynamics of this phase. We then turn to a study of quantum order in MBL systems. It was shown that localization can allow novel high-temperature phases and phase transitions that are disallowed in equilibrium. We extend this idea of "localization protected order'' to the case of symmetry-protected topological phases and to the elucidation of phase structure in periodically driven Floquet systems. We show that Floquet systems can display nontrivial phases, some of which show a novel form of correlated spatiotemporal order and are absolutely stable to all generic perturbations. The next part of the thesis addresses the role of quantum entanglement, broadly speaking. Remarkably, it was shown that even highly-excited MBL eigenstates have low area-law entanglement. We exploit this feature to develop tensor-network based algorithms for efficiently computing and representing highly-excited MBL eigenstates. We then switch gears from disordered, localized systems and examine the entanglement Hamiltonian and its low energy spectrum from a statistical mechanical lens, particularly focusing on issues of universality and thermalization. We close with two miscellaneous results on topologically

  7. Infinitely Robust Order and Local Order-Parameter Tulips in Apollonian Networks with Quenched Disorder

    NASA Astrophysics Data System (ADS)

    Nadir Kaplan, C.; Hinczewski, Michael; Berker, A. Nihat

    2009-03-01

    For a variety of quenched random spin systems on an Apollonian network, including ferromagnetic and antiferromagnetic bond percolation and the Ising spin glass, we find the persistence of ordered phases up to infinite temperature over the entire range of disorder.[1] We develop a renormalization-group technique that yields highly detailed information, including the exact distributions of local magnetizations and local spin-glass order parameters, which turn out to exhibit, as function of temperature, complex and distinctive tulip patterns. [1] C.N. Kaplan, M. Hinczewski, and A.N. Berker, arXiv:0811.3437v1 [cond-mat.dis-nn] (2008).

  8. Frequency-selective propagation of localized spoof surface plasmons in a graded plasmonic resonator chain

    PubMed Central

    Gao, Zhen; Gao, Fei; Shastri, Kunal Krishnaraj; Zhang, Baile

    2016-01-01

    Localized spoof surface plasmon polaritons (spoof-SPPs) in a graded spoof-plasmonic resonator chain with linearly increasing spacing are experimentally investigated at microwave frequencies. Transmission measurements and direct near-field mappings on this graded chain show that the propagation of localized spoof-SPPs can be cutoff at different positions along the graded chain under different frequencies due to the graded coupling between adjacent resonators. This mechanism can be used to guide localized spoof-SPPs in the graded chain to specific positions depending on the frequency and thereby implement a device that can work as a selective switch in integrated plasmonic circuits. PMID:27149656

  9. Frequency-selective propagation of localized spoof surface plasmons in a graded plasmonic resonator chain

    NASA Astrophysics Data System (ADS)

    Gao, Zhen; Gao, Fei; Shastri, Kunal Krishnaraj; Zhang, Baile

    2016-05-01

    Localized spoof surface plasmon polaritons (spoof-SPPs) in a graded spoof-plasmonic resonator chain with linearly increasing spacing are experimentally investigated at microwave frequencies. Transmission measurements and direct near-field mappings on this graded chain show that the propagation of localized spoof-SPPs can be cutoff at different positions along the graded chain under different frequencies due to the graded coupling between adjacent resonators. This mechanism can be used to guide localized spoof-SPPs in the graded chain to specific positions depending on the frequency and thereby implement a device that can work as a selective switch in integrated plasmonic circuits.

  10. Local structural ordering in surface-confined liquid crystals

    NASA Astrophysics Data System (ADS)

    Śliwa, I.; Jeżewski, W.; Zakharov, A. V.

    2017-06-01

    The effect of the interplay between attractive nonlocal surface interactions and attractive pair long-range intermolecular couplings on molecular structures of liquid crystals confined in thin cells with flat solid surfaces has been studied. Extending the McMillan mean field theory to include finite systems, it has been shown that confining surfaces can induce complex orientational and translational ordering of molecules. Typically, local smectic A, nematic, and isotropic phases have been shown to coexist in certain temperature ranges, provided that confining cells are sufficiently thick, albeit finite. Due to the nonlocality of surface interactions, the spatial arrangement of these local phases can display, in general, an unexpected complexity along the surface normal direction. In particular, molecules located in the vicinity of surfaces can still be organized in smectic layers, even though nematic and/or isotropic order can simultaneously appear in the interior of cells. The resulting surface freezing of smectic layers has been confirmed to occur even for rather weak surface interactions. The surface interactions cannot, however, prevent smectic layers from melting relatively close to system boundaries, even when molecules are still arranged in layers within the central region of the system. The internal interfaces, separating individual liquid-crystal phases, are demonstrated here to form fronts of local finite-size transitions that move across cells under temperature changes. Although the complex molecular ordering in surface confined liquid-crystal systems can essentially be controlled by temperature variations, specific thermal properties of these systems, especially the nature of the local transitions, are argued to be strongly conditioned to the degree of molecular packing.

  11. Evolutional Optimization on Material Ordering and Inventory Control of Supply Chain through Incentive Scheme

    NASA Astrophysics Data System (ADS)

    Prasertwattana, Kanit; Shimizu, Yoshiaki; Chiadamrong, Navee

    This paper studied the material ordering and inventory control of supply chain systems. The effect of controlling policies is analyzed under three different configurations of the supply chain systems, and the formulated problem has been solved by using an evolutional optimization method known as Differential Evolution (DE). The numerical results show that the coordinating policy with the incentive scheme outperforms the other policies and can improve the performance of the overall system as well as all members under the concept of supply chain management.

  12. Segment-scale, force-level theory of mesoscopic dynamic localization and entropic elasticity in entangled chain polymer liquids

    NASA Astrophysics Data System (ADS)

    Dell, Zachary E.; Schweizer, Kenneth S.

    2017-04-01

    We develop a segment-scale, force-based theory for the breakdown of the unentangled Rouse model and subsequent emergence of isotropic mesoscopic localization and entropic elasticity in chain polymer liquids in the absence of ergodicity-restoring anisotropic reptation or activated hopping motion. The theory is formulated in terms of a conformational N-dynamic-order-parameter generalized Langevin equation approach. It is implemented using a universal field-theoretic Gaussian thread model of polymer structure and closed at the level of the chain dynamic second moment matrix. The physical idea is that the isotropic Rouse model fails due to the dynamical emergence, with increasing chain length, of time-persistent intermolecular contacts determined by the combined influence of local uncrossability, long range polymer connectivity, and a self-consistent treatment of chain motion and the dynamic forces that hinder it. For long chain melts, the mesoscopic localization length (identified as the tube diameter) and emergent entropic elasticity predictions are in near quantitative agreement with experiment. Moreover, the onset chain length scales with the semi-dilute crossover concentration with a realistic numerical prefactor. Distinctive novel predictions are made for various off-diagonal correlation functions that quantify the full spatial structure of the dynamically localized polymer conformation. As the local excluded volume constraint and/or intrachain bonding spring are softened to allow chain crossability, the tube diameter is predicted to swell until it reaches the radius-of-gyration at which point mesoscopic localization vanishes in a discontinuous manner. A dynamic phase diagram for such a delocalization transition is constructed, which is qualitatively consistent with simulations and the classical concept of a critical entanglement degree of polymerization.

  13. Segment-scale, force-level theory of mesoscopic dynamic localization and entropic elasticity in entangled chain polymer liquids.

    PubMed

    Dell, Zachary E; Schweizer, Kenneth S

    2017-04-07

    We develop a segment-scale, force-based theory for the breakdown of the unentangled Rouse model and subsequent emergence of isotropic mesoscopic localization and entropic elasticity in chain polymer liquids in the absence of ergodicity-restoring anisotropic reptation or activated hopping motion. The theory is formulated in terms of a conformational N-dynamic-order-parameter generalized Langevin equation approach. It is implemented using a universal field-theoretic Gaussian thread model of polymer structure and closed at the level of the chain dynamic second moment matrix. The physical idea is that the isotropic Rouse model fails due to the dynamical emergence, with increasing chain length, of time-persistent intermolecular contacts determined by the combined influence of local uncrossability, long range polymer connectivity, and a self-consistent treatment of chain motion and the dynamic forces that hinder it. For long chain melts, the mesoscopic localization length (identified as the tube diameter) and emergent entropic elasticity predictions are in near quantitative agreement with experiment. Moreover, the onset chain length scales with the semi-dilute crossover concentration with a realistic numerical prefactor. Distinctive novel predictions are made for various off-diagonal correlation functions that quantify the full spatial structure of the dynamically localized polymer conformation. As the local excluded volume constraint and/or intrachain bonding spring are softened to allow chain crossability, the tube diameter is predicted to swell until it reaches the radius-of-gyration at which point mesoscopic localization vanishes in a discontinuous manner. A dynamic phase diagram for such a delocalization transition is constructed, which is qualitatively consistent with simulations and the classical concept of a critical entanglement degree of polymerization.

  14. Entropy, local order, and the freezing transition in Morse liquids.

    PubMed

    Chakraborty, Somendra Nath; Chakravarty, Charusita

    2007-07-01

    The behavior of the excess entropy of Morse and Lennard-Jones liquids is examined as a function of temperature, density, and the structural order metrics. The dominant pair correlation contribution to the excess entropy is estimated from simulation data for the radial distribution function. The pair correlation entropy (S2) of these simple liquids is shown to have a threshold value of (-3.5+/-0.3)kB at freezing. Moreover, S2 shows a T(-2/5) temperature dependence. The temperature dependence of the pair correlation entropy as well as the behavior at freezing closely correspond to earlier predictions, based on density functional theory, for the excess entropy of repulsive inverse power and Yukawa potentials [Rosenfeld, Phys. Rev. E 62, 7524 (2000)]. The correlation between the pair correlation entropy and the local translational and bond orientational order parameters is examined, and, in the case of the bond orientational order, is shown to be sensitive to the definition of the nearest neighbors. The order map between translational and bond orientational order for Morse liquids and solids shows a very similar pattern to that seen in Lennard-Jones-type systems.

  15. Universal service order; protective order for non-rural local exchange carriers--FCC. Policy statement.

    PubMed

    1998-08-11

    This protective order for non-rural local exchange carriers (LECs) is intended to facilitate and expedite review of documents containing trade secrets and commercial or financial information submitted by a person or entity that are either privileged or confidential. It reflects the manner in which "Confidential Information," as that term is defined herein, is to be treated in the universal service proceeding to select a mechanism to determine high cost support. The Order is not intended to constitute a resolution of the merits concerning whether any Confidential Information would be released publicly by the Commission upon a proper request.

  16. Local Orientational Order and Ultrafast Dynamics of Complex Liquids

    NASA Astrophysics Data System (ADS)

    Sengupta, Abhijit

    In this thesis, the results of subpicosecond transient grating optical Kerr effect experiments (TG-OKE) are presented that explore the extent of local order, the time scale of its persistence, and its influences on molecular dynamics in several systems in their isotropic liquid phase. Anisotropic interactions in liquids create short range local orientation correlation. Local orientational relaxation does not necessarily couple to the low frequency hydrodynamic modes and does not obey the Debye Stokes Einstein equation. Orientational relaxation becomes nonhydrodynamic if the local liquid structure is preserved on the time scale of the relaxation. The fastest orientational relaxation process (tau _{rm f} = 3.5 ps) in neat 2-ethylnaphthalene that displays no temperature dependence over a temperature range of 2^circ to 40^circC, is the relaxation of local "T" shaped dimer structure. A temperature independent power law decay with the identical exponent, 0.63, has been observed for the fast time scale orientational dynamics of the liquid crystals 5-cyanobiphenyl (5CB) and N-(methoxybenzylidene)butylaniline (MBBA) in their isotropic phases. These ultrafast measurements and the theoretical treatment demonstrate the dynamic universality and dynamic crossover phenomena in the isotropic phase of nematic liquid crystals for the first time. The TG-OKE experiments are able to observe solely the side group dynamics in two very different polymers poly(2-vinylnaphthalene) (P2VN) and poly(methylphenylsiloxane) (PMPS). Unlike polymers, o -terphenyl (OTP) is a fragile small molecule glass-forming liquid (T_{rm g} = 245K). The TG-OKE experiments performed between 25 ^circC and 100^circ C, demonstrate the presence of orientationally correlated domains (OCD) in OTP. Dissado and Hill's cluster model has been applied to analyze the data.

  17. State space orderings for Gauss-Seidel in Markov chains revisited

    SciTech Connect

    Dayar, T.

    1996-12-31

    Symmetric state space orderings of a Markov chain may be used to reduce the magnitude of the subdominant eigenvalue of the (Gauss-Seidel) iteration matrix. Orderings that maximize the elemental mass or the number of nonzero elements in the dominant term of the Gauss-Seidel splitting (that is, the term approximating the coefficient matrix) do not necessarily converge faster. An ordering of a Markov chain that satisfies Property-R is semi-convergent. On the other hand, there are semi-convergent symmetric state space orderings that do not satisfy Property-R. For a given ordering, a simple approach for checking Property-R is shown. An algorithm that orders the states of a Markov chain so as to increase the likelihood of satisfying Property-R is presented. The computational complexity of the ordering algorithm is less than that of a single Gauss-Seidel iteration (for sparse matrices). In doing all this, the aim is to gain an insight for faster converging orderings. Results from a variety of applications improve the confidence in the algorithm.

  18. Local mobility of polymer chain grafted onto polyethylene monitored by fluorescence depolarization

    NASA Astrophysics Data System (ADS)

    Tsuneda, Satoshi; Endo, Toshihiro; Saito, Kyoichi; Sugita, Kazuyuki; Horie, Kazuyuki; Yamashita, Takashi; Sugo, Takanobu

    1997-08-01

    The fluorescence depolarization method was used for investigating the local mobility of polymer chains grafted onto a porous polyethylene membrane. The real value of the rotational diffusion coefficient of a dansyl probe attached to the grafted polymer chain was obtained by using a correction method which eliminated the effect of multiple scattering on fluorescence anisotropy. The rotational mobility of the dansyl probe attached to the grafted polymer chain was sensitive to both degree of grafting and solvent polarity, which indicated that the conformation of the grafted polymer chain and the pore size of the base membrane strongly governed the dynamic parameters of the grafted polymer chain.

  19. Is compound chaining the serial-order mechanism of spelling? A simple recurrent network investigation.

    PubMed

    Goldberg, Ariel M; Rapp, Brenda

    2008-03-01

    Although considerable progress has been made in determining the cognitive architecture of spelling, less is known about the serial-order mechanism of spelling: the process(es) involved in producing each letter in the proper order. In this study, we investigate compound chaining as a theory of the serial-order mechanism of spelling. Chaining theories posit that the retrieval from memory of each element in a sequence is dependent upon the retrieval of previous elements. We examine this issue by comparing the performance of simple recurrent networks (a class of neural networks that we show can operate by chaining) with that of two individuals with acquired dysgraphia affecting the serial-order mechanism of spelling-the graphemic buffer. We compare their performance in terms of the effects of serial position, the effect of length on overall letter accuracy, and the effect of length on the accuracy of specific positions within the word. We find that the networks produce significantly different patterns of performance from those of the dysgraphics, indicating that compound chaining is not an appropriate theory of the serial-order mechanism of spelling.

  20. Locality and Word Order in Active Dependency Formation in Bangla.

    PubMed

    Chacón, Dustin A; Imtiaz, Mashrur; Dasgupta, Shirsho; Murshed, Sikder M; Dan, Mina; Phillips, Colin

    2016-01-01

    Research on filler-gap dependencies has revealed that there are constraints on possible gap sites, and that real-time sentence processing is sensitive to these constraints. This work has shown that comprehenders have preferences for potential gap sites, and immediately detect when these preferences are not met. However, neither the mechanisms that select preferred gap sites nor the mechanisms used to detect whether these preferences are met are well-understood. In this paper, we report on three experiments in Bangla, a language in which gaps may occur in either a pre-verbal embedded clause or a post-verbal embedded clause. This word order variation allows us to manipulate whether the first gap linearly available is contained in the same clause as the filler, which allows us to dissociate structural locality from linear locality. In Experiment 1, an untimed ambiguity resolution task, we found a global bias to resolve a filler-gap dependency with the first gap linearly available, regardless of structural hierarchy. In Experiments 2 and 3, which use the filled-gap paradigm, we found sensitivity to disruption only when the blocked gap site is both structurally and linearly local, i.e., the filler and the gap site are contained in the same clause. This suggests that comprehenders may not show sensitivity to the disruption of all preferred gap resolutions.

  1. Locality and Word Order in Active Dependency Formation in Bangla

    PubMed Central

    Chacón, Dustin A.; Imtiaz, Mashrur; Dasgupta, Shirsho; Murshed, Sikder M.; Dan, Mina; Phillips, Colin

    2016-01-01

    Research on filler-gap dependencies has revealed that there are constraints on possible gap sites, and that real-time sentence processing is sensitive to these constraints. This work has shown that comprehenders have preferences for potential gap sites, and immediately detect when these preferences are not met. However, neither the mechanisms that select preferred gap sites nor the mechanisms used to detect whether these preferences are met are well-understood. In this paper, we report on three experiments in Bangla, a language in which gaps may occur in either a pre-verbal embedded clause or a post-verbal embedded clause. This word order variation allows us to manipulate whether the first gap linearly available is contained in the same clause as the filler, which allows us to dissociate structural locality from linear locality. In Experiment 1, an untimed ambiguity resolution task, we found a global bias to resolve a filler-gap dependency with the first gap linearly available, regardless of structural hierarchy. In Experiments 2 and 3, which use the filled-gap paradigm, we found sensitivity to disruption only when the blocked gap site is both structurally and linearly local, i.e., the filler and the gap site are contained in the same clause. This suggests that comprehenders may not show sensitivity to the disruption of all preferred gap resolutions. PMID:27610090

  2. The Mott-Hubbard Insulator: localization and topological quantum order

    NASA Astrophysics Data System (ADS)

    Martin, Richard M.

    2010-03-01

    An insulating state of condensed matter is characterized by localization of the center of mass of the electrons. This criterion can be addressed in terms of the ground state on a torus with boundary conditions ψK(x1+L,x2, ) = exp( i K L) ψK(x1,x2, ). As shown by Kohn[1], in an insulator the energy is insensitive to K as L ->∞, whereas in an ideal metal it increases as K^2. In addition, Souza, et al. derived expressions for the localization length in terms of the wavefunction as a function of K. The present work generalizes the arguments to provide a fundamental distinction between ``band'' and ``Mott-Hubbard'' insulators. The criteria involve only counting of electrons and experimentally measurable quantities independent of models, and they lead to the requirement that a Mott-Hubbard insulator with no broken local symmetry must have topological quantum order.[4pt] [1] W. Kohn, Phys. Rev. 133, A171 (1964)[0pt] [2] I. Souza, et al., Phys. Rev. B 62, 1666 (2000).

  3. Local order and mobility of water molecules around ambivalent helices.

    PubMed

    Bhattacharjee, Nicholus; Biswas, Parbati

    2011-10-27

    Water on a protein surface plays a key role in determining the structure and dynamics of proteins. Compared to the properties of bulk water, many aspects of the structure and dynamics of the water surrounding the proteins are less understood. It is interesting therefore to explore how the properties of the water within the solvation shell around the peptide molecule depend on its specific secondary structure. In this work we investigate the orientational order and residence times of the water molecules to characterize the structure, energetics, and dynamics of the hydration shell water around ambivalent peptides. Ambivalent sequences are identical sequences which display multiple secondary structures in different proteins. Molecular dynamics simulations of representative proteins containing variable helix, variable nonhelix, and conserved helix are also used to explore the local structure and mobility of water molecules in their vicinity. The results, for the first time, depict a different water distribution pattern around the conserved and variable helices. The water molecules surrounding the helical segments in variable helices are found to possess a less locally ordered structure compared to those around their corresponding nonhelical counterparts and conserved helices. The long conserved helices exhibit extremely high local residence times compared to the helical conformations of the variable helices, whereas the residence times of the nonhelical conformations of the variable helices are comparable to those of the short conserved helices. This differential pattern of the structure and dynamics of water molecules in the vicinity of conserved/variable helices may lend valuable insights for understanding the role of solvent effects in determining sequence ambivalency and help in improving the accuracy of water models used in the simulations of proteins.

  4. Treatment of disordered and ordered systems of polymer chains by lattice methods

    PubMed Central

    Flory, Paul J.

    1982-01-01

    Classical lattice theories of systems of long-chain molecules provide estimates of the number Z of random configurations to the exclusion of ordered ones. The decrease of Z thus estimated to values [unk]1 with decrease in chain flexibility at high densities is genuine, but it does not take account of eligible ordered configurations; the latter are not a subset of the configurations whose numbers are estimated by classical lattice methods. Failure to recognize this fact and the fundamental distinction between disordered and ordered states has engendered misinterpretations and has cast doubt on the validity of lattice-statistical methods. In a system at equilibrium, the decline of Z (disordered) with decrease in chain flexibility must be arrested by a first order transition to an ordered state. The inference that approach of Z (disordered) to values <1 presages a thermodynamic transition of second order is tenable only if the array of ordered configurations, not comprehended by theories in which the mean field of unoccupied lattice sites is random, can be ignored. PMID:16593214

  5. Relaxation of antiferromagnetic order in spin-1/2 chains following a quantum quench.

    PubMed

    Barmettler, Peter; Punk, Matthias; Gritsev, Vladimir; Demler, Eugene; Altman, Ehud

    2009-04-03

    We study the unitary time evolution of antiferromagnetic order in anisotropic Heisenberg chains that are initially prepared in a pure quantum state far from equilibrium. Our analysis indicates that the antiferromagnetic order imprinted in the initial state vanishes exponentially. Depending on the anisotropy parameter, oscillatory or nonoscillatory relaxation dynamics is observed. Furthermore, the corresponding relaxation time exhibits a minimum at the critical point, in contrast to the usual notion of critical slowing down, from which a maximum is expected.

  6. Nano-confinement induced chain alignment in ordered P3HT nanostructures defined by nanoimprint lithography.

    PubMed

    Aryal, Mukti; Trivedi, Krutarth; Hu, Wenchuang Walter

    2009-10-27

    Control of polymer morphology and chain orientation is of great importance in organic solar cells and field effect transistors (OFETs). Here we report the use of nanoimprint lithography to fabricate large-area, high-density, and ordered nanostructures in conjugated polymer poly(3-hexylthiophene) or P3HT, and also to simultaneously control 3D chain alignment within these P3HT nanostructures. Out-of-plane and in-plane grazing incident X-ray diffraction were used to determine the chain orientation in the imprinted P3HT nanostructures, which shows a strong dependence on their geometry (gratings or pillars). Vertical chain alignment was observed in both nanogratings and nanopillars, indicating strong potential to improve charge transport and optical properties for solar cells in comparison to bulk heterojunction structure. For P3HT nanogratings, pi-pi stacking along the grating direction with an angular distribution of +/-20 degrees was found, which is favorable for OFETs. We propose the chain alignment is induced by the nanoconfinement during nanoimprinting via pi-pi interaction and hydrophobic interaction between polymer chain and mold surfaces.

  7. Local order variations in confined hard-sphere fluids.

    PubMed

    Nygård, Kim; Sarman, Sten; Kjellander, Roland

    2013-10-28

    Pair distributions of fluids confined between two surfaces at close distance are of fundamental importance for a variety of physical, chemical, and biological phenomena, such as interactions between macromolecules in solution, surface forces, and diffusion in narrow pores. However, in contrast to bulk fluids, properties of inhomogeneous fluids are seldom studied at the pair-distribution level. Motivated by recent experimental advances in determining anisotropic structure factors of confined fluids, we analyze theoretically the underlying anisotropic pair distributions of the archetypical hard-sphere fluid confined between two parallel hard surfaces using first-principles statistical mechanics of inhomogeneous fluids. For this purpose, we introduce an experimentally accessible ensemble-averaged local density correlation function and study its behavior as a function of confining slit width. Upon increasing the distance between the confining surfaces, we observe an alternating sequence of strongly anisotropic versus more isotropic local order. The latter is due to packing frustration of the spherical particles. This observation highlights the importance of studying inhomogeneous fluids at the pair-distribution level.

  8. Anomalous critical slowdown at a first order phase transition in single polymer chains

    NASA Astrophysics Data System (ADS)

    Zhang, Shuangshuang; Qi, Shuanhu; Klushin, Leonid I.; Skvortsov, Alexander M.; Yan, Dadong; Schmid, Friederike

    2017-08-01

    Using Brownian dynamics, we study the dynamical behavior of a polymer grafted onto an adhesive surface close to the mechanically induced adsorption-stretching transition. Even though the transition is first order (in the infinite chain length limit, the stretching degree of the chain jumps discontinuously), the characteristic relaxation time is found to grow according to a power law as the transition point is approached. We present a dynamic effective interface model which reproduces these observations and provides an excellent quantitative description of the simulation data. The generic nature of the theoretical model suggests that the unconventional mixing of features that are characteristic for first-order transitions (a jump in an order parameter) and features that are characteristic of critical points (an anomalous slowdown) may be a common phenomenon in force-driven phase transitions of macromolecules.

  9. An Order Insertion Scheduling Model of Logistics Service Supply Chain Considering Capacity and Time Factors

    PubMed Central

    Yang, Yi; Wang, Shuqing; Liu, Yang

    2014-01-01

    Order insertion often occurs in the scheduling process of logistics service supply chain (LSSC), which disturbs normal time scheduling especially in the environment of mass customization logistics service. This study analyses order similarity coefficient and order insertion operation process and then establishes an order insertion scheduling model of LSSC with service capacity and time factors considered. This model aims to minimize the average unit volume operation cost of logistics service integrator and maximize the average satisfaction degree of functional logistics service providers. In order to verify the viability and effectiveness of our model, a specific example is numerically analyzed. Some interesting conclusions are obtained. First, along with the increase of completion time delay coefficient permitted by customers, the possible inserting order volume first increases and then trends to be stable. Second, supply chain performance reaches the best when the volume of inserting order is equal to the surplus volume of the normal operation capacity in mass service process. Third, the larger the normal operation capacity in mass service process is, the bigger the possible inserting order's volume will be. Moreover, compared to increasing the completion time delay coefficient, improving the normal operation capacity of mass service process is more useful. PMID:25276851

  10. An order insertion scheduling model of logistics service supply chain considering capacity and time factors.

    PubMed

    Liu, Weihua; Yang, Yi; Wang, Shuqing; Liu, Yang

    2014-01-01

    Order insertion often occurs in the scheduling process of logistics service supply chain (LSSC), which disturbs normal time scheduling especially in the environment of mass customization logistics service. This study analyses order similarity coefficient and order insertion operation process and then establishes an order insertion scheduling model of LSSC with service capacity and time factors considered. This model aims to minimize the average unit volume operation cost of logistics service integrator and maximize the average satisfaction degree of functional logistics service providers. In order to verify the viability and effectiveness of our model, a specific example is numerically analyzed. Some interesting conclusions are obtained. First, along with the increase of completion time delay coefficient permitted by customers, the possible inserting order volume first increases and then trends to be stable. Second, supply chain performance reaches the best when the volume of inserting order is equal to the surplus volume of the normal operation capacity in mass service process. Third, the larger the normal operation capacity in mass service process is, the bigger the possible inserting order's volume will be. Moreover, compared to increasing the completion time delay coefficient, improving the normal operation capacity of mass service process is more useful.

  11. The Connection Between Local Icosahedral Order in Metallic Liquids and the Nucleation of Ordered Phases

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A. (Technical Monitor); Kelton, K. F.; Gangopadhyay, A.; Lee, G. W.; Hyers, R. W.; Rathz, R. J.; Rogers, J.; Schenk, T.; Simonet, V.; Holland-Moritz, D.

    2003-01-01

    Over fifty years ago, David Turnbull showed that the temperature of many metallic liquids could be decreased far below their equilibrium melting temperature before crystallization occurred. To explain those surprising results, Charles Frank hypothesized that the local structures of undercooled metallic liquids are different from those of crystal phases, containing a significant degree of icosahedral order that is incompatible with extended periodicity. Such structural differences must create a barrier to the formation crystal phases, explaining the observed undercooling behavior. If true, the nucleation from the liquid of phases with extended icosahedral order should be easier. Icosahedral order is often favored in small clusters, as observed recently in liquid-like clusters of pure Pb on the (111) surface of Si, for example. However, it has never been shown that an increasing preference for icosahedral phase formation can be directly linked with the development of icosahedral order in the undercooled liquid. Owing to the combination of very recent advances in levitation techniques and the availability of synchrotron x-ray and high flux neutron facilities, this is shown here.

  12. The Connection Between Local Icosahedral Order in Metallic Liquids and the Nucleation Behavior of Ordered Phases

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.; Gangopadhyay, A. K.; Lee, G. W.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.; Robinson, M. B.; Schenk, T.; Simonet, V.

    2003-01-01

    Over fifty years ago, David Turnbull showed that the temperature of many metallic liquids could be decreased far below their equilibrium melting temperature before crystallization occurred. To explain those surprising results, Charles Frank hypothesized that the local structures of undercooled metallic liquids are different from those of crystal phases, containing a significant degree of icosahedral order that is incompatible with extended periodicity. Such structural differences must create a barrier to the formation crystal phases, explaining the observed undercooling behavior. If true, the nucleation from the liquid of phases with extended icosahedral order should be easier. Icosahedral order is often favored in small clusters, as observed recently in liquid-like clusters of pure Pb on the (111) surface of Si[3], for example. However, it has never been shown that an increasing preference for icosahedral phase formation can be directly linked with the development of icosahedral order in the undercooled liquid. Owing to the combination of very recent advances in levitation techniques and the availability of synchrotron x-ray and high flux neutron facilities, this is shown here.

  13. The Connection Between Local Icosahedral Order in Metallic Liquids and the Nucleation of Ordered Phases

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A. (Technical Monitor); Kelton, K. F.; Gangopadhyay, A.; Lee, G. W.; Hyers, R. W.; Rathz, R. J.; Rogers, J.; Schenk, T.; Simonet, V.; Holland-Moritz, D.

    2003-01-01

    Over fifty years ago, David Turnbull showed that the temperature of many metallic liquids could be decreased far below their equilibrium melting temperature before crystallization occurred. To explain those surprising results, Charles Frank hypothesized that the local structures of undercooled metallic liquids are different from those of crystal phases, containing a significant degree of icosahedral order that is incompatible with extended periodicity. Such structural differences must create a barrier to the formation crystal phases, explaining the observed undercooling behavior. If true, the nucleation from the liquid of phases with extended icosahedral order should be easier. Icosahedral order is often favored in small clusters, as observed recently in liquid-like clusters of pure Pb on the (111) surface of Si, for example. However, it has never been shown that an increasing preference for icosahedral phase formation can be directly linked with the development of icosahedral order in the undercooled liquid. Owing to the combination of very recent advances in levitation techniques and the availability of synchrotron x-ray and high flux neutron facilities, this is shown here.

  14. The Connection Between Local Icosahedral Order in Metallic Liquids and the Nucleation of Ordered Phases

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.; Gangopadhyay, A. K.; Lee, G. W.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.; Robinson, M. B.; Schenk, T.; Simonet, V.; Holland-Moritz, D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Over fifty years ago, David Turnbull showed that the temperature of many metallic liquids could be decreased far below their equilibrium melting temperature before crystallization occurred. To explain those surprising results, Charles Frank hypothesized that the local structures of undercooled metallic liquids are different from those of crystal phases, containing a significant degree of icosahedral order that is incompatible with extended periodicity. Such structural differences must create a barrier to the formation crystal phases, explaining the observed undercooling behavior. If true, the nucleation from the liquid of phases with extended icosahedral order should be easier. Icosahedral order is often favored in small clusters, as observed recently in liquid-like clusters of pure Pb on the (111) surface of Si(3), for example. However, it has never been shown that an increasing preference for icosahedral phase formation can be directly linked with the development of icosahedral order in the undercooled liquid. Owing to the combination of very recent advances in levitation techniques and the availability of synchrotron X-ray and high flux neutron facilities.

  15. The Connection Between Local Icosahedral Order in Metallic Liquids and the Nucleation Behavior of Ordered Phases

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.; Gangopadhyay, A. K.; Lee, G. W.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.; Robinson, M. B.; Schenk, T.; Simonet, V.

    2003-01-01

    Over fifty years ago, David Turnbull showed that the temperature of many metallic liquids could be decreased far below their equilibrium melting temperature before crystallization occurred. To explain those surprising results, Charles Frank hypothesized that the local structures of undercooled metallic liquids are different from those of crystal phases, containing a significant degree of icosahedral order that is incompatible with extended periodicity. Such structural differences must create a barrier to the formation crystal phases, explaining the observed undercooling behavior. If true, the nucleation from the liquid of phases with extended icosahedral order should be easier. Icosahedral order is often favored in small clusters, as observed recently in liquid-like clusters of pure Pb on the (111) surface of Si[3], for example. However, it has never been shown that an increasing preference for icosahedral phase formation can be directly linked with the development of icosahedral order in the undercooled liquid. Owing to the combination of very recent advances in levitation techniques and the availability of synchrotron x-ray and high flux neutron facilities, this is shown here.

  16. Co-deposition of amyloidogenic immunoglobulin light and heavy chains in localized pulmonary amyloidosis.

    PubMed

    Kaplan, Batia; Martin, Brian M; Boykov, Olga; Gal, Rivka; Pras, Mordechai; Shechtman, Itzhak; Saute, Milton; Kramer, Mordechai R

    2005-10-01

    Localized pulmonary amyloidosis is a rare condition whose pathogenesis is insufficiently understood. In the present study, we report a case of localized pulmonary amyloidosis associated with lung-restricted lymphoplasmacytoid lymphoma, monoclonal for immunoglobulin (Ig) G lambda (lambda). Biochemical microtechniques have been applied for extraction, purification, and characterization of amyloid proteins. Surprisingly, chemical analysis of these proteins revealed a not-previously-described case of combined deposits containing Ig fragments of gamma heavy chain (variable domain) and lambda light chain (constant domain). In view of the absence of circulating monoclonal Ig, this case supports the hypothesis that localized amyloid is formed by local plasmacytoid cells.

  17. Platypus chain reaction: directional and ordered meiotic pairing of the multiple sex chromosome chain in Ornithorhynchus anatinus.

    PubMed

    Daish, Tasman; Casey, Aaron; Grützner, Frank

    2009-01-01

    Monotremes are phylogenetically and phenotypically unique animals with an unusually complex sex chromosome system that is composed of ten chromosomes in platypus and nine in echidna. These chromosomes are alternately linked (X1Y1, X2Y2, ...) at meiosis via pseudoautosomal regions and segregate to form spermatozoa containing either X or Y chromosomes. The physical and epigenetic mechanisms involved in pairing and assembly of the complex sex chromosome chain in early meiotic prophase I are completely unknown. We have analysed the pairing dynamics of specific sex chromosome pseudoautosomal regions in platypus spermatocytes during prophase of meiosis I. Our data show a highly coordinated pairing process that begins at the terminal Y5 chromosome and completes with the union of sex chromosomes X1Y1. The consistency of this ordered assembly of the chain is remarkable and raises questions about the mechanisms and factors that regulate the differential pairing of sex chromosomes and how this relates to potential meiotic silencing mechanisms and alternate segregation.

  18. Fractal dimensions of wave functions and local spectral measures on the Fibonacci chain

    NASA Astrophysics Data System (ADS)

    Macé, Nicolas; Jagannathan, Anuradha; Piéchon, Frédéric

    2016-05-01

    We present a theoretical framework for understanding the wave functions and spectrum of an extensively studied paradigm for quasiperiodic systems, namely the Fibonacci chain. Our analytical results, which are obtained in the limit of strong modulation of the hopping amplitudes, are in good agreement with published numerical data. In the perturbative limit, we show a symmetry of wave functions under permutation of site and energy indices. We compute the wave-function renormalization factors and from them deduce analytical expressions for the fractal exponents corresponding to individual wave functions, as well as their global averages. The multifractality of wave functions is seen to appear at next-to-leading order in ρ . Exponents for the local spectral density are given, in extremely good accord with numerical calculations. Interestingly, our analytical results for exponents are observed to describe the system rather well even for values of ρ well outside the domain of applicability of perturbation theory.

  19. Nak regulates localization of clathrin sites in higher-order dendrites to promote local dendrite growth.

    PubMed

    Yang, Wei-Kang; Peng, Yu-Huei; Li, Hsun; Lin, Hsiu-Chen; Lin, Yu-Ching; Lai, Tzu-Ting; Suo, Hsien; Wang, Chien-Hsiang; Lin, Wei-Hsiang; Ou, Chan-Yen; Zhou, Xin; Pi, Haiwei; Chang, Henry C; Chien, Cheng-Ting

    2011-10-20

    During development, dendrites arborize in a field several hundred folds of their soma size, a process regulated by intrinsic transcription program and cell adhesion molecule (CAM)-mediated interaction. However, underlying cellular machineries that govern distal higher-order dendrite extension remain largely unknown. Here, we show that Nak, a clathrin adaptor-associated kinase, promotes higher-order dendrite growth through endocytosis. In nak mutants, both the number and length of higher-order dendrites are reduced, which are phenocopied by disruptions of clathrin-mediated endocytosis. Nak interacts genetically with components of the endocytic pathway, colocalizes with clathrin puncta, and is required for dendritic localization of clathrin puncta. More importantly, these Nak-containing clathrin structures preferentially localize to branching points and dendritic tips that are undergoing active growth. We present evidence that the Drosophila L1-CAM homolog Neuroglian is a relevant cargo of Nak-dependent internalization, suggesting that localized clathrin-mediated endocytosis of CAMs facilitates the extension of nearby higher-order dendrites. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Spiral magnetic order and topological superconductivity in a chain of magnetic adatoms on a two-dimensional superconductor

    NASA Astrophysics Data System (ADS)

    Christensen, Morten H.; Schecter, Michael; Flensberg, Karsten; Andersen, Brian M.; Paaske, Jens

    2016-10-01

    We study the magnetic and electronic phases of a one-dimensional (1D) magnetic adatom chain on a 2D superconductor. In particular, we confirm the existence of a "self-organized" 1D topologically nontrivial superconducting phase within the set of subgap Yu-Shiba-Rusinov states formed along the magnetic chain. This phase is stabilized by incommensurate spiral correlations within the magnetic chain that arise from the competition between short-range ferromagnetic and long-range antiferromagnetic electron-induced exchange interactions, similar to a recent study for a 3D superconductor [M. Schecter et al., Phys. Rev. B 93, 140503(R) (2016), 10.1103/PhysRevB.93.140503]. The exchange interactions along diagonal directions are also considered and found to display behavior similar to a 1D substrate when close to half filling. We show that the topological phase diagram is robust against local superconducting order parameter suppression and weak substrate spin-orbit coupling. Lastly, we study the effect of a direct ferromagnetic exchange coupling between the adatoms, and find the region of spiral order in the phase diagram to be significantly enlarged in a wide range of the direct exchange coupling.

  1. Anisotropy of the monomer random walk in a polymer melt: local-order and connectivity effects

    NASA Astrophysics Data System (ADS)

    Bernini, S.; Leporini, D.

    2016-05-01

    The random walk of a bonded monomer in a polymer melt is anisotropic due to local order and bond connectivity. We investigate both effects by molecular-dynamics simulations on melts of fully-flexible linear chains ranging from dimers (M  =  2) up to entangled polymers (M  =  200). The corresponding atomic liquid is also considered a reference system. To disentangle the influence of the local geometry and the bond arrangements, and to reveal their interplay, we define suitable measures of the anisotropy emphasising either the former or the latter aspect. Connectivity anisotropy, as measured by the correlation between the initial bond orientation and the direction of the subsequent monomer displacement, shows a slight enhancement due to the local order at times shorter than the structural relaxation time. At intermediate times—when the monomer displacement is comparable to the bond length—a pronounced peak and then decays slowly as t -1/2, becoming negligible when the displacement is as large as about five bond lengths, i.e. about four monomer diameters or three Kuhn lengths. Local-geometry anisotropy, as measured by the correlation between the initial orientation of a characteristic axis of the Voronoi cell and the subsequent monomer dynamics, is affected at shorter times than the structural relaxation time by the cage shape with antagonistic disturbance by the connectivity. Differently, at longer times, the connectivity favours the persistence of the local-geometry anisotropy, which vanishes when the monomer displacement exceeds the bond length. Our results strongly suggest that the sole consideration of the local order is not enough to understand the microscopic origin of the rattling amplitude of the trapped monomer in the cage of the neighbours.

  2. Effects of conformational ordering on protein/polyelectrolyte electrostatic complexation: ionic binding and chain stiffening

    PubMed Central

    Cao, Yiping; Fang, Yapeng; Nishinari, Katsuyoshi; Phillips, Glyn O.

    2016-01-01

    Coupling of electrostatic complexation with conformational transition is rather general in protein/polyelectrolyte interaction and has important implications in many biological processes and practical applications. This work studied the electrostatic complexation between κ-carrageenan (κ-car) and type B gelatin, and analyzed the effects of the conformational ordering of κ-car induced upon cooling in the presence of potassium chloride (KCl) or tetramethylammonium iodide (Me4NI). Experimental results showed that the effects of conformational ordering on protein/polyelectrolyte electrostatic complexation can be decomposed into ionic binding and chain stiffening. At the initial stage of conformational ordering, electrostatic complexation can be either suppressed or enhanced due to the ionic bindings of K+ and I− ions, which significantly alter the charge density of κ-car or occupy the binding sites of gelatin. Beyond a certain stage of conformational ordering, i.e., helix content θ > 0.30, the effect of chain stiffening, accompanied with a rapid increase in helix length ζ, becomes dominant and tends to dissociate the electrostatic complexation. The effect of chain stiffening can be theoretically interpreted in terms of double helix association. PMID:27030165

  3. Effects of conformational ordering on protein/polyelectrolyte electrostatic complexation: ionic binding and chain stiffening

    NASA Astrophysics Data System (ADS)

    Cao, Yiping; Fang, Yapeng; Nishinari, Katsuyoshi; Phillips, Glyn O.

    2016-03-01

    Coupling of electrostatic complexation with conformational transition is rather general in protein/polyelectrolyte interaction and has important implications in many biological processes and practical applications. This work studied the electrostatic complexation between κ-carrageenan (κ-car) and type B gelatin, and analyzed the effects of the conformational ordering of κ-car induced upon cooling in the presence of potassium chloride (KCl) or tetramethylammonium iodide (Me4NI). Experimental results showed that the effects of conformational ordering on protein/polyelectrolyte electrostatic complexation can be decomposed into ionic binding and chain stiffening. At the initial stage of conformational ordering, electrostatic complexation can be either suppressed or enhanced due to the ionic bindings of K+ and I‑ ions, which significantly alter the charge density of κ-car or occupy the binding sites of gelatin. Beyond a certain stage of conformational ordering, i.e., helix content θ > 0.30, the effect of chain stiffening, accompanied with a rapid increase in helix length ζ, becomes dominant and tends to dissociate the electrostatic complexation. The effect of chain stiffening can be theoretically interpreted in terms of double helix association.

  4. Directing alkyl chain ordering of functional phosphorus coupling agents on ZrO2.

    PubMed

    Lomoschitz, Christoph J; Feichtenschlager, Bernhard; Moszner, Norbert; Puchberger, Michael; Müller, Klaus; Abele, Matthias; Kickelbick, Guido

    2011-04-05

    ZrO(2) powder (6.6 m(2)/g) was modified using polymerizable phosphorus-based coupling agents (P-CAs) (i.e., phosphonic acid, phosphoric acid, and bis-phosphonic acid), resulting in densely grafted layers as determined by thermogravimetry and elemental analysis (up to 4.2 molecules/nm(2)). The applied P-CAs contained a methacrylate group, which led to the covalent incorporation of a polymerizable moiety into the grafted layer. To direct the ordering of the alkyl chains in the layer, three different approaches were evaluated with respect to their structure-directing ability by means of FT-IR and nitrogen sorption at 77 K: (i) variation of the chain length, (ii) variation of the anchoring group and (iii) comodification with a defined amount of a nonfunctional phosphonic acid (variation of the functional/nonfunctional acid ratio). It was shown that the chain length and anchoring group size have significant effects on the alkyl chain ordering and morphology of the layer.

  5. Entanglement and local extremes at an infinite-order quantum phase transition

    SciTech Connect

    Rulli, C. C.; Sarandy, M. S.

    2010-03-15

    The characterization of an infinite-order quantum phase transition (QPT) by entanglement measures is analyzed. To this aim, we consider two closely related solvable spin-1/2 chains, namely, the Ashkin-Teller and the staggered XXZ models. These systems display a distinct pattern of eigenstates but exhibit the same thermodynamics, that is, the same energy spectrum. By performing exact diagonalization, we investigate the behavior of pairwise and block entanglement in the ground state of both models. In contrast with the XXZ chain, we show that pairwise entanglement fails in the characterization of the infinite-order QPT in the Ashkin-Teller model, although it can be achieved by analyzing the distance of the pair state from the separability boundary. Concerning block entanglement, we show that both XXZ and Ashkin-Teller models exhibit identical von Neumann entropies as long as a suitable choice of blocks is performed. Entanglement entropy is then shown to be able to identify the quantum phase diagram, even though its local extremes (either maximum or minimum) may also appear in the absence of any infinite-order QPT.

  6. High-order sampling schemes for path integrals and Gaussian chain simulations of polymers

    SciTech Connect

    Müser, Martin H.; Müller, Marcus

    2015-05-07

    In this work, we demonstrate that path-integral schemes, derived in the context of many-body quantum systems, benefit the simulation of Gaussian chains representing polymers. Specifically, we show how to decrease discretization corrections with little extra computation from the usual O(1/P{sup 2}) to O(1/P{sup 4}), where P is the number of beads representing the chains. As a consequence, high-order integrators necessitate much smaller P than those commonly used. Particular emphasis is placed on the questions of how to maintain this rate of convergence for open polymers and for polymers confined by a hard wall as well as how to ensure efficient sampling. The advantages of the high-order sampling schemes are illustrated by studying the surface tension of a polymer melt and the interface tension in a binary homopolymers blend.

  7. Finite-size scaling at the first-order quantum transitions of quantum Potts chains.

    PubMed

    Campostrini, Massimo; Nespolo, Jacopo; Pelissetto, Andrea; Vicari, Ettore

    2015-05-01

    We investigate finite-size effects at first-order quantum transitions. For this purpose we consider the one-dimensional q-state quantum Potts chain, in particular with q=10, which undergoes a first-order transition, separating the quantum disordered and ordered phases with a discontinuity in the energy density of the ground state. In agreement with the general theory, around the transition the low-energy properties show finite-size scaling with respect to appropriate scaling variables. Their size dependence is particularly sensitive to boundary conditions, which is a specific feature of first-order quantum transitions. Finally, we also discuss the finite-size behavior of the q-state Potts model (q≥2) at the first-order transitions driven by a parallel magnetic field, occurring in the ferromagnetic phase.

  8. Localization in Interacting Fermionic Chains with Quasi-Random Disorder

    NASA Astrophysics Data System (ADS)

    Mastropietro, Vieri

    2017-04-01

    We consider a system of fermions with a quasi-random almost-Mathieu disorder interacting through a many-body short range potential. We establish exponential decay of the zero temperature correlations, indicating localization of the interacting ground state, for weak hopping and interaction and almost everywhere in the frequency and phase; this extends the analysis in Mastropietro (Commun Math Phys 342(1):217-250, 2016) to chemical potentials outside spectral gaps. The proof is based on Renormalization Group and it is inspired by techniques developed to deal with KAM Lindstedt series.

  9. Detecting memory and structure in human navigation patterns using Markov chain models of varying order.

    PubMed

    Singer, Philipp; Helic, Denis; Taraghi, Behnam; Strohmaier, Markus

    2014-01-01

    One of the most frequently used models for understanding human navigation on the Web is the Markov chain model, where Web pages are represented as states and hyperlinks as probabilities of navigating from one page to another. Predominantly, human navigation on the Web has been thought to satisfy the memoryless Markov property stating that the next page a user visits only depends on her current page and not on previously visited ones. This idea has found its way in numerous applications such as Google's PageRank algorithm and others. Recently, new studies suggested that human navigation may better be modeled using higher order Markov chain models, i.e., the next page depends on a longer history of past clicks. Yet, this finding is preliminary and does not account for the higher complexity of higher order Markov chain models which is why the memoryless model is still widely used. In this work we thoroughly present a diverse array of advanced inference methods for determining the appropriate Markov chain order. We highlight strengths and weaknesses of each method and apply them for investigating memory and structure of human navigation on the Web. Our experiments reveal that the complexity of higher order models grows faster than their utility, and thus we confirm that the memoryless model represents a quite practical model for human navigation on a page level. However, when we expand our analysis to a topical level, where we abstract away from specific page transitions to transitions between topics, we find that the memoryless assumption is violated and specific regularities can be observed. We report results from experiments with two types of navigational datasets (goal-oriented vs. free form) and observe interesting structural differences that make a strong argument for more contextual studies of human navigation in future work.

  10. Detecting Memory and Structure in Human Navigation Patterns Using Markov Chain Models of Varying Order

    PubMed Central

    Singer, Philipp; Helic, Denis; Taraghi, Behnam; Strohmaier, Markus

    2014-01-01

    One of the most frequently used models for understanding human navigation on the Web is the Markov chain model, where Web pages are represented as states and hyperlinks as probabilities of navigating from one page to another. Predominantly, human navigation on the Web has been thought to satisfy the memoryless Markov property stating that the next page a user visits only depends on her current page and not on previously visited ones. This idea has found its way in numerous applications such as Google's PageRank algorithm and others. Recently, new studies suggested that human navigation may better be modeled using higher order Markov chain models, i.e., the next page depends on a longer history of past clicks. Yet, this finding is preliminary and does not account for the higher complexity of higher order Markov chain models which is why the memoryless model is still widely used. In this work we thoroughly present a diverse array of advanced inference methods for determining the appropriate Markov chain order. We highlight strengths and weaknesses of each method and apply them for investigating memory and structure of human navigation on the Web. Our experiments reveal that the complexity of higher order models grows faster than their utility, and thus we confirm that the memoryless model represents a quite practical model for human navigation on a page level. However, when we expand our analysis to a topical level, where we abstract away from specific page transitions to transitions between topics, we find that the memoryless assumption is violated and specific regularities can be observed. We report results from experiments with two types of navigational datasets (goal-oriented vs. free form) and observe interesting structural differences that make a strong argument for more contextual studies of human navigation in future work. PMID:25013937

  11. Evidence for Ig Light Chain Isotype Exclusion in Shark B Lymphocytes Suggests Ordered Mechanisms

    PubMed Central

    Lui, Anita; Ohta, Yuko; Flajnik, Martin

    2017-01-01

    Unlike most vertebrates, the shark IgL gene organization precludes secondary rearrangements that delete self-reactive VJ rearranged genes. Nurse sharks express four L chain isotypes, κ, λ, σ, and σ-2, encoded by 35 functional minigenes or clusters. The sequence of gene activation/expression and receptor editing of these isotypes have not been studied. We therefore investigated the extent of isotypic exclusion in separated B cell subpopulations. Surface Ig (sIg)κ–expressing cells, isolated with mAb LK14 that recognizes Cκ, carry predominantly nonproductive rearrangements of other L chain isotypes. Conversely, after depletion with LK14, sIgM+ cells contained largely nonproductive κ and enrichment for in-frame VJ of the others. Because some isotypic inclusion was observed at the mRNA level, expression in the BCR was examined. Functional λ mRNA was obtained, as expected, from the LK14-depleted population, but was also in sIgκ+ splenocytes. Whereas λ somatic mutants from the depleted sample displayed evidence of positive selection, the λ genes in sIgκ+ cells accumulated bystander mutations indicating a failure to express their products at the cell surface in association with the BCR H chain. In conclusion, a shark B cell expresses one L chain isotype at the surface and other isotypes as nonproductive VJ, sterile transcripts, or in-frame VJ whose products may not associate with the H chain. Based on the mRNA content found in the B cell subpopulations, an order of L chain gene activation is suggested as: σ-2 followed by κ, then σ and λ. PMID:28760881

  12. Chain extension and inter-chain packing order in rigid-rod polymers as determined by WAXD

    SciTech Connect

    Song, H.H.; Dotrong, M.; Evers, R.C.

    1993-12-31

    Chain extension and inter-chain packing of poly(p-phenylene benzobisthiazole) (PBZT) and its derivatives having pendents such as 2,6-dimethylphenoxy (phenoxy-PBZT) and poly(etherketone) (PBZT-g-PEK) were examined by wide angle x-ray diffraction (WAXD), assuming the polymer chains in a complete nematic phase. Results suggested that the PBZT polymer chains form a ribbon-like conformation rather than of a fully extended rigid-rod. The extent of chain extension of the polymers was highly dependent on the processing history. Much larger chain extension was observed in the highly oriented fibers than in the powders or the bulks. Grafting pendents also reduced the chain extension of rigid-rod polymers, while heat-treatment hardly influenced the chain extension in contrast to the substantial effect noted in the inter-chain packing. The large difference observed in the chain extension between the fibers and the powders or the bulks implied that the individual polymer chains in the fiber might possess quite different physical properties from those of the powders or the bulks.

  13. A facile route to reassemble titania nanoparticles into ordered chain-like networks on substrate.

    PubMed

    Cheng, Ya-Jun; Wolkenhauer, Markus; Bumbu, Gina-Gabriela; Gutmann, Jochen S

    2012-02-13

    A facile route to reassemble titania nanoparticles within the titania-block copolymer composite films has been developed. The titania nanoparticles templated by the amphiphilic block copolymer of poly(styrene)-block-poly (ethylene oxide) (PS-b-PEO) were frozen in the continuous PS matrix. Upon UV exposure, the PS matrix was partially degraded, allowing the titania nanoparticles to rearrange into chain-like networks exhibiting a closer packing. The local structures of the Titania chain-like networks were investigated by both AFM and SEM; the lateral structures and vertical structures of the films were studied by GISAXS and X-ray reflectivity respectively. Both the image analysis and X-ray scattering characterization prove the reassembly of the titania nanoparticles after UV exposure. The mechanism of the nanoparticle assembly is discussed.

  14. First and second order semi-Markov chains for wind speed modeling

    NASA Astrophysics Data System (ADS)

    Prattico, F.; Petroni, F.; D'Amico, G.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [3] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [1], by using two models, first-order

  15. Diagonalization and Many-Body Localization for a Disordered Quantum Spin Chain.

    PubMed

    Imbrie, John Z

    2016-07-08

    We consider a weakly interacting quantum spin chain with random local interactions. We prove that many-body localization follows from a physically reasonable assumption that limits the extent of level attraction in the statistics of eigenvalues. In a Kolmogorov-Arnold-Moser-style construction, a sequence of local unitary transformations is used to diagonalize the Hamiltonian by deforming the initial tensor-product basis into a complete set of exact many-body eigenfunctions.

  16. Localization and Ordering of Lipids Around Aquaporin-0: Protein and Lipid Mobility Effects

    PubMed Central

    Briones, Rodolfo; Aponte-Santamaría, Camilo; de Groot, Bert L.

    2017-01-01

    Hydrophobic matching, lipid sorting, and protein oligomerization are key principles by which lipids and proteins organize in biological membranes. The Aquaporin-0 channel (AQP0), solved by electron crystallography (EC) at cryogenic temperatures, is one of the few protein-lipid complexes of which the structure is available in atomic detail. EC and room-temperature molecular dynamics (MD) of dimyristoylglycerophosphocholine (DMPC) annular lipids around AQP0 show similarities, however, crystal-packing and temperature might affect the protein surface or the lipids distribution. To understand the role of temperature, lipid phase, and protein mobility in the localization and ordering of AQP0-lipids, we used MD simulations of an AQP0-DMPC bilayer system. Simulations were performed at physiological and at DMPC gel-phase temperatures. To decouple the protein and lipid mobility effects, we induced gel-phase in the lipids or restrained the protein. We monitored the lipid ordering effects around the protein. Reducing the system temperature or inducing lipid gel-phase had a marginal effect on the annular lipid localization. However, restraining the protein mobility increased the annular lipid localization around the whole AQP0 surface, resembling EC. The distribution of the inter-phosphate and hydrophobic thicknesses showed that stretching of the DMPC annular layer around AQP0 surface is the mechanism that compensates the hydrophobic mismatch in this system. The distribution of the local area-per-lipid and the acyl-chain order parameters showed particular fluid- and gel-like areas that involved several lipid layers. These areas were in contact with the surfaces of higher and lower protein mobility, respectively. We conclude that the AQP0 surfaces induce specific fluid- and gel-phase prone areas. The presence of these areas might guide the AQP0 lipid sorting interactions with other membrane components, and is compatible with the squared array oligomerization of AQP0 tetramers

  17. Perturbative approach for non local and high order derivative theories

    SciTech Connect

    Avilez, Ana A.; Vergara, J. David

    2009-04-20

    We propose a reduction method of classical phase space of high order derivative theories in singular and non singular cases. The mechanism is to reduce the high order phase space by imposing suplementary constraints, such that the evolution takes place in a submanifold where high order degrees of freedom are absent. The reduced theory is ordinary and is cured of the usual high order theories diseases, it approaches well low energy dynamics.

  18. Electronic spectrum and localization of electronic states in aperiodic quantum dot chains

    NASA Astrophysics Data System (ADS)

    Korotaev, P. Yu.; Vekilov, Yu. Kh.; Kaputkina, N. E.

    2014-02-01

    The electronic energy spectra of aperiodic Thue-Morse, Rudin-Shapiro, and double-periodic quantum dot chains are investigated in the tight-binding approximation. The dependence of the spectrum on all parameters of a "mixed" aperiodic chain model is studied: the electronic energy at quantum dots and the hopping integrals. The electronic degree of localization in the chains under consideration is determined by analyzing the inverse participation ratio. Its spectral distribution and the dependence of the band-averaged degree of localization on these model parameters have been calculated. It is shown that a transition of the system's sites to a resonant state in which the degree of electron localization decreases, while an overlap between the subbands occurs in the spectrum is possible when the parameters are varied.

  19. Fractional formalism to DNA chain and impact of the fractional order on breather dynamics.

    PubMed

    Mvogo, Alain; Kofané, Timoléon Crépin

    2016-12-01

    We have investigated the impact of the fractional order derivative on the dynamics of modulated waves of a homogeneous DNA chain that is based on site-dependent finite stacking and pairing enthalpies. We have reformulated the classical Lagrangian of the system by including the coordinates depending on the Riemann-Liouville time derivative of fractional order γ. From the Lagrange equation, we derived the fractional nonlinear equation of motion. We obtained the fractional breather as solutions by means of a fractional perturbation technique. The impact of the fractional order is investigated and we showed that depending on the values of γ, there are three types of waves that propagate in DNA. We have static breathers, breathers of small amplitude and high velocity, and breathers of high amplitude and small velocity.

  20. Global order and local disorder in brain maps.

    PubMed

    Rothschild, Gideon; Mizrahi, Adi

    2015-07-08

    Maps serve as a ubiquitous organizing principle in the mammalian brain. In several sensory systems, such as audition, vision, and somatosensation, topographic maps are evident throughout multiple levels of brain pathways. Topographic maps, like retinotopy and tonotopy, persist from the receptor surface up to the cortex. Other maps, such as those of orientation preference in the visual cortex, are first created in the cortex itself. Despite the prevalence of topographic maps, it is still not clear what function they subserve. Although maps are topographically smooth at the macroscale, they are often locally heterogeneous. Here, we review studies describing the anatomy and physiology of topographic maps across various spatial scales, from the smooth macroscale to the heterogeneous local microarchitecture, with emphasis on maps of the visual and auditory systems. We discuss the potential advantages of local heterogeneity in brain maps, how they reflect complex cortical connectivity, and how they may impact sensory coding and local computations.

  1. Modulation of the phase in SC order parameter in Kitaev chain and its consequences

    NASA Astrophysics Data System (ADS)

    Nakosai, Sho; Tanaka, Yukio; Nagaosa, Naoto

    2015-03-01

    Kitaev's superconducting chain model, one dimensional spinless p-wave superconductor, is a prototype of topological superconductors and supports Majorana modes at the ends of the system. There have been intensive researches on the model since the role of topology in condensed mater physics is highlighted, and recently not a few experimental results show the model can be effectively generated in designed systems. Anytime soon, we will arrange it as we like. A simple extension of the model is two-parallel-aligned chains. It possesses four Majorana states in total. When we take into account the modulation of the phase in the superconducting order parameter, however, the degeneracy of the energy levels is resolved. We investigate the physical consequence of it. The phase should change along the chain to reduce the total energy of the system, and the deterministic equation for it is in the form of sine-Gordon equation. The distribution of the supercurrent due to the modulation leaves the degeneracy in the ground states. Then we can regard the system as a flux qubit. In the presence of external magnetic field, these modulations will couple with the spontaneous field associated with the phase modulation, and result in control of states and an unusual Josephson effect.

  2. Affording and Constraining Local Moral Orders in Teacher-Led Ability-Based Mathematics Groups

    ERIC Educational Resources Information Center

    Tait-McCutcheon, Sandi; Shuker, Mary Jane; Higgins, Joanna; Loveridge, Judith

    2015-01-01

    How teachers position themselves and their students can influence the development of afforded or constrained local moral orders in ability-based teacher-led mathematics lessons. Local moral orders are the negotiated discursive practices and interactions of participants in the group. In this article, the developing local moral orders of 12 teachers…

  3. Ultrastructural localizations of J chains in the chicken bursa of Fabricius at different stages of development.

    PubMed

    Moriya, O

    1995-07-01

    Before and after hatching, J-chain positive cells (JPC) were observed by immunoelectron microscopy in the chicken bursa of Fabricius. JPC were mostly lymphocytes, but epithelial cells were also detected as JPC. During the embryonic stage, J chains were mostly associated as patches with surface membranes. Furthermore, there was a diffuse localization in the cytoplasm. After hatching, J chains showed a similar subcellular localization as was seen before hatching. However, J chains were frequently detected in the cytoplasm, and rarely on the surface membranes after hatching. Staining intensities by corresponding antisera were stronger in the hatched chickens than in embryos. From these findings one may conclude that J chains are synthesized even at an early stage of B cell differentiation during embryonic life and are continuously produced at the later differentiation stages of B-cell lineage. The increased amounts of J chains estimated by staining intensity seem to coincide with B cell maturation and may correlate with signalling of IgM synthesis.

  4. Non-chain pulsed DF laser with an average power of the order of 100 W

    NASA Astrophysics Data System (ADS)

    Pan, Qikun; Xie, Jijiang; Wang, Chunrui; Shao, Chunlei; Shao, Mingzhen; Chen, Fei; Guo, Jin

    2016-07-01

    The design and performance of a closed-cycle repetitively pulsed DF laser are described. The Fitch circuit and thyratron switch are introduced to realize self-sustained volume discharge in SF6-D2 mixtures. The influences of gas parameters and charging voltage on output characteristics of non-chain pulsed DF laser are experimentally investigated. In order to improve the laser power stability over a long period of working time, zeolites with different apertures are used to scrub out the de-excitation particles produced in electric discharge. An average output power of the order of 100 W was obtained at an operating repetition rate of 50 Hz, with amplitude difference in laser pulses <8 %. And under the action of micropore alkaline zeolites, the average power fell by 20 % after the laser continuing working 100 s at repetition frequency of 50 Hz.

  5. Methylene blue incorporation into alkanethiol SAMs on Au(111): effect of hydrocarbon chain ordering.

    PubMed

    Grumelli, Doris; Méndez De Leo, Lucila P; Bonazzola, Cecilia; Zamlynny, Vlad; Calvo, Ernesto J; Salvarezza, Roberto C

    2010-06-01

    A detailed polarization modulation infrared reflection absorption spectroscopy, scanning tunneling microscopy, and electrochemical study on methylene blue (MB) incorporation into alkanethiolate self-assembled monolayers (SAMs) on Au(111) is reported. Results show that the amount of MB incorporated in the SAMs reaches a maximum for intermediate hydrocarbon chain lengths (C10-C12). Well-ordered SAMs of long alkanethiols (C > C12) hinder the incorporation of the MB molecules into the SAM. On the other hand, less ordered SAMs of short alkanethiols (C < or = C6) are not efficient to retain the MB incorporated through the defects. For C12 the amount of incorporated MB increases as the SAM disorder is increased. This information is essential to the design of efficient thiol-based Au vectors for transport and delivery of molecules as well as thiol-based Au devices for molecular sensing.

  6. Low-power light guiding and localization in optoplasmonic chains obtained by directed self-assembly

    SciTech Connect

    Ahn, Wonmi; Zhao, Xin; Hong, Yan; Reinhard, Bjorn M.

    2016-03-02

    Here, optoplasmonic structures contain plasmonic components embedded in a defined photonic environment to create synergistic interactions between photonic and plasmonic components. Here, we show that chains of optical microspheres containing gold nanoparticles in their evanescent field combine the light guiding properties of a microsphere chain with the light localizing properties of a plasmonic nanoantenna. We implement these materials through template guided self-assembly and investigate their fundamental electromagnetic working principles through combination of electromagnetic simulations and experimental characterization. We demonstrate that optoplasmonic chains implemented by directed self-assembly achieve a significant reduction in guiding losses when compared with conventional plasmonic waveguides and, at the same time, retain the light localizing properties of plasmonic antennas at pre-defined locations. The results reinforce the potential of optoplasmonic structures for realizing low-loss optical interconnects with high bandwidth.

  7. Low-power light guiding and localization in optoplasmonic chains obtained by directed self-assembly

    DOE PAGES

    Ahn, Wonmi; Zhao, Xin; Hong, Yan; ...

    2016-03-02

    Here, optoplasmonic structures contain plasmonic components embedded in a defined photonic environment to create synergistic interactions between photonic and plasmonic components. Here, we show that chains of optical microspheres containing gold nanoparticles in their evanescent field combine the light guiding properties of a microsphere chain with the light localizing properties of a plasmonic nanoantenna. We implement these materials through template guided self-assembly and investigate their fundamental electromagnetic working principles through combination of electromagnetic simulations and experimental characterization. We demonstrate that optoplasmonic chains implemented by directed self-assembly achieve a significant reduction in guiding losses when compared with conventional plasmonic waveguides and,more » at the same time, retain the light localizing properties of plasmonic antennas at pre-defined locations. The results reinforce the potential of optoplasmonic structures for realizing low-loss optical interconnects with high bandwidth.« less

  8. Low-Power Light Guiding and Localization in Optoplasmonic Chains Obtained by Directed Self-Assembly

    PubMed Central

    Ahn, Wonmi; Zhao, Xin; Hong, Yan; Reinhard, Björn M.

    2016-01-01

    Optoplasmonic structures contain plasmonic components embedded in a defined photonic environment to create synergistic interactions between photonic and plasmonic components. Here, we show that chains of optical microspheres containing gold nanoparticles in their evanescent field combine the light guiding properties of a microsphere chain with the light localizing properties of a plasmonic nanoantenna. We implement these materials through template guided self-assembly and investigate their fundamental electromagnetic working principles through combination of electromagnetic simulations and experimental characterization. We demonstrate that optoplasmonic chains implemented by directed self-assembly achieve a significant reduction in guiding losses when compared with conventional plasmonic waveguides and, at the same time, retain the light localizing properties of plasmonic antennas at pre-defined locations. The results reinforce the potential of optoplasmonic structures for realizing low-loss optical interconnects with high bandwidth. PMID:26931149

  9. Localization of Short-Chain Polyphosphate Enhances its Ability to Clot Flowing Blood Plasma.

    PubMed

    Yeon, Ju Hun; Mazinani, Nima; Schlappi, Travis S; Chan, Karen Y T; Baylis, James R; Smith, Stephanie A; Donovan, Alexander J; Kudela, Damien; Stucky, Galen D; Liu, Ying; Morrissey, James H; Kastrup, Christian J

    2017-02-10

    Short-chain polyphosphate (polyP) is released from platelets upon platelet activation, but it is not clear if it contributes to thrombosis. PolyP has increased propensity to clot blood with increased polymer length and when localized onto particles, but it is unknown whether spatial localization of short-chain polyP can accelerate clotting of flowing blood. Here, numerical simulations predicted the effect of localization of polyP on clotting under flow, and this was tested in vitro using microfluidics. Synthetic polyP was more effective at triggering clotting of flowing blood plasma when localized on a surface than when solubilized in solution or when localized as nanoparticles, accelerating clotting at 10-200 fold lower concentrations, particularly at low to sub-physiological shear rates typical of where thrombosis occurs in large veins or valves. Thus, sub-micromolar concentrations of short-chain polyP can accelerate clotting of flowing blood plasma under flow at low to sub-physiological shear rates. However, a physiological mechanism for the localization of polyP to platelet or vascular surfaces remains unknown.

  10. Localization of Short-Chain Polyphosphate Enhances its Ability to Clot Flowing Blood Plasma

    PubMed Central

    Yeon, Ju Hun; Mazinani, Nima; Schlappi, Travis S.; Chan, Karen Y. T.; Baylis, James R.; Smith, Stephanie A.; Donovan, Alexander J.; Kudela, Damien; Stucky, Galen D.; Liu, Ying; Morrissey, James H.; Kastrup, Christian J.

    2017-01-01

    Short-chain polyphosphate (polyP) is released from platelets upon platelet activation, but it is not clear if it contributes to thrombosis. PolyP has increased propensity to clot blood with increased polymer length and when localized onto particles, but it is unknown whether spatial localization of short-chain polyP can accelerate clotting of flowing blood. Here, numerical simulations predicted the effect of localization of polyP on clotting under flow, and this was tested in vitro using microfluidics. Synthetic polyP was more effective at triggering clotting of flowing blood plasma when localized on a surface than when solubilized in solution or when localized as nanoparticles, accelerating clotting at 10–200 fold lower concentrations, particularly at low to sub-physiological shear rates typical of where thrombosis occurs in large veins or valves. Thus, sub-micromolar concentrations of short-chain polyP can accelerate clotting of flowing blood plasma under flow at low to sub-physiological shear rates. However, a physiological mechanism for the localization of polyP to platelet or vascular surfaces remains unknown. PMID:28186112

  11. Localization of Short-Chain Polyphosphate Enhances its Ability to Clot Flowing Blood Plasma

    NASA Astrophysics Data System (ADS)

    Yeon, Ju Hun; Mazinani, Nima; Schlappi, Travis S.; Chan, Karen Y. T.; Baylis, James R.; Smith, Stephanie A.; Donovan, Alexander J.; Kudela, Damien; Stucky, Galen D.; Liu, Ying; Morrissey, James H.; Kastrup, Christian J.

    2017-02-01

    Short-chain polyphosphate (polyP) is released from platelets upon platelet activation, but it is not clear if it contributes to thrombosis. PolyP has increased propensity to clot blood with increased polymer length and when localized onto particles, but it is unknown whether spatial localization of short-chain polyP can accelerate clotting of flowing blood. Here, numerical simulations predicted the effect of localization of polyP on clotting under flow, and this was tested in vitro using microfluidics. Synthetic polyP was more effective at triggering clotting of flowing blood plasma when localized on a surface than when solubilized in solution or when localized as nanoparticles, accelerating clotting at 10–200 fold lower concentrations, particularly at low to sub-physiological shear rates typical of where thrombosis occurs in large veins or valves. Thus, sub-micromolar concentrations of short-chain polyP can accelerate clotting of flowing blood plasma under flow at low to sub-physiological shear rates. However, a physiological mechanism for the localization of polyP to platelet or vascular surfaces remains unknown.

  12. Mitigating valley-driven localization in atomically thin dopant chains in Si

    NASA Astrophysics Data System (ADS)

    Dusko, Amintor; Saraiva, A. L.; Koiller, Belita

    2016-09-01

    A theoretical study of the localization properties of nanowires of dopants in silicon (Si) fabricated by ionic implantation or scanning tunnel microscope lithography is presented for a model incorporating the currently unavoidable imprecision in individual donor positioning. Experiments have shown that Ohm's law holds in some cases, in apparent defiance to the Anderson localization theory in one dimension. We investigate how valley interference affects the traditional theory of electronic structure of disordered systems. Each isolated donor orbital is realistically described by multivalley effective-mass theory. We extend this model to describe chains of donors as a linear combination of dopant orbitals. Disorder in donor positioning is taken into account, leading to an intricate disorder distribution of hoppings between nearest-neighbor donor sites (donor-donor tunnel coupling)—an effect of valley interference. A decay length, related to the usual localization length, is obtained for phosphorous (P) donor chains from a transfer-matrix approach and is further compared with the chain length. We quantitatively determine the impact of uncertainties δ R in the implantation position relative to a target and also compare our results with those obtained without valley interference. We analyze systematically the aimed interdonor separation dependence (R0) and show that fairly diluted donor chains (R0=7.7 nm) may be as long as 100 nm before the effective onset of Anderson localization, as long as the positioning error is under a lattice parameter (δ R <0.543 nm).

  13. Iron deposition and ferritin heavy chain (Fth) localization in rodent teeth.

    PubMed

    Wen, Xin; Paine, Michael L

    2013-01-02

    An iron rich layer on the labial surface is characteristic of the enamel of rodent incisors. In order to address a role for iron content in continuously growing incisors during odontogenesis, we studied iron deposition patterns in enamel and dentine using Perls' blue staining and ferritin heavy chain (Fth) immunolocalization. Fth expression is regulated by iron level; therefore its localization can be used as a sensitive indicator for iron deposition. Sagittal sections of 4-week old rat incisors showed a gradual increase in iron level in the enamel organ from secretory to maturation stages. In addition, iron was detected in ameloblasts of erupting third molars of 4-week old rats, suggesting iron plays a role in both incisor and molar development. In odontoblasts, the presence of iron was demonstrated, and this is consistent with iron's role in collagen synthesis. Using postnatal 3-, 6-, 9-day old mice, the spatial and temporal expression of Fth in tooth development again indicated the presence of iron in mature ameloblasts and odontoblasts. While these data do not explain what functional role iron has in tooth formation, it does highlight a significant molecular activity associated with the formation of the rodent dentition.

  14. Medical image registration by combining global and local information: a chain-type diffeomorphic demons algorithm.

    PubMed

    Liu, Xiaozheng; Yuan, Zhenming; Zhu, Junming; Xu, Dongrong

    2013-12-07

    The demons algorithm is a popular algorithm for non-rigid image registration because of its computational efficiency and simple implementation. The deformation forces of the classic demons algorithm were derived from image gradients by considering the deformation to decrease the intensity dissimilarity between images. However, the methods using the difference of image intensity for medical image registration are easily affected by image artifacts, such as image noise, non-uniform imaging and partial volume effects. The gradient magnitude image is constructed from the local information of an image, so the difference in a gradient magnitude image can be regarded as more reliable and robust for these artifacts. Then, registering medical images by considering the differences in both image intensity and gradient magnitude is a straightforward selection. In this paper, based on a diffeomorphic demons algorithm, we propose a chain-type diffeomorphic demons algorithm by combining the differences in both image intensity and gradient magnitude for medical image registration. Previous work had shown that the classic demons algorithm can be considered as an approximation of a second order gradient descent on the sum of the squared intensity differences. By optimizing the new dissimilarity criteria, we also present a set of new demons forces which were derived from the gradients of the image and gradient magnitude image. We show that, in controlled experiments, this advantage is confirmed, and yields a fast convergence.

  15. On Local Homogeneity and Stochastically Ordered Mixed Rasch Models

    ERIC Educational Resources Information Center

    Kreiner, Svend; Hansen, Mogens; Hansen, Carsten Rosenberg

    2006-01-01

    Mixed Rasch models add latent classes to conventional Rasch models, assuming that the Rasch model applies within each class and that relative difficulties of items are different in two or more latent classes. This article considers a family of stochastically ordered mixed Rasch models, with ordinal latent classes characterized by increasing total…

  16. Local dynamics for high-order semilinear hyperbolic equations

    NASA Astrophysics Data System (ADS)

    Volevich, L. R.; Shirikyan, A. R.

    2000-06-01

    This paper is devoted to studying high-order semilinear hyperbolic equations. It is assumed that the equation is a small perturbation of an equation with real constant coefficients and that the roots of the full symbol of the unperturbed equation with respect to the variable \\tau dual to time are either separated from the imaginary axis or lie outside the domain \

  17. Periodically driven random quantum spin chains: real-space renormalization for Floquet localized phases

    NASA Astrophysics Data System (ADS)

    Monthus, Cécile

    2017-07-01

    When random quantum spin chains are submitted to some periodic Floquet driving, the eigenstates of the time-evolution operator over one period can be localized in real space. For the case of periodic quenches between two Hamiltonians (or periodic kicks), where the time-evolution operator over one period reduces to the product of two simple transfer matrices, we propose a block-self-dual renormalization procedure to construct the localized eigenstates of the Floquet dynamics. We also discuss the corresponding strong disorder renormalization procedure, that generalizes the RSRG-X procedure to construct the localized eigenstates of time-independent Hamiltonians.

  18. Discrete breathers in a mass-in-mass chain with Hertzian local resonators.

    PubMed

    Wallen, S P; Lee, J; Mei, D; Chong, C; Kevrekidis, P G; Boechler, N

    2017-02-01

    We report on the existence of discrete breathers in a one-dimensional, mass-in-mass chain with linear intersite coupling and nonlinear, precompressed Hertzian local resonators, which is motivated by recent studies of the dynamics of microspheres adhered to elastic substrates. After predicting theoretically the existence of discrete breathers in the continuum and anticontinuum limits of intersite coupling, we use numerical continuation to compute a family of breathers interpolating between the two regimes in a finite chain, where the displacement profiles of the breathers are localized around one lattice site. We then analyze the frequency-amplitude dependence of the breathers by performing numerical continuation on a linear eigenmode (vanishing amplitude) solution of the system near the upper band gap edge. Finally, we use direct numerical integration of the equations of motion to demonstrate the formation and evolution of the identified localized modes in energy-conserving and dissipative scenarios, including within settings that may be relevant to future experimental studies.

  19. Discrete breathers in a mass-in-mass chain with Hertzian local resonators

    NASA Astrophysics Data System (ADS)

    Wallen, S. P.; Lee, J.; Mei, D.; Chong, C.; Kevrekidis, P. G.; Boechler, N.

    2017-02-01

    We report on the existence of discrete breathers in a one-dimensional, mass-in-mass chain with linear intersite coupling and nonlinear, precompressed Hertzian local resonators, which is motivated by recent studies of the dynamics of microspheres adhered to elastic substrates. After predicting theoretically the existence of discrete breathers in the continuum and anticontinuum limits of intersite coupling, we use numerical continuation to compute a family of breathers interpolating between the two regimes in a finite chain, where the displacement profiles of the breathers are localized around one lattice site. We then analyze the frequency-amplitude dependence of the breathers by performing numerical continuation on a linear eigenmode (vanishing amplitude) solution of the system near the upper band gap edge. Finally, we use direct numerical integration of the equations of motion to demonstrate the formation and evolution of the identified localized modes in energy-conserving and dissipative scenarios, including within settings that may be relevant to future experimental studies.

  20. Hierarchical supramolecular ordering with biaxial orientation of a combined main-chain/side-chain liquid-crystalline polymer obtained from radical polymerization of 2-vinylterephthalate.

    PubMed

    Xie, He-Lou; Jie, Chang-Kai; Yu, Zhen-Qiang; Liu, Xuan-Bo; Zhang, Hai-Liang; Shen, Zhihao; Chen, Er-Qiang; Zhou, Qi-Feng

    2010-06-16

    The liquid-crystalline (LC) phase structures and transitions of a combined main-chain/side-chain LC polymer (MCSCLCP) 1 obtained from radical polymerization of a 2-vinylterephthalate, poly(2,5-bis{[6-(4-butoxy-4'-oxybiphenyl) hexyl]oxycarbonyl}styrene), were studied using differential scanning calorimetry, one- and two-dimensional wide-angle X-ray diffraction (1D and 2D WAXD), and polarized light microscopy. We have found that 1 with sufficiently high molecular weight can self-assemble into a hierarchical structure with double orderings on the nanometer and subnanometer scales at low temperatures. The main chains of 1, which are rodlike as a result of the "jacketing" effect generated by the central rigid portion of the side chains laterally attached to every second carbon atom along the polyethylene backbone, form a 2D centered rectangular scaffold. The biphenyl-containing side chains fill the space between the main chains, forming a smectic E (SmE)-like structure with the side-chain axis perpendicular to that of the main chain. This biaxial orientation of 1 was confirmed by our 2D WAXD experiments through three orthogonal directions. The main-chain scaffold remains when the SmE-like packing is melted at elevated temperatures. Further heating leads to a normal smectic A (SmA) structure followed by the isotropic state. We found that when an external electric field was applied, the main-chain scaffold greatly inhibited the motion of the biphenyls. While the main chains gain a sufficiently high mobility in the SmA phase, macroscopic orientation of 1 can be achieved using a rather weak electric field, implying that the main and side chains with orthogonal directions can move cooperatively. Our work demonstrates that when two separate components, one offering the "jacketing" effect to the normally flexible backbone and the other with mesogens that form surrounding LC phases, are introduced simultaneously into the side chains, the polymer obtained can be described as an

  1. Local Intermolecular Order Controls Photoinduced Charge Separation at Donor/Acceptor Interfaces in Organic Semiconductors

    SciTech Connect

    Feier, Hilary M.; Reid, Obadiah G.; Pace, Natalie A.; Park, Jaehong; Bergkamp, Jesse J.; Sellinger, Alan; Gust, Devens; Rumbles, Garry

    2016-03-23

    How free charge is generated at organic donor-acceptor interfaces is an important question, as the binding energy of the lowest energy (localized) charge transfer states should be too high for the electron and hole to escape each other. Recently, it has been proposed that delocalization of the electronic states participating in charge transfer is crucial, and aggregated or otherwise locally ordered structures of the donor or the acceptor are the precondition for this electronic characteristic. The effect of intermolecular aggregation of both the polymer donor and fullerene acceptor on charge separation is studied. In the first case, the dilute electron acceptor triethylsilylhydroxy-1,4,8,11,15,18,22,25-octabutoxyphthalocyaninatosilicon(IV) (SiPc) is used to eliminate the influence of acceptor aggregation, and control polymer order through side-chain regioregularity, comparing charge generation in 96% regioregular (RR-) poly(3-hexylthiophene) (P3HT) with its regiorandom (RRa-) counterpart. In the second case, ordered phases in the polymer are eliminated by using RRa-P3HT, and phenyl-C61-butyric acid methyl ester (PC61BM) is used as the acceptor, varying its concentration to control aggregation. Time-resolved microwave conductivity, time-resolved photoluminescence, and transient absorption spectroscopy measurements show that while ultrafast charge transfer occurs in all samples, long-lived charge carriers are only produced in films with intermolecular aggregates of either RR-P3HT or PC61BM, and that polymer aggregates are just as effective in this regard as those of fullerenes.

  2. Modeling anomalous radar propagation using first-order two-state Markov chains

    NASA Astrophysics Data System (ADS)

    Haddad, B.; Adane, A.; Mesnard, F.; Sauvageot, H.

    In this paper, it is shown that radar echoes due to anomalous propagations (AP) can be modeled using Markov chains. For this purpose, images obtained in southwestern France by means of an S-band meteorological radar recorded every 5 min in 1996 were considered. The daily mean surfaces of AP appearing in these images are sorted into two states and their variations are then represented by a binary random variable. The Markov transition matrix, the 1-day-lag autocorrelation coefficient as well as the long-term probability of having each of both states are calculated on a monthly basis. The same kind of modeling was also applied to the rainfall observed in the radar dataset under study. The first-order two-state Markov chains are then found to fit the daily variations of either AP or rainfall areas very well. For each month of the year, the surfaces filled by both types of echo follow similar stochastic distributions, but their autocorrelation coefficient is different. Hence, it is suggested that this coefficient is a discriminant factor which could be used, among other criteria, to improve the identification of AP in radar images.

  3. Geodesics for efficient creation and propagation of order along Ising spin chains

    SciTech Connect

    YuanHaidong; Glaser, Steffen J.; Khaneja, Navin

    2007-07-15

    Experiments in coherent nuclear and electron magnetic resonance, and optical spectroscopy correspond to control of quantum mechanical ensembles, guiding them from initial to final target states by unitary transformations. The control inputs (pulse sequences) that accomplish these unitary transformations should take as little time as possible so as to minimize the effects of relaxation and decoherence and to optimize the sensitivity of the experiments. Here we give efficient syntheses of various unitary transformations on Ising spin chains of arbitrary length. The efficient realization of the unitary transformations presented here is obtained by computing geodesics on a sphere under a special metric. We show that contrary to the conventional belief, it is possible to propagate a spin order along an Ising spin chain with coupling strength J (in units of Hz), significantly faster than (2J){sup -1} per step. The methods presented here are expected to be useful for immediate and future applications involving control of spin dynamics in coherent spectroscopy and quantum information processing.

  4. Multivariate High Order Statistics of Measurements of the Temporal Evolution of Fission Chain-Reactions

    SciTech Connect

    Mattingly, J.K.

    2001-03-08

    The development of high order statistical analyses applied to measurements of the temporal evolution of fission chain-reactions is described. These statistics are derived via application of Bayes' rule to conditional probabilities describing a sequence of events in a fissile system beginning with the initiation of a chain-reaction by source neutrons and ending with counting events in a collection of neutron-sensitive detectors. Two types of initiating neutron sources are considered: (1) a directly observable source introduced by the experimenter (active initiation), and (2) a source that is intrinsic to the system and is not directly observable (passive initiation). The resulting statistics describe the temporal distribution of the population of prompt neutrons in terms of the time-delays between members of a collection (an n-tuplet) of correlated detector counts, that, in turn, may be collectively correlated with a detected active source neutron emission. These developments are a unification and extension of Rossi-a, pulsed neutron, and neutron noise methods, each of which measure the temporal distribution of pairs of correlated events, to produce a method that measures the temporal distribution of n-tuplets of correlated counts of arbitrary dimension n. In general the technique should expand present capabilities in the analysis of neutron counting measurements.

  5. First-order versus second-order interface localization transition of thin Ising films with competing walls

    NASA Astrophysics Data System (ADS)

    Ferrenberg, Alan M.; Landau, D. P.; Binder, K.

    1998-09-01

    From extensive Monte Carlo simulations of a lattice gas model we present evidence that the order of the gas-liquid transition of a fluid confined between ``competing'' walls can change from second to first order when the thickness D of the thin film is varied. This situation typically arises when the wetting transition of the corresponding semi-infinite system is first order, and thus permits the study of a tricritical interface-localization-delocalization transition via control of the film thickness.

  6. Scaffolding, ladders, chains, and rare ferrimagnetism in intermetallic borides: electronic structure calculations and magnetic ordering.

    PubMed

    Brgoch, Jakoah; Goerens, Christian; Fokwa, Boniface P T; Miller, Gordon J

    2011-05-04

    The electronic structures of "Ti(9-n)Fe(2+n)Ru(18)B(8)" (n=0, 0.5, 1, 2, 3), in connection to the recently synthesized Ti(9-n)Fe(2+n)Ru(18)B(8) (n=1, 2), have been investigated and analyzed using LSDA tight-binding calculations to elucidate the distribution of Fe and Ti, to determine the maximum Fe content, and to explore possible magnetic structures to interpret experimental magnetization results. Through a combination of calculations on specific models and using the rigid band approximation, which is validated by the DOS curves for "Ti(9-n)Fe(2+n)Ru(18)B(8)" (n=0, 0.5, 1, 2, 3), mixing of Fe and Ti is anticipated at both the 2b- and 4h-chain sites. The model "Ti(8.5)Fe(2.5)Ru(18)B(8)" (n=0.5) revealed that both Brewer-type Ti-Ru interactions as well as ligand field splitting of the Fe 3d orbitals regulated the observed valence electron counts between 220 and 228 electrons/formula unit. Finally, models of magnetic structures were created using "Ti(6)Fe(5)Ru(18)B(8)" (n=3). A rigid band analysis of the LSDA DOS curves concluded preferred ferromagnetic ordering at low Fe content (n≤0.75) and ferrimagnetic ordering at higher Fe content (n>0.75). Ferrimagnetism arises from antiferromagnetic exchange coupling in the scaffold of Fe1-ladder and 4h-chain sites.

  7. Weak chaos in the disordered nonlinear Schroedinger chain: Destruction of Anderson localization by Arnold diffusion

    SciTech Connect

    Basko, D.M.

    2011-07-15

    Research Highlights: > In a one-dimensional disordered chain of oscillators all normal modes are localized. > Nonlinearity leads to chaotic dynamics. > Chaos is concentrated on rare chaotic spots. > Chaotic spots drive energy exchange between oscillators. > Macroscopic transport coefficients are obtained. - Abstract: The subject of this study is the long-time equilibration dynamics of a strongly disordered one-dimensional chain of coupled weakly anharmonic classical oscillators. It is shown that chaos in this system has a very particular spatial structure: it can be viewed as a dilute gas of chaotic spots. Each chaotic spot corresponds to a stochastic pump which drives the Arnold diffusion of the oscillators surrounding it, thus leading to their relaxation and thermalization. The most important mechanism of equilibration at long distances is provided by random migration of the chaotic spots along the chain, which bears analogy with variable-range hopping of electrons in strongly disordered solids. The corresponding macroscopic transport equations are obtained.

  8. Disorder from order among anisotropic next-nearest-neighbor Ising spin chains in SrHo2O4

    DOE PAGES

    Wen, J. -J.; Tian, W.; Garlea, V. O.; ...

    2015-02-26

    In this study, we describe why Ising spin chains with competing interactions in SrHo2O4 segregate into ordered and disordered ensembles at low temperatures (T). Using elastic neutron scattering, magnetization, and specific heat measurements, the two distinct spin chains are inferred to have Néel (↑↓↑↓) and double-Néel (↑↑↓↓) ground states, respectively. Below TN = 0.68(2)K, the Néel chains develop three-dimensional long range order (LRO), which arrests further thermal equilibration of the double-Néel chains so they remain in a disordered incommensurate state for T below TS = 0.52(2)K. SrHo2O4 distills an important feature of incommensurate low dimensional magnetism: kinetically trapped topological defectsmore » in a quasi–d–dimensional spin system can preclude order in d + 1 dimensions.« less

  9. Vector-spin-chirality order in a dimerized frustrated spin-1/2 chain

    NASA Astrophysics Data System (ADS)

    Ueda, Hiroshi; Onoda, Shigeki

    2014-01-01

    A frustrated spin-1/2 XXZ chain model comprising a ferromagnetic nearest-neighbor coupling with the bond alternation, J1(1±δ)<0, and an antiferromagnetic second-neighbor exchange coupling J2>0 is studied at zero and weak magnetic fields by means of density-matrix renormalization-group calculations of order parameters, correlation functions, and the entanglement entropy, as well as an Abelian bosonization analysis. At zero magnetic field, the bond alternation δ >0 suppresses the gapless phase characterized by a vector-chiral (VC) long-range order (LRO) and a quasi-LRO of an incommensurate spin spiral, whereas this phase occupies a large region in the space of J1/J2 and the easy-plane exchange anisotropy for δ =0 [S. Furukawa et al., Phys. Rev. Lett. 105, 257205 (2010), 10.1103/PhysRevLett.105.257205]. Then, four gapped phases are found to appear as the exchange anisotropy varies from the SU(2)-symmetric case to the U(1)-symmetric case: the Haldane dimer (D+) phase with the same sign of the x ,y- and z-component dimer order parameters, two VC dimer (VCD+/VCD-) phases with the sign of the z-component dimer order parameter being unaltered/reversed, and the even-parity dimer (D-) phase. At small magnetic fields, a field-induced ring-exchange interaction, which is proportional to a staggered scalar chirality and a magnetic flux penetrating the associated triangle, drives a transition from the D- phase into a VC-Neel-dimer (VCND) phase, but not from the D+ phase. This VCND phase is stable up to the large magnetic field at which the Zeeman term closes the spin gap. A possible relevance to Rb2Cu2Mo3O12 is discussed.

  10. Experimental study of the relationship between local particle-size distributions and local ordering in random close packing.

    PubMed

    Kurita, Rei

    2015-12-01

    We experimentally study the structural properties of a sediment of size distributed colloids. By determining each particle size using a size estimation algorithm, we are able to investigate the relationship between local environment and local ordering. Our results show that ordered environments of particles tend to generate where the local particle-size distribution is within 5%. In addition, we show that particles whose size is close to the average size have 12 coordinate neighbors, which matches the coordination number of the fcc and hcp crystals. On the other hand, bcc structures are observed around larger particles. Our results represent experiments to show a size dependence of the specific ordering in colloidal systems.

  11. Monte Carlo simulations of a polymer chain conformation. The effectiveness of local moves algorithms and estimation of entropy.

    PubMed

    Mańka, Agnieszka; Nowicki, Waldemar; Nowicka, Grażyna

    2013-09-01

    A linear chain on a simple cubic lattice was simulated by the Metropolis Monte Carlo method using a combination of local and non-local chain modifications. Kink-jump, crankshaft, reptation and end-segment moves were used for local changes of the chain conformation, while for non-local chain rearrangements the "cut-and-paste" algorithm was employed. The statistics of local micromodifications was examined. An approximate method for estimating the conformational entropy of a polymer chain, based on the efficiency of the kink-jump motion respecting chain continuity and excluded volume constraints, was proposed. The method was tested by calculating the conformational entropy of the undisturbed chain, the chain under tension and in different solvent conditions (athermal, theta and poor) and also of the chain confined in a slit. The results of these test calculations are qualitatively consistent with expectations. Moreover, the obtained values of the conformational entropy of self avoiding chain with ends fixed over different separations, agree very well with the available literature data.

  12. Local suppression of the hidden-order phase by impurities in URu2Si2

    NASA Astrophysics Data System (ADS)

    Pezzoli, Maria E.; Graf, Matthias J.; Haule, Kristjan; Kotliar, Gabriel; Balatsky, Alexander V.

    2011-06-01

    We consider the effects of impurities on the enigmatic hidden order (HO) state of the heavy-fermion material URu2Si2. In particular, we focus on local effects of Rh impurities as a tool to probe the suppression of the HO state. To study local properties, we introduce a lattice free energy, where the time invariant HO order parameter Ψ and local antiferromagnetic (AFM) order parameter M are competing orders. Near each Rh atom, the HO order parameter is suppressed, creating a hole in which local AFM order emerges as a result of competition. These local holes are created in the fabric of the HO state like in a Swiss cheese and “filled” with droplets of AFM order. We compare our analysis with recent NMR results on U(RhxRu1-x)2Si2 and find good agreement with the data.

  13. A model for local current decay in a superconducting LR chain

    SciTech Connect

    Garavaglia, T.; Kauffmann, K.

    1991-04-01

    Solutions are given for the decay of the local current in both a finite and an infinite superconducting circuit consisting of a linear array of loops each containing in series an inductance L and in parallel a resistance R. Numerical results obtained from these solutions are given, and the results for local current decay for both cases are compared The properties of polynomials associated with the finite chain solution and two generating functions along with the method of solution of the diffusion type equation associated with the infinite chain model are discussed in the appendices. These solutions are used to obtain insight into the nature of the time decay of the currents in the loops resulting from crossings of the strands forming the superconducting cable of the SSC dipole magnets.

  14. Quasi-local conserved charges and spin transport in spin-1 integrable chains

    NASA Astrophysics Data System (ADS)

    Piroli, Lorenzo; Vernier, Eric

    2016-05-01

    We consider the integrable one-dimensional spin-1 chain defined by the Zamolodchikov-Fateev (ZF) Hamiltonian. The latter is parametrized, analogously to the XXZ spin-1/2 model, by a continuous anisotropy parameter and at the isotropic point coincides with the well-known spin-1 Babujian-Takhtajan Hamiltonian. Following a procedure recently developed for the XXZ model, we explicitly construct a continuous family of quasi-local conserved operators for the periodic spin-1 ZF chain. Our construction is valid for a dense set of commensurate values of the anisotropy parameter in the gapless regime where the isotropic point is excluded. Using the Mazur inequality, we show that, as for the XXZ model, these quasi-local charges are enough to prove that the high-temperature spin Drude weight is non-vanishing in the thermodynamic limit, thus establishing ballistic spin transport at high temperature.

  15. Noniterative local second order Mo/ller{endash}Plesset theory: Convergence with local correlation space

    SciTech Connect

    Maslen, P.E.; Head-Gordon, M.

    1998-11-01

    We extend our noniterative local correlation method [P. E. Maslen and M. Head-Gordon, Chem. Phys. Lett., {bold 283}, 102 (1998)] by defining a hierarchy of local spaces, ranging from small to large. The accuracy of the local method is then examined as a function of the size of the local space. A medium size local space recovers 98{percent} of the MP2 correlation energy, and reproduces fine details of the potential energy surface such as rotational barriers with an RMS error of 0.2 kcal/mol and a maximum error of 0.4 kcal/mol. A large local space recovers 99.5{percent} of the correlation energy and yields rotational barriers with a RMS error of 0.05 kcal/mol and a maximum error of 0.1 kcal/mol, at significantly increased computational cost. {copyright} {ital 1998 American Institute of Physics.}

  16. Is remote stretching based on myofascial chains as effective as local exercise? A randomised-controlled trial.

    PubMed

    Wilke, J; Vogt, L; Niederer, D; Banzer, W

    2016-11-07

    Lower limb stretching based on myofascial chains has been demonstrated to increase cervical range of motion (ROM) in the sagittal plane. It is, however, unknown whether such remote exercise is as effective as local stretching. To resolve this research deficit, 63 healthy participants (36 ± 13 years, ♂32) were randomly assigned to one of three groups: remote stretching of the lower limb (LLS), local stretching of the cervical spine (CSS) or inactive control (CON). Prior (M1), immediately post (M2) and 5 min following intervention (M3), maximal cervical ROM was assessed. Non-parametric data analysis (Kruskal-Wallis tests and adjusted post hoc Dunn tests) revealed significant differences between the disposed conditions. With one exception (cervical spine rotation after CSS at M2, P > .05), both LLS and CSS increased cervical ROM compared to the control group in all movement planes and at all measurements (P < .05). Between LLS and CSS, no statistical differences were found (P > .05). Lower limb stretching based on myofascial chains induces similar acute improvements in cervical ROM as local exercise. Therapists might consequently consider its use in programme design. However, as the attained effects do not seem to be direction-specific, further research is warranted in order to provide evidence-based recommendations.

  17. A novel local pattern descriptor--local vector pattern in high-order derivative space for face recognition.

    PubMed

    Fan, Kuo-Chin; Hung, Tsung-Yung

    2014-07-01

    In this paper, a novel local pattern descriptor generated by the proposed local vector pattern (LVP) in high-order derivative space is presented for use in face recognition. Based on the vector of each pixel constructed by computing the values between the referenced pixel and the adjacent pixels with diverse distances from different directions, the vector representation of the referenced pixel is generated to provide the 1D structure of micropatterns. With the devise of pairwise direction of vector for each pixel, the LVP reduces the feature length via comparative space transform to encode various spatial surrounding relationships between the referenced pixel and its neighborhood pixels. Besides, the concatenation of LVPs is compacted to produce more distinctive features. To effectively extract more detailed discriminative information in a given subregion, the vector of LVP is refined by varying local derivative directions from the n th-order LVP in (n-1) th-order derivative space, which is a much more resilient structure of micropatterns than standard local pattern descriptors. The proposed LVP is compared with the existing local pattern descriptors including local binary pattern (LBP), local derivative pattern (LDP), and local tetra pattern (LTrP) to evaluate the performances from input grayscale face images. In addition, extensive experiments conducting on benchmark face image databases, FERET, CAS-PEAL, CMU-PIE, Extended Yale B, and LFW, demonstrate that the proposed LVP in high-order derivative space indeed performs much better than LBP, LDP, and LTrP in face recognition.

  18. An Efficient Algorithm to Perform Local Concerted Movements of a Chain Molecule

    PubMed Central

    Zamuner, Stefano; Rodriguez, Alex; Seno, Flavio; Trovato, Antonio

    2015-01-01

    The devising of efficient concerted rotation moves that modify only selected local portions of chain molecules is a long studied problem. Possible applications range from speeding the uncorrelated sampling of polymeric dense systems to loop reconstruction and structure refinement in protein modeling. Here, we propose and validate, on a few pedagogical examples, a novel numerical strategy that generalizes the notion of concerted rotation. The usage of the Denavit-Hartenberg parameters for chain description allows all possible choices for the subset of degrees of freedom to be modified in the move. They can be arbitrarily distributed along the chain and can be distanced between consecutive monomers as well. The efficiency of the methodology capitalizes on the inherent geometrical structure of the manifold defined by all chain configurations compatible with the fixed degrees of freedom. The chain portion to be moved is first opened along a direction chosen in the tangent space to the manifold, and then closed in the orthogonal space. As a consequence, in Monte Carlo simulations detailed balance is easily enforced without the need of using Jacobian reweighting. Moreover, the relative fluctuations of the degrees of freedom involved in the move can be easily tuned. We show different applications: the manifold of possible configurations is explored in a very efficient way for a protein fragment and for a cyclic molecule; the “local backbone volume”, related to the volume spanned by the manifold, reproduces the mobility profile of all-α helical proteins; the refinement of small protein fragments with different secondary structures is addressed. The presented results suggest our methodology as a valuable exploration and sampling tool in the context of bio-molecular simulations. PMID:25825903

  19. An efficient algorithm to perform local concerted movements of a chain molecule.

    PubMed

    Zamuner, Stefano; Rodriguez, Alex; Seno, Flavio; Trovato, Antonio

    2015-01-01

    The devising of efficient concerted rotation moves that modify only selected local portions of chain molecules is a long studied problem. Possible applications range from speeding the uncorrelated sampling of polymeric dense systems to loop reconstruction and structure refinement in protein modeling. Here, we propose and validate, on a few pedagogical examples, a novel numerical strategy that generalizes the notion of concerted rotation. The usage of the Denavit-Hartenberg parameters for chain description allows all possible choices for the subset of degrees of freedom to be modified in the move. They can be arbitrarily distributed along the chain and can be distanced between consecutive monomers as well. The efficiency of the methodology capitalizes on the inherent geometrical structure of the manifold defined by all chain configurations compatible with the fixed degrees of freedom. The chain portion to be moved is first opened along a direction chosen in the tangent space to the manifold, and then closed in the orthogonal space. As a consequence, in Monte Carlo simulations detailed balance is easily enforced without the need of using Jacobian reweighting. Moreover, the relative fluctuations of the degrees of freedom involved in the move can be easily tuned. We show different applications: the manifold of possible configurations is explored in a very efficient way for a protein fragment and for a cyclic molecule; the "local backbone volume", related to the volume spanned by the manifold, reproduces the mobility profile of all-α helical proteins; the refinement of small protein fragments with different secondary structures is addressed. The presented results suggest our methodology as a valuable exploration and sampling tool in the context of bio-molecular simulations.

  20. Greater losses in sensitivity to second-order local motion than to first-order local motion after early visual deprivation in humans.

    PubMed

    Ellemberg, D; Lewis, T L; Defina, N; Maurer, D; Brent, H P; Guillemot, J-P; Lepore, F

    2005-10-01

    We compared sensitivity to first-order versus second-order local motion in patients treated for dense central congenital cataracts in one or both eyes. Amplitude modulation thresholds were measured for discriminating the direction of motion of luminance-modulated (first-order) and contrast modulated (second-order) horizontal sine-wave gratings. Early visual deprivation, whether monocular or binocular, caused losses in sensitivity to both first- and second-order motion, with greater losses for second-order motion than for first-order motion. These findings are consistent with the hypothesis that the two types of motion are processed by different mechanisms and suggest that those mechanisms are differentially sensitive to early visual input.

  1. Chain-based order and quantum spin liquids in dipolar spin ice

    NASA Astrophysics Data System (ADS)

    McClarty, P. A.; Sikora, O.; Moessner, R.; Penc, K.; Pollmann, F.; Shannon, N.

    2015-09-01

    Recent experiments on the spin-ice material Dy2Ti2O7 suggest that the Pauling "ice entropy," characteristic of its classical Coulombic spin-liquid state, may be lost at low temperatures [Pomaranski et al., Nat. Phys. 9, 353 (2013), 10.1038/nphys2591]. However, despite nearly two decades of intensive study, the nature of the equilibrium ground state of spin ice remains uncertain. Here we explore how long-range dipolar interactions D , short-range exchange interactions, and quantum fluctuations combine to determine the ground state of dipolar spin ice. We identify the organizational principle that ordered ground states are selected from a set of "chain states" in which dipolar interactions are exponentially screened. Using both quantum and classical Monte Carlo simulation, we establish phase diagrams as a function of quantum tunneling g and temperature T , and find that only a very small gc≪D is needed to stabilize a quantum spin liquid ground state. We discuss the implications of these results for Dy2Ti2O7 .

  2. Spectroscopic effects of disorder and vibrational localization in mixed-halide metal-halide chain solids

    SciTech Connect

    Love, S.P.; Scott, B.; Worl, L.A.; Huckett, S.C.; Saxena, A.; Huang, X.Z.; Bishop, A.R.; Swanson, B.I.

    1993-02-01

    Resonance Raman techniques, together with lattice-dynamics and Peierls-Hubbard modelling, are used to explore the electronic and vibrational dynamics of the quasi-one-dimensional metal-halogen chain solids [Pt(en){sub 2}][R(en){sub 2}X{sub 2}](ClO{sub 4}){sub 4}, (en = C{sub 2}H{sub 8}N{sub 2} and X=Cl, Br), abbreviated ``PLX.`` The mixed-halide materials PtCl{sub 1-x}Br{sub x} and PtCl{sub 1-x}I{sub x} consist of long mixed chains with heterojunctions between segments of the two constituent materials. Thus, in addition to providing mesoscale modulation of the chain electronic states, they serve as prototypes for elucidating the properties to be expected for macroscopic heterojunctions of these highly nonlinear materials. Once a detailed understanding of the various local vibrational modes occurring in these disordered solids is developed, the electronic structure of the chain segments and junctions can be probed by tuning the Raman excitation through their various electronic resonances.

  3. Local excitation-inhibition ratio for synfire chain propagation in feed-forward neuronal networks

    NASA Astrophysics Data System (ADS)

    Guo, Xinmeng; Yu, Haitao; Wang, Jiang; Liu, Jing; Cao, Yibin; Deng, Bin

    2017-09-01

    A leading hypothesis holds that spiking activity propagates along neuronal sub-populations which are connected in a feed-forward manner, and the propagation efficiency would be affected by the dynamics of sub-populations. In this paper, how the interaction between local excitation and inhibition effects on synfire chain propagation in feed-forward network (FFN) is investigated. The simulation results show that there is an appropriate excitation-inhibition (EI) ratio maximizing the performance of synfire chain propagation. The optimal EI ratio can significantly enhance the selectivity of FFN to synchronous signals, which thereby increases the stability to background noise. Moreover, the effect of network topology on synfire chain propagation is also investigated. It is found that synfire chain propagation can be maximized by an optimal interlayer linking probability. We also find that external noise is detrimental to synchrony propagation by inducing spiking jitter. The results presented in this paper may provide insights into the effects of network dynamics on neuronal computations.

  4. Performance evaluation of Warshall algorithm and dynamic programming for Markov chain in local sequence alignment.

    PubMed

    Khan, Mohammad Ibrahim; Kamal, Md Sarwar

    2015-03-01

    Markov Chain is very effective in prediction basically in long data set. In DNA sequencing it is always very important to find the existence of certain nucleotides based on the previous history of the data set. We imposed the Chapman Kolmogorov equation to accomplish the task of Markov Chain. Chapman Kolmogorov equation is the key to help the address the proper places of the DNA chain and this is very powerful tools in mathematics as well as in any other prediction based research. It incorporates the score of DNA sequences calculated by various techniques. Our research utilize the fundamentals of Warshall Algorithm (WA) and Dynamic Programming (DP) to measures the score of DNA segments. The outcomes of the experiment are that Warshall Algorithm is good for small DNA sequences on the other hand Dynamic Programming are good for long DNA sequences. On the top of above findings, it is very important to measure the risk factors of local sequencing during the matching of local sequence alignments whatever the length.

  5. Chebyshev-polynomial expansion of the localization length of Hermitian and non-Hermitian random chains

    NASA Astrophysics Data System (ADS)

    Hatano, Naomichi; Feinberg, Joshua

    2016-12-01

    We study Chebyshev-polynomial expansion of the inverse localization length of Hermitian and non-Hermitian random chains as a function of energy. For Hermitian models, the expansion produces this energy-dependent function numerically in one run of the algorithm. This is in strong contrast to the standard transfer-matrix method, which produces the inverse localization length for a fixed energy in each run. For non-Hermitian models, as in the transfer-matrix method, our algorithm computes the inverse localization length for a fixed (complex) energy. We also find a formula of the Chebyshev-polynomial expansion of the density of states of non-Hermitian models. As explained in detail, our algorithm for non-Hermitian models may be the only available efficient algorithm for finding the density of states of models with interactions.

  6. Phase and orientational ordering of low molecular weight rod molecules in a quenched liquid crystalline polymer matrix with mobile side chains

    NASA Astrophysics Data System (ADS)

    Gutman, Lorin; Cao, Jianshu; Swager, Tim M.

    2004-06-01

    We study the phase diagram and orientational ordering of guest liquid crystalline (LC) rods immersed in a quenched host made of a liquid crystalline polymer (LCP) matrix with mobile side chains. The LCP matrix lies below the glass transition of the polymer backbone. The side chains are mobile and can align to the guest rod molecules in a plane normal to the local LCP chain contour. A field theoretic formulation for this system is proposed and the effects of the LCP matrix on LC ordering are determined numerically. We obtain simple analytical equations for the nematic/isotropic phase diagram boundaries. Our calculation show a nematic-nematic (N/N) first order transition from a guest stabilized to a guest-host stabilized region and the possibility of a reentrant transition from a guest stabilized nematic region to a host only stabilized regime separated by an isotropic phase. A detailed study of thermodynamic variables and interactions on orientational ordering and phases is carried out and the relevance of our predictions to experiments and computer simulations is presented.

  7. Operations and Maintenance Task Order (OMTO)/Southern Border Initiative (SBInet) Supply Chain Approach

    DTIC Science & Technology

    2012-01-01

    Initiative Network (SBInet) Supply Chain approach in the areas of lead times between repairs, spares inventory, and the identification of failure trends...The availability rate of the platform(s) needed to be improved because the current supply chain process enacted by the government did not work in a

  8. Critical excitation spectrum of a quantum chain with a local three-spin coupling

    SciTech Connect

    McCabe, John F.; Wydro, Tomasz

    2011-09-15

    Using the phenomenological renormalization group (PRG), we evaluate the low-energy excitation spectrum along the critical line of a quantum spin chain having a local interaction between three Ising spins and longitudinal and transverse magnetic fields, i.e., a Turban model. The low-energy excitation spectrum found with the PRG agrees with the spectrum predicted for the (D{sub 4},A{sub 4}) conformal minimal model under a nontrivial correspondence between translations at the critical line and discrete lattice translations. Under this correspondence, the measurements confirm a prediction that the critical line of this quantum spin chain and the critical point of the two-dimensional three-state Potts model are in the same universality class.

  9. Many-body localization transition in random quantum spin chains with long-range interactions

    NASA Astrophysics Data System (ADS)

    Moure, N.; Haas, S.; Kettemann, S.

    2015-07-01

    While there are well-established methods to study delocalization transitions of single particles in random systems, it remains a challenging problem how to characterize many-body delocalization transitions. Here, we use a generalized real-space renormalization group technique to study the anisotropic Heisenberg model with long-range interactions, decaying with a power α, which are generated by placing spins at random positions along the chain. This method permits a large-scale finite-size scaling analysis. We examine the full distribution function of the excitation energy gap from the ground state and observe a crossover with decreasing α. At αc the full distribution coincides with a critical function. Thereby, we find strong evidence for the existence of a many-body localization transition in disordered antiferromagnetic spin chains with long-range interactions.

  10. Renormalization group for centrosymmetric gauge transformations of the dynamic motion for a Markov-ordered polymer chain

    SciTech Connect

    Mikhailov, I.D.; Zhuravskii, L.V.

    1987-11-01

    A method is proposed for calculating the vibrational-state density averaged over all configurations for a polymer chain with Markov disorder. The method is based on using a group of centrally symmetric gauge transformations that reduce the dynamic matrix for along polymer chain to renormalized dynamic matrices for short fragments. The short-range order is incorporated exactly in the averaging procedure, while the long-range order is incorporated in the self-consistent field approximation. Results are given for a simple skeletal model for a polymer containing tacticity deviations of Markov type.

  11. Fast local fragment chaining using sum-of-pair gap costs

    PubMed Central

    2011-01-01

    Background Fast seed-based alignment heuristics such as BLAST and BLAT have become indispensable tools in comparative genomics for all studies aiming at the evolutionary relations of proteins, genes, and non-coding RNAs. This is true in particular for the large mammalian genomes. The sensitivity and specificity of these tools, however, crucially depend on parameters such as seed sizes or maximum expectation values. In settings that require high sensitivity the amount of short local match fragments easily becomes intractable. Then, fragment chaining is a powerful leverage to quickly connect, score, and rank the fragments to improve the specificity. Results Here we present a fast and flexible fragment chainer that for the first time also supports a sum-of-pair gap cost model. This model has proven to achieve a higher accuracy and sensitivity in its own field of application. Due to a highly time-efficient index structure our method outperforms the only existing tool for fragment chaining under the linear gap cost model. It can easily be applied to the output generated by alignment tools such as segemehl or BLAST. As an example we consider homology-based searches for human and mouse snoRNAs demonstrating that a highly sensitive BLAST search with subsequent chaining is an attractive option. The sum-of-pair gap costs provide a substantial advantage is this context. Conclusions Chaining of short match fragments helps to quickly and accurately identify regions of homology that may not be found using local alignment heuristics alone. By providing both the linear and the sum-of-pair gap cost model, a wider range of application can be covered. The software clasp is available at http://www.bioinf.uni-leipzig.de/Software/clasp/. PMID:21418573

  12. Dependence of Binding Free Energies between RNA Nucleobases and Protein Side Chains on Local Dielectric Properties.

    PubMed

    de Ruiter, Anita; Polyansky, Anton A; Zagrovic, Bojan

    2017-09-12

    In order to fully understand the microscopic origins of binding specificity between nucleic acids and proteins, it is imperative to study the dependence of the binding preferences between nucleobases and protein side chains on the properties of the environment. Here, we employ molecular dynamics simulations and umbrella sampling to derive the potentials of mean force and the associated absolute binding free energies between the four standard RNA nucleobases and the side chains of aspartic acid and tryptophan in water/methanol mixtures exhibiting a wide range of dielectric constants. In addition to their opposing character when it comes to hydrophobicity, aspartate and tryptophan side chains were chosen because they exhibit the greatest change in binding free energies with nucleobases between pure water and methanol environments. We exploit a strong linear dependence of the derived ΔG values on the mole fraction of methanol to estimate the binding free energies of all possible combinations of different standard RNA nucleobases and side chains at multiple values of dielectric constants. Finally, we critically assess the recently proposed complementarity hypothesis concerning direct, coaligned binding between mRNAs and their cognate proteins in light of the present results.

  13. Effect of side-chain asymmetry on the intermolecular structure and order-disorder transition in alkyl-substituted polyfluorenes

    NASA Astrophysics Data System (ADS)

    Knaapila, M.; Stepanyan, R.; Torkkeli, M.; Haase, D.; Fröhlich, N.; Helfer, A.; Forster, M.; Scherf, U.

    2016-04-01

    We study relations among the side-chain asymmetry, structure, and order-disorder transition (ODT) in hairy-rod-type poly(9,9-dihexylfluorene) (PF6) with two identical side chains and atactic poly(9-octyl-9-methyl-fluorene) (PF1-8) with two different side chains per repeat. PF6 and PF1-8 organize into alternating side-chain and backbone layers that transform into an isotropic phase at TODT(PF 6 ) and TbiODT(PF 1 -8 ) . We interpret polymers in terms of monodisperse and bidisperse brushes and predict scenarios TODTchain length above or below the average grafting distance). Calorimetry and x-ray scattering indicate the condition TODT(PF 6 ) ˜TbiODT(PF 1 -8 ) following the low grafting prediction. PF6 side chains coming from the alternating backbone layers appear as two separate layers with thickness H (PF 6 ) , whereas PF1-8 side chains appear as an indistinguishable bilayer with a half thickness Hbilayer(PF 1 -8 ) /2 ≈H (PF 6 ) . The low grafting density region is structurally possible but not certain for PF6 and confirmed for PF1-8.

  14. [Functional properties and intracellular localization of high molecular weight isoforms of ligh chain myosin kinase].

    PubMed

    Chibalina, M V; Kudriashov, D S; Shekhonin, B V; Shirinskiĭ, V P

    2000-01-01

    The vertebrate genetic locus, coding for a Ca2+/calmodulin-dependent enzyme myosin light chain kinase (MLCK), the key regulator of smooth muscle contraction and cell motility, reveals a complex organization. Two MLCK isoforms are encoded by the MLCK genetic locus. Recently identified M(r) 210 kDa MLCK contains a sequence of smooth muscle/non-muscle M(r) 108 kDa MLCK and has an additional N-terminal sequence (Watterson et al., 1995. FEBS Lett. 373 : 217). A gene for an independently expressed non-kinase product KRP (telokin) is located within the MLCK gene (Collinge et al., 1992. Mol. Cell. Biol. 12 : 2359). KRP binds to and regulates the structure of myosin filaments (Shirinsky et al., 1993. J. Biol. Chem. 268 : 16578). Here we compared biochemical properties of MLCK-210 and MLCK-108 and studied intracellular localization of MLCK-210. MLCK-210 was isolated from extract of chicken aorta by immunoprecipitation using specific antibody and biochemically analysed in vitro. MLCK-210 phosphorylated myosin regulatory light chain and heavy meromyosin. The Ca(2+)-dependence and specific activity of MLCK-210 were similar to that of MLCK-108 from turkey gizzard. Using sedimentation assay we demonstrated that MLCK-210 as well as MLCK-108 binds to both actin and myosin filaments. MLCK-210 was localized in smooth muscle cell layers of aortic wall and was found to co-localize with microfilaments in cultured aortic smooth muscle cells.

  15. Oscillator strengths, first-order properties, and nuclear gradients for local ADC(2)

    SciTech Connect

    Schütz, Martin

    2015-06-07

    We describe theory and implementation of oscillator strengths, orbital-relaxed first-order properties, and nuclear gradients for the local algebraic diagrammatic construction scheme through second order. The formalism is derived via time-dependent linear response theory based on a second-order unitary coupled cluster model. The implementation presented here is a modification of our previously developed algorithms for Laplace transform based local time-dependent coupled cluster linear response (CC2LR); the local approximations thus are state specific and adaptive. The symmetry of the Jacobian leads to considerable simplifications relative to the local CC2LR method; as a result, a gradient evaluation is about four times less expensive. Test calculations show that in geometry optimizations, usually very similar geometries are obtained as with the local CC2LR method (provided that a second-order method is applicable). As an exemplary application, we performed geometry optimizations on the low-lying singlet states of chlorophyllide a.

  16. Oscillator strengths, first-order properties, and nuclear gradients for local ADC(2)

    NASA Astrophysics Data System (ADS)

    Schütz, Martin

    2015-06-01

    We describe theory and implementation of oscillator strengths, orbital-relaxed first-order properties, and nuclear gradients for the local algebraic diagrammatic construction scheme through second order. The formalism is derived via time-dependent linear response theory based on a second-order unitary coupled cluster model. The implementation presented here is a modification of our previously developed algorithms for Laplace transform based local time-dependent coupled cluster linear response (CC2LR); the local approximations thus are state specific and adaptive. The symmetry of the Jacobian leads to considerable simplifications relative to the local CC2LR method; as a result, a gradient evaluation is about four times less expensive. Test calculations show that in geometry optimizations, usually very similar geometries are obtained as with the local CC2LR method (provided that a second-order method is applicable). As an exemplary application, we performed geometry optimizations on the low-lying singlet states of chlorophyllide a.

  17. Long-range magnetic order and interchain interactions in the S=2 chain system MnCl3 (bpy)

    DOE PAGES

    Fishman, Randy S.; Shinozaki, Shin-ichi; Okutani, Akira; ...

    2016-09-28

    Here,more » a compound with very weakly interacting chains, MnCl3(bpy), has attracted a great deal of attention as a possible S=2 Haldane chain. However, long-range magnetic order of the chains prevents the Haldane gap from developing below 11.5 K. Based on a four-sublattice model, a description of the antiferromagnetic resonance (AFMR) spectrum up to frequencies of 1.5 THz and magnetic fields up to 50 T indicates that the interchain coupling is indeed quite small but that the Dzaloshinskii-Moriya interaction produced by broken inversion symmetry is substantial (0.12 meV). In addition, the antiferromagnetic, nearest-neighbor interaction within each chain (3.3 meV) is significantly stronger than previously reported. The excitation spectrum of this S=2 compound is well described by a 1/S expansion about the classical limit.« less

  18. Long-range magnetic order and interchain interactions in the S =2 chain system MnCl3(bpy)

    NASA Astrophysics Data System (ADS)

    Fishman, Randy S.; Shinozaki, Shin-ichi; Okutani, Akira; Yoshizawa, Daichi; Kida, Takanori; Hagiwara, Masayuki; Meisel, Mark W.

    2016-09-01

    A compound with very weakly interacting chains, MnCl3(bpy), has attracted a great deal of attention as a possible S =2 Haldane chain. However, long-range magnetic order of the chains prevents the Haldane gap from developing below 11.5 K. Based on a four-sublattice model, a description of the antiferromagnetic resonance (AFMR) spectrum up to frequencies of 1.5 THz and magnetic fields up to 50 T indicates that the interchain coupling is indeed quite small but that the Dzaloshinskii-Moriya interaction produced by broken inversion symmetry is substantial (0.12 meV). In addition, the antiferromagnetic, nearest-neighbor interaction within each chain (3.3 meV) is significantly stronger than previously reported. The excitation spectrum of this S =2 compound is well described by a 1 /S expansion about the classical limit.

  19. Multistage structural evolution in simple monatomic supercritical fluids: superstable tetrahedral local order.

    PubMed

    Ryltsev, R E; Chtchelkatchev, N M

    2013-11-01

    The local order units of dense simple liquid are typically three-dimensional (close packed) clusters: hcp, fcc, and icosahedrons. We show that the fluid demonstrates the superstable tetrahedral local order up to temperatures several orders of magnitude higher than the melting temperature and down to critical density. While the solid-like local order (hcp, fcc) disappears in the fluid at much lower temperatures and far above critical density. We conclude that the supercritical fluid shows the temperature (density)-driven two-stage "melting" of the three-dimensional local order. We also find that the structure relaxation times in the supercritical fluid are much larger than ones estimated for weakly interactive gas even far above the melting line.

  20. National Regulations and Guidelines and the Local Follow-Up in the Chain of Actions in Special Education

    ERIC Educational Resources Information Center

    Nilsen, Sven; Herlofsen, Camilla

    2012-01-01

    The topic of this article is the chain of actions in special education in Norwegian compulsory schooling. The main research question is: how do local practise concur with national regulations and guidelines in different phases of the chain of actions in special education? The study is carried out as an evaluation study. The criteria on which the…

  1. Antiferromagnetic S=1/2 Spin Chain Driven by p-Orbital Ordering in CsO2

    NASA Astrophysics Data System (ADS)

    Riyadi, Syarif; Zhang, Baomin; de Groot, Robert A.; Caretta, Antonio; van Loosdrecht, Paul H. M.; Palstra, Thomas T. M.; Blake, Graeme R.

    2012-05-01

    We demonstrate, using a combination of experiment and density functional theory, that orbital ordering drives the formation of a one-dimensional (1D) S=1/2 antiferromagnetic spin chain in the 3D rocksalt structure of cesium superoxide (CsO2). The magnetic superoxide anion (O2-) exhibits degeneracy of its 2p-derived molecular orbitals, which is lifted by a structural distortion on cooling. A spin chain is then formed by zigzag ordering of the half-filled superoxide orbitals, promoting a superexchange pathway mediated by the pz orbitals of Cs+ along only one crystal direction. This scenario is analogous to the 3d-orbital-driven spin chain found in the perovskite KCuF3 and is the first example of an inorganic quantum spin system with unpaired p electrons.

  2. Magnetic ordering in the ultrapure site-diluted spin chain materials SrCu1 -xNixO2

    NASA Astrophysics Data System (ADS)

    Simutis, G.; Thede, M.; Saint-Martin, R.; Mohan, A.; Baines, C.; Guguchia, Z.; Khasanov, R.; Hess, C.; Revcolevschi, A.; Büchner, B.; Zheludev, A.

    2016-06-01

    The muon spin rotation technique is used to study magnetic ordering in ultrapure samples of SrCu1 -xNixO2 , an archetypical S =1 /2 antiferromagnetic Heisenberg chain system with a small number of S =1 defects. The ordered state in the parent compound is shown to be highly homogeneous, contrary to a previous report [M. Matsuda et al., Phys. Rev. B 55, R11953 (1997), 10.1103/PhysRevB.55.R11953]. Even a minute number of Ni impurities results in inhomogeneous order and a decrease of the transition temperature. At as little as 0.5 % Ni concentration, magnetic ordering is entirely suppressed. The results are compared to previous theoretical studies of weakly coupled spin chains with site defects.

  3. Photoinduced changes of surface order in coumarin side-chain polymer films used for liquid crystal photoalignment

    SciTech Connect

    Bergmann, G.; Jackson, P.O.; Hogg, J.H.C.; Stirner, T.; O'Neill, M.; Duffy, W.L.; Kelly, S.M.; Clark, G.F.

    2005-08-08

    Specular x-ray reflectivity probes morphological changes in a crosslinkable coumarin photoalignment polymer film resulting from ultraviolet irradiation. An ordered surface layer with density oscillations compatible with planar side-chain alignment is obtained before irradiation. The ordering is enhanced in the early stages of crosslinking. This is attributed to the photoinduced increase of mobility of the side-chains resulting from the creation of free volume by the crosslinking process. The expansion of the thin film confirms that free volume is created. The surface ordering decreases with prolonged ultraviolet irradiation because of increased material viscosity resulting from a high crosslinked density. The implications of surface ordering on liquid crystal photoalignment are discussed.

  4. Stretched exponential decay of Majorana edge modes in many-body localized Kitaev chains under dissipation

    NASA Astrophysics Data System (ADS)

    Carmele, Alexander; Heyl, Markus; Kraus, Christina; Dalmonte, Marcello

    2015-11-01

    We investigate the resilience of symmetry-protected topological edge states at the boundaries of Kitaev chains in the presence of a bath which explicitly introduces symmetry-breaking terms. Specifically, we focus on single-particle losses and gains, violating the protecting parity symmetry, which could generically occur in realistic scenarios. For homogeneous systems we show that the Majorana mode decays exponentially fast. By the inclusion of strong disorder, where the closed system enters a many-body localized phase, we find that the Majorana mode can be stabilized substantially. The decay of the Majorana converts into a stretched exponential form for particle losses or gains occurring in the bulk. In particular, for pure loss dynamics we find a universal exponent α ≃2 /3 . We show that this holds both in the Anderson and many-body localized regimes. Our results thus provide a first step to stabilize edge states even in the presence of symmetry-breaking environments.

  5. Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo

    PubMed Central

    Pechmann, Sebastian; Chartron, Justin W; Frydman, Judith

    2015-01-01

    The genetic code allows most amino acids a choice of optimal and nonoptimal codons. We report that synonymous codon choice is tuned to promote interaction of nascent polypeptides with the signal recognition particle (SRP), which assists in protein translocation across membranes. Cotranslational recognition by the SRP in vivo is enhanced when mRNAs contain nonoptimal codon clusters 35–40 codons downstream of the SRP-binding site, the distance that spans the ribosomal polypeptide exit tunnel. A local translation slowdown upon ribosomal exit of SRP-binding elements in mRNAs containing these nonoptimal codon clusters is supported experimentally by ribosome profiling analyses in yeast. Modulation of local elongation rates through codon choice appears to kinetically enhance recognition by ribosome-associated factors. We propose that cotranslational regulation of nascent-chain fate may be a general constraint shaping codon usage in the genome. PMID:25420103

  6. 14N solid-state NMR: a sensitive probe of the local order in zeolites.

    PubMed

    Dib, Eddy; Mineva, Tzonka; Gaveau, Philippe; Alonso, Bruno

    2013-11-14

    Local order in as-synthesised zeolites templated by tetraalkylammonium cations is proven from solid-state (14)N NMR and related quadrupolar parameters, opening new perspectives in the study of porous materials.

  7. Numerical algorithm for the third-order partial differential equation with local boundary conditions

    NASA Astrophysics Data System (ADS)

    Ashyralyev, Allaberen; Belakroum, Kheireddine; Guezane-Lakoud, Assia

    2017-09-01

    Three-step difference schemes generated by Taylor's decomposition on four points for the approximate solution of the local boundary-value problems for a third order partial differential equation are presented. Results of numerical experiments are provided.

  8. Generation of concurrence between two qubits locally coupled to a one-dimensional spin chain

    NASA Astrophysics Data System (ADS)

    Nag, Tanay; Dutta, Amit

    2016-08-01

    We consider a generalized central spin model, consisting of two central qubits and an environmental spin chain (with periodic boundary condition) to which these central qubits are locally and weakly connected either at the same site or at two different sites separated by a distance d . Our purpose is to study the subsequent temporal generation of entanglement, quantified by concurrence, when initially the qubits are in an unentangled state. In the equilibrium situation, we show that the concurrence survives for a larger value of d when the environmental spin chain is critical. Importantly, a common feature observed both in the equilibrium and the nonequilibrium situations while the latter is created by a sudden but global change of the environmental transverse field is that the two qubits become maximally entangled for the critical quenching. Following a nonequilibrium evolution of the spin chain, our study for d ≠0 indicates that there exists a threshold time above which concurrence attains a finite value. Additionally, we show that the number of independent decohering channels (DCs) is determined by d as well as the local difference of the transverse field of the two underlying Hamiltonians governing the time evolution; the concurrence can be enhanced by a higher number of independent channels. The qualitatively similar behavior displayed by the concurrence for critical and off-critical quenches, as reported here, is characterized by analyzing the nonequilibrium evolution of these channels. The concurrence is maximum when the decoherence factor or the echo associated with the most rapidly DC decays to zero; on the contrary, the condition when the concurrence vanishes is determined nontrivially by the associated decay of one of the intermediate DCs. Analyzing the reduced density of a single qubit, we also explain the observation that the dephasing rate is always slower than the unentanglement rate. We further establish that the maximally and minimally decohering

  9. Non-local bias contribution to third-order galaxy correlations

    NASA Astrophysics Data System (ADS)

    Bel, J.; Hoffmann, K.; Gaztañaga, E.

    2015-10-01

    We study halo clustering bias with second- and third-order statistics of halo and matter density fields in the Marenostrum Institut de Ciències de l'Espai (MICE) Grand Challenge simulation. We verify that two-point correlations deliver reliable estimates of the linear bias parameters at large scales, while estimations from the variance can be significantly affected by non-linear and possibly non-local contributions to the bias function. Combining three-point auto- and cross-correlations we find, for the first time in configuration space, evidence for the presence of such non-local contributions. These contributions are consistent with predicted second-order non-local effects on the bias functions originating from the dark matter tidal field. Samples of massive haloes show indications of bias (local or non-local) beyond second order. Ignoring non-local bias causes 20-30 and 5-10 per cent overestimation of the linear bias from three-point auto- and cross-correlations, respectively. We study two third-order bias estimators that are not affected by second-order non-local contributions. One is a combination of three-point auto- and cross-correlations. The other is a combination of third-order one- and two-point cumulants. Both methods deliver accurate estimations of the linear bias. Ignoring non-local bias causes higher values of the second-order bias from three-point correlations. Our results demonstrate that third-order statistics can be employed for breaking the growth-bias degeneracy.

  10. Dynamics of helical worm-like chains. VIII. Higher-order subspace approximations to dielectric and magnetic relaxation and fluorescence depolarization for flexible chains

    NASA Astrophysics Data System (ADS)

    Yamakawa, Hiromi; Yoshizaki, Takenao; Fujii, Motoharu

    1986-04-01

    Following the general scheme developed in the preceding paper (paper VII), dielectric and magnetic relaxation and fluorescence depolarization for flexible chain polymers in dilute solution are reinvestigated on the basis of the discrete helical worm-like chain in the higher-order subspace approximation. A comparison of theory with experiment is made with respect to the dielectric correlation time τD, the spin-lattice relaxation time T1, the spin-spin relaxation time T2, the nuclear Overhauser enhancement (NOE), the fluorescence emission anisotropy r(t), the average fluorescence anisotropy r¯, and the fluorescence correlation time τF. It is found that there is agreement between the diameters of the chains determined from these dynamic properties and those from chemical structures, better than in the previous crude subspace approximation, indicating that the theory is remarkably improved in the present approximation. The magnetic correlation time τM is in general not an observable, and therefore an empirical equation to be used for its determination from the observed T1 is constructed. It is then found that there is good correlation between the dynamic chain stiffness τX/τ0X and the static chain stiffness λ-1, where τ0X is the correlation time of the isolated subbody (monomer unit) with X=D, M, and F; τX/τ0X is a monotonically increasing function of λ-1 nearly independent of X as far as perpendicular dipoles are concerned. An explanation of this result is given. However, the dependence of τX on temperature cannot be explained very satisfactorily.

  11. Renormalization group calculations for wetting transitions of infinite order and continuously varying order: local interface Hamiltonian approach.

    PubMed

    Indekeu, J O; Koga, K; Hooyberghs, H; Parry, A O

    2013-08-01

    We study the effect of thermal fluctuations on the wetting phase transitions of infinite order and of continuously varying order, recently discovered within a mean-field density-functional model for three-phase equilibria in systems with short-range forces and a two-component order parameter. Using linear functional renormalization group calculations within a local interface Hamiltonian approach, we show that the infinite-order transitions are robust. The exponential singularity (implying 2-α(s)=∞) of the surface free energy excess at infinite-order wetting as well as the precise algebraic divergence (with β(s)=-1) of the wetting layer thickness are not modified as long as ω<2, with ω the dimensionless wetting parameter that measures the strength of thermal fluctuations. The interface width diverges algebraically and universally (with ν([perpendicular])=1/2). In contrast, the nonuniversal critical wetting transitions of finite but continuously varying order are modified when thermal fluctuations are taken into account, in line with predictions from earlier calculations on similar models displaying weak, intermediate, and strong fluctuation regimes.

  12. Coexistence of energy diffusion and local thermalization in nonequilibrium XXZ spin chains with integrability breaking.

    PubMed

    Mendoza-Arenas, J J; Clark, S R; Jaksch, D

    2015-04-01

    In this work we analyze the simultaneous emergence of diffusive energy transport and local thermalization in a nonequilibrium one-dimensional quantum system, as a result of integrability breaking. Specifically, we discuss the local properties of the steady state induced by thermal boundary driving in a XXZ spin chain with staggered magnetic field. By means of efficient large-scale matrix product simulations of the equation of motion of the system, we calculate its steady state in the long-time limit. We start by discussing the energy transport supported by the system, finding it to be ballistic in the integrable limit and diffusive when the staggered field is finite. Subsequently, we examine the reduced density operators of neighboring sites and find that for large systems they are well approximated by local thermal states of the underlying Hamiltonian in the nonintegrable regime, even for weak staggered fields. In the integrable limit, on the other hand, this behavior is lost, and the identification of local temperatures is no longer possible. Our results agree with the intuitive connection between energy diffusion and thermalization.

  13. Magnetic ordering in the frustrated J1 - J2 Ising chain candidate BaNd2O4

    DOE PAGES

    Aczel, Adam A.; Li, Ling; Garlea, Vasile O.; ...

    2014-10-06

    The AR2O4 family (R = rare earth) has recently been attracting interest as a new series of frustrated magnets, with the magnetic R atoms forming zigzag chains running along the c axis. In this paper, we have investigated polycrystalline BaNd2O4 with a combination of magnetization, heat-capacity, and neutron powder diffraction measurements. Magnetic Bragg peaks are observed below TN = 1.7 K, and they can be indexed with a propagation vector of k = (0,1/2,1/2). The signal from magnetic diffraction is well described by long-range ordering of only one of the two types of Nd zigzag chains, with collinear up-up-down-down intrachainmore » spin configurations (double Néel state). Furthermore, low-temperature magnetization and heat-capacity measurements reveal two magnetic-field-induced spin transitions at 2.75 and 4 T for T = 0.46 K. The high-field phase is paramagnetic, while the intermediate-field state may arise from a spin transition of the long-range ordered Nd chains. Finally, one possible candidate for the field-induced ordered state corresponds to an up-up-down intrachain spin configuration, as predicted for a classical J1-J2 Ising chain with a double Néel ground state in zero field.« less

  14. Local states in one-dimensional CDW (charge density wave) materials: Spectral signatures for polarons and bipolarons in MX chains

    SciTech Connect

    Swanson, B. I.; Donohoe, R. J.; Worl, L. A.; Bulou, A. D.F.; Arrington, C. A.; Gammel, J. T.; Saxena, A.; Bishop, A. R.

    1990-01-01

    We have undertaken a combined theoretical and experimental effort directed toward the examination of both the ground and defect states in halide-bridged mixed-valence metal linear chains materials as they are tuned within and between broken symmetry phases. Novel low-dimensional highly correlated electronic materials offer a difficult theoretical challenge as we must span from a description of electronic structure on a molecular scale to the meso scale structure that is intrinsic to these solids. Our theoretical effort at Los Alamos combines quantum chemistry, band structure calculations, and many body modeling using Peierls-Hubbard Hamiltonians in order to model ground and local states. The experimental effort combines synthesis and a variety of microscopic structural and spectroscopic probes and macroscopic measurements in an effort to fully characterize both ground and local states as these materials are tuned in the phase boundary regions between broken symmetry states. The present article summarizes some of our recent research using optical spectroscopy to obtain signatures of photoexcited and intrinsic local states and compares these experimental results with Peierls-Hubbard calculations of the optical properties of these materials. Details concerning the theoretical and experimental approaches can be found elsewhere.

  15. Kullback-Leibler Divergence-Based Differential Evolution Markov Chain Filter for Global Localization of Mobile Robots

    PubMed Central

    Martín, Fernando; Moreno, Luis; Garrido, Santiago; Blanco, Dolores

    2015-01-01

    One of the most important skills desired for a mobile robot is the ability to obtain its own location even in challenging environments. The information provided by the sensing system is used here to solve the global localization problem. In our previous work, we designed different algorithms founded on evolutionary strategies in order to solve the aforementioned task. The latest developments are presented in this paper. The engine of the localization module is a combination of the Markov chain Monte Carlo sampling technique and the Differential Evolution method, which results in a particle filter based on the minimization of a fitness function. The robot’s pose is estimated from a set of possible locations weighted by a cost value. The measurements of the perceptive sensors are used together with the predicted ones in a known map to define a cost function to optimize. Although most localization methods rely on quadratic fitness functions, the sensed information is processed asymmetrically in this filter. The Kullback-Leibler divergence is the basis of a cost function that makes it possible to deal with different types of occlusions. The algorithm performance has been checked in a real map. The results are excellent in environments with dynamic and unmodeled obstacles, a fact that causes occlusions in the sensing area. PMID:26389914

  16. Kullback-Leibler Divergence-Based Differential Evolution Markov Chain Filter for Global Localization of Mobile Robots.

    PubMed

    Martín, Fernando; Moreno, Luis; Garrido, Santiago; Blanco, Dolores

    2015-09-16

    One of the most important skills desired for a mobile robot is the ability to obtain its own location even in challenging environments. The information provided by the sensing system is used here to solve the global localization problem. In our previous work, we designed different algorithms founded on evolutionary strategies in order to solve the aforementioned task. The latest developments are presented in this paper. The engine of the localization module is a combination of the Markov chain Monte Carlo sampling technique and the Differential Evolution method, which results in a particle filter based on the minimization of a fitness function. The robot's pose is estimated from a set of possible locations weighted by a cost value. The measurements of the perceptive sensors are used together with the predicted ones in a known map to define a cost function to optimize. Although most localization methods rely on quadratic fitness functions, the sensed information is processed asymmetrically in this filter. The Kullback-Leibler divergence is the basis of a cost function that makes it possible to deal with different types of occlusions. The algorithm performance has been checked in a real map. The results are excellent in environments with dynamic and unmodeled obstacles, a fact that causes occlusions in the sensing area.

  17. Transient expression of laminin {alpha}1 chain in regenerating murine liver: Restricted localization of laminin chains and nidogen-1

    SciTech Connect

    Kikkawa, Yamato . E-mail: yamato@sapmed.ac.jp; Mochizuki, Yoichi; Miner, Jeffrey H.; Mitaka, Toshihiro

    2005-04-15

    Most interstitia between epithelial and endothelial cells contain basal laminae (BLs), as defined by electron microscopy. However, in liver, the sinusoidal interstitium (called space of Disse) between hepatocytes and sinusoidal endothelial cells (SECs) lacks BLs. Because laminins are major components of BLs throughout the body, whether laminins exist in sinusoids has been a controversial issue. Despite recent advances, the distribution and expression of laminin chains have not been well defined in mammalian liver. Here, using a panel of antibodies, we examined laminins in normal and regenerating mouse livers. Of {alpha} chains, {alpha}5 was widely observed in all BLs except for sinusoids, while the other {alpha} chains were variously expressed in Glisson's sheath and central veins. Laminin {gamma}1 was also distributed to all BLs except for sinusoids. Although the {beta}2 chain was observed in all BLs and sinusoids, the expression of {beta}1 chain was restricted to Glisson's sheath. Detailed analysis of regenerating liver revealed that {alpha}1 and {gamma}1 chains appeared in sinusoids and were produced by stellate cells. The staining of {alpha}1 and {gamma}1 chains reached its maximum intensity at 6 days after two-thirds partial hepatectomy (PHx). Moreover, in vitro studies showed that {alpha}1-containing laminin promoted spreading of sinusoidal endothelial cells (SECs) isolated from normal liver, but not other hepatic cells. In addition, SECs isolated from regenerating liver elongated pseudopodia on {alpha}1-containing laminin more so than did cells from normal liver. The transient expression of laminin {alpha}1 may promote formation of sinusoids after PHx.

  18. Local structure study of the orbital order/disorder transition in LaMnO3

    NASA Astrophysics Data System (ADS)

    Thygesen, Peter M. M.; Young, Callum A.; Beake, Edward O. R.; Romero, Fabio Denis; Connor, Leigh D.; Proffen, Thomas E.; Phillips, Anthony E.; Tucker, Matthew G.; Hayward, Michael A.; Keen, David A.; Goodwin, Andrew L.

    2017-05-01

    We use a combination of neutron and x-ray total scattering measurements together with pair distribution function (PDF) analysis to characterize the variation in local structure across the orbital order/disorder transition in LaMnO3. Our experimental data are inconsistent with a conventional order/disorder description of the transition, and reflect instead the existence of a discontinuous change in local structure between ordered and disordered states. Within the orbital ordered regime, the neutron and x-ray PDFs are best described by a local structure model with the same local orbital arrangements as those observed in the average (long-range) crystal structure. We show that a variety of meaningfully different local orbital arrangement models can give fits of comparable quality to the experimental PDFs collected within the disordered regime; nevertheless, our data show a subtle but consistent preference for the anisotropic Potts model proposed previously [M. R. Ahmed and G. A. Gehring, Phys. Rev. B 79, 174106 (2009), 10.1103/PhysRevB.79.174106]. The key implications of this model are electronic and magnetic isotropy together with the loss of local inversion symmetry at the Mn site. We conclude with a critical assessment of the interpretation of PDF measurements when characterizing local symmetry breaking in functional materials.

  19. Improvements to local projective noise reduction through higher order and multiscale refinements.

    PubMed

    Moore, Jack Murdoch; Small, Michael; Karrech, Ali

    2015-06-01

    The broad spectrum characteristic of signals from nonlinear systems obstructs noise reduction techniques developed for linear systems. Local projection was developed to reduce noise while preserving nonlinear deterministic structures, and a second order refinement to local projection which was proposed ten years ago does so particularly effectively. It involves adjusting the origin of the projection subspace to better accommodate the geometry of the attractor. This paper describes an analytic motivation for the enhancement from which follows further higher order and multiple scale refinements. However, the established enhancement is frequently as or more effective than the new filters arising from solely geometric considerations. Investigation of the way that measurement errors reinforce or cancel throughout the refined local projection procedure explains the special efficacy of the existing enhancement, and leads to a new second order refinement offering widespread gains. Different local projective filters are found to be best suited to different noise levels. At low noise levels, the optimal order increases as noise increases. At intermediate levels second order tends to be optimal, while at high noise levels prototypical local projection is most effective. The new higher order filters perform better relative to established filters for longer signals or signals corresponding to higher dimensional attractors.

  20. Improvements to local projective noise reduction through higher order and multiscale refinements

    NASA Astrophysics Data System (ADS)

    Moore, Jack Murdoch; Small, Michael; Karrech, Ali

    2015-06-01

    The broad spectrum characteristic of signals from nonlinear systems obstructs noise reduction techniques developed for linear systems. Local projection was developed to reduce noise while preserving nonlinear deterministic structures, and a second order refinement to local projection which was proposed ten years ago does so particularly effectively. It involves adjusting the origin of the projection subspace to better accommodate the geometry of the attractor. This paper describes an analytic motivation for the enhancement from which follows further higher order and multiple scale refinements. However, the established enhancement is frequently as or more effective than the new filters arising from solely geometric considerations. Investigation of the way that measurement errors reinforce or cancel throughout the refined local projection procedure explains the special efficacy of the existing enhancement, and leads to a new second order refinement offering widespread gains. Different local projective filters are found to be best suited to different noise levels. At low noise levels, the optimal order increases as noise increases. At intermediate levels second order tends to be optimal, while at high noise levels prototypical local projection is most effective. The new higher order filters perform better relative to established filters for longer signals or signals corresponding to higher dimensional attractors.

  1. Optimal economic order quantity for buyer-distributor-vendor supply chain with backlogging derived without derivatives

    NASA Astrophysics Data System (ADS)

    Teng, Jinn-Tsair; Cárdenas-Barrón, Leopoldo Eduardo; Lou, Kuo-Ren; Wee, Hui Ming

    2013-05-01

    In this article, we first complement an inappropriate mathematical error on the total cost in the previously published paper by Chung and Wee [2007, 'Optimal the Economic Lot Size of a Three-stage Supply Chain With Backlogging Derived Without Derivatives', European Journal of Operational Research, 183, 933-943] related to buyer-distributor-vendor three-stage supply chain with backlogging derived without derivatives. Then, an arithmetic-geometric inequality method is proposed not only to simplify the algebraic method of completing prefect squares, but also to complement their shortcomings. In addition, we provide a closed-form solution to integral number of deliveries for the distributor and the vendor without using complex derivatives. Furthermore, our method can solve many cases in which their method cannot, because they did not consider that a squared root of a negative number does not exist. Finally, we use some numerical examples to show that our proposed optimal solution is cheaper to operate than theirs.

  2. Local stability of a five dimensional food chain model in the ocean

    NASA Astrophysics Data System (ADS)

    Kusumawinahyu, W. M.; Hidayatulloh, M. R.

    2014-02-01

    This paper discuss a food chain model on a microbiology ecosystem in the ocean, where predation process occurs. Four population growth rates are discussed, namely bacteria, phytoplankton, zooplankton, and protozoa growth rate. When the growth of nutrient density is also considered, the model is governed by a five dimensional dynamical system. The system considered in this paper is a modification of a model proposed by Hadley and Forbes [1], by taking Holling Type I as the functional response. For sake of simplicity, the model needs to be scaled. Dynamical behavior, such as existence condition of equilibrium points and their local stability are addressed. There are eight equilibrium points, where two of them exist under certain conditions. Three equilibrium points are unstable, while two points stable under certain conditions and the other three points are stable if the Ruth-Hurwitz criteria are satisfied. Numerical simulations are carried out to illustrate analytical findings.

  3. A Local Order Parameter-Based Method for Simulation of Free Energy Barriers in Crystal Nucleation.

    PubMed

    Eslami, Hossein; Khanjari, Neda; Müller-Plathe, Florian

    2017-03-14

    While global order parameters have been widely used as reaction coordinates in nucleation and crystallization studies, their use in nucleation studies is claimed to have a serious drawback. In this work, a local order parameter is introduced as a local reaction coordinate to drive the simulation from the liquid phase to the solid phase and vice versa. This local order parameter holds information regarding the order in the first- and second-shell neighbors of a particle and has different well-defined values for local crystallites and disordered neighborhoods but is insensitive to the type of the crystal structure. The order parameter is employed in metadynamics simulations to calculate the solid-liquid phase equilibria and free energy barrier to nucleation. Our results for repulsive soft spheres and the Lennard-Jones potential, LJ(12-6), reveal better-resolved solid and liquid basins compared with the case in which a global order parameter is used. It is also shown that the configuration space is sampled more efficiently in the present method, allowing a more accurate calculation of the free energy barrier and the solid-liquid interfacial free energy. Another feature of the present local order parameter-based method is that it is possible to apply the bias potential to regions of interest in the order parameter space, for example, on the largest nucleus in the case of nucleation studies. In the present scheme for metadynamics simulation of the nucleation in supercooled LJ(12-6) particles, unlike the cases in which global order parameters are employed, there is no need to have an estimate of the size of the critical nucleus and to refine the results with the results of umbrella sampling simulations. The barrier heights and the nucleation pathway obtained from this method agree very well with the results of former umbrella sampling simulations.

  4. Influence of molecular order on the local work function of nanographene architectures: a Kelvin-probe force microscopy study.

    PubMed

    Palermo, Vincenzo; Palma, Matteo; Tomović, Zeljko; Watson, Mark D; Friedlein, Rainer; Müllen, Klaus; Samorì, Paolo

    2005-11-11

    We report a Kelvin-probe force microscopy (KPFM) investigation on the structural and electronic properties of different submicron-scale supramolecular architectures of a synthetic nanographene, including extended layers, percolated networks and broken patterns grown from solutions at surfaces. This study made it possible to determine the local work function (WF) of the different pi-conjugated nanostructures adsorbed on mica with a resolution below 10 nm and 0.05 eV. It revealed that the WF strongly depends on the local molecular order at the surface, in particular on the delocalization of electrons in the pi-states, on the molecular orientation at surfaces, on the molecular packing density, on the presence of defects in the film and on the different conformations of the aliphatic peripheral chains that might cover the conjugated core. These results were confirmed by comparing the KPFM-estimated local WF of layers supported on mica, where the molecules are preferentially packed edge-on on the substrate, with the ultraviolet photoelectron spectroscopy microscopically measured WF of layers adsorbed on graphite, where the molecules should tend to assemble face-on at the surface. It appears that local WF studies are of paramount importance for understanding the electronic properties of active organic nanostructures, being therefore fundamental for the building of high-performance organic electronic devices, including field-effect transistors, light-emitting diodes and solar cells.

  5. Adsorption, Ordering, and Local Environments of Surfactant-Encapsulated Polyoxometalate Ions Probed at the Air–Water Interface

    DOE PAGES

    Doughty, Benjamin; Yin, Panchao; Ma, Ying-Zhong

    2016-07-23

    The continued development and application of surfactant-encapsulated polyoxometalates (SEPs) relies on understanding the ordering and organization of species at their interface and how these are impacted by the various local environments to which they are exposed. In this paper, we report on the equilibrium properties of two common SEPs adsorbed to the air–water interface and probed with surface-specific vibrational sum-frequency generation (SFG) spectroscopy. These results reveal clear shifts in vibrational band positions, the magnitude of which scales with the charge of the SEP core, which is indicative of a static field effect on the surfactant coating and the associated localmore » chemical environment. This static field also induces ordering in surrounding water molecules that is mediated by charge screening via the surface-bound surfactants. From these SFG measurements, we are able to show that Mo132-based SEPs are more polar than Mo72V30 SEPs. Disorder in the surfactant chain packing at the highly curved SEP surfaces is attributed to large conic volumes that can be sampled without interactions with neighboring chains. Measurements of adsorption isotherms yield free energies of adsorption to the air–water interface of -46.8 ± 0.4 and -44.8 ± 1.2 kJ/mol for the Mo132 and Mo72V30 SEPs, respectively, indicating a strong propensity for the fluid surface. Finally, the influence of intermolecular interactions on the surface adsorption energies is discussed.« less

  6. Local order and long range correlations in imidazolium halide ionic liquids: a combined molecular dynamics and XAS study.

    PubMed

    Migliorati, Valentina; Serva, Alessandra; Aquilanti, Giuliana; Pascarelli, Sakura; D'Angelo, Paola

    2015-07-07

    A thorough characterization of the structural properties of alkylimidazolium halide ionic liquids (ILs), namely 1-alkyl-3-methylimidazolium bromide ([Cnmim]Br with n = 5, 6, 8, 10) and iodide ([C6mim]I), has been carried out by combining molecular dynamics simulations and EXAFS spectroscopy. The existence of a local order in [Cnmim]Br ILs has been evidenced, with anions and imidazolium head groups forming a local three-dimensional bonding pattern that is common to all the [Cnmim]Br IL family, regardless of the length of the alkyl chain attached to the cation. On the other hand, upon alkyl chain elongation significant differences have been highlighted in the long-range structure of these ILs. Theoretical X-ray structure factors have been calculated from MD simulations and a low q peak has been found for all [Cnmim]Br ILs, indicating the existence of long-range structural correlations. The low q peak moves to smaller q values corresponding to longer distances, increases in intensity and sharpens with increasing alkyl chain length on the cation. Similarities and differences between the ion three-dimensional arrangements in [C6mim]Br and [C6mim]I were highlighted and the structural arrangement of Br(-) and I(-) was found to be different in the proximity of the most acidic hydrogen atom of the imidazolium ring: the I(-) ion is preferentially located above and below the ring plane, while the Br(-) ion has a high probability also to be coplanar with the imidazolium ring. A quantitative analysis of the Br and I K-edge EXAFS spectra of alkylimidazolium halide ILs has been carried out based on the microscopic description of the systems derived from MD simulations. A very good agreement between theoretical and experimental EXAFS signals has been obtained, allowing us to assess the reliability of the MD structural results for all the alkylimidazolium halide ILs investigated in this work.

  7. Molecular origin of aging of pure Se glass: Growth of inter-chain structural correlations, network compaction, and partial ordering

    NASA Astrophysics Data System (ADS)

    Dash, S.; Chen, P.; Boolchand, P.

    2017-06-01

    Glass transition width W of pure Se narrows from 7.1(3) °C to 1.5(2) °C and the non-reversing enthalpy of relaxation (Δ Hnr) at Tg increases from 0.23(5) cal/g to 0.90(5) cal/g upon room temperature aging for 4 months in the dark as examined in modulated differential scanning colorimetry (MDSC) at low scan rates. In Raman scattering, such aging leads the A1 mode of Sen-chains (near 250 cm-1) to narrow by 26% and its scattering strength to decrease as the strength of modes of correlated chains (near 235 cm-1) and of Se8 rings (near 264 cm-1) systematically grows. These calorimetric and Raman scattering results are consistent with the "molecular" chains of Sen, predominant in the fresh glass, reconstructing with each other to compact and partially order the network. Consequences of the aging induced reconstruction of the long super-flexible and uncorrelated Sen-chains are also manifested upon alloying up to 4 mol. % of Ge as revealed by a qualitative narrowing (by 25%) of the Raman vibrational mode of the corner-sharing GeSe4 tetrahedra and a blue-shift of the said mode by nearly 1 cm-1 in 194 cm-1. But, at higher Ge content (x > 6%), as the length of Sen chain-segments across Ge cross-links decreases qualitatively (⟨n ⟩ < 8), these aging induced chain-reconstruction effects are suppressed. The width of Tg increases beyond 15 °C in binary GexSe100-x glasses as x > 10% to acquire values observed earlier as alloying concentration approaches 20% and networks become spontaneously rigid.

  8. Electron holography study of the temperature variation of the magnetic order parameter within circularly chained nickel nanoparticle rings

    SciTech Connect

    Sugawara, Akira; Fukunaga, Kei-ichi; Scheinfein, M. R.; Kobayashi, H.; Kitagawa, H.; Tonomura, A.

    2007-12-24

    The magnetic structure within circular chains composed of 30-nm-diameter, polymer-coated nickel particles was studied by electron holography. The magnetic flux closure due to dipolar coupling was confirmed at zero external magnetic field. Its long-range order parameter was determined from the magnitude of the electron phase shift, and it was found to decrease more rapidly than that of bulk nickel as a function of temperature. The results of Monte Carlo simulations indicated that the temperature variation of the order-parameter was explained in terms of weakened dipolar coupling field ascribed to the decay of the bulk magnetization and enhanced thermal fluctuations.

  9. Emergence of Long Period Antiferromagnetic Orders from Haldane Phase in S=1 Heisenberg Chains with D-Modulation

    NASA Astrophysics Data System (ADS)

    Hida, Kazuo; Chen, Wei

    2005-07-01

    The effect of spatial modulation of the single-site anisotropy D on the ground state of the S=1 Heisenberg chains is investigated. In the case of period 2 modulation, it is found that the phase diagram contains the Haldane phase, large-D phase, Néel phase of udud-type and u0d0-type. It is shown that the hidden antiferromagnetic order in the Haldane phase compatible with the spatial modulation of D-term get frozen resulting in the emergence of various types of Néel orders. The investigation of the model with longer period D-modulation also confirms this picture.

  10. Improving DLA Supply Chain Agility: Lead Times, Order Quantities, and Information Flow

    DTIC Science & Technology

    2015-01-01

    Lockheed Martin Reaches Strategic Supply Chain Agreement,” ENP Newswire, 2012; R. Miel , “GM ‘Metric’ System Rates Suppliers,” Plastics News, Vol. 16, No. 16...2012. 12 A. Porter, “Lead Times Are Shrinking, but Not Everyone’s a Winner,” Purchasing Magazine, 1998. 13 Hafey, 2010; Miel , 2004; P. Teague, “P&G Is...Northrop Grumman X X X BF Goodrich X X X Emulex X X X SOURCES: Miel , 2004; Teague, 2008; Avery, 2008; Purchasing Magazine Staff, 2009; Day, 2008

  11. Electron correlation in extended systems: Fourth-order many-body perturbation theory and density-functional methods applied to an infinite chain of hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Suhai, Sándor

    1994-11-01

    Linear equidistant and bond-alternating infinite chains of hydrogen atoms have been investigated by the ab initio crystal-orbital method at the Hartree-Fock (HF) level, by including electron correlation up to the complete fourth order of the Mo/ller-Plesset perturbation theory (MP4-PT), and by using different versions of density-functional theory (DFT). The Bloch functions have been expanded in all cases in a series of high-quality atomic-orbital basis sets and complemented by extended sets of polarization functions up to 6s3p2d1f per H atom. In order to compare the performance of the PT and DFT methods, several physical properties have been computed at all theoretical levels including lattice geometry, cohesive energy, mechanisms of bond alternation (Peierls instability), and energetic features of nonequilibrium configurations (dissociation). For these latter quantities, both spin-restricted (RHF) and unrestricted (UHF) wave functions have been employed in all orders of PT. The methods described have been used parallel to infinite chains and to the H2 molecule, to be able to check their accuracy on experiments. In the case of the DFT, six different functionals (combining Slater and Becke exchange with local and gradient-corrected correlation potentials) have been utilized to test their accuracy in comparison with the MP4 results.

  12. On the validity of localized approximation for an on-axis zeroth-order Bessel beam

    NASA Astrophysics Data System (ADS)

    Gouesbet, Gérard; Lock, J. A.; Ambrosio, L. A.; Wang, J. J.

    2017-07-01

    Localized approximation procedures are efficient ways to evaluate beam shape coefficients of laser beams, and are particularly useful when other methods are ineffective or inefficient. Several papers in the literature have reported the use of such procedures to evaluate the beam shape coefficients of Bessel beams. Examining the specific case of an on-axis zeroth-order Bessel beam, we demonstrate that localized approximation procedures are valid only for small axicon angles.

  13. Early, local motion signals generate directional preferences in depth ordering of transparent motion.

    PubMed

    Schütz, Alexander C; Mamassian, Pascal

    2016-08-01

    Superposition of two dot clouds moving in different directions results in the perception of two transparent layers. Despite the ambiguous depth order of the layers, there are consistent preferences to perceive the layer, which is moving either rightward or downward in front of the other layer. Here we investigated the origin of these depth order biases. For this purpose, we measured the interaction with stereoscopic disparity and the influence of global and local motion properties. Motion direction and stereoscopic disparity were equally effective in determining depth order at a disparity of one arcmin. Global motion properties, such as the aperture location in the visual field or the aperture's motion direction did not affect directional biases. Local motion properties however were effective. When the moving elements were oriented lines rather than dots, the directional biases were shifted towards the direction orthogonal to the lines rather than the actual motion direction of the lines. Therefore, depth order was determined before the aperture problem was fully resolved. Varying the duration of the stimuli, we found that the time constant of the aperture problem was much lower for depth order than for perceived motion direction. Altogether, our results indicate that depth order is determined in one shot on the basis of an early motion signal, while perceived motion direction is continuously updated. Thus, depth ordering in transparent motion appears to be a surprisingly fast process, that relies on early, local motion signals and that precedes high-level motion analysis.

  14. Chain ordering of regioregular polythiophene films through blending with a nickel bisdithiolene complex

    SciTech Connect

    Hernandez-Maldonado, D.; Ramos, B.; Bedel-Pereira, E.; Séguy, I.; Villeneuve-Faure, C.; Sournia-Saquet, A.; Moineau-Chane Ching, K. I.; Alary, F.; Heully, J. L.

    2014-03-10

    An “annealing-free” strategy consisting of using a planar nickel bisdithiolene complex nickel bis[1,2-di(3′,4′-di-n-decyloxyphenyl)ethene-1,2-dithiolene] ([Ni(4dopedt){sub 2}]) is proposed for structuring poly(3-hexyl-thiophene) (P3HT). Photoluminescence (PL) and Raman spectroscopies, in conjunction with electronic absorption, have been used for evidencing P3HT changes due to blending. PL and absorption observations are consistent and show a correlation between polymer chain organization and increasing amounts of [Ni(4dopedt){sub 2}]. Blending with [Ni(4dopedt){sub 2}] do not modify the Raman ring-breathing modes energies indicating that blending does not induce strongly disorder in P3HT chains. Atomic force microscopic measurements show that blends nanoscale morphology presents a homogeneous matrix and small fibrils related to [Ni(4dopedt){sub 2}] concentration, especially for blends with a [Ni(4dopedt){sub 2}] weight ratio lower than 50%.

  15. Fourth order exponential time differencing method with local discontinuous Galerkin approximation for coupled nonlinear Schrodinger equations

    DOE PAGES

    Liang, Xiao; Khaliq, Abdul Q. M.; Xing, Yulong

    2015-01-23

    In this paper, we study a local discontinuous Galerkin method combined with fourth order exponential time differencing Runge-Kutta time discretization and a fourth order conservative method for solving the nonlinear Schrödinger equations. Based on different choices of numerical fluxes, we propose both energy-conserving and energy-dissipative local discontinuous Galerkin methods, and have proven the error estimates for the semi-discrete methods applied to linear Schrödinger equation. The numerical methods are proven to be highly efficient and stable for long-range soliton computations. Finally, extensive numerical examples are provided to illustrate the accuracy, efficiency and reliability of the proposed methods.

  16. How to Prepare Long Multi-Block Heteropolymer Chains with AN Ordered Sequence and Controllable Block Lengths

    NASA Astrophysics Data System (ADS)

    Wu, Chi; Xie, Zuowei

    2003-03-01

    It had been a long dream in polymer science to synthesize long multi-block heteropolymers with an ordered chain sequence and controllable block lengths. Using ionic or living free radical polymerization, one can prepare copolymers with few blocks, such as diblock and triblock copolymers. The most plausible result with a reasonable yield in this direction was penta-block copolymer. In another way, one could attach each end of polymer blocks with a reactive functional group and then join them together to form a long multi-block heteropolymer chain. However, the functional ends are normally wrapped and hidden inside the coiled polymer blocks in solution, which dramatically reduces their reactivity, so that longer polymer chains cannot be formed in such a way. Recently, combining polymer physics and synthetic chemistry, we have invented a novel self-assembly assisted polypolymerization (SAAP) method to connect 10-100 polymer blocks together to form long multi-block heteropolymer chains with an ordered sequence and controllable narrowly distributed block lengths. The schematic principle is as follows. To demonstrate the principle of SAAP, we used a typical triblock copolymer, poly(methyl methacry-late)-b-polystyrene-b-poly(methylmethacrylate), PMNA-PS-PMMA, prepared by anionic polymeri-zation. The detail of synthesizing the triblock copolymer is not what we try to address here and can be found elsewhere. The number average molar masses of the PMMA and PS blocks used were 7.00 x 102 g/mol and 1.68 x 104 g/mol, respectively. The polydispersity index (Mw/Mn) is 1.25. The ionic ends of the two PMMA blocks were terminated with an excess amount of oxalyl chloride (ClOC-COCl), which led to functional groups (-OC-COCl) at the two ends. The triblock copolymer was soluble in a solvent mixture of methyl acetate and acetonitrile (10.0:1.0, v/v) when the solution temperature was higher than 45 oC. As the temperature decreases, they could self-assemble into a core-shell micelle

  17. Hierarchical self-assembly: Self-organized nanostructures in a nematically ordered matrix of self-assembled polymeric chains

    NASA Astrophysics Data System (ADS)

    Mubeena, Shaikh; Chatterji, Apratim

    2015-03-01

    We report many different nanostructures which are formed when model nanoparticles of different sizes (diameter σn) are allowed to aggregate in a background matrix of semiflexible self-assembled polymeric wormlike micellar chains. The different nanostructures are formed by the dynamical arrest of phase-separating mixtures of micellar monomers and nanoparticles. The different morphologies obtained are the result of an interplay of the available free volume, the elastic energy of deformation of polymers, the density (chemical potential) of the nanoparticles in the polymer matrix, and, of course, the ratio of the size of self-assembling nanoparticles and self-avoidance diameter of polymeric chains. We have used a hybrid semi-grand-canonical Monte Carlo simulation scheme to obtain the (nonequilibrium) phase diagram of the self-assembled nanostructures. We observe rodlike structures of nanoparticles which get self-assembled in the gaps between the nematically ordered chains, as well as percolating gel-like network of conjoined nanotubes. We also find a totally unexpected interlocked crystalline phase of nanoparticles and monomers, in which each crystal plane of nanoparticles is separated by planes of perfectly organized polymer chains. We identified the condition which leads to such interlocked crystal structure. We suggest experimental possibilities of how the results presented in this paper could be used to obtain different nanostructures in the laboratory.

  18. Hierarchical self-assembly: Self-organized nanostructures in a nematically ordered matrix of self-assembled polymeric chains.

    PubMed

    Mubeena, Shaikh; Chatterji, Apratim

    2015-03-01

    We report many different nanostructures which are formed when model nanoparticles of different sizes (diameter σn) are allowed to aggregate in a background matrix of semiflexible self-assembled polymeric wormlike micellar chains. The different nanostructures are formed by the dynamical arrest of phase-separating mixtures of micellar monomers and nanoparticles. The different morphologies obtained are the result of an interplay of the available free volume, the elastic energy of deformation of polymers, the density (chemical potential) of the nanoparticles in the polymer matrix, and, of course, the ratio of the size of self-assembling nanoparticles and self-avoidance diameter of polymeric chains. We have used a hybrid semi-grand-canonical Monte Carlo simulation scheme to obtain the (nonequilibrium) phase diagram of the self-assembled nanostructures. We observe rodlike structures of nanoparticles which get self-assembled in the gaps between the nematically ordered chains, as well as percolating gel-like network of conjoined nanotubes. We also find a totally unexpected interlocked crystalline phase of nanoparticles and monomers, in which each crystal plane of nanoparticles is separated by planes of perfectly organized polymer chains. We identified the condition which leads to such interlocked crystal structure. We suggest experimental possibilities of how the results presented in this paper could be used to obtain different nanostructures in the laboratory.

  19. Adsorption, Ordering, and Local Environments of Surfactant-Encapsulated Polyoxometalate Ions Probed at the Air–Water Interface

    SciTech Connect

    Doughty, Benjamin; Yin, Panchao; Ma, Ying-Zhong

    2016-07-23

    The continued development and application of surfactant-encapsulated polyoxometalates (SEPs) relies on understanding the ordering and organization of species at their interface and how these are impacted by the various local environments to which they are exposed. In this paper, we report on the equilibrium properties of two common SEPs adsorbed to the air–water interface and probed with surface-specific vibrational sum-frequency generation (SFG) spectroscopy. These results reveal clear shifts in vibrational band positions, the magnitude of which scales with the charge of the SEP core, which is indicative of a static field effect on the surfactant coating and the associated local chemical environment. This static field also induces ordering in surrounding water molecules that is mediated by charge screening via the surface-bound surfactants. From these SFG measurements, we are able to show that Mo132-based SEPs are more polar than Mo72V30 SEPs. Disorder in the surfactant chain packing at the highly curved SEP surfaces is attributed to large conic volumes that can be sampled without interactions with neighboring chains. Measurements of adsorption isotherms yield free energies of adsorption to the air–water interface of -46.8 ± 0.4 and -44.8 ± 1.2 kJ/mol for the Mo132 and Mo72V30 SEPs, respectively, indicating a strong propensity for the fluid surface. Finally, the influence of intermolecular interactions on the surface adsorption energies is discussed.

  20. Adsorption, Ordering, and Local Environments of Surfactant-Encapsulated Polyoxometalate Ions Probed at the Air–Water Interface

    SciTech Connect

    Doughty, Benjamin; Yin, Panchao; Ma, Ying-Zhong

    2016-07-23

    The continued development and application of surfactant-encapsulated polyoxometalates (SEPs) relies on understanding the ordering and organization of species at their interface and how these are impacted by the various local environments to which they are exposed. In this paper, we report on the equilibrium properties of two common SEPs adsorbed to the air–water interface and probed with surface-specific vibrational sum-frequency generation (SFG) spectroscopy. These results reveal clear shifts in vibrational band positions, the magnitude of which scales with the charge of the SEP core, which is indicative of a static field effect on the surfactant coating and the associated local chemical environment. This static field also induces ordering in surrounding water molecules that is mediated by charge screening via the surface-bound surfactants. From these SFG measurements, we are able to show that Mo132-based SEPs are more polar than Mo72V30 SEPs. Disorder in the surfactant chain packing at the highly curved SEP surfaces is attributed to large conic volumes that can be sampled without interactions with neighboring chains. Measurements of adsorption isotherms yield free energies of adsorption to the air–water interface of -46.8 ± 0.4 and -44.8 ± 1.2 kJ/mol for the Mo132 and Mo72V30 SEPs, respectively, indicating a strong propensity for the fluid surface. Finally, the influence of intermolecular interactions on the surface adsorption energies is discussed.

  1. Gapped quantum liquids and topological order, stochastic local transformations and emergence of unitarity

    NASA Astrophysics Data System (ADS)

    Zeng, Bei; Wen, Xiao-Gang

    2015-03-01

    In this work, we present some new understanding of topological order, including three main aspects. (1) It was believed that classifying topological orders corresponds to classifying gapped quantum states. We show that such a statement is not precise. We introduce the concept of gapped quantum liquid as a special kind of gapped quantum states that can "dissolve" any product states on additional sites. Topologically ordered states actually correspond to gapped quantum liquids with stable ground-state degeneracy. Symmetry-breaking states for on-site symmetry are also gapped quantum liquids, but with unstable ground-state degeneracy. (2) We point out that the universality classes of generalized local unitary (gLU) transformations (without any symmetry) contain both topologically ordered states and symmetry-breaking states. This allows us to use a gLU invariant—topological entanglement entropy—to probe the symmetry-breaking properties hidden in the exact ground state of a finite system, which does not break any symmetry. This method can probe symmetry- breaking orders even without knowing the symmetry and the associated order parameters. (3) The universality classes of topological orders and symmetry-breaking orders can be distinguished by stochastic local (SL) transformations (i.e., local invertible transformations): small SL transformations can convert the symmetry-breaking classes to the trivial class of product states with finite probability of success, while the topological-order classes are stable against any small SL transformations, demonstrating a phenomenon of emergence of unitarity. This allows us to give a definition of long-range entanglement based on SL transformations, under which only topologically ordered states are long-range entangled.

  2. Adults Who Order Sugar-Sweetened Beverages: Sociodemographics and Meal Patterns at Fast Food Chains.

    PubMed

    Taksler, Glen B; Kiszko, Kamila; Abrams, Courtney; Elbel, Brian

    2016-12-01

    Approximately 30% of adults consume sugar-sweetened beverages (SSBs) daily, many at fast food restaurants. Researchers examined fast food purchases to better understand which consumers order SSBs, particularly large SSBs. Fast food customers in New York City and New Jersey provided receipts and participated in a survey during 2013-2014 (N=11,614). Logistic regression analyses predicted three outcomes: ordering no beverage or a non-SSB, a small/medium SSB, or a large SSB. Among respondents who ordered a beverage (n=3,775), additional analyses predicted number of beverage calories and odds of ordering an SSB. Covariates included demographic and behavioral factors. Respondents aged 18-29 years were 88% more likely to order a large SSB than a non-SSB or no beverage, as compared with respondents aged ≥50 years (p<0.001). Among respondents who purchased a beverage, respondents ordered more beverage calories with a large combination meal (+85.13 kcal, p=0.001) or if the restaurant had a large cup size >30 ounces (+36.07 kcal, p=0.001). Hispanic and Asian respondents were less likely to order a large SSB (AOR=0.49 and 0.52, respectively, both p≤0.026) than non-Hispanic white respondents. Odds of ordering a large SSB were higher for respondents who ate in the restaurant (AOR=1.66, p<0.001) or stated that they chose beverage based on price (AOR=2.02, p<0.001). Young adults and customers of restaurants with a larger cup size were more likely to purchase SSBs, and their beverage calories increased with meal size. Increased understanding of these factors is an important step toward limiting unhealthy SSB consumption. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  3. Decision Support from Local Data: Creating Adaptive Order Menus from Past Clinician Behavior

    PubMed Central

    Klann, Jeffrey G.; Szolovits, Peter; Downs, Stephen; Schadow, Gunther

    2014-01-01

    Objective Reducing care variability through guidelines has significantly benefited patients. Nonetheless, guideline-based clinical decision support (CDS) systems are not widely implemented or used, are frequently out-of-date, and cannot address complex care for which guidelines do not exist. Here, we develop and evaluate a complementary approach - using Bayesian network (BN) learning to generate adaptive, context-specific treatment menus based on local order-entry data. These menus can be used as a draft for expert review, in order to minimize development time for local decision support content. This is in keeping with the vision outlined in the US Health Information Technology Strategic Plan, which describes a healthcare system that learns from itself. Materials and Methods We used the Greedy Equivalence Search algorithm to learn four 50-node domain-specific BNs from 11,344 encounters: abdominal pain in the emergency department, inpatient pregnancy, hypertension in the urgent visit clinic, and altered mental state in the intensive care unit. We developed a system to produce situation-specific, rank-ordered treatment menus from these networks. We evaluated this system with a hospital-simulation methodology and computed Area Under the Receiver-Operator Curve (AUC) and average menu position at time of selection. We also compared this system with a similar association-rule-mining approach. Results A short order menu on average contained the next order (weighted average length 3.91–5.83 items). Overall predictive ability was good: average AUC above 0.9 for 25% of order types and overall average AUC .714–.844 (depending on domain). However, AUC had high variance (.50–.99). Higher AUC correlated with tighter clusters and more connections in the graphs, indicating importance of appropriate contextual data. Comparison with an association rule mining approach showed similar performance for only the most common orders with dramatic divergence as orders are less

  4. Decision support from local data: creating adaptive order menus from past clinician behavior.

    PubMed

    Klann, Jeffrey G; Szolovits, Peter; Downs, Stephen M; Schadow, Gunther

    2014-04-01

    Reducing care variability through guidelines has significantly benefited patients. Nonetheless, guideline-based Clinical Decision Support (CDS) systems are not widely implemented or used, are frequently out-of-date, and cannot address complex care for which guidelines do not exist. Here, we develop and evaluate a complementary approach - using Bayesian Network (BN) learning to generate adaptive, context-specific treatment menus based on local order-entry data. These menus can be used as a draft for expert review, in order to minimize development time for local decision support content. This is in keeping with the vision outlined in the US Health Information Technology Strategic Plan, which describes a healthcare system that learns from itself. We used the Greedy Equivalence Search algorithm to learn four 50-node domain-specific BNs from 11,344 encounters: abdominal pain in the emergency department, inpatient pregnancy, hypertension in the Urgent Visit Clinic, and altered mental state in the intensive care unit. We developed a system to produce situation-specific, rank-ordered treatment menus from these networks. We evaluated this system with a hospital-simulation methodology and computed Area Under the Receiver-Operator Curve (AUC) and average menu position at time of selection. We also compared this system with a similar association-rule-mining approach. A short order menu on average contained the next order (weighted average length 3.91-5.83 items). Overall predictive ability was good: average AUC above 0.9 for 25% of order types and overall average AUC .714-.844 (depending on domain). However, AUC had high variance (.50-.99). Higher AUC correlated with tighter clusters and more connections in the graphs, indicating importance of appropriate contextual data. Comparison with an Association Rule Mining approach showed similar performance for only the most common orders with dramatic divergence as orders are less frequent. This study demonstrates that local clinical

  5. Pure Gaussian states from quantum harmonic oscillator chains with a single local dissipative process

    NASA Astrophysics Data System (ADS)

    Ma, Shan; Woolley, Matthew J.; Petersen, Ian R.; Yamamoto, Naoki

    2017-03-01

    We study the preparation of entangled pure Gaussian states via reservoir engineering. In particular, we consider a chain consisting of (2\\aleph +1) quantum harmonic oscillators where the central oscillator of the chain is coupled to a single reservoir. We then completely parametrize the class of (2\\aleph +1) -mode pure Gaussian states that can be prepared by this type of quantum harmonic oscillator chain. This parametrization allows us to determine the steady-state entanglement properties of such quantum harmonic oscillator chains.

  6. Acyl chain length and saturation modulate interleaflet coupling in asymmetric bilayers: effects on dynamics and structural order.

    PubMed

    Chiantia, Salvatore; London, Erwin

    2012-12-05

    A long-standing question about membrane structure and function is the degree to which the physical properties of the inner and outer leaflets of a bilayer are coupled to one another. Using our recently developed methods to prepare asymmetric vesicles, coupling was investigated for vesicles containing phosphatidylcholine (PC) in the inner leaflet and sphingomyelin (SM) in the outer leaflet. The coupling of both lateral diffusion and membrane order was monitored as a function of PC and SM acyl chain structure. The presence in the outer leaflet of brain SM, which decreased outer-leaflet lateral diffusion, had little effect upon lateral diffusion in inner leaflets composed of dioleoyl PC (i.e., diffusion was only weakly coupled in the two leaflets) but did greatly reduce lateral diffusion in inner leaflets composed of PC with one saturated and one oleoyl acyl chain (i.e., diffusion was strongly coupled in these cases). In addition, reduced outer-leaflet diffusion upon introduction of outer-leaflet milk SM or a synthetic C24:0 SM, both of which have long interdigitating acyl chains, also greatly reduce diffusion of inner leaflets composed of dioleoyl PC, indicative of strong coupling. Strikingly, several assays showed that the ordering of the outer leaflet induced by the presence of SM was not reflected in increased lipid order in the inner leaflet, i.e., there was no detectable coupling between inner and outer leaflet membrane order. We propose a model for how lateral diffusion can be coupled in opposite leaflets and discuss how this might impact membrane function.

  7. Extension of local-type inequality for the higher order correlation functions

    SciTech Connect

    Suyama, Teruaki; Yokoyama, Shuichiro E-mail: shu@a.phys.nagoya-u.ac.jp

    2011-07-01

    For the local-type primordial perturbation, it is known that there is an inequality between the bispectrum and the trispectrum. By using the diagrammatic method, we develop a general formalism to systematically construct the similar inequalities up to any order correlation function. As an application, we explicitly derive all the inequalities up to six and eight-point functions.

  8. Study of local atomic order in amorphous materials in a computerized transmission electron microscope.

    PubMed

    Balossier, G; Garg, R K; Bonhomme, P; Thomas, X

    1989-03-01

    Experimental results obtained by electron diffraction (ED) and extended electron energy loss fine structure (EXELFS) techniques to study the local atomic order in amorphous materials such as carbon, silicon, and its oxides are described. Potential applications of ED and EXELFS techniques and their limitations are also discussed.

  9. Developing Learning Model Based on Local Culture and Instrument for Mathematical Higher Order Thinking Ability

    ERIC Educational Resources Information Center

    Saragih, Sahat; Napitupulu, E. Elvis; Fauzi, Amin

    2017-01-01

    This research aims to develop a student-centered learning model based on local culture and instrument of mathematical higher order thinking of junior high school students in the frame of the 2013-Curriculum in North Sumatra, Indonesia. The subjects of the research are seventh graders which are taken proportionally random consisted of three public…

  10. High energy x-ray scattering studies of the local order in liquid Al

    SciTech Connect

    Mauro, N.A.; Bendert, J.C.; Vogt, A.J.; Gewin, J.M.; Kelton, K.F.

    2012-10-23

    The x-ray structure factors and densities for liquid aluminum from 1123 K to 1273 K have been measured using the beamline electrostatic levitator. Atomic structures as a function of temperature have been constructed from the diffraction data with reverse Monte Carlo simulations. An analysis of the local atomic structures in terms of the Honeycutt-Andersen indices indicates a high degree of icosahedral and distorted icosahedral order, a modest amount of body-centered cubic order, and marginal amounts of face-centered cubic and hexagonal close-packed order.

  11. Characterizing many-body localization by out-of-time-ordered correlation

    NASA Astrophysics Data System (ADS)

    He, Rong-Qiang; Lu, Zhong-Yi

    2017-02-01

    The out-of-time-ordered (OTO) correlation is a key quantity for quantifying quantum chaoticity and has been recently used in the investigation of quantum holography. Here we use it to study and characterize many-body localization (MBL). We find that a long-time logarithmic variation of the OTO correlation occurs in the MBL phase but is absent in the Anderson localized and ergodic phases. We extract a localization length in the MBL phase, which depends logarithmically on interaction and diverges at a critical interaction. Furthermore, the infinite-time "thermal" fluctuation of the OTO correlation is zero (finite) in the ergodic (MBL) phase and thus can be considered as an order parameter for the ergodic-MBL transition, through which the transition can be identified and characterized. Specifically, the critical point and the related critical exponents can be calculated.

  12. Three-dimensional antiferromagnetic order of single-chain magnets: a new approach to design molecule-based magnets.

    PubMed

    Miyasaka, Hitoshi; Takayama, Karin; Saitoh, Ayumi; Furukawa, Sachie; Yamashita, Masahiro; Clérac, Rodolphe

    2010-03-22

    Two one-dimensional compounds composed of a 1:1 ratio of Mn(III) salen-type complex and Ni(II) oximato moiety with different counter anions, PF(6)(-) and BPh(4)(-), were synthesized: [Mn(3,5-Cl(2)saltmen)Ni(pao)(2)(phen)]PF(6) (1) and [Mn(5-Clsaltmen)Ni(pao)(2)(phen)]BPh(4) (2), where 3,5-Cl(2)saltmen(2-) = N,N'-(1,1,2,2-tetramethylethylene)bis(3,5-dichlorosalicylideneiminate); 5-Clsaltmen(2-) = N,N'-(1,1,2,2-tetramethylethylene)bis(5-chlorosalicylideneiminate); pao(-) = pyridine-2-aldoximate; and phen = 1,10-phenanthroline. Single-crystal X-ray diffraction study was carried out for both compounds. In 1 and 2, the chain topology is very similar forming an alternating linear chain with a [-Mn(III)-ON-Ni(II)-NO-] repeating motif (where -ON- is the oximate bridge). The use of a bulky counteranion, such as BPh(4)(-), located between the chains in 2 rather than PF(6)(-) in 1, successfully led to the magnetic isolation of the chains in 2. This minimization of the interchain interactions allows the study of the intrinsic magnetic properties of the chains present in 1 and 2. While 1 and 2 possess, as expected, very similar paramagnetic properties above 15 K, their ground state is antiferromagnetic below 9.4 K and paramagnetic down to 1.8 K, respectively. Nevertheless, both compounds exhibit a magnet-type behavior at temperatures below 6 K. While for 2, the observed magnetism is well explained by a Single-Chain Magnet (SCM) behavior, the magnet properties for 1 are induced by the presence in the material of SCM building units that order antiferromagnetically. By controlling both intra- and interchain magnetic interactions in this new [Mn(III)Ni(II)] SCM system, a remarkable AF phase with a magnet-type behavior has been stabilized in relation with the intrinsic SCM properties of the chains present in 1. This result suggests that the simultaneous enhancement of both intrachain (J) and interchain (J') magnetic interactions (with keeping J > J'), independently of the presence

  13. The Analysis of Orders of Perishable Goods in Relation to the Bullwhip Effect in the Logistic Supply Chain of the Food Industry: a Case Study

    NASA Astrophysics Data System (ADS)

    Chocholáč, Jan; Průša, Petr

    2016-12-01

    The bullwhip effect generally refers to the phenomenon where order variability increases as the orders move upstream in the supply chain. It is serious problem for every member of the supply chain. This effect begins at customers and passes through the chain to producers, which are at the end of the logistic chain. Especially food supply chains are affected by this issue. These chains are unique for problems of expiration of goods (particularly perishable goods), variable demand, orders with quantity discounts and effort to maximize the customer satisfaction. This paper will present the problem of the bullwhip effect in the real supply chain in the food industry. This supply chain consists of approximately 350 stores, four central warehouses and more than 1000 suppliers, but the case study will examine 87 stores, one central warehouse and one supplier in 2015. The aim of this paper is the analysis of the order variability between the various links in this chain and confirmation of the bullwhip effect in this chain. The subject of the analysis will be perishable goods.

  14. Non-local Second Order Closure Scheme for Boundary Layer Turbulence and Convection

    NASA Astrophysics Data System (ADS)

    Meyer, Bettina; Schneider, Tapio

    2017-04-01

    There has been scientific consensus that the uncertainty in the cloud feedback remains the largest source of uncertainty in the prediction of climate parameters like climate sensitivity. To narrow down this uncertainty, not only a better physical understanding of cloud and boundary layer processes is required, but specifically the representation of boundary layer processes in models has to be improved. General climate models use separate parameterisation schemes to model the different boundary layer processes like small-scale turbulence, shallow and deep convection. Small scale turbulence is usually modelled by local diffusive parameterisation schemes, which truncate the hierarchy of moment equations at first order and use second-order equations only to estimate closure parameters. In contrast, the representation of convection requires higher order statistical moments to capture their more complex structure, such as narrow updrafts in a quasi-steady environment. Truncations of moment equations at second order may lead to more accurate parameterizations. At the same time, they offer an opportunity to take spatially correlated structures (e.g., plumes) into account, which are known to be important for convective dynamics. In this project, we study the potential and limits of local and non-local second order closure schemes. A truncation of the momentum equations at second order represents the same dynamics as a quasi-linear version of the equations of motion. We study the three-dimensional quasi-linear dynamics in dry and moist convection by implementing it in a LES model (PyCLES) and compare it to a fully non-linear LES. In the quasi-linear LES, interactions among turbulent eddies are suppressed but nonlinear eddy—mean flow interactions are retained, as they are in the second order closure. In physical terms, suppressing eddy—eddy interactions amounts to suppressing, e.g., interactions among convective plumes, while retaining interactions between plumes and the

  15. Quasicrystalline and crystalline types of local protein order in capsids of small viruses

    NASA Astrophysics Data System (ADS)

    Konevtsova, O. V.; Pimonov, V. V.; Lorman, V. L.; Rochal, S. B.

    2017-07-01

    Like metal alloys and micellar systems in soft matter, the viral capsid structures can be of crystalline and quasicrystalline types. We reveal the local quasicrystalline order of proteins in small spherical viral capsids using their nets of dodecahedral type. We show that the structure of some of the viral shells is well described in terms of a chiral pentagonal tiling, whose nodes coincide with centers of mass of protein molecules. The chiral protein packing found in these capsids originates from the pentagonal Penrose tiling (PPT), due to a specific phason reconstruction needed to fit the protein order at the adjacent dodecahedron faces. Via examples of small spherical viral shells and geminate capsid of a Maize Streak virus, we discuss the benefits and shortcomings of the usage of a dodecahedral net in comparison to icosahedral one, which is commonly applied for the modeling of viral shells with a crystalline local order.

  16. Maximal incompatibility of locally classical behavior and global causal order in multiparty scenarios

    NASA Astrophysics Data System (ADS)

    Baumeler, ńmin; Feix, Adrien; Wolf, Stefan

    2014-10-01

    Quantum theory in a global spacetime gives rise to nonlocal correlations, which cannot be explained causally in a satisfactory way; this motivates the study of theories with reduced global assumptions. Oreshkov, Costa, and Brukner [Nat. Commun. 3, 1092 (2012), 10.1038/ncomms2076] proposed a framework in which quantum theory is valid locally but where, at the same time, no global spacetime, i.e., predefined causal order, is assumed beyond the absence of logical paradoxes. It was shown for the two-party case, however, that a global causal order always emerges in the classical limit. Quite naturally, it has been conjectured that the same also holds in the multiparty setting. We show that, counter to this belief, classical correlations locally compatible with classical probability theory exist that allow for deterministic signaling between three or more parties incompatible with any predefined causal order.

  17. Local electronic structures in electron-doped cuprates with coexisting orders

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Hu, Xiao

    2010-12-01

    Motivated by the observation of a so-called non-monotonic gap in recent angle-resolved photoemission spectroscopy measurement, we study the local electronic structure near impurities in electron-doped cuprates by considering the influence of antiferromagnetic (AF) spin-density-wave (SDW) order. We find that the evolution of density of states (DOS) with AF SDW order clearly indicates the non-monotonic d-wave gap behavior. More interestingly, the local DOS for spin-up is much different from that for spin-down with increasing AF SDW order. As a result, the impurity induced resonance state near the Fermi energy exhibits a spin-polarized feature. These features can be detected by spin-polarized scanning tunneling microscopy experiments.

  18. Quantum Breathers in Anisotropy Ferromagnetic Chains with Second-Order Coupling

    NASA Astrophysics Data System (ADS)

    Tang, Bing

    2016-08-01

    Under considering the next-nearest-neighbor interaction, quantum breathers in one-dimensional anisotropy ferromagnetic chains are theortically studied. By introducing the Dyson-Maleev transformation for spin operators, a map to a Heisenberg ferromagnetic spin lattice into an extended Bose-Hubbard model can be established. In the case of a small number of bosons, by means of the numerical diagonalization technique, the energy spectrum of the corresponding extended Bose-Hubbard model containing two bosons is calculated. When the strength of the single-ion anisotropy is enough large, a isolated single band appears. This isolated single band corresponds to two-boson bound state, which is the simplest quantum breather state. It is shown that the introduction of the next-nearest-neighbor interaction will lead to interesting band structures. In the case of a large number of bosons, by applying the time-dependent Hartree approximation, quantum breather states for the system is constructed. In this case, the effect of the next-nearest-neighbor interaction on quantum breathers is also analyzed.

  19. Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation

    NASA Astrophysics Data System (ADS)

    Du, Yanwei; Liu, Yang; Li, Hong; Fang, Zhichao; He, Siriguleng

    2017-09-01

    In this article, a fully discrete local discontinuous Galerkin (LDG) method with high-order temporal convergence rate is presented and developed to look for the numerical solution of nonlinear time-fractional fourth-order partial differential equation (PDE). In the temporal direction, for approximating the fractional derivative with order α ∈ (0 , 1), the weighted and shifted Grünwald difference (WSGD) scheme with second-order convergence rate is introduced and for approximating the integer time derivative, two step backward Euler method with second-order convergence rate is used. For the spatial direction, the LDG method is used. For the numerical theories, the stability is derived and a priori error results are proved. Further, some error results and convergence rates are calculated by numerical procedure to illustrate the effectiveness of proposed method.

  20. Evaluation of changes in promoters, use of UCOES and chain order to improve the antibody production in CHO cells.

    PubMed

    Rocha-Pizaña, Maria Del Refugio; Ascencio-Favela, Guadalupe; Soto-García, Brenda Maribell; Martinez-Fierro, Margarita de la Luz; Alvarez, Mario Moisés

    2017-04-01

    Therapy with biopharmaceuticals, mainly recombinant antibodies, offers patients higher life expectancy and better life quality than pharmacologic therapy. Countries with the highest scientific development are investing in this kind of therapy, and this is why the optimization of the production of these recombinant proteins would lead to their higher production and lower costs of the final product. Modifications in the use of promoters, the use of recombination regions, and the change in the order of the chains, are some of the genetic engineering changes that can increase the production of recombinant antibodies. In this work, three different promoters were tested: Prom A, hCMV, and EF1-a, for two different antibodies, one anti-TNFa and one anti-CD20(+). Changes were made in the order of the chains H-L or L-H and one or two UCOE (ubiquitous chromatin opening element) sequences were also used to identify the combinations that provide the best transient and stable expression for the antibodies in the CHO-s cells. In our results, we observed that the use of the two UCOE regions, with L-H order is almost three times better for the expression of the two different antibodies, while the strength of the promoter is conditioned by the sequence of each expressed protein. Copyright © 2017. Published by Elsevier Inc.

  1. Short-range order effects on the electronic properties of a binary linear chain

    NASA Astrophysics Data System (ADS)

    Rössler, Jaime; Martinez, Gaston; Kiwi, Miguel

    1980-06-01

    A new technique to treat one-dimensional binary alloys, described in tight-binding approximation, capable of incorporating short-range correlations in a simple way is presented. The method is an extension of work by Faulkner and Korringa and handles spatial correlations by restricting the number of allowed configurations in the ensemble over which averages are taken. The density of electron states thus calculated exhibits rich structure, which is known to exist but is lost in treatments which neglect local correlation effects. A detailed study of the stoichiometric case with an equal number of atoms of both chemical species is presented, including up to next-nearest-neighbor correlations.

  2. A Mouse Neurodegenerative Dynein Heavy Chain Mutation Alters Dynein Motility and Localization in Neurospora crassa

    PubMed Central

    Sivagurunathan, Senthilkumar; Schnittker, Robert R.; Nandini, Swaran; Plamann, Michael D.; King, Stephen J.

    2013-01-01

    Cytoplasmic dynein is responsible for the transport and delivery of cargoes in organisms ranging from humans to fungi. Dysfunction of dynein motor machinery due to mutations in dynein or its activating complex dynactin can result in one of several neurological diseases in mammals. The mouse Legs at odd angles (Loa) mutation in the tail domain of the dynein heavy chain has been shown to lead to progressive neurodegeneration in mice. The mechanism by which the Loa mutation affects dynein function is just beginning to be understood. In this work, we generated the dynein tail mutation observed in Loa mice into the Neurospora crassa genome and utilized cell biological and complementing biochemical approaches to characterize how that tail mutation affected dynein function. We determined that the Loa mutation exhibits several subtle defects upon dynein function in N. crassa that were not seen in mice, including alterations in dynein localization, impaired velocity of vesicle transport, and in the biochemical properties of purified motors. Our work provides new information on the role of the tail domain on dynein function and points out areas of future research that will be of interest to pursue in mammalian systems. PMID:22991199

  3. Immunohistochemical localization of collagen type XI alpha1 and alpha2 chains in human colon tissue.

    PubMed

    Bowen, Kara B; Reimers, Aaron P; Luman, Sarah; Kronz, Joseph D; Fyffe, William E; Oxford, Julia Thom

    2008-03-01

    In previous studies, collagen XI mRNA has been detected in colon cancer, but its location in human colon tissue has not been determined. The heterotrimeric collagen XI consists of three alpha chains. While it is known that collagen XI plays a regulatory role in collagen fibril formation, its function in the colon is unknown. The characterization of normal human colon tissue will allow a better understanding of the variance of collagen XI in abnormal tissues. Grossly normal and malignant human colon tissue was obtained from pathology archives. Immunohistochemical staining with a 58K Golgi marker and alpha1(XI) and alpha2(XI) antisera was used to specifically locate their presence in normal colon tissue. A comparative bright field microscopic analysis showed the presence of collagen XI in human colon. The juxtanuclear, dot-like collagen XI staining in the Golgi apparatus of goblet cells in normal tissue paralleled the staining of the 58K Golgi marker. Ultra light microscopy verified these results. Staining was also confirmed in malignant colon tissue. This study is the first to show that collagen XI is present in the Golgi apparatus of normal human colon goblet cells and localizes collagen XI in both normal and malignant tissue. Although the function of collagen XI in the colon is unknown, our immunohistochemical characterization provides the foundation for future immunohistopathology studies of the colon.

  4. Identifying and avoiding singularity-induced local traps over control landscapes of spin chain systems.

    PubMed

    Sun, Qiuyang; Pelczer, István; Riviello, Gregory; Wu, Re-Bing; Rabitz, Herschel

    2015-11-28

    The wide success of quantum optimal control in experiments and simulations is attributed to the properties of the control landscape, defined by the objective value as a functional of the controls. Prior analysis has shown that on satisfaction of some underlying assumptions, the landscapes are free of suboptimal traps that could halt the search for a global optimum with gradient-based algorithms. However, violation of one particular assumption can give rise to a so-called singular control, possibly bringing about local traps on the corresponding landscapes in some particular situations. This paper theoretically and experimentally demonstrates the existence of singular traps on the landscape in linear spin-1/2 chains with Ising couplings between nearest neighbors and with certain field components set to zero. The results in a two-spin example show how a trap influences the search trajectories passing by it, and how to avoid encountering such traps in practice by choosing sufficiently strong initial control fields. The findings are also discussed in the context of the generally observed success of quantum control.

  5. Many-body localization phase in a spin-driven chiral multiferroic chain

    NASA Astrophysics Data System (ADS)

    Stagraczyński, S.; Chotorlishvili, L.; Schüler, M.; Mierzejewski, M.; Berakdar, J.

    2017-08-01

    Many-body localization (MBL) is an emergent phase in correlated quantum systems with promising applications, particularly in quantum information. Here, we unveil the existence and analyze this phase in a chiral multiferroic model system. Conventionally, MBL occurrence is traced via level statistics by implementing a standard finite-size scaling procedure. Here, we present an approach based on the full distribution of the ratio of adjacent energy spacings. We find a strong broadening of the histograms of counts of these level spacings directly at the transition point from MBL to the ergodic phase. The broadening signals reliably the transition point without relying on an averaging procedure. The fast convergence of the histograms even for relatively small systems allows monitoring the MBL dynamics with much less computational effort. Numerical results are presented for a chiral spin chain with a dynamical Dzyaloshinskii-Moriya interaction, an established model to describe the spin excitations in a single-phase spin-driven multiferroic system. The multiferroic MBL phase is uncovered and it is shown how to steer it via electric fields.

  6. Influence of chain ordering on frictional properties of self-assembled monolayers (SAMs) in nano-lubrication.

    PubMed

    Cheng, Hefa; Hu, Yuanan

    2012-01-01

    Adhesion of organic films to substrates is important in applications that involve solid surfaces in sliding contact. Although the thickness of self-assembled monolayers (SAMs) is only a few nanometers, they can drastically modify the frictional properties of the underlying substrate, and thus have great potential for serving as boundary lubricants on micro- and nano-scales. This review focuses on the relationship between the structural and compositional properties of SAMs and their frictional response. Adhesion of SAMs to the substrate surface usually occurs through chemisorption of the head groups on the constituent molecules, with molecular interactions such as van der Waals interactions playing important roles in organizing the molecules into surface films, and in controlling their tribological behavior. The durability and wear resistance of SAMs depend on the nature and strength of the binding forces between the head groups and the substrate surfaces, while the adhesion and friction forces are strongly influenced by the interactions of the terminal groups with the counterfaces. Results from both experimental measurements and molecular dynamics simulations consistently indicate that structural ordering of alkyl chains in SAMs reduces their frictional response, and that SAMs formed by molecules with alkyl chains longer than 8 to 10 methylene units are well organized, exhibiting low levels of friction. Less densely packed or more disordered monolayers inherently possess greater numbers of conformational defects at room temperature and present lower barriers to defect creation under the action of a contacting surface, and thus exhibit higher friction. Cross-linking of the spacer chains can reduce the frictional response of disordered films by increasing the chain ordering, but has little impact on SAMs that are already well ordered. On the other hand, introduction of sterically demanding terminal groups and dissimilar molecules reduces molecular ordering in SAMs

  7. Local Discontinuous Galerkin Approximations And Variable Step Size, Variable Order Time Integration For Richards' Equation

    NASA Astrophysics Data System (ADS)

    Li, H.; Farthing, M. W.; Dawson, C. N.; Miller, C. T.

    2004-12-01

    Numerical simulation of Richards' equation continues to be difficult. It is highly nonlinear under common constitutive relations and exhibits sharp fronts in both the pressure head and volume fraction for many problems of interest. For a number of multiphase flow problems, the use of variable order and variable step size temporal discretizations has shown some advantages. However, the spatial discretizations commonly used for variably saturated flow are dominated by nonadaptive, low-order finite difference and finite element methods. Discontinuous Galerkin (DG) finite element methods have received significant attention in a number of fields for hyperbolic PDE's and, more recently, for elliptic and parabolic problems. DG approaches like the local discontinuous Galerkin (LDG) method are appealing for modeling subsurface flow since they can lead to velocity fields that are locally mass-conservative without the need for auxiliary variables or alternative meshes. DG discretizations are also inherently local and so better-suited for unstructured meshes and h-p adaption strategies than traditional methods. While some work has been done recently for multiphase subsurface flow, there are a range of issues related to the performance of DG methods for highly nonlinear parabolic problems like Richards' equation that have not been investigated fully. In this work, we consider the combination of higher order adaptive time integration with an LDG spatial discretization for Richards' equation. We compare this approach to standard low-order methods for a series of test problems and consider a number of issues including the methods' relative accuracy and computational efficiency.

  8. Verification of serum reference intervals for free light chains in a local South African population.

    PubMed

    Zemlin, Annalise E; Rensburg, Megan A; Ipp, Hayley; Germishuys, Jurie J; Erasmus, Rajiv T

    2013-11-01

    Monoclonal serum free light chain measurements are used to follow up and manage patients with monoclonal gammopathies, and abnormal serum free light chain ratios are associated with risk of progression in certain diseases. We aimed to validate the reference intervals in our population. Reference intervals for κ and λ free light chains were established on 120 healthy adults. Creatinine levels were measured to exclude renal dysfunction and serum protein electrophoresis was performed. All creatinine values were within normal limits. After exclusion of subjects with abnormal serum protein electrophoreses, 113 subjects were available for analysis. The 95% reference interval was 6.3-20.6 mg/L for κ free light chains, 8.7-25.9 mg/L for λ free light chains and 0.46-1.23 for free light chain ratio. Most of the values fell within the manufacturer's recommended limits and therefore could be used for our population.

  9. Effect of rare locally ordered regions on a disordered itinerant quantum antiferromagnet with cubic anisotropy

    NASA Astrophysics Data System (ADS)

    Narayanan, Rajesh; Vojta, Thomas

    2001-01-01

    We study the quantum phase transition of an itinerant antiferromagnet with cubic anisotropy in the presence of quenched disorder, paying particular attention to the locally ordered spatial regions that form in the Griffiths region. We derive an effective action where these rare regions are described in terms of static annealed disorder. A one-loop renormalization-group analysis of the effective action shows that for order-parameter dimensions p<4, the rare regions destroy the conventional critical behavior, and the renormalized disorder flows to infinity. For order-parameter dimensions p>4, the critical behavior is not influenced by the rare regions; it is described by the conventional dirty cubic fixed point. We also discuss the influence of the rare regions on the fluctuation-driven first-order transition in this system.

  10. Local spin-density-wave order inside vortex cores in multiband superconductors

    SciTech Connect

    Mishra, Vivek; Koshelev, Alexei E.

    2015-08-13

    Coexistence of antiferromagnetic order with superconductivity in many families of newly discovered iron-based superconductors has renewed interest to this old problem. Due to competition between the two types of order, one can expect appearance of the antiferromagnetism inside the cores of the vortices generated by the external magnetic field. The structure of a vortex in type II superconductors holds significant importance from the theoretical and the application points of view. In this paper, we consider the internal vortex structure in a two-band s± superconductor near a spin-density-wave instability. We treat the problem in a completely self-consistent manner within the quasiclassical Eilenberger formalism. We study the structure of the s± superconducting order and magnetic field-induced spin-density-wave order near an isolated vortex. Finally, we examine the effect of this spin-density-wave state inside the vortex cores on the local density of states.

  11. Impact of local order and stoichiometry on the ultrafast magnetization dynamics of Heusler compounds

    NASA Astrophysics Data System (ADS)

    Steil, Daniel; Schmitt, Oliver; Fetzer, Roman; Kubota, Takahide; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo; Rodan, Steven; Blum, Christian G. F.; Balke, Benjamin; Wurmehl, Sabine; Aeschlimann, Martin; Cinchetti, Mirko

    2015-04-01

    Nowadays, a wealth of information on ultrafast magnetization dynamics of thin ferromagnetic films exists in the literature. Information is, however, scarce on bulk single crystals, which may be especially important for the case of multi-sublattice systems. In Heusler compounds, representing prominent examples for such multi-sublattice systems, off-stoichiometry and degree of order can significantly change the magnetic properties of thin films, while bulk single crystals may be generally produced with a much more well-defined stoichiometry and a higher degree of ordering. A careful characterization of the local structure of thin films versus bulk single crystals combined with ultrafast demagnetization studies can, thus, help to understand the impact of stoichiometry and order on ultrafast spin dynamics. Here, we present a comparative study of the structural ordering and magnetization dynamics for thin films and bulk single crystals of the family of Heusler alloys with composition Co2Fe1 - xMnxSi. The local ordering is studied by 59Co nuclear magnetic resonance (NMR) spectroscopy, while the time-resolved magneto-optical Kerr effect gives access to the ultrafast magnetization dynamics. In the NMR studies we find significant differences between bulk single crystals and thin films, both regarding local ordering and stoichiometry. The ultrafast magnetization dynamics, on the other hand, turns out to be mostly unaffected by the observed structural differences, especially on the time scale of some hundreds of femtoseconds. These results confirm hole-mediated spin-flip processes as the main mechanism for ultrafast demagnetization and the robustness of this demagnetization channel against defect states in the minority band gap as well as against the energetic position of the band gap with respect to the Fermi energy. The very small differences observed in the magnetization dynamics on the picosecond time-scale, on the other hand, can be explained by considering the

  12. Polarizable simulations with second order interaction model (POSSIM) force field: developing parameters for protein side-chain analogues.

    PubMed

    Li, Xinbi; Ponomarev, Sergei Y; Sa, Qina; Sigalovsky, Daniel L; Kaminski, George A

    2013-05-30

    A previously introduced polarizable simulations with second-order interaction model (POSSIM) force field has been extended to include parameters for small molecules serving as models for peptide and protein side-chains. Parameters have been fitted to permit reproducing many-body energies, gas-phase dimerization energies, and geometries and liquid-phase heats of vaporization and densities. Quantum mechanical and experimental data have been used as the target for the fitting. The POSSIM framework combines accuracy of a polarizable force field and computational efficiency of the second-order approximation of the full-scale induced point dipole polarization formalism. The resulting parameters can be used for simulations of the parameterized molecules themselves or their analogues. In addition to this, these force field parameters are currently being used in further development of the POSSIM fast polarizable force field for proteins.

  13. Polarizable Simulations with Second order Interaction Model (POSSIM) force field: Developing parameters for protein side-chain analogues

    PubMed Central

    Li, Xinbi; Ponomarev, Sergei Y.; Sa, Qina; Sigalovsky, Daniel L.; Kaminski, George A.

    2013-01-01

    A previously introduced POSSIM (POlarizable Simulations with Second order Interaction Model) force field has been extended to include parameters for small molecules serving as models for peptide and protein side-chains. Parameters have been fitted to permit reproducing many-body energies, gas-phase dimerization energies and geometries and liquid-phase heats of vaporization and densities. Quantum mechanical and experimental data have been used as the target for the fitting. The POSSIM framework combines accuracy of a polarizable force field and computational efficiency of the second-order approximation of the full-scale induced point dipole polarization formalism. The resulting parameters can be used for simulations of the parameterized molecules themselves or their analogues. In addition to this, these force field parameters are currently being employed in further development of the POSSIM fast polarizable force field for proteins. PMID:23420678

  14. Destruction of valence-bond order in a S=(1)/(2) sawtooth chain with a Dzyaloshinskii-Moriya term

    NASA Astrophysics Data System (ADS)

    Hao, Zhihao; Wan, Yuan; Rousochatzakis, Ioannis; Wildeboer, Julia; Seidel, A.; Mila, F.; Tchernyshyov, O.

    2011-09-01

    A small value of the spin gap in quantum antiferromagnets with strong frustration makes them susceptible to nominally small deviations from the ideal Heisenberg model. One such perturbation, the anisotropic Dzyaloshinskii-Moriya (DM) interaction, is an important perturbation for the S=1/2 kagome antiferromagnet, one of the current candidates for a quantum-disordered ground state. We study the influence of the DM term in a related one-dimensional system, the sawtooth chain, which has valence-bond order in its ground state. Through a combination of analytical and numerical methods, we show that a relatively weak DM coupling, 0.115J, is sufficient to destroy the valence-bond order, close the spin gap, and turn the system into a Luttinger liquid with algebraic spin correlations. A similar mechanism may be at work in the kagome antiferromagnet.

  15. Application of Fermi hypernetted-chain theory to spin-polarized higher-order fractional quantum Hall states

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Kim, H.; Kim, N.

    2017-04-01

    We apply Fermi hypernetted-chain theory to study the spin polarization of higher-order fractional quantum Hall (FQH) states at filling factors in between the primary FQH sequences, ν =p /(qep ±1 ) , where qe is an even integer and p is a nonzero integer. The filling factors related to the higher-order FQH states include ν =3 /8 , 4 /11 , 5 /13 , 5 /17 , 4 /13 , 6 /17 , 7 /11 , and so on. We use a model of strongly interacting fermions with different spin degrees of freedom to explain the states beyond primary FQH sequences. We calculate the correlation energy, the radial distribution function, as well as the static structure function associated with the Halperin wave function adopted for the mixture states of fermions with different spins. The results are comparable with those from the residual interaction between composite fermions.

  16. Local Structure and Short-Range Order in a NiCoCr Solid Solution Alloy

    DOE PAGES

    Zhang, F. X.; Zhao, Shijun; Jin, Ke; ...

    2017-05-19

    Multi-element solid solution alloys are intrinsically disordered on the atomic scale, and many of their advanced properties originate from the unique local structural characteristics. We measured the local structure of a NiCoCr solid solution alloy with X-ray/neutron total scattering and extended X-ray absorption fine structure (EXAFS) techniques. The atomic pair distribution function analysis (PDF) did not exhibit distinct structural distortion. But, EXAFS analysis suggested that the Cr atoms are favorably bonded with Ni and Co in the solid solution alloys. This short-range order (SRO) plays a role in the distinct low values of electrical and thermal conductivities in Ni-based solidmore » solution alloys when Cr is incorporated. Both the long-range and local structures of the NiCoCr alloy upon Ni ion irradiation were studied and an irradiation-induced enhancement of SRO was found.« less

  17. The range of the local order in a model of diatomic liquid

    NASA Astrophysics Data System (ADS)

    De Santis, A.; Gregori, A.; Rocca, D.

    1993-10-01

    A molecular dynamic study of the local order in liquid chlorine is presented. The orientational correlations, found in the first coordination shell, vanish in the next shells. The role played by some microscopic configurations, characterized by different correlation ranges, is investigated. It is found that the Egelstaff, Page and Powles correlation model, if applied to each microscopic configuration, describes well the relation between atomic and centre—centre structure factors in the first coordination shell.

  18. Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives

    NASA Technical Reports Server (NTRS)

    Yan, Jue; Shu, Chi-Wang; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    In this paper we review the existing and develop new continuous Galerkin methods for solving time dependent partial differential equations with higher order derivatives in one and multiple space dimensions. We review local discontinuous Galerkin methods for convection diffusion equations involving second derivatives and for KdV type equations involving third derivatives. We then develop new local discontinuous Galerkin methods for the time dependent bi-harmonic type equations involving fourth derivatives, and partial differential equations involving fifth derivatives. For these new methods we present correct interface numerical fluxes and prove L(exp 2) stability for general nonlinear problems. Preliminary numerical examples are shown to illustrate these methods. Finally, we present new results on a post-processing technique, originally designed for methods with good negative-order error estimates, on the local discontinuous Galerkin methods applied to equations with higher derivatives. Numerical experiments show that this technique works as well for the new higher derivative cases, in effectively doubling the rate of convergence with negligible additional computational cost, for linear as well as some nonlinear problems, with a local uniform mesh.

  19. Non-local order in Mott insulators, duality and Wilson loops

    SciTech Connect

    Rath, Steffen Patrick; Simeth, Wolfgang; Endres, Manuel; Zwerger, Wilhelm

    2013-07-15

    It is shown that the Mott insulating and superfluid phases of bosons in an optical lattice may be distinguished by a non-local ‘parity order parameter’ which is directly accessible via single site resolution imaging. In one dimension, the lattice Bose model is dual to a classical interface roughening problem. We use known exact results from the latter to prove that the parity order parameter exhibits long range order in the Mott insulating phase, consistent with recent experiments by Endres et al. [M. Endres, M. Cheneau, T. Fukuhara, C. Weitenberg, P. Schauß, C. Gross, L. Mazza, M.C. Bañuls, L. Pollet, I. Bloch, et al., Science 334 (2011) 200]. In two spatial dimensions, the parity order parameter can be expressed in terms of an equal time Wilson loop of a non-trivial U(1) gauge theory in 2+1 dimensions which exhibits a transition between a Coulomb and a confining phase. The negative logarithm of the parity order parameter obeys a perimeter law in the Mott insulator and is enhanced by a logarithmic factor in the superfluid. -- Highlights: •Number statistics of cold atoms in optical lattices show non-local correlations. •These correlations are measurable via single site resolution imaging. •Incompressible phases exhibit an area law in particle number fluctuations. •This leads to long-range parity order of Mott-insulators in one dimension. •Parity order in 2d is connected with a Wilson-loop in a lattice gauge theory.

  20. Low frequency dynamics of disordered XY spin chains and pinned density waves: from localized spin waves to soliton tunneling.

    PubMed

    Fogler, Michael M

    2002-05-06

    A long-standing problem of the low-energy dynamics of a disordered XY spin chain is reexamined. The case of a rigid chain is studied, where the quantum effects can be treated quasiclassically. It is shown that, as the frequency decreases, the relevant excitations change from localized spin waves to two-level systems to soliton-antisoliton pairs. The linear-response correlation functions are calculated. The results apply to other periodic glassy systems such as pinned density waves, planar vortex lattices, stripes, and disordered Luttinger liquids.

  1. Direct evidence of strong local ferroelectric ordering in a thermoelectric semiconductor

    NASA Astrophysics Data System (ADS)

    Aggarwal, Leena; Sekhon, Jagmeet S.; Guin, Satya N.; Arora, Ashima; Negi, Devendra S.; Datta, Ranjan; Biswas, Kanishka; Sheet, Goutam

    2014-09-01

    It is thought that the proposed new family of multi-functional materials, namely, the ferroelectric thermoelectrics may exhibit enhanced functionalities due to the coupling of the thermoelectric parameters with ferroelectric polarization in solids. Therefore, the ferroelectric thermoelectrics are expected to be of immense technological and fundamental significance. As a first step towards this direction, it is most important to identify the existing high performance thermoelectric materials exhibiting ferroelectricity. Herein, through the direct measurement of local polarization switching, we show that the recently discovered thermoelectric semiconductor AgSbSe2 has local ferroelectric ordering. Using piezo-response force microscopy, we demonstrate the existence of nanometer scale ferroelectric domains that can be switched by external electric field. These observations are intriguing as AgSbSe2 crystalizes in cubic rock-salt structure with centro-symmetric space group (Fm-3m), and therefore, no ferroelectricity is expected. However, from high resolution transmission electron microscopy measurement, we found the evidence of local superstructure formation which, we believe, leads to local distortion of the centro-symmetric arrangement in AgSbSe2 and gives rise to the observed ferroelectricity. Stereochemically active 5S2 lone-pair of Sb may also give rise to local structural distortion thereby creating ferroelectricity in AgSbSe2.

  2. Direct evidence of strong local ferroelectric ordering in a thermoelectric semiconductor

    SciTech Connect

    Aggarwal, Leena; Sekhon, Jagmeet S.; Arora, Ashima; Sheet, Goutam; Guin, Satya N.; Negi, Devendra S.; Datta, Ranjan; Biswas, Kanishka

    2014-09-15

    It is thought that the proposed new family of multi-functional materials, namely, the ferroelectric thermoelectrics may exhibit enhanced functionalities due to the coupling of the thermoelectric parameters with ferroelectric polarization in solids. Therefore, the ferroelectric thermoelectrics are expected to be of immense technological and fundamental significance. As a first step towards this direction, it is most important to identify the existing high performance thermoelectric materials exhibiting ferroelectricity. Herein, through the direct measurement of local polarization switching, we show that the recently discovered thermoelectric semiconductor AgSbSe{sub 2} has local ferroelectric ordering. Using piezo-response force microscopy, we demonstrate the existence of nanometer scale ferroelectric domains that can be switched by external electric field. These observations are intriguing as AgSbSe{sub 2} crystalizes in cubic rock-salt structure with centro-symmetric space group (Fm–3m), and therefore, no ferroelectricity is expected. However, from high resolution transmission electron microscopy measurement, we found the evidence of local superstructure formation which, we believe, leads to local distortion of the centro-symmetric arrangement in AgSbSe{sub 2} and gives rise to the observed ferroelectricity. Stereochemically active 5S{sup 2} lone-pair of Sb may also give rise to local structural distortion thereby creating ferroelectricity in AgSbSe{sub 2}.

  3. Local orderings in long-range-disordered bismuth-layered intergrowth structure

    SciTech Connect

    Zhang, Faqiang; Li, Yongxiang; Gu, Hui; Gao, Xiang

    2014-04-01

    A series of intergrowth bismuth-layered (Bi{sub 3}TiNbO{sub 9}){sub 2}(Bi{sub 4}Ti{sub 3}O{sub 12}) (2{sub 2}3) ceramics were prepared by conventional solid-state reaction to study the characteristics of the local orderings in long-range-disordered intergrowth structures. High-resolution high-angle annular dark-field (HAADF) imaging reveals the intergrowth structure composed of mixtures of -23-, -223-, -2223- and -22- sequences, while the -223- structure is the thermodynamic stable state of this intergrowth system. It was confirmed by the crystals of recurrent -223- structure prepared by self-flux method and the nature of the local ordering was discussed from their differences in repeating units. The statistics show that when repeating units reach 4 or higher, the independent -223- intergrowth ordering emerges clearly among the competing associated orderings. We infer it is the kinetic factor that induces local compositional variance to result in long-range disordered intergrowth structures. - Graphical abstract: The long-range-disordered intergrowth structure in a (Bi{sub 3}TiNbO{sub 9}){sub 2}(Bi{sub 4}Ti{sub 3}O{sub 12}) (2{sub 2}3) grain, which is composed of various types of local orderings, such as -22-, -23- and -223-. - Highlights: • The characteristic of the long-range-disordered (Bi{sub 3}TiNbO{sub 9}){sub 2}(Bi{sub 4}Ti{sub 3}O{sub 12}) (2{sub 2}3) structure was statistically analyzed, and the ordered -223- structure was speculated to be the thermodynamic stable state of the system. • The crystals of the -223- structure were successfully prepared for the first time by self-melt method. • The lower limit of the repeating units (L) to uniquely determine an independent intergrowth structure was speculated to be L=4. • The analysis inferred that the kinetic process is the controlling factor to limit the structural continuity and induce the long-range-disordered intergrowth structure.

  4. Local structural order and relaxation effects in metal-chalcogenide glasses

    SciTech Connect

    Saleh, Z.M.

    1990-01-01

    Nuclear quadrupole resonance (NQR) and nuclear magnetic resonance (NMR) have been employed to study the local structural order and the relaxation mechanisms in metal-arsenic-chalcogenide glasses for metal concentrations within the glass forming region. The glass forming region in the Cu-As-S and Cu-As-se glassy systems extends approximately to 6 and 25 at. % copper, respectively. In the composition Cu[sub x](As[sub 2/5]Ch[sub 3/5])[sub 1[minus]x], where Ch = S or Se, there is evidence of dramatic changes in the local structure as copper is added to the system. One important change is the formation of As-As bonds which are absent in As[sub 2]Ch[sub 3]. The [sup 75]As NQR measurements indicate that the density of these bonds increases with copper concentration x. These results are consistent with the predictions of a model proposed recently to explain the local structural order in glassy metal chalcogenides. While NQR data show that arsenic atoms are threefold coordinated, EXAFs measurements have shown that copper is fourfold coordinated within the glass forming ranges in both systems. The NMR measurements confirm this result and quantitatively determine the local environment around the copper nuclei. For the naturally occurring mineral luzonite (Cu[sub 3]AsS[sub 4]) copper is fourfold coordinated. The known structure of this mineral has been used as a guide to understanding the local structure in the glasses. Copper and arsenic nuclear relaxation measurements were used to study the dynamics of these systems. The temperature and frequency dependence of the spin-lattice and spin-spin relaxation times have been carefully measured to determine the relaxation mechanisms.

  5. Transition, coexistence, and interaction of vector localized waves arising from higher-order effects

    SciTech Connect

    Liu, Chong; Yang, Zhan-Ying; Zhao, Li-Chen; Yang, Wen-Li

    2015-11-15

    We study vector localized waves on continuous wave background with higher-order effects in a two-mode optical fiber. The striking properties of transition, coexistence, and interaction of these localized waves arising from higher-order effects are revealed in combination with corresponding modulation instability (MI) characteristics. It shows that these vector localized wave properties have no analogues in the case without higher-order effects. Specifically, compared to the scalar case, an intriguing transition between bright–dark rogue waves and w-shaped–anti-w-shaped solitons, which occurs as a result of the attenuation of MI growth rate to vanishing in the zero-frequency perturbation region, is exhibited with the relative background frequency. In particular, our results show that the w-shaped–anti-w-shaped solitons can coexist with breathers, coinciding with the MI analysis where the coexistence condition is a mixture of a modulation stability and MI region. It is interesting that their interaction is inelastic and describes a fusion process. In addition, we demonstrate an annihilation phenomenon for the interaction of two w-shaped solitons which is identified essentially as an inelastic collision in this system. -- Highlights: •Vector rogue wave properties induced by higher-order effects are studied. •A transition between vector rogue waves and solitons is obtained. •The link between the transition and modulation instability (MI) is demonstrated. •The coexistence of vector solitons and breathers coincides with the MI features. •An annihilation phenomenon for the vector two w-shaped solitons is presented.

  6. A mixed (long- and medium-chain) triglyceride lipid emulsion extracts local anesthetic from human serum in vitro more effectively than a long-chain emulsion.

    PubMed

    Ruan, Weiming; French, Deborah; Wong, Alicia; Drasner, Kenneth; Wu, Alan H B

    2012-02-01

    Lipid emulsion infusion reverses cardiac toxicity of local anesthetics. The predominant effect is likely creation of a "lipid sink." This in vitro study determined the extent to which Intralipid® (Fresenius Kabi, Uppsala, Sweden) and Lipofundin® (B. Braun Melsungen AG, Melsungen, Germany) sequester anesthetics from serum, and whether it varies with pH. Bupivacaine, ropivacaine, and mepivacaine were added to human drug-free serum (pH 7.4) at 10 μg/ml. The lipid emulsions were added, and the mixture shaken and incubated at 37°C. Lipid was removed by ultracentrifugation and drug remaining in the serum measured. Additional experiments were performed using 100 μg/ml bupivacaine and at pH 6.9. Lipofundin® extracted all three anesthetics to a greater extent than Intralipid® (34.7% vs..22.3% for bupivacaine, 25.8% vs..16.5% for ropivacaine, and 7.3% vs..4.7% for mepivacaine). By increasing either concentration of bupivacaine or lipid, there was an increase in drug extraction from serum. Adjusting the pH to 6.9 had no statistically significant effect on the percentage of bupivacaine sequestered. Bupivacaine, ropivacaine, and mepivacaine were sequestered to an extent consistent with their octanol:water partition constants (logP). In contrast with previous studies of extraction of lipids from buffer solutions, an emulsion containing 50% each of medium- and long-chain triglycerides extracted local anesthetics to a greater extent from human serum than one containing exclusively long-chain triglycerides, calling into question recent advanced cardiac life support guidelines for resuscitation from anesthetic toxicity that specify use of a long-chain triglyceride. The current data also do not support recent recommendations to delay administration until pH is normalized.

  7. Anomalies of thermal expansion and electrical resistivity of layered cobaltates YBaCo2O5 + x : The role of oxygen chain ordering

    NASA Astrophysics Data System (ADS)

    Zhdanov, K. R.; Kameneva, M. Yu.; Kozeeva, L. P.; Lavrov, A. N.

    2016-08-01

    Layered cobaltates YBaCo2O5 + x have been investigated in the oxygen concentration range 0.23 ≤ x ≤ 0.52. It has been revealed that the oxygen ordering plays the key role in the appearance of anomalies in temperature dependences of structural parameters and electron transport. It has been shown that the orthorhombic lattice distortion caused by oxygen chain ordering is a necessary "trigger" for the phase transition from the insulating state to the metallic state at T ≈ 290-295 K, after which the orthorhombic distortion is significantly more pronounced. In the boundary region of the cobaltate compositions, where the oxygen ordering has a partial or local character, there are additional low-temperature (100-240 K) structural and resistive features with a large hysteresis. The observed anomalies can be explained by a change in the spin state of the cobalt ions, which is extremely sensitive to parameters of the crystal field acting on the ions, as well as by the spin-transition-induced delocalization of electrons.

  8. Immunoglobulin Light Chains Form an Extensive and Highly Ordered Fibril Involving the N- and C-Termini.

    PubMed

    Piehl, Dennis W; Blancas-Mejía, Luis M; Wall, Jonathan S; Kennel, Stephen J; Ramirez-Alvarado, Marina; Rienstra, Chad M

    2017-02-28

    Light-chain (AL)-associated amyloidosis is a systemic disorder involving the formation and deposition of immunoglobulin AL fibrils in various bodily organs. One severe instance of AL disease is exhibited by the patient-derived variable domain (VL) of the light chain AL-09, a 108 amino acid residue protein containing seven mutations relative to the corresponding germline protein, κI O18/O8 VL. Previous work has demonstrated that the thermodynamic stability of native AL-09 VL is greatly lowered by two of these mutations, Y87H and N34I, whereas a third mutation, K42Q, further increases the kinetics of fibril formation. However, detailed knowledge regarding the residues that are responsible for stabilizing the misfolded fibril structure is lacking. In this study, using solid-state NMR spectroscopy, we show that the majority of the AL-09 VL sequence is immobilized in the fibrils and that the N- and C-terminal portions of the sequence are particularly well-structured. Thus, AL-09 VL forms an extensively ordered and β-strand-rich fibril structure. Furthermore, we demonstrate that the predominant β-sheet secondary structure and rigidity observed for in vitro prepared AL-09 VL fibrils are qualitatively similar to those observed for AL fibrils extracted from postmortem human spleen tissue, suggesting that this conformation may be representative of a common feature of AL fibrils.

  9. Immunoglobulin Light Chains Form an Extensive and Highly Ordered Fibril Involving the N- and C-Termini

    PubMed Central

    2017-01-01

    Light-chain (AL)-associated amyloidosis is a systemic disorder involving the formation and deposition of immunoglobulin AL fibrils in various bodily organs. One severe instance of AL disease is exhibited by the patient-derived variable domain (VL) of the light chain AL-09, a 108 amino acid residue protein containing seven mutations relative to the corresponding germline protein, κI O18/O8 VL. Previous work has demonstrated that the thermodynamic stability of native AL-09 VL is greatly lowered by two of these mutations, Y87H and N34I, whereas a third mutation, K42Q, further increases the kinetics of fibril formation. However, detailed knowledge regarding the residues that are responsible for stabilizing the misfolded fibril structure is lacking. In this study, using solid-state NMR spectroscopy, we show that the majority of the AL-09 VL sequence is immobilized in the fibrils and that the N- and C-terminal portions of the sequence are particularly well-structured. Thus, AL-09 VL forms an extensively ordered and β-strand-rich fibril structure. Furthermore, we demonstrate that the predominant β-sheet secondary structure and rigidity observed for in vitro prepared AL-09 VL fibrils are qualitatively similar to those observed for AL fibrils extracted from postmortem human spleen tissue, suggesting that this conformation may be representative of a common feature of AL fibrils. PMID:28261692

  10. Spectroscopic effects of disorder and vibrational localization in mixed-halide metal-halide chain solids

    SciTech Connect

    Love, S.P.; Scott, B.; Worl, L.A.; Huckett, S.C.; Saxena, A.; Huang, X.Z.; Bishop, A.R.; Swanson, B.I.

    1993-01-01

    Resonance Raman techniques, together with lattice-dynamics and Peierls-Hubbard modelling, are used to explore the electronic and vibrational dynamics of the quasi-one-dimensional metal-halogen chain solids [Pt(en)[sub 2

  11. High order local absorbing boundary conditions for acoustic waves in terms of farfield expansions

    NASA Astrophysics Data System (ADS)

    Villamizar, Vianey; Acosta, Sebastian; Dastrup, Blake

    2017-03-01

    We devise a new high order local absorbing boundary condition (ABC) for radiating problems and scattering of time-harmonic acoustic waves from obstacles of arbitrary shape. By introducing an artificial boundary S enclosing the scatterer, the original unbounded domain Ω is decomposed into a bounded computational domain Ω- and an exterior unbounded domain Ω+. Then, we define interface conditions at the artificial boundary S, from truncated versions of the well-known Wilcox and Karp farfield expansion representations of the exact solution in the exterior region Ω+. As a result, we obtain a new local absorbing boundary condition (ABC) for a bounded problem on Ω-, which effectively accounts for the outgoing behavior of the scattered field. Contrary to the low order absorbing conditions previously defined, the error at the artificial boundary induced by this novel ABC can be easily reduced to reach any accuracy within the limits of the computational resources. We accomplish this by simply adding as many terms as needed to the truncated farfield expansions of Wilcox or Karp. The convergence of these expansions guarantees that the order of approximation of the new ABC can be increased arbitrarily without having to enlarge the radius of the artificial boundary. We include numerical results in two and three dimensions which demonstrate the improved accuracy and simplicity of this new formulation when compared to other absorbing boundary conditions.

  12. Nematic ordering of rigid rod polyelectrolytes induced by electrostatic interactions: Effect of discrete charge distribution along the chain

    NASA Astrophysics Data System (ADS)

    Yang, Dian; Venev, Sergey V.; Palyulin, Vladimir V.; Potemkin, Igor I.

    2011-02-01

    Similar to the Debye-Hückel plasma, charged groups in solutions of rigid rod polyelectrolytes attract each other. We derive expression for the correlation free energy of electrostatic attraction of the rods within the random phase approximation. In this theory, we explicitly take into account positions of charged groups on the chains and examine both charge and polymer concentration fluctuations. The correlation free energies and the osmotic pressures are calculated for isotropic and completely ordered nematic phase. The results of the discrete model are compared with results of a continuous model. The discrete model gives rise to a stronger attraction between the charged groups both in the isotropic and nematic phases and to a stronger orienting action of the electrostatic forces.

  13. Linear Chains of Magnetic Ions Stacked with Variable Distance: Ferromagnetic Ordering with a Curie Temperature above 20 K.

    PubMed

    Friedländer, Stefan; Liu, Jinxuan; Addicoat, Matt; Petkov, Petko; Vankova, Nina; Rüger, Robert; Kuc, Agnieszka; Guo, Wei; Zhou, Wencai; Lukose, Binit; Wang, Zhengbang; Weidler, Peter G; Pöppl, Andreas; Ziese, Michael; Heine, Thomas; Wöll, Christof

    2016-10-04

    We have studied the magnetic properties of the SURMOF-2 series of metal-organic frameworks (MOFs). Contrary to bulk MOF-2 crystals, where Cu(2+) ions form paddlewheels and are antiferromagnetically coupled, in this case the Cu(2+) ions are connected via carboxylate groups in a zipper-like fashion. This unusual coupling of the spin 1/2 ions within the resulting one-dimensional chains is found to stabilize a low-temperature, ferromagnetic (FM) phase. In contrast to other ordered 1D systems, no strong magnetic fields are needed to induce the ferromagnetism. The magnetic coupling constants describing the interaction between the individual metal ions have been determined in SQUID experiments. They are fully consistent with the results of ab initio DFT electronic structure calculations. The theoretical results allow the unusual magnetic behavior of this exotic, yet easy-to-fabricate, material to be described in a detailed fashion.

  14. Low-temperature ordered phases of the spin-1/2 XXZ chain system Cs2CoCl4

    NASA Astrophysics Data System (ADS)

    Breunig, O.; Garst, M.; Rosch, A.; Sela, E.; Buldmann, B.; Becker, P.; Bohatý, L.; Müller, R.; Lorenz, T.

    2015-01-01

    In this study the magnetic order of the spin-1/2 XXZ chain system Cs2CoCl4 in a temperature range from 50 mK to 0.5 K and in applied magnetic fields up to 3.5 T is investigated by high-resolution measurements of the thermal expansion and the specific heat. Applying magnetic fields along a or c suppresses TN completely at about 2.1 T. In addition, we find an adjacent intermediate phase before the magnetization saturates close to 2.5 T. For magnetic fields applied along b , a surprisingly rich phase diagram arises. Two additional transitions are observed at critical fields μ0HS F 1≃0.25 T and μ0HS F 2≃0.7 T , which we propose to arise from a two-stage spin-flop transition.

  15. Object representation for multi-beam sonar image using local higher-order statistics

    NASA Astrophysics Data System (ADS)

    Li, Haisen; Gao, Jue; Du, Weidong; Zhou, Tian; Xu, Chao; Chen, Baowei

    2017-01-01

    Multi-beam sonar imaging has been widely used in various underwater tasks such as object recognition and object tracking. Problems remain, however, when the sonar images are characterized by low signal-to-noise ratio, low resolution, and amplitude alterations due to viewpoint changes. This paper investigates the capacity of local higher-order statistics (HOS) to represent objects in multi-beam sonar images. The Weibull distribution has been used for modeling the background of the image. Local HOS involving skewness is estimated using a sliding computational window, thus generating the local skewness image of which a square structure is associated with a potential object. The ability of object representation with different signal-to-noise ratio (SNR) between object and background is analyzed, and the choice of the computational window size is discussed. In the case of the object with high SNR, a novel algorithm based on background estimation is proposed to reduce side lobe and retain object regions. The performance of object representation has been evaluated using real data that provided encouraging results in the case of the object with low amplitude, high side lobes, or large fluctuant amplitude. In conclusion, local HOS provides more reliable and stable information relating to the potential object and improves the object representation in multi-beam sonar image.

  16. Parallel and Low-Order Scaling Implementation of Hartree-Fock Exchange Using Local Density Fitting.

    PubMed

    Köppl, Christoph; Werner, Hans-Joachim

    2016-07-12

    Calculations using modern linear-scaling electron-correlation methods are often much faster than the necessary reference Hartree-Fock (HF) calculations. We report a newly implemented HF program that speeds up the most time-consuming step, namely, the evaluation of the exchange contributions to the Fock matrix. Using localized orbitals and their sparsity, local density fitting (LDF), and atomic orbital domains, we demonstrate that the calculation of the exchange matrix scales asymptotically linearly with molecular size. The remaining parts of the HF calculation scale cubically but become dominant only for very large molecular sizes or with many processing cores. The method is well parallelized, and the speedup scales well with up to about 100 CPU cores on multiple compute nodes. The effect of the local approximations on the accuracy of computed HF and local second-order Møller-Plesset perturbation theory energies is systematically investigated, and default values are established for the parameters that determine the domain sizes. Using these values, calculations for molecules with hundreds of atoms in combination with triple-ζ basis sets can be carried out in less than 1 h, with just a few compute nodes. The method can also be used to speed up density functional theory calculations with hybrid functionals that contain HF exchange.

  17. Critical quench dynamics of random quantum spin chains: ultra-slow relaxation from initial order and delayed ordering from initial disorder

    NASA Astrophysics Data System (ADS)

    Roósz, Gergö; Lin, Yu-Cheng; Iglói, Ferenc

    2017-02-01

    By means of free fermionic techniques combined with multiple precision arithmetic we study the time evolution of the average magnetization, \\overline{m}(t), of the random transverse-field Ising chain after global quenches. We observe different relaxation behaviors for quenches starting from different initial states to the critical point. Starting from a fully ordered initial state, the relaxation is logarithmically slow described by \\overline{m}(t)∼ {{ln}}at, and in a finite sample of length L the average magnetization saturates at a size-dependent plateau {\\overline{m}}p(L)∼ {L}-b; here the two exponents satisfy the relation b/a=\\psi =1/2. Starting from a fully disordered initial state, the magnetization stays at zero for a period of time until t={t}{{d}} with {ln}{t}{{d}}∼ {L}\\psi and then starts to increase until it saturates to an asymptotic value {\\overline{m}}p(L)∼ {L}-b^{\\prime }, with b\\prime ≈ 1.5. For both quenching protocols, finite-size scaling is satisfied in terms of the scaled variable {ln}t/{L}\\psi . Furthermore, the distribution of long-time limiting values of the magnetization shows that the typical and the average values scale differently and the average is governed by rare events. The non-equilibrium dynamical behavior of the magnetization is explained through semi-classical theory.

  18. Local order origin of thermal stability enhancement in amorphous Ag doping GeTe

    SciTech Connect

    Xu, L.; Li, Y.; Yu, N. N.; Zhong, Y. P.; Miao, X. S.

    2015-01-19

    We demonstrate the impacts of Ag doping on the local atomic structure of amorphous GeTe phase-change material. The variations of phonon vibrational modes, boding nature, and atomic structure are shown by Raman, X-ray photoelectron spectroscopy, and ab initio calculation. Combining the experiments and simulations, we observe that the number of Ge atoms in octahedral site decreases and that in tetrahedral site increases. This modification in local order of GeTe originating from the low valence element will affect the crystallization behavior of amorphous GeTe, which is verified by differential scanning calorimetry and transmission electron microscope results. This work not only gives the analysis on the structural change of GeTe with Ag dopants but also provides a method to enhance the thermal stability of amorphous phase-change materials for memory and brain-inspired computing applications.

  19. Local Structure and Short-Range Order in a NiCoCr Solid Solution Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, F. X.; Zhao, Shijun; Jin, Ke; Xue, H.; Velisa, G.; Bei, H.; Huang, R.; Ko, J. Y. P.; Pagan, D. C.; Neuefeind, J. C.; Weber, W. J.; Zhang, Yanwen

    2017-05-01

    Multielement solid solution alloys are intrinsically disordered on the atomic scale, and many of their advanced properties originate from the local structural characteristics. The local structure of a NiCoCr solid solution alloy is measured with x-ray or neutron total scattering and extended x-ray absorption fine structure (EXAFS) techniques. The atomic pair distribution function analysis does not exhibit an observable structural distortion. However, an EXAFS analysis suggests that the Cr atoms are favorably bonded with Ni and Co in the solid solution alloys. This short-range order (SRO) may make an important contribution to the low values of the electrical and thermal conductivities of the Cr-alloyed solid solutions. In addition, an EXAFS analysis of Ni ion irradiated samples reveals that the degree of SRO in NiCoCr alloys is enhanced after irradiation.

  20. Degraded Chinese rubbing images thresholding based on local first-order statistics

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Hou, Ling-Ying; Huang, Han

    2017-06-01

    It is a necessary step for Chinese character segmentation from degraded document images in Optical Character Recognizer (OCR); however, it is challenging due to various kinds of noising in such an image. In this paper, we present three local first-order statistics method that had been adaptive thresholding for segmenting text and non-text of Chinese rubbing image. Both visual inspection and numerically investigate for the segmentation results of rubbing image had been obtained. In experiments, it obtained better results than classical techniques in the binarization of real Chinese rubbing image and PHIBD 2012 datasets.

  1. Fixed Point Results of Locally Contractive Mappings in Ordered Quasi-Partial Metric Spaces

    PubMed Central

    Arshad, Muhammad; Ahmad, Jamshaid

    2013-01-01

    Fixed point results for a self-map satisfying locally contractive conditions on a closed ball in an ordered 0-complete quasi-partial metric space have been established. Instead of monotone mapping, the notion of dominated mappings is applied. We have used weaker metric, weaker contractive conditions, and weaker restrictions to obtain unique fixed points. An example is given which shows that how this result can be used when the corresponding results cannot. Our results generalize, extend, and improve several well-known conventional results. PMID:24062629

  2. Modulational instability and localized modes in Heisenberg ferromagnetic chains with single-ion easy-axis anisotropy

    NASA Astrophysics Data System (ADS)

    Tang, Bing; Li, Guang-Ling; Fu, Mei

    2017-03-01

    A semiclassical theoretical study on the property of the modulational instability of corresponding linear spin-waves and the presence of nonlinear localized excitations in a discrete quantum ferromagnetic spin chain with single-ion easy-axis anisotropy is reported. We consider the Glauber coherent-state representation combined with the Dyson-Maleev transformation for local spin operators as the basic representation of the system, and derive the equation of motion by means of the Ehrenfest theorem. Using a modulational instability analysis of plane waves, we predict the existence regions of bright envelope solitons and intrinsic localized spin-wave modes. Besides, with the help of a semidiscrete multi-scale method, we obtain analytical solutions for the bright envelope soliton and intrinsic localized spin-wave mode. Moreover, we analyze their existence conditions, which agree with the results of modulational instability analysis.

  3. A method to compute treatment suggestions from local order entry data.

    PubMed

    Klann, Jeffrey; Schadow, Gunther; Downs, Stephen M

    2010-11-13

    Although clinical decision support systems can reduce costs and improve care, the challenges associated with manually maintaining content has led to low utilization. Here we pilot an alternative, more automatic approach to decision support content generation. We use local order entry data and Bayesian networks to automatically find multivariate associations and suggest treatments. We evaluated this on 5044 hospitalizations of pregnant women, choosing 70 frequent order and treatment variables comprising 20 treatable conditions. The method produced treatment suggestion lists for 15 of these conditions. The lists captured accurate and non-trivial clinical knowledge, and all contained the key treatment for the condition, often as the first suggestion (71% overall, 90% non-labor-related). Additionally, when run on a test set of patient data, it very accurately predicted treatments (average AUC .873) and predicted pregnancy-specific treatments with even higher accuracy (AUC above .9). This method is a starting point for harnessing the wisdom-of-the-crowd for decision support.

  4. Ellipsoid Localization Microscopy Infers the Size and Order of Protein Layers in Bacillus Spore Coats

    PubMed Central

    Manetsberger, Julia; Manton, James D.; Erdelyi, Miklos J.; Lin, Henry; Rees, David; Christie, Graham; Rees, Eric J.

    2015-01-01

    Multilayered protein coats are crucial to the dormancy, robustness, and germination of bacterial spores. In Bacillus subtilis spores, the coat contains over 70 distinct proteins. Identifying which proteins reside in each layer may provide insight into their distinct functions. We present image analysis methods that determine the order and geometry of concentric protein layers by fitting a model description for a spheroidal fluorescent shell image to optical micrographs of spores incorporating fluorescent fusion proteins. The radius of a spherical protein shell can be determined with <10 nm error by fitting an equation to widefield fluorescence micrographs. Ellipsoidal shell axes can be fitted with comparable precision. The layer orders inferred for B. subtilis and B. megaterium are consistent with measurements in the literature. The aspect ratio of elongated spores and the tendency of some proteins to localize near their poles can be quantified, enabling measurement of structural anisotropy. PMID:26588565

  5. [Intermittent branched--chain ketoacidurie in ketotic hypoglycemia: investigations to localize the biochemical defect (author's transl)].

    PubMed

    Held, K R; Sternowsky, H J; Singh, S; Plettner, C; Grüttner, R

    1976-02-01

    We are reporting a girl aged eight years with ketotic hypoglycemia, mental deficiency and retarded motor and somatic development. Investigation of plasma amino acid concentrations during a spontaneous hypoglycemia revealed an increase in the branched-chain amino acids valine (4.1), leucine (7.8) and isoleucine (1.7 mg/100 ml), while alanine was decreased (1.2 mg/100 ml) and ketonuria was present. The determination of the branched-chain ketoacid decarboxylase in leukocytes showed a decrease of approximately 50% of normal for alpha-ketoisocaproic acid (KIC) as substrate, whereas values for alpha-ketoisovaleric acid (KIVA) and alpha-keto-beta-methylvaleric acid (MEVA) were normal. In fibroblasts activities for all three substrates were in the normal range. Intermittend maple-syrup-urine disease was excluded by oral loading tests with the branched-chain amino acids and with an isocaloric, high-protein diet. Impairment of oxydative decarboxylation of leucine, valine, and isoleucine secondary to increased ketogenesis may play an etiologic role in ketotic hypoglycemia, since we observed, by gaschromatographic analysis, an increase in the urinary excretion of KIVA (5.5 mumol/h), KIC (29.4), and MEVA (47.9) after a provocative test with an isocaloric ketogenic diet for 36 hrs. The significance of branched-chain hyperaminoacidemia and branched chain alpha-ketoaciduria is discussed in this context.

  6. Higher-order oligomerization promotes localization of SPOP to liquid nuclear speckles.

    PubMed

    Marzahn, Melissa R; Marada, Suresh; Lee, Jihun; Nourse, Amanda; Kenrick, Sophia; Zhao, Huaying; Ben-Nissan, Gili; Kolaitis, Regina-Maria; Peters, Jennifer L; Pounds, Stanley; Errington, Wesley J; Privé, Gilbert G; Taylor, J Paul; Sharon, Michal; Schuck, Peter; Ogden, Stacey K; Mittag, Tanja

    2016-06-15

    Membrane-less organelles in cells are large, dynamic protein/protein or protein/RNA assemblies that have been reported in some cases to have liquid droplet properties. However, the molecular interactions underlying the recruitment of components are not well understood. Herein, we study how the ability to form higher-order assemblies influences the recruitment of the speckle-type POZ protein (SPOP) to nuclear speckles. SPOP, a cullin-3-RING ubiquitin ligase (CRL3) substrate adaptor, self-associates into higher-order oligomers; that is, the number of monomers in an oligomer is broadly distributed and can be large. While wild-type SPOP localizes to liquid nuclear speckles, self-association-deficient SPOP mutants have a diffuse distribution in the nucleus. SPOP oligomerizes through its BTB and BACK domains. We show that BTB-mediated SPOP dimers form linear oligomers via BACK domain dimerization, and we determine the concentration-dependent populations of the resulting oligomeric species. Higher-order oligomerization of SPOP stimulates CRL3(SPOP) ubiquitination efficiency for its physiological substrate Gli3, suggesting that nuclear speckles are hotspots of ubiquitination. Dynamic, higher-order protein self-association may be a general mechanism to concentrate functional components in membrane-less cellular bodies. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  7. Local spin-density-wave order inside vortex cores in multiband superconductors

    DOE PAGES

    Mishra, Vivek; Koshelev, Alexei E.

    2015-08-13

    Coexistence of antiferromagnetic order with superconductivity in many families of newly discovered iron-based superconductors has renewed interest to this old problem. Due to competition between the two types of order, one can expect appearance of the antiferromagnetism inside the cores of the vortices generated by the external magnetic field. The structure of a vortex in type II superconductors holds significant importance from the theoretical and the application points of view. In this paper, we consider the internal vortex structure in a two-band s± superconductor near a spin-density-wave instability. We treat the problem in a completely self-consistent manner within the quasiclassicalmore » Eilenberger formalism. We study the structure of the s± superconducting order and magnetic field-induced spin-density-wave order near an isolated vortex. Finally, we examine the effect of this spin-density-wave state inside the vortex cores on the local density of states.« less

  8. Mesoscopic turbulence and local order in Janus particles self-propelling under an ac electric field

    NASA Astrophysics Data System (ADS)

    Nishiguchi, Daiki; Sano, Masaki

    2015-11-01

    To elucidate mechanisms of mesoscopic turbulence exhibited by active particles, we experimentally study turbulent states of nonliving self-propelled particles. We realize an experimental system with dense suspensions of asymmetrical colloidal particles (Janus particles) self-propelling on a two-dimensional surface under an ac electric field. Velocity fields of the Janus particles in the crowded situation can be regarded as a sort of turbulence because it contains many vortices and their velocities change abruptly. Correlation functions of their velocity field reveal the coexistence of polar alignment and antiparallel alignment interactions, which is considered to trigger mesoscopic turbulence. Probability distributions of local order parameters for polar and nematic orders indicate the formation of local clusters with particles moving in the same direction. A broad peak in the energy spectrum of the velocity field appears at the spatial scales where the polar alignment and the cluster formation are observed. Energy is injected at the particle scale and conserved quantities such as energy could be cascading toward the larger clusters.

  9. Hotspot detection using image pattern recognition based on higher-order local auto-correlation

    NASA Astrophysics Data System (ADS)

    Maeda, Shimon; Matsunawa, Tetsuaki; Ogawa, Ryuji; Ichikawa, Hirotaka; Takahata, Kazuhiro; Miyairi, Masahiro; Kotani, Toshiya; Nojima, Shigeki; Tanaka, Satoshi; Nakagawa, Kei; Saito, Tamaki; Mimotogi, Shoji; Inoue, Soichi; Nosato, Hirokazu; Sakanashi, Hidenori; Kobayashi, Takumi; Murakawa, Masahiro; Higuchi, Tetsuya; Takahashi, Eiichi; Otsu, Nobuyuki

    2011-04-01

    Below 40nm design node, systematic variation due to lithography must be taken into consideration during the early stage of design. So far, litho-aware design using lithography simulation models has been widely applied to assure that designs are printed on silicon without any error. However, the lithography simulation approach is very time consuming, and under time-to-market pressure, repetitive redesign by this approach may result in the missing of the market window. This paper proposes a fast hotspot detection support method by flexible and intelligent vision system image pattern recognition based on Higher-Order Local Autocorrelation. Our method learns the geometrical properties of the given design data without any defects as normal patterns, and automatically detects the design patterns with hotspots from the test data as abnormal patterns. The Higher-Order Local Autocorrelation method can extract features from the graphic image of design pattern, and computational cost of the extraction is constant regardless of the number of design pattern polygons. This approach can reduce turnaround time (TAT) dramatically only on 1CPU, compared with the conventional simulation-based approach, and by distributed processing, this has proven to deliver linear scalability with each additional CPU.

  10. Typical density of states as an order parameter for the Anderson localization

    NASA Astrophysics Data System (ADS)

    Tam, Ka-Ming; Moore, Conrad; Moreno, Juana; Jarrell, Mark

    2015-03-01

    The typical medium theory and its recently proposed extensions for models with off-diagonal disorder and multiple bands are significant progress towards the study of localization phenomenon in real materials. The fundamental assumption of these methods is that the typical density of states can be treated as an order parameter. However, its justifications in lattice model is largely lacking. This is predominantly due to two factors. First, the lattice sizes amenable for exact diagonalization is rather limited. Second, the small lattice sizes lead to a very sensitive dependence on the broadening factor. In this work, we use the kernel polynomial method to perform simulation for large system sizes. By adapting the method for the study of criticality, we find that the typical density of states has a well defined finite size scaling behavior. In particular, from the kurtosis, Binder ratio, of the distribution of the density of states for different lattice sizes, we find a clear crossing to identify the critical point. This provides further support that the typical density of states can be used as an order parameter for the localization transition.

  11. Dynamic decoupling and local atomic order of a model multicomponent metallic glass-former.

    PubMed

    Kim, Jeongmin; Sung, Bong June

    2015-06-17

    The dynamics of multicomponent metallic alloys is spatially heterogeneous near glass transition. The diffusion coefficient of one component of the metallic alloys may also decouple from those of other components, i.e., the diffusion coefficient of each component depends differently on the viscosity of metallic alloys. In this work we investigate the dynamic heterogeneity and decoupling of a model system for multicomponent Pd43Cu27Ni10P20 melts by using a hard sphere model that considers the size disparity of alloys but does not take chemical effects into account. We also study how such dynamic behaviors would relate to the local atomic structure of metallic alloys. We find, from molecular dynamics simulations, that the smallest component P of multicomponent Pd43Cu27Ni10P20 melts becomes dynamically heterogeneous at a translational relaxation time scale and that the largest major component Pd forms a slow subsystem, which has been considered mainly responsible for the stabilization of amorphous state of alloys. The heterogeneous dynamics of P atoms accounts for the breakdown of Stokes-Einstein relation and also leads to the dynamic decoupling of P and Pd atoms. The dynamically heterogeneous P atoms decrease the lifetime of the local short-range atomic orders of both icosahedral and close-packed structures by orders of magnitude.

  12. Macroscopic fluxes and local reciprocal relation in second-order stochastic processes far from equilibrium

    NASA Astrophysics Data System (ADS)

    Ge, Hao

    2015-01-01

    A stochastic process is an essential tool for the investigation of the physical and life sciences at nanoscale. In the first-order stochastic processes widely used in chemistry and biology, only the flux of mass rather than that of heat can be well defined. Here we investigate the two macroscopic fluxes in second-order stochastic processes driven by position-dependent forces and temperature gradient. We prove that the thermodynamic equilibrium defined through the vanishing of macroscopic fluxes is equivalent to that defined via time reversibility at mesoscopic scale. In the small noise limit, we find that the entropy production rate, which has previously been defined by the mesoscopic irreversible fluxes on the phase space, matches the classic macroscopic expression as the sum of the products of macroscopic fluxes and their associated thermodynamic forces. Further we show that the two pairs of forces and fluxes in such a limit follow a linear phenomenonical relation and the associated scalar coefficients always satisfy the reciprocal relation for both transient and steady states. The scalar coefficient is proportional to the square of local temperature divided by the local frictional coefficient and originated from the second moment of velocity distribution along each dimension. This result suggests the very close connection between the Soret effect (thermal diffusion) and Dufour effect at nanoscale even far from equilibrium.

  13. Closely approximating second-order Moeller-Plesset perturbation theory with a local triatomics in molecules model

    SciTech Connect

    Lee, Michael S.; Maslen, Paul E.; Head-Gordon, Martin

    2000-02-22

    A new ansatz for local electron correlation is introduced, which truncates double substitutions subject to a triatomics in molecules (TRIM) criterion. TRIM includes all double substitutions in which one occupied-virtual substitution is atomic while the other substitution can be nonlocal (a cubic number, before cutoffs). With an additional approximation, the TRIM second-order Moeller-Plesset perturbation theory (MP2) model can be noniteratively solved; this is the model that is implemented. Results are shown for absolute energies of alkane and polyene chains, rotational barriers of substituted ethylenes and benzenes, and association energies of the water and neon dimers. Over 99.7% of the untruncated MP2 energy is recovered for the test cases, and the relative energies of small systems are in error by less than 0.1 kcal/mol. By contrast, a diatomics in molecules (DIM) truncation recovers about 95% of the full MP2 energy, and yields errors several times larger for relative energies. (c) 2000 American Institute of Physics.

  14. Measurement and Development of Humanware and Technoware Competencies in Order to Meet Pintle Chain Product Requirements in Bandung Manufacture Polytechnic

    NASA Astrophysics Data System (ADS)

    Akbar, Jodi; Akbar, Muhammad; Irianto, Dradjad

    2016-02-01

    Politeknik Manufaktur Bandung (Bandung Manufacture Polytechnic) is a polytechnic education that is not only to educate their students, but also manufactures order from customers at its teaching factory. This polytechnic is usually not responsive with the number of reject due to amateur operators from newcomer students. However, customers will be displeased if the reject rate is too high which can cause delay of delivery. At the foundry section, pintle chain is a product that has the highest amount of quantity but the lowest product standard fulfilment. Realizing this problem, it is a strong need to give more focus on quality improvement. The polytechnic considers that bad quality is not only related to low level of humanware (operator) but also related to low level of technoware (machine and equipment). In this research, QFD model was used as a tool for identifying target of improvement of non conforming factors of humanware and technoware using UNESCAP's technometric model. An improvement was done by implementing new scheduling strategy at foundry unit in order to minimize waiting time from molding to pouring process because of deterioration problem. This strategy provides an opportunity to reduce completion times about 50% and waiting time about 95% compared to the existing scheduling strategy.

  15. Distributed RSS-Based Localization in Wireless Sensor Networks Based on Second-Order Cone Programming

    PubMed Central

    Tomic, Slavisa; Beko, Marko; Dinis, Rui

    2014-01-01

    In this paper, we propose a new approach based on convex optimization to address the received signal strength (RSS)-based cooperative localization problem in wireless sensor networks (WSNs). By using iterative procedures and measurements between two adjacent nodes in the network exclusively, each target node determines its own position locally. The localization problem is formulated using the maximum likelihood (ML) criterion, since ML-based solutions have the property of being asymptotically efficient. To overcome the non-convexity of the ML optimization problem, we employ the appropriate convex relaxation technique leading to second-order cone programming (SOCP). Additionally, a simple heuristic approach for improving the convergence of the proposed scheme for the case when the transmit power is known is introduced. Furthermore, we provide details about the computational complexity and energy consumption of the considered approaches. Our simulation results show that the proposed approach outperforms the existing ones in terms of the estimation accuracy for more than 1.5 m. Moreover, the new approach requires a lower number of iterations to converge, and consequently, it is likely to preserve energy in all presented scenarios, in comparison to the state-of-the-art approaches. PMID:25275350

  16. Distributed RSS-based localization in wireless sensor networks based on second-order cone programming.

    PubMed

    Tomic, Slavisa; Beko, Marko; Dinis, Rui

    2014-10-01

    In this paper, we propose a new approach based on convex optimization to address the received signal strength (RSS)-based cooperative localization problem in wireless sensor networks (WSNs). By using iterative procedures and measurements between two adjacent nodes in the network exclusively, each target node determines its own position locally. The localization problem is formulated using the maximum likelihood (ML) criterion, since ML-based solutions have the property of being asymptotically efficient. To overcome the non-convexity of the ML optimization problem, we employ the appropriate convex relaxation technique leading to second-order cone programming (SOCP). Additionally, a simple heuristic approach for improving the convergence of the proposed scheme for the case when the transmit power is known is introduced. Furthermore, we provide details about the computational complexity and energy consumption of the considered approaches. Our simulation results show that the proposed approach outperforms the existing ones in terms of the estimation accuracy for more than 1:5 m. Moreover, the new approach requires a lower number of iterations to converge, and consequently, it is likely to preserve energy in all presented scenarios, in comparison to the state-of-the-art approaches.

  17. Finite speed heat transport in a quantum spin chain after quenched local cooling

    NASA Astrophysics Data System (ADS)

    Fries, Pascal; Hinrichsen, Haye

    2017-04-01

    We study the dynamics of an initially thermalized spin chain in the quantum XY-model, after sudden coupling to a heat bath of lower temperature at one end of the chain. In the semi-classical limit we see an exponential decay of the system-bath heatflux by exact solution of the reduced dynamics. In the full quantum description however, we numerically find the heatflux to reach intermediate plateaus where it is approximately constant—a phenomenon that we attribute to the finite speed of heat transport via spin waves.

  18. Modification of local order in FePd films by low energy He+ irradiation

    NASA Astrophysics Data System (ADS)

    Merkel, D. G.; Tanczikó, F.; Sajti, Sz.; Major, M.; Németh, A.; Bottyán, L.; Horváth, Z. E.; Waizinger, J.; Stankov, S.; Kovács, A.

    2008-07-01

    Owing to their strong perpendicular magnetic anisotropy, FePd, CoPd, and their Co(Fe)Pt counterparts are candidate materials for ultrahigh density magnetic recording. The stability and magnetic properties of such films are largely dependent on the orientation and local distribution of the L10 FePd phase fraction. Therefore, the formation and transformation of the L10 phase in such thin films have been the subject of continued interest. Highly ordered epitaxial FePd(001) thin films (with an L10 phase fraction of 0.81) were prepared by molecular-beam epitaxy on a MgO(001) substrate. The effect of postgrown room temperature, 130 keV He+ irradiation was investigated at fluences up to 14.9×1015 ions/cm2. X-ray diffraction and conversion electron Mössbauer spectroscopy revealed that with increasing fluence, the L10 FePd phase decomposes into the face centered cubic phase with random Fe and Pd occupation of the sites. A partially ordered local environment exhibiting a large hyperfine magnetic field also develops. Upon He+ irradiation, the lattice parameter c of the FePd L10 structure increases and the long range order parameter S steeply decreases. The Fe-Fe nearest-neighbor coordination in the Fe-containing environments increases on average from Fe47Pd53 to Fe54Pd46, indicating a tendency of formation iron-rich clusters. The equilibrium parameters corresponding to the equiatomic L10 phase were found at different fluences by conversion electron Mössbauer spectroscopy and by x-ray diffraction a difference, from which a plane-perpendicular compressive stress and a corresponding in-plane tensile stress are conjectured. The steep increase in the interface roughness above 7.4×1015 ions/cm2 is interpreted as a percolation-type behavior related to the high diffusion anisotropy in the L10 phase.

  19. Local atomic order, electronic structure and electron transport properties of Cu-Zr metallic glasses

    SciTech Connect

    Antonowicz, J. Pietnoczka, A.; Pękała, K.; Latuch, J.; Evangelakis, G. A.

    2014-05-28

    We studied atomic and electronic structures of binary Cu-Zr metallic glasses (MGs) using combined experimental and computational methods including X-ray absorption fine structure spectroscopy, electrical resistivity, thermoelectric power (TEP) measurements, molecular dynamics (MD) simulations, and ab-initio calculations. The results of MD simulations and extended X-ray absorption fine structure analysis indicate that atomic order of Cu-Zr MGs and can be described in terms of interpenetrating icosahedral-like clusters involving five-fold symmetry. MD configurations were used as an input for calculations of theoretical electronic density of states (DOS) functions which exhibits good agreement with the experimental X-ray absorption near-edge spectra. We found no indication of minimum of DOS at Fermi energy predicted by Mott's nearly free electron (NFE) model for glass-forming alloys. The theoretical DOS was subsequently used to test Mott's model describing the temperature variation of electrical resistivity and thermoelectric power of transition metal-based MGs. We demonstrate that the measured temperature variations of electrical resistivity and TEP remain in a contradiction with this model. On the other hand, the experimental temperature dependence of electrical resistivity can be explained by incipient localization of conduction electrons. It is shown that weak localization model works up to relatively high temperatures when localization is destroyed by phonons. Our results indicate that electron transport properties of Cu-Zr MGs are dominated by localization effects rather than by electronic structure. We suggest that NFE model fails to explain a relatively high glass-forming ability of binary Cu-Zr alloys.

  20. Local atomic order, electronic structure and electron transport properties of Cu-Zr metallic glasses

    NASA Astrophysics Data System (ADS)

    Antonowicz, J.; Pietnoczka, A.; Pekała, K.; Latuch, J.; Evangelakis, G. A.

    2014-05-01

    We studied atomic and electronic structures of binary Cu-Zr metallic glasses (MGs) using combined experimental and computational methods including X-ray absorption fine structure spectroscopy, electrical resistivity, thermoelectric power (TEP) measurements, molecular dynamics (MD) simulations, and ab-initio calculations. The results of MD simulations and extended X-ray absorption fine structure analysis indicate that atomic order of Cu-Zr MGs and can be described in terms of interpenetrating icosahedral-like clusters involving five-fold symmetry. MD configurations were used as an input for calculations of theoretical electronic density of states (DOS) functions which exhibits good agreement with the experimental X-ray absorption near-edge spectra. We found no indication of minimum of DOS at Fermi energy predicted by Mott's nearly free electron (NFE) model for glass-forming alloys. The theoretical DOS was subsequently used to test Mott's model describing the temperature variation of electrical resistivity and thermoelectric power of transition metal-based MGs. We demonstrate that the measured temperature variations of electrical resistivity and TEP remain in a contradiction with this model. On the other hand, the experimental temperature dependence of electrical resistivity can be explained by incipient localization of conduction electrons. It is shown that weak localization model works up to relatively high temperatures when localization is destroyed by phonons. Our results indicate that electron transport properties of Cu-Zr MGs are dominated by localization effects rather than by electronic structure. We suggest that NFE model fails to explain a relatively high glass-forming ability of binary Cu-Zr alloys.

  1. High-Order Local Pooling and Encoding Gaussians Over a Dictionary of Gaussians.

    PubMed

    Li, Peihua; Zeng, Hui; Wang, Qilong; Shiu, Simon C K; Zhang, Lei

    2017-07-01

    Local pooling (LP) in configuration (feature) space proposed by Boureau et al. explicitly restricts similar features to be aggregated, which can preserve as much discriminative information as possible. At the time it appeared, this method combined with sparse coding achieved competitive classification results with only a small dictionary. However, its performance lags far behind the state-of-the-art results as only the zero-order information is exploited. Inspired by the success of high-order statistical information in existing advanced feature coding or pooling methods, we make an attempt to address the limitation of LP. To this end, we present a novel method called high-order LP (HO-LP) to leverage the information higher than the zero-order one. Our idea is intuitively simple: we compute the first- and second-order statistics per configuration bin and model them as a Gaussian. Accordingly, we employ a collection of Gaussians as visual words to represent the universal probability distribution of features from all classes. Our problem is naturally formulated as encoding Gaussians over a dictionary of Gaussians as visual words. This problem, however, is challenging since the space of Gaussians is not a Euclidean space but forms a Riemannian manifold. We address this challenge by mapping Gaussians into the Euclidean space, which enables us to perform coding with common Euclidean operations rather than complex and often expensive Riemannian operations. Our HO-LP preserves the advantages of the original LP: pooling only similar features and using a small dictionary. Meanwhile, it achieves very promising performance on standard benchmarks, with either conventional, hand-engineered features or deep learning-based features.

  2. Local electrical control of magnetic order and orientation by ferroelastic domain arrangements just above room temperature

    PubMed Central

    Phillips, L. C.; Cherifi, R. O.; Ivanovskaya, V.; Zobelli, A.; Infante, I. C.; Jacquet, E.; Guiblin, N.; Ünal, A. A.; Kronast, F.; Dkhil, B.; Barthélémy, A.; Bibes, M.; Valencia, S.

    2015-01-01

    Ferroic materials (ferromagnetic, ferroelectric, ferroelastic) usually divide into domains with different orientations of their order parameter. Coupling between different ferroic systems creates new functionalities, for instance the electrical control of macroscopic magnetic properties including magnetization and coercive field. Here we show that ferroelastic domains can be used to control both magnetic order and magnetization direction at the nanoscale with a voltage. We use element-specific X-ray imaging to map the magnetic domains as a function of temperature and voltage in epitaxial FeRh on ferroelastic BaTiO3. Exploiting the nanoscale phase-separation of FeRh, we locally interconvert between ferromagnetic and antiferromagnetic states with a small electric field just above room temperature. Imaging and ab initio calculations show the antiferromagnetic phase of FeRh is favoured by compressive strain on c-oriented BaTiO3 domains, and the resultant magnetoelectric coupling is larger and more reversible than previously reported from macroscopic measurements. Our results emphasize the importance of nanoscale ferroic domain structure and the promise of first-order transition materials to achieve enhanced coupling in artificial multiferroics. PMID:25969926

  3. Pricing and ordering policies for price-dependent demand in a supply chain of a single retailer and a single manufacturer

    NASA Astrophysics Data System (ADS)

    Kim, Jungkyu; Hong, Yushin; Kim, Taebok

    2011-01-01

    This article discusses joint pricing and ordering policies for price-dependent demand in a supply chain consisting of a single retailer and a single manufacturer. The retailer places orders for products according to an EOQ policy and the manufacturer produces them on a lot-for-lot basis. Four mechanisms with differing levels of coordination are presented. Mathematical models are formulated and solution procedures are developed to determine the optimal retail prices and order quantities. Through extensive numerical experiments, we analyse and compare the behaviours and characteristics of the proposed mechanisms, and find that enhancing the level of coordination has important benefits for the supply chain.

  4. Local vibrational mode of an impurity in a monatomic linear chain under open and periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Luo, Qiang

    2016-11-01

    In this paper, we revisit the lattice vibration of a one-dimensional monatomic linear chain under open and periodic boundary conditions, and give the exact conditions for the emergence of the local vibration mode when one of the atoms is replaced by an impurity. Our motivation is twofold. Firstly, in deriving the dispersion relation of the atoms, the periodic boundary condition is overwhelmingly utilized while the open boundary condition is seldom used. Therefore we manage to obtain the dispersion relation under both boundary conditions simultaneously by the Molinari formula. Secondly, in the presence of an impurity, the local vibration mode can emerge as long as the mass of the impurity m\\prime is smaller than the mass of the perfect atom m to a certain degree, which can be measured by the mass ratio δ =\\tfrac{m-m\\prime }{m}. At the periodic boundary condition, the critical mass ratio is 0 or \\tfrac{1}{N}, depending on whether the length N of the chain is even or odd. At the open boundary condition, the critical mass ratio is \\tfrac{N}{2N-1} if the impurity locates at the end of the chain, while it is \\tfrac{N}{(2{N}{{l}}+1)(2{N}{{r}}+1)} with N l and N r the number of atoms at the left- and right-hand sides of the impurity if the impurity locates at the middle.

  5. SDR-O: an orphan short-chain dehydrogenase/reductase localized at mouse chromosome 10/human chromosome 12.

    PubMed

    Chen, Weiguo; Song, Min-Sun; Napoli, Joseph L

    2002-07-10

    We report cloning a cDNA that encodes a novel short-chain dehydrogenase/reductase, SDR-O, conserved in mouse, human and rat. Human and mouse liver express SDR-O (short-chain dehydrogenase/reductase-orphan) mRNA intensely. The mouse embryo expresses SDR-O mRNA as early as day seven. Human SDR-O localizes on chromosome 12; mouse SDR-O localizes on chromosome 10 with CRAD1, CRAD2 and RDH4. SDR-O shares highest amino acid similarity with rat RoDH1 and mouse RDH1 (69-70%), but does not have the retinol and 3alpha-hydroxysteroid dehydrogenase activity of either, nor is it active as a 17beta- or 11beta-hydroxysteroid dehydrogenase. Short-chain dehydrogenase/reductases catalyse the metabolism of ligands that bind with nuclear receptors: the occurrence of 'orphan' nuclear receptors may imply existence of 'orphan' SDR, suggesting that SDR-O may catalyse the metabolism of another class of nuclear receptor ligand. Alternatively, SDR-O may not have a catalytic function, but may regulate metabolism by binding substrates/products and/or by serving as a regulatory factor.

  6. Magnetic properties driven by local structure in quasi-1D Ising chain system cobaltate system

    NASA Astrophysics Data System (ADS)

    Kim, Bongjae; Kim, Beom Hyun; Kim, Kyoo; Choi, Hong Chul; Park, Sang-Yeon; Jeong, Y.-H.; Min, B. I.

    2012-02-01

    Using ab-initio band structure method and the microscopic model calculation, the origins of the large orbital magnetic moment and unique magnetic anisotropy in the quasi-1D magnetic cobaltate, α-CoV2O6, is investigated. Unique crystal electric field effect in α-CoV2O6 is combined with the strong spin-orbit coupling, results in intriguing magnetic properties of the system. Based on the estimated strengths of the intra- and the inter-chain exchange interaction, experimentally found 1/3 magnetization plateau in the MH curve can be attributed to spin-flop mechanism. Origin of the reduced magnetic entropy behavior is found to be the strong uniaxial magnetic anisotropy in the quasi-1D Ising chain system.

  7. Excited-state fidelity as a signal for the many-body localization transition in a disordered Ising chain.

    PubMed

    Hu, Taotao; Xue, Kang; Li, Xiaodan; Zhang, Yan; Ren, Hang

    2017-04-03

    In this work, we use exact matrix diagonalization to explore the many-body localization (MBL) transitions in quantum Ising chains with disordered nearest-neighbour couplings, disordered next-nearest-neighbour couplings and disordered external fields. It is demonstrated that the fidelity can be used to characterize the interaction-driven MBL transition in this closed spin system in a manner that is consistent with previous analytical and numerical results. We compute the fidelity for high-energy many-body eigenstates, namely, the excited-state fidelity. It is demonstrated that disordered nearest-neighbour couplings, disordered next-nearest-neighbour couplings and disordered external fields each have different effects on the MBL transition. Furthermore, we investigate the MBL transition of a quantum Ising chain with both disordered nearest-neighbour couplings and disordered next-nearest-neighbour couplings to see how these two types of disordered couplings drive the occurrence of the MBL transition.

  8. Immunogenicity of a locally produced hepatitis B vaccine with the birth dose stored outside the cold chain in rural Vietnam.

    PubMed

    Hipgrave, David B; Tran, Trung Nam; Huong, Vu Minh; Dat, Do Tuan; Nga, Nguyen Tuyet; Long, Hoang Thuy; Van, Nguyen Thu; Maynard, James E; Biggs, Beverley-Ann

    2006-02-01

    The heat stability of hepatitis B vaccine (HepB vaccine) should enable its storage outside the cold chain (OCC), increasing access to the birth dose in areas lacking refrigeration. We compared the immunogenicity of a locally produced vaccine among infants who received three doses stored within the cold chain (n = 358) or for whom the first dose was stored OCC for up to one month (n = 748). Serum was collected from these infants at age 9-18 months. The vaccine was protective in 80.3% of all infants. There were no differences in the prevalence of a protective level of antibody or antibody titer among groups of infants according to storage strategy. Differences in antibody titer between certain groups of infants could be explained by different vaccination schedules. Where birth dose coverage will be improved, HepB vaccine can be taken OCC for up to one month without affecting its immunogenicity.

  9. Local quench, Majorana zero modes, and disturbance propagation in the Ising chain

    NASA Astrophysics Data System (ADS)

    Francica, G.; Apollaro, T. J. G.; Lo Gullo, N.; Plastina, F.

    2016-12-01

    We study the generation and propagation of local perturbations in a quantum many-body spin system. In particular, we study the Ising model in transverse field in the presence of a local field defect at one edge. This system possesses a rich phase diagram with different regions characterized by the presence of one or two Majorana zero modes. We show that their localized character (i) enables a characterization of the Ising phase transition through a local-only measurement performed on the edge spin, and (ii) strongly affects the propagation of quasiparticles emitted after the sudden removal of the defect, so that the dynamics of the local magnetization show clear deviations from a ballistic behavior in the presence of the Majorana fermions.

  10. Localization of myosin II regulatory light chain in the cerebral vasculature.

    PubMed

    Ishmael, Jane E; Löhr, Christiane V; Fischer, Kay; Kioussi, Chrissa

    2008-01-01

    The cytoskeleton of cerebral microvascular endothelial cells is a critical determinant of blood-brain barrier (BBB) function. Barrier integrity appears to be particularly sensitive to the phosphorylation state of specific residues within myosin regulatory light chain (RLC), one of two accessory light chains of the myosin II motor complex. Phosphorylation of myosin RLC by myosin light chain kinase (MLCK) has been implicated in BBB dysfunction associated with alcohol abuse and hypoxia, whereas dephosphorylation may enhance BBB integrity following exposure to lipid-lowering statin drugs. Using immunohistochemistry we provide evidence of widespread myosin II RLC distribution throughout the cerebral vasculature of the mouse. Light microscopy revealed immunolocalization of myosin II RLC protein in the endothelium of brain capillaries, the endothelial cell layer of arterioles and in association with venules. Immunolabeling of myosin RLC in non-muscle endothelial cells could be distinguished from myosin RLC immunoreactivity associated with the smooth muscle layer of the tunica media in larger muscular arterioles. These findings support an emerging role for myosin II RLC as a component of the actomyosin cytoskeleton of cerebral endothelial cells with the potential to contribute to the selective vulnerability of the brain in vivo.

  11. Local Order-Disorder Transition Driving by Structural Heterogeneity in a Benzyl Functionalized Ionic Liquid.

    PubMed

    Faria, Luiz F O; Paschoal, Vitor Hugo; Lima, Thamires A; Ferreira, Fabio Furlan; Sa de Freitas, Rafael; Ribeiro, Mauro C C

    2017-10-02

    A local order-disorder transition has been disclosed in the thermophysical behavior of the ionic liquid 1-benzyl-3-methylimidazolium dicyanamide, [Bzmim][N(CN)2], and its microscopic nature revealed by spectroscopic techniques. Differential scanning calorimetry and specific heat measurements show a thermal event of small enthalpy variation taking place in the range 250-260 K, which is not due to crystallization or melting. Molecular dynamic simulations and X-ray diffraction measurements have been used to discuss the segregation of domains in the liquid structure of [Bzmim][N(CN)2]. Raman and NMR spectroscopy measurements as a function of temperature indicate that the microscopic origin of the event observed in the calorimetric measurements comes from structural rearrangement involving the benzyl group. The results indicate that the characteristic structural heterogeneity allow for rearrangements within local domains implying the good glass-forming ability for the low viscosity ionic liquid [Bzmim][N(CN)2]. This work sheds light on our understanding of the microscopic origin behind complex thermal behavior of ionic liquids.

  12. Local correlation functions of arbitrary order for the Falicov-Kimball model

    NASA Astrophysics Data System (ADS)

    Ribic, T.; Rohringer, G.; Held, K.

    2017-04-01

    Local n -particle vertex functions represent the crucial ingredient for diagrammatic extensions of dynamical mean field theory (DMFT). Hitherto their application has been restricted—with a few exceptions—to the n =2 -particle vertex while higher-order vertices have been neglected. In this paper we derive a general analytical expression for the local n -particle (one-particle-reducible) vertex of the Falicov-Kimball model (FKM). We observe that the magnitude of such vertex functions itself strongly increases with the number of particles n . On the other hand, their effect on generic Feynman diagrams remains rather moderate due to the damping effect of the Green's functions present in such diagrams. Nevertheless, they yield important contributions to the self-energy corrections calculated in diagrammatic extensions of DMFT as we explicitly demonstrate using the example of dual-fermion calculations for the two-dimensional FKM at quarter filling of the stationary f electrons. Here corrections to the self-energy obtained from the three-particle vertex are indeed comparable in magnitude to corresponding corrections stemming from the two-particle vertex.

  13. Investigation on ultrafast third-order nonlinear optical properties of benzothiadiazole copolymer with triphenylamine derivative side chain

    NASA Astrophysics Data System (ADS)

    Gong, Weixiang; Yang, Junyi; Qin, Yuan-cheng; Wu, Xing-zhi; Jin, Xiao; Song, Yinglin

    2016-10-01

    The third-order nonlinear optical properties of benzothiadiazole copolymer with triphenylamine derivative side chain (BCT) dissolved in chloroform are investigated by top-hat Z-scan and time-resolved pump-probe techniques with a picoseconds pulses laser at wavelength of 532nm. Organic polymers of triphenylamine have been widely applied to optoelectronic devices owing to its outstanding physics and chemistry characteristic. So its nonlinear optical characteristic is worth studying. The sample's excited-state dynamics can be detected by the pump-probe with phase object device with/without an aperture in the far field. We can determine the sample's nonlinear absorptive and refractive coefficient by the top-hot Z-scan device with/without an aperture in the far field. The experimental results show that the BCT has a good reverse saturation absorption and negative refraction. At the same time, the BCT showed up long excited-state lifetimes. By means of a five-level model and analyzing the experimental curves, all nonlinear optical parameters are obtained. With the proper lifetime and intersystem crossing time, this sample can be a candidate for optical limiting.

  14. Au-induced quantum chains on Ge(001)—symmetries, long-range order and the conduction path

    NASA Astrophysics Data System (ADS)

    Blumenstein, C.; Meyer, S.; Mietke, S.; Schäfer, J.; Bostwick, A.; Rotenberg, E.; Matzdorf, R.; Claessen, R.

    2013-01-01

    Atomic nanowires on the Au/Ge(001) surface are investigated for their structural and electronic properties using scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES). STM reveals two distinct symmetries: a c(8 × 2) describing the basic repeating distances, while the fine structure on top of the wires causes an additional superstructure of p(4 × 1). Both symmetries are long-range ordered as judged from low-energy electron diffraction. The Fermi surface is composed of almost perfectly straight sheets. Thus, the electronic states are one-dimensionally confined. Spatial dI/dV maps, where both topography and density of states (DOS) are probed simultaneously, reveal that the DOS at low energies, i.e. the conduction path, is oriented along the chain direction. This is fully consistent with the recently reported Tomonaga-Luttinger liquid phase of Au/Ge(001), with the density of states being suppressed by a power-law towards the Fermi energy.

  15. Coexisting charge and magnetic orders in the dimer-chain iridate Ba5AlIr2O11

    DOE PAGES

    Terzic, J.; Wang, J. C.; Ye, Feng; ...

    2015-06-29

    In this paper, we have synthesized and studied single-crystal Ba5AlIr2O11 that features dimer chains of two inequivalent octahedra occupied by tetravalent Ir4+(5d5) and pentavalent Ir5+(5d4) ions, respectively. Ba5AlIr2O11 is a Mott insulator that undergoes a subtle structural phase transition near TS=210K and a magnetic transition at TM=4.5K; the latter transition is surprisingly resistant to applied magnetic fields μoH≤12T but more sensitive to modest applied pressure (dTM/dp ≈ +0.61K/GPa). All results indicate that the phase transition at TS signals an enhanced charge order that induces electrical dipoles and strong dielectric response near TS. It is clear that the strong covalency andmore » spin-orbit interaction (SOI) suppress double exchange in Ir dimers and stabilize a novel magnetic state that is neither S=3/2 nor J=1/2, but rather lies in an “intermediate” regime between these two states. Finally, the novel behavior of Ba5AlIr2O11 therefore provides unique insights into the physics of SOI along with strong covalency in competition with double-exchange interactions of comparable strength.« less

  16. Insertion of apoLp-III into a lipid monolayer is more favorable for saturated, more ordered, acyl-chains

    SciTech Connect

    Rathnayake, Sewwandi S.; Mirheydari, Mona; Schulte, Adam; Gillahan, James E.; Gentit, Taylor; Phillips, Ashley N.; Okonkwo, Rose K.; Burger, Koert N.J.; Mann, Elizabeth K.; Vaknin, David; Bu, Wei; Agra-Kooijman, Dena Mae; Kooijman, Edgar E.

    2013-10-04

    Neutral lipid transport in mammals is complicated involving many types of apolipoprotein. The exchangeable apolipoproteins mediate the transfer of hydrophobic lipids between tissues and particles, and bind to cell surface receptors. Amphipathic a-helices form a common structural motif that facilitates their lipid binding and exchangeability. ApoLp-III, the only exchangeable apolipoprotein found in insects, is a model amphipathic a:helix bundle protein and its three dimensional structure and function mimics that of the mammalian proteins apoE and apoAI. Even the intracellular exchangeable lipid droplet protein TIP47/perilipin 3 contains an a-helix bundle domain with high structural similarity to that of apoE and apoLp-III. Here, we investigated the interaction of apoLp-III from Locusta migratoria with lipid monolayers. Consistent with earlier work we find that insertion of apoLp-III into fluid lipid monolayers is highest for diacylglycerol. We observe a preference for saturated and more highly ordered lipids, suggesting a new mode of interaction for amphipathic a-helix bundles. X-ray reflectivity shows that apoLp-III unfolds at a hydrophobic interface and flexible loops connecting the amphipathic cc-helices stay in solution. X-ray diffraction indicates that apoLp-III insertion into diacylglycerol monolayers induces additional ordering of saturated acyl-chains. These results thus shed important new insight into the protein-lipid interactions of a model exchangeable apolipoprotein with significant implications for its mammalian counterparts. (C) 2013 Elsevier B.V. All rights reserved.

  17. Antiferromagnetic order in single crystals of the S =2 quasi-one-dimensional chain MnCl3(bpy)

    NASA Astrophysics Data System (ADS)

    Shinozaki, Shin-ichi; Okutani, Akira; Yoshizawa, Daichi; Kida, Takanori; Takeuchi, Tetsuya; Yamamoto, Shoji; Risset, Olivia N.; Talham, Daniel R.; Meisel, Mark W.; Hagiwara, Masayuki

    2016-01-01

    A suite of experimental tools, including high-field magnetization and electron spin resonance (ESR) studies in magnetic fields of up to 50 T and heat capacity studies up to 9 T, have revealed antiferromagnetic order in single crystals of the Heisenberg S =2 chain compound MnCl3(bpy), where bpy is 2 ,2'-bipyridine . The Néel temperature, which depends on the strength of the applied magnetic field and its orientation with respect to the crystalline axes that was revealed by heat capacity measurements, is near 11.5 K in zero field. The spin-flop transition is identified in the magnetization curve acquired at 1.7 K and at μoHSFc=24 T along the c axis. The transition field HSF is lower than that expected from the previous antiferromagnetic resonance (AFMR) studies on a powder sample. The identification of the long-range antiferromagnetic order resolves an earlier report by Granroth et al. [Phys. Rev. Lett. 77, 1616 (1996)], 10.1103/PhysRevLett.77.1616 that identified MnCl3(bpy) as an S =2 Haldane system down to 40 mK. The ESR studies identify a wide range of antiferromagnetic resonance modes that provide additional microscopic information about the g values (ga*=2.09 , gb=1.92 , and gc=2.07 ), the zero-field splitting constants, D /kB=-1.5 K and E /kB=-0.17 K when the nearest-neighbor spin interaction J /kB=31.2 K, which is evaluated from fitting the susceptibility, and the anisotropy of this compound (easy axis is the c axis, the second easy-axis is the b axis, and the hard axis is the a* axis), when using a standard (two-sublattice) AFMR analysis that does not quantitatively reproduce the observed HSFc value. The observed resonance mode indicates the frequency minimum at HSFc.

  18. New clues to the local atomic structure of short-range ordered ferric arsenate from extended X-ray absorption fine structure spectroscopy.

    PubMed

    Mikutta, Christian; Mandaliev, Petar N; Kretzschmar, Ruben

    2013-04-02

    Short-range ordered ferric arsenate (FeAsO4 · xH2O) is a secondary As precipitate frequently encountered in acid mine waste environments. Two distinct structural models have recently been proposed for this phase. The first model is based on the structure of scorodite (FeAsO4 · 2H2O) where isolated FeO6 octahedra share corners with four adjacent arsenate (AsO4) tetrahedra in a three-dimensional framework (framework model). The second model consists of single chains of corner-sharing FeO6 octahedra being bridged by AsO4 bound in a monodentate binuclear (2)C complex (chain model). In order to rigorously test the accuracy of both structural models, we synthesized ferric arsenates and analyzed their local (<6 Å) structure by As and Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. We found that both As and Fe K-edge EXAFS spectra were most compatible with isolated FeO6 octahedra being bridged by AsO4 tetrahedra (RFe-As = 3.33 ± 0.01 Å). Our shell-fit results further indicated a lack of evidence for single corner-sharing FeO6 linkages in ferric arsenate. Wavelet-transform analyses of the Fe K-edge EXAFS spectra of ferric arsenates complemented by shell fitting confirmed Fe atoms at an average distance of ∼5.3 Å, consistent with crystallographic data of scorodite and in disagreement with the chain model. A scorodite-type local structure of short-range ordered ferric arsenates provides a plausible explanation for their rapid transformation into scorodite in acid mining environments.

  19. A High Order, Locally-Adaptive Method for the Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Chan, Daniel

    1998-11-01

    I have extended the FOSLS method of Cai, Manteuffel and McCormick (1997) and implemented it within the framework of a spectral element formulation using the Legendre polynomial basis function. The FOSLS method solves the Navier-Stokes equations as a system of coupled first-order equations and provides the ellipticity that is needed for fast iterative matrix solvers like multigrid to operate efficiently. Each element is treated as an object and its properties are self-contained. Only C^0 continuity is imposed across element interfaces; this design allows local grid refinement and coarsening without the burden of having an elaborate data structure, since only information along element boundaries is needed. With the FORTRAN 90 programming environment, I can maintain a high computational efficiency by employing a hybrid parallel processing model. The OpenMP directives provides parallelism in the loop level which is executed in a shared-memory SMP and the MPI protocol allows the distribution of elements to a cluster of SMP's connected via a commodity network. This talk will provide timing results and a comparison with a second order finite difference method.

  20. A method for solving stochastic equations by reduced order models and local approximations

    SciTech Connect

    Grigoriu, M.

    2012-08-01

    A method is proposed for solving equations with random entries, referred to as stochastic equations (SEs). The method is based on two recent developments. The first approximates the response surface giving the solution of a stochastic equation as a function of its random parameters by a finite set of hyperplanes tangent to it at expansion points selected by geometrical arguments. The second approximates the vector of random parameters in the definition of a stochastic equation by a simple random vector, referred to as stochastic reduced order model (SROM), and uses it to construct a SROM for the solution of this equation. The proposed method is a direct extension of these two methods. It uses SROMs to select expansion points, rather than selecting these points by geometrical considerations, and represents the solution by linear and/or higher order local approximations. The implementation and the performance of the method are illustrated by numerical examples involving random eigenvalue problems and stochastic algebraic/differential equations. The method is conceptually simple, non-intrusive, efficient relative to classical Monte Carlo simulation, accurate, and guaranteed to converge to the exact solution.

  1. Evidence for Spin Glass Ordering Near the Weak to Strong Localization Transition in Hydrogenated Graphene.

    PubMed

    Matis, Bernard R; Houston, Brian H; Baldwin, Jeffrey W

    2016-04-26

    We provide evidence that magnetic moments formed when hydrogen atoms are covalently bound to graphene exhibit spin glass ordering. We observe logarithmic time-dependent relaxations in the remnant magnetoresistance following magnetic field sweeps, as well as strong variances in the remnant magnetoresistance following field-cooled and zero-field-cooled scenarios, which are hallmarks of canonical spin glasses and provide experimental evidence for the hydrogenated graphene spin glass state. Following magnetic field sweeps, and over a relaxation period of several minutes, we measure changes in the resistivity that are more than 3 orders of magnitude larger than what has previously been reported for a two-dimensional spin glass. Magnetotransport measurements at the Dirac point, and as a function of hydrogen concentration, demonstrate that the spin glass state is observable as the zero-field resistivity reaches a value close to the quantum unit h/2e(2), corresponding to the point at which the system undergoes a transition from weak to strong localization. Our work sheds light on the critical magnetic-dopant density required to observe spin glass formation in two-dimensional systems. These findings have implications to the basic understanding of spin glasses as well the fields of two-dimensional magnetic materials and spintronics.

  2. Modification of local order in FePd films by low energy He{sup +} irradiation

    SciTech Connect

    Merkel, D. G.; Tancziko, F.; Sajti, Sz.; Major, M.; Nemeth, A.; Bottyan, L.; Horvath, Z. E.; Waizinger, J.; Stankov, S.; Kovacs, A.

    2008-07-01

    Owing to their strong perpendicular magnetic anisotropy, FePd, CoPd, and their Co(Fe)Pt counterparts are candidate materials for ultrahigh density magnetic recording. The stability and magnetic properties of such films are largely dependent on the orientation and local distribution of the L1{sub 0} FePd phase fraction. Therefore, the formation and transformation of the L1{sub 0} phase in such thin films have been the subject of continued interest. Highly ordered epitaxial FePd(001) thin films (with an L1{sub 0} phase fraction of 0.81) were prepared by molecular-beam epitaxy on a MgO(001) substrate. The effect of postgrown room temperature, 130 keV He{sup +} irradiation was investigated at fluences up to 14.9x10{sup 15} ions/cm{sup 2}. X-ray diffraction and conversion electron Moessbauer spectroscopy revealed that with increasing fluence, the L1{sub 0} FePd phase decomposes into the face centered cubic phase with random Fe and Pd occupation of the sites. A partially ordered local environment exhibiting a large hyperfine magnetic field also develops. Upon He{sup +} irradiation, the lattice parameter c of the FePd L1{sub 0} structure increases and the long range order parameter S steeply decreases. The Fe-Fe nearest-neighbor coordination in the Fe-containing environments increases on average from Fe{sub 47}Pd{sub 53} to Fe{sub 54}Pd{sub 46}, indicating a tendency of formation iron-rich clusters. The equilibrium parameters corresponding to the equiatomic L1{sub 0} phase were found at different fluences by conversion electron Moessbauer spectroscopy and by x-ray diffraction a difference, from which a plane-perpendicular compressive stress and a corresponding in-plane tensile stress are conjectured. The steep increase in the interface roughness above 7.4x10{sup 15} ions/cm{sup 2} is interpreted as a percolation-type behavior related to the high diffusion anisotropy in the L1{sub 0} phase.

  3. Localization of single-chain interruptions in bacteriophage T5 DNA I. Electron microscopic studies.

    PubMed Central

    Scheible, P P; Rhoades, E A; Rhoades, M

    1977-01-01

    Bacteriophage T5 DNA was examined in an electron microscope after limited digestion with exonuclease III from Escherichia coli. The effect of the exonuclease treatment was to convert each naturally occurring single-chain interruption in T5 DNA into a short segment of single-stranded DNA. The locations of these segments were determined for T5st(+) DNA, T5st(0) DNA, and fragments of T5st(0) DNA generated by EcoRI restriction endonuclease. The results indicate that single-chain interruptions occurr in a variable, but nonrandom, manner in T5 DNA. T5st(+) DNA has four principal interruptions located at sites approximately 7.9, 18.5, 32.6, and 64.8% from one end of the molecule. Interruptions occur at these sites in 80 to 90% of the population. A large number of additional sites, located primarily at the ends of the DNA, contain interruptions at lower frequencies. The average number of interruptions per genome, as determined by this method, is 8. A similar distribution of breaks occurs in T5st(0) DNA, except that the 32.6% site is missing. At least one of the principal interruptions is reproducibly located within an interval of 0.2% of the entire DNA. Images PMID:330881

  4. Molecular dipole static polarisabilities and hyperpolarisabilities of conjugated oligomer chains calculated with the local π-electron coupled cluster theory

    NASA Astrophysics Data System (ADS)

    Ivanov, Vladimir V.; Zakharov, Anton B.; Adamowicz, Ludwik

    2013-12-01

    A new semi-empirical π-electron local coupled cluster theory has been developed to calculate static dipole polarisabilities and hyperpolarisabilities of extended π-conjugated systems. The key idea of the approach is the use of the ethylene molecular orbitals as the orbital basis set for π-conjugated compounds (the method is termed the Covalent Unbonded Molecules of Ethylene method, cue). Test calculations of some small model organic conjugated compounds demonstrate high accuracy of the version of the cue local coupled cluster theory developed in this work in comparison with the π-electron full configuration interaction (FCI) method. Calculations of different conjugated carbon-based oligomer chains (polyenes, polyynes, polyacenes, polybenzocyclobutadiene, etc.) demonstrate fast convergence (per π-electron) of the polarisability and hyperpolarisability values in the calculations when more classes of orbital excitations are included in the coupled cluster single and double (CCSD) excitation operator. The results show qualitatively correct dependence on the system size.

  5. Charge ordering and nonlinear electrical transport in quasi-one-dimensional organic chains with strong electrostatic interchain interactions

    NASA Astrophysics Data System (ADS)

    Okamoto, Kentaro; Tanaka, Toshiyuki; Fujita, Wataru; Awaga, Kunio; Inabe, Tamotsu

    2007-08-01

    We here examine the electrical and magnetic properties of the isostructural NT3•MCl4 ( NT=naphtho [2,1- d :6,5- d' ]bis([1,2,3] dithiazole and M=Ga and Fe). The crystal structure of NT3•MCl4 consists of one-dimensional π -stacking chains of NT with strong interchain interactions caused by electrostatic Sδ+•••Nδ- contacts. This structure includes four NT molecules with significant differences in molecular structure and charge, exhibiting a characteristic charge ordering, namely, three-dimensional alternation of charge-rich (or -intermediate) and -poor molecules. NT3•GaCl4 and NT3•FeCl4 are found to be semiconductors with σRT˜0.5Scm-1 and to exhibit a nonlinear electrical transport at room temperature with a very low threshold field of 80Vcm-1 for the negative differential resistance. This threshold field significantly increases with a decrease in temperature. The X -band electron paramagnetic resonance (EPR) spectra of NT3•GaCl4 consist of a single-line absorption ascribable to that of the NT+ cation. When the sample is exposed to a current at room temperature, this signal exhibits a drastic decrease in intensity with little change in linewidth. This is attributed to the inhomogeneous formation of EPR-silent conducting pathways for the nonlinear transport. The temperature dependence of the EPR spin susceptibility χs of NT3•GaCl4 suggests a transition toward a spin-gap state below 20K ; χs exhibits a Bonner-Fisher-type temperature dependence above 20K , but gradually collapses to zero below this temperature.

  6. Quantum currents and pair correlation of electrons in a chain of localized dots

    NASA Astrophysics Data System (ADS)

    Morawetz, Klaus

    2017-03-01

    The quantum transport of electrons in a wire of localized dots by hopping, interaction and dissipation is calculated and a representation by an equivalent RCL circuit is found. The exact solution for the electric-field induced currents allows to discuss the role of virtual currents to decay initial correlations and Bloch oscillations. The dynamical response function in random phase approximation (RPA) is calculated analytically with the help of which the static structure function and pair correlation function are determined. The pair correlation function contains a form factor from the Brillouin zone and a structure factor caused by the localized dots in the wire.

  7. Transport of localized and extended excitations in chains embedded with randomly distributed linear and nonlinear n -mers

    NASA Astrophysics Data System (ADS)

    López-González, Dany; Molina, Mario I.

    2016-03-01

    We examine the transport of extended and localized excitations in one-dimensional linear chains populated by linear and nonlinear symmetric identical n -mers (with n =3 , 4, 5, and 6), randomly distributed. First, we examine the transmission of plane waves across a single linear n -mer, paying attention to its resonances, and looking for parameters that allow resonances to merge. Within this parameter regime we examine the transmission of plane waves through a disordered and nonlinear segment composed by n -mers randomly placed inside a linear chain. It is observed that nonlinearity tends to inhibit the transmission, which decays as a power law at long segment lengths. This behavior still holds when the n -mer parameters do not obey the resonance condition. On the other hand, the mean square displacement exponent of an initially localized excitation does not depend on nonlinearity at long propagation distances z , and shows a superdiffusive behavior ˜z1.8 for all n -mers, when parameters obey the resonance merging condition; otherwise the exponent reverts back to the random dimer model value ˜z1.5 .

  8. Dynamical localization in a chain of hard core bosons under periodic driving

    NASA Astrophysics Data System (ADS)

    Nag, Tanay; Roy, Sthitadhi; Dutta, Amit; Sen, Diptiman

    2014-04-01

    We study the dynamics of a one-dimensional lattice model of hard core bosons which is initially in a superfluid phase with a current being induced by applying a twist at the boundary. Subsequently, the twist is removed, and the system is subjected to periodic δ-function kicks in the staggered on-site potential. We present analytical expressions for the current and work done in the limit of an infinite number of kicks. Using these, we show that the current (work done) exhibits a number of dips (peaks) as a function of the driving frequency and eventually saturates to zero (a finite value) in the limit of large frequency. The vanishing of the current (and the saturation of the work done) can be attributed to a dynamic localization of the hard core bosons occurring as a consequence of the periodic driving. Remarkably, we show that for some specific values of the driving amplitude, the localization occurs for any value of the driving frequency. Moreover, starting from a half-filled lattice of hard core bosons with the particles localized in the central region, we show that the spreading of the particles occurs in a light-cone-like region with a group velocity that vanishes when the system is dynamically localized.

  9. Experimental Investigation of Local Oscillator Chains with GaAs Planar Diodes at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Maestrini, A.; Pukala, D.; Schlecht, E.; Mehdi, I.; Erickson, N.

    2001-01-01

    This paper will describe a robust test-bed that has been built to measure multiplier performance over a wide range of temperatures and frequencies. In a 182-212 GRz designed balanced doubler the peak efficiency at 201 GHz improves from 22% to 28% upon cooling from 300 K to 120 K. This stage is then used to pump a 362-424 GRz balanced planar doubler. The peak chain efficiency increases from 3.4% to 6% when the two cascaded doublers are cooled from 300 K to 120 K. This enables the production of 10 mW of peak output power at 377 GHz, which ought to be sufficient for driving the next stage multiplier.

  10. Second-order non-local effects mitigation in BOTDA sensors by tracking the BFS profile

    NASA Astrophysics Data System (ADS)

    Mompó, Juan José; Iribas, Haritz; Urricelqui, Javier; Loayssa, Alayn

    2017-04-01

    We demonstrate a technique to mitigate the residual second-order non-local effects in Brillouin optical time-domain analysis (BOTDA) sensors in which the Brillouin frequency shift (BFS) profile is not uniform along the fiber. It is based on adding a wavelength modulation to the probe wave that makes it track the average BFS found along its way. Using this method we are able to inject a total probe wave power of 15 dBm in a 120-km sensing fiber link, which, to the best of our knowledge, is the highest probe power ever demonstrated in a long-range BOTDA sensing fiber link. The enhancement in the detected signal-to-noise ratio brought by the use of such power provides 2-MHz BFS measurement precision at the end of the 120-km sensing link with 3-m spatial resolution, all without the need to resort to additional means such as the use of coding or Raman gain.

  11. Balancing local order and long-ranged interactions in the molecular theory of liquid water.

    PubMed

    Shah, J K; Asthagiri, D; Pratt, L R; Paulaitis, M E

    2007-10-14

    A molecular theory of liquid water is identified and studied on the basis of computer simulation of the TIP3P model of liquid water. This theory would be exact for models of liquid water in which the intermolecular interactions vanish outside a finite spatial range, and therefore provides a precise analysis tool for investigating the effects of longer-ranged intermolecular interactions. We show how local order can be introduced through quasichemical theory. Long-ranged interactions are characterized generally by a conditional distribution of binding energies, and this formulation is interpreted as a regularization of the primitive statistical thermodynamic problem. These binding-energy distributions for liquid water are observed to be unimodal. The Gaussian approximation proposed is remarkably successful in predicting the Gibbs free energy and the molar entropy of liquid water, as judged by comparison with numerically exact results. The remaining discrepancies are subtle quantitative problems that do have significant consequences for the thermodynamic properties that distinguish water from many other liquids. The basic subtlety of liquid water is found then in the competition of several effects which must be quantitatively balanced for realistic results.

  12. Forward simulation and inverse dipole localization with the lowest order Raviart—Thomas elements for electroencephalography

    NASA Astrophysics Data System (ADS)

    Pursiainen, S.; Sorrentino, A.; Campi, C.; Piana, M.

    2011-04-01

    Electroencephalography is a non-invasive imaging modality in which a primary current density generated by the neural activity in the brain is to be reconstructed based on external electric potential measurements. This paper focuses on the finite element method (FEM) from both forward and inverse aspects. The goal is to establish a clear correspondence between the lowest order Raviart-Thomas basis functions and dipole sources as well as to show that the adopted FEM approach is computationally effective. Each basis function is associated with a dipole moment and a location. Four candidate locations are tested. Numerical experiments cover two different spherical multilayer head models, four mesh resolutions and two different forward simulation approaches, one based on FEM and another based on the boundary element method (BEM) with standard dipoles as sources. The forward simulation accuracy is examined through column- and matrix-wise relative errors as well as through performance in inverse dipole localization. A closed-form approximation of dipole potential was used as the reference forward simulation. The present approach is compared to the BEM and indirectly also to the recent FEM-based subtraction approach regarding both accuracy, computation time and accessibility of implementation.

  13. Differential effects of cholesterol on acyl chain order in erythrocyte membranes as a function of depth from the surface. An electron paramagnetic resonance (EPR) spin label study.

    PubMed

    Cassera, M B; Silber, A M; Gennaro, A M

    2002-10-16

    The purpose of this work is to analyze the effects of cholesterol modulation on acyl chain ordering in the membrane of human erythrocytes as a function of depth from the surface. Partial cholesterol depletion was achieved by incubation of erythrocytes with liposomes containing saturated phospholipids, or with methyl-beta-cyclodextrin (MbetaCD). Cholesterol enrichment was achieved by incubation with liposomes formed by phospholipids/cholesterol, or with the complex MbetaCD/cholesterol. Acyl chain order was studied with electron paramagnetic resonance spectroscopy (EPR) using spin labels that sense the lipid bilayer at different depths. It is shown that the increase in cholesterol stiffens acyl chains but decreases the interaction among lipid headgroups, while cholesterol depletion causes the opposite behavior. It is likely that the observed cholesterol effects are related to those stabilizing the cholesterol-rich detergent-insoluble membrane domains (rafts), recently shown to exist in erythrocytes.

  14. The T cell receptor gamma chain alternate reading frame protein (TARP), a prostate-specific protein localized in mitochondria.

    PubMed

    Maeda, Hiroshi; Nagata, Satoshi; Wolfgang, Curt D; Bratthauer, Gary L; Bera, Tapan K; Pastan, Ira

    2004-06-04

    We previously showed that mRNA encoding TARP (T cell receptor gamma chain alternate reading frame protein) is exclusively expressed in the prostate in males and is up-regulated by androgen in LNCaP cells, an androgen-sensitive prostate cancer cell line. We have now developed an anti-TARP monoclonal antibody named TP1, and show that TARP protein is up-regulated by androgen in both LNCaP and MDA-PCa-2b cells. We used TP1 to determine the subcellular localization of TARP by Western blotting following subcellular fractionation and immunocytochemistry. Both methods showed that TARP is localized in the mitochondria of LNCaP cells, MDA-PCa-2b cells, and PC-3 cells transfected with a TARP-expressing plasmid. We also transfected a plasmid encoding TARP fused to green fluorescent protein into LNCaP, MDA-Pca-2b, and PC-3 cells and confirmed its specific mitochondrial localization in living cells. Fractionation of mitochondria shows that TARP is located in the outer mitochondrial membrane. Immunohistochemistry using a human prostate cancer sample showed that TP1 reacted in a dot-like cytoplasmic pattern consistent with the presence of TARP in mitochondria. These data demonstrate that TARP is the first prostate-specific protein localizing in mitochondria and indicate that TARP, an androgen-regulated protein, may act on mitochondria to carry out its biological functions.

  15. Manufacturing Technology Support (MATES) II Task Order 0006: Air Force Technology and Industrial Base Research and Analysis. Subtask Order 0004: Study on Supply Chains and Social Media

    DTIC Science & Technology

    2013-10-01

    class performers are “…currently leveraging supplier B2B social efforts to improve intelligence and supply chain operations” (Aberdeen Group, 2012...greater agility. 20 Approved for public release; distribution unlimited. 6.0 REFERENCES Aberdeen Group (2012, Jul 16). B2B Social Media and...Supplier Management. Retrieved Apr 23, 2013, from Aberdeen Group: http://blogs.aberdeen.com/global-supply-management/ b2b - social-media-and-supplier

  16. Local and long-range order of carbon impurities on Fe(100): Analysis of self-organization at a nanometer scale

    NASA Astrophysics Data System (ADS)

    Panaccione, G.; Fujii, J.; Vobornik, I.; Trimarchi, G.; Binggeli, N.; Goldoni, A.; Larciprete, R.; Rossi, G.

    2006-01-01

    Bulk carbon impurities segregate at the Fe(100) surface and, upon thermal annealing, can form metastable surface phases, with local and long-range order, that show peculiar electronic properties. We present a surface science study of C-segregated Fe(100) with scanning tunneling microscopy/spectroscopy (STM/STS), core level spectroscopy, and ab initio calculations of the surface structure. In particular, we investigate a c(32×2) structure, observed for 0.67±0.05 atomic layers of C segregated at the iron surface. This structure is found to be due to self-organized carbon stripes, which form a regular pattern on a nanometer lateral scale and are made of zig-zag chains. The C atoms in the chains lie slightly off center in the fourfold hollow site and are bonded to 5 Fe neighbors. Striking features of this structure are the self-avoiding chains, the passivation effect of the iron surface, and the presence of one-dimensional-like Fe surface states close to the Fermi energy.

  17. Immunocytochemical localization of short-chain family reductases involved in menthol biosynthesis in peppermint.

    PubMed

    Turner, Glenn W; Davis, Edward M; Croteau, Rodney B

    2012-06-01

    Biosynthesis of the p-menthane monoterpenes in peppermint occurs in the secretory cells of the peltate glandular trichomes and results in the accumulation of primarily menthone and menthol. cDNAs and recombinant enzymes are well characterized for eight of the nine enzymatic steps leading from the 5-carbon precursors to menthol, and subcellular localization of several key enzymes suggests a complex network of substrate and product movement is required during oil biosynthesis. In addition, studies concerning the regulation of oil biosynthesis have demonstrated a temporal partition of the pathway into an early, biosynthetic program that results in the accumulation of menthone and a later, oil maturation program that leads to menthone reduction and concomitant menthol accumulation. The menthone reductase responsible for the ultimate pathway reduction step, menthone-menthol reductase (MMR), has been characterized and found to share significant sequence similarity with its counterpart reductase, a menthone-neomenthol reductase, which catalyzes a minor enzymatic reaction associated with oil maturation. Further, the menthone reductases share significant sequence similarity with the temporally separate and mechanistically different isopiperitenone reductase (IPR). Here we present immunocytochemical localizations for these reductases using a polyclonal antibody raised against menthone-menthol reductase. The polyclonal antibody used for this study showed little specificity between these three reductases, but by using it for immunostaining of tissues of different ages we were able to provisionally separate staining of an early biosynthetic enzyme, IPR, found in young, immature leaves from that of the oil maturation enzyme, MMR, found in older, mature leaves. Both reductases were localized to the cytoplasm and nucleoplasm of the secretory cells of peltate glandular trichomes, and were absent from all other cell types examined.

  18. Localization of a site on bacterial superantigens that determines T cell receptor beta chain specificity

    PubMed Central

    1993-01-01

    A defining characteristic of superantigens is their ability to stimulate T cells based predominantly on the type of variable segment of the T cell receptor (TCR) beta chain (V beta). The V beta specificity of these toxins most likely results from direct contact between the toxin and the TCR, although the low affinity nature of this binding has prevented direct assessment of this interaction. To identify important functional sites on the toxin, we created chimeric enterotoxin genes between staphylococcal enterotoxins A and E (SEA and SEE) and tested the V beta specificity of the chimeric toxins. This approach allowed us to identify three amino acid residues in the extreme COOH terminus of these toxins that are largely responsible for their ability to stimulate either human V beta 5- or V beta 8-bearing T cells, or mouse V beta 3 or V beta 11. We also found that residues in the NH2 terminus were required for wild-type levels of V beta-specific T cell activation, suggesting that the NH2 and COOH ends of these superantigens may come together to form the full TCR V beta contact site. SEA and SEE also differ with respect to their class II binding characteristics. Using the same chimeric molecules, we demonstrate that the first third of the molecule controls the class II binding phenotype. These data lead us to propose that for SEA and SEE, and perhaps for all bacterial-derived superantigens, the COOH and NH2 termini together form the contact sites for the TCR and therefore largely determine the V beta specificity of the toxin, while the NH2 terminus alone binds major histocompatibility complex class II molecules. The predominant role of the COOH terminus of bacterial superantigens in determining V beta specificity resembles current models being proposed for virally encoded superantigens, suggesting that these molecules may demonstrate some structural relationship not seen at the amino acid level. PMID:7678849

  19. Disorder from order among anisotropic next-nearest-neighbor Ising spin chains in SrHo2O4

    SciTech Connect

    Wen, J. -J.; Tian, W.; Garlea, V. O.; Koohpayeh, S. M.; McQueen, T. M.; Li, H. -F.; Yan, J. -Q.; Rodriguez-Rivera, J. A.; Vaknin, D.; Broholm, C. L.

    2015-02-26

    In this study, we describe why Ising spin chains with competing interactions in SrHo2O4 segregate into ordered and disordered ensembles at low temperatures (T). Using elastic neutron scattering, magnetization, and specific heat measurements, the two distinct spin chains are inferred to have Néel (↑↓↑↓) and double-Néel (↑↑↓↓) ground states, respectively. Below TN = 0.68(2)K, the Néel chains develop three-dimensional long range order (LRO), which arrests further thermal equilibration of the double-Néel chains so they remain in a disordered incommensurate state for T below TS = 0.52(2)K. SrHo2O4 distills an important feature of incommensurate low dimensional magnetism: kinetically trapped topological defects in a quasi–d–dimensional spin system can preclude order in d + 1 dimensions.

  20. H-localized mode in chains of hydrogen-bonded amide groups

    NASA Astrophysics Data System (ADS)

    Barthes, Mariette; Kellouai, Hassan; Page, Gabriel; Moret, Jacques; Johnson, Susanna W.; Eckert, Juergen

    1993-09-01

    New infrared measurements of the anomalous amide modes in acetanilide and its derivatives are presented. Preliminary results of structural data obtained by neutron diffraction at low temperature are also described. Besides the well-known anomalous amide-1 mode (1650 cm -1), it is shown that the NH out-of-plane bend (770 cm -1) and the “H-bond strain” (at about 105 cm -1) exhibit an anomalous increase of intensity proportional to the law exp(- T2/ Θ2), suggesting that the amide proton bears a significant electronic distribution as formerly observed for H - localized modes. Structural data, moreover, show that the thermal ellips of the amide proton has an increasing anisotropy at 15 K. Considering these new results, the theoretical model of a self-trapped “polaronic” state seems to be the most consistent with the whole set of observed anomalies in this family of crystals.

  1. Local softness, softness dipole, and polarizabilities of functional groups: Application to the side chains of the 20 amino acids

    NASA Astrophysics Data System (ADS)

    Krishtal, Alisa; Senet, Patrick; Van Alsenoy, Christian

    2009-07-01

    The values of molecular polarizabilities and softnesses of the 20 amino acids were computed ab initio (MP2). By using the iterative Hirshfeld scheme to partition the molecular electronic properties, we demonstrate that the values of the softness of the side chain of the 20 amino acids are clustered in groups reflecting their biochemical classification, namely: aliphatic, basic, acidic, sulfur containing, and aromatic amino acids. The present findings are in agreement with previous results using different approximations and partitioning schemes [P. Senet and F. Aparicio, J. Chem. Phys. 126, 145105 (2007)]. In addition, we show that the polarizability of the side chain of an amino acid depends mainly on its number of electrons (reflecting its size) and consequently cannot be used to cluster the amino acids in different biochemical groups, in contrast to the local softness. Our results also demonstrate that the global softness is not simply proportional to the global polarizability in disagreement with the intuition that "a softer moiety is also more polarizable." Amino acids with the same softness may have a polarizability differing by a factor as large as 1.7. This discrepancy can be understood from first principles as we show that the molecular polarizability depends on a "softness dipole vector" and not simply on the global softness.

  2. Quantum disorder and local modes of the fully-frustrated transverse field Ising model on a diamond chain

    NASA Astrophysics Data System (ADS)

    Coester, K.; Malitz, W.; Fey, S.; Schmidt, K. P.

    2013-11-01

    We investigate the transverse field Ising model on a diamond chain using series expansions about the high-field limit and exact diagonalizations. For the unfrustrated case we accurately determine the quantum critical point and its expected 2d Ising universality separating the polarized and the Z2 symmetry broken phase. In contrast, we find strong evidence for a disorder by disorder scenario for the fully-frustrated transverse field Ising model, i.e., except for the pure Ising model, having an extensive number of ground states, the system is always in a quantum disordered polarized phase. The low-energy excitations in this polarized phase are understood in terms of exact local modes of the model. Furthermore, an effective low-energy description for an infinitesimal transverse field allows us to pinpoint the quantum disordered nature of the ground state via mapping to an effective transverse field Ising chain and to determine the induced gap to the elementary effective domain wall excitation very accurately.

  3. Doping of Semiconducting Atomic Chains

    NASA Technical Reports Server (NTRS)

    Toshishige, Yamada; Kutler, Paul (Technical Monitor)

    1997-01-01

    Due to the rapid progress in atom manipulation technology, atomic chain electronics would not be a dream, where foreign atoms are placed on a substrate to form a chain, and its electronic properties are designed by controlling the lattice constant d. It has been shown theoretically that a Si atomic chain is metallic regardless of d and that a Mg atomic chain is semiconducting or insulating with a band gap modified with d. For electronic applications, it is essential to establish a method to dope a semiconducting chain, which is to control the Fermi energy position without altering the original band structure. If we replace some of the chain atoms with dopant atoms randomly, the electrons will see random potential along the chain and will be localized strongly in space (Anderson localization). However, if we replace periodically, although the electrons can spread over the chain, there will generally appear new bands and band gaps reflecting the new periodicity of dopant atoms. This will change the original band structure significantly. In order to overcome this dilemma, we may place a dopant atom beside the chain at every N lattice periods (N > 1). Because of the periodic arrangement of dopant atoms, we can avoid the unwanted Anderson localization. Moreover, since the dopant atoms do not constitute the chain, the overlap interaction between them is minimized, and the band structure modification can be made smallest. Some tight-binding results will be discussed to demonstrate the present idea.

  4. The relationship between local density and bond-orientational order during crystallization of the Gaussian core model.

    PubMed

    Li, Yan-Wei; Sun, Zhao-Yan

    2016-02-21

    Whether nucleation is triggered by density or by bond-orientational order is one of the most hotly debated issues in recent investigations of the crystallization process. Here, we present a numerical study of the relationship between them for soft particles within the isothermal-isobaric ensemble. We compress the system and thus obtain the fluid-solid transition. By investigating locally dense-packed particles and particles with a relatively high bond-orientational order in the compressing process, we find a sharp increase of the spatial correlations for both densely packed particles and highly bond-orientational ordered particles at the phase transition point, which provide new characterization methods for the liquid-crystal transition. We also find that it is the bond-orientational order rather than density that triggers the nucleation process. The relationship between the local density and the bond-orientational order parameter is strongly affected by the characterization methods used. The local bond order parameter (q6) shows clear correlation with the local density (ρ) in the fluid stage, while the coarse-grained form (q[combining macron]6) does not correlate with ρ at all, owing to the comparable spatial scales of q6 and ρ. Nevertheless, q[combining macron]6 shows an obvious advantage in distinguishing between solid and liquid particles in our work. These results may elevate our understanding of the mechanism of the crystallization process.

  5. Local Ordering at Mobile Sites in Proteins from Nuclear Magnetic Resonance Relaxation: The Role of Site Symmetry.

    PubMed

    Tchaicheeyan, Oren; Freed, Jack H; Meirovitch, Eva

    2016-03-24

    Restricted motions in proteins (e.g., N-H bond dynamics) are studied effectively with NMR. By analogy with restricted motions in liquid crystals (LC), the local ordering has in the past been primarily represented by potentials comprising the L = 2, |K| = 0, 2 spherical harmonics. However, probes dissolved in LCs experience nonpolar ordering, often referred to as alignment, while protein-anchored probes experience polar ordering, often referred to as orientation. In this study we investigate the role of local (site) symmetry in the context of the polarity of the local ordering. We find that potentials comprising the L = 1, |K| = 0, 1 spherical harmonics represent adequately polar ordering. It is useful to characterize potential symmetry in terms of the irreducible representations of D2h point group, which is already implicit in the definition of the rotational diffusion tensor. Thus, the relevant rhombic L = 1 potentials have B1u and B3u symmetry whereas the relevant rhombic L = 2 potentials have Ag symmetry. A comprehensive scheme where local potentials and corresponding probability density functions (PDFs) are represented in Cartesian and spherical coordinates clarifies how they are affected by polar and nonpolar ordering. The Cartesian coordinates are chosen so that the principal axis of polar axial PDF is pointing along the z-axis, whereas the principal axis of the nonpolar axial PDF is pointing along ±z. Two-term axial potentials with 1 ≤ L ≤ 3 exhibit substantial diversity; they are expected to be useful in NMR-relaxation-data-fitting. It is shown how potential coefficients are reflected in the experimental order parameters. The comprehensive scheme representing local potentials and PDFs is exemplified for the L = 2 case using experimental data from (15)N-labeled plexin-B1 and thioredoxin, (2)H-, and (13)C-labeled benzenehexa-n-alkanoates, and nitroxide-labeled T4 lysozyme. Future prospects for improved ordering analysis based on combined atomistic and

  6. Symmetric C-C stretching mode splitting versus CH2-chain conformation order in sodium montmorillonite modified by cetyltrimethylammonium bromide.

    PubMed

    Sagitova, Elena A; Donfack, Patrice; Prokhorov, Kirill A; Nikolaeva, Goulnara Yu; Gerasin, Viktor A; Merekalova, Nadezhda D; Materny, Arnulf; Antipov, Evgeny M; Pashinin, Pavel P

    2012-01-12

    Exploiting Raman spectroscopy and computational modeling, for the first time, we report and explain an interesting phenomenon in clay modified by cetyltrimethylammonium bromide. A splitting of the CH(2)-chain's symmetric C-C stretching Raman mode found at ~1128 cm(-1) in cetyltrimethylammonium bromide into two bands at 1128 and 1139 cm(-1) in clay modified by cetyltrimethylammonium bromide is observed. We demonstrate that this splitting appears if two types of trans-segments with nonequivalent lengths and terminal groups coexist in the CH(2)-chain of the alkylammonium ion embedded into the clay interlayer space. We report Raman experimental evidence for a CH(2)-chain bending within the clay galleries, resulting in the symmetric C-C stretching band splitting, as was also suggested by computational modeling. Noteworthy, we postulate that this unique behavior based on CH(2)-chain bending provides a general understanding of conformation reorganization and switching within long CH(2)-chain molecules confined within modified clay interlayer galleries. For all modifier concentrations, we show that the intercalated cetyltrimethylammonium ions exist in a liquid-like state, consisting mainly of trans conformations (~86%) of two types in approximately equal proportions. Moreover, we demonstrate that the integral Raman intensity ratio I(1295)(CH(2))/I(705)(clay) provides a rapid nondestructive quantification of the relative content of alkylammonium ions in modified clays. These results demonstrate that a simple direct monitoring of specific modifier-dependent interlayer conformational states is possible, which is of great importance for a tunable fabrication of modified clays-based nanocomposites with desired properties.

  7. Tracking Control of Mobile Robots Localized via Chained Fusion of Discrete and Continuous Epipolar Geometry, IMU and Odometry.

    PubMed

    Tick, David; Satici, Aykut C; Shen, Jinglin; Gans, Nicholas

    2013-08-01

    This paper presents a novel navigation and control system for autonomous mobile robots that includes path planning, localization, and control. A unique vision-based pose and velocity estimation scheme utilizing both the continuous and discrete forms of the Euclidean homography matrix is fused with inertial and optical encoder measurements to estimate the pose, orientation, and velocity of the robot and ensure accurate localization and control signals. A depth estimation system is integrated in order to overcome the loss of scale inherent in vision-based estimation. A path following control system is introduced that is capable of guiding the robot along a designated curve. Stability analysis is provided for the control system and experimental results are presented that prove the combined localization and control system performs with high accuracy.

  8. Local conditions for the Pauli potential in order to yield self-consistent electron densities exhibiting proper atomic shell structure

    SciTech Connect

    Finzel, Kati

    2016-01-21

    The local conditions for the Pauli potential that are necessary in order to yield self-consistent electron densities from orbital-free calculations are investigated for approximations that are expressed with the help of a local position variable. It is shown that those local conditions also apply when the Pauli potential is given in terms of the electron density. An explicit formula for the Ne atom is given, preserving the local conditions during the iterative procedure. The resulting orbital-free electron density exhibits proper shell structure behavior and is in close agreement with the Kohn-Sham electron density. This study demonstrates that it is possible to obtain self-consistent orbital-free electron densities with proper atomic shell structure from simple one-point approximations for the Pauli potential at local density level.

  9. High-order local maximum principle preserving (MPP) discontinuous Galerkin finite element method for the transport equation

    NASA Astrophysics Data System (ADS)

    Anderson, R.; Dobrev, V.; Kolev, Tz.; Kuzmin, D.; Quezada de Luna, M.; Rieben, R.; Tomov, V.

    2017-04-01

    In this work we present a FCT-like Maximum-Principle Preserving (MPP) method to solve the transport equation. We use high-order polynomial spaces; in particular, we consider up to 5th order spaces in two and three dimensions and 23rd order spaces in one dimension. The method combines the concepts of positive basis functions for discontinuous Galerkin finite element spatial discretization, locally defined solution bounds, element-based flux correction, and non-linear local mass redistribution. We consider a simple 1D problem with non-smooth initial data to explain and understand the behavior of different parts of the method. Convergence tests in space indicate that high-order accuracy is achieved. Numerical results from several benchmarks in two and three dimensions are also reported.

  10. Localized modes of the Hirota equation: Nth order rogue wave and a separation of variable technique

    NASA Astrophysics Data System (ADS)

    Mu, Gui; Qin, Zhenyun; Chow, Kwok Wing; Ee, Bernard K.

    2016-10-01

    The Hirota equation is a special extension of the intensively studied nonlinear Schrödinger equation, by incorporating third order dispersion and one form of the self-steepening effect. Higher order rogue waves of the Hirota equation can be calculated theoretically through a Darboux-dressing transformation by a separation of variable approach. A Taylor expansion is used and no derivative calculation is invoked. Furthermore, stability of these rogue waves is studied computationally. By tracing the evolution of an exact solution perturbed by random noise, it is found that second order rogue waves are generally less stable than first order ones.

  11. Equilibrium pricing and ordering policies in a two-echelon supply chain in the presence of strategic customers.

    PubMed

    Sadjadi, Seyed J; Naeij, Jafar; Shavandi, Hasan; Makui, Ahmad

    2016-06-07

    This paper studying the impact of strategic customer behavior on decentralized supply chain gains and decisions, which includes a supplier, and a monopoly firm as a retailer who sells a single product over a finite two periods of selling season. We consider three types of customers: myopic, strategic and low-value customers. The problem is formulated as a bi-level game where at the second level (e.g. horizontal game), the retailer determines his/her equilibrium pricing strategy in a non-cooperative simultaneous general game with strategic customers who choose equilibrium purchasing strategy to maximize their expected surplus. At the first level (e.g. vertical game), the supplier competes with the retailer as leader and follower in the Stackelberg game. They set the wholesale price and initial stocking capacity to maximize their profits. Finally, a numerical study is presented to demonstrate the impacts of strategic behavior on supply chain gain and decisions; subsequently the effects of market parameters on decision variables and total profitability of supply chain's members is studied through a sensitivity analysis.

  12. Polymerase chain reaction localization of constitutive nitric oxide synthase and soluble guanylate cyclase messenger RNAs in microdissected rat nephron segments.

    PubMed Central

    Terada, Y; Tomita, K; Nonoguchi, H; Marumo, F

    1992-01-01

    Stimulation of the release of nitric oxide (NO) in the kidney has been shown to result in renal hemodynamic changes and natriuresis. NO is a potent stimulator of soluble guanylate cyclase, leading to an increase of cyclic GMP. The precise localization of NO synthase and soluble guanylate cyclase in the renal structure is not known. In this study, the microlocalization of mRNAs coding for constitutive NO synthase and soluble guanylate cyclase was carried out in the rat kidney, using an assay of reverse transcription and polymerase chain reaction in individual microdissected renal tubule segments along the nephron, glomeruli, vasa recta bundle, and arcuate arteries. A large signal for constitutive NO synthase was detected in inner medullary collecting duct. Small signals were detected in inner medullary thin limb, cortical collecting duct, outer medullary collecting duct, glomerulus, vasa recta, and arcuate artery. Soluble guanylate cyclase mRNA is expressed largely in glomerulus, proximal convoluted tubule, proximal straight tubule, and cortical collecting duct, and in small amounts in medullary thick ascending limb, inner medullary thin limb, outer medullary collecting duct, inner medullary collecting duct, and the vascular system. Our data demonstrate that NO can be produced locally in the kidney, and that soluble guanylate cyclase is widely distributed in glomerulus, renal tubules, and the vascular system. Images PMID:1379616

  13. PINK1 and Parkin control localized translation of respiratory chain component mRNAs on mitochondria outer membrane.

    PubMed

    Gehrke, Stephan; Wu, Zhihao; Klinkenberg, Michael; Sun, Yaping; Auburger, Georg; Guo, Su; Lu, Bingwei

    2015-01-06

    Mitochondria play essential roles in many aspects of biology, and their dysfunction has been linked to diverse diseases. Central to mitochondrial function is oxidative phosphorylation (OXPHOS), accomplished by respiratory chain complexes (RCCs) encoded by nuclear and mitochondrial genomes. How RCC biogenesis is regulated in metazoans is poorly understood. Here we show that Parkinson's disease (PD)-associated genes PINK1 and Parkin direct localized translation of certain nuclear-encoded RCC (nRCC) mRNAs. Translationally repressed nRCC mRNAs are localized in a PINK1/Tom20-dependent manner to mitochondrial outer membrane, where they are derepressed and activated by PINK1/Parkin through displacement of translation repressors, including Pumilio and Glorund/hnRNP-F, a Parkin substrate, and enhanced binding of activators such as eIF4G. Inhibiting the translation repressors rescued nRCC mRNA translation and neuromuscular-degeneration phenotypes of PINK1 mutant, whereas inhibiting eIF4G had opposite effects. Our results reveal previously unknown functions of PINK1/Parkin in RNA metabolism and suggest new approaches to mitochondrial restoration and disease intervention.

  14. Finite-time tracking control of nth-order chained-form non-holonomic systems in the presence of disturbances.

    PubMed

    Bayat, Farhad; Mobayen, Saleh; Javadi, Shamsi

    2016-07-01

    This paper addresses the problem of finite-time tracking controller design for nth-order chained-form non-holonomic systems in the presence of unknown disturbances. To this aim, a generalized disturbance observer based controller is proposed and combined with a recursive terminal sliding mode approach which guarantees finite-time convergence of the disturbance observer dynamic. By introducing a time-varying transformation and introducing a new control law, the existence of the sliding around the recursive terminal sliding mode surfaces is guaranteed. Finally, the proposed approach is applied for a wheeled mobile robot with a fourth-order chained-form non-holonomic model. The simulation results demonstrate the desirable and robust tracking performance of the proposed approach in the presence of unknown disturbance.

  15. Intraperoxisomal localization of very-long-chain fatty acyl-CoA synthetase: implication in X-adrenoleukodystrophy.

    PubMed

    Smith, B T; Sengupta, T K; Singh, I

    2000-02-01

    X-adrenoleukodystrophy (X-ALD) is a demyelinating disorder characterized by the accumulation of saturated very-long-chain (VLC) fatty acids (>C(22:0)) due to the impaired activity of VLC acyl-CoA synthetase (VLCAS). The gene responsible for X-ALD was found to code for a peroxisomal integral membrane protein (ALDP) that belongs to the ATP binding cassette superfamily of transporters. To understand the function of ALDP and how ALDP and VLCAS interrelate in the peroxisomal beta-oxidation of VLC fatty acids we investigated the peroxisomal topology of VLCAS protein. Antibodies raised against a peptide toward the C-terminus of VLCAS as well as against the N-terminus were used to define the intraperoxisomal localization and orientation of VLCAS in peroxisomes. Indirect immunofluorescent and electron microscopic studies show that peroxisomal VLCAS is localized on the matrix side. This finding was supported by protease protection assays and Western blot analysis of isolated peroxisomes. To further address the membrane topology of VLCAS, Western blot analysis of total membranes or integral membranes prepared from microsomes and peroxisomes indicates that VLCAS is a peripheral membrane-associated protein in peroxisomes, but an integral membrane in microsomes. Moreover, peroxisomes isolated from cultured skin fibroblasts from X-ALD patients with a mutation as well as a deletion in ALDP showed a normal amount of VLCAS. The consequence of VLCAS being localized to the luminal side of peroxisomes suggests that ALDP may be involved in stabilizing VLCAS activity, possibly through protein-protein interactions, and that loss or alterations in these interactions may account for the observed loss of peroxisomal VLCAS activity in X-ALD. Copyright 2000 Academic Press.

  16. Local modes analysis of a rotating marine ship propeller with higher order harmonic elements

    NASA Astrophysics Data System (ADS)

    Feng, Chen; Yong, Chen; Hongxing, Hua

    2016-09-01

    An annular harmonic finite element for the computation of the local modes of a pretwisted ship propeller is developed. The elements take into account both the gyroscopic effect and centrifugal stiffening of the propeller blades. The displacement field is expressed by a truncated Fourier series along the angle and by polynomial shape functions in the radial direction. As an example, the dynamic behaviour, i.e. the nature frequency and local modes, of a ship propeller is studied, and compared with ANSYS, both of which have good consistency.

  17. A localized basis that allows fast and accurate second order Moller-Plesset calculations

    SciTech Connect

    Subotnik, Joseph E.; Head-Gordon, Martin

    2004-10-27

    We present a method for computing a basis of localized orthonormal orbitals (both occupied and virtual), in whose representation the Fock matrix is extremely diagonal-dominant. The existence of these orbitals is shown empirically to be sufficient for achieving highly accurate MP@ energies, calculated according to Kapuy's method. This method (which we abbreviate KMP2), which involves a different partitioning of the n-electron Hamiltonian, scales at most quadratically with potential for linearity in the number of electrons. As such, we believe the KMP2 algorithm presented here could be the basis of a viable approach to local correlation calculations.

  18. 34 CFR 222.63 - What other requirements must a local educational agency meet in order to be eligible for...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... meet in order to be eligible for financial assistance under section 8003(f)(2)(A)? 222.63 Section 222... Local Educational Agencies Under Section 8003(f) of the Act § 222.63 What other requirements must a...)(A)? Subject to § 222.65, an LEA described in § 222.62(a), (b), or (c) is eligible for...

  19. 34 CFR 222.64 - What other requirements must a local educational agency meet in order to be eligible for...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... meet in order to be eligible for financial assistance under section 8003(f)(2)(B)? 222.64 Section 222... Local Educational Agencies Under Section 8003(f) of the Act § 222.64 What other requirements must a...)(B)? Subject to § 222.65, an LEA described in § 222.62(d) is eligible for financial assistance...

  20. Do resource utilization and clinical measures still vary across dialysis chains after controlling for the local practices of facilities and physicians?

    PubMed

    Hirth, Richard A; Turenne, Marc N; Wheeler, John R C; Ma, Yu; Messana, Joseph M

    2010-08-01

    Because of adverse survival effects, anemia management and financial incentives to increase doses of erythropoiesis-stimulating agents (ESAs) have been controversial. Prior studies showed more aggressive anemia management in dialysis facilities owned by for-profit chains, but have been criticized for not accounting for practices of individual physicians and facilities. To improve understanding of how dialysis practices and resource utilization are influenced by physicians, facilities, and chains. Mixed models with chain fixed effects and facility and physician random effects. Medicare hemodialysis patients in 2004. A total of 234,158 patients, 3995 facilities, 4838 physicians, and 7 chain classifications were included. Spending per session for dialysis-related services billed separately from the dialysis treatment and for ESAs. Achievement of hematocrit (HCT) and urea reduction ratio (URR) targets. Of the 4 largest for-profit chains, 3 had higher resource use than independents, with differences up to $17.92 higher ESA/session. Utilization was positively associated with achieving target HCT. Despite incurring lower costs, patients treated by a large nonprofit chain were as likely as patients of independents to achieve the HCT target. The largest chains were more likely than independents to achieve the URR target. Substantial variation occurred across physicians and facilities, and adjustment for chain only modestly decreased this variation. Chains' methods of influencing practices were not directly observed. Chains appear to have the ability to implement protocols that shift practices, but not the ability to substantially reduce local variation. Assertions that chain effects found by earlier studies were spurious are not supported.

  1. Size dependence of second-order hyperpolarizability of finite periodic chains under Su-Schrieffer-Heeger model

    NASA Astrophysics Data System (ADS)

    Jiang, S. D.; Xu, M. Z.

    2006-11-01

    The second hyperpolarizability γN( - 3ωω,ω,ω) of N double-bond finite chain of trans-polyacetylene is analyzed using the Su-Schrieffer-Heeger model to explain qualitative features of the size dependence behavior of γN. Our study shows that γN/N is nonmonotonic with N and that the nonmonotonicity is caused by the dominant contribution of the intraband transition to γN in polyenes. Several important physical effects are discussed to reduce quantitative discrepancies between experimental and our results.

  2. Analysis of Local and Global Topographic Order in Mouse Retinocollicular Maps

    PubMed Central

    Sterratt, David C.; Teriakidis, Adrianna

    2014-01-01

    We introduce the Lattice Method for the quantitative assessment of the topographic order within the pattern of connections between two structures. We apply this method to published visuocollicular mapping data obtained by Fourier-based intrinsic imaging of mouse colliculus. We find that, in maps from wild types and β2 knock-outs, at least 150 points on the colliculus are represented in the visual field in the correct relative order. In maps from animals with knock-out of the three ephrinA ligands (TKO), thought to specify the rostrocaudal axis of the map, the projection on the colliculus of each small circular area of visual field is elongated approximately rostrocaudally. Of these projections, 9% are made up of two distinct regions lying along the direction of ingrowth of retinal fibers. These are similar to the ectopic projections found in other ephrinA knock-out data. Coexisting with the ectopic projections, each TKO map contains a submap where neighbor–neighbor relations are preserved, which is ordered along both rostrocaudal and mediolateral axes, in the orientation found in wild-type maps. The submaps vary in size with order well above chance level, which can approach the order in wild-type maps. Knock-out of both β2 and two of the three ephrinAs yields maps with some order. The ordered TKO maps cannot be produced by correlated neural activity acting alone, as this mechanism is unable to specify map orientation. These results invite reassessment of the role of molecular signaling, particularly that of ephrinAs, in the formation of ordered nerve connections. PMID:24478361

  3. Analysis of local and global topographic order in mouse retinocollicular maps.

    PubMed

    Willshaw, David J; Sterratt, David C; Teriakidis, Adrianna

    2014-01-29

    We introduce the Lattice Method for the quantitative assessment of the topographic order within the pattern of connections between two structures. We apply this method to published visuocollicular mapping data obtained by Fourier-based intrinsic imaging of mouse colliculus. We find that, in maps from wild types and β2 knock-outs, at least 150 points on the colliculus are represented in the visual field in the correct relative order. In maps from animals with knock-out of the three ephrinA ligands (TKO), thought to specify the rostrocaudal axis of the map, the projection on the colliculus of each small circular area of visual field is elongated approximately rostrocaudally. Of these projections, 9% are made up of two distinct regions lying along the direction of ingrowth of retinal fibers. These are similar to the ectopic projections found in other ephrinA knock-out data. Coexisting with the ectopic projections, each TKO map contains a submap where neighbor-neighbor relations are preserved, which is ordered along both rostrocaudal and mediolateral axes, in the orientation found in wild-type maps. The submaps vary in size with order well above chance level, which can approach the order in wild-type maps. Knock-out of both β2 and two of the three ephrinAs yields maps with some order. The ordered TKO maps cannot be produced by correlated neural activity acting alone, as this mechanism is unable to specify map orientation. These results invite reassessment of the role of molecular signaling, particularly that of ephrinAs, in the formation of ordered nerve connections.

  4. A Time Scheduling Model of Logistics Service Supply Chain Based on the Customer Order Decoupling Point: A Perspective from the Constant Service Operation Time

    PubMed Central

    Yang, Yi; Xu, Haitao; Liu, Xiaoyan; Wang, Yijia; Liang, Zhicheng

    2014-01-01

    In mass customization logistics service, reasonable scheduling of the logistics service supply chain (LSSC), especially time scheduling, is benefit to increase its competitiveness. Therefore, the effect of a customer order decoupling point (CODP) on the time scheduling performance should be considered. To minimize the total order operation cost of the LSSC, minimize the difference between the expected and actual time of completing the service orders, and maximize the satisfaction of functional logistics service providers, this study establishes an LSSC time scheduling model based on the CODP. Matlab 7.8 software is used in the numerical analysis for a specific example. Results show that the order completion time of the LSSC can be delayed or be ahead of schedule but cannot be infinitely advanced or infinitely delayed. Obtaining the optimal comprehensive performance can be effective if the expected order completion time is appropriately delayed. The increase in supply chain comprehensive performance caused by the increase in the relationship coefficient of logistics service integrator (LSI) is limited. The relative concern degree of LSI on cost and service delivery punctuality leads to not only changes in CODP but also to those in the scheduling performance of the LSSC. PMID:24715818

  5. A time scheduling model of logistics service supply chain based on the customer order decoupling point: a perspective from the constant service operation time.

    PubMed

    Liu, Weihua; Yang, Yi; Xu, Haitao; Liu, Xiaoyan; Wang, Yijia; Liang, Zhicheng

    2014-01-01

    In mass customization logistics service, reasonable scheduling of the logistics service supply chain (LSSC), especially time scheduling, is benefit to increase its competitiveness. Therefore, the effect of a customer order decoupling point (CODP) on the time scheduling performance should be considered. To minimize the total order operation cost of the LSSC, minimize the difference between the expected and actual time of completing the service orders, and maximize the satisfaction of functional logistics service providers, this study establishes an LSSC time scheduling model based on the CODP. Matlab 7.8 software is used in the numerical analysis for a specific example. Results show that the order completion time of the LSSC can be delayed or be ahead of schedule but cannot be infinitely advanced or infinitely delayed. Obtaining the optimal comprehensive performance can be effective if the expected order completion time is appropriately delayed. The increase in supply chain comprehensive performance caused by the increase in the relationship coefficient of logistics service integrator (LSI) is limited. The relative concern degree of LSI on cost and service delivery punctuality leads to not only changes in CODP but also to those in the scheduling performance of the LSSC.

  6. Hypernetted-chain investigation of the random first-order transition of a Lennard-Jones liquid to an ideal glass

    NASA Astrophysics Data System (ADS)

    Bomont, Jean-Marc; Hansen, Jean-Pierre; Pastore, Giorgio

    2015-10-01

    The structural and thermodynamic behavior of a deeply supercooled Lennard-Jones liquid, and its random first-order transition (RFOT) to an ideal glass is investigated, using a system of two weakly coupled replicas and the hypernetted chain integral equation for the pair structure of this symmetric binary system. A systematic search in the density-temperature plane points to the existence of two glass branches below a density-dependent threshold temperature. The branch of lower free energy exhibits a rapid growth of the structural overlap order parameter upon cooling and may be identified with the ideal glass phase conjectured by several authors for both spin and structural glasses. The RFOT, signaled by a sharp discontinuity of the order parameter, is predicted to be weakly first order from a thermodynamic viewpoint. The transition temperature Tcr increases rapidly with density and approximately obeys a scaling relation valid for a reference system of particles interacting via a purely repulsive 1 /r18 potential.

  7. Local complete active space second-order perturbation theory using pair natural orbitals (PNO-CASPT2)

    NASA Astrophysics Data System (ADS)

    Menezes, Filipe; Kats, Daniel; Werner, Hans-Joachim

    2016-09-01

    We present a CASPT2 method which exploits local approximations to achieve linear scaling of the computational effort with the molecular size, provided the active space is small and local. The inactive orbitals are localized, and the virtual space for each electron pair is spanned by a domain of pair-natural orbitals (PNOs). The configuration space is internally contracted, and the PNOs are defined for uniquely defined orthogonal pairs. Distant pair energies are obtained by multipole approximations, so that the number of configurations that are explicitly treated in the CASPT2 scales linearly with molecular size (assuming a constant active space). The PNOs are generated using approximate amplitudes obtained in a pair-specific semi-canonical basis of projected atomic orbitals (PAOs). The evaluation and transformation of the two-electron integrals use the same parallel local density fitting techniques as recently described for linear-scaling PNO-LMP2 (local second-order Møller-Plesset perturbation theory). The implementation of the amplitude equations, which are solved iteratively, employs the local integrated tensor framework. The efficiency and accuracy of the method are tested for excitation energies and correlation energies. It is demonstrated that the errors introduced by the local approximations are very small. They can be well controlled by few parameters for the distant pair approximation, initial PAO domains, and the PNO domains.

  8. Local complete active space second-order perturbation theory using pair natural orbitals (PNO-CASPT2).

    PubMed

    Menezes, Filipe; Kats, Daniel; Werner, Hans-Joachim

    2016-09-28

    We present a CASPT2 method which exploits local approximations to achieve linear scaling of the computational effort with the molecular size, provided the active space is small and local. The inactive orbitals are localized, and the virtual space for each electron pair is spanned by a domain of pair-natural orbitals (PNOs). The configuration space is internally contracted, and the PNOs are defined for uniquely defined orthogonal pairs. Distant pair energies are obtained by multipole approximations, so that the number of configurations that are explicitly treated in the CASPT2 scales linearly with molecular size (assuming a constant active space). The PNOs are generated using approximate amplitudes obtained in a pair-specific semi-canonical basis of projected atomic orbitals (PAOs). The evaluation and transformation of the two-electron integrals use the same parallel local density fitting techniques as recently described for linear-scaling PNO-LMP2 (local second-order Møller-Plesset perturbation theory). The implementation of the amplitude equations, which are solved iteratively, employs the local integrated tensor framework. The efficiency and accuracy of the method are tested for excitation energies and correlation energies. It is demonstrated that the errors introduced by the local approximations are very small. They can be well controlled by few parameters for the distant pair approximation, initial PAO domains, and the PNO domains.

  9. Bringing order through disorder: localization of errors in topological quantum memories.

    PubMed

    Wootton, James R; Pachos, Jiannis K

    2011-07-15

    Anderson localization emerges in quantum systems when randomized parameters cause the exponential suppression of motion. Here we consider this phenomenon in topological models and establish its usefulness for protecting topologically encoded quantum information. For concreteness we employ the toric code. It is known that in the absence of a magnetic field this can tolerate a finite initial density of anyonic errors, but in the presence of a field anyonic quantum walks are induced and the tolerable density becomes zero. However, if the disorder inherent in the code is taken into account, we demonstrate that the induced localization allows the topological quantum memory to regain a finite critical anyon density and the memory to remain stable for arbitrarily long times. We anticipate that disorder inherent in any physical realization of topological systems will help to strengthen the fault tolerance of quantum memories.

  10. Local Field Distribution Function and High Order Field Moments for metal-dielectric composites.

    NASA Astrophysics Data System (ADS)

    Genov, Dentcho A.; Sarychev, Andrey K.; Shalaev, Vladimir M.

    2001-11-01

    In a span of two decades the physics of nonlinear optics saw vast improvement in our understanding of optical properties for various inhomogeneous mediums. One such medium is the metal-dielectric composite, where the metal inclusions have a surface coverage fraction of p, while the rest (1-p) is assumed to represent the dielectric host. The computations carried out by using different theoretical models and the experimental data show existence of giant local electric and magnetic field fluctuations. In this presentation we will introduce a new developed 2D model that determines exactly the Local Field Distribution Function (LFDF) and all other relevant parameters of the film. The LFDF for small filling factors will be shown to transform from lognormal distribution into a single-dipole distribution function. We also will confirm the predictions of the scaling theory for the high field moments, which have a power law dependence on the loss factor.

  11. Josephson scanning tunneling microscopy -- a local and direct probe of the superconducting order parameter

    SciTech Connect

    Kimura, Hikari; Dynes, Robert; Barber Jr., Richard. P.; Ono, S.; Ando, Y.

    2009-09-01

    Direct measurements of the superconducting superfluid on the surface of vacuum-cleaved Bi2Sr2CaCu2O8+delta (BSCCO) samples are reported. These measurements are accomplished via Josephson tunneling into the sample using a novel scanning tunneling microscope (STM) equipped with a superconducting tip. The spatial resolution of the STM of lateral distances less than the superconducting coherence length allows it to reveal local inhomogeneities in the pair wavefunction of the BSCCO. Instrument performance is demonstrated first with Josephson measurements of Pb films followed by the layered superconductor NbSe2. The relevant measurement parameter, the Josephson ICRN product, is discussed within the context of both BCS superconductors and the high transition temperature superconductors. The local relationship between the ICRN product and the quasiparticle density of states (DOS) gap are presented within the context of phase diagrams for BSCCO. Excessive current densities can be produced with these measurements and have been found to alter the local DOS in the BSCCO. Systematic studies of this effect were performed to determine the practical measurement limits for these experiments. Alternative methods for preparation of the BSCCO surface are also discussed.

  12. Local atomic and electronic structure in LaMnO{sub 3} across the orbital ordering transition

    SciTech Connect

    Souza, Raquel A.; Souza-Neto, Narcizo M.; Ramos, Aline Y.; Tolentino, Helio C.N.; Granado, Eduardo

    2004-12-01

    The local atomic disorder and electronic structure in the environment of manganese atoms in LaMnO{sub 3} has been studied by x-ray absorption spectroscopy over a temperature range (300-870 K) covering the orbital ordering transition ({approx}710 K). The Mn-O distance splitting into short and long bonds (1.95 and 2.15 A) is kept across the transition temperature, so that the MnO{sub 6} octahedra remain locally Jahn-Teller distorted. Discontinuities in the Mn local structure are identified in the extended x-ray fine structure spectra at this temperature, associated with a reduction of the disorder in the superexchange angle and to the removal of the anisotropy in the radial disorder within the coordination shell. Subtle changes in the electronic local structure also take place at the Mn site at the transition temperature. The near-edge spectra show a small drop of the Mn 4p hole count and a small enhancement in the pre-edge structures at the transition temperature. These features are associated with an increase of the covalence of the Mn-O bonds. Our results shed light on the local electronic and structural phenomena in a model of order-disorder transition, where the cooperative distortion is overcome by the thermal disorder.

  13. Local ordering of Jahn-Teller orbitals in LiNiO2 by neutron powder diffraction

    NASA Astrophysics Data System (ADS)

    Chung, Jae-Ho; Egami, Takeshi; Shamoto, Shin-Ichi; Proffen, Thomas; Ghorayeb, Andre

    2004-03-01

    The orbital state of LiNiO2 has been controversial, since there is no signature of long-range Jahn-Teller distortion, unlike NaNiO2 that shows ferromagnetic orbital order. We have neutron pair distribution function analysis to reveal important features, such as the local J-T distortion, the sharp oxygen-oxygen distance correlations, and unusual temperature dependence. These observations can be explained by a local ordering of Ni^3+ Jahn-Teller orbitals, where three neighboring 3d_z^2-r^2/3 orbitals share an oxygen site to form a trimer. Under this arrangement, it is expected that a medium-range elastic field will induce a curvature on NiO2 layers, which frustrates long-range order and is consistent with the systematic peak broadening observed in the neutron diffraction profiles. We propose that this local ordering is the basis for the complex magnetic properties observed in this material.

  14. Orientational order of [VOF{sub 5}]{sup 2-} and [NbOF{sub 5}]{sup 2-} polar units in chains

    SciTech Connect

    Gautier, Romain Donakowski, Martin D. Poeppelmeier, Kenneth R.

    2012-11-15

    The generation of polarity in the solid state necessitates ordered, polar basic-building units (BBUs). This paper examines the evolution of ordered BBUs of 1D chains constructed of early transition metals (ETMs) and late transition metals. The cause of polar distortion orientation is illustrated with subtle alterations in the heterotypic structures of one previously reported compound (CuNbOF{sub 5}(H{sub 2}O){sub 2}(pyz){sub 3}) and three new hybrid materials, presented here: CuNbOF{sub 5}(H{sub 2}O){sub 4}(pyz){sub 2} (1), CuVOF{sub 5}(H{sub 2}O){sub 4}(pyz){sub 2} (2) and CuVOF{sub 5}(H{sub 2}O){sub 2}(pyz){sub 3} (3) (pyz=pyrazine). In contrast to the [NbOF{sub 5}]{sup 2-} octahedra of CuNbOF{sub 5}(H{sub 2}O){sub 2}(pyz){sub 3} and compound (1) that have oxide ligands within the 1D BBUs, the [VOF{sub 5}]{sup 2-} octahedra of compounds (2) and (3) contain disordered oxide ligands perpendicular to the chains. To create polar 1D BBUs in the solid state, one must have an understanding of how to direct distortions. We demonstrate that the choice of specific polar BBUs within a distinct environment is necessary for orientational order of the ETM anions. - Graphical abstract: The orientational order of [VOF{sub 5}]{sup 2-} and [NbOF{sub 5}]{sup 2-} polar anions in chains and its influence on noncentrosymmetry are discussed on the basis of the three new hybrid compounds composed of linear chains: (CuVOF{sub 5}(H{sub 2}O){sub 4}(pyz){sub 2}, CuNbOF{sub 5}(H{sub 2}O){sub 4}(pyz){sub 2} and CuVOF{sub 5}(H{sub 2}O){sub 2}(pyz){sub 3}). Orientational order of the distortion of the early transition metal can be achieved by subtle modifications of the anisotropy in the anionic environment and a proper choice of the polar anion. Highlights: Black-Right-Pointing-Pointer Three new hybrid compounds were characterized by single-crystal XRD. Black-Right-Pointing-Pointer [VOF{sub 5}]{sup 2-} and [NbOF{sub 5}]{sup 2-} anions differ in the nucleophilicities of the ligands. Black

  15. Spectral butterfly and electronic localization in rippled-graphene nanoribbons: Mapping onto effective one-dimensional chains

    NASA Astrophysics Data System (ADS)

    Roman-Taboada, Pedro; Naumis, Gerardo G.

    2015-07-01

    We report an exact map into one-dimensional effective chains of the tight-binding Hamiltonian for electrons in armchair and zigzag graphene nanoribbons with any uniaxial ripple. This mapping is used for studying the effect of uniaxial periodic ripples, taking into account the relative orientation changes between π orbitals. Such effects are important for short-wavelength ripples, while for long-wave ones, the system behaves nearly as strained graphene. The spectrum has a complex nature, akin to the Hofstadter butterfly with a rich localization behavior. Gaps at the Fermi level and dispersionless bands were observed, as well. The complex features of the spectrum arise as a consequence of the quasiperiodic or periodic nature of the effective one-dimensional system. Some features of these systems can be understood by considering weakly coupled dimers. The eigenenergies of such dimers are highly degenerate, and the net effect of the ripple can be seen as a perturbation potential that splits the energy spectrum. Several particular cases were analytically solved to understand this feature.

  16. The human myosin light chain kinase (MLCK) from hippocampus: Cloning, sequencing, expression, and localization to 3qcen-q21

    SciTech Connect

    Potier, M.C.; Rossier, J.; Turnell, W.G.; Pekarsky, Y.; Gardiner, K.

    1995-10-10

    Myosin light chain kinase (MLCK), a key enzyme in muscle contraction, has been shown by immunohistology to be present in neurons and glia. We describe here the cloning of the cDNA for human MLCK from hippocampus, encoding a protein sequence 95% similar to smooth muscle MLCKs but less than 60% similar to skeletal muscle MLCKs. The cDNA clone detected two RNA transcripts in human frontal and entorhinal cortex, in hippocampus, and in jejunum, one corresponding to MLCK and the other probably to telokin, the carboxy-terminal 154 codons of MLCK expressed as an independent protein in smooth muscle. Levels of expression were lower in brain compared to smooth muscle. We show that within the protein sequence, a motif of 28 or 24 residues is repeated five times, the second repeat ending with the putative methionine start codon. These repeats overlap with a second previously reported module of 12 residues repeated five times in the human sequence. In addition, the acidic C-terminus of all MLCKs from both brain and smooth muscle resembles the C-terminus of tubulins. The chromosomal localization of the gene for human MLCK is shown to be at 3qcen-q21, as determined by PCR and Southern blotting using two somatic cell hybrid panels. 33 refs., 8 figs.

  17. Localized surface plasmon microscope with an illumination system employing a radially polarized zeroth-order Bessel beam.

    PubMed

    Watanabe, Kouyou; Terakado, Goro; Kano, Hiroshi

    2009-04-15

    We propose an imaging principle that employs a radially polarized zeroth-order Bessel beam in the illlumination system of the localized surface plasmon microscope. The illumination system enables the microscope to visualize a refractive index distribution on a substrate fabricated in the Kretschmann configuration by the measurement of reflected intensity. The experimentally observed image of a particle reveals that the spatial resolution reaches the optical diffraction limit. The proposed principle can contribute to increase the imaging speed of localized surface plasmon microscopy by use of a beam scanning device.

  18. Study of the all orders multiplicative renormalizability of a local confining quark action in the Landau gauge

    SciTech Connect

    Capri, M.A.L. Fiorentini, D. Sorella, S.P.

    2015-05-15

    The inverse of the Faddeev–Popov operator plays a pivotal role within the Gribov–Zwanziger approach to the quantization of Euclidean Yang–Mills theories in Landau gauge. Following a recent proposal (Capri et al., 2014), we show that the inverse of the Faddeev–Popov operator can be consistently coupled to quark fields. Such a coupling gives rise to a local action while reproducing the behaviour of the quark propagator observed in lattice numerical simulations in the non-perturbative infrared region. By using the algebraic renormalization framework, we prove that the aforementioned local action is multiplicatively renormalizable to all orders.

  19. Local ordering of nanostructured Pt probed by multiple-scattering XAFS

    SciTech Connect

    Witkowska, Agnieszka; Di Cicco, Andrea; Principi, Emiliano

    2007-09-01

    We present detailed results of a multiple-scattering (MS) extended x-ray absorption fine structure (EXAFS) data analysis of crystalline and nanocrystalline platinum. Advanced MS EXAFS analysis has been applied to raw x-ray absorption data including the background, using the expansion of the absorption cross section in terms of local two-body and three-body configurations. Present EXAFS results on bulk Pt are found to be in agreement with previous structural and vibrational data, and has been used as a reference for reliable structural refinement of nanosized systems. EXAFS structural refinement of Pt nanoparticles has been performed in combination with electron microscopy and x-ray diffraction, showing the importance of considering the actual size distribution and morphology of the samples. Present samples were unsupported and supported Pt nanocrystalline systems with size distributions showing clusters of quasispherical shape in the 1-7 nm range. In particular, EXAFS spectra have been analyzed accounting for the reduction of the coordination number and degeneracy of three-body configurations, resulting from the measured size distribution and expected surface atom contributions. The importance of a correct account of the reduction of the number of neighbors for calculating MS contributions is emphasized in the paper. EXAFS results have been found compatible with x-ray diffraction and transmission electron microscopy investigations. We estimate that EXAFS could be used to study cluster shapes only for sizes below 2 nm using present methods and quality of the experimental data. We have also shown that the local distribution of distances and angles probed by EXAFS is broader than in bulk Pt, with first-neighbor bond length variance and asymmetry increasing upon reducing the particle size. Methods and results presented in this paper have been found to be successful for a robust structural refinement of monatomic nanocrystalline systems and represents a solid starting

  20. Effect of Sterol Structure on Chain Ordering of an Unsaturated Phospholipid: A 2H-NMR Study of POPC/Sterol Membranes

    NASA Astrophysics Data System (ADS)

    Shaghaghi, Mehran; Thewalt, Jenifer; Zuckermann, Martin

    2012-10-01

    The physical properties of biological membranes are considerably altered by the presence of sterols. In particular, sterols help to maintain the integrity of the cell by adjusting the fluidity of the plasma membrane. Cholesterol is in addition an important component of lipid rafts which are hypothesized to compartmentalize the cell membrane surface thereby making it possible for certain proteins to function. Using 2H-NMR spectroscopy, we studied the effect of a series of different sterols on the chain ordering of POPC, an unsaturated phospholipid present in eukaryotic cell membranes. We were able to assigned specific roles to the structural differences between the sterols by comparing the manner in which they affect the average lipid chain conformation of POPC.

  1. Local explicitly correlated second-order Møller-Plesset perturbation theory with pair natural orbitals.

    PubMed

    Tew, David P; Helmich, Benjamin; Hättig, Christof

    2011-08-21

    We explore using a pair natural orbital analysis of approximate first-order pair functions as means to truncate the space of both virtual and complementary auxiliary orbitals in the context of explicitly correlated F12 methods using localised occupied orbitals. We demonstrate that this offers an attractive procedure and that only 10-40 virtual orbitals per significant pair are required to obtain second-order valence correlation energies to within 1-2% of the basis set limit. Moreover, for this level of virtual truncation, only 10-40 complementary auxiliary orbitals per pair are required for an accurate resolution of the identity in the computation of the three- and four-electron integrals that arise in explicitly correlated methods.

  2. Localization of the human kinesin light chain gene (KNS2) to chromosome 14q32.3 by fluorescence in situ hybridization

    SciTech Connect

    Goedert, M.; Marsh, S.; Carter, N.

    1996-02-15

    This article reports on the localization of human kinesin light chain gene (KNS2) to human chromosome 14q32.3 using fluorescence in situ hybridization. Further studies will need to be conducted to see whether mutations in the KNS2 gene are associated with hereditary diseases. 10 refs., 1 fig.

  3. Aurora B but not rho/MLCK signaling is required for localization of diphosphorylated myosin II regulatory light chain to the midzone in cytokinesis.

    PubMed

    Kondo, Tomo; Isoda, Rieko; Ookusa, Takayuki; Kamijo, Keiju; Hamao, Kozue; Hosoya, Hiroshi

    2013-01-01

    Non-muscle myosin II is stimulated by monophosphorylation of its regulatory light chain (MRLC) at Ser19 (1P-MRLC). MRLC diphosphorylation at Thr18/Ser19 (2P-MRLC) further enhances the ATPase activity of myosin II. Phosphorylated MRLCs localize to the contractile ring and regulate cytokinesis as subunits of activated myosin II. Recently, we reported that 2P-MRLC, but not 1P-MRLC, localizes to the midzone independently of myosin II heavy chain during cytokinesis in cultured mammalian cells. However, the mechanism underlying the distinct localization of 1P- and 2P-MRLC during cytokinesis is unknown. Here, we showed that depletion of the Rho signaling proteins MKLP1, MgcRacGAP, or ECT2 inhibited the localization of 1P-MRLC to the contractile ring but not the localization of 2P-MRLC to the midzone. In contrast, depleting or inhibiting a midzone-localizing kinase, Aurora B, perturbed the localization of 2P-MRLC to the midzone but not the localization of 1P-MRLC to the contractile ring. We did not observe any change in the localization of phosphorylated MRLC in myosin light-chain kinase (MLCK)-inhibited cells. Furrow regression was observed in Aurora B- and 2P-MRLC-inhibited cells but not in 1P-MRLC-perturbed dividing cells. Furthermore, Aurora B bound to 2P-MRLC in vitro and in vivo. These results suggest that Aurora B, but not Rho/MLCK signaling, is essential for the localization of 2P-MRLC to the midzone in dividing HeLa cells.

  4. Estimating side-chain order in methyl-protonated, perdeuterated proteins via multiple-quantum relaxation violated coherence transfer NMR spectroscopy.

    PubMed

    Sun, Hechao; Godoy-Ruiz, Raquel; Tugarinov, Vitali

    2012-03-01

    Relaxation violated coherence transfer NMR spectroscopy (Tugarinov et al. in J Am Chem Soc 129:1743-1750, 2007) is an established experimental tool for quantitative estimation of the amplitudes of side-chain motions in methyl-protonated, highly deuterated proteins. Relaxation violated coherence transfer experiments monitor the buildup of methyl proton multiple-quantum coherences that can be created in magnetically equivalent spin-systems as long as their transverse magnetization components relax with substantially different rates. The rate of this build-up is a reporter of the methyl-bearing side-chain mobility. Although the build-up of multiple-quantum (1)H coherences is monitored in these experiments, the decay of the methyl signal during relaxation delays occurs when methyl proton magnetization is in a single-quantum state. We describe a relaxation violated coherence transfer approach where the relaxation of multiple-quantum (1)H-(13)C methyl coherences during the relaxation delay period is quantified. The NMR experiment and the associated fitting procedure that models the time-dependence of the signal build-up, are applicable to the characterization of side-chain order in [(13)CH(3)]-methyl-labeled, highly deuterated protein systems up to ~100 kDa in molecular weight. The feasibility of extracting reliable measures of side-chain order is experimentally verified on methyl-protonated, perdeuterated samples of an 8.5-kDa ubiquitin at 10°C and an 82-kDa Malate Synthase G at 37°C.

  5. The optimal retailer's ordering policies with trade credit financing and limited storage capacity in the supply chain system

    NASA Astrophysics Data System (ADS)

    Yen, Ghi-Feng; Chung, Kun-Jen; Chen, Tzung-Ching

    2012-11-01

    The traditional economic order quantity model assumes that the retailer's storage capacity is unlimited. However, as we all know, the capacity of any warehouse is limited. In practice, there usually exist various factors that induce the decision-maker of the inventory system to order more items than can be held in his/her own warehouse. Therefore, for the decision-maker, it is very practical to determine whether or not to rent other warehouses. In this article, we try to incorporate two levels of trade credit and two separate warehouses (own warehouse and rented warehouse) to establish a new inventory model to help the decision-maker to make the decision. Four theorems are provided to determine the optimal cycle time to generalise some existing articles. Finally, the sensitivity analysis is executed to investigate the effects of the various parameters on ordering policies and annual costs of the inventory system.

  6. Asymmetric tetranuclear nickel chains with unidirectionally ordered 2-(α-(5-phenyl)pyridylamino)-1,8-naphthyridine ligands.

    PubMed

    Tsou, Lien-Hung; Sigrist, Marc; Chiang, Ming-Hsi; Horng, Er-Chien; Chen, Chun-Hsien; Huang, Shou-Ling; Lee, Gene-Hsiang; Peng, Shie-Ming

    2016-11-01

    The new ligand, 2-(α-(5-phenyl)pyridylamino)-1,8-naphthyridine (Hphpyany), was synthesised by a palladium(0)-catalysed reaction of 2-chloro-1,8-naphthyridine with 2-amino-5-phenylpyridine in the presence of potassium tert-butoxide. Linear tetranickel metal complexes, [Ni4(phpyany)4Cl2](CF3SO3) 1, [Ni4(phpyany)4Cl2](BF4)22, [Ni4(phpyany)4(NCS)2](ClO4) 3 and [Ni4(phpyany)4(NCS)2](CF3SO3)24 were prepared and crystallographically characterised. Complexes 1-4 demonstrate that, for the first time, four asymmetric ligands align unidirectionally and thus configure (4,0)-form tetranickel strings, specifically, with the phenyl groups of the four phpyany(-) pointing to one side of the Ni4 chain and naphthyridyl to the other. The remarkably short Ni-Ni distances (ca. 2.33 Å) for 1 and 3 indicate partial metal-metal bonding, which can be viewed as both complexes containing one mixed-valence Ni2(3+) unit. The measurements of the magnetic susceptibility reveal that Ni4(7+) complexes 1 and 3 exhibit antiferromagnetic interactions (J = -42 cm(-1) for 1 and -46 cm(-1) for 3) between the terminal Ni(2+) ion and the Ni2(3+) unit, while Ni4(8+) complexes 2 and 4 exhibit antiferromagnetic interactions (J = -33 cm(-1) for 2 and -35 cm(-1) for 4) between the two terminal Ni(2+) ions. The results of the cyclic voltammetry indicate the presence of two reversible redox couples at E1/2((1)) = 0.12 V, E1/2((2)) = -0.65 V for 1, and at E1/2((1)) = 0.12 V, E1/2((2)) = -0.72 V for 3. The products of the first oxidation for 1 and 3 are the oxidised species 2 and 4, respectively. The values of single-molecule resistance (15.4 (±3.46) MΩ for 3 and 16.2 (±5.04) MΩ for 4) were determined by STM-based break-junction methods. The results represent the first conductance measurements of linear tetranickel chains.

  7. TiO2 nanotube arrays for photocatalysis: Effects of crystallinity, local order, and electronic structure

    DOE PAGES

    Liu, Jing; Hosseinpour, Pegah M.; Luo, Si; ...

    2014-11-19

    To furnish insight into correlations of electronic and local structure and photoactivity, arrays of short and long TiO₂ nanotubes were synthesized by electrochemical anodization of Ti foil, followed by thermal treatment in O₂ (oxidizing), Ar (inert), and H₂ (reducing) environments. The physical and electronic structures of these nanotubes were probed with x-ray diffraction, scanning electron microscopy, and synchrotron-based x-ray absorption spectroscopy, and correlated with their photocatalytic properties. The photocatalytic activity of the nanotubes was evaluated by monitoring the degradation of methyl orange under UV-VIS light irradiation. Results show that upon annealing at 350 °C all as-anodized amorphous TiO₂ nanotube samplesmore » partially transform to the anatase structure, with variations in the degree of crystallinity and in the concentration of local defects near the nanotubes' surface (~5 nm) depending on the annealing conditions. Degradation of methyl orange was not detectable for the as-anodized TiO₂ nanotubes regardless of their length. The annealed long nanotubes demonstrated detectable catalytic activity, which was more significant with the H₂-annealed nanotubes than with the Ar- and O₂-annealed nanotube samples. This enhanced photocatalytic response of the H₂-annealed long nanotubes relative to the other samples is positively correlated with the presence of a larger concentration of lattice defects (such as Ti3+ and anticipated oxygen vacancies) and a slightly lower degree of crystallinity near the nanotube surface. These physical and electronic structural attributes impact the efficacy of visible light absorption; moreover, the increased concentration of surface defects is postulated to promote the generation of hydroxyl radicals and thus accelerate the photodegradation of the methyl orange. The information obtained from this study provides unique insight into the role of the near-surface electronic and defect structure

  8. Efficient high-order analysis of bowtie nanoantennas using the locally corrected Nyström method.

    PubMed

    Chorsi, Hamid T; Gedney, Stephen D

    2015-11-30

    It is demonstrated that the Locally Corrected Nyström (LCN) method is a versatile and numerically efficient computational method for the modeling of scattering from plasmonic bowtie nanoantennas. The LCN method is a high-order analysis method that can provide exponential convergence. It is straightforward to implement, accurate and computationally efficient. To the best of the author's knowledge, the high-order LCN is here applied for the first time to 3D nanostructures. Numerical results show the accuracy and efficiency of the LCN applied to the electromagnetic analysis of nanostructures.

  9. Local-Orbital Ordering on Cr{sup 3+} Ions Doped in GaN

    SciTech Connect

    Emura, S.; Kimura, S.; Tokuda, K.; Zhou, Yi-Kai; Hasegawa, S.; Asahi, H.

    2010-01-04

    The X-ray linear dichroism (XLD) at the pre-peaks of Cr K-edge, which corresponds to the transition from 1s to 3d orbital, is explicitly observed for cubic GaCrN and hexagonal GaCrN. This observation of XLD in the cubic structure of GaCrN indicates that CrN{sub 4} tetrahedron in the local coordination suffers inhomogeneous or anisotropic deformation. This deformation is also confirmed through the analysis of the X-ray absorption fine structure of Cr K-edge of the hexagonal GaCrN, indicating the shift of Cr{sup +3} ion along the <111> direction.

  10. The local and long-range structural order of the spin-glass pyrochlore, Tb2Mo2O7

    SciTech Connect

    Ehlers, Georg; Jiang, Yu; Booth, Corwin H; Greedan, John E; Gardner, Jason; Huq, Ashfia

    2011-01-01

    To understand the origin of the spin-glass state in molybdate pyrochlores, the structure of Tb2Mo2O7 is investigated using two techniques: the long-range lattice structure was measured using neutron powder diffraction (NPD), and the local structure information was obtained from extended x-ray absorption fine structure (EXAFS) measurements. While the long-range structure appears well ordered, apart from some enhanced mean-squared site displacements, the local structure measurements indicate nearest-neighbor disorder exists, similar to that found in the related spinglass pyrochlore, Y2Mo2O7. Although the freezing temperature in Tb2Mo2O7, 25 K, is slightly higher than in Y2Mo2O7, 22 K, the degree of local bond disorder is actually less in Tb2Mo2O7. This apparaent contradiction is considered in light of the interactions involved in the freezing process.

  11. Probing the Local Order of Single Phospholipid Membranes Using Grazing Incidence X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Miller, C. E.; Majewski, J.; Watkins, E. B.; Mulder, D. J.; Gog, T.; Kuhl, T. L.

    2008-02-01

    We report the first grazing incidence x-ray diffraction measurements of a single phospholipid bilayer at the solid-liquid interface. Our grazing incidence x-ray diffraction and reflectivity measurements reveal that the lateral ordering in a supported DPPE (1, 2-Dipalmitoyl-sn-Glycero-3-Phosphoethanolamine) bilayer is significantly less than that of an equivalent monolayer at the air-liquid interface. Our findings also indicate that the leaflets of the bilayer are uncoupled in contrast to the scattering from free standing phosphatidylcholine bilayers. The methodology presented can be readily implemented to study more complicated biomembranes and their interaction with proteins.

  12. Inertial effect on frequency synchronization for the second-order Kuramoto model with local coupling

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Qin, Wen-Xin

    2017-04-01

    In this paper, we study the influence of the inertial effect on frequency synchronization in an ensemble of Kuramoto oscillators with finite inertia and symmetric and connected interactions. We present sufficient conditions in terms of coupling strength, algebraic connectivity, natural frequencies, and the inertial term to guarantee the occurrence of frequency synchronization. We also make a comparison with the existing conditions proposed for the first-order Kuramoto model and conclude that the inertial effect, if appropriately small, has little influence on frequency synchronization as long as the initial phase configurations are distributed in a half circle.

  13. Learn locally, think globally. Exemplar variability supports higher-order generalization and word learning.

    PubMed

    Perry, Lynn K; Samuelson, Larissa K; Malloy, Lisa M; Schiffer, Ryan N

    2010-12-01

    Research suggests that variability of exemplars supports successful object categorization; however, the scope of variability's support at the level of higher-order generalization remains unexplored. Using a longitudinal study, we examined the role of exemplar variability in first- and second-order generalization in the context of nominal-category learning at an early age. Sixteen 18-month-old children were taught 12 categories. Half of the children were taught with sets of highly similar exemplars; the other half were taught with sets of dissimilar, variable exemplars. Participants' learning and generalization of trained labels and their development of more general word-learning biases were tested. All children were found to have learned labels for trained exemplars, but children trained with variable exemplars generalized to novel exemplars of these categories, developed a discriminating word-learning bias generalizing labels of novel solid objects by shape and labels of nonsolid objects by material, and accelerated in vocabulary acquisition. These findings demonstrate that object variability leads to better abstraction of individual and global category organization, which increases learning outside the laboratory.

  14. ARN Supply Chain Management System for OCIE

    DTIC Science & Technology

    2006-12-30

    APPAREL RESEARCH NETWORK (ARN) PROGRAM Final Technical Report Contract Number SP0103-02-D-0018/ Delivery Order 0003 ARN Supply Chain Management System...3. REPORT TYPE AND DATES COVERED Technical Report – 27 February 2003 to 30 June 2006 4. TITLE AND SUBTITLE ARN Supply Chain Management System for...Module (IRM), Clothing Initial Issue Point (CIIP); Supply Chain Management ; Virtual Item Manager/Wholesale Local; Quality Logistics Management

  15. Polar Versus Non-polar Local Ordering at Mobile Sites in Proteins: Slowly Relaxing Local Structure Analysis of (15)N Relaxation in the Third Immunoglobulin-Binding Domain of Streptococcal Protein G.

    PubMed

    Tchaicheeyan, Oren; Meirovitch, Eva

    2016-01-28

    We developed recently the slowly relaxing local structure (SRLS) approach for studying restricted motions in proteins by NMR. The spatial restrictions have been described by potentials comprising the traditional L = 2, K = 0, 2 spherical harmonics. However, the latter are associated with non-polar ordering whereas protein-anchored probes experience polar ordering, described by odd-L spherical harmonics. Here we extend the SRLS potential to include the L = 1, K = 0, 1 spherical harmonics and analyze (15)N-(1)H relaxation from the third immunoglobulin-binding domain of streptococcal protein G (GB3) with the polar L = 1 potential (coefficients c0(1) and c1(1)) or the non-polar L = 2 potential (coefficients c0(2) and c2(2)). Strong potentials, with ⟨c0(1)⟩ ∼ 60 for L = 1 and ⟨c0(2)⟩ ∼ 20 for L = 2 (in units of kBT), are detected. In the α-helix of GB3 the coefficients of the rhombic terms are c1(1) ∼ c2(2) ∼ 0; in the preceding (following) chain segment they are ⟨c1(1)⟩ ∼ 6 for L = 1 and ⟨c2(2)⟩ ∼ 14 for L = 2 (⟨c1(1)⟩ ∼ 3 for L = 1 and ⟨c2(2)⟩ ∼ 7 for L = 2). The local diffusion rate, D2, lies in the 5 × 10(9)-1 × 10(11) s(-1) range; it is generally larger for L = 1. The main ordering axis deviates moderately from the N-H bond. Corresponding L = 1 and L = 2 potentials and probability density functions are illustrated for residues A26 of the α-helix, Y3 of the β1-strand, and L12 of the β1/β2 loop; they differ considerably. Polar/orientational ordering is shown to be associated with GB3 binding to its cognate Fab fragment. The polarity of the local ordering is clearly an important factor.

  16. Optimal geometric parameters of ordered arrays of nanoprisms for enhanced sensitivity in localized plasmon based sensors.

    PubMed

    Michieli, Niccolò; Kalinic, Boris; Scian, Carlo; Cesca, Tiziana; Mattei, Giovanni

    2015-03-15

    Plasmonic sensors based on ordered arrays of nanoprisms are optimized in terms of their geometric parameters like size, height, aspect ratio for Au, Ag or Au0.5-Ag0.5 alloy to be used in the visible or near IR spectral range. The two figures of merit used for the optimization are the bulk and the surface sensitivity: the first is important for optimizing the sensing to large volume analytes whereas the latter is more important when dealing with small bio-molecules immobilized in close proximity to the nanoparticle surface. A comparison is made between experimentally obtained nanoprisms arrays and simulated ones by using Finite Elements Methods (FEM) techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Local dynamics in high-order-harmonic generation using Bohmian trajectories

    NASA Astrophysics Data System (ADS)

    Wu, J.; Augstein, B. B.; Figueira de Morisson Faria, C.

    2013-08-01

    We investigate high-order-harmonic generation from a Bohmian-mechanical perspective and find that the innermost part of the core, represented by a single Bohmian trajectory, leads to the main contributions to the high-harmonic spectra. Using time-frequency analysis, we associate this central Bohmian trajectory to an ensemble of unbound classical trajectories leaving and returning to the core, in agreement with the three-step model. In the Bohmian scenario, this physical picture builds up nonlocally near the core via the quantum mechanical phase of the wave function. This implies that the flow of the wave function far from the core alters the central Bohmian trajectory. We also show how this phase degrades in time for the peripheral Bohmian trajectories as they leave the core region.

  18. Localized Order-Disorder Transitions Induced by Li Segregation in Amorphous TiO2 Nanoparticles

    SciTech Connect

    Yildirim, Handan; Greeley, J. P.; Sankaranarayanan, S. K. R. S.

    2014-11-12

    Li segregation and transport characteristics in amorphous TiO2 nanopartides (NPs) are studied using molecular dynamics (MD) simulations. A strong intrapartide segregation of Li is observed, and the degree of segregation is found to correlate with Li concentration. With increasing Li concentration, Li diffusivity and segregation are enhanced, and this behavior is tied to the structural response of the NPs with increasing lithiation. The atoms in the amorphous NPs undergo rearrangement in the regions of high Li concentration, introducing new pathways for Li transport and segregation. These localized atomic rearrangements, in turn, induce preferential crystallization near the surfaces of the NPs. Such rich, dynamical responses are not expected for crystalline NPs, where the presence of well-defined lattice sites leads to limited segregation and transport at high Li concentrations. The preferential crystallization in the near-surface region in amorphous NPs may offer enhanced stability and fast Li transport for Li-ion battery applications, in addition to having potentially useful properties for other materials science applications.

  19. Iron-mediated aggregation and a localized structural change characterize ferritin from a mutant light chain polypeptide that causes neurodegeneration.

    PubMed

    Baraibar, Martin A; Barbeito, Ana G; Muhoberac, Barry B; Vidal, Ruben

    2008-11-14

    Nucleotide insertions in the ferritin light chain (FTL) polypeptide gene cause hereditary ferritinopathy, a neurodegenerative disease characterized by abnormal accumulation of ferritin and iron in the central nervous system. Here we describe for the first time the protein structure and iron storage function of the FTL mutant p.Phe167SerfsX26 (MT-FTL), which has a C terminus altered in sequence and extended in length. MT-FTL polypeptides assembled spontaneously into soluble, spherical 24-mers that were ultrastructurally indistinguishable from those of the wild type. Far-UV CD showed a decrease in alpha-helical content, and 8-anilino-1-naphthalenesulfonate fluorescence revealed the appearance of hydrophobic binding sites. Near-UV CD and proteolysis studies suggested little or no structural alteration outside of the C-terminal region. In contrast to wild type, MT-FTL homopolymers precipitated at much lower iron loading, had a diminished capacity to incorporate iron, and were less thermostable. However, precipitation was significantly reversed by addition of iron chelators both in vitro and in vivo. Our results reveal substantial protein conformational changes localized at the 4-fold pore of MT-FTL homopolymers and imply that the C terminus of the MT-FTL polypeptide plays an important role in ferritin solubility, stability, and iron management. We propose that the protrusion of some portion of the C terminus above the spherical shell allows it to cross-link with other mutant polypeptides through iron bridging, leading to enhanced mutant precipitation by iron. Our data suggest that hereditary ferritinopathy pathogenesis is likely to result from a combination of reduction in iron storage function and enhanced toxicity associated with iron-induced ferritin aggregates.

  20. A liver cirrhosis classification on B-mode ultrasound images by the use of higher order local autocorrelation features

    NASA Astrophysics Data System (ADS)

    Sasaki, Kenya; Mitani, Yoshihiro; Fujita, Yusuke; Hamamoto, Yoshihiko; Sakaida, Isao

    2017-02-01

    In this paper, in order to classify liver cirrhosis on regions of interest (ROIs) images from B-mode ultrasound images, we have proposed to use the higher order local autocorrelation (HLAC) features. In a previous study, we tried to classify liver cirrhosis by using a Gabor filter based approach. However, the classification performance of the Gabor feature was poor from our preliminary experimental results. In order accurately to classify liver cirrhosis, we examined to use the HLAC features for liver cirrhosis classification. The experimental results show the effectiveness of HLAC features compared with the Gabor feature. Furthermore, by using a binary image made by an adaptive thresholding method, the classification performance of HLAC features has improved.

  1. Effect of solution concentration on the structured order and optical properties of short-chain polyene biomolecules

    NASA Astrophysics Data System (ADS)

    Ouyang, Shunli; Sun, Chenglin; Zhou, Mi; Li, Dongfei; Wang, Weiwei; Qu, Guannan; Li, Zuowei; Gao, Shuqin; Yang, Jiange

    2010-09-01

    We have measured the Raman spectra and UV-Vis absorption spectra of linear polyene biomolecules (β-carotene and lycopene) in CS2 at low concentrations (10-6-10-10 mol/L). With decreasing concentration, all the carbon-carbon vibrations form a coherent mode in ordered β-carotene and lycopene due to extended π-conjugation that gives strong electron-phonon coupling, which leads to an anomalous experimental phenomenon. We observed an extremely high Raman scattering cross section( RSCS) and the Raman activities in β-carotene and lycopene are characterized by intensive overtones and combinations. Further, the UV-Vis absorption bands become narrower.

  2. Localization of the gene (LAMA4) to chromosome 6q21 and isolation of a partial cDNA encoding a variant laminin A chain

    SciTech Connect

    Richards, A.J.; Al-Imara, L.; Carter, N.P.

    1994-07-01

    Laminin is a basement membrane glycoprotein composed of three nonidentical chains, A, B1, and B2. Variant chains such as merosin and S-laminin have been found in different tissues. The authors have isolated a cDNA encoding a novel laminin A variant that hybridizes to a 6.45-kb mRNA. Using amplification of genomic DNA and flow-sorted chromosomes they have assigned the gene (LAMA4) for this new laminin A variant to chromosome 6. Fluorescence in situ hybridization of a YAC clone further localized the gene to 6q21. 19 refs., 2 figs.

  3. Local order around rare earth ions during the devitrification of oxyfluoride glasses

    NASA Astrophysics Data System (ADS)

    Silva, Maurício A. P.; Dantelle, Geraldine; Mortier, Michel; Monteil, André; Ribeiro, Sidney J. L.; Messaddeq, Younès; Briois, Valérie; Poulain, Marcel

    2008-06-01

    Erbium L3-edge extended x-ray absorption fine structure (EXAFS) measurements were performed on rare earth doped fluorosilicate and fluoroborate glasses and glass ceramics. The well known nucleating effects of erbium ions for the crystallization of cubic lead fluoride (based on x-ray diffraction measurements) and the fact that the rare earth ions are present in the crystalline phase (as indicated by Er3+ emission spectra) seem in contradiction with the present EXAFS analysis, which indicates a lack of medium range structural ordering around the Er3+ ions and suggests that the lead fluoride crystallization does not occur in the nearest neighbor distance of the rare earth ion. Molecular dynamics simulations of the devitrification process of a lead fluoride glass doped with Er3+ ions were performed, and results indicate that Er3+ ions lower the devitrification temperature of PbF2, in good agreement with the experimental results. The genuine role of Er3+ ions in the devitrification process of PbF2 has been investigated. Although Er3+ ions could indeed act as seeds for crystallization, as experiments suggest, molecular dynamics simulation results corroborate the experimental EXAFS observation that the devitrification does not occur at its nearest neighbor distance.

  4. Local structure order in Pd78Cu6Si16 liquid

    PubMed Central

    Yue, G. Q.; Zhang, Y.; Sun, Y.; Shen, B.; Dong, F.; Wang, Z. Y.; Zhang, R. J.; Zheng, Y. X.; Kramer, M. J.; Wang, S. Y.; Wang, C. Z.; Ho, K. M.; Chen, L. Y.

    2015-01-01

    The short-range order (SRO) in Pd78Cu6Si16 liquid was studied by high energy x-ray diffraction and ab initio molecular dynamics (MD) simulations. The calculated pair correlation functions at different temperatures agree well with the experimental results. The partial pair correlation functions from ab intio MD simulations indicate that Si atoms prefer to be uniformly distributed while Cu atoms tend to aggregate. By performing structure analysis using Honeycutt-Andersen index, Voronoi tessellation, and atomic cluster alignment method, we show that the icosahedron and face-centered cubic SRO increase upon cooling. The dominant SRO is the Pd-centered Pd9Si2 motif, namely the structure of which motif is similar to the structure of Pd-centered clusters in the Pd9Si2 crystal. The study further confirms the existence of trigonal prism capped with three half-octahedra that is reported as a structural unit in Pd-based amorphous alloys. The majority of Cu-centered clusters are icosahedra, suggesting that the presence of Cu is benefit to promote the glass forming ability. PMID:25652079

  5. Local structure order in Pd78Cu6Si16 liquid

    DOE PAGES

    Yue, G. Q.; Zhang, Y.; Sun, Y.; ...

    2015-02-05

    The short-range order (SRO) in Pd78Cu6Si16 liquid was studied by high energy x-ray diffraction and ab initio molecular dynamics (MD) simulations. The calculated pair correlation functions at different temperatures agree well with the experimental results. The partial pair correlation functions from ab intio MD simulations indicate that Si atoms prefer to be uniformly distributed while Cu atoms tend to aggregate. By performing structure analysis using Honeycutt-Andersen index, Voronoi tessellation, and atomic cluster alignment method, we show that the icosahedron and face-centered cubic SRO increase upon cooling. The dominant SRO is the Pd-centered Pd9Si2 motif, namely the structure of which motifmore » is similar to the structure of Pd-centered clusters in the Pd9Si2 crystal. The study further confirms the existence of trigonal prism capped with three half-octahedra that is reported as a structural unit in Pd-based amorphous alloys. The majority of Cu-centered clusters are icosahedra, suggesting that the presence of Cu is benefit to promote the glass forming ability.« less

  6. Local Order in the Unfolded State: Conformational Biases and Nearest Neighbor Interactions

    PubMed Central

    Toal, Siobhan; Schweitzer-Stenner, Reinhard

    2014-01-01

    The discovery of Intrinsically Disordered Proteins, which contain significant levels of disorder yet perform complex biologically functions, as well as unwanted aggregation, has motivated numerous experimental and theoretical studies aimed at describing residue-level conformational ensembles. Multiple lines of evidence gathered over the last 15 years strongly suggest that amino acids residues display unique and restricted conformational preferences in the unfolded state of peptides and proteins, contrary to one of the basic assumptions of the canonical random coil model. To fully understand residue level order/disorder, however, one has to gain a quantitative, experimentally based picture of conformational distributions and to determine the physical basis underlying residue-level conformational biases. Here, we review the experimental, computational and bioinformatic evidence for conformational preferences of amino acid residues in (mostly short) peptides that can be utilized as suitable model systems for unfolded states of peptides and proteins. In this context particular attention is paid to the alleged high polyproline II preference of alanine. We discuss how these conformational propensities may be modulated by peptide solvent interactions and so called nearest-neighbor interactions. The relevance of conformational propensities for the protein folding problem and the understanding of IDPs is briefly discussed. PMID:25062017

  7. Nash and integrated solutions in a just-in-time seller-buyer supply chain with buyer's ordering cost reductions

    NASA Astrophysics Data System (ADS)

    Lou, Kuo-Ren; Wang, Lu

    2016-05-01

    The seller frequently offers the buyer trade credit to settle the purchase amount. From the seller's prospective, granting trade credit increases not only the opportunity cost (i.e., the interest loss on the buyer's purchase amount during the credit period) but also the default risk (i.e., the rate that the buyer will be unable to pay off his/her debt obligations). On the other hand, granting trade credit increases sales volume and revenue. Consequently, trade credit is an important strategy to increase seller's profitability. In this paper, we assume that the seller uses trade credit and number of shipments in a production run as decision variables to maximise his/her profit, while the buyer determines his/her replenishment cycle time and capital investment as decision variables to reduce his/her ordering cost and achieve his/her maximum profit. We then derive non-cooperative Nash solution and cooperative integrated solution in a just-in-time inventory system, in which granting trade credit increases not only the demand but also the opportunity cost and default risk, and the relationship between the capital investment and the ordering cost reduction is logarithmic. Then, we use a software to solve and compare these two distinct solutions. Finally, we use sensitivity analysis to obtain some managerial insights.

  8. The Presence of Turbulent and Ordered Local Structure within the ICME Shock-sheath and Its Contribution to Forbush Decrease

    NASA Astrophysics Data System (ADS)

    Shaikh, Zubair; Raghav, Anil; Bhaskar, Ankush

    2017-08-01

    The transient interplanetary disturbances evoke short-time cosmic-ray flux decrease, which is known as Forbush decrease. The traditional model and understanding of Forbush decrease suggest that the sub-structure of an interplanetary counterpart of coronal mass ejection (ICME) independently contributes to cosmic-ray flux decrease. These sub-structures, shock-sheath, and magnetic cloud (MC) manifest as classical two-step Forbush decrease. The recent work by Raghav et al. has shown multi-step decreases and recoveries within the shock-sheath. However, this cannot be explained by the ideal shock-sheath barrier model. Furthermore, they suggested that local structures within the ICME’s sub-structure (MC and shock-sheath) could explain this deviation of the FD profile from the classical FD. Therefore, the present study attempts to investigate the cause of multi-step cosmic-ray flux decrease and respective recovery within the shock-sheath in detail. A 3D-hodogram method is utilized to obtain more details regarding the local structures within the shock-sheath. This method unambiguously suggests the formation of small-scale local structures within the ICME (shock-sheath and even in MC). Moreover, the method could differentiate the turbulent and ordered interplanetary magnetic field (IMF) regions within the sub-structures of ICME. The study explicitly suggests that the turbulent and ordered IMF regions within the shock-sheath do influence cosmic-ray variations differently.

  9. Electricity generation and local ion ordering induced by cation-controlled selective anion transportation through graphene oxide membranes

    NASA Astrophysics Data System (ADS)

    Sun, Pengzhan; Deng, Hui; Zheng, Feng; Wang, Kunlin; Zhong, Minlin; Zhang, Yingjiu; Kang, Feiyu; Zhu, Hongwei

    2014-12-01

    A cation-controlled selective anion transportation through graphene oxide (GO) membranes is demonstrated in this work. The results reveal that the trans-membrane transport of different anions can be modulated by the corresponding cations. The diverse interactions among anions, cations, and the negatively charged GO membranes are responsible for selective anion permeation through GO membranes. During the ion penetration, electrical potential differences can be generated across drain and source as well as across GO membranes; based on this, the ion distributions around GO membranes can be determined. The results indicate that local ion ordering can be achieved by GO membranes. Interestingly, for the cases of KNO3, Ca(NO3)2, and Ba(NO3)2, alternate aggregations of metallic cations and NO3- anions can be formed around GO membranes, demonstrating the fantastic ability of these membranes for ordering the ions locally in solutions. In addition, based on the electrical potential differences generated by different salts, chlorides are demonstrated to be ideal sources for efficient practical electricity production compared to sulfates and nitrates, while the different voltage signals generated can be used to identify different source solutions for liquid sensing applications. These results indicate that GO membranes can find potential applications in membrane separation, energy generation, ion recognition, and local ion organizing.

  10. Unusual magnetic excitations in the weakly ordered spin- 12 chain antiferromagnet Sr2CuO3: Possible evidence for Goldstone magnon coupled with the amplitude mode

    DOE PAGES

    Sergeicheva, E. G.; Sosin, S. S.; Prozorova, L. A.; ...

    2017-01-18

    We report on an electron spin resonance (ESR) study of a nearly one-dimensional (1D) spin-1/2 chain antiferromagnet, Sr2CuO3, with extremely weak magnetic ordering. The ESR spectra at T > TN, in the disordered Luttinger-spin-liquid phase, reveal nearly ideal Heisenberg-chain behavior with only a very small, field-independent linewidth, ~1/T. In the ordered state, below TN, we identify field-dependent antiferromagnetic resonance modes, which are well described by pseudo-Goldstone magnons in the model of a collinear biaxial antiferromagnet. Additionally, we observe a major resonant mode with unusual and strongly anisotropic properties, which is not anticipated by the conventional theory of Goldstone spin waves.more » Lastly, we propose that this unexpected magnetic excitation can be attributed to a field-independent magnon mode renormalized due to its interaction with the high-energy amplitude (Higgs) mode in the regime of weak spontaneous symmetry breaking.« less

  11. Local oscillator chain for 1.55 to 1.75 THz with 100-(mu)W peak power

    NASA Technical Reports Server (NTRS)

    Maestrini, Alain; Ward, John S.; Javadi, Hamid; Tripon-Canseliet, Charlotte; Gill, John; Chattopadhyay, Goutam; Schlecht, Erich; Mehdi, Imran

    2005-01-01

    We report on the design and performance of a fix-tuned x2x 3x 3 frequency multiplier chain that covers 1.55-1.75 THz. The chain is nominally pumped with 100 mW at W-band. At 120 K the measured output power is larger than 4 (mu)W across the band with a peak power of 100 (mu) W at 1.665 THz. A similar chain operated at room temperature produced a peak power of 21 (mu)W. These power levels now make it possible to deploy multipixel heterodyne imaging arrays in this frequency range.

  12. Crystalline ordered states and local surface potential variations of photovoltaic Cu(In,Ga) Se 2 thin-films

    NASA Astrophysics Data System (ADS)

    Jeong, A. R.; Shin, R. H.; Jo, William

    2011-03-01

    Structural and electrical properties of CuInSe 2 (CIS), Cu(In,Ga) Se 2 (CIGS) and CuGaSe 2 (CGS) grown by co-evaporation were studied. Intriguing morphology and grain growth behaviors were found in the surface of the films. X-ray diffraction of the films exhibited phase formation of the stoichiometric chalcopyrite while Cu 2 Se and CuSe 2 were observed. Using Raman scattering spectroscopy, shift of A1 mode was observed from 177 cm-1 for CIS to 189 cm-1 for CGS as Ga content increased. It is very interesting that two different crystalline ordered states with chalcopyrite (CH) and CuAu structure (CA) were found. Effects of the grain boundaries on local electrical properties of the films with different chemical contents were examined. Local current mapping and surface potential distribution were obtained in the film by conductive atomic force microscopy and Kelvin probe microscopy. Minority carrier transport behaviors and local variations of potential values on and near the grain boundaries were characterized. These results suggested that a local built-in potential is possibly formed on positively charged grain boundaries. Support from the General R/D Program of DGIST, funded by MEST of the Republic of Korea.

  13. Analysis of local bond-orientational order for liquid gallium at ambient pressure: Two types of cluster structures

    NASA Astrophysics Data System (ADS)

    Chen, Lin-Yuan; Tang, Ping-Han; Wu, Ten-Ming

    2016-07-01

    In terms of the local bond-orientational order (LBOO) parameters, a cluster approach to analyze local structures of simple liquids was developed. In this approach, a cluster is defined as a combination of neighboring seeds having at least nb local-orientational bonds and their nearest neighbors, and a cluster ensemble is a collection of clusters with a specified nb and number of seeds ns. This cluster analysis was applied to investigate the microscopic structures of liquid Ga at ambient pressure (AP). The liquid structures studied were generated through ab initio molecular dynamics simulations. By scrutinizing the static structure factors (SSFs) of cluster ensembles with different combinations of nb and ns, we found that liquid Ga at AP contained two types of cluster structures, one characterized by sixfold orientational symmetry and the other showing fourfold orientational symmetry. The SSFs of cluster structures with sixfold orientational symmetry were akin to the SSF of a hard-sphere fluid. On the contrary, the SSFs of cluster structures showing fourfold orientational symmetry behaved similarly as the anomalous SSF of liquid Ga at AP, which is well known for exhibiting a high-q shoulder. The local structures of a highly LBOO cluster whose SSF displayed a high-q shoulder were found to be more similar to the structure of β-Ga than those of other solid phases of Ga. More generally, the cluster structures showing fourfold orientational symmetry have an inclination to resemble more to β-Ga.

  14. Analysis of local bond-orientational order for liquid gallium at ambient pressure: Two types of cluster structures.

    PubMed

    Chen, Lin-Yuan; Tang, Ping-Han; Wu, Ten-Ming

    2016-07-14

    In terms of the local bond-orientational order (LBOO) parameters, a cluster approach to analyze local structures of simple liquids was developed. In this approach, a cluster is defined as a combination of neighboring seeds having at least nb local-orientational bonds and their nearest neighbors, and a cluster ensemble is a collection of clusters with a specified nb and number of seeds ns. This cluster analysis was applied to investigate the microscopic structures of liquid Ga at ambient pressure (AP). The liquid structures studied were generated through ab initio molecular dynamics simulations. By scrutinizing the static structure factors (SSFs) of cluster ensembles with different combinations of nb and ns, we found that liquid Ga at AP contained two types of cluster structures, one characterized by sixfold orientational symmetry and the other showing fourfold orientational symmetry. The SSFs of cluster structures with sixfold orientational symmetry were akin to the SSF of a hard-sphere fluid. On the contrary, the SSFs of cluster structures showing fourfold orientational symmetry behaved similarly as the anomalous SSF of liquid Ga at AP, which is well known for exhibiting a high-q shoulder. The local structures of a highly LBOO cluster whose SSF displayed a high-q shoulder were found to be more similar to the structure of β-Ga than those of other solid phases of Ga. More generally, the cluster structures showing fourfold orientational symmetry have an inclination to resemble more to β-Ga.

  15. General second-order covariance of Gaussian maximum likelihood estimates applied to passive source localization in fluctuating waveguides.

    PubMed

    Bertsatos, Ioannis; Zanolin, Michele; Ratilal, Purnima; Chen, Tianrun; Makris, Nicholas C

    2010-11-01

    A method is provided for determining necessary conditions on sample size or signal to noise ratio (SNR) to obtain accurate parameter estimates from remote sensing measurements in fluctuating environments. These conditions are derived by expanding the bias and covariance of maximum likelihood estimates (MLEs) in inverse orders of sample size or SNR, where the first-order covariance term is the Cramer-Rao lower bound (CRLB). Necessary sample sizes or SNRs are determined by requiring that (i) the first-order bias and the second-order covariance are much smaller than the true parameter value and the CRLB, respectively, and (ii) the CRLB falls within desired error thresholds. An analytical expression is provided for the second-order covariance of MLEs obtained from general complex Gaussian data vectors, which can be used in many practical problems since (i) data distributions can often be assumed to be Gaussian by virtue of the central limit theorem, and (ii) it allows for both the mean and variance of the measurement to be functions of the estimation parameters. Here, conditions are derived to obtain accurate source localization estimates in a fluctuating ocean waveguide containing random internal waves, and the consequences of the loss of coherence on their accuracy are quantified.

  16. Simulation of near-field plasmonic interactions with a local approximation order discontinuous Galerkin time-domain method

    NASA Astrophysics Data System (ADS)

    Viquerat, Jonathan; Lanteri, Stéphane

    2016-01-01

    During the last ten years, the discontinuous Galerkin time-domain (DGTD) method has progressively emerged as a viable alternative to well established finite-difference time-domain (FDTD) and finite-element time-domain (FETD) methods for the numerical simulation of electromagnetic wave propagation problems in the time-domain. The method is now actively studied in various application contexts including those requiring to model light/matter interactions on the nanoscale. Several recent works have demonstrated the viability of the DGDT method for nanophotonics. In this paper we further demonstrate the capabilities of the method for the simulation of near-field plasmonic interactions by considering more particularly the possibility of combining the use of a locally refined conforming tetrahedral mesh with a local adaptation of the approximation order.

  17. Emergence of Long-Range Order in BaTiO3 from Local Symmetry-Breaking Distortions

    NASA Astrophysics Data System (ADS)

    Senn, M. S.; Keen, D. A.; Lucas, T. C. A.; Hriljac, J. A.; Goodwin, A. L.

    2016-05-01

    By using a symmetry motivated basis to evaluate local distortions against pair distribution function data, we show without prior bias, that the off-center Ti displacements in the archetypal ferroelectric BaTiO3 are zone centered and rhombohedral-like across its known ferroelectric and paraelectric phases. We construct a simple Monte Carlo model that captures our main experimental findings and demonstrate how the rich crystallographic phase diagram of BaTiO3 emerges from correlations of local symmetry-breaking distortions alone. Our results strongly support the order-disorder picture for these phase transitions, but can also be reconciled with the soft-mode theory of BaTiO3 that is supported by some spectroscopic techniques.

  18. Non-local order parameters as a probe for phase transitions in the extended Fermi-Hubbard model

    NASA Astrophysics Data System (ADS)

    Barbiero, Luca; Fazzini, Serena; Montorsi, Arianna

    2017-07-01

    The Extended Fermi-Hubbard model is a rather studied Hamiltonian due to both its many applications and a rich phase diagram. Here we prove that all the phase transitions encoded in its one dimensional version are detectable via non-local operators related to charge and spin fluctuations. The main advantage in using them is that, in contrast to usual local operators, their asymptotic average value is finite only in the appropriate gapped phases. This makes them powerful and accurate probes to detect quantum phases. Our results indeed confirm that they are able to properly capture both the nature and the location of the transitions. Relevantly, this happens also for conducting phases with a spin gap, thus providing an order parameter for the identification of superconducting and paired superfluid phases.

  19. Antiferromagnetic spin chain behavior and a transition to 3D magnetic order in Cu(D,L-alanine)2: Roles of H-bonds

    NASA Astrophysics Data System (ADS)

    Calvo, Rafael; Sartoris, Rosana P.; Calvo, Hernán L.; Chagas, Edson F.; Rapp, Raul E.

    2016-05-01

    We study the spin chain behavior, a transition to 3D magnetic order and the magnitudes of the exchange interactions for the metal-amino acid complex Cu(D,L-alanine)2•H2O, a model compound to investigate exchange couplings supported by chemical paths characteristic of biomolecules. Thermal and magnetic data were obtained as a function of temperature (T) and magnetic field (B0). The magnetic contribution to the specific heat, measured between 0.48 and 30 K, displays above 1.8 K a 1D spin-chain behavior that can be fitted with an intrachain antiferromagnetic (AFM) exchange coupling constant 2J0=(-2.12±0.08) cm-1 (defined as ℋex(i,i+1) = -2J0SiṡSi+1), between neighbor coppers at 4.49 Å along chains connected by non-covalent and H-bonds. We also observe a narrow specific heat peak at 0.89 K indicating a phase transition to a 3D magnetically ordered phase. Magnetization curves at fixed T = 2, 4 and 7 K with B0 between 0 and 9 T, and at T between 2 and 300 K with several fixed values of B0 were globally fitted by an intrachain AFM exchange coupling constant 2J0=(-2.27±0.02) cm-1 and g = 2.091±0.005. Interchain interactions J1 between coppers in neighbor chains connected through long chemical paths with total length of 9.51 Å cannot be estimated from magnetization curves. However, observation of the phase transition in the specific heat data allows estimating the range 0.1≤|2J1|≤0.4 cm-1, covering the predictions of various approximations. We analyze the magnitudes of 2J0 and 2J1 in terms of the structure of the corresponding chemical paths. The main contribution in supporting the intrachain interaction is assigned to H-bonds while the interchain interactions are supported by paths containing H-bonds and carboxylate bridges, with the role of the H-bonds being predominant. We compare the obtained intrachain coupling with studies of compounds showing similar behavior and discuss the validity of the approximations allowing to calculate the interchain

  20. Study of the atom-phonon coupling model for (SC) partition function: first order phase transition for an infinite linear chain

    NASA Astrophysics Data System (ADS)

    Nasser, Jamil A.; Chassagne, Luc; Topçu, Suat; Linares, Jorge; Alayli, Yasser

    2014-03-01

    In spin-conversion (SC) compounds containing molecules organized around an iron (II) ion the fundamental level of the ion is low spin (LS), S = 0, and its first excited one is high spin (HS), S = 2. This energy diagram is due to the ligands field interaction on 3d electrons and to the spin pairing energy. Heating the compound increases the magnetic susceptibility which corresponds to a change of populations of both levels and consequently a change of spin value of the molecules. This mechanism, called spin conversion (SC), can be accompagnied by thermal hysteresis observed by studying magnetic susceptibility or high spin fraction. In that case one considers that the (SC) takes place through a first-order phase transition due to intermolecular interactions. In the atom-phonon coupling model the molecules are considered as two-level systems, or two-level atoms, and it is assumed that the elastic force constant value of the spring which links two atoms first neighbours is depending on the electronic states of both atoms. In this study we calculate the partition function of a linear chain of N atoms (N ≤ 16) and we describe the role of phonons and that of the parameter Δ which corresponds to the distance in energy between both levels. The chain free-energy function is Fatph. We introduce for the chain a free-energy function defined by the set (FHS, FLS, Fbarr) and we show that Fatph tends towards the previous set when N → ∞. The previous set allows to describe a first order phase transition between a (LS) phase and a (HS) one. At the crossing point between the function FLS and FHS, and around this point, there is an intermediate free-energy barrier which prevents the chain to change phase which can lead to thermal hysteresis. The energy gap between the free-energy function Fatph and that defined by the set (FHS, FLS, Fbarr) is small. So we can expect that a nanoparticule takes for free-energy function that defined by the set and then displays a thermal

  1. Developing sustainable food supply chains.

    PubMed

    Smith, B Gail

    2008-02-27

    This paper reviews the opportunities available for food businesses to encourage consumers to eat healthier and more nutritious diets, to invest in more sustainable manufacturing and distribution systems and to develop procurement systems based on more sustainable forms of agriculture. The important factors in developing more sustainable supply chains are identified as the type of supply chain involved and the individual business attitude to extending responsibility for product quality into social and environmental performance within their own supply chains. Interpersonal trust and working to standards are both important to build more sustainable local and many conserved food supply chains, but inadequate to transform mainstream agriculture and raw material supplies to the manufactured and commodity food markets. Cooperation among food manufacturers, retailers, NGOs, governmental and farmers' organizations is vital in order to raise standards for some supply chains and to enable farmers to adopt more sustainable agricultural practices.

  2. Hypernetted-chain investigation of the random first-order transition of a Lennard-Jones liquid to an ideal glass.

    PubMed

    Bomont, Jean-Marc; Hansen, Jean-Pierre; Pastore, Giorgio

    2015-10-01

    The structural and thermodynamic behavior of a deeply supercooled Lennard-Jones liquid, and its random first-order transition (RFOT) to an ideal glass is investigated, using a system of two weakly coupled replicas and the hypernetted chain integral equation for the pair structure of this symmetric binary system. A systematic search in the density-temperature plane points to the existence of two glass branches below a density-dependent threshold temperature. The branch of lower free energy exhibits a rapid growth of the structural overlap order parameter upon cooling and may be identified with the ideal glass phase conjectured by several authors for both spin and structural glasses. The RFOT, signaled by a sharp discontinuity of the order parameter, is predicted to be weakly first order from a thermodynamic viewpoint. The transition temperature T(cr) increases rapidly with density and approximately obeys a scaling relation valid for a reference system of particles interacting via a purely repulsive 1/r(18) potential.

  3. Terahertz disorder-localized rotational modes and lattice vibrational modes in the orientationally-disordered and ordered phases of camphor.

    PubMed

    Nickel, Daniel V; Ruggiero, Michael T; Korter, Timothy M; Mittleman, Daniel M

    2015-03-14

    The temperature-dependent terahertz spectra of the partially-disordered and ordered phases of camphor (C10H16O) are measured using terahertz time-domain spectroscopy. In its partially-disordered phases, a low-intensity, extremely broad resonance is found and is characterized using both a phenomenological approach and an approach based on ab initio solid-state DFT simulations. These two descriptions are consistent and stem from the same molecular origin for the broad resonance: the disorder-localized rotational correlations of the camphor molecules. In its completely ordered phase(s), multiple lattice phonon modes are measured and are found to be consistent with those predicted using solid-state DFT simulations.

  4. Local order parameters for use in driving homogeneous ice nucleation with all-atom models of water.

    PubMed

    Reinhardt, Aleks; Doye, Jonathan P K; Noya, Eva G; Vega, Carlos

    2012-11-21

    We present a local order parameter based on the standard Steinhardt-Ten Wolde approach that is capable both of tracking and of driving homogeneous ice nucleation in simulations of all-atom models of water. We demonstrate that it is capable of forcing the growth of ice nuclei in supercooled liquid water simulated using the TIP4P/2005 model using over-biassed umbrella sampling Monte Carlo simulations. However, even with such an order parameter, the dynamics of ice growth in deeply supercooled liquid water in all-atom models of water are shown to be very slow, and so the computation of free energy landscapes and nucleation rates remains extremely challenging.

  5. Analytical energy gradient based on spin-free infinite-order Douglas-Kroll-Hess method with local unitary transformation.

    PubMed

    Nakajima, Yuya; Seino, Junji; Nakai, Hiromi

    2013-12-28

    In this study, the analytical energy gradient for the spin-free infinite-order Douglas-Kroll-Hess (IODKH) method at the levels of the Hartree-Fock (HF), density functional theory (DFT), and second-order Møller-Plesset perturbation theory (MP2) is developed. Furthermore, adopting the local unitary transformation (LUT) scheme for the IODKH method improves the efficiency in computation of the analytical energy gradient. Numerical assessments of the present gradient method are performed at the HF, DFT, and MP2 levels for the IODKH with and without the LUT scheme. The accuracies are examined for diatomic molecules such as hydrogen halides, halogen dimers, coinage metal (Cu, Ag, and Au) halides, and coinage metal dimers, and 20 metal complexes, including the fourth-sixth row transition metals. In addition, the efficiencies are investigated for one-, two-, and three-dimensional silver clusters. The numerical results confirm the accuracy and efficiency of the present method.

  6. Element-specific quantitative determination of the local atomic order in CoPt alloy nanoparticles: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Blanc, N.; Díaz-Sánchez, L. E.; Ramos, A. Y.; Tournus, F.; Tolentino, H. C. N.; De Santis, M.; Proux, O.; Tamion, A.; Tuaillon-Combes, J.; Bardotti, L.; Boisron, O.; Pastor, G. M.; Dupuis, V.

    2013-04-01

    An annealing-driven transition from a chemically disordered A1-like structure to a chemically ordered L10-like phase has been revealed for size-selected CoPt clusters with diameters from 2 to 4 nm, from experiment to theory confrontation. For chemically ordered particles, atypical lattice-parameter ratios c/a are inferred. This ratio is found to be remarkably different depending on the approach used (c/a>1 from x-ray absorption at the Co K edge and c/a≃0.94 from the Pt dominated x-ray diffraction). A first-principles theoretical study accurately explains this astonishing feature and provides a detailed understanding of the element-specific local relaxations, which are crucial in these nanoalloys.

  7. Autoregressive Higher-Order Hidden Markov Models: Exploiting Local Chromosomal Dependencies in the Analysis of Tumor Expression Profiles

    PubMed Central

    Seifert, Michael; Abou-El-Ardat, Khalil; Friedrich, Betty; Klink, Barbara; Deutsch, Andreas

    2014-01-01

    Changes in gene expression programs play a central role in cancer. Chromosomal aberrations such as deletions, duplications and translocations of DNA segments can lead to highly significant positive correlations of gene expression levels of neighboring genes. This should be utilized to improve the analysis of tumor expression profiles. Here, we develop a novel model class of autoregressive higher-order Hidden Markov Models (HMMs) that carefully exploit local data-dependent chromosomal dependencies to improve the identification of differentially expressed genes in tumor. Autoregressive higher-order HMMs overcome generally existing limitations of standard first-order HMMs in the modeling of dependencies between genes in close chromosomal proximity by the simultaneous usage of higher-order state-transitions and autoregressive emissions as novel model features. We apply autoregressive higher-order HMMs to the analysis of breast cancer and glioma gene expression data and perform in-depth model evaluation studies. We find that autoregressive higher-order HMMs clearly improve the identification of overexpressed genes with underlying gene copy number duplications in breast cancer in comparison to mixture models, standard first- and higher-order HMMs, and other related methods. The performance benefit is attributed to the simultaneous usage of higher-order state-transitions in combination with autoregressive emissions. This benefit could not be reached by using each of these two features independently. We also find that autoregressive higher-order HMMs are better able to identify differentially expressed genes in tumors independent of the underlying gene copy number status in comparison to the majority of related methods. This is further supported by the identification of well-known and of previously unreported hotspots of differential expression in glioblastomas demonstrating the efficacy of autoregressive higher-order HMMs for the analysis of individual tumor expression

  8. The membrane interaction of amphiphilic model peptides affects phosphatidylserine headgroup and acyl chain order and dynamics. Application of the phospholipid headgroup electrometer concept to phosphatidylserine

    SciTech Connect

    de Kroon, A.I.P.M.; Killian, J.A.; de Gier, J.; de Kruijff, B. )

    1991-01-29

    Deuterium nuclear magnetic resonance ({sup 2}H NMR) was used to study the interaction of amphiphilic model peptides with model membranes consisting of 1,2-dioleoyl-sn-glycero-3-phospho-L-serine deuterated either at the {beta}-position of the serine moiety ((2-{sup 2}H)DOPS) or at the 11-position of the acyl chains ((11,11-{sup 2}H{sub 2})DOPS). The peptides are derived from the sequences H-Ala-Met-Leu-Trp-Ala-OH and H-Arg-Met-Leu-Trp-Ala-OH and contain a positive charge of +1 or +2 at the amino terminus or one positive charge at each end of the molecule. Upon titration of dispersions of DOPS with the peptides, the divalent peptides show a similar extent of binding to the DOPS bilyers, which is larger than that of the single charged peptide. Under these conditions the values of the quadrupolar splitting of both (2-{sup 2}H)DOPS and (11,11-{sup 2}H{sub 2})DOPS are decreased, indicating that the peptides reduce the order of both the DOPS headgroup and the acyl chains. The extent of the decrease depends on the amount of peptide bound and on the position of the charged moieties in the peptide molecule. Titrations of DOPS with poly(L-lysine){sub 100}, which were included for reasons of comparison, reveal increased {Delta}v{sub q} values. When the peptide-lipid titrations are carried out without applying a freeze-thaw procedure to achieve full equilibration, two-component {sup 2}H NMR spectra occur. The apparently limited accessibility of the lipid to the peptides under these circumstances is discussed in relation to the ability of the peptides to exhibit transbilayer movement. {sup 2}H spin-lattice relaxation time T1 measurements demonstrate a decrease of the rates of motion of both headgroup and acyl chains of DOPS in the presence of the peptides.

  9. Local structure of the lone-pair pyrochlore Bi2Ti2O7 and the search for polar ordering

    NASA Astrophysics Data System (ADS)

    Shoemaker, Daniel; Seshadri, Ram; Hector, Andrew; Llobet, Anna; Proffen, Thomas

    2010-03-01

    Pyrochlore oxides of the formula A2B2O7 contain geometrically frustrated A and B sublattices, leading to a multitude of complex phenomena including high dielectric constants, glassy spin interactions, and low-temperature peaks in heat capacity. In Bi2Ti2O7, large atomic displacements (˜0.4 å) on the diamond-type OBi4 sublattice cannot cooperatively order to accommodate the Bi lone pair. Instead, polar distortions form a charge ice with no long-range order, and powder diffraction finds Bi2Ti2O7 to remain centrosymmetric at 2 K. We move beyond Rietveld analysis to describe the real-space, local structure of this highly disordered oxide. By conducting large-box reverse Monte Carlo (RMC) simulations on neutron total scattering data, we produce a model that contains details invisible to traditional crystallographic techniques. In addition to describing the local structure of Bi2Ti2O7, we present capabilities of the RMC technique and its application to complex disorder in other crystalline materials.

  10. Integrin alpha chains exhibit distinct temporal and spatial localization patterns in epithelial cells of the Drosophila ovary

    PubMed Central

    Dinkins, Michael B.; Fratto, Victoria M.; LeMosy, Ellen K.

    2009-01-01

    Integrins are heterodimeric transmembrane receptors that modulate cell adhesion, migration and signaling. Multiple integrin chains contribute to development and morphogenesis of a given tissue. Here, we analyze the expression of Drosophila integrin alpha chains in the ovarian follicular epithelium, a model for tissue morphogenesis and cell migration. We find expression throughout development of the beta chain, βPS. Alpha chains, however, exhibit both spatial and temporal expression differences. αPS1 and αPS2 integrins are detected during early and mid-oogenesis on apical, lateral, and basal membranes with the βPS chain while αPS3-family integrins (αPS3, αPS4, αPS5) are expressed in anterior cells late in oogenesis. Surprisingly, we find that αPS3-family integrins are dispensable for dorsal appendage morphogenesis but play a role in the final length of the egg, suggesting redundant functions of integrins in a simple tissue. We also demonstrate roles for αPS3βPS integrin in border cell migration and in stretch cells. PMID:19035354

  11. Integrin alpha chains exhibit distinct temporal and spatial localization patterns in epithelial cells of the Drosophila ovary.

    PubMed

    Dinkins, Michael B; Fratto, Victoria M; Lemosy, Ellen K

    2008-12-01

    Integrins are heterodimeric transmembrane receptors that modulate cell adhesion, migration, and signaling. Multiple integrin chains contribute to development and morphogenesis of a given tissue. Here, we analyze the expression of Drosophila integrin alpha chains in the ovarian follicular epithelium, a model for tissue morphogenesis and cell migration. We find expression throughout development of the beta chain, betaPS. Alpha chains, however, exhibit both spatial and temporal expression differences. alphaPS1 and alphaPS2 integrins are detected during early and mid-oogenesis on apical, lateral, and basal membranes with the betaPS chain, whereas alphaPS3-family integrins (alphaPS3, alphaPS4, alphaPS5) are expressed in anterior cells late in oogenesis. Surprisingly, we find that alphaPS3-family integrins are dispensable for dorsal appendage morphogenesis but play a role in the final length of the egg, suggesting redundant functions of integrins in a simple tissue. We also demonstrate roles for alphaPS3betaPS integrin in border cell migration and in stretch cells.

  12. Antiferromagnetic ordering in spin-chain multiferroic Gd{sub 2}BaNiO{sub 5} studied by electronic spin resonance

    SciTech Connect

    Guo, Y. M.; Ruan, M. Y.; Cheng, J. J.; Sun, Y. C.; Ouyang, Z. W. Xia, Z. C.; Rao, G. H.

    2015-06-14

    High-field electron spin resonance (ESR) has been employed to study the antiferromagnetic (AFM) ordering state (T < T{sub N} = 55 K) of spin-chain multiferroic Gd{sub 2}BaNiO{sub 5}. The spin reorientation at T{sub SR} = 24 K is well characterized by the temperature-dependent ESR spectra. The magnetization data evidence a field-induced spin-flop transition at 2 K. The frequency-field relationship of the ESR data can be explained by conventional AFM resonance theory with uniaxial anisotropy, in good agreement with magnetization data. Related discussion on zero-field spin gap is presented.

  13. Ising-like chain magnetism, Arrhenius magnetic relaxation, and case against 3D magnetic ordering in β-manganese phthalocyanine (C₃₂H₁₆MnN₈).

    PubMed

    Wang, Zhengjun; Seehra, Mohindar S

    2016-04-06

    Previous magnetic studies in the organic semiconductor β-manganese phthalocyanine (β-MnPc) have reported it to be a canted ferromagnet below T(C)  ≈  8.6 K. However, the recent result of the lack of a λ-type anomaly in the specific heat versus temperature data near the quoted T(C) has questioned the presence of long-range 3-dimensional (3D) magnetic ordering in this system. In this paper, detailed measurements and analysis of the temperature (2 K-300 K) and magnetic field (up to 90 kOe) dependence of the dc and ac magnetic susceptibilities in a powder sample of β-MnPc leads us to conclude that 3D long-range magnetic ordering is absent in this material. This is supported by the Arrott plots and the lack of a peak in the ac susceptibilities, χ' and χ″, near the quoted T(C). Instead, the system can be best described as an Ising-like chain magnet with Arrhenius relaxation of the magnetization governed by an intra-layer ferromagnetic exchange constant J/k(B)  =  2.6 K and the single ion anisotropy energy parameter |D|/k(B)  =  8.3 K. The absence of 3D long range order is consistent with the measured |D|/  >  J.

  14. Ising-like chain magnetism, Arrhenius magnetic relaxation, and case against 3D magnetic ordering in β-manganese phthalocyanine (C32H16MnN8)

    NASA Astrophysics Data System (ADS)

    Wang, Zhengjun; Seehra, Mohindar S.

    2016-04-01

    Previous magnetic studies in the organic semiconductor β-manganese phthalocyanine (β-MnPc) have reported it to be a canted ferromagnet below T C  ≈  8.6 K. However, the recent result of the lack of a λ-type anomaly in the specific heat versus temperature data near the quoted T C has questioned the presence of long-range 3-dimensional (3D) magnetic ordering in this system. In this paper, detailed measurements and analysis of the temperature (2 K-300 K) and magnetic field (up to 90 kOe) dependence of the dc and ac magnetic susceptibilities in a powder sample of β-MnPc leads us to conclude that 3D long-range magnetic ordering is absent in this material. This is supported by the Arrott plots and the lack of a peak in the ac susceptibilities, χ‧ and χ″, near the quoted T C. Instead, the system can be best described as an Ising-like chain magnet with Arrhenius relaxation of the magnetization governed by an intra-layer ferromagnetic exchange constant J/k B  =  2.6 K and the single ion anisotropy energy parameter |D|/k B  =  8.3 K. The absence of 3D long range order is consistent with the measured \\mid D\\mid   >  J.

  15. Genes Involved in Cell Wall Localization and Side Chain Formation of Rhamnose-Glucose Polysaccharide in Streptococcus mutans

    PubMed Central

    Yamashita, Yoshihisa; Tsukioka, Yuichi; Tomihisa, Kiyotaka; Nakano, Yoshio; Koga, Toshihiko

    1998-01-01

    We identified in Streptococcus mutans six new genes (rgpA through rgpF), whose disruption results in a loss of serotype-specific antigenicity, specified by the glucose side chains of rhamnose-glucose polysaccharide from the cell wall. Rhamnose and glucose content of the cell wall decreased drastically in all these disruption mutants, except that in the rgpE mutant only the glucose content decreased. RgpC and RgpD are homologous to ATP-binding cassette transporter components and may be involved in polysaccharide export, whereas RgpE may be a transferase of side chain glucose. PMID:9791140

  16. Genes involved in cell wall localization and side chain formation of rhamnose-glucose polysaccharide in Streptococcus mutans.

    PubMed

    Yamashita, Y; Tsukioka, Y; Tomihisa, K; Nakano, Y; Koga, T

    1998-11-01

    We identified in Streptococcus mutans six new genes (rgpA through rgpF), whose disruption results in a loss of serotype-specific antigenicity, specified by the glucose side chains of rhamnose-glucose polysaccharide from the cell wall. Rhamnose and glucose content of the cell wall decreased drastically in all these disruption mutants, except that in the rgpE mutant only the glucose content decreased. RgpC and RgpD are homologous to ATP-binding cassette transporter components and may be involved in polysaccharide export, whereas RgpE may be a transferase of side chain glucose.

  17. Local One-Dimensional ICRF Full-Wave Solutions Valid to All Orders in k-Perpendicular-Rho

    SciTech Connect

    Batchelor, D.B.; Berry, L.A.; Jaeger, E.F.

    1999-04-12

    High harmonic ion cyclotron resonances are important for understanding future fast wave heating experiments on NSTX 1 as well as recent ICRF flow drive experiments on PBX-M2 and TFTR3. Unfortunately, many of our ICRF wave analysis codes are based on an expansion to second order in k-perpendicular-Rho where k-perpendicular is the perpendicular wave number, and Rho is the Larmor radius. Such codes are limited to cyclotron harmonics less than or equal to 2. Integral codes4,5 on the other hand, are valid to all orders in both k-perpendicular-Rho and Rho/LL where L is the equilibrium scale length. But velocity space integrals in these codes require long running times. Here we take a simpler approach which assumes a local plasma conductivity (Rho/L << 1), while still retaining all orders in k-perpendicular-Rho. This allows high harmonic fast wave and flow drive applications, while requiring less computing time than conventional integral codes.

  18. Influence of Cr on local order and dynamic properties of liquid and undercooled Al-Zn alloys

    NASA Astrophysics Data System (ADS)

    Pasturel, A.; Jakse, N.

    2017-05-01

    Using ab initio molecular dynamics, we present a systematic study of structural and transport properties of liquid Al90Zn10 and Al83Zn10Cr7 alloys. In the liquid phase, we find that Cr additions promote the formation of a heterogeneous local ordering characterized by a strong five-fold symmetry (icosahedral short-range order (ISRO)) around Cr atoms. In the undercooled phase, we observe the extension of ISRO to icosahedral medium-range order (IMRO) length scale referring to Cr atoms. In examining dynamic properties, we show that this Cr induced structural heterogeneity leads to a substantial decoupling of Cr diffusion from the diffusion of Al and Zn components by a factor of 3 at 1000 K, the liquidus temperature. Below this temperature, the formation of IMRO gives rise to a non-Arrhenian temperature dependence of diffusivity and viscosity, a breakdown of the Stokes-Einstein relation, as well as the onset of dynamic heterogeneities. Using the isoconfigurational ensemble method, we evidence that the structural origin of dynamics heterogeneities is clearly related to IMRO. Finally we discuss the role of IMRO in a quasicrystal-enhanced nucleation mechanism discovered recently in Al-Zn-Cr alloys.

  19. Bacterial genomes lacking long-range correlations may not be modeled by low-order Markov chains: the role of mixing statistics and frame shift of neighboring genes.

    PubMed

    Cocho, Germinal; Miramontes, Pedro; Mansilla, Ricardo; Li, Wentian

    2014-12-01

    We examine the relationship between exponential correlation functions and Markov models in a bacterial genome in detail. Despite the well known fact that Markov models generate sequences with correlation function that decays exponentially, simply constructed Markov models based on nearest-neighbor dimer (first-order), trimer (second-order), up to hexamer (fifth-order), and treating the DNA sequence as being homogeneous all fail to predict the value of exponential decay rate. Even reading-frame-specific Markov models (both first- and fifth-order) could not explain the fact that the exponential decay is very slow. Starting with the in-phase coding-DNA-sequence (CDS), we investigated correlation within a fixed-codon-position subsequence, and in artificially constructed sequences by packing CDSs with out-of-phase spacers, as well as altering CDS length distribution by imposing an upper limit. From these targeted analyses, we conclude that the correlation in the bacterial genomic sequence is mainly due to a mixing of heterogeneous statistics at different codon positions, and the decay of correlation is due to the possible out-of-phase between neighboring CDSs. There are also small contributions to the correlation from bases at the same codon position, as well as by non-coding sequences. These show that the seemingly simple exponential correlation functions in bacterial genome hide a complexity in correlation structure which is not suitable for a modeling by Markov chain in a homogeneous sequence. Other results include: use of the (absolute value) second largest eigenvalue to represent the 16 correlation functions and the prediction of a 10-11 base periodicity from the hexamer frequencies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. NMR evidence of a sharp change in a measure of local order in deeply supercooled confined water

    PubMed Central

    Mallamace, F.; Corsaro, C.; Broccio, M.; Branca, C.; González-Segredo, N.; Spooren, J.; Chen, S.-H.; Stanley, H. E.

    2008-01-01

    Using NMR, we measure the proton chemical shift δ, of supercooled nanoconfined water in the temperature range 195 K < T < 350 K. Because δ is directly connected to the magnetic shielding tensor, we discuss the data in terms of the local hydrogen bond geometry and order. We argue that the derivative −(∂ ln δ/∂T)P should behave roughly as the constant pressure specific heat CP(T), and we confirm this argument by detailed comparisons with literature values of CP(T) in the range 290–370 K. We find that −(∂ ln δ/∂T)P displays a pronounced maximum upon crossing the locus of maximum correlation length at ≈240 K, consistent with the liquid-liquid critical point hypothesis for water, which predicts that CP(T) displays a maximum on crossing the Widom line. PMID:18753633

  1. NMR evidence of a sharp change in a measure of local order in deeply supercooled confined water.

    PubMed

    Mallamace, F; Corsaro, C; Broccio, M; Branca, C; González-Segredo, N; Spooren, J; Chen, S-H; Stanley, H E

    2008-09-02

    Using NMR, we measure the proton chemical shift delta, of supercooled nanoconfined water in the temperature range 195 K < T < 350 K. Because delta is directly connected to the magnetic shielding tensor, we discuss the data in terms of the local hydrogen bond geometry and order. We argue that the derivative -( partial differential ln delta/ partial differentialT)(P) should behave roughly as the constant pressure specific heat C(P)(T), and we confirm this argument by detailed comparisons with literature values of C(P)(T) in the range 290-370 K. We find that -( partial differential ln delta/ partial differentialT)(P) displays a pronounced maximum upon crossing the locus of maximum correlation length at approximately 240 K, consistent with the liquid-liquid critical point hypothesis for water, which predicts that C(P)(T) displays a maximum on crossing the Widom line.

  2. Fission and Fusion in the New Localized Structures to the Integrable (2 + 1)-Dimensional Higher-Order Broer Kaup System

    NASA Astrophysics Data System (ADS)

    Yomba, Emmanuel; Peng, Yan-Ze

    2006-01-01

    By means of the Weiss Tabor Carnevale (WTC) truncation method and the general variable separation approach (GVSA), analytical investigation of the integrable (2+1)-dimensional higher-order Broer Kaup (HBK) system shows, due to the possibility of selecting three arbitrary func.tions, the existence of interacting coherent excitations such as dromions, solitons, periodic solitons, etc. The interaction between some of the localized solutions are elastic because they pass through each other and preserve their shapes and velocities, the only change being the phase shift. However, as for some soliton models, completely non-elastic interactions have been found in this model. These non-elastic interactions are characterized by the fact that, at a specific time, one soliton may fission to two or more solitons; or on the contrary, two or more solitons will fuse to one soliton.

  3. The local order of supercooled water in solution with LiCl studied by NMR proton chemical shift

    NASA Astrophysics Data System (ADS)

    Corsaro, C.; Mallamace, D.; Vasi, S.; Cicero, N.; Dugo, G.; Mallamace, F.

    2016-05-01

    We study by means of Nuclear Magnetic Resonance (NMR) spectroscopy the local order of water molecules in solution with lithium chloride at eutectic concentration. In particular, by measuring the proton chemical shift as a function of the temperature in the interval 203{ K}

  4. Myosin heavy chain-like localizes at cell contact sites during Drosophila myoblast fusion and interacts in vitro with Rolling pebbles 7

    SciTech Connect

    Bonn, Bettina R.; Rudolf, Anja; Hornbruch-Freitag, Christina; Daum, Gabor; Kuckwa, Jessica; Kastl, Lena; Buttgereit, Detlev; Renkawitz-Pohl, Renate

    2013-02-15

    Besides representing the sarcomeric thick filaments, myosins are involved in many cellular transport and motility processes. Myosin heavy chains are grouped into 18 classes. Here we show that in Drosophila, the unconventional group XVIII myosin heavy chain-like (Mhcl) is transcribed in the mesoderm of embryos, most prominently in founder cells (FCs). An ectopically expressed GFP-tagged Mhcl localizes in the growing muscle at cell–cell contacts towards the attached fusion competent myoblast (FCM). We further show that Mhcl interacts in vitro with the essential fusion protein Rolling pebbles 7 (Rols7), which is part of a protein complex established at cell contact sites (Fusion-restricted Myogenic-Adhesive Structure or FuRMAS). Here, branched F-actin is likely needed to widen the fusion pore and to integrate the myoblast into the growing muscle. We show that the localization of Mhcl is dependent on the presence of Rols7, and we postulate that Mhcl acts at the FuRMAS as an actin motor protein. We further show that Mhcl deficient embryos develop a wild-type musculature. We thus propose that Mhcl functions redundantly to other myosin heavy chains in myoblasts. Lastly, we found that the protein is detectable adjacent to the sarcomeric Z-discs, suggesting an additional function in mature muscles. - Highlights: ► The class XVIII myosin encoding gene Mhcl is transcribed in the mesoderm. ► Mhcl localization at contact sites of fusing myoblasts depends on Rols7. ► Mhcl interacts in vitro with Rols7 which is essential for myogenesis. ► Functional redundancy with other myosins is likely as mutants show no muscle defects. ► Mhcl localizes adjacent to Z-discs of sarcomeres and might support muscle integrity.

  5. Lamellipodial localization of Dictyostelium myosin heavy chain kinase A is mediated via F-actin binding by the coiled-coil domain.

    PubMed

    Steimle, Paul A; Licate, Lucila; Côté, Graham P; Egelhoff, Thomas T

    2002-04-10

    Myosin heavy chain kinase A (MHCK A) modulates myosin II filament assembly in the amoeba Dictyostelium discoideum. MHCK A localization in vivo is dynamically regulated during chemotaxis, phagocytosis, and other polarized cell motility events, with preferential recruitment into anterior filamentous actin (F-actin)-rich structures. The current work reveals that an amino-terminal segment of MHCK A, previously identified as forming a coiled-coil, mediates anterior localization. MHCK A co-sediments with F-actin, and deletion of the amino-terminal domain eliminated actin binding. These results indicate that the anterior localization of MHCK A is mediated via direct binding to F-actin, and reveal the presence of an actin-binding function not previously detected by primary sequence evaluation of the coiled-coil domain.

  6. Application of Gaussian-type geminals in local second-order Møller-Plesset perturbation theory

    NASA Astrophysics Data System (ADS)

    Polly, Robert; Werner, Hans-Joachim; Dahle, Pa˚L.; Taylor, Peter R.

    2006-06-01

    In this work Gaussian-type Geminals (GTGs) are applied in local second-order Møller-Plesset perturbation theory to improve the basis set convergence. Our implementation is based on the weak orthogonality functional of Szalewicz et al., [Chem. Phys. Lett. 91, 169 (1982); J. Chem. Phys. 78, 1420 (1983)] and a newly developed program for calculating the necessary many-electron integrals. The local approximations together with GTGs in the treatment of the correlation energy are introduced and tested. First results for correlation energies of H2O, CH4, CO, C2H2, C2H4, H2CO, and N2H4 as well as some reaction and activation energies are presented. More than 97% of the valence-shell correlation energy is recovered using aug-cc-pVDZ basis sets and six GTGs per electron pair. The results are compared with conventional calculations using correlation-consistent basis sets as well as with MP2-R12 results.

  7. A Non-Local, Energy-Optimized Kernel: Recovering Second-Order Exchange and Beyond in Extended Systems

    NASA Astrophysics Data System (ADS)

    Bates, Jefferson; Laricchia, Savio; Ruzsinszky, Adrienn

    The Random Phase Approximation (RPA) is quickly becoming a standard method beyond semi-local Density Functional Theory that naturally incorporates weak interactions and eliminates self-interaction error. RPA is not perfect, however, and suffers from self-correlation error as well as an incorrect description of short-ranged correlation typically leading to underbinding. To improve upon RPA we introduce a short-ranged, exchange-like kernel that is one-electron self-correlation free for one and two electron systems in the high-density limit. By tuning the one free parameter in our model to recover an exact limit of the homogeneous electron gas correlation energy we obtain a non-local, energy-optimized kernel that reduces the errors of RPA for both homogeneous and inhomogeneous solids. To reduce the computational cost of the standard kernel-corrected RPA, we also implement RPA renormalized perturbation theory for extended systems, and demonstrate its capability to describe the dominant correlation effects with a low-order expansion in both metallic and non-metallic systems. Furthermore we stress that for norm-conserving implementations the accuracy of RPA and beyond RPA structural properties compared to experiment is inherently limited by the choice of pseudopotential. Current affiliation: King's College London.

  8. Speeding up spin-component-scaled third-order pertubation theory with the chain of spheres approximation: the COSX-SCS-MP3 method

    NASA Astrophysics Data System (ADS)

    Izsák, Róbert; Neese, Frank

    2013-07-01

    The 'chain of spheres' approximation, developed earlier for the efficient evaluation of the self-consistent field exchange term, is introduced here into the evaluation of the external exchange term of higher order correlation methods. Its performance is studied in the specific case of the spin-component-scaled third-order Møller--Plesset perturbation (SCS-MP3) theory. The results indicate that the approximation performs excellently in terms of both computer time and achievable accuracy. Significant speedups over a conventional method are obtained for larger systems and basis sets. Owing to this development, SCS-MP3 calculations on molecules of the size of penicillin (42 atoms) with a polarised triple-zeta basis set can be performed in ∼3 hours using 16 cores of an Intel Xeon E7-8837 processor with a 2.67 GHz clock speed, which represents a speedup by a factor of 8-9 compared to the previously most efficient algorithm. Thus, the increased accuracy offered by SCS-MP3 can now be explored for at least medium-sized molecules.

  9. Outbreak of human Salmonella Typhimurium infections linked to contact with baby poultry from a single agricultural feed store chain and mail-order hatchery, 2009.

    PubMed

    Loharikar, Anagha; Vawter, Shannon; Warren, Kim; Deasy, Marshall; Moll, Maria; Sandt, Carol; Gilhousen, Renee; Villamil, Elizabeth; Rhorer, Andrew; Briere, Elizabeth; Schwensohn, Colin; Trees, Eija; Lafon, Patricia; Adams, Jennifer Kincaid; Le, Brenda; Behravesh, Casey Barton

    2013-01-01

    Over 30 outbreaks of human salmonellosis linked to contact with live poultry from mail-order hatcheries were reported to Centers for Disease Control and Prevention between 1990 and 2010. In May 2009, we investigated an outbreak of human Salmonella Typhimurium infections, primarily affecting children. A case was defined as a person with the outbreak strain of Salmonella Typhimurium, as determined by pulsed-field gel electrophoresis and multiple-locus variable-number tandem repeat analysis, in a Pennsylvania or New York resident with illness onset between May 1 and September 1, 2009. We conducted a case-control study to examine the relationship between illness and live poultry contact. Controls were age-matched and geographically-matched. Traceback and environmental investigations were conducted. We identified 36 case-patients in Pennsylvania and New York; 36% were children aged ≤5 years. Case-patients were more likely than controls to report live baby poultry contact (matched odds ratio [mOR]: 17.0; 95% confidence interval [CI]: 2.7-710.5), contact with chicks (mOR: 14.0; 95% CI: 2.1-592.0), ducklings (mOR: 8.0; 95% CI: 1.1-355.0) and visiting agricultural feed stores (mOR: 6.0; 95% CI: 1.3-55.2). Most (83%) visited agricultural Feed Store Chain Y, a national agricultural feed store chain, which received poultry from Hatchery C, which is supplied by multiple egg sources. Salmonella Typhimurium was isolated from a source duck flock, but had a different pulsed-field gel electrophoresis pattern than the outbreak strain. Live baby poultry remain an important source of human salmonellosis, particularly among children. Preventing these infections requires comprehensive interventions at hatcheries and agricultural feed stores; pediatricians should inform patients of risks associated with live poultry contact.

  10. A discrete time-space geography for epidemiology: from mixing groups to pockets of local order in pandemic simulations.

    PubMed

    Holm, Einar; Timpka, Toomas

    2007-01-01

    The World Health Organization urges all nations to develop and maintain national influenza preparedness plans. Important components of such plans are forecasts of morbidity and mortality based on local social and geographic conditions. Most methodologies for simulations of epidemic outbreaks are implicitly based on the assumption that the frequency and duration of social contacts that lead to disease transmission is affected by geography, i.e. the spatial distribution of physical meeting places. In order to increase the effectiveness of the present methods for simulation of infectious disease outbreaks, the aim of this study is to examine two social geographic issues related to such models. We display how the social geographic characteristics of mixing networks, in particular when these significantly deviate from the random-mixing norm, can be represented in order to enhance the understanding and prediction of epidemic patterns in light of a possible future destructive influenza pandemic. We conclude that social geography, social networks and simulation models of directly transmitted infectious diseases are fundamentally linked.

  11. Dynamic localization and second-order subgrid-scale models in large eddy simulations of channel flow

    NASA Technical Reports Server (NTRS)

    Cabot, William H.

    1993-01-01

    The objective here is to test the Dynamic Localization (DL) model in a wall-bounded channel flow for numerical stability and accuracy of results. Algebraic stress models suggest that the model for the residual subgrid-scale (SGS) Reynolds stress and scalar flux should generally have terms comprising most of the unique products of the resolved strain (S) and rotation (R) tensors with S and the resolved scalar gradient. The standard dynamic SGS model uses a simple (Smagorinsky) base model for the residual Reynolds stress, which is made proportional to S, and down-gradient base models for residual scalar fluxes; these correspond to the lowest, 'first-order' terms in algebraic stress models. Temporal scaling terms in these base models are formed from the magnitude of the resolved strain rate. While this is appropriate for simple shear flows, it may not be appropriate for more complicated flows (relevant to geophysical and astrophysical problems) that include any combination of shear, rotation, buoyancy, etc. On the other hand, the coefficient in the dynamic SGS model readily adjusts itself to different flow conditions and may adequately take account of these effects without the need for more complicated base models. Cabot (1993) has begun to test the dynamic SGS model in buoyant flows (Rayleigh-Benard and internally heated convection) with and without buoyancy terms explicitly included in the scaling terms of the base model; no great differences were found in large eddy simulation (LES) results for the different base model scalings. The second objective in this work is to test base models with additional, 'second-order' terms (e.g., S(sup 2) and RS for the residual Reynolds stress). These terms have been found to improve large-scale flow predictions by kappa-epsilon models in the presence of rotation and shear. Second-order base models will be tested here in the LES of channel flow with and without solid-body rotation and compared with results from the standard first-order

  12. Multifractal statistics of the local order parameter at random critical points: application to wetting transitions with disorder.

    PubMed

    Monthus, Cécile; Garel, Thomas

    2007-08-01

    Disordered systems present multifractal properties at criticality. In particular, as discovered by Ludwig [A.W.W. Ludwig, Nucl. Phys. B 330, 639 (1990)] in the case of a diluted two-dimensional Potts model, the moments rho(q) (r) of the local order parameter rho(r) scale with a set x(q) of nontrivial exponents x(q) not = qx(1). We reexamine these ideas to incorporate more recent findings: (i) whenever a multifractal measure w(r) normalized over space sum(r) w(r) = 1 occurs in a random system, it is crucial to distinguish between the typical values and the disorder-averaged values of the generalized moments Y(q) = sum(r) w(q) (r), since they may scale with different generalized dimensions D(q) and D(q), and (ii), as discovered by Wiseman and Domany [S. Wiseman and E. Domany, Phys. Rev. E 52, 3469 (1995)], the presence of an infinite correlation length induces a lack of self-averaging at critical points for thermodynamic observables, in particular for the order parameter. After this general discussion, valid for any random critical point, we apply these ideas to random polymer models that can be studied numerically for large sizes and good statistics over the samples. We study the bidimensional wetting or the Poland-Scheraga DNA model with loop exponents c = 1.5 (marginal disorder) and c = 1.75 (relevant disorder). Finally, we argue that the presence of finite Griffiths-ordered clusters at criticality determines the asymptotic value x(q-->infinity) = d and the minimal value alpha(min) = D(q-->infinity) = d - x(1) of the typical multifractal spectrum f(alpha).

  13. First-order interface localization-delocalization transition in thin Ising films using Wang-Landau sampling.

    PubMed

    Schulz, B J; Binder, K; Müller, M

    2005-04-01

    Using extensive Monte Carlo simulations, we study the interface localization-delocalization transition of a thin Ising film with antisymmetric competing walls for a set of parameters where the transition is strongly first order. This is achieved by estimating the density of states (DOS) of the model by means of Wang-Landau sampling (WLS) in the space of energy, using both single-spin-flip as well as N-fold way updates. From the DOS we calculate canonical averages related to the configurational energy, like the internal energy and the specific heat, as well as the free energy and the entropy. By sampling micro-canonical averages during simulations we also compute thermodynamic quantities related to magnetization like the reduced fourth-order cumulant of the order parameter. We estimate the triple temperatures of infinitely large systems for three different film thicknesses via finite size scaling of the positions of the maxima of the specific heat, the minima of the cumulant, and the equal weight criterion for the energy probability distribution. The wetting temperature of the semi-infinite system is computed with help of the Young equation. In the limit of large film thicknesses the triple temperatures are seen to converge toward the wetting temperature of the corresponding semi-infinite Ising model in accordance with standard capillary wave theory. We discuss the slowing down of WLS in energy space as observed for the larger film thicknesses and lateral linear dimensions. In the case of WLS in the space of total magnetization we find evidence that the slowing down is reduced and can be attributed to persisting free energy barriers due to shape transitions.

  14. First-order interface localization-delocalization transition in thin Ising films using Wang-Landau sampling

    NASA Astrophysics Data System (ADS)

    Schulz, B. J.; Binder, K.; Müller, M.

    2005-04-01

    Using extensive Monte Carlo simulations, we study the interface localization-delocalization transition of a thin Ising film with antisymmetric competing walls for a set of parameters where the transition is strongly first order. This is achieved by estimating the density of states (DOS) of the model by means of Wang-Landau sampling (WLS) in the space of energy, using both single-spin-flip as well as N -fold way updates. From the DOS we calculate canonical averages related to the configurational energy, like the internal energy and the specific heat, as well as the free energy and the entropy. By sampling microcanonical averages during simulations we also compute thermodynamic quantities related to magnetization like the reduced fourth-order cumulant of the order parameter. We estimate the triple temperatures of infinitely large systems for three different film thicknesses via finite size scaling of the positions of the maxima of the specific heat, the minima of the cumulant, and the equal weight criterion for the energy probability distribution. The wetting temperature of the semi-infinite system is computed with help of the Young equation. In the limit of large film thicknesses the triple temperatures are seen to converge toward the wetting temperature of the corresponding semi-infinite Ising model in accordance with standard capillary wave theory. We discuss the slowing down of WLS in energy space as observed for the larger film thicknesses and lateral linear dimensions. In the case of WLS in the space of total magnetization we find evidence that the slowing down is reduced and can be attributed to persisting free energy barriers due to shape transitions.

  15. Spin-frustrated complex, [Fe(II)Fe(III)(trans-1,4-cyclohexanedicarboxylate)1.5]infinity: interplay between single-chain magnetic behavior and magnetic ordering.

    PubMed

    Zheng, Yan-Zhen; Xue, Wei; Zhang, Wei-Xiong; Tong, Ming-Liang; Chen, Xiao-Ming; Grandjean, Fernande; Long, Gary J; Ng, Seik-Weng; Panissod, Pierre; Drillon, Marc

    2009-03-02

    A three-dimensional mixed-valent iron(II,III) trans-1,4-cyclohexanedicarboxylate, 1,4-chdc, coordination polymer, [Fe(II)Fe(III)(mu(4)-O)(1,4-chdc)(1.5)](infinity), 1, has been synthesized hydrothermally by mixing iron powder and 1,4-chdcH(2) and investigated by X-ray diffraction, dc and ac magnetic susceptibility, and iron-57 Mossbauer spectroscopy over a wide range of temperatures. Single-crystal X-ray diffraction studies of 1 at 90(2), 293(2), and 473(2) K reveal a tetrahedral [Fe(II)(2)(mu(4)-O)Fe(III)(2)(mu(4)-O)](6+) mixed-spin-chain structure with no change in the P1 space group but with subtle changes in the Fe-O and Fe...Fe distances with increasing temperature. These changes are associated with the electron delocalization observed by Mossbauer spectroscopy above 225 K. Magnetic studies reveal three different magnetic regimes in 1 between 2 and 320 K. Above 36 K 1 is a one-dimensional ferrimagnetic-like complex with frustration arising from competing exchange interactions between the iron(II) and iron(III) ions in the chains. Between 36 and 25 K the interchain interactions are non-negligible and 1 undergoes three-dimensional ordering at 32.16 K but with some residual fluctuations. Below 25 K the residual fluctuations slow and eventually freeze below 15 K; the small net moment of 0.22 mu(B) per mole of 1 observed below 15 K may be attributed to a non-collinear or canted spin structure of the spins of the four iron ions in the [Fe(II)(2)(mu(4)-O)Fe(III)(2)(mu(4)-O)](6+) chains. Below 32 K the Mossbauer spectra of 1 exhibit sharp sextets for both the iron(III) and iron(II) ions and are consistent with either a static long-range or a short-range magnetic ground state or a slow relaxation between two canted magnetic states that are indistinguishable at the observed spectral resolution. The 85 and 155 K spectra reveal no electron delocalization and correspond solely to fixed valence iron(II) and iron(III). Between 225 and 310 K the spectra reveal the onset of

  16. Quantum phase transitions and string orders in the spin-1/2 Heisenberg-Ising alternating chain with Dzyaloshinskii-Moriya interaction.

    PubMed

    Liu, Guang-Hua; You, Wen-Long; Li, Wei; Su, Gang

    2015-04-29

    Quantum phase transitions (QPTs) and the ground-state phase diagram of the spin-1/2 Heisenberg-Ising alternating chain (HIAC) with uniform Dzyaloshinskii-Moriya (DM) interaction are investigated by a matrix-product-state (MPS) method. By calculating the odd- and even-string order parameters, we recognize two kinds of Haldane phases, i.e. the odd- and even-Haldane phases. Furthermore, doubly degenerate entanglement spectra on odd and even bonds are observed in odd- and even-Haldane phases, respectively. A rich phase diagram including four different phases, i.e. an antiferromagnetic (AF), AF stripe, odd- and even-Haldane phases, is obtained. These phases are found to be separated by continuous QPTs: the topological QPT between the odd- and even-Haldane phases is verified to be continuous and corresponds to conformal field theory with central charge c = 1; while the rest of the phase transitions in the phase diagram are found to be c = 1/2. We also revisit, with our MPS method, the exactly solvable case of HIAC model with DM interactions only on odd bonds and find that the even-Haldane phase disappears, but the other three phases, i.e. the AF, AF stripe and odd-Haldane phases, still remain in the phase diagram. We exhibit the evolution of the even-Haldane phase by tuning the DM interactions on the even bonds gradually.

  17. Impact of temperature-dependent local and global spin order in RMnO3 compounds for spin-phonon coupling and electromagnon activity

    NASA Astrophysics Data System (ADS)

    Elsässer, S.; Schiebl, M.; Mukhin, A. A.; Balbashov, A. M.; Pimenov, A.; Geurts, J.

    2017-01-01

    The orthorhombic rare-earth manganite compounds RMnO3 show a global magnetic order for T< {T}N, and several representatives are multiferroic with a cycloidal spin ground state order for T< {T}{{cycl}}< {T}N≈ 40 {{K}}. We deduce from the temperature dependence of spin-phonon coupling in Raman spectroscopy for a series of RMnO3 compounds that their spin order locally persists up to about twice T N . Along the same line, our observation of the persistence of the electromagnon in GdMnO3 up to T≈ 100 {{K}} is attributed to a local cycloidal spin order for T> {T}{{cycl}}, in contrast to the hitherto assumed incommensurate sinusoidal phase in the intermediate temperature range. The development of the magnetization pattern can be described in terms of an order-disorder transition at T cycl within a pseudospin model of localized spin cycloids with opposite chirality.

  18. Local order in hydrogenated amorphous germanium thin films studied by extended x-ray absorption fine-structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Dalba, G.; Fornasini, P.; Grisenti, R.; Rocca, F.; Chambouleyron, I.; Graeff, C. F. O.

    1997-07-01

    The effect of hydrogenation on the local order in amorphous germanium has been studied by EXAFS. Measurements have been carried out on sputtered a-Ge:H films with hydrogen concentrations of 0, 7, 10, and 15 at.%, as a function of temperature in the range 11 - 300 K. The first-shell EXAFS data were analysed by the ratio method based on cumulant expansion. The asymmetric distributions reconstructed from cumulants are in very good agreement with a parametrized distribution obtained by other researchers using calculated phase-shifts. For the unhydrogenated a-Ge (deposited at 0953-8984/9/27/017/img7), increases of the interatomic distance, 0953-8984/9/27/017/img8 at 11 K, static disorder, 0953-8984/9/27/017/img9, and thermal disorder, 0953-8984/9/27/017/img10, have been found with respect to those for c-Ge. Both the static and the thermal disorder are smaller than for an evaporated sample (deposited at 0953-8984/9/27/017/img11) previously studied. The insertion of hydrogen in a-Ge produces a sharp reduction of the interatomic distance, static disorder, and asymmetry of the distribution already at the lowest H concentration (7%); then these parameters decrease almost linearly when the hydrogen content increases. No appreciable influence of hydrogenation on the thermal disorder has been detected.

  19. Local explicitly correlated second- and third-order Møller-Plesset perturbation theory with pair natural orbitals

    NASA Astrophysics Data System (ADS)

    Hättig, Christof; Tew, David P.; Helmich, Benjamin

    2012-05-01

    We present an algorithm for computing explicitly correlated second- and third-order Møller-Plesset energies near the basis set limit for large molecules with a cost that scales formally as N^4 with system size N. This is achieved through a hybrid approach where locality is exploited first through orbital specific virtuals (OSVs) and subsequently through pair natural orbitals (PNOs) and integrals are approximated using density fitting. Our method combines the low orbital transformation costs of the OSVs with the compactness of the PNO representation of the doubles amplitude vector. The N^4 scaling does not rely upon the a priori definition of domains, enforced truncation of pair lists, or even screening and the energies converge smoothly to the canonical values with decreasing occupation number thresholds, used in the selection of the PNO basis. For MP2.5 intermolecular interaction energies, we find that 99% of benchmark basis set limit correlation energy contributions are recovered using an aug-cc-pVTZ basis and that on average only 50 PNOs are required to correlate the significant orbital pairs.

  20. Local explicitly correlated second- and third-order Møller-Plesset perturbation theory with pair natural orbitals.

    PubMed

    Hättig, Christof; Tew, David P; Helmich, Benjamin

    2012-05-28

    We present an algorithm for computing explicitly correlated second- and third-order Møller-Plesset energies near the basis set limit for large molecules with a cost that scales formally as N(4) with system size N. This is achieved through a hybrid approach where locality is exploited first through orbital specific virtuals (OSVs) and subsequently through pair natural orbitals (PNOs) and integrals are approximated using density fitting. Our method combines the low orbital transformation costs of the OSVs with the compactness of the PNO representation of the doubles amplitude vector. The N(4) scaling does not rely upon the a priori definition of domains, enforced truncation of pair lists, or even screening and the energies converge smoothly to the canonical values with decreasing occupation number thresholds, used in the selection of the PNO basis. For MP2.5 intermolecular interaction energies, we find that 99% of benchmark basis set limit correlation energy contributions are recovered using an aug-cc-pVTZ basis and that on average only 50 PNOs are required to correlate the significant orbital pairs.

  1. Local order and the dependence of magnetization on Co content in V2O5 layered films

    NASA Astrophysics Data System (ADS)

    Cezar, A. B.; Graff, I. L.; Varalda, J.; Schreiner, W. H.; Mosca, D. H.

    2015-09-01

    Local order, electronic structure, and magnetic properties of Co-doped VOx films electrochemically grown onto Si are investigated. The films are studied by means of X-ray absorption spectroscopy (XAS) and magnetic measurements. Freshly made films have V2O5.n(H2O) structure with vanadium valence close to +5. XAS data show that insertion of Co in the films does not affect the close environment around V, when compared to the undoped sample, even varying the concentration of Co by ten times. The site symmetry of Co dopant atoms in the films is consistent with an octahedral coordination where Co is surrounded by six oxygen atoms, as supported by X-ray absorption near-edge structure simulations. Furthermore, there is no evidence of the presence of metallic cobalt (Co0) in the films. The incorporation of small amounts of Co turns ferromagnetic undoped samples into paramagnetic ones. The net magnetic moment per unit volume initially decreases with the incorporation of Co and enhances for higher concentrations. Such behavior is consistent with an O vacancy reduction process driven by the insertion of Co in the films.

  2. Fast vessel segmentation in retinal images using multi-scale enhancement and second-order local entropy

    NASA Astrophysics Data System (ADS)

    Yu, H.; Barriga, S.; Agurto, C.; Zamora, G.; Bauman, W.; Soliz, P.

    2012-03-01

    Retinal vasculature is one of the most important anatomical structures in digital retinal photographs. Accurate segmentation of retinal blood vessels is an essential task in automated analysis of retinopathy. This paper presents a new and effective vessel segmentation algorithm that features computational simplicity and fast implementation. This method uses morphological pre-processing to decrease the disturbance of bright structures and lesions before vessel extraction. Next, a vessel probability map is generated by computing the eigenvalues of the second derivatives of Gaussian filtered image at multiple scales. Then, the second order local entropy thresholding is applied to segment the vessel map. Lastly, a rule-based decision step, which measures the geometric shape difference between vessels and lesions is applied to reduce false positives. The algorithm is evaluated on the low-resolution DRIVE and STARE databases and the publicly available high-resolution image database from Friedrich-Alexander University Erlangen-Nuremberg, Germany). The proposed method achieved comparable performance to state of the art unsupervised vessel segmentation methods with a competitive faster speed on the DRIVE and STARE databases. For the high resolution fundus image database, the proposed algorithm outperforms an existing approach both on performance and speed. The efficiency and robustness make the blood vessel segmentation method described here suitable for broad application in automated analysis of retinal images.

  3. Improvement of the treatment of loop structures in the UNRES force field by inclusion of coupling between backbone- and side-chain-local conformational states

    PubMed Central

    Baranowski, Maciej; Ołldziej, Stanisław; Scheraga, Harold A.; Liwo, Adam; Czaplewski, Cezary

    2013-01-01

    The UNited RESidue (UNRES) coarse-grained model of polypeptide chains, developed in our laboratory, enables us to carry out millisecond-scale molecular-dynamics simulations of large proteins effectively. It performs well in ab initio predictions of protein structure, as demonstrated in the last Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP10). However, the resolution of the simulated structure is too coarse, especially in loop regions, which results from insufficient specificity of the model of local interactions. To improve the representation of local interactions, in this work we introduced new side-chain-backbone correlation potentials, derived from a statistical analysis of loop regions of 4585 proteins. To obtain sufficient statistics, we reduced the set of amino-acid-residue types to five groups, derived in our earlier work on structurally optimized reduced alphabets, based on a statistical analysis of the properties of amino-acid structures. The new correlation potentials are expressed as one-dimensional Fourier series in the virtual-bond-dihedral angles involving side-chain centroids. The weight of these new terms was determined by a trial-and-error method, in which Multiplexed Replica Exchange Molecular Dynamics (MREMD) simulations were run on selected test proteins. The best average root-mean-square deviations (RMSDs) of the calculated structures from the experimental structures below the folding-transition temperatures were obtained with the weight of the new side-chain-backbone correlation potentials equal to 0.57. The resulting conformational ensembles were analyzed in detail by using the Weighted Histogram Analysis Method (WHAM) and Ward's minimum-variance clustering. This analysis showed that the RMSDs from the experimental structures dropped by 0.5 Å on average, compared to simulations without the new terms, and the deviation of individual residues in the loop region of the computed

  4. Phosphorylation of myosin II regulatory light chain is necessary for migration of HeLa cells but not for localization of myosin II at the leading edge.

    PubMed Central

    Fumoto, Katsumi; Uchimura, Takashi; Iwasaki, Takahiro; Ueda, Kozue; Hosoya, Hiroshi

    2003-01-01

    To investigate the role of phosphorylated myosin II regulatory light chain (MRLC) in living cell migration, these mutant MRLCs were engineered and introduced into HeLa cells. The mutant MRLCs include an unphosphorylatable form, in which both Thr-18 and Ser-19 were substituted with Ala (AA-MRLC), and pseudophosphorylated forms, in which Thr-18 and Ser-19 were replaced with Ala and Asp, respectively (AD-MRLC), and both Thr-18 and Ser-19 were replaced with Asp (DD-MRLC). Mutant MRLC-expressing cell monolayers were mechanically stimulated by scratching, and the cells were forced to migrate in a given direction. In this wound-healing assay, the AA-MRLC-expressing cells migrated much more slowly than the wild-type MRLC-expressing cells. In the case of DD-MRLC- and AD-MRLC-expressing cells, no significant differences compared with wild-type MRLC-expressing cells were observed in their migration speed. Indirect immunofluorescence staining showed that the accumulation of endogenous diphosphorylated MRLC at the leading edge was not observed in AA-MRLC-expressing cells, although AA-MRLC was incorporated into myosin heavy chain and localized at the leading edge. In conclusion, we propose that the phosphorylation of MRLC is required to generate the driving force in the migration of the cells but not necessary for localization of myosin II at the leading edge. PMID:12429016

  5. The Research on Integrated Strategy of Supply Chain Information Systems in the Automobile Industry Based on Order-To-Delivery Mode

    NASA Astrophysics Data System (ADS)

    Li, Ming; Gan, Lianzhen; He, Xuefeng

    The automotive industry there are different degrees of impairment of many companies supply chain IT strategy. In this paper, in which the automotive industry supply chain management business cooperation between enterprises loose, poor exchange of information leading to the presence or delays in product customization, supply of raw materials, material control, production planning and control, sales and service and a fast response propose a series of typical problems of scientific and rational supply chain information integration strategy. The strategy through the development system integration platform, improve internal ERP system, implementation of supply chain management and other methods. Put some protection principles in the information process, to ensure the correct implementation of supply chain IT strategy, and ultimately achieve collaborative business development concept and enhance the automotive industry as a whole level of information.

  6. Localization of fatty acids with selective chain length by imaging time-of-flight secondary ion mass spectrometry.

    PubMed

    Richter, Katrin; Nygren, Håkan; Malmberg, Per; Hagenhoff, Birgit

    2007-07-01

    Localization of fatty acids in biological tissues was made by using TOF-SIMS (time-of-flight secondary ion mass spectrometry). Two cell-types with a specific fatty acid distribution are shown. In rat cerebellum, different distribution patterns of stearic acid (C18:0), palmitic acid (C16:0), and oleic acid (C18:1) were found. Stearic acid signals were observed accumulated in Purkinje cells with high intensities inside the cell, but not in the nucleus region. The signals colocalized with high intensity signals of the phosphocholine head group, indicating origin from phosphatidylcholine or sphingomyelin. In mouse intestine, high palmitic acid signals were found in the secretory crypt cells together with high levels of phosphorylinositol colocalized in the crypt region. Palmitic acid was also seen in the intestinal lumen that contains high amounts of mucine, which is known to be produced in the crypt cells. Linoleic acid signals (C18:2) were low in the crypt region and high in the villus region. Oleic acid signals were seen in the villi and stearic acid signals were ubiquitous with no specific localization in the intestine. We conclude that the results obtained by using imaging TOF-SIMS are consistent with known brain and intestine biochemistry and that the localization of fatty acids is specific in differentiated cells.

  7. An energy decomposition analysis for second-order Møller–Plesset perturbation theory based on absolutely localized molecular orbitals

    SciTech Connect

    Thirman, Jonathan Head-Gordon, Martin

    2015-08-28

    An energy decomposition analysis (EDA) of intermolecular interactions is proposed for second-order Møller–Plesset perturbation theory (MP2) based on absolutely localized molecular orbitals (ALMOs), as an extension to a previous ALMO-based EDA for self-consistent field methods. It decomposes the canonical MP2 binding energy by dividing the double excitations that contribute to the MP2 wave function into classes based on how the excitations involve different molecules. The MP2 contribution to the binding energy is decomposed into four components: frozen interaction, polarization, charge transfer, and dispersion. Charge transfer is defined by excitations that change the number of electrons on a molecule, dispersion by intermolecular excitations that do not transfer charge, and polarization and frozen interactions by intra-molecular excitations. The final two are separated by evaluations of the frozen, isolated wave functions in the presence of the other molecules, with adjustments for orbital response. Unlike previous EDAs for electron correlation methods, this one includes components for the electrostatics, which is vital as adjustment to the electrostatic behavior of the system is in some cases the dominant effect of the treatment of electron correlation. The proposed EDA is then applied to a variety of different systems to demonstrate that all proposed components behave correctly. This includes systems with one molecule and an external electric perturbation to test the separation between polarization and frozen interactions and various bimolecular systems in the equilibrium range and beyond to test the rest of the EDA. We find that it performs well on these tests. We then apply the EDA to a halogen bonded system to investigate the nature of the halogen bond.

  8. An energy decomposition analysis for second-order Møller-Plesset perturbation theory based on absolutely localized molecular orbitals.

    PubMed

    Thirman, Jonathan; Head-Gordon, Martin

    2015-08-28

    An energy decomposition analysis (EDA) of intermolecular interactions is proposed for second-order Møller-Plesset perturbation theory (MP2) based on absolutely localized molecular orbitals (ALMOs), as an extension to a previous ALMO-based EDA for self-consistent field methods. It decomposes the canonical MP2 binding energy by dividing the double excitations that contribute to the MP2 wave function into classes based on how the excitations involve different molecules. The MP2 contribution to the binding energy is decomposed into four components: frozen interaction, polarization, charge transfer, and dispersion. Charge transfer is defined by excitations that change the number of electrons on a molecule, dispersion by intermolecular excitations that do not transfer charge, and polarization and frozen interactions by intra-molecular excitations. The final two are separated by evaluations of the frozen, isolated wave functions in the presence of the other molecules, with adjustments for orbital response. Unlike previous EDAs for electron correlation methods, this one includes components for the electrostatics, which is vital as adjustment to the electrostatic behavior of the system is in some cases the dominant effect of the treatment of electron correlation. The proposed EDA is then applied to a variety of different systems to demonstrate that all proposed components behave correctly. This includes systems with one molecule and an external electric perturbation to test the separation between polarization and frozen interactions and various bimolecular systems in the equilibrium range and beyond to test the rest of the EDA. We find that it performs well on these tests. We then apply the EDA to a halogen bonded system to investigate the nature of the halogen bond.

  9. Order-disorder correlation on local structure and photo-electrical properties of La3+ ion modified BZT ceramics

    NASA Astrophysics Data System (ADS)

    Ghosh, S. K.; Ganguly, M.; Rout, S. K.; Sinha, T. P.

    2015-04-01

    Rare earth lanthanum (La) doped barium zirconate titanate, Ba1 - x La2 x/3Zr0.3Ti0.7O3 (BLZT) ceramics, with x = 0.00, 0.02, 0.04, 0.06, 0.08 and 0.10 were prepared using solid state reaction route. Structural characterizations of the materials were done by using X-ray diffraction and Raman spectroscopy. The Rietveld refinement technique employed to investigate the details of the crystal structure revealed a single phase cubic perovskite structure for all the compositions, belonging to the space group Pm-3m. Raman spectroscopy was used to probe the order-disorder correlation in local symmetry and it was verified that the presence of disorder in cubic structure is increased due to La3+ ion substitution at A-site. In addition, the signature of relaxor behavior and diffuse types of phase transition can be detected by monitoring the relative intensity of Raman features. Room temperature photo-electronic properties were investigated by using ultraviolet-visible (UV-Vis) and photoluminescence (PL) spectroscopy. Heterovalent doping (La3+) is accompanied by creation of ionic defects to maintain the charge neutrality; as a result the intermediate energy levels are formed within the band gap. These intermediate energy levels play a significant role in electronic band transitions in higher La concentration, x ≥ 0.08; enhancing the self-trapping mechanism leads to slightly decreasing in band gap values and shifting the PL emission spectra towards violet-blue regions. The temperature dependence of the dielectric constant was investigated and relaxor type of phase transition was observed in the material. The degree of relaxor behavior was enhanced with increase in La3+ ion concentration.

  10. Coexisting charge and magnetic orders in the dimer-chain iridate Ba5AlIr2O11

    SciTech Connect

    Terzic, J.; Wang, J. C.; Ye, Feng; Song, W. H.; Yuan, S. J.; Aswartham, S.; DeLong, L. E.; Streltsov, S. V.; Khomskii, Daniel I.; Cao, G.

    2015-06-29

    In this paper, we have synthesized and studied single-crystal Ba5AlIr2O11 that features dimer chains of two inequivalent octahedra occupied by tetravalent Ir4+(5d5) and pentavalent Ir5+(5d4) ions, respectively. Ba5AlIr2O11 is a Mott insulator that undergoes a subtle structural phase transition near TS=210K and a magnetic transition at TM=4.5K; the latter transition is surprisingly resistant to applied magnetic fields μoH≤12T but more sensitive to modest applied pressure (dTM/dp ≈ +0.61K/GPa). All results indicate that the phase transition at TS signals an enhanced charge order that induces electrical dipoles and strong dielectric response near TS. It is clear that the strong covalency and spin-orbit interaction (SOI) suppress double exchange in Ir dimers and stabilize a novel magnetic state that is neither S=3/2 nor J=1/2, but rather lies in an “intermediate” regime between these two states. Finally, the novel behavior of Ba5AlIr2O11 therefore provides unique insights into the physics of SOI along with strong covalency in competition with double-exchange interactions of comparable strength.

  11. Allelic exclusion of the immunoglobulin heavy chain locus is independent of its nuclear localization in mature B cells

    PubMed Central

    Holwerda, Sjoerd J. B.; van de Werken, Harmen J. G.; Ribeiro de Almeida, Claudia; Bergen, Ingrid M.; de Bruijn, Marjolein J. W.; Verstegen, Marjon J. A. M.; Simonis, Marieke; Splinter, Erik; Wijchers, Patrick J.; Hendriks, Rudi W.; de Laat, Wouter

    2013-01-01

    In developing B cells, the immunoglobulin heavy chain (IgH) locus is thought to move from repressive to permissive chromatin compartments to facilitate its scheduled rearrangement. In mature B cells, maintenance of allelic exclusion has been proposed to involve recruitment of the non-productive IgH allele to pericentromeric heterochromatin. Here, we used an allele-specific chromosome conformation capture combined with sequencing (4C-seq) approach to unambigously follow the individual IgH alleles in mature B lymphocytes. Despite their physical and functional difference, productive and non-productive IgH alleles in B cells and unrearranged IgH alleles in T cells share many chromosomal contacts and largely reside in active chromatin. In brain, however, the locus resides in a different repressive environment. We conclude that IgH adopts a lymphoid-specific nuclear location that is, however, unrelated to maintenance of allelic exclusion. We additionally find that in mature B cells—but not in T cells—the distal VH regions of both IgH alleles position themselves away from active chromatin. This, we speculate, may help to restrict enhancer activity to the productively rearranged VH promoter element. PMID:23748562

  12. [THE MODEL OF NUCLEOSOME STRUCTURE BASED ON THE LOCAL ROTATION OF THE NUCLEOHISTONE CHAIN, WHICH INDUCES ITS FOLDING].

    PubMed

    Priyatkina, T N

    2015-01-01

    An alternative model to the "double turn of DNA on the histone core" approach is forwarded based on the biochemical, cytological, and crystallographic data on the structural organization of the chromatin units--nucleosomes. The model assumes that the initial structure is a linear nucleohistone cord with a repeating symmetrical histone sequence. The compact (core) particle (a minimal nucleosome) is forming upon a stepwise rotation of DNA (kinks) at the centre and at two symmetrical sites into each repeating fragment stemming from the electrostatic binding of the lysine ε-NH2-groups with the followed one by one phosphates of the sugar-phosphate chain. As a result, we have a rhomboid structure composed of two counter-symmetrical DNA folds stabilized by histone-histone interactions. Based on disposable data, the histone sequence along nucleosome DNA is deduced. The following characteristics of the sequence are considered: continuity, non-overlapping, versatility, and dyadic symmetry in dispose of two every kind histone molecules and the sequence on the whole. The model is in agreement with a topology of nucleosome DNA, as well as the pattern of DNA-histone and histone-histone interactions in chromatin.

  13. Short-chain dehydrogenase/reductase catalyzing the final step of noscapine biosynthesis is localized to laticifers in opium poppy.

    PubMed

    Chen, Xue; Facchini, Peter J

    2014-01-01

    The final step in the biosynthesis of the phthalideisoquinoline alkaloid noscapine involves a purported dehydrogenation of the narcotinehemiacetal keto moiety. A short-chain dehydrogenase/reductase (SDR), designated noscapine synthase (NOS), that catalyzes dehydrogenation of narcotinehemiacetal to noscapine was identified in opium poppy and functionally characterized. The NOS gene was isolated using an integrated transcript and metabolite profiling strategy and subsequently expressed in Escherichia coli. Noscapine synthase is highly divergent from other characterized members of the NADPH-dependent SDR superfamily involved in benzylisoquinoline alkaloid metabolism, and it exhibits exclusive substrate specificity for narcotinehemiacetal. Kinetic analyses showed that NOS exhibits higher catalytic efficiency with NAD+ as the cofactor compared with NADP+. Suppression of NOS transcript levels in opium poppy plants subjected to virus-induced gene silencing resulted in a corresponding reduction in the accumulation of noscapine and an increase in narcotinehemiacetal levels in the latex. Noscapine and NOS transcripts were detected in all opium poppy organs, but both were most abundant in stems. Unlike other putative biosynthetic genes clustered in the opium poppy genome, and their corresponding proteins, NOS transcripts and the cognate enzyme were abundant in latex, indicating that noscapine metabolism is completed in a distinct cell type compared with the rest of the pathway.

  14. Physics-based potentials for the coupling between backbone- and side-chain-local conformational states in the united residue (UNRES) force field for protein simulations

    PubMed Central

    Sieradzan, Adam K.; Krupa, Paweł; Scheraga, Harold A.; Liwo, Adam; Czaplewski, Cezary

    2015-01-01

    The UNited RESidue (UNRES) model of polypeptide chains is a coarse-grained model in which each amino-acid residue is reduced to two interaction sites, namely a united peptide group (p) located halfway between the two neighboring α-carbon atoms (Cαs), which serve only as geometrical points, and a united side chain (SC) attached to the respective Cα. Owing to this simplification, millisecond Molecular Dynamics simulations of large systems can be performed. While UNRES predicts overall folds well, it reproduces the details of local chain conformation with lower accuracy. Recently, we implemented new knowledge-based torsional potentials (Krupa et. al. J. Chem. Theory Comput., 2013, 9, 4620–4632) that depend on the virtual-bond dihedral angles involving side chains: Cα ⋯ Cα ⋯ Cα ⋯ SC (τ(1)), SC ⋯ Cα ⋯ Cα ⋯ Cα (τ(2)), and SC ⋯ Cα ⋯ Cα ⋯ SC (τ(3)) in the UNRES force field. These potentials resulted in significant improvement of the simulated structures, especially in the loop regions. In this work, we introduce the physics-based counterparts of these potentials, which we derived from the all-atom energy surfaces of terminally-blocked amino-acid residues by Boltzmann integration over the angles λ(1) and λ(2) for rotation about the Cα ⋯ Cα virtual-bond angles and over the side-chain angles χ. The energy surfaces were, in turn, calculated by using the semiempirical AM1 method of molecular quantum mechanics. Entropy contribution was evaluated with use of the harmonic approximation from Hessian matrices. One-dimensional Fourier series in the respective virtual-bond-dihedral angles were fitted to the calculated potentials, and these expressions have been implemented in the UNRES force field. Basic calibration of the UNRES force field with the new potentials was carried out with eight training proteins, by selecting the optimal weight of the new energy terms and reducing the weight of the regular torsional terms. The force field was

  15. Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains

    PubMed Central

    1992-01-01

    Recent biochemical studies of p190, a calmodulin (CM)-binding protein purified from vertebrate brain, have demonstrated that this protein, purified as a complex with bound CM, shares a number of properties with myosins (Espindola, F. S., E. M. Espreafico, M. V. Coelho, A. R. Martins, F. R. C. Costa, M. S. Mooseker, and R. E. Larson. 1992. J. Cell Biol. 118:359-368). To determine whether or not p190 was a member of the myosin family of proteins, a set of overlapping cDNAs encoding the full-length protein sequence of chicken brain p190 was isolated and sequenced. Verification that the deduced primary structure was that of p190 was demonstrated through microsequence analysis of a cyanogen bromide peptide generated from chick brain p190. The deduced primary structure of chicken brain p190 revealed that this 1,830-amino acid (aa) 212,509-D) protein is a member of a novel structural class of unconventional myosins that includes the gene products encoded by the dilute locus of mouse and the MYO2 gene of Saccharomyces cerevisiae. We have named the p190-CM complex "myosin-V" based on the results of a detailed sequence comparison of the head domains of 29 myosin heavy chains (hc), which has revealed that this myosin, based on head structure, is the fifth of six distinct structural classes of myosin to be described thus far. Like the presumed products of the mouse dilute and yeast MYO2 genes, the head domain of chicken myosin-V hc (aa 1-764) is linked to a "neck" domain (aa 765-909) consisting of six tandem repeats of an approximately 23-aa "IQ-motif." All known myosins contain at least one such motif at their head-tail junctions; these IQ-motifs may function as calmodulin or light chain binding sites. The tail domain of chicken myosin-V consists of an initial 511 aa predicted to form several segments of coiled-coil alpha helix followed by a terminal 410-aa globular domain (aa, 1,421-1,830). Interestingly, a portion of the tail domain (aa, 1,094-1,830) shares 58% amino acid

  16. Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains.

    PubMed

    Espreafico, E M; Cheney, R E; Matteoli, M; Nascimento, A A; De Camilli, P V; Larson, R E; Mooseker, M S

    1992-12-01

    Recent biochemical studies of p190, a calmodulin (CM)-binding protein purified from vertebrate brain, have demonstrated that this protein, purified as a complex with bound CM, shares a number of properties with myosins (Espindola, F. S., E. M. Espreafico, M. V. Coelho, A. R. Martins, F. R. C. Costa, M. S. Mooseker, and R. E. Larson. 1992. J. Cell Biol. 118:359-368). To determine whether or not p190 was a member of the myosin family of proteins, a set of overlapping cDNAs encoding the full-length protein sequence of chicken brain p190 was isolated and sequenced. Verification that the deduced primary structure was that of p190 was demonstrated through microsequence analysis of a cyanogen bromide peptide generated from chick brain p190. The deduced primary structure of chicken brain p190 revealed that this 1,830-amino acid (aa) 212,509-D) protein is a member of a novel structural class of unconventional myosins that includes the gene products encoded by the dilute locus of mouse and the MYO2 gene of Saccharomyces cerevisiae. We have named the p190-CM complex "myosin-V" based on the results of a detailed sequence comparison of the head domains of 29 myosin heavy chains (hc), which has revealed that this myosin, based on head structure, is the fifth of six distinct structural classes of myosin to be described thus far. Like the presumed products of the mouse dilute and yeast MYO2 genes, the head domain of chicken myosin-V hc (aa 1-764) is linked to a "neck" domain (aa 765-909) consisting of six tandem repeats of an approximately 23-aa "IQ-motif." All known myosins contain at least one such motif at their head-tail junctions; these IQ-motifs may function as calmodulin or light chain binding sites. The tail domain of chicken myosin-V consists of an initial 511 aa predicted to form several segments of coiled-coil alpha helix followed by a terminal 410-aa globular domain (aa, 1,421-1,830). Interestingly, a portion of the tail domain (aa, 1,094-1,830) shares 58% amino acid

  17. A simple real-time polymerase chain reaction (PCR)-based assay for authentication of the Chinese Panax ginseng cultivar Damaya from a local ginseng population.

    PubMed

    Wang, H; Wang, J; Li, G

    2016-06-27

    Panax ginseng is one of the most important medicinal plants in the Orient. Owing to its increasing demand in the world market, cultivated ginseng has become the main source of medicinal material. Among the Chinese ginseng cultivars, Damaya commands higher prices and is grown in significant proportions among the local ginseng population. Due to the lack of rapid and accurate authentication methods, Damaya is distributed among different cultivars in the local ginseng population in China. Here, we identified a unique, Damaya-specific single nucleotide polymorphism (SNP) site present in the second intron of mitochondrial cytochrome c oxidase subunit 2 (cox2). Based on this SNP, a Damaya cultivar-specific primer was designed and an allele-specific polymerase chain reaction (PCR) was optimized for the effective molecular authentication of Damaya. We designed a method by combining a simple DNA isolation method with real-time allele-specific PCR using SYBR Green I fluorescent dye, and proved its efficacy in clearly discriminated Damaya cultivar from other Chinese ginseng cultivars according to the allelic discrimination analysis. Hence, this study provides a simple and rapid assay for the differentiation and conservation of Damaya from the local Chinese ginseng population.

  18. Localization of Sphingolipid Enriched Plasma Membrane Regions and Long-Chain Base Composition during Mature-Fruit Abscission in Olive

    PubMed Central

    Parra-Lobato, Maria C.; Paredes, Miguel A.; Labrador, Juana; Saucedo-García, Mariana; Gavilanes-Ruiz, Marina; Gomez-Jimenez, Maria C.

    2017-01-01

    Sphingolipids, found in membranes of eukaryotic cells, have been demonstrated to carry out functions in various processes in plant cells. However, the roles of these lipids in fruit abscission remain to be determined in plants. Biochemical and fluorescence microscopy imaging approach has been adopted to investigate the accumulation and distribution of sphingolipids during mature-fruit abscission in olive (Olea europaea L. cv. Picual). Here, a lipid-content analysis in live protoplasts of the olive abscission zone (AZ) was made with fluorescent dyes and lipid analogs, particularly plasma membrane sphingolipid-enriched domains, and their dynamics were investigated in relation to the timing of mature-fruit abscission. In olive AZ cells, the measured proportion of both polar lipids and sphingolipids increased as well as endocytosis was stimulated during mature-fruit abscission. Likewise, mature-fruit abscission resulted in quantitative and qualitative changes in sphingolipid long-chain bases (LCBs) in the olive AZ. The total LCB increase was due essentially to the increase of t18:1(8E) LCBs, suggesting that C-4 hydroxylation and Δ8 desaturation with a preference for (E)-isomer formation were quantitatively the most important sphingolipids in olive AZ during abscission. However, our results also showed a specific association between the dihydroxylated LCB sphinganine (d18:0) and the mature-fruit abscission. These results indicate a clear correlation between the sphingolipid composition and mature-fruit abscission. Moreover, measurements of endogenous sterol levels in the olive AZ revealed that it accumulated sitosterol and campesterol with a concomitant decrease in cycloartenol during abscission. In addition, underlying the distinct sterol composition of AZ during abscission, genes for key biosynthetic enzymes for sterol synthesis, for obtusifoliol 14α-demethylase (CYP51) and C-24 sterol methyltransferase2 (SMT2), were up-regulated during mature-fruit abscission, in

  19. Localization of Sphingolipid Enriched Plasma Membrane Regions and Long-Chain Base Composition during Mature-Fruit Abscission in Olive.

    PubMed

    Parra-Lobato, Maria C; Paredes, Miguel A; Labrador, Juana; Saucedo-García, Mariana; Gavilanes-Ruiz, Marina; Gomez-Jimenez, Maria C

    2017-01-01

    Sphingolipids, found in membranes of eukaryotic cells, have been demonstrated to carry out functions in various processes in plant cells. However, the roles of these lipids in fruit abscission remain to be determined in plants. Biochemical and fluorescence microscopy imaging approach has been adopted to investigate the accumulation and distribution of sphingolipids during mature-fruit abscission in olive (Olea europaea L. cv. Picual). Here, a lipid-content analysis in live protoplasts of the olive abscission zone (AZ) was made with fluorescent dyes and lipid analogs, particularly plasma membrane sphingolipid-enriched domains, and their dynamics were investigated in relation to the timing of mature-fruit abscission. In olive AZ cells, the measured proportion of both polar lipids and sphingolipids increased as well as endocytosis was stimulated during mature-fruit abscission. Likewise, mature-fruit abscission resulted in quantitative and qualitative changes in sphingolipid long-chain bases (LCBs) in the olive AZ. The total LCB increase was due essentially to the increase of t18:1(8E) LCBs, suggesting that C-4 hydroxylation and Δ8 desaturation with a preference for (E)-isomer formation were quantitatively the most important sphingolipids in olive AZ during abscission. However, our results also showed a specific association between the dihydroxylated LCB sphinganine (d18:0) and the mature-fruit abscission. These results indicate a clear correlation between the sphingolipid composition and mature-fruit abscission. Moreover, measurements of endogenous sterol levels in the olive AZ revealed that it accumulated sitosterol and campesterol with a concomitant decrease in cycloartenol during abscission. In addition, underlying the distinct sterol composition of AZ during abscission, genes for key biosynthetic enzymes for sterol synthesis, for obtusifoliol 14α-demethylase (CYP51) and C-24 sterol methyltransferase2 (SMT2), were up-regulated during mature-fruit abscission, in

  20. Effect of charge transfer on the local order in liquid group IV isoelectronic compounds: neutron diffraction data versus numerical tight-binding simulations

    SciTech Connect

    Prigent, G.; Bellissent, R.; Gaspard, J.-P.; Bichara, C.

    1999-06-15

    In a simple tight-binding approach, we consider the role of charge transfer and entropy in the semiconductor-to-metal transition which may occur upon melting group IV elements and their isoelectronic III-V and II-VI compounds. In the liquid state, entropy is shown to destabilise the diamond structure in favor of a metallic simple cubic-like local order, while charge transfer tends to keep the semiconducting tetrahedral local order of the solid state. These results are consistent with neutron diffraction data.

  1. Comparison of sensitivity to first- and second-order local motion in 5-year-olds and adults.

    PubMed

    Ellemberg, Dave; Lewis, Terri L; Meghji, Karim S; Maurer, Daphne; Guillemot, Jean-Paul; Lepore, Franco

    2003-01-01

    We compared sensitivity to first- versus second-order motion in 5-year-olds and adults tested with stimuli moving at slower (1.5 degrees s(-1)) and faster (6 degrees s(-1)) velocities. Amplitude modulation thresholds were measured for the discrimination of the direction of motion (up vs. down) for luminance-modulated (first-order) and contrast-modulated (second-order) horizontal sine-wave gratings. At the slower velocity (1.5 degrees s(-1)), the differences in threshold between 5-year-olds and adults were small but significant for both first- and second-order stimuli (0.02 and 0.05 log units worse than adults' thresholds, respectively). However, at the faster velocity (6 degrees s(-1)), the differences in threshold between the children and adults were 8 times greater for second-order motion than for first-order motion. Specifically, children's thresholds were 0.16 log units worse than those of adults for second-order motion compared to only 0.02 log units worse for first-order motion. The different pattern of results for first-order and second-order motion at the faster velocity (6 degrees s(-1)) is consistent with models positing different mechanisms for the two types of motion and suggests that those mechanisms mature at different rates.

  2. Magnetic ordering in the frustrated J1 - J2 Ising chain candidate BaNd2O4

    SciTech Connect

    Aczel, Adam A.; Li, Ling; Garlea, Vasile O.; Yan, Jiaqiang; Weickert, Franziska; Jaime, M.; Maiorov, B.; Movshovich, R.; Civale, L.; Keppens, V.; Mandrus, D.

    2014-10-06

    The AR2O4 family (R = rare earth) has recently been attracting interest as a new series of frustrated magnets, with the magnetic R atoms forming zigzag chains running along the c axis. In this paper, we have investigated polycrystalline BaNd2O4 with a combination of magnetization, heat-capacity, and neutron powder diffraction measurements. Magnetic Bragg peaks are observed below TN = 1.7 K, and they can be indexed with a propagation vector of k = (0,1/2,1/2). The signal from magnetic diffraction is well described by long-range ordering of only one of the two types of Nd zigzag chains, with collinear up-up-down-down intrachain spin configurations (double Néel state). Furthermore, low-temperature magnetization and heat-capacity measurements reveal two magnetic-field-induced spin transitions at 2.75 and 4 T for T = 0.46 K. The high-field phase is paramagnetic, while the intermediate-field state may arise from a spin transition of the long-range ordered Nd chains. Finally, one possible candidate for the field-induced ordered state corresponds to an up-up-down intrachain spin configuration, as predicted for a classical J1-J2 Ising chain with a double Néel ground state in zero field.

  3. A Dual Modulated Homochiral Helical Nanofilament Phase with Local Columnar Ordering Formed by Bent Core Liquid Crystals: Effects of Molecular Chirality.

    PubMed

    Li, Lin; Salamonczyk, Miroslaw; Jákli, Antal; Hegmann, Torsten

    2016-08-01

    Helical nanofilament (HNF) phases form as a result of an intralayer mismatch between top and bottom molecular halves in bent-core liquid crystals (BC-LCs) that is relieved by local saddle-splay geometry. HNFs are immensely attractive for photovoltaic and chiral separation applications and as templates for the chiral spatial assembly of guest molecules. Here, the synthesis and characterization of two unichiral BC-LCs and one racemic mixture with tris-biphenyl-diester cores featuring chiral (R,R) and (S,S) or racemic 2-octyloxy aliphatic side chains are presented. In comparison to the achiral compound with linear side chains forming an intralayer modulated HNF phase (HNFmod ), synchrotron small angle X-ray diffraction indicates that the unichiral derivatives form a dual modulated HNF phase with intra- as well as interlayer modulations (HNFmod2 ) suggesting a columnar local structure of the nanofilaments. Transmission electron microscopy and circular dichroism spectropolarimetry confirm that the unichiral materials exclusively form homochiral HNFs with a twist sense-matching secondary twist. A contact preparation provides the first example of two identical chiral liquid crystal phases only differing in their handedness that do not mix and form an achiral liquid crystal phase with an entirely different structure in the contact zone. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Identification of Pork Contamination in Meatballs of Indonesia Local Market Using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) Analysis.

    PubMed

    Erwanto, Yuny; Abidin, Mohammad Zainal; Sugiyono, Eko Yasin Prasetyo Muslim; Rohman, Abdul

    2014-10-01

    This research applied and evaluated a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using cytochrome b gene to detect pork contamination in meatballs from local markets in Surabaya and Yogyakarta regions, Indonesia. To confirm the effectiveness and specificity of this fragment, thirty nine DNA samples from different meatball shops were isolated and amplified, and then the PCR amplicon was digested by BseDI restriction enzyme to detect the presence of pork in meatballs. BseDI restriction enzyme was able to cleave porcine cytochrome b gene into two fragments (131 bp and 228 bp). Testing the meatballs from the local market showed that nine of twenty meatball shops in Yogyakarta region were detected to have pork contamination, but there was no pork contamination in meatball shops in Surabaya region. In conclusion, specific PCR amplification of cytochrome b gen and cleaved by BseDI restriction enzymes seems to be a powerful technique for the identification of pork presence in meatball because of its simplicity, specificity and sensitivity. Furthermore, pork contamination intended for commercial products of sausage, nugget, steak and meat burger can be checked. The procedure is also much cheaper than other methods based on PCR, immunodiffusion and other techniques that need expensive equipment.

  5. Identification of Pork Contamination in Meatballs of Indonesia Local Market Using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) Analysis

    PubMed Central

    Erwanto, Yuny; Abidin, Mohammad Zainal; Sugiyono, Eko Yasin Prasetyo Muslim; Rohman, Abdul

    2014-01-01

    This research applied and evaluated a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using cytochrome b gene to detect pork contamination in meatballs from local markets in Surabaya and Yogyakarta regions, Indonesia. To confirm the effectiveness and specificity of this fragment, thirty nine DNA samples from different meatball shops were isolated and amplified, and then the PCR amplicon was digested by BseDI restriction enzyme to detect the presence of pork in meatballs. BseDI restriction enzyme was able to cleave porcine cytochrome b gene into two fragments (131 bp and 228 bp). Testing the meatballs from the local market showed that nine of twenty meatball shops in Yogyakarta region were detected to have pork contamination, but there was no pork contamination in meatball shops in Surabaya region. In conclusion, specific PCR amplification of cytochrome b gen and cleaved by BseDI restriction enzymes seems to be a powerful technique for the identification of pork presence in meatball because of its simplicity, specificity and sensitivity. Furthermore, pork contamination intended for commercial products of sausage, nugget, steak and meat burger can be checked. The procedure is also much cheaper than other methods based on PCR, immunodiffusion and other techniques that need expensive equipment. PMID:25178301

  6. An Automated System for Generating Situation-Specific Decision Support in Clinical Order Entry from Local Empirical Data

    ERIC Educational Resources Information Center

    Klann, Jeffrey G.

    2011-01-01

    Clinical Decision Support is one of the only aspects of health information technology that has demonstrated decreased costs and increased quality in healthcare delivery, yet it is extremely expensive and time-consuming to create, maintain, and localize. Consequently, a majority of health care systems do not utilize it, and even when it is…

  7. An Automated System for Generating Situation-Specific Decision Support in Clinical Order Entry from Local Empirical Data

    ERIC Educational Resources Information Center

    Klann, Jeffrey G.

    2011-01-01

    Clinical Decision Support is one of the only aspects of health information technology that has demonstrated decreased costs and increased quality in healthcare delivery, yet it is extremely expensive and time-consuming to create, maintain, and localize. Consequently, a majority of health care systems do not utilize it, and even when it is…

  8. Preparation and spectroscopic characterization of [Pt(en){sub 2}I{sub 2}][Pt(CN){sub 4}]: A new quasi-one-dimensional mixed valence chain material in a completely ordered lattice

    SciTech Connect

    Brozik, J.A.; Scott, B.L.; Swanson, B.I.

    1999-12-02

    The unique linear chain compound [Pt(en){sub 2}I{sub 2}][Pt(CN){sub 4}] {l{underscore}brace}where en = ethylenediamine{r{underscore}brace} has been synthesized through a standard method. The results of a structural analysis by X-ray crystallography reveal this new MX compound to be quasi-one-dimensional with complete chain-to-chain registry to give a completely ordered structure. The results of resonance Raman, IR, diffuse reflectance, and X-ray crystallography reveal that the Pt centers are highly charge disproportionated with a large commensurate distortion of the iodide sublattice about the Pt center of higher charge. These results reveal that this material is the strongest CDW MX compound, containing iodide bridges, reported to date. Resonance Raman experiments have shown that five A{sub g} (C{sub 2h} site symmetry) Raman bands are strongly enhanced. These correspond to three in-chain Pt-I modes and two (chain perpendicular) CN stretches and are interpreted in terms of strong phonon coupling to the IVCT band.

  9. A high-order finite-volume method for hyperbolic conservation laws on locally-refined grids

    SciTech Connect

    McCorquodale, Peter; Colella, Phillip

    2011-01-28

    We present a fourth-order accurate finite-volume method for solving time-dependent hyperbolic systems of conservation laws on Cartesian grids with multiple levels of refinement. The underlying method is a generalization of that in [5] to nonlinear systems, and is based on using fourth-order accurate quadratures for computing fluxes on faces, combined with fourth-order accurate Runge?Kutta discretization in time. To interpolate boundary conditions at refinement boundaries, we interpolate in time in a manner consistent with the individual stages of the Runge-Kutta method, and interpolate in space by solving a least-squares problem over a neighborhood of each target cell for the coefficients of a cubic polynomial. The method also uses a variation on the extremum-preserving limiter in [8], as well as slope flattening and a fourth-order accurate artificial viscosity for strong shocks. We show that the resulting method is fourth-order accurate for smooth solutions, and is robust in the presence of complex combinations of shocks and smooth flows.

  10. LC8 dynein light chain (DYNLL1) binds to the C-terminal domain of ATM-interacting protein (ATMIN/ASCIZ) and regulates its subcellular localization

    SciTech Connect

    Rapali, Peter; Garcia-Mayoral, Maria Flor; Martinez-Moreno, Monica; Tarnok, Krisztian; Schlett, Katalin; Albar, Juan Pablo; Bruix, Marta; Nyitray, Laszlo; Rodriguez-Crespo, Ignacio

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer We have screened a human library with dynein light chain DYNLL1 (DLC8) as bait. Black-Right-Pointing-Pointer Dynein light chain DYNLL1 binds to ATM-kinase interacting protein (ATMIN). Black-Right-Pointing-Pointer ATMIN has 17 SQ/TQ motifs, a motif frequently found in DYNLL1-binding partners. Black-Right-Pointing-Pointer The two proteins interact in vitro, with ATMIN displaying at least five binding sites. Black-Right-Pointing-Pointer The interaction of ATMIN and DYNNL1 in transfected cells can also be observed. -- Abstract: LC8 dynein light chain (now termed DYNLL1 and DYNLL2 in mammals), a dimeric 89 amino acid protein, is a component of the dynein multi-protein complex. However a substantial amount of DYNLL1 is not associated to microtubules and it can thus interact with dozens of cellular and viral proteins that display well-defined, short linear motifs. Using DYNLL1 as bait in a yeast two-hybrid screen of a human heart library we identified ATMIN, an ATM kinase-interacting protein, as a DYNLL1-binding partner. Interestingly, ATMIN displays at least 18 SQ/TQ motifs in its sequence and DYNLL1 is known to bind to proteins with KXTQT motifs. Using pepscan and yeast two-hybrid techniques we show that DYNLL1 binds to multiple SQ/TQ motifs present in the carboxy-terminal domain of ATMIN. Recombinant expression and purification of the DYNLL1-binding region of ATMIN allowed us to obtain a polypeptide with an apparent molecular mass in gel filtration close to 400 kDa that could bind to DYNLL1 in vitro. The NMR data-driven modelled complexes of DYNLL1 with two selected ATMIN peptides revealed a similar mode of binding to that observed between DYNLL1 and other peptide targets. Remarkably, co-expression of mCherry-DYNLL1 and GFP-ATMIN mutually affected intracellular protein localization. In GFP-ATMIN expressing-cells DNA damage induced efficiently nuclear foci formation, which was partly impeded by the presence of mCherry-DYNLL1

  11. The Molecular Structure of the Liquid Ordered Phase

    NASA Astrophysics Data System (ADS)

    Lyman, Edward

    2014-03-01

    Molecular dynamics simulations reveal substructures within the liquid-ordered phase of lipid bilayers. These substructures, identified in a 10 μsec all-atom trajectory of liquid-ordered/liquid-disordered coexistence (Lo/Ld) , are composed of saturated hydrocarbon chains packed with local hexagonal order, and separated by interstitial regions enriched in cholesterol and unsaturated chains. Lipid hydrocarbon chain order parameters calculated from the Lo phase are in excellent agreement with 2H NMR measurements; the local hexagonal packing is also consistent with 1H-MAS NMR spectra of the Lo phase, NMR diffusion experiments, and small angle X-ray- and neutron scattering. The balance of cholesterol-rich to local hexagonal order is proposed to control the partitioning of membrane components into the Lo regions. The latter have been frequently associated with formation of so-called rafts, platforms in the plasma membranes of cells that facilitate interaction between components of signaling pathways.

  12. Pressure study of local tilts and their correlation to stripe order in single crystal La1.875Ba0.125CuO4

    NASA Astrophysics Data System (ADS)

    Fabbris, Gilberto; Hücker, Markus; Gu, Genda; Tranquada, John; Haskel, Daniel

    2012-02-01

    The strong Tc suppression in LaBaCuO at x=0.125 is widely believed to be related to formation of static stripes, at least partially driven by a strong electron-lattice coupling in a low temperature tetragonal (LTT) phase (Tranquada et al., Nature 375, 561 (1995)). A recent high-pressure experiment appears to challenge this view as it was observed that static stripe order persists to pressures higher than required to induce LTT to HTT transition (Hucker et al., PRL 104, 057004 (2010)). We carried out high-pressure La K-edge polarized XAFS measurements in LaBaCuO (x=0.125) single crystals in a diamond anvil cell to probe local CuO6 tilts. We observe that the local tilts remain LTT-like at high pressure, even though the macroscopic structure is HTT. The results suggest a significant order-disorder component to this pressure-induced phase transition, whereby the local LTT tilts remain present in the local scale but disorder over long range resulting in HTT symmetry seen by diffraction. The result may help explain why the stripe order is largely unaffected by the LTT to HTT pressure-induced transition. Work at Argonne (BNL) is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 (DE-AC02-98CH10886).

  13. The effect of non-local higher order stress to predict the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow

    NASA Astrophysics Data System (ADS)

    Mohammadimehr, M.; Mohammadi-Dehabadi, A. A.; Maraghi, Z. Khoddami

    2017-04-01

    In this research, the effect of non-local higher order stress on the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow resting on elastic foundation is investigated. Physical intuition reveals that increasing nanoscale stress leads to decrease the stiffness of nanostructure which firstly established by Eringen's non-local elasticity theory (previous nonlocal method) while many of papers have concluded otherwise at microscale based on modified couple stress, modified strain gradient theories and surface stress effect. The non-local higher order stress model (new nonlocal method) is used in this article that has been studied by few researchers in other fields and the results from the present study show that the trend of the new nonlocal method and size dependent effect including modified couple stress theory is the same. In this regard, the nonlinear motion equations are derived using a variational principal approach considering essential higher-order non-local terms. The surrounded elastic medium is modeled by Pasternak foundation to increase the stability of system where the fluid flow may cause system instability. Effects of various parameters such as non-local parameter, elastic foundation coefficient, and fluid flow velocity on the stability and dimensionless natural frequency of nanotube are investigated. The results of this research show that the small scale parameter based on higher order stress help to increase the natural frequency which has been approved by other small scale theories such as strain gradient theory, modified couple stress theory and experiments, and vice versa for previous nonlocal method. This study may be useful to measure accurately the vibration characteristics of nanotubes conveying viscous nanoflow and to design nanofluidic devices for detecting blood Glucose.

  14. TiO2 nanotube arrays for photocatalysis: Effects of crystallinity, local order, and electronic structure

    SciTech Connect

    Liu, Jing; Hosseinpour, Pegah M.; Luo, Si; Heiman, Don; Menon, Latika; Arena, Dario A.; Lewis, Laura H.

    2014-11-19

    To furnish insight into correlations of electronic and local structure and photoactivity, arrays of short and long TiO₂ nanotubes were synthesized by electrochemical anodization of Ti foil, followed by thermal treatment in O₂ (oxidizing), Ar (inert), and H₂ (reducing) environments. The physical and electronic structures of these nanotubes were probed with x-ray diffraction, scanning electron microscopy, and synchrotron-based x-ray absorption spectroscopy, and correlated with their photocatalytic properties. The photocatalytic activity of the nanotubes was evaluated by monitoring the degradation of methyl orange under UV-VIS light irradiation. Results show that upon annealing at 350 °C all as-anodized amorphous TiO₂ nanotube samples partially transform to the anatase structure, with variations in the degree of crystallinity and in the concentration of local defects near the nanotubes' surface (~5 nm) depending on the annealing conditions. Degradation of methyl orange was not detectable for the as-anodized TiO₂ nanotubes regardless of their length. The annealed long nanotubes demonstrated detectable catalytic activity, which was more significant with the H₂-annealed nanotubes than with the Ar- and O₂-annealed nanotube samples. This enhanced photocatalytic response of the H₂-annealed long nanotubes relative to the other samples is positively correlated with the presence of a larger concentration of lattice defects (such as Ti3+ and anticipated oxygen vacancies) and a slightly lower degree of crystallinity near the nanotube surface. These physical and electronic structural attributes impact the efficacy of visible light absorption; moreover, the increased concentration of surface defects is postulated to promote the generation of hydroxyl radicals and thus accelerate the photodegradation of the methyl orange. The information obtained from this study provides unique insight into the role of the near-surface electronic and defect structure

  15. Cloning, expression, and localization of two types of fast skeletal myosin heavy chain genes from black tiger and Pacific white shrimps.

    PubMed

    Koyama, Hiroki; Akolkar, Dadasaheb B; Piyapattanakorn, Sanit; Watabe, Shugo

    2012-12-01

    The physiology and biochemistry of skeletal muscles in shrimps have been poorly understood compared with those from vertebrates. The present study was conducted focusing on myosin, the major protein in skeletal muscle, from adult specimens of black tiger Penaeus monodon and Pacific white Penaeus vannamei shrimps. Two genes encoding myosin heavy chain (MHC), a large subunit of the myosin molecule, were cloned from abdominal fast skeletal muscle and defined as MHCa and MHCb according to our previous study on kuruma shrimp Marsupenaeus japonicus. Random cloning demonstrated that the MHCb gene (MHCb) was expressed more abundantly than MHCa. The full-length cDNA clones of MHCa and MHCb from black tiger shrimp consisted of 5,926 and 5,914 bp, respectively, which encoded 1,914 and 1,909 amino acids, respectively, whereas those from Pacific white shrimp consisted of 5,923 and 5,908 bp, respectively, which encoded 1,913 and 1,909 amino acids, respectively. Both MHCa and MHCb were considered to be fast muscle type due to their strict localization in fast muscle. The amino acid identities between MHCa and MHCb of black tiger shrimp were 77%, 60%, and 73% in the regions of subfragment-1 (S1), subfragment-2 (S2) and light meromyosin (LMM), respectively, with 71% in total, whereas those of Pacific white shrimp were 78%, 60%, and 73% in the regions of S1, S2, and LMM, respectively, with 72% in total. In situ hybridization and northern blot analysis using different regions from abdominal muscle demonstrated different localizations of MHCa and MHCb transcripts in this muscle, suggesting their distinct physiological functions. Copyright © 2012 Wiley Periodicals, Inc.

  16. Magnetic properties and local ordering during thermal annealing of amorphous Fe sub 75 Ni sub 5 B sub 15 Si sub 5 films

    SciTech Connect

    Oliver, S.A. ); Harris, V.G.; Vittoria, C. ); Elam, W.T.; Kim, K.H. ); Hamdeh, H.H.; Alhabash, M. )

    1991-11-15

    The evolution of magnetic properties and local atomic ordering during thermal annealing has been studied for amorphous Fe{sub 75}Ni{sub 5}B{sub 15}Si{sub 5} thin films. Resistivity, vibrating sample magnetometer (VSM), ferromagnetic resonance (FMR), extended x-ray absorption fine structure (EXAFS), and Moessbauer effect (ME) measurements were taken on samples annealed at various temperatures ranging to film crystallization. The as-deposited samples are in a close-packed structure with little short-range order. Samples annealed above 200 {degree}C show ordering of the boron shell, but no indication of long-range ordering. With the exception of the anisotropy and coercive fields, no change in the magnetic or microwave magnetic parameters is observed for these samples prior to crystallization. Samples annealed above 400 {degree}C show indications of crystallization for all measurements.

  17. The Local and Surface Structure of Ordered Mesoporous Carbons from Nitrogen Sorption, NEXAFS and Synchrotron Radiation Studies

    SciTech Connect

    Smith,M.; Lobo, R.

    2006-01-01

    Ordered mesoporous carbon materials were prepared by pyrolysis of sucrose and furfuryl alcohol templated in the ordered mesoporous silicate SBA-15. The structure of SBA-15 template was modified by changing the calcination temperature, we investigate the structural transformation of the silica template with calcination temperature using X-ray diffraction and nitrogen adsorption isotherms. SBA-15 calcined to 300 C has a total pore volume of 1.13 cm{sup 3}/g, a BET surface area of 1100 m2/g, and a pore spacing of 114 Angstroms; when calcined to 90 C the corresponding values are 0.40 cm{sup 3}/g, 330 m{sup 2}/g and 92.5 Angstroms. Despite marked differences in SBA-15 template structure, the pore size distribution of the ordered mesoporous carbons is more dependent on the choice of precursor than on SBA-15 pore geometry. The BET surface areas of ordered mesoporous carbons made from aqueous sucrose solutions (850-1050 m2/g) are independent of template geometry; while surface area of materials made from furfuryl alcohol (530-1190 m2/g) are a reflection of template geometry. Near-edge X-ray fine-structure (NEXAFS) spectroscopy reveal that the template-carbon interaction during the pyrolysis of sucrose-based carbons exerts a strong influence on the surface structure of final product, and that such effects are largely absent in the furfuryl alcohol-based materials. The pair-distribution function (PDF) calculated from high-energy synchrotron scattering measurements corroborates the NEXAFS results, yet also show that the template effect on the bulk carbon is minimal. Template compression acting in conjunction with hydrothermally induced effects exerted on the carbon during pyrolysis drives the resulting carbon to a more graphitic state.

  18. Two Isostructural Coordination Polymers Showing Diverse Magnetic Behaviors: Weak Coupling (Ni(II)) and an Ordered Array of Single-Chain Magnets (Co(II)).

    PubMed

    Chen, Min; Zhao, Hui; Sañudo, E Carolina; Liu, Chun-Sen; Du, Miao

    2016-04-18

    Two isomorphic 3-D complexes with the formulas [M3(TPTA) (OH)2(H2O)4]n (M = Ni for 1 and Co for 2; H4TPTA = [1,1':4',1″-terphenyl]-2',3,3″,5'-tetracarboxylic acid) have been synthesized and magnetically characterized. Complexes 1 (Ni(II)) and 2 (Co(II)) have the same 1-D rod-shaped inorganic SBUs but exhibit significantly different magnetic properties. Complex 2(Co(II)) is a 3-D arrangement of a 1-D Co(II) single-chain magnet (SCM), while complex 1(Ni(II)) exhibits weak coupling.

  19. Local slope, hillslope length and upslope unstable area as 1st order controls on co-seismic landslide hazard.

    NASA Astrophysics Data System (ADS)

    Milledge, D.; Densmore, A. L.; Petley, D. N.; Bellugi, D. G.; Li, G.

    2015-12-01

    Many communities in mountainous areas have limited access to and/or understanding of co-seismic landslide hazard maps. Furthermore these maps rarely provide the information that a community seeks: Where is safest? How big could the landslide be? Geomorphic intuition suggests that: 1) on the ridges one is less likely to be hit by a landslide than elsewhere in the landscape; 2) hazard increases with the amount of upslope unstable area; 3) longer slopes contain more candidate landslides and are also capable of producing larger landslides thus they constitute a more severe hazard. These observations could help communities in siting infrastructure or making earthquake plans but have not, to our knowledge, been tested against past landslide inventories. Co-seismic landslide models make no attempt to predict landslide size and focus on initiation, ignoring the runout which is critical in the slope length control on hazard. Here we test our intuitive hypotheses using an inventory of co-seismic landslides from the 2008 Wenchuan earthquake. The inventory is mapped from high-resolution remote imagery using an automated algorithm and manual delineation and does not distinguish between source and runout zones. Discretizing the study area into 30 m cells we define landslide hazard as the probability that a cell is within a mapped landslide polygon (p(ls)). We find that p(ls) increases rapidly with increasing slope and upslope area. Locations with low local slope (<10˚) or upslope area (<900 m2/m) have p(ls) less than one third of the areal average. The joint p(ls) conditional on local slope and upslope area identifies long steep slopes as particularly hazardous and ridges (where slope and upslope area are both low) as particularly low hazard. Examining the slope lengths associated with each landslide in the inventory we find that hillslope length sets an upper limit on landslide size but that its influence on the detailed size distribution is more difficult to untangle. Finally

  20. TiO{sub 2} nanotube arrays for photocatalysis: Effects of crystallinity, local order, and electronic structure

    SciTech Connect

    Liu, Jing; Hosseinpour, Pegah M.; Lewis, Laura H.; Luo, Si; Heiman, Don; Menon, Latika; Arena, Dario A.

    2015-03-15

    To furnish insight into correlations of electronic and local structure and photoactivity, arrays of short and long TiO{sub 2} nanotubes were synthesized by electrochemical anodization of Ti foil, followed by thermal treatment in O{sub 2} (oxidizing), Ar (inert), and H{sub 2} (reducing) environments. The physical and electronic structures of these nanotubes were probed with x-ray diffraction, scanning electron microscopy, and synchrotron-based x-ray absorption spectroscopy, and correlated with their photocatalytic properties. The photocatalytic activity of the nanotubes was evaluated by monitoring the degradation of methyl orange under UV-VIS light irradiation. Results show that upon annealing at 350 °C all as-anodized amorphous TiO{sub 2} nanotube samples partially transform to the anatase structure, with variations in the degree of crystallinity and in the concentration of local defects near the nanotubes' surface (∼5 nm) depending on the annealing conditions. Degradation of methyl orange was not detectable for the as-anodized TiO{sub 2} nanotubes regardless of their length. However, the annealed long nanotubes demonstrated detectable catalytic activity, which was more significant with the H{sub 2}-annealed nanotubes than with the Ar- and O{sub 2}-annealed nanotube samples. This enhanced photocatalytic response of the H{sub 2}-annealed long nanotubes relative to the other samples is positively correlated with the presence of a larger concentration of lattice defects (such as Ti{sup 3+} and anticipated oxygen vacancies) and a slightly lower degree of crystallinity near the nanotube surface. These physical and electronic structural attributes impact the efficacy of visible light absorption; moreover, the increased concentration of surface defects is postulated to promote the generation of hydroxyl radicals and thus accelerate the photodegradation of the methyl orange. The information obtained from this study provides unique insight into the role of the near