A Low Cost Micro-Computer Based Local Area Network for Medical Office and Medical Center Automation
Epstein, Mel H.; Epstein, Lynn H.; Emerson, Ron G.
1984-01-01
A Low Cost Micro-computer based Local Area Network for medical office automation is described which makes use of an array of multiple and different personal computers interconnected by a local area network. Each computer on the network functions as fully potent workstations for data entry and report generation. The network allows each workstation complete access to the entire database. Additionally, designated computers may serve as access ports for remote terminals. Through “Gateways” the network may serve as a front end for a large mainframe, or may interface with another network. The system provides for the medical office environment the expandability and flexibility of a multi-terminal mainframe system at a far lower cost without sacrifice of performance.
NASA Technical Reports Server (NTRS)
Gibson, Jim; Jordan, Joe; Grant, Terry
1990-01-01
Local Area Network Extensible Simulator (LANES) computer program provides method for simulating performance of high-speed local-area-network (LAN) technology. Developed as design and analysis software tool for networking computers on board proposed Space Station. Load, network, link, and physical layers of layered network architecture all modeled. Mathematically models according to different lower-layer protocols: Fiber Distributed Data Interface (FDDI) and Star*Bus. Written in FORTRAN 77.
Organising a University Computer System: Analytical Notes.
ERIC Educational Resources Information Center
Jacquot, J. P.; Finance, J. P.
1990-01-01
Thirteen trends in university computer system development are identified, system user requirements are analyzed, critical system qualities are outlined, and three options for organizing a computer system are presented. The three systems include a centralized network, local network, and federation of local networks. (MSE)
On Real-Time Systems Using Local Area Networks.
1987-07-01
87-35 July, 1987 CS-TR-1892 On Real - Time Systems Using Local Area Networks*I VShem-Tov Levi Department of Computer Science Satish K. Tripathit...1892 On Real - Time Systems Using Local Area Networks* Shem-Tov Levi Department of Computer Science Satish K. Tripathit Department of Computer Science...constraints and the clock systems that feed the time to real - time systems . A model for real-time system based on LAN communication is presented in
2016-09-01
PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9...state- and local-level computer networks fertile ground for the cyber adversary. This research focuses on the threat to SLTT computer networks and how...institutions, and banking systems. The array of responsibilities and the cybersecurity threat landscape make state- and local-level computer networks fertile
10 CFR 727.2 - What are the definitions of the terms used in this part?
Code of Federal Regulations, 2012 CFR
2012-01-01
... information. Computer means desktop computers, portable computers, computer networks (including the DOE network and local area networks at or controlled by DOE organizations), network devices, automated.... DOE means the Department of Energy, including the National Nuclear Security Administration. DOE...
10 CFR 727.2 - What are the definitions of the terms used in this part?
Code of Federal Regulations, 2014 CFR
2014-01-01
... information. Computer means desktop computers, portable computers, computer networks (including the DOE network and local area networks at or controlled by DOE organizations), network devices, automated.... DOE means the Department of Energy, including the National Nuclear Security Administration. DOE...
10 CFR 727.2 - What are the definitions of the terms used in this part?
Code of Federal Regulations, 2013 CFR
2013-01-01
... information. Computer means desktop computers, portable computers, computer networks (including the DOE network and local area networks at or controlled by DOE organizations), network devices, automated.... DOE means the Department of Energy, including the National Nuclear Security Administration. DOE...
10 CFR 727.2 - What are the definitions of the terms used in this part?
Code of Federal Regulations, 2011 CFR
2011-01-01
... information. Computer means desktop computers, portable computers, computer networks (including the DOE network and local area networks at or controlled by DOE organizations), network devices, automated.... DOE means the Department of Energy, including the National Nuclear Security Administration. DOE...
10 CFR 727.2 - What are the definitions of the terms used in this part?
Code of Federal Regulations, 2010 CFR
2010-01-01
... information. Computer means desktop computers, portable computers, computer networks (including the DOE network and local area networks at or controlled by DOE organizations), network devices, automated.... DOE means the Department of Energy, including the National Nuclear Security Administration. DOE...
Do You Lock Your Network Doors? Some Network Management Precautions.
ERIC Educational Resources Information Center
Neray, Phil
1997-01-01
Discusses security problems and solutions for networked organizations with Internet connections. Topics include access to private networks from electronic mail information; computer viruses; computer software; corporate espionage; firewalls, that is computers that stand between a local network and the Internet; passwords; and physical security.…
LaRC local area networks to support distributed computing
NASA Technical Reports Server (NTRS)
Riddle, E. P.
1984-01-01
The Langley Research Center's (LaRC) Local Area Network (LAN) effort is discussed. LaRC initiated the development of a LAN to support a growing distributed computing environment at the Center. The purpose of the network is to provide an improved capability (over inteactive and RJE terminal access) for sharing multivendor computer resources. Specifically, the network will provide a data highway for the transfer of files between mainframe computers, minicomputers, work stations, and personal computers. An important influence on the overall network design was the vital need of LaRC researchers to efficiently utilize the large CDC mainframe computers in the central scientific computing facility. Although there was a steady migration from a centralized to a distributed computing environment at LaRC in recent years, the work load on the central resources increased. Major emphasis in the network design was on communication with the central resources within the distributed environment. The network to be implemented will allow researchers to utilize the central resources, distributed minicomputers, work stations, and personal computers to obtain the proper level of computing power to efficiently perform their jobs.
Local and Long Distance Computer Networking for Science Classrooms. Technical Report No. 43.
ERIC Educational Resources Information Center
Newman, Denis
This report describes Earth Lab, a project which is demonstrating new ways of using computers for upper-elementary and middle-school science instruction, and finding ways to integrate local-area and telecommunications networks. The discussion covers software, classroom activities, formative research on communications networks, and integration of…
Cellular computational platform and neurally inspired elements thereof
Okandan, Murat
2016-11-22
A cellular computational platform is disclosed that includes a multiplicity of functionally identical, repeating computational hardware units that are interconnected electrically and optically. Each computational hardware unit includes a reprogrammable local memory and has interconnections to other such units that have reconfigurable weights. Each computational hardware unit is configured to transmit signals into the network for broadcast in a protocol-less manner to other such units in the network, and to respond to protocol-less broadcast messages that it receives from the network. Each computational hardware unit is further configured to reprogram the local memory in response to incoming electrical and/or optical signals.
Average waiting time in FDDI networks with local priorities
NASA Technical Reports Server (NTRS)
Gercek, Gokhan
1994-01-01
A method is introduced to compute the average queuing delay experienced by different priority group messages in an FDDI node. It is assumed that no FDDI MAC layer priorities are used. Instead, a priority structure is introduced to the messages at a higher protocol layer (e.g. network layer) locally. Such a method was planned to be used in Space Station Freedom FDDI network. Conservation of the average waiting time is used as the key concept in computing average queuing delays. It is shown that local priority assignments are feasable specially when the traffic distribution is asymmetric in the FDDI network.
Networking DEC and IBM computers
NASA Technical Reports Server (NTRS)
Mish, W. H.
1983-01-01
Local Area Networking of DEC and IBM computers within the structure of the ISO-OSI Seven Layer Reference Model at a raw signaling speed of 1 Mops or greater are discussed. After an introduction to the ISO-OSI Reference Model nd the IEEE-802 Draft Standard for Local Area Networks (LANs), there follows a detailed discussion and comparison of the products available from a variety of manufactures to perform this networking task. A summary of these products is presented in a table.
Local Area Networks and the Learning Lab of the Future.
ERIC Educational Resources Information Center
Ebersole, Dennis C.
1987-01-01
Considers educational applications of local area computer networks and discusses industry standards for design established by the International Standards Organization (ISO) and Institute of Electrical and Electronic Engineers (IEEE). A futuristic view of a learning laboratory using a local area network is presented. (Author/LRW)
NASA Astrophysics Data System (ADS)
Chiang, Yen-Sheng
2015-11-01
Inequality measures are widely used in both the academia and public media to help us understand how incomes and wealth are distributed. They can be used to assess the distribution of a whole society-global inequality-as well as inequality of actors' referent networks-local inequality. How different is local inequality from global inequality? Formalizing the structure of reference groups as a network, the paper conducted a computational experiment to see how the structure of complex networks influences the difference between global and local inequality assessed by a selection of inequality measures. It was found that local inequality tends to be higher than global inequality when population size is large; network is dense and heterophilously assorted, and income distribution is less dispersed. The implications of the simulation findings are discussed.
Local area networking: Ames centerwide network
NASA Technical Reports Server (NTRS)
Price, Edwin
1988-01-01
A computer network can benefit the user by making his/her work quicker and easier. A computer network is made up of seven different layers with the lowest being the hardware, the top being the user, and the middle being the software. These layers are discussed.
Advanced information processing system: Local system services
NASA Technical Reports Server (NTRS)
Burkhardt, Laura; Alger, Linda; Whittredge, Roy; Stasiowski, Peter
1989-01-01
The Advanced Information Processing System (AIPS) is a multi-computer architecture composed of hardware and software building blocks that can be configured to meet a broad range of application requirements. The hardware building blocks are fault-tolerant, general-purpose computers, fault-and damage-tolerant networks (both computer and input/output), and interfaces between the networks and the computers. The software building blocks are the major software functions: local system services, input/output, system services, inter-computer system services, and the system manager. The foundation of the local system services is an operating system with the functions required for a traditional real-time multi-tasking computer, such as task scheduling, inter-task communication, memory management, interrupt handling, and time maintenance. Resting on this foundation are the redundancy management functions necessary in a redundant computer and the status reporting functions required for an operator interface. The functional requirements, functional design and detailed specifications for all the local system services are documented.
Localization Algorithm Based on a Spring Model (LASM) for Large Scale Wireless Sensor Networks.
Chen, Wanming; Mei, Tao; Meng, Max Q-H; Liang, Huawei; Liu, Yumei; Li, Yangming; Li, Shuai
2008-03-15
A navigation method for a lunar rover based on large scale wireless sensornetworks is proposed. To obtain high navigation accuracy and large exploration area, highnode localization accuracy and large network scale are required. However, thecomputational and communication complexity and time consumption are greatly increasedwith the increase of the network scales. A localization algorithm based on a spring model(LASM) method is proposed to reduce the computational complexity, while maintainingthe localization accuracy in large scale sensor networks. The algorithm simulates thedynamics of physical spring system to estimate the positions of nodes. The sensor nodesare set as particles with masses and connected with neighbor nodes by virtual springs. Thevirtual springs will force the particles move to the original positions, the node positionscorrespondingly, from the randomly set positions. Therefore, a blind node position can bedetermined from the LASM algorithm by calculating the related forces with the neighbornodes. The computational and communication complexity are O(1) for each node, since thenumber of the neighbor nodes does not increase proportionally with the network scale size.Three patches are proposed to avoid local optimization, kick out bad nodes and deal withnode variation. Simulation results show that the computational and communicationcomplexity are almost constant despite of the increase of the network scale size. The time consumption has also been proven to remain almost constant since the calculation steps arealmost unrelated with the network scale size.
NASA Technical Reports Server (NTRS)
Robinson, Julie A.; Tate-Brown, Judy M.
2009-01-01
Using a commercial software CD and minimal up-mass, SNFM monitors the Payload local area network (LAN) to analyze and troubleshoot LAN data traffic. Validating LAN traffic models may allow for faster and more reliable computer networks to sustain systems and science on future space missions. Research Summary: This experiment studies the function of the computer network onboard the ISS. On-orbit packet statistics are captured and used to validate ground based medium rate data link models and enhance the way that the local area network (LAN) is monitored. This information will allow monitoring and improvement in the data transfer capabilities of on-orbit computer networks. The Serial Network Flow Monitor (SNFM) experiment attempts to characterize the network equivalent of traffic jams on board ISS. The SNFM team is able to specifically target historical problem areas including the SAMS (Space Acceleration Measurement System) communication issues, data transmissions from the ISS to the ground teams, and multiple users on the network at the same time. By looking at how various users interact with each other on the network, conflicts can be identified and work can begin on solutions. SNFM is comprised of a commercial off the shelf software package that monitors packet traffic through the payload Ethernet LANs (local area networks) on board ISS.
Computers, Networks, and Desegregation at San Jose High Academy.
ERIC Educational Resources Information Center
Solomon, Gwen
1987-01-01
Describes magnet high school which was created in California to meet desegregation requirements and emphasizes computer technology. Highlights include local computer networks that connect science and music labs, the library/media center, business computer lab, writing lab, language arts skills lab, and social studies classrooms; software; teacher…
ERIC Educational Resources Information Center
Dessy, Raymond E.
1982-01-01
Local area networks are common communication conduits allowing various terminals, computers, discs, printers, and other electronic devices to intercommunicate over short distances. Discusses the vocabulary of such networks including RS-232C point-to-point and IEEE-488 multidrop protocols; error detection; message packets; multiplexing; star, ring,…
Li, Min; Li, Wenkai; Wu, Fang-Xiang; Pan, Yi; Wang, Jianxin
2018-06-14
Essential proteins are important participants in various life activities and play a vital role in the survival and reproduction of living organisms. Identification of essential proteins from protein-protein interaction (PPI) networks has great significance to facilitate the study of human complex diseases, the design of drugs and the development of bioinformatics and computational science. Studies have shown that highly connected proteins in a PPI network tend to be essential. A series of computational methods have been proposed to identify essential proteins by analyzing topological structures of PPI networks. However, the high noise in the PPI data can degrade the accuracy of essential protein prediction. Moreover, proteins must be located in the appropriate subcellular localization to perform their functions, and only when the proteins are located in the same subcellular localization, it is possible that they can interact with each other. In this paper, we propose a new network-based essential protein discovery method based on sub-network partition and prioritization by integrating subcellular localization information, named SPP. The proposed method SPP was tested on two different yeast PPI networks obtained from DIP database and BioGRID database. The experimental results show that SPP can effectively reduce the effect of false positives in PPI networks and predict essential proteins more accurately compared with other existing computational methods DC, BC, CC, SC, EC, IC, NC. Copyright © 2018 Elsevier Ltd. All rights reserved.
LINCS: Livermore's network architecture. [Octopus computing network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fletcher, J.G.
1982-01-01
Octopus, a local computing network that has been evolving at the Lawrence Livermore National Laboratory for over fifteen years, is currently undergoing a major revision. The primary purpose of the revision is to consolidate and redefine the variety of conventions and formats, which have grown up over the years, into a single standard family of protocols, the Livermore Interactive Network Communication Standard (LINCS). This standard treats the entire network as a single distributed operating system such that access to a computing resource is obtained in a single way, whether that resource is local (on the same computer as the accessingmore » process) or remote (on another computer). LINCS encompasses not only communication but also such issues as the relationship of customer to server processes and the structure, naming, and protection of resources. The discussion includes: an overview of the Livermore user community and computing hardware, the functions and structure of each of the seven layers of LINCS protocol, the reasons why we have designed our own protocols and why we are dissatisfied by the directions that current protocol standards are taking.« less
Additional Security Considerations for Grid Management
NASA Technical Reports Server (NTRS)
Eidson, Thomas M.
2003-01-01
The use of Grid computing environments is growing in popularity. A Grid computing environment is primarily a wide area network that encompasses multiple local area networks, where some of the local area networks are managed by different organizations. A Grid computing environment also includes common interfaces for distributed computing software so that the heterogeneous set of machines that make up the Grid can be used more easily. The other key feature of a Grid is that the distributed computing software includes appropriate security technology. The focus of most Grid software is on the security involved with application execution, file transfers, and other remote computing procedures. However, there are other important security issues related to the management of a Grid and the users who use that Grid. This note discusses these additional security issues and makes several suggestions as how they can be managed.
Networking and Microcomputers. ERIC Digest.
ERIC Educational Resources Information Center
Klausmeier, Jane
Computer networks can fall into three broad categories--local area networks (LAN), microcomputer based messaging systems (this includes computer bulletin board systems), or commercial information systems. Many of the same types of activities take place within the three categories. The major differences are the types of information available and…
Performing a local reduction operation on a parallel computer
Blocksome, Michael A; Faraj, Daniel A
2013-06-04
A parallel computer including compute nodes, each including two reduction processing cores, a network write processing core, and a network read processing core, each processing core assigned an input buffer. Copying, in interleaved chunks by the reduction processing cores, contents of the reduction processing cores' input buffers to an interleaved buffer in shared memory; copying, by one of the reduction processing cores, contents of the network write processing core's input buffer to shared memory; copying, by another of the reduction processing cores, contents of the network read processing core's input buffer to shared memory; and locally reducing in parallel by the reduction processing cores: the contents of the reduction processing core's input buffer; every other interleaved chunk of the interleaved buffer; the copied contents of the network write processing core's input buffer; and the copied contents of the network read processing core's input buffer.
Performing a local reduction operation on a parallel computer
Blocksome, Michael A.; Faraj, Daniel A.
2012-12-11
A parallel computer including compute nodes, each including two reduction processing cores, a network write processing core, and a network read processing core, each processing core assigned an input buffer. Copying, in interleaved chunks by the reduction processing cores, contents of the reduction processing cores' input buffers to an interleaved buffer in shared memory; copying, by one of the reduction processing cores, contents of the network write processing core's input buffer to shared memory; copying, by another of the reduction processing cores, contents of the network read processing core's input buffer to shared memory; and locally reducing in parallel by the reduction processing cores: the contents of the reduction processing core's input buffer; every other interleaved chunk of the interleaved buffer; the copied contents of the network write processing core's input buffer; and the copied contents of the network read processing core's input buffer.
The Erector Set Computer: Building a Virtual Workstation over a Large Multi-Vendor Network.
ERIC Educational Resources Information Center
Farago, John M.
1989-01-01
Describes a computer network developed at the City University of New York Law School that uses device sharing and local area networking to create a simulated law office. Topics discussed include working within a multi-vendor environment, and the communication, information, and database access services available through the network. (CLB)
Master-slave mixed arrays for data-flow computations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, T.L.; Fisher, P.D.
1983-01-01
Control cells (masters) and computation cells (slaves) are mixed in regular geometric patterns to form reconfigurable arrays known as master-slave mixed arrays (MSMAS). Interconnections of the corners and edges of the hexagonal control cells and the edges of the hexagonal computation cells are used to construct synchronous and asynchronous communication networks, which support local computation and local communication. Data-driven computations result in self-directed ring pipelines within the MSMA, and composite data-flow computations are executed in a pipelined fashion. By viewing an MSMA as a computing network of tightly-linked ring pipelines, data-flow programs can be uniformly distributed over these pipelines formore » efficient resource utilisation. 9 references.« less
A Direct Position-Determination Approach for Multiple Sources Based on Neural Network Computation.
Chen, Xin; Wang, Ding; Yin, Jiexin; Wu, Ying
2018-06-13
The most widely used localization technology is the two-step method that localizes transmitters by measuring one or more specified positioning parameters. Direct position determination (DPD) is a promising technique that directly localizes transmitters from sensor outputs and can offer superior localization performance. However, existing DPD algorithms such as maximum likelihood (ML)-based and multiple signal classification (MUSIC)-based estimations are computationally expensive, making it difficult to satisfy real-time demands. To solve this problem, we propose the use of a modular neural network for multiple-source DPD. In this method, the area of interest is divided into multiple sub-areas. Multilayer perceptron (MLP) neural networks are employed to detect the presence of a source in a sub-area and filter sources in other sub-areas, and radial basis function (RBF) neural networks are utilized for position estimation. Simulation results show that a number of appropriately trained neural networks can be successfully used for DPD. The performance of the proposed MLP-MLP-RBF method is comparable to the performance of the conventional MUSIC-based DPD algorithm for various signal-to-noise ratios and signal power ratios. Furthermore, the MLP-MLP-RBF network is less computationally intensive than the classical DPD algorithm and is therefore an attractive choice for real-time applications.
Secure Wireless Networking at Simon Fraser University.
ERIC Educational Resources Information Center
Johnson, Worth
2003-01-01
Describes the wireless local area network (WLAN) at Simon Fraser University, British Columbia, Canada. Originally conceived to address computing capacity and reduce university computer space demands, the WLAN has provided a seamless computing environment for students and solved a number of other campus problems as well. (SLD)
ERIC Educational Resources Information Center
Kibirige, Harry M.
1991-01-01
Discussion of the potential effects of fiber optic-based communication technology on information networks and systems design highlights library automation. Topics discussed include computers and telecommunications systems, the importance of information in national economies, microcomputers, local area networks (LANs), national computer networks,…
A 250-Mbit/s ring local computer network using 1.3-microns single-mode optical fibers
NASA Technical Reports Server (NTRS)
Eng, S. T.; Tell, R.; Andersson, T.; Eng, B.
1985-01-01
A 250-Mbit/s three-station fiber-optic ring local computer network was built and successfully demonstrated. A conventional token protocol was employed for bus arbitration to maximize the bus efficiency under high loading conditions, and a non-return-to-zero (NRS) data encoding format was selected for simplicity and maximum utilization of the ECL-circuit bandwidth.
Embedded ubiquitous services on hospital information systems.
Kuroda, Tomohiro; Sasaki, Hiroshi; Suenaga, Takatoshi; Masuda, Yasushi; Yasumuro, Yoshihiro; Hori, Kenta; Ohboshi, Naoki; Takemura, Tadamasa; Chihara, Kunihiro; Yoshihara, Hiroyuki
2012-11-01
A Hospital Information Systems (HIS) have turned a hospital into a gigantic computer with huge computational power, huge storage and wired/wireless local area network. On the other hand, a modern medical device, such as echograph, is a computer system with several functional units connected by an internal network named a bus. Therefore, we can embed such a medical device into the HIS by simply replacing the bus with the local area network. This paper designed and developed two embedded systems, a ubiquitous echograph system and a networked digital camera. Evaluations of the developed systems clearly show that the proposed approach, embedding existing clinical systems into HIS, drastically changes productivity in the clinical field. Once a clinical system becomes a pluggable unit for a gigantic computer system, HIS, the combination of multiple embedded systems with application software designed under deep consideration about clinical processes may lead to the emergence of disruptive innovation in the clinical field.
Fault-Tolerant Local-Area Network
NASA Technical Reports Server (NTRS)
Morales, Sergio; Friedman, Gary L.
1988-01-01
Local-area network (LAN) for computers prevents single-point failure from interrupting communication between nodes of network. Includes two complete cables, LAN 1 and LAN 2. Microprocessor-based slave switches link cables to network-node devices as work stations, print servers, and file servers. Slave switches respond to commands from master switch, connecting nodes to two cable networks or disconnecting them so they are completely isolated. System monitor and control computer (SMC) acts as gateway, allowing nodes on either cable to communicate with each other and ensuring that LAN 1 and LAN 2 are fully used when functioning properly. Network monitors and controls itself, automatically routes traffic for efficient use of resources, and isolates and corrects its own faults, with potential dramatic reduction in time out of service.
A Method for Decentralised Optimisation in Networks
NASA Astrophysics Data System (ADS)
Saramäki, Jari
2005-06-01
We outline a method for distributed Monte Carlo optimisation of computational problems in networks of agents, such as peer-to-peer networks of computers. The optimisation and messaging procedures are inspired by gossip protocols and epidemic data dissemination, and are decentralised, i.e. no central overseer is required. In the outlined method, each agent follows simple local rules and seeks for better solutions to the optimisation problem by Monte Carlo trials, as well as by querying other agents in its local neighbourhood. With proper network topology, good solutions spread rapidly through the network for further improvement. Furthermore, the system retains its functionality even in realistic settings where agents are randomly switched on and off.
Economics of Computing: The Case of Centralized Network File Servers.
ERIC Educational Resources Information Center
Solomon, Martin B.
1994-01-01
Discusses computer networking and the cost effectiveness of decentralization, including local area networks. A planned experiment with a centralized approach to the operation and management of file servers at the University of South Carolina is described that hopes to realize cost savings and the avoidance of staffing problems. (Contains four…
Communication Environments for Local Networks.
1982-12-01
San Francisco, February-March 1979, pp.272.275. [Frank 75] Frank, H., I. Gitman , and R. Van Slyke, "Packet radio system - Network * -considerations...34 in AFIPS Conference Proceedings, Volume 44: National Computer Conference, Anaheim, Calif., May 1975, pp. 217-231. [Frank 76a] Frank, H., I. Gitman ...Local, Regional and Larger Scale Integrated Networks, Volume 2, 4 February 1976. [Frank 76b] Frank, H., I. Gitman , and R. Van Slyke, Local and Regional
Gharghan, Sadik Kamel; Nordin, Rosdiadee; Ismail, Mahamod
2016-08-06
In this paper, we propose two soft computing localization techniques for wireless sensor networks (WSNs). The two techniques, Neural Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN), focus on a range-based localization method which relies on the measurement of the received signal strength indicator (RSSI) from the three ZigBee anchor nodes distributed throughout the track cycling field. The soft computing techniques aim to estimate the distance between bicycles moving on the cycle track for outdoor and indoor velodromes. In the first approach the ANFIS was considered, whereas in the second approach the ANN was hybridized individually with three optimization algorithms, namely Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), and Backtracking Search Algorithm (BSA). The results revealed that the hybrid GSA-ANN outperforms the other methods adopted in this paper in terms of accuracy localization and distance estimation accuracy. The hybrid GSA-ANN achieves a mean absolute distance estimation error of 0.02 m and 0.2 m for outdoor and indoor velodromes, respectively.
A Wireless Sensor Network with Soft Computing Localization Techniques for Track Cycling Applications
Gharghan, Sadik Kamel; Nordin, Rosdiadee; Ismail, Mahamod
2016-01-01
In this paper, we propose two soft computing localization techniques for wireless sensor networks (WSNs). The two techniques, Neural Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN), focus on a range-based localization method which relies on the measurement of the received signal strength indicator (RSSI) from the three ZigBee anchor nodes distributed throughout the track cycling field. The soft computing techniques aim to estimate the distance between bicycles moving on the cycle track for outdoor and indoor velodromes. In the first approach the ANFIS was considered, whereas in the second approach the ANN was hybridized individually with three optimization algorithms, namely Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), and Backtracking Search Algorithm (BSA). The results revealed that the hybrid GSA-ANN outperforms the other methods adopted in this paper in terms of accuracy localization and distance estimation accuracy. The hybrid GSA-ANN achieves a mean absolute distance estimation error of 0.02 m and 0.2 m for outdoor and indoor velodromes, respectively. PMID:27509495
The Role of Wireless Computing Technology in the Design of Schools.
ERIC Educational Resources Information Center
Nair, Prakash
This document discusses integrating computers logically and affordably into a school building's infrastructure through the use of wireless technology. It begins by discussing why wireless networks using mobile computers are preferable to desktop machines in each classoom. It then explains the features of a wireless local area network (WLAN) and…
Method and apparatus of assessing down-hole drilling conditions
Hall, David R [Provo, UT; Pixton, David S [Lehl, UT; Johnson, Monte L [Orem, UT; Bartholomew, David B [Springville, UT; Fox, Joe [Spanish Fork, UT
2007-04-24
A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.
A Research Program in Computer Technology. 1986 Annual Technical Report
1989-08-01
1986 (Annual Technical Report I July 1985 - June 1986 A Research Program in Computer Technology ISI/SR-87-178 U S C INFORMA-TION S C I EN C ES...Program in Computer Technology (Unclassified) 12. PERSONAL AUTHOR(S) 151 Research Staff 13a. TYPE OF REPORT 113b. TIME COVERED 14 DATE OF REPORT (Yeer...survivable networks 17. distributed processing, local networks, personal computers, workstation environment 18. computer acquisition, Strategic Computing 19
DMA engine for repeating communication patterns
Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Steinmacher-Burow, Burkhard; Vranas, Pavlos
2010-09-21
A parallel computer system is constructed as a network of interconnected compute nodes to operate a global message-passing application for performing communications across the network. Each of the compute nodes includes one or more individual processors with memories which run local instances of the global message-passing application operating at each compute node to carry out local processing operations independent of processing operations carried out at other compute nodes. Each compute node also includes a DMA engine constructed to interact with the application via Injection FIFO Metadata describing multiple Injection FIFOs where each Injection FIFO may containing an arbitrary number of message descriptors in order to process messages with a fixed processing overhead irrespective of the number of message descriptors included in the Injection FIFO.
ERIC Educational Resources Information Center
Balajthy, Ernest
The first section of this report lists a variety of advantages and disadvantages of educational applications of Local Area Networks (LANs), with descriptive and evaluative comments on how the Union County Computers in the Curricula Network Project (Cranford, New Jersey) dealt with each. The second section of the report describes the following…
A scalable architecture for online anomaly detection of WLCG batch jobs
NASA Astrophysics Data System (ADS)
Kuehn, E.; Fischer, M.; Giffels, M.; Jung, C.; Petzold, A.
2016-10-01
For data centres it is increasingly important to monitor the network usage, and learn from network usage patterns. Especially configuration issues or misbehaving batch jobs preventing a smooth operation need to be detected as early as possible. At the GridKa data and computing centre we therefore operate a tool BPNetMon for monitoring traffic data and characteristics of WLCG batch jobs and pilots locally on different worker nodes. On the one hand local information itself are not sufficient to detect anomalies for several reasons, e.g. the underlying job distribution on a single worker node might change or there might be a local misconfiguration. On the other hand a centralised anomaly detection approach does not scale regarding network communication as well as computational costs. We therefore propose a scalable architecture based on concepts of a super-peer network.
Gavorník, P; Kristofovicová, A
1997-10-01
The authors give information about their positive and negative experience at using computers connected to local network in ophthalmology department. They put the stress on a need to respect the requirements on hygiene of work at the beginning of the process of planning of suitable hardware choice software and workplace equipment. The need of sufficient number of workplace-terminals and software choice are considered to be necessary and the latter one allows a complex data processing and forming of the common database of patients for outpatient department, department and storage files. They refer to risks of local network switching over with other workplaces and possibility of undesirable information escapes and virus penetration into the network.
Management and development of local area network upgrade prototype
NASA Technical Reports Server (NTRS)
Fouser, T. J.
1981-01-01
Given the situation of having management and development users accessing a central computing facility and given the fact that these same users have the need for local computation and storage, the utilization of a commercially available networking system such as CP/NET from Digital Research provides the building blocks for communicating intelligent microsystems to file and print services. The major problems to be overcome in the implementation of such a network are the dearth of intelligent communication front-ends for the microcomputers and the lack of a rich set of management and software development tools.
Hoenicke, Dirk
2014-12-02
Disclosed are a unified method and apparatus to classify, route, and process injected data packets into a network so as to belong to a plurality of logical networks, each implementing a specific flow of data on top of a common physical network. The method allows to locally identify collectives of packets for local processing, such as the computation of the sum, difference, maximum, minimum, or other logical operations among the identified packet collective. Packets are injected together with a class-attribute and an opcode attribute. Network routers, employing the described method, use the packet attributes to look-up the class-specific route information from a local route table, which contains the local incoming and outgoing directions as part of the specifically implemented global data flow of the particular virtual network.
Searching LOGIN, the Local Government Information Network.
ERIC Educational Resources Information Center
Jack, Robert F.
1984-01-01
Describes a computer-based information retrieval and electronic messaging system produced by Control Data Corporation now being used by government agencies and other organizations. Background of Local Government Information Network (LOGIN), database structure, types of LOGIN units, searching LOGIN (intersect, display, and list commands), and how…
Parasuram, Harilal; Nair, Bipin; D'Angelo, Egidio; Hines, Michael; Naldi, Giovanni; Diwakar, Shyam
2016-01-01
Local Field Potentials (LFPs) are population signals generated by complex spatiotemporal interaction of current sources and dipoles. Mathematical computations of LFPs allow the study of circuit functions and dysfunctions via simulations. This paper introduces LFPsim, a NEURON-based tool for computing population LFP activity and single neuron extracellular potentials. LFPsim was developed to be used on existing cable compartmental neuron and network models. Point source, line source, and RC based filter approximations can be used to compute extracellular activity. As a demonstration of efficient implementation, we showcase LFPs from mathematical models of electrotonically compact cerebellum granule neurons and morphologically complex neurons of the neocortical column. LFPsim reproduced neocortical LFP at 8, 32, and 56 Hz via current injection, in vitro post-synaptic N2a, N2b waves and in vivo T-C waves in cerebellum granular layer. LFPsim also includes a simulation of multi-electrode array of LFPs in network populations to aid computational inference between biophysical activity in neural networks and corresponding multi-unit activity resulting in extracellular and evoked LFP signals.
Global competition and local cooperation in a network of neural oscillators
NASA Astrophysics Data System (ADS)
Terman, David; Wang, DeLiang
An architecture of locally excitatory, globally inhibitory oscillator networks is proposed and investigated both analytically and by computer simulation. The model for each oscillator corresponds to a standard relaxation oscillator with two time scales. Oscillators are locally coupled by a scheme that resembles excitatory synaptic coupling, and each oscillator also inhibits other oscillators through a common inhibitor. Oscillators are driven to be oscillatory by external stimulation. The network exhibits a mechanism of selective gating, whereby an oscillator jumping up to its active phase rapidly recruits the oscillators stimulated by the same pattern, while preventing the other oscillators from jumping up. We show analytically that with the selective gating mechanism, the network rapidly achieves both synchronization within blocks of oscillators that are stimulated by connected regions and desynchronization between different blocks. Computer simulations demonstrate the model's promising ability for segmenting multiple input patterns in real time. This model lays a physical foundation for the oscillatory correlation theory of feature binding and may provide an effective computational framework for scene segmentation and figure/ ground segregation.
NASA Astrophysics Data System (ADS)
Wang, DeLiang; Terman, David
1995-01-01
A novel class of locally excitatory, globally inhibitory oscillator networks (LEGION) is proposed and investigated analytically and by computer simulation. The model of each oscillator corresponds to a standard relaxation oscillator with two time scales. The network exhibits a mechanism of selective gating, whereby an oscillator jumping up to its active phase rapidly recruits the oscillators stimulated by the same pattern, while preventing other oscillators from jumping up. We show analytically that with the selective gating mechanism the network rapidly achieves both synchronization within blocks of oscillators that are stimulated by connected regions and desynchronization between different blocks. Computer simulations demonstrate LEGION's promising ability for segmenting multiple input patterns in real time. This model lays a physical foundation for the oscillatory correlation theory of feature binding, and may provide an effective computational framework for scene segmentation and figure/ground segregation.
Local Area Networks: Are There Advantages for Primary Schools?
ERIC Educational Resources Information Center
Aherran, Anne
1986-01-01
Examines the relative merits of using computer networks (several computers linked together and sharing a single disk drive) and stand-alone systems (self-contained units operating independently) in Australian primary school classrooms. Advances several arguments favoring stand-alone systems, which improve accessibility and enhance individual…
Requirements for a network storage service
NASA Technical Reports Server (NTRS)
Kelly, Suzanne M.; Haynes, Rena A.
1991-01-01
Sandia National Laboratories provides a high performance classified computer network as a core capability in support of its mission of nuclear weapons design and engineering, physical sciences research, and energy research and development. The network, locally known as the Internal Secure Network (ISN), comprises multiple distributed local area networks (LAN's) residing in New Mexico and California. The TCP/IP protocol suite is used for inter-node communications. Scientific workstations and mid-range computers, running UNIX-based operating systems, compose most LAN's. One LAN, operated by the Sandia Corporate Computing Computing Directorate, is a general purpose resource providing a supercomputer and a file server to the entire ISN. The current file server on the supercomputer LAN is an implementation of the Common File Server (CFS). Subsequent to the design of the ISN, Sandia reviewed its mass storage requirements and chose to enter into a competitive procurement to replace the existing file server with one more adaptable to a UNIX/TCP/IP environment. The requirements study for the network was the starting point for the requirements study for the new file server. The file server is called the Network Storage Service (NSS) and its requirements are described. An application or functional description of the NSS is given. The final section adds performance, capacity, and access constraints to the requirements.
Neural networks with local receptive fields and superlinear VC dimension.
Schmitt, Michael
2002-04-01
Local receptive field neurons comprise such well-known and widely used unit types as radial basis function (RBF) neurons and neurons with center-surround receptive field. We study the Vapnik-Chervonenkis (VC) dimension of feedforward neural networks with one hidden layer of these units. For several variants of local receptive field neurons, we show that the VC dimension of these networks is superlinear. In particular, we establish the bound Omega(W log k) for any reasonably sized network with W parameters and k hidden nodes. This bound is shown to hold for discrete center-surround receptive field neurons, which are physiologically relevant models of cells in the mammalian visual system, for neurons computing a difference of gaussians, which are popular in computational vision, and for standard RBF neurons, a major alternative to sigmoidal neurons in artificial neural networks. The result for RBF neural networks is of particular interest since it answers a question that has been open for several years. The results also give rise to lower bounds for networks with fixed input dimension. Regarding constants, all bounds are larger than those known thus far for similar architectures with sigmoidal neurons. The superlinear lower bounds contrast with linear upper bounds for single local receptive field neurons also derived here.
Spontaneous Ad Hoc Mobile Cloud Computing Network
Lacuesta, Raquel; Sendra, Sandra; Peñalver, Lourdes
2014-01-01
Cloud computing helps users and companies to share computing resources instead of having local servers or personal devices to handle the applications. Smart devices are becoming one of the main information processing devices. Their computing features are reaching levels that let them create a mobile cloud computing network. But sometimes they are not able to create it and collaborate actively in the cloud because it is difficult for them to build easily a spontaneous network and configure its parameters. For this reason, in this paper, we are going to present the design and deployment of a spontaneous ad hoc mobile cloud computing network. In order to perform it, we have developed a trusted algorithm that is able to manage the activity of the nodes when they join and leave the network. The paper shows the network procedures and classes that have been designed. Our simulation results using Castalia show that our proposal presents a good efficiency and network performance even by using high number of nodes. PMID:25202715
Spontaneous ad hoc mobile cloud computing network.
Lacuesta, Raquel; Lloret, Jaime; Sendra, Sandra; Peñalver, Lourdes
2014-01-01
Cloud computing helps users and companies to share computing resources instead of having local servers or personal devices to handle the applications. Smart devices are becoming one of the main information processing devices. Their computing features are reaching levels that let them create a mobile cloud computing network. But sometimes they are not able to create it and collaborate actively in the cloud because it is difficult for them to build easily a spontaneous network and configure its parameters. For this reason, in this paper, we are going to present the design and deployment of a spontaneous ad hoc mobile cloud computing network. In order to perform it, we have developed a trusted algorithm that is able to manage the activity of the nodes when they join and leave the network. The paper shows the network procedures and classes that have been designed. Our simulation results using Castalia show that our proposal presents a good efficiency and network performance even by using high number of nodes.
Guzzi, Pietro Hiram; Milenkovic, Tijana
2018-05-01
Analogous to genomic sequence alignment that allows for across-species transfer of biological knowledge between conserved sequence regions, biological network alignment can be used to guide the knowledge transfer between conserved regions of molecular networks of different species. Hence, biological network alignment can be used to redefine the traditional notion of a sequence-based homology to a new notion of network-based homology. Analogous to genomic sequence alignment, there exist local and global biological network alignments. Here, we survey prominent and recent computational approaches of each network alignment type and discuss their (dis)advantages. Then, as it was recently shown that the two approach types are complementary, in the sense that they capture different slices of cellular functioning, we discuss the need to reconcile the two network alignment types and present a recent first step in this direction. We conclude with some open research problems on this topic and comment on the usefulness of network alignment in other domains besides computational biology.
Space lab system analysis: Advanced Solid Rocket Motor (ASRM) communications networks analysis
NASA Technical Reports Server (NTRS)
Ingels, Frank M.; Moorhead, Robert J., II; Moorhead, Jane N.; Shearin, C. Mark; Thompson, Dale R.
1990-01-01
A synopsis of research on computer viruses and computer security is presented. A review of seven technical meetings attended is compiled. A technical discussion on the communication plans for the ASRM facility is presented, with a brief tutorial on the potential local area network media and protocols.
The Role of Wireless Computing Technology in the Design of Schools.
ERIC Educational Resources Information Center
Nair, Prakash
2003-01-01
After briefly describing the educational advantages of wireless networks using mobile computers, discusses the technical, operational, financial aspects of wireless local area networks (WLAN). Provides examples of school facilities designed for the use of WLAN. Includes a glossary of WLAN-related terms. (Contains 12 references.)
Livermore Big Artificial Neural Network Toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Essen, Brian Van; Jacobs, Sam; Kim, Hyojin
2016-07-01
LBANN is a toolkit that is designed to train artificial neural networks efficiently on high performance computing architectures. It is optimized to take advantages of key High Performance Computing features to accelerate neural network training. Specifically it is optimized for low-latency, high bandwidth interconnects, node-local NVRAM, node-local GPU accelerators, and high bandwidth parallel file systems. It is built on top of the open source Elemental distributed-memory dense and spars-direct linear algebra and optimization library that is released under the BSD license. The algorithms contained within LBANN are drawn from the academic literature and implemented to work within a distributed-memory framework.
Breaking Free with Wireless Networks.
ERIC Educational Resources Information Center
Fleischman, John
2002-01-01
Discusses wireless local area networks (LANs) which typically consist of laptop computers that connect to fixed access points via infrared or radio signals. Topics include wide area networks; personal area networks; problems, including limitations of available bandwidth, interference, and security concerns; use in education; interoperability;…
Contemporary data communications and local networking principles
NASA Astrophysics Data System (ADS)
Chartrand, G. A.
1982-08-01
The most important issue of data communications today is networking which can be roughly divided into two catagories: local networking; and distributed processing. The most sought after aspect of local networking is office automation. Office automation really is the grand unification of all local communications and not of a new type of business office as the name might imply. This unification is the ability to have voice, data, and video carried by the same medium and managed by the same network resources. There are many different ways this unification can be done, and many manufacturers are designing systems to accomplish the task. Distributed processing attempts to share resources between computer systems and peripheral subsystems from the same or different manufacturers. There are several companies that are trying to solve both networking problems with the same network architecture.
ARACHNE: A neural-neuroglial network builder with remotely controlled parallel computing
Rusakov, Dmitri A.; Savtchenko, Leonid P.
2017-01-01
Creating and running realistic models of neural networks has hitherto been a task for computing professionals rather than experimental neuroscientists. This is mainly because such networks usually engage substantial computational resources, the handling of which requires specific programing skills. Here we put forward a newly developed simulation environment ARACHNE: it enables an investigator to build and explore cellular networks of arbitrary biophysical and architectural complexity using the logic of NEURON and a simple interface on a local computer or a mobile device. The interface can control, through the internet, an optimized computational kernel installed on a remote computer cluster. ARACHNE can combine neuronal (wired) and astroglial (extracellular volume-transmission driven) network types and adopt realistic cell models from the NEURON library. The program and documentation (current version) are available at GitHub repository https://github.com/LeonidSavtchenko/Arachne under the MIT License (MIT). PMID:28362877
Modeling a Wireless Network for International Space Station
NASA Technical Reports Server (NTRS)
Alena, Richard; Yaprak, Ece; Lamouri, Saad
2000-01-01
This paper describes the application of wireless local area network (LAN) simulation modeling methods to the hybrid LAN architecture designed for supporting crew-computing tools aboard the International Space Station (ISS). These crew-computing tools, such as wearable computers and portable advisory systems, will provide crew members with real-time vehicle and payload status information and access to digital technical and scientific libraries, significantly enhancing human capabilities in space. A wireless network, therefore, will provide wearable computer and remote instruments with the high performance computational power needed by next-generation 'intelligent' software applications. Wireless network performance in such simulated environments is characterized by the sustainable throughput of data under different traffic conditions. This data will be used to help plan the addition of more access points supporting new modules and more nodes for increased network capacity as the ISS grows.
HeNCE: A Heterogeneous Network Computing Environment
Beguelin, Adam; Dongarra, Jack J.; Geist, George Al; ...
1994-01-01
Network computing seeks to utilize the aggregate resources of many networked computers to solve a single problem. In so doing it is often possible to obtain supercomputer performance from an inexpensive local area network. The drawback is that network computing is complicated and error prone when done by hand, especially if the computers have different operating systems and data formats and are thus heterogeneous. The heterogeneous network computing environment (HeNCE) is an integrated graphical environment for creating and running parallel programs over a heterogeneous collection of computers. It is built on a lower level package called parallel virtual machine (PVM).more » The HeNCE philosophy of parallel programming is to have the programmer graphically specify the parallelism of a computation and to automate, as much as possible, the tasks of writing, compiling, executing, debugging, and tracing the network computation. Key to HeNCE is a graphical language based on directed graphs that describe the parallelism and data dependencies of an application. Nodes in the graphs represent conventional Fortran or C subroutines and the arcs represent data and control flow. This article describes the present state of HeNCE, its capabilities, limitations, and areas of future research.« less
A High Performance VLSI Computer Architecture For Computer Graphics
NASA Astrophysics Data System (ADS)
Chin, Chi-Yuan; Lin, Wen-Tai
1988-10-01
A VLSI computer architecture, consisting of multiple processors, is presented in this paper to satisfy the modern computer graphics demands, e.g. high resolution, realistic animation, real-time display etc.. All processors share a global memory which are partitioned into multiple banks. Through a crossbar network, data from one memory bank can be broadcasted to many processors. Processors are physically interconnected through a hyper-crossbar network (a crossbar-like network). By programming the network, the topology of communication links among processors can be reconfigurated to satisfy specific dataflows of different applications. Each processor consists of a controller, arithmetic operators, local memory, a local crossbar network, and I/O ports to communicate with other processors, memory banks, and a system controller. Operations in each processor are characterized into two modes, i.e. object domain and space domain, to fully utilize the data-independency characteristics of graphics processing. Special graphics features such as 3D-to-2D conversion, shadow generation, texturing, and reflection, can be easily handled. With the current high density interconnection (MI) technology, it is feasible to implement a 64-processor system to achieve 2.5 billion operations per second, a performance needed in most advanced graphics applications.
Secure and Efficient Network Fault Localization
2012-02-27
ORGANIZATION NAME(S) AND ADDRESS (ES) Carnegie Mellon University,School of Computer Science,Computer Science Department,Pittsburgh,PA,15213 8. PERFORMING...ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT...efficiency than previously known protocols for fault localization. Our proposed fault localization protocols also address the security threats that
Critical Thinking about Literature through Computer Networking.
ERIC Educational Resources Information Center
Long, Thomas L.; Pedersen, Christine
A computer-oriented, classroom-based research project was conducted at Thomas Nelson Community College in Hampton, Virginia, to explore the ways in which students in a composition and literature class might use a local area network (LAN) as a catalyst to critical thinking, to construct a decentralized classroom, and to use various forms of…
The Business Education Lab and Local Area Networking for Curriculum Improvement.
ERIC Educational Resources Information Center
Seals, Georgina; And Others
This guide explains how to incorporate a local area network (LAN) into the business education curriculum. The first section defines LAN, a communications system that links computers and other peripherals within an office or throughout nearby buildings and shares multiuser software and send and/or receive information. Curriculum planning…
A Research Program in Computer Technology. 1987 Annual Technical Report
1990-07-01
TITLE (Indcle Security Clanificstion) 1987 Annual Technical Report: *A Research Program in Computer Technology (Unclassified) 12. PERSONAL AUTHOR(S) IS...distributed processing, survivable networks 17. NCE: distributed processing, local networks, personal computers, workstation environment 18. SC Dev...are the auw’iors and should not be Interpreted as representIng the official opinion or policy of DARPA, the U.S. Government, or any person or agency
Management of the Space Station Freedom onboard local area network
NASA Technical Reports Server (NTRS)
Miller, Frank W.; Mitchell, Randy C.
1991-01-01
An operational approach is proposed to managing the Data Management System Local Area Network (LAN) on Space Station Freedom. An overview of the onboard LAN elements is presented first, followed by a proposal of the operational guidelines by which management of the onboard network may be effected. To implement the guidelines, a recommendation is then presented on a set of network management parameters which should be made available in the onboard Network Operating System Computer Software Configuration Item and Fiber Distributed Data Interface firmware. Finally, some implications for the implementation of the various network management elements are discussed.
What Presidents Need To Know about the Impact of Networking.
ERIC Educational Resources Information Center
Leadership Abstracts, 1993
1993-01-01
Many colleges and universities are undergoing cultural changes as a result of extensive voice, data, and video networking. Local area networks link large portions of most campuses, and national networks have evolved from specialized services for researchers in computer-related disciplines to general utilities on many campuses. Campuswide systems…
Hébert-Dufresne, Laurent; Grochow, Joshua A; Allard, Antoine
2016-08-18
We introduce a network statistic that measures structural properties at the micro-, meso-, and macroscopic scales, while still being easy to compute and interpretable at a glance. Our statistic, the onion spectrum, is based on the onion decomposition, which refines the k-core decomposition, a standard network fingerprinting method. The onion spectrum is exactly as easy to compute as the k-cores: It is based on the stages at which each vertex gets removed from a graph in the standard algorithm for computing the k-cores. Yet, the onion spectrum reveals much more information about a network, and at multiple scales; for example, it can be used to quantify node heterogeneity, degree correlations, centrality, and tree- or lattice-likeness. Furthermore, unlike the k-core decomposition, the combined degree-onion spectrum immediately gives a clear local picture of the network around each node which allows the detection of interesting subgraphs whose topological structure differs from the global network organization. This local description can also be leveraged to easily generate samples from the ensemble of networks with a given joint degree-onion distribution. We demonstrate the utility of the onion spectrum for understanding both static and dynamic properties on several standard graph models and on many real-world networks.
Wireless local area network security.
Bergeron, Bryan P
2004-01-01
Wireless local area networks (WLANs) are increasingly popular in clinical settings because they facilitate the use of wireless PDAs, laptops, and other pervasive computing devices at the point of care. However, because of the relative immaturity of wireless network technology and evolving standards, WLANs, if improperly configured, can present significant security risks. Understanding the security limitations of the technology and available fixes can help minimize the risks of clinical data loss and maintain compliance with HIPAA guidelines.
Development of an Empirical Local Magnitude Formula for Northern Oklahoma
NASA Astrophysics Data System (ADS)
Spriggs, N.; Karimi, S.; Moores, A. O.
2015-12-01
In this paper we focus on determining a local magnitude formula for northern Oklahoma that is unbiased with distance by empirically constraining the attenuation properties within the region of interest based on the amplitude of observed seismograms. For regional networks detecting events over several hundred kilometres, distance correction terms play an important role in determining the magnitude of an event. Standard distance correction terms such as Hutton and Boore (1987) may have a significant bias with distance if applied in a region with different attenuation properties, resulting in an incorrect magnitude. We have presented data from a regional network of broadband seismometers installed in bedrock in northern Oklahoma. The events with magnitude in the range of 2.0 and 4.5, distributed evenly across this network are considered. We find that existing models show a bias with respect to hypocentral distance. Observed amplitude measurements demonstrate that there is a significant Moho bounce effect that mandates the use of a trilinear attenuation model in order to avoid bias in the distance correction terms. We present two different approaches of local magnitude calibration. The first maintains the classic definition of local magnitude as proposed by Richter. The second method calibrates local magnitude so that it agrees with moment magnitude where a regional moment tensor can be computed. To this end, regional moment tensor solutions and moment magnitudes are computed for events with magnitude larger than 3.5 to allow calibration of local magnitude to moment magnitude. For both methods the new formula results in magnitudes systematically lower than previous values computed with Eaton's (1992) model. We compare the resulting magnitudes and discuss the benefits and drawbacks of each method. Our results highlight the importance of correct calibration of the distance correction terms for accurate local magnitude assessment in regional networks.
Open solutions to distributed control in ground tracking stations
NASA Technical Reports Server (NTRS)
Heuser, William Randy
1994-01-01
The advent of high speed local area networks has made it possible to interconnect small, powerful computers to function together as a single large computer. Today, distributed computer systems are the new paradigm for large scale computing systems. However, the communications provided by the local area network is only one part of the solution. The services and protocols used by the application programs to communicate across the network are as indispensable as the local area network. And the selection of services and protocols that do not match the system requirements will limit the capabilities, performance, and expansion of the system. Proprietary solutions are available but are usually limited to a select set of equipment. However, there are two solutions based on 'open' standards. The question that must be answered is 'which one is the best one for my job?' This paper examines a model for tracking stations and their requirements for interprocessor communications in the next century. The model and requirements are matched with the model and services provided by the five different software architectures and supporting protocol solutions. Several key services are examined in detail to determine which services and protocols most closely match the requirements for the tracking station environment. The study reveals that the protocols are tailored to the problem domains for which they were originally designed. Further, the study reveals that the process control model is the closest match to the tracking station model.
NASA Technical Reports Server (NTRS)
Mengshoel, Ole J.; Wilkins, David C.; Roth, Dan
2010-01-01
For hard computational problems, stochastic local search has proven to be a competitive approach to finding optimal or approximately optimal problem solutions. Two key research questions for stochastic local search algorithms are: Which algorithms are effective for initialization? When should the search process be restarted? In the present work we investigate these research questions in the context of approximate computation of most probable explanations (MPEs) in Bayesian networks (BNs). We introduce a novel approach, based on the Viterbi algorithm, to explanation initialization in BNs. While the Viterbi algorithm works on sequences and trees, our approach works on BNs with arbitrary topologies. We also give a novel formalization of stochastic local search, with focus on initialization and restart, using probability theory and mixture models. Experimentally, we apply our methods to the problem of MPE computation, using a stochastic local search algorithm known as Stochastic Greedy Search. By carefully optimizing both initialization and restart, we reduce the MPE search time for application BNs by several orders of magnitude compared to using uniform at random initialization without restart. On several BNs from applications, the performance of Stochastic Greedy Search is competitive with clique tree clustering, a state-of-the-art exact algorithm used for MPE computation in BNs.
Data Handling and Communication
NASA Astrophysics Data System (ADS)
Hemmer, FréDéRic Giorgio Innocenti, Pier
The following sections are included: * Introduction * Computing Clusters and Data Storage: The New Factory and Warehouse * Local Area Networks: Organizing Interconnection * High-Speed Worldwide Networking: Accelerating Protocols * Detector Simulation: Events Before the Event * Data Analysis and Programming Environment: Distilling Information * World Wide Web: Global Networking * References
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barhen, Jacob; Imam, Neena
2007-01-01
Revolutionary computing technologies are defined in terms of technological breakthroughs, which leapfrog over near-term projected advances in conventional hardware and software to produce paradigm shifts in computational science. For underwater threat source localization using information provided by a dynamical sensor network, one of the most promising computational advances builds upon the emergence of digital optical-core devices. In this article, we present initial results of sensor network calculations that focus on the concept of signal wavefront time-difference-of-arrival (TDOA). The corresponding algorithms are implemented on the EnLight processing platform recently introduced by Lenslet Laboratories. This tera-scale digital optical core processor is optimizedmore » for array operations, which it performs in a fixed-point-arithmetic architecture. Our results (i) illustrate the ability to reach the required accuracy in the TDOA computation, and (ii) demonstrate that a considerable speed-up can be achieved when using the EnLight 64a prototype processor as compared to a dual Intel XeonTM processor.« less
A Study of Quality of Service Communication for High-Speed Packet-Switching Computer Sub-Networks
NASA Technical Reports Server (NTRS)
Cui, Zhenqian
1999-01-01
With the development of high-speed networking technology, computer networks, including local-area networks (LANs), wide-area networks (WANs) and the Internet, are extending their traditional roles of carrying computer data. They are being used for Internet telephony, multimedia applications such as conferencing and video on demand, distributed simulations, and other real-time applications. LANs are even used for distributed real-time process control and computing as a cost-effective approach. Differing from traditional data transfer, these new classes of high-speed network applications (video, audio, real-time process control, and others) are delay sensitive. The usefulness of data depends not only on the correctness of received data, but also the time that data are received. In other words, these new classes of applications require networks to provide guaranteed services or quality of service (QoS). Quality of service can be defined by a set of parameters and reflects a user's expectation about the underlying network's behavior. Traditionally, distinct services are provided by different kinds of networks. Voice services are provided by telephone networks, video services are provided by cable networks, and data transfer services are provided by computer networks. A single network providing different services is called an integrated-services network.
Bill, Johannes; Buesing, Lars; Habenschuss, Stefan; Nessler, Bernhard; Maass, Wolfgang; Legenstein, Robert
2015-01-01
During the last decade, Bayesian probability theory has emerged as a framework in cognitive science and neuroscience for describing perception, reasoning and learning of mammals. However, our understanding of how probabilistic computations could be organized in the brain, and how the observed connectivity structure of cortical microcircuits supports these calculations, is rudimentary at best. In this study, we investigate statistical inference and self-organized learning in a spatially extended spiking network model, that accommodates both local competitive and large-scale associative aspects of neural information processing, under a unified Bayesian account. Specifically, we show how the spiking dynamics of a recurrent network with lateral excitation and local inhibition in response to distributed spiking input, can be understood as sampling from a variational posterior distribution of a well-defined implicit probabilistic model. This interpretation further permits a rigorous analytical treatment of experience-dependent plasticity on the network level. Using machine learning theory, we derive update rules for neuron and synapse parameters which equate with Hebbian synaptic and homeostatic intrinsic plasticity rules in a neural implementation. In computer simulations, we demonstrate that the interplay of these plasticity rules leads to the emergence of probabilistic local experts that form distributed assemblies of similarly tuned cells communicating through lateral excitatory connections. The resulting sparse distributed spike code of a well-adapted network carries compressed information on salient input features combined with prior experience on correlations among them. Our theory predicts that the emergence of such efficient representations benefits from network architectures in which the range of local inhibition matches the spatial extent of pyramidal cells that share common afferent input. PMID:26284370
2014-01-01
Background Network-based learning algorithms for automated function prediction (AFP) are negatively affected by the limited coverage of experimental data and limited a priori known functional annotations. As a consequence their application to model organisms is often restricted to well characterized biological processes and pathways, and their effectiveness with poorly annotated species is relatively limited. A possible solution to this problem might consist in the construction of big networks including multiple species, but this in turn poses challenging computational problems, due to the scalability limitations of existing algorithms and the main memory requirements induced by the construction of big networks. Distributed computation or the usage of big computers could in principle respond to these issues, but raises further algorithmic problems and require resources not satisfiable with simple off-the-shelf computers. Results We propose a novel framework for scalable network-based learning of multi-species protein functions based on both a local implementation of existing algorithms and the adoption of innovative technologies: we solve “locally” the AFP problem, by designing “vertex-centric” implementations of network-based algorithms, but we do not give up thinking “globally” by exploiting the overall topology of the network. This is made possible by the adoption of secondary memory-based technologies that allow the efficient use of the large memory available on disks, thus overcoming the main memory limitations of modern off-the-shelf computers. This approach has been applied to the analysis of a large multi-species network including more than 300 species of bacteria and to a network with more than 200,000 proteins belonging to 13 Eukaryotic species. To our knowledge this is the first work where secondary-memory based network analysis has been applied to multi-species function prediction using biological networks with hundreds of thousands of proteins. Conclusions The combination of these algorithmic and technological approaches makes feasible the analysis of large multi-species networks using ordinary computers with limited speed and primary memory, and in perspective could enable the analysis of huge networks (e.g. the whole proteomes available in SwissProt), using well-equipped stand-alone machines. PMID:24843788
Archer, Charles Jens; Musselman, Roy Glenn; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen; Wallenfelt, Brian Paul
2010-03-16
A massively parallel computer system contains an inter-nodal communications network of node-to-node links. Each node implements a respective routing strategy for routing data through the network, the routing strategies not necessarily being the same in every node. The routing strategies implemented in the nodes are dynamically adjusted during application execution to shift network workload as required. Preferably, adjustment of routing policies in selective nodes is performed at synchronization points. The network may be dynamically monitored, and routing strategies adjusted according to detected network conditions.
NASA Technical Reports Server (NTRS)
Jordan, J.
1985-01-01
This document is intended for users of the Local Area Network Extensible Simulator, version I. This simulator models the performance of a Fiber Optic network under a variety of loading conditions and network characteristics. The options available to the user for defining the network conditions are described in this document. Computer hardware and software requirements are also defined.
Wireless Computing Architecture III
2013-09-01
MIMO Multiple-Input and Multiple-Output MIMO /CON MIMO with concurrent hannel access and estimation MU- MIMO Multiuser MIMO OFDM Orthogonal...compressive sensing \\; a design for concurrent channel estimation in scalable multiuser MIMO networking; and novel networking protocols based on machine...Network, Antenna Arrays, UAV networking, Angle of Arrival, Localization MIMO , Access Point, Channel State Information, Compressive Sensing 16
Fast Recall for Complex-Valued Hopfield Neural Networks with Projection Rules.
Kobayashi, Masaki
2017-01-01
Many models of neural networks have been extended to complex-valued neural networks. A complex-valued Hopfield neural network (CHNN) is a complex-valued version of a Hopfield neural network. Complex-valued neurons can represent multistates, and CHNNs are available for the storage of multilevel data, such as gray-scale images. The CHNNs are often trapped into the local minima, and their noise tolerance is low. Lee improved the noise tolerance of the CHNNs by detecting and exiting the local minima. In the present work, we propose a new recall algorithm that eliminates the local minima. We show that our proposed recall algorithm not only accelerated the recall but also improved the noise tolerance through computer simulations.
A Computational Network Biology Approach to Uncover Novel Genes Related to Alzheimer's Disease.
Zanzoni, Andreas
2016-01-01
Recent advances in the fields of genetics and genomics have enabled the identification of numerous Alzheimer's disease (AD) candidate genes, although for many of them the role in AD pathophysiology has not been uncovered yet. Concomitantly, network biology studies have shown a strong link between protein network connectivity and disease. In this chapter I describe a computational approach that, by combining local and global network analysis strategies, allows the formulation of novel hypotheses on the molecular mechanisms involved in AD and prioritizes candidate genes for further functional studies.
Queuing theory models for computer networks
NASA Technical Reports Server (NTRS)
Galant, David C.
1989-01-01
A set of simple queuing theory models which can model the average response of a network of computers to a given traffic load has been implemented using a spreadsheet. The impact of variations in traffic patterns and intensities, channel capacities, and message protocols can be assessed using them because of the lack of fine detail in the network traffic rates, traffic patterns, and the hardware used to implement the networks. A sample use of the models applied to a realistic problem is included in appendix A. Appendix B provides a glossary of terms used in this paper. This Ames Research Center computer communication network is an evolving network of local area networks (LANs) connected via gateways and high-speed backbone communication channels. Intelligent planning of expansion and improvement requires understanding the behavior of the individual LANs as well as the collection of networks as a whole.
Neural network approach to proximity effect corrections in electron-beam lithography
NASA Astrophysics Data System (ADS)
Frye, Robert C.; Cummings, Kevin D.; Rietman, Edward A.
1990-05-01
The proximity effect, caused by electron beam backscattering during resist exposure, is an important concern in writing submicron features. It can be compensated by appropriate local changes in the incident beam dose, but computation of the optimal correction usually requires a prohibitively long time. We present an example of such a computation on a small test pattern, which we performed by an iterative method. We then used this solution as a training set for an adaptive neural network. After training, the network computed the same correction as the iterative method, but in a much shorter time. Correcting the image with a software based neural network resulted in a decrease in the computation time by a factor of 30, and a hardware based network enhanced the computation speed by more than a factor of 1000. Both methods had an acceptably small error of 0.5% compared to the results of the iterative computation. Additionally, we verified that the neural network correctly generalized the solution of the problem to include patterns not contained in its training set.
NASA Astrophysics Data System (ADS)
Cogoni, Marco; Busonera, Giovanni; Anedda, Paolo; Zanetti, Gianluigi
2015-01-01
We generalize previous studies on critical phenomena in communication networks [1,2] by adding computational capabilities to the nodes. In our model, a set of tasks with random origin, destination and computational structure is distributed on a computational network, modeled as a graph. By varying the temperature of a Metropolis Montecarlo, we explore the global latency for an optimal to suboptimal resource assignment at a given time instant. By computing the two-point correlation function for the local overload, we study the behavior of the correlation distance (both for links and nodes) while approaching the congested phase: a transition from peaked to spread g(r) is seen above a critical (Montecarlo) temperature Tc. The average latency trend of the system is predicted by averaging over several network traffic realizations while maintaining a spatially detailed information for each node: a sharp decrease of performance is found over Tc independently of the workload. The globally optimized computational resource allocation and network routing defines a baseline for a future comparison of the transition behavior with respect to existing routing strategies [3,4] for different network topologies.
Robustness and structure of complex networks
NASA Astrophysics Data System (ADS)
Shao, Shuai
This dissertation covers the two major parts of my PhD research on statistical physics and complex networks: i) modeling a new type of attack -- localized attack, and investigating robustness of complex networks under this type of attack; ii) discovering the clustering structure in complex networks and its influence on the robustness of coupled networks. Complex networks appear in every aspect of our daily life and are widely studied in Physics, Mathematics, Biology, and Computer Science. One important property of complex networks is their robustness under attacks, which depends crucially on the nature of attacks and the structure of the networks themselves. Previous studies have focused on two types of attack: random attack and targeted attack, which, however, are insufficient to describe many real-world damages. Here we propose a new type of attack -- localized attack, and study the robustness of complex networks under this type of attack, both analytically and via simulation. On the other hand, we also study the clustering structure in the network, and its influence on the robustness of a complex network system. In the first part, we propose a theoretical framework to study the robustness of complex networks under localized attack based on percolation theory and generating function method. We investigate the percolation properties, including the critical threshold of the phase transition pc and the size of the giant component Pinfinity. We compare localized attack with random attack and find that while random regular (RR) networks are more robust against localized attack, Erdoḧs-Renyi (ER) networks are equally robust under both types of attacks. As for scale-free (SF) networks, their robustness depends crucially on the degree exponent lambda. The simulation results show perfect agreement with theoretical predictions. We also test our model on two real-world networks: a peer-to-peer computer network and an airline network, and find that the real-world networks are much more vulnerable to localized attack compared with random attack. In the second part, we extend the tree-like generating function method to incorporating clustering structure in complex networks. We study the robustness of a complex network system, especially a network of networks (NON) with clustering structure in each network. We find that the system becomes less robust as we increase the clustering coefficient of each network. For a partially dependent network system, we also find that the influence of the clustering coefficient on network robustness decreases as we decrease the coupling strength, and the critical coupling strength qc, at which the first-order phase transition changes to second-order, increases as we increase the clustering coefficient.
Information need in local government and online network system ; LOGON
NASA Astrophysics Data System (ADS)
Ohta, Masanori
Local Authorities Systems DEvelopment Center started the trial operation of LOcal Government information service On-line Network system (LOGON) in April of 1988. Considering the background of LOGON construction this paper introduces the present status of informationalization in municipalities and needs to network systems as well as information centers based on results of various types of research. It also compares database systems with communication by personal computers, both of which are typical communication forms, and investigates necessary functions of LOGON. The actual system functions, services and operation of LOGON and some problems occurred in the trial are discussed.
Remote information service access system based on a client-server-service model
Konrad, Allan M.
1996-01-01
A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user's local host, thereby providing ease of use and minimal software maintenance for users of that remote service.
Remote information service access system based on a client-server-service model
Konrad, A.M.
1997-12-09
A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user`s local host, thereby providing ease of use and minimal software maintenance for users of that remote service. 16 figs.
Remote information service access system based on a client-server-service model
Konrad, Allan M.
1999-01-01
A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user's local host, thereby providing ease of use and minimal software maintenance for users of that remote service.
Remote information service access system based on a client-server-service model
Konrad, A.M.
1996-08-06
A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user`s local host, thereby providing ease of use and minimal software maintenance for users of that remote service. 16 figs.
Remote information service access system based on a client-server-service model
Konrad, Allan M.
1997-01-01
A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user's local host, thereby providing ease of use and minimal software maintenance for users of that remote service.
Multi-Protocol LAN Design and Implementation: A Case Study.
ERIC Educational Resources Information Center
Hazari, Sunil
1995-01-01
Reports on the installation of a local area network (LAN) at East Carolina University. Topics include designing the network; computer labs and electronic mail; Internet connectivity; LAN expenses; and recommendations on planning, equipment, administration, and training. A glossary of networking terms is also provided. (AEF)
Wireless Networks: New Meaning to Ubiquitous Computing.
ERIC Educational Resources Information Center
Drew, Wilfred, Jr.
2003-01-01
Discusses the use of wireless technology in academic libraries. Topics include wireless networks; standards (IEEE 802.11); wired versus wireless; why libraries implement wireless technology; wireless local area networks (WLANs); WLAN security; examples of wireless use at Indiana State University and Morrisville College (New York); and useful…
Advanced Algorithms for Local Routing Strategy on Complex Networks
Lin, Benchuan; Chen, Bokui; Gao, Yachun; Tse, Chi K.; Dong, Chuanfei; Miao, Lixin; Wang, Binghong
2016-01-01
Despite the significant improvement on network performance provided by global routing strategies, their applications are still limited to small-scale networks, due to the need for acquiring global information of the network which grows and changes rapidly with time. Local routing strategies, however, need much less local information, though their transmission efficiency and network capacity are much lower than that of global routing strategies. In view of this, three algorithms are proposed and a thorough investigation is conducted in this paper. These algorithms include a node duplication avoidance algorithm, a next-nearest-neighbor algorithm and a restrictive queue length algorithm. After applying them to typical local routing strategies, the critical generation rate of information packets Rc increases by over ten-fold and the average transmission time 〈T〉 decreases by 70–90 percent, both of which are key physical quantities to assess the efficiency of routing strategies on complex networks. More importantly, in comparison with global routing strategies, the improved local routing strategies can yield better network performance under certain circumstances. This is a revolutionary leap for communication networks, because local routing strategy enjoys great superiority over global routing strategy not only in terms of the reduction of computational expense, but also in terms of the flexibility of implementation, especially for large-scale networks. PMID:27434502
Advanced Algorithms for Local Routing Strategy on Complex Networks.
Lin, Benchuan; Chen, Bokui; Gao, Yachun; Tse, Chi K; Dong, Chuanfei; Miao, Lixin; Wang, Binghong
2016-01-01
Despite the significant improvement on network performance provided by global routing strategies, their applications are still limited to small-scale networks, due to the need for acquiring global information of the network which grows and changes rapidly with time. Local routing strategies, however, need much less local information, though their transmission efficiency and network capacity are much lower than that of global routing strategies. In view of this, three algorithms are proposed and a thorough investigation is conducted in this paper. These algorithms include a node duplication avoidance algorithm, a next-nearest-neighbor algorithm and a restrictive queue length algorithm. After applying them to typical local routing strategies, the critical generation rate of information packets Rc increases by over ten-fold and the average transmission time 〈T〉 decreases by 70-90 percent, both of which are key physical quantities to assess the efficiency of routing strategies on complex networks. More importantly, in comparison with global routing strategies, the improved local routing strategies can yield better network performance under certain circumstances. This is a revolutionary leap for communication networks, because local routing strategy enjoys great superiority over global routing strategy not only in terms of the reduction of computational expense, but also in terms of the flexibility of implementation, especially for large-scale networks.
Open source system OpenVPN in a function of Virtual Private Network
NASA Astrophysics Data System (ADS)
Skendzic, A.; Kovacic, B.
2017-05-01
Using of Virtual Private Networks (VPN) can establish high security level in network communication. VPN technology enables high security networking using distributed or public network infrastructure. VPN uses different security and managing rules inside networks. It can be set up using different communication channels like Internet or separate ISP communication infrastructure. VPN private network makes security communication channel over public network between two endpoints (computers). OpenVPN is an open source software product under GNU General Public License (GPL) that can be used to establish VPN communication between two computers inside business local network over public communication infrastructure. It uses special security protocols and 256-bit Encryption and it is capable of traversing network address translators (NATs) and firewalls. It allows computers to authenticate each other using a pre-shared secret key, certificates or username and password. This work gives review of VPN technology with a special accent on OpenVPN. This paper will also give comparison and financial benefits of using open source VPN software in business environment.
Denier, P; Le Beux, P; Delamarre, D; Fresnel, A; Cleret, M; Courtin, C; Seka, L P; Pouliquen, B; Cleran, L; Riou, C; Burgun, A; Jarno, P; Leduff, F; Lesaux, H; Duvauferrier, R
1997-08-01
Modern medicine requires a rapid access to information including clinical data from medical records, bibliographic databases, knowledge bases and nomenclature databases. This is especially true for University Hospitals and Medical Schools for training as well as for fundamental and clinical research for diagnosis and therapeutic purposes. This implies the development of local, national and international cooperation which can be enhanced via the use and access to computer networks such as Internet. The development of professional cooperative networks goes with the development of the telecommunication and computer networks and our project is to make these new tools and technologies accessible to the medical students both during the teaching time in Medical School and during the training periods at the University Hospital. We have developed a local area network which communicates between the School of Medicine and the Hospital which takes advantage of the new Web client-server technology both internally (Intranet) and externally by access to the National Research Network (RENATER in France) connected to the Internet network. The address of our public web server is http:(/)/www.med.univ-rennesl.fr.
NASA Astrophysics Data System (ADS)
Papers are presented on ISDN, mobile radio systems and techniques for digital connectivity, centralized and distributed algorithms in computer networks, communications networks, quality assurance and impact on cost, adaptive filters in communications, the spread spectrum, signal processing, video communication techniques, and digital satellite services. Topics discussed include performance evaluation issues for integrated protocols, packet network operations, the computer network theory and multiple-access, microwave single sideband systems, switching architectures, fiber optic systems, wireless local communications, modulation, coding, and synchronization, remote switching, software quality, transmission, and expert systems in network operations. Consideration is given to wide area networks, image and speech processing, office communications application protocols, multimedia systems, customer-controlled network operations, digital radio systems, channel modeling and signal processing in digital communications, earth station/on-board modems, computer communications system performance evaluation, source encoding, compression, and quantization, and adaptive communications systems.
ERIC Educational Resources Information Center
Bates, A. W.
The JANUS (Joint Academic Network Using Satellite) satellite network is being planned to link European institutions wishing to jointly produce distance teaching materials. Earth stations with capabilities for transmit/receive functions, voice/data functions, two 64 kbs channels, and connection to local telephone exchange and computer networks will…
Local synchronization of chaotic neural networks with sampled-data and saturating actuators.
Wu, Zheng-Guang; Shi, Peng; Su, Hongye; Chu, Jian
2014-12-01
This paper investigates the problem of local synchronization of chaotic neural networks with sampled-data and actuator saturation. A new time-dependent Lyapunov functional is proposed for the synchronization error systems. The advantage of the constructed Lyapunov functional lies in the fact that it is positive definite at sampling times but not necessarily between sampling times, and makes full use of the available information about the actual sampling pattern. A local stability condition of the synchronization error systems is derived, based on which a sampled-data controller with respect to the actuator saturation is designed to ensure that the master neural networks and slave neural networks are locally asymptotically synchronous. Two optimization problems are provided to compute the desired sampled-data controller with the aim of enlarging the set of admissible initial conditions or the admissible sampling upper bound ensuring the local synchronization of the considered chaotic neural networks. A numerical example is used to demonstrate the effectiveness of the proposed design technique.
Yu, Dantong; Katramatos, Dimitrios; Sim, Alexander; Shoshani, Arie
2014-04-22
A cross-domain network resource reservation scheduler configured to schedule a path from at least one end-site includes a management plane device configured to monitor and provide information representing at least one of functionality, performance, faults, and fault recovery associated with a network resource; a control plane device configured to at least one of schedule the network resource, provision local area network quality of service, provision local area network bandwidth, and provision wide area network bandwidth; and a service plane device configured to interface with the control plane device to reserve the network resource based on a reservation request and the information from the management plane device. Corresponding methods and computer-readable medium are also disclosed.
Approximating local observables on projected entangled pair states
NASA Astrophysics Data System (ADS)
Schwarz, M.; Buerschaper, O.; Eisert, J.
2017-06-01
Tensor network states are for good reasons believed to capture ground states of gapped local Hamiltonians arising in the condensed matter context, states which are in turn expected to satisfy an entanglement area law. However, the computational hardness of contracting projected entangled pair states in two- and higher-dimensional systems is often seen as a significant obstacle when devising higher-dimensional variants of the density-matrix renormalization group method. In this work, we show that for those projected entangled pair states that are expected to provide good approximations of such ground states of local Hamiltonians, one can compute local expectation values in quasipolynomial time. We therefore provide a complexity-theoretic justification of why state-of-the-art numerical tools work so well in practice. We finally turn to the computation of local expectation values on quantum computers, providing a meaningful application for a small-scale quantum computer.
Issues in ATM Support of High-Performance, Geographically Distributed Computing
NASA Technical Reports Server (NTRS)
Claus, Russell W.; Dowd, Patrick W.; Srinidhi, Saragur M.; Blade, Eric D.G
1995-01-01
This report experimentally assesses the effect of the underlying network in a cluster-based computing environment. The assessment is quantified by application-level benchmarking, process-level communication, and network file input/output. Two testbeds were considered, one small cluster of Sun workstations and another large cluster composed of 32 high-end IBM RS/6000 platforms. The clusters had Ethernet, fiber distributed data interface (FDDI), Fibre Channel, and asynchronous transfer mode (ATM) network interface cards installed, providing the same processors and operating system for the entire suite of experiments. The primary goal of this report is to assess the suitability of an ATM-based, local-area network to support interprocess communication and remote file input/output systems for distributed computing.
NASA Astrophysics Data System (ADS)
Prychynenko, Diana; Sitte, Matthias; Litzius, Kai; Krüger, Benjamin; Bourianoff, George; Kläui, Mathias; Sinova, Jairo; Everschor-Sitte, Karin
2018-01-01
Inspired by the human brain, there is a strong effort to find alternative models of information processing capable of imitating the high energy efficiency of neuromorphic information processing. One possible realization of cognitive computing involves reservoir computing networks. These networks are built out of nonlinear resistive elements which are recursively connected. We propose that a Skyrmion network embedded in magnetic films may provide a suitable physical implementation for reservoir computing applications. The significant key ingredient of such a network is a two-terminal device with nonlinear voltage characteristics originating from magnetoresistive effects, such as the anisotropic magnetoresistance or the recently discovered noncollinear magnetoresistance. The most basic element for a reservoir computing network built from "Skyrmion fabrics" is a single Skyrmion embedded in a ferromagnetic ribbon. In order to pave the way towards reservoir computing systems based on Skyrmion fabrics, we simulate and analyze (i) the current flow through a single magnetic Skyrmion due to the anisotropic magnetoresistive effect and (ii) the combined physics of local pinning and the anisotropic magnetoresistive effect.
Engineering Amorphous Systems, Using Global-to-Local Compilation
NASA Astrophysics Data System (ADS)
Nagpal, Radhika
Emerging technologies are making it possible to assemble systems that incorporate myriad of information-processing units at almost no cost: smart materials, selfassembling structures, vast sensor networks, pervasive computing. How does one engineer robust and prespecified global behavior from the local interactions of immense numbers of unreliable parts? We discuss organizing principles and programming methodologies that have emerged from Amorphous Computing research, that allow us to compile a specification of global behavior into a robust program for local behavior.
Generating clustered scale-free networks using Poisson based localization of edges
NASA Astrophysics Data System (ADS)
Türker, İlker
2018-05-01
We introduce a variety of network models using a Poisson-based edge localization strategy, which result in clustered scale-free topologies. We first verify the success of our localization strategy by realizing a variant of the well-known Watts-Strogatz model with an inverse approach, implying a small-world regime of rewiring from a random network through a regular one. We then apply the rewiring strategy to a pure Barabasi-Albert model and successfully achieve a small-world regime, with a limited capacity of scale-free property. To imitate the high clustering property of scale-free networks with higher accuracy, we adapted the Poisson-based wiring strategy to a growing network with the ingredients of both preferential attachment and local connectivity. To achieve the collocation of these properties, we used a routine of flattening the edges array, sorting it, and applying a mixing procedure to assemble both global connections with preferential attachment and local clusters. As a result, we achieved clustered scale-free networks with a computational fashion, diverging from the recent studies by following a simple but efficient approach.
Requirements for a network storage service
NASA Technical Reports Server (NTRS)
Kelly, Suzanne M.; Haynes, Rena A.
1992-01-01
Sandia National Laboratories provides a high performance classified computer network as a core capability in support of its mission of nuclear weapons design and engineering, physical sciences research, and energy research and development. The network, locally known as the Internal Secure Network (ISN), was designed in 1989 and comprises multiple distributed local area networks (LAN's) residing in Albuquerque, New Mexico and Livermore, California. The TCP/IP protocol suite is used for inner-node communications. Scientific workstations and mid-range computers, running UNIX-based operating systems, compose most LAN's. One LAN, operated by the Sandia Corporate Computing Directorate, is a general purpose resource providing a supercomputer and a file server to the entire ISN. The current file server on the supercomputer LAN is an implementation of the Common File System (CFS) developed by Los Alamos National Laboratory. Subsequent to the design of the ISN, Sandia reviewed its mass storage requirements and chose to enter into a competitive procurement to replace the existing file server with one more adaptable to a UNIX/TCP/IP environment. The requirements study for the network was the starting point for the requirements study for the new file server. The file server is called the Network Storage Services (NSS) and is requirements are described in this paper. The next section gives an application or functional description of the NSS. The final section adds performance, capacity, and access constraints to the requirements.
Increasing social capital via local networks: analysis in the context of a surgical practice.
Thakur, Anjani; Yang, Isaac; Lee, Michael Y; Goel, Arpan; Ashok, Ashwin; Fonkalsrud, Eric W
2002-09-01
The relationship between social capital (support, trust, patient awareness, and increased practice revenue) and local networks (university hospital) in communities has received little attention. The development of computer-based communication networks (social networks) has added a new dimension to the argument, posing the question of whether local networks can (re-)create social capital in local communities. This relationship is examined through a review of the literature on local networks and social capital and a surgeon's practice management from 1990 to 2001 with respect to repair of pectus chest deformities. With respect to pectus repair there was a consistent but small number of new referrals (15-20 new patients/year), lack of patient awareness (eight to 12 self-referred patients/year), and modest practice revenue. Since the inception of an Internet website (social network) dedicated to pectus repair in 1996 there has been increased social participation (n = 630 hits/year to the website); facilitation of spread of information through E-mail messages (n = 430 messages/year); and a greater participation of groups such as women, minorities, adults, and those with disability (n = 120 patients/year). The dissemination of information via the local network has also allowed an "outward movement" with increased participation by interconnecting communities (n = 698,300 global Internet participants based on statistical ratios). We conclude that local networks have enhanced social networks providing new grounds for the development of relationships based on choice and shared interest.
Weighted link graphs: a distributed IDS for secondary intrusion detection and defense
NASA Astrophysics Data System (ADS)
Zhou, Mian; Lang, Sheau-Dong
2005-03-01
While a firewall installed at the perimeter of a local network provides the first line of defense against the hackers, many intrusion incidents are the results of successful penetration of the firewalls. One computer"s compromise often put the entire network at risk. In this paper, we propose an IDS that provides a finer control over the internal network. The system focuses on the variations of connection-based behavior of each single computer, and uses a weighted link graph to visualize the overall traffic abnormalities. The functionality of our system is of a distributed personal IDS system that also provides a centralized traffic analysis by graphical visualization. We use a novel weight assignment schema for the local detection within each end agent. The local abnormalities are quantitatively carried out by the node weight and link weight and further sent to the central analyzer to build the weighted link graph. Thus, we distribute the burden of traffic processing and visualization to each agent and make it more efficient for the overall intrusion detection. As the LANs are more vulnerable to inside attacks, our system is designed as a reinforcement to prevent corruption from the inside.
LLL Octopus network: some lessons and future directions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, R.W.
1978-06-27
The Octopus network, designed and developed by the Lawrence Livermore Laboratory, is a pioneering, high-performance, local computer network. Several lessons derived from the 14 years of experience in the evolution of Octopus are described, and some of the directions to be taken in its medium-term future are indicated. 3 figures.
Adaptive Dynamics, Control, and Extinction in Networked Populations
2015-07-09
network geometries. From the pre-history of paths that go extinct, a density function is created from the prehistory of these paths, and a clear local...density plots of Fig. 3b. Using the IAMM to compute the most probable path and comparing it to the prehistory of extinction events on stochastic networks
NASA Astrophysics Data System (ADS)
Various papers on global telecommunications are presented. The general topics addressed include: multiservice integration with optical fibers, multicompany owned telecommunication networks, softworks quality and reliability, advanced on-board processing, impact of new services and systems on operations and maintenance, analytical studies of protocols for data communication networks, topics in packet radio networking, CCITT No. 7 to support new services, document processing and communication, antenna technology and system aspects in satellite communications. Also considered are: communication systems modelling methodology, experimental integrated local area voice/data nets, spread spectrum communications, motion video at the DS-0 rate, optical and data communications, intelligent work stations, switch performance analysis, novel radio communication systems, wireless local networks, ISDN services, LAN communication protocols, user-system interface, radio propagation and performance, mobile satellite system, software for computer networks, VLSI for ISDN terminals, quality management, man-machine interfaces in switching, and local area network performance.
Neuropeptide Signaling Networks and Brain Circuit Plasticity.
McClard, Cynthia K; Arenkiel, Benjamin R
2018-01-01
The brain is a remarkable network of circuits dedicated to sensory integration, perception, and response. The computational power of the brain is estimated to dwarf that of most modern supercomputers, but perhaps its most fascinating capability is to structurally refine itself in response to experience. In the language of computers, the brain is loaded with programs that encode when and how to alter its own hardware. This programmed "plasticity" is a critical mechanism by which the brain shapes behavior to adapt to changing environments. The expansive array of molecular commands that help execute this programming is beginning to emerge. Notably, several neuropeptide transmitters, previously best characterized for their roles in hypothalamic endocrine regulation, have increasingly been recognized for mediating activity-dependent refinement of local brain circuits. Here, we discuss recent discoveries that reveal how local signaling by corticotropin-releasing hormone reshapes mouse olfactory bulb circuits in response to activity and further explore how other local neuropeptide networks may function toward similar ends.
Networking Biology: The Origins of Sequence-Sharing Practices in Genomics.
Stevens, Hallam
2015-10-01
The wide sharing of biological data, especially nucleotide sequences, is now considered to be a key feature of genomics. Historians and sociologists have attempted to account for the rise of this sharing by pointing to precedents in model organism communities and in natural history. This article supplements these approaches by examining the role that electronic networking technologies played in generating the specific forms of sharing that emerged in genomics. The links between early computer users at the Stanford Artificial Intelligence Laboratory in the 1960s, biologists using local computer networks in the 1970s, and GenBank in the 1980s, show how networking technologies carried particular practices of communication, circulation, and data distribution from computing into biology. In particular, networking practices helped to transform sequences themselves into objects that had value as a community resource.
Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models.
Mazzoni, Alberto; Lindén, Henrik; Cuntz, Hermann; Lansner, Anders; Panzeri, Stefano; Einevoll, Gaute T
2015-12-01
Leaky integrate-and-fire (LIF) network models are commonly used to study how the spiking dynamics of neural networks changes with stimuli, tasks or dynamic network states. However, neurophysiological studies in vivo often rather measure the mass activity of neuronal microcircuits with the local field potential (LFP). Given that LFPs are generated by spatially separated currents across the neuronal membrane, they cannot be computed directly from quantities defined in models of point-like LIF neurons. Here, we explore the best approximation for predicting the LFP based on standard output from point-neuron LIF networks. To search for this best "LFP proxy", we compared LFP predictions from candidate proxies based on LIF network output (e.g, firing rates, membrane potentials, synaptic currents) with "ground-truth" LFP obtained when the LIF network synaptic input currents were injected into an analogous three-dimensional (3D) network model of multi-compartmental neurons with realistic morphology, spatial distributions of somata and synapses. We found that a specific fixed linear combination of the LIF synaptic currents provided an accurate LFP proxy, accounting for most of the variance of the LFP time course observed in the 3D network for all recording locations. This proxy performed well over a broad set of conditions, including substantial variations of the neuronal morphologies. Our results provide a simple formula for estimating the time course of the LFP from LIF network simulations in cases where a single pyramidal population dominates the LFP generation, and thereby facilitate quantitative comparison between computational models and experimental LFP recordings in vivo.
Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models
Cuntz, Hermann; Lansner, Anders; Panzeri, Stefano; Einevoll, Gaute T.
2015-01-01
Leaky integrate-and-fire (LIF) network models are commonly used to study how the spiking dynamics of neural networks changes with stimuli, tasks or dynamic network states. However, neurophysiological studies in vivo often rather measure the mass activity of neuronal microcircuits with the local field potential (LFP). Given that LFPs are generated by spatially separated currents across the neuronal membrane, they cannot be computed directly from quantities defined in models of point-like LIF neurons. Here, we explore the best approximation for predicting the LFP based on standard output from point-neuron LIF networks. To search for this best “LFP proxy”, we compared LFP predictions from candidate proxies based on LIF network output (e.g, firing rates, membrane potentials, synaptic currents) with “ground-truth” LFP obtained when the LIF network synaptic input currents were injected into an analogous three-dimensional (3D) network model of multi-compartmental neurons with realistic morphology, spatial distributions of somata and synapses. We found that a specific fixed linear combination of the LIF synaptic currents provided an accurate LFP proxy, accounting for most of the variance of the LFP time course observed in the 3D network for all recording locations. This proxy performed well over a broad set of conditions, including substantial variations of the neuronal morphologies. Our results provide a simple formula for estimating the time course of the LFP from LIF network simulations in cases where a single pyramidal population dominates the LFP generation, and thereby facilitate quantitative comparison between computational models and experimental LFP recordings in vivo. PMID:26657024
Should Secondary Schools Buy Local Area Networks?
ERIC Educational Resources Information Center
Hyde, Hartley
1986-01-01
The advantages of microcomputer networks include resource sharing, multiple user communications, and integrating data processing and office automation. This article nonetheless favors stand-alone computers for Australian secondary school classrooms because of unreliable hardware, software design, and copyright problems, and individual progress…
Weighted least squares techniques for improved received signal strength based localization.
Tarrío, Paula; Bernardos, Ana M; Casar, José R
2011-01-01
The practical deployment of wireless positioning systems requires minimizing the calibration procedures while improving the location estimation accuracy. Received Signal Strength localization techniques using propagation channel models are the simplest alternative, but they are usually designed under the assumption that the radio propagation model is to be perfectly characterized a priori. In practice, this assumption does not hold and the localization results are affected by the inaccuracies of the theoretical, roughly calibrated or just imperfect channel models used to compute location. In this paper, we propose the use of weighted multilateration techniques to gain robustness with respect to these inaccuracies, reducing the dependency of having an optimal channel model. In particular, we propose two weighted least squares techniques based on the standard hyperbolic and circular positioning algorithms that specifically consider the accuracies of the different measurements to obtain a better estimation of the position. These techniques are compared to the standard hyperbolic and circular positioning techniques through both numerical simulations and an exhaustive set of real experiments on different types of wireless networks (a wireless sensor network, a WiFi network and a Bluetooth network). The algorithms not only produce better localization results with a very limited overhead in terms of computational cost but also achieve a greater robustness to inaccuracies in channel modeling.
Weighted Least Squares Techniques for Improved Received Signal Strength Based Localization
Tarrío, Paula; Bernardos, Ana M.; Casar, José R.
2011-01-01
The practical deployment of wireless positioning systems requires minimizing the calibration procedures while improving the location estimation accuracy. Received Signal Strength localization techniques using propagation channel models are the simplest alternative, but they are usually designed under the assumption that the radio propagation model is to be perfectly characterized a priori. In practice, this assumption does not hold and the localization results are affected by the inaccuracies of the theoretical, roughly calibrated or just imperfect channel models used to compute location. In this paper, we propose the use of weighted multilateration techniques to gain robustness with respect to these inaccuracies, reducing the dependency of having an optimal channel model. In particular, we propose two weighted least squares techniques based on the standard hyperbolic and circular positioning algorithms that specifically consider the accuracies of the different measurements to obtain a better estimation of the position. These techniques are compared to the standard hyperbolic and circular positioning techniques through both numerical simulations and an exhaustive set of real experiments on different types of wireless networks (a wireless sensor network, a WiFi network and a Bluetooth network). The algorithms not only produce better localization results with a very limited overhead in terms of computational cost but also achieve a greater robustness to inaccuracies in channel modeling. PMID:22164092
The Use of Microcomputers in Distance Teaching Systems. ZIFF Papiere 70.
ERIC Educational Resources Information Center
Rumble, Greville
Microcomputers have revolutionized distance education in virtually every area. Used alone, personal computers provide students with a wide range of utilities, including word processing, graphics packages, and spreadsheets. When linked to a mainframe computer or connected to other personal computers in local area networks, microcomputers can…
NASA Astrophysics Data System (ADS)
Papers are presented on local area networks; formal methods for communication protocols; computer simulation of communication systems; spread spectrum and coded communications; tropical radio propagation; VLSI for communications; strategies for increasing software productivity; multiple access communications; advanced communication satellite technologies; and spread spectrum systems. Topics discussed include Space Station communication and tracking development and design; transmission networks; modulation; data communications; computer network protocols and performance; and coding and synchronization. Consideration is given to free space optical communications systems; VSAT communication networks; network topology design; advances in adaptive filtering echo cancellation and adaptive equalization; advanced signal processing for satellite communications; the elements, design, and analysis of fiber-optic networks; and advances in digital microwave systems.
Technology and the Modern Library.
ERIC Educational Resources Information Center
Boss, Richard W.
1984-01-01
Overview of the impact of information technology on libraries highlights turnkey vendors, bibliographic utilities, commercial suppliers of records, state and regional networks, computer-to-computer linkages, remote database searching, terminals and microcomputers, building local databases, delivery of information, digital telefacsimile,…
2009-01-01
Background The identification of essential genes is important for the understanding of the minimal requirements for cellular life and for practical purposes, such as drug design. However, the experimental techniques for essential genes discovery are labor-intensive and time-consuming. Considering these experimental constraints, a computational approach capable of accurately predicting essential genes would be of great value. We therefore present here a machine learning-based computational approach relying on network topological features, cellular localization and biological process information for prediction of essential genes. Results We constructed a decision tree-based meta-classifier and trained it on datasets with individual and grouped attributes-network topological features, cellular compartments and biological processes-to generate various predictors of essential genes. We showed that the predictors with better performances are those generated by datasets with integrated attributes. Using the predictor with all attributes, i.e., network topological features, cellular compartments and biological processes, we obtained the best predictor of essential genes that was then used to classify yeast genes with unknown essentiality status. Finally, we generated decision trees by training the J48 algorithm on datasets with all network topological features, cellular localization and biological process information to discover cellular rules for essentiality. We found that the number of protein physical interactions, the nuclear localization of proteins and the number of regulating transcription factors are the most important factors determining gene essentiality. Conclusion We were able to demonstrate that network topological features, cellular localization and biological process information are reliable predictors of essential genes. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing essentiality. PMID:19758426
birgHPC: creating instant computing clusters for bioinformatics and molecular dynamics.
Chew, Teong Han; Joyce-Tan, Kwee Hong; Akma, Farizuwana; Shamsir, Mohd Shahir
2011-05-01
birgHPC, a bootable Linux Live CD has been developed to create high-performance clusters for bioinformatics and molecular dynamics studies using any Local Area Network (LAN)-networked computers. birgHPC features automated hardware and slots detection as well as provides a simple job submission interface. The latest versions of GROMACS, NAMD, mpiBLAST and ClustalW-MPI can be run in parallel by simply booting the birgHPC CD or flash drive from the head node, which immediately positions the rest of the PCs on the network as computing nodes. Thus, a temporary, affordable, scalable and high-performance computing environment can be built by non-computing-based researchers using low-cost commodity hardware. The birgHPC Live CD and relevant user guide are available for free at http://birg1.fbb.utm.my/birghpc.
Resilient Localization for Sensor Networks in Outdoor Environments
2004-06-01
Sensor Networks in Outdoor Environments by YoungMin Kwon, Kirill Mechitov, Sameer Sundresh, Wooyoung Kim and Gul Agha June 2004 Report...Environments YoungMin Kwon, Kirill Mechitov, Sameer Sundresh, Wooyoung Kim and Gul Agha Department of Computer Science University of Illinois at Urbana
Anchor Node Localization for Wireless Sensor Networks Using Video and Compass Information Fusion
Pescaru, Dan; Curiac, Daniel-Ioan
2014-01-01
Distributed sensing, computing and communication capabilities of wireless sensor networks require, in most situations, an efficient node localization procedure. In the case of random deployments in harsh or hostile environments, a general localization process within global coordinates is based on a set of anchor nodes able to determine their own position using GPS receivers. In this paper we propose another anchor node localization technique that can be used when GPS devices cannot accomplish their mission or are considered to be too expensive. This novel technique is based on the fusion of video and compass data acquired by the anchor nodes and is especially suitable for video- or multimedia-based wireless sensor networks. For these types of wireless networks the presence of video cameras is intrinsic, while the presence of digital compasses is also required for identifying the cameras' orientations. PMID:24594614
NASA Astrophysics Data System (ADS)
Natale, Joseph; Hentschel, George
Firing-rate networks offer a coarse model of signal propagation in the brain. Here we analyze sparse, 2D planar firing-rate networks with no synapses beyond a certain cutoff distance. Additionally, we impose Dale's Principle to ensure that each neuron makes only or inhibitory outgoing connections. Using spectral methods, we find that the number of neurons participating in excitations of the network becomes insignificant whenever the connectivity cutoff is tuned to a value near or below the average interneuron separation. Further, neural activations exceeding a certain threshold stay confined to a small region of space. This behavior is an instance of Anderson localization, a disorder-induced phase transition by which an information channel is rendered unable to transmit signals. We discuss several potential implications of localization for both local and long-range computation in the brain. This work was supported in part by Grants JSMF/ 220020321 and NSF/IOS/1208126.
Schmitt, Michael
2004-09-01
We study networks of spiking neurons that use the timing of pulses to encode information. Nonlinear interactions model the spatial groupings of synapses on the neural dendrites and describe the computations performed at local branches. Within a theoretical framework of learning we analyze the question of how many training examples these networks must receive to be able to generalize well. Bounds for this sample complexity of learning can be obtained in terms of a combinatorial parameter known as the pseudodimension. This dimension characterizes the computational richness of a neural network and is given in terms of the number of network parameters. Two types of feedforward architectures are considered: constant-depth networks and networks of unconstrained depth. We derive asymptotically tight bounds for each of these network types. Constant depth networks are shown to have an almost linear pseudodimension, whereas the pseudodimension of general networks is quadratic. Networks of spiking neurons that use temporal coding are becoming increasingly more important in practical tasks such as computer vision, speech recognition, and motor control. The question of how well these networks generalize from a given set of training examples is a central issue for their successful application as adaptive systems. The results show that, although coding and computation in these networks is quite different and in many cases more powerful, their generalization capabilities are at least as good as those of traditional neural network models.
Sarikaya, Duygu; Corso, Jason J; Guru, Khurshid A
2017-07-01
Video understanding of robot-assisted surgery (RAS) videos is an active research area. Modeling the gestures and skill level of surgeons presents an interesting problem. The insights drawn may be applied in effective skill acquisition, objective skill assessment, real-time feedback, and human-robot collaborative surgeries. We propose a solution to the tool detection and localization open problem in RAS video understanding, using a strictly computer vision approach and the recent advances of deep learning. We propose an architecture using multimodal convolutional neural networks for fast detection and localization of tools in RAS videos. To the best of our knowledge, this approach will be the first to incorporate deep neural networks for tool detection and localization in RAS videos. Our architecture applies a region proposal network (RPN) and a multimodal two stream convolutional network for object detection to jointly predict objectness and localization on a fusion of image and temporal motion cues. Our results with an average precision of 91% and a mean computation time of 0.1 s per test frame detection indicate that our study is superior to conventionally used methods for medical imaging while also emphasizing the benefits of using RPN for precision and efficiency. We also introduce a new data set, ATLAS Dione, for RAS video understanding. Our data set provides video data of ten surgeons from Roswell Park Cancer Institute, Buffalo, NY, USA, performing six different surgical tasks on the daVinci Surgical System (dVSS) with annotations of robotic tools per frame.
Networking as a Strategic Tool, 1991
NASA Technical Reports Server (NTRS)
1991-01-01
This conference focuses on the technological advances, pitfalls, requirements, and trends involved in planning and implementing an effective computer network system. The basic theme of the conference is networking as a strategic tool. Tutorials and conference presentations explore the technology and methods involved in this rapidly changing field. Future directions are explored from a global, as well as local, perspective.
Finding Waves: Techniques for a Successful Wireless Site Survey
ERIC Educational Resources Information Center
Shanafelt, Michael
2004-01-01
Wireless Local Area Networks are the most widely adopted networking technology to hit the market in the last three years. They have the potential to make network applications and the Internet available anywhere on a campus so that students and faculty are no longer tethered to their offices or shared computer laboratories in order to connect to a…
Centralized Authorization Using a Direct Service, Part II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wachsmann, A
Authorization is the process of deciding if entity X is allowed to have access to resource Y. Determining the identity of X is the job of the authentication process. One task of authorization in computer networks is to define and determine which user has access to which computers in the network. On Linux, the tendency exists to create a local account for each single user who should be allowed to logon to a computer. This is typically the case because a user not only needs login privileges to a computer but also additional resources like a home directory to actuallymore » do some work. Creating a local account on every computer takes care of all this. The problem with this approach is that these local accounts can be inconsistent with each other. The same user name could have a different user ID and/or group ID on different computers. Even more problematic is when two different accounts share the same user ID and group ID on different computers: User joe on computer1 could have user ID 1234 and group ID 56 and user jane on computer2 could have the same user ID 1234 and group ID 56. This is a big security risk in case shared resources like NFS are used. These two different accounts are the same for an NFS server so that these users can wipe out each other's files. The solution to this inconsistency problem is to have only one central, authoritative data source for this kind of information and a means of providing all your computers with access to this central source. This is what a ''Directory Service'' is. The two directory services most widely used for centralizing authorization data are the Network Information Service (NIS, formerly known as Yellow Pages or YP) and Lightweight Directory Access Protocol (LDAP).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyonnais, Marc; Smith, Matt; Mace, Kate P.
SCinet is the purpose-built network that operates during the International Conference for High Performance Computing,Networking, Storage and Analysis (Super Computing or SC). Created each year for the conference, SCinet brings to life a high-capacity network that supports applications and experiments that are a hallmark of the SC conference. The network links the convention center to research and commercial networks around the world. This resource serves as a platform for exhibitors to demonstrate the advanced computing resources of their home institutions and elsewhere by supporting a wide variety of applications. Volunteers from academia, government and industry work together to design andmore » deliver the SCinet infrastructure. Industry vendors and carriers donate millions of dollars in equipment and services needed to build and support the local and wide area networks. Planning begins more than a year in advance of each SC conference and culminates in a high intensity installation in the days leading up to the conference. The SCinet architecture for SC16 illustrates a dramatic increase in participation from the vendor community, particularly those that focus on network equipment. Software-Defined Networking (SDN) and Data Center Networking (DCN) are present in nearly all aspects of the design.« less
BridgeRank: A novel fast centrality measure based on local structure of the network
NASA Astrophysics Data System (ADS)
Salavati, Chiman; Abdollahpouri, Alireza; Manbari, Zhaleh
2018-04-01
Ranking nodes in complex networks have become an important task in many application domains. In a complex network, influential nodes are those that have the most spreading ability. Thus, identifying influential nodes based on their spreading ability is a fundamental task in different applications such as viral marketing. One of the most important centrality measures to ranking nodes is closeness centrality which is efficient but suffers from high computational complexity O(n3) . This paper tries to improve closeness centrality by utilizing the local structure of nodes and presents a new ranking algorithm, called BridgeRank centrality. The proposed method computes local centrality value for each node. For this purpose, at first, communities are detected and the relationship between communities is completely ignored. Then, by applying a centrality in each community, only one best critical node from each community is extracted. Finally, the nodes are ranked based on computing the sum of the shortest path length of nodes to obtained critical nodes. We have also modified the proposed method by weighting the original BridgeRank and selecting several nodes from each community based on the density of that community. Our method can find the best nodes with high spread ability and low time complexity, which make it applicable to large-scale networks. To evaluate the performance of the proposed method, we use the SIR diffusion model. Finally, experiments on real and artificial networks show that our method is able to identify influential nodes so efficiently, and achieves better performance compared to other recent methods.
Children's Sociometric Membership Group and Computer-Supported Interaction in School Settings
ERIC Educational Resources Information Center
Koivusaari, Ritva
2004-01-01
This study analyzed what kind of role sociometric status has in non-real time computer conversations. Computer-supported conversations were investigated by using two local area networks. Participants were 52 9 to 10-year-old schoolchildren selected from three sociometric strata: rejected, average, and popular. Children's preferred friends, school…
The National Special Education Alliance: One Year Later.
ERIC Educational Resources Information Center
Green, Peter
1988-01-01
The National Special Education Alliance (a national network of local computer resource centers associated with Apple Computer, Inc.) consists, one year after formation, of 24 non-profit support centers staffed largely by volunteers. The NSEA now reaches more than 1000 disabled computer users each month and more growth in the future is expected.…
Imam, Neena; Barhen, Jacob
2009-01-01
For real-time acoustic source localization applications, one of the primary challenges is the considerable growth in computational complexity associated with the emergence of ever larger, active or passive, distributed sensor networks. These sensors rely heavily on battery-operated system components to achieve highly functional automation in signal and information processing. In order to keep communication requirements minimal, it is desirable to perform as much processing on the receiver platforms as possible. However, the complexity of the calculations needed to achieve accurate source localization increases dramatically with the size of sensor arrays, resulting in substantial growth of computational requirements that cannot bemore » readily met with standard hardware. One option to meet this challenge builds upon the emergence of digital optical-core devices. The objective of this work was to explore the implementation of key building block algorithms used in underwater source localization on the optical-core digital processing platform recently introduced by Lenslet Inc. This demonstration of considerably faster signal processing capability should be of substantial significance to the design and innovation of future generations of distributed sensor networks.« less
Fault-tolerant battery system employing intra-battery network architecture
Hagen, Ronald A.; Chen, Kenneth W.; Comte, Christophe; Knudson, Orlin B.; Rouillard, Jean
2000-01-01
A distributed energy storing system employing a communications network is disclosed. A distributed battery system includes a number of energy storing modules, each of which includes a processor and communications interface. In a network mode of operation, a battery computer communicates with each of the module processors over an intra-battery network and cooperates with individual module processors to coordinate module monitoring and control operations. The battery computer monitors a number of battery and module conditions, including the potential and current state of the battery and individual modules, and the conditions of the battery's thermal management system. An over-discharge protection system, equalization adjustment system, and communications system are also controlled by the battery computer. The battery computer logs and reports various status data on battery level conditions which may be reported to a separate system platform computer. A module transitions to a stand-alone mode of operation if the module detects an absence of communication connectivity with the battery computer. A module which operates in a stand-alone mode performs various monitoring and control functions locally within the module to ensure safe and continued operation.
Client-Server: What Is It and Are We There Yet?
ERIC Educational Resources Information Center
Gershenfeld, Nancy
1995-01-01
Discusses client-server architecture in dumb terminals, personal computers, local area networks, and graphical user interfaces. Focuses on functions offered by client personal computers: individualized environments; flexibility in running operating systems; advanced operating system features; multiuser environments; and centralized data…
Kraft, Reuben H.; Mckee, Phillip Justin; Dagro, Amy M.; Grafton, Scott T.
2012-01-01
This article presents the integration of brain injury biomechanics and graph theoretical analysis of neuronal connections, or connectomics, to form a neurocomputational model that captures spatiotemporal characteristics of trauma. We relate localized mechanical brain damage predicted from biofidelic finite element simulations of the human head subjected to impact with degradation in the structural connectome for a single individual. The finite element model incorporates various length scales into the full head simulations by including anisotropic constitutive laws informed by diffusion tensor imaging. Coupling between the finite element analysis and network-based tools is established through experimentally-based cellular injury thresholds for white matter regions. Once edges are degraded, graph theoretical measures are computed on the “damaged” network. For a frontal impact, the simulations predict that the temporal and occipital regions undergo the most axonal strain and strain rate at short times (less than 24 hrs), which leads to cellular death initiation, which results in damage that shows dependence on angle of impact and underlying microstructure of brain tissue. The monotonic cellular death relationships predict a spatiotemporal change of structural damage. Interestingly, at 96 hrs post-impact, computations predict no network nodes were completely disconnected from the network, despite significant damage to network edges. At early times () network measures of global and local efficiency were degraded little; however, as time increased to 96 hrs the network properties were significantly reduced. In the future, this computational framework could help inform functional networks from physics-based structural brain biomechanics to obtain not only a biomechanics-based understanding of injury, but also neurophysiological insight. PMID:22915997
Machine learning based Intelligent cognitive network using fog computing
NASA Astrophysics Data System (ADS)
Lu, Jingyang; Li, Lun; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik
2017-05-01
In this paper, a Cognitive Radio Network (CRN) based on artificial intelligence is proposed to distribute the limited radio spectrum resources more efficiently. The CRN framework can analyze the time-sensitive signal data close to the signal source using fog computing with different types of machine learning techniques. Depending on the computational capabilities of the fog nodes, different features and machine learning techniques are chosen to optimize spectrum allocation. Also, the computing nodes send the periodic signal summary which is much smaller than the original signal to the cloud so that the overall system spectrum source allocation strategies are dynamically updated. Applying fog computing, the system is more adaptive to the local environment and robust to spectrum changes. As most of the signal data is processed at the fog level, it further strengthens the system security by reducing the communication burden of the communications network.
A secure file manager for UNIX
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVries, R.G.
1990-12-31
The development of a secure file management system for a UNIX-based computer facility with supercomputers and workstations is described. Specifically, UNIX in its usual form does not address: (1) Operation which would satisfy rigorous security requirements. (2) Online space management in an environment where total data demands would be many times the actual online capacity. (3) Making the file management system part of a computer network in which users of any computer in the local network could retrieve data generated on any other computer in the network. The characteristics of UNIX can be exploited to develop a portable, secure filemore » manager which would operate on computer systems ranging from workstations to supercomputers. Implementation considerations making unusual use of UNIX features, rather than requiring extensive internal system changes, are described, and implementation using the Cray Research Inc. UNICOS operating system is outlined.« less
CD-ROM Growth: Unleashing the Potential.
ERIC Educational Resources Information Center
Nelson, Nancy Melin
1991-01-01
Discusses the use of CD-ROMs in library processing and public services units. Topics discussed include local area networks, workstations, network security, search software, disk operating systems (DOS), computer viruses, CD-ROM selection and acquisition, licensing, and standards. A sidebar lists current CD-ROM products appropriate for reference…
The Many-Headed Hydra: Information Networking at LAA.
ERIC Educational Resources Information Center
Winzenried, Arthur P.
1997-01-01
Describes an integrated computer library system installed at Lilydale Adventist Academy (LAA) in Melbourne (Australia) in response to a limited budget, increased demand, and greater user expectations. Topics include student workstations, cost effectiveness, CD-ROMS on local area networks, and student input regarding their needs. (Author/LRW)
ERIC Educational Resources Information Center
Bidwell, Charles M.; Auricchio, Dominick
The project set out to establish an operational film scheduling network to improve service to New York State teachers using 16mm educational films. The Network is designed to serve local libraries located in Boards of Cooperative Educational Services (BOCES), regional libraries, and a statewide Syracuse University Film Rental Library (SUFRL). The…
ERIC Educational Resources Information Center
Nieuwenhuysen, Paul
1997-01-01
Explores data transfer speeds obtained with various combinations of hardware and software components through a study of access to the Internet from a notebook computer connected to a local area network based on Ethernet and TCP/IP (transmission control protocol/Internet protocol) network protocols. Upgrading is recommended for higher transfer…
Evaluation of electrosurgical interference to low-power spread-spectrum local area net transceivers.
Gibby, G L; Schwab, W K; Miller, W C
1997-11-01
To study whether an electrosurgery device interferes with the operation of a low-power spread-spectrum wireless network adapter. Nonrandomized, unblinded trials with controls, conducted in the corridor of our institution's operating suite using two portable computers equipped with RoamAbout omnidirectional 250 mW spread-spectrum 928 MHz wireless network adapters. To simulate high power electrosurgery interference, a 100-watt continuous electrocoagulation arc was maintained five feet from the receiving adapter, while device reported signal to noise values were measured at 150 feet and 400 feet distance between the wireless-networked computers. At 150 feet range, and with continuous 100-watt electrocoagulation arc five feet from one computer, error-corrected local area net throughput was measured by sending and receiving a large file multiple times. The reported signal to noise (N = 50) decreased with electrocoagulation from 36.42+/-3.47 (control) to 31.85+/-3.64 (electrocoagulation) (p < 0.001) at 400 feet inter-adapter distance, and from 64.53+/-1.43 (control) to 60.12+/-3.77 (electrocoagulation) (p < 0.001) at 150 feet inter-adapter distance. There was no statistically significant change in network throughput (average 93 kbyte/second) at 150 feet inter-adapter distance, either transmitting or receiving during continuous 100 Watt electrocoagulation arc. The manufacturer indicates "acceptable" performance will be obtained with signal to noise values as low as 20. In view of this, while electrocoagulation affects this spread spectrum network adapter, the effects are small even at 400 feet. At a distance of 150 feet, no discernible effect on network communications was found, suggesting that if other obstructions are minimal, within a wide range on one floor of an operating suite, network communications may be maintained using the technology of this wireless spread spectrum network adapter. The impact of such adapters on cardiac pacemakers should be studied. Wireless spread spectrum network adapters are an attractive technology for mobile computer communications in the operating room.
ERIC Educational Resources Information Center
Stecher, Brian
A training program in computer educationtTested in 89 secondary schools focused on the use of computers as tools in all subject areas. Each school received enough computers and software from IBM to equip a full computer laboratory. The schools were organized into local networks in eight regions and received training and continuing support in these…
Synchronizing compute node time bases in a parallel computer
Chen, Dong; Faraj, Daniel A; Gooding, Thomas M; Heidelberger, Philip
2015-01-27
Synchronizing time bases in a parallel computer that includes compute nodes organized for data communications in a tree network, where one compute node is designated as a root, and, for each compute node: calculating data transmission latency from the root to the compute node; configuring a thread as a pulse waiter; initializing a wakeup unit; and performing a local barrier operation; upon each node completing the local barrier operation, entering, by all compute nodes, a global barrier operation; upon all nodes entering the global barrier operation, sending, to all the compute nodes, a pulse signal; and for each compute node upon receiving the pulse signal: waking, by the wakeup unit, the pulse waiter; setting a time base for the compute node equal to the data transmission latency between the root node and the compute node; and exiting the global barrier operation.
Synchronizing compute node time bases in a parallel computer
Chen, Dong; Faraj, Daniel A; Gooding, Thomas M; Heidelberger, Philip
2014-12-30
Synchronizing time bases in a parallel computer that includes compute nodes organized for data communications in a tree network, where one compute node is designated as a root, and, for each compute node: calculating data transmission latency from the root to the compute node; configuring a thread as a pulse waiter; initializing a wakeup unit; and performing a local barrier operation; upon each node completing the local barrier operation, entering, by all compute nodes, a global barrier operation; upon all nodes entering the global barrier operation, sending, to all the compute nodes, a pulse signal; and for each compute node upon receiving the pulse signal: waking, by the wakeup unit, the pulse waiter; setting a time base for the compute node equal to the data transmission latency between the root node and the compute node; and exiting the global barrier operation.
Have Your Computer Call My Computer.
ERIC Educational Resources Information Center
Carabi, Peter
1992-01-01
As more school systems adopt site-based management, local decision makers need greater access to all kinds of information. Microcomputer-based networks can help with classroom management, scheduling, student program design, counselor recommendations, and financial reporting operations. Administrators are provided with planning tips and a sample…
Sharing digital micrographs and other data files between computers.
Entwistle, A
2004-01-01
It ought to be easy to exchange digital micrographs and other computer data files with a colleague even on another continent. In practice, this often is not the case. The advantages and disadvantages of various methods that are available for exchanging data files between computers are discussed. When possible, data should be transferred through computer networking. When data are to be exchanged locally between computers with similar operating systems, the use of a local area network is recommended. For computers in commercial or academic environments that have dissimilar operating systems or are more widely spaced, the use of FTPs is recommended. Failing this, posting the data on a website and transferring by hypertext transfer protocol is suggested. If peer to peer exchange between computers in domestic environments is needed, the use of Messenger services such as Microsoft Messenger or Yahoo Messenger is the method of choice. When it is not possible to transfer the data files over the internet, single use, writable CD ROMs are the best media for transferring data. If for some reason this is not possible, DVD-R/RW, DVD+R/RW, 100 MB ZIP disks and USB flash media are potentially useful media for exchanging data files.
Method and apparatus for predicting the direction of movement in machine vision
NASA Technical Reports Server (NTRS)
Lawton, Teri B. (Inventor)
1992-01-01
A computer-simulated cortical network is presented. The network is capable of computing the visibility of shifts in the direction of movement. Additionally, the network can compute the following: (1) the magnitude of the position difference between the test and background patterns; (2) localized contrast differences at different spatial scales analyzed by computing temporal gradients of the difference and sum of the outputs of paired even- and odd-symmetric bandpass filters convolved with the input pattern; and (3) the direction of a test pattern moved relative to a textured background. The direction of movement of an object in the field of view of a robotic vision system is detected in accordance with nonlinear Gabor function algorithms. The movement of objects relative to their background is used to infer the 3-dimensional structure and motion of object surfaces.
A hybrid linear/nonlinear training algorithm for feedforward neural networks.
McLoone, S; Brown, M D; Irwin, G; Lightbody, A
1998-01-01
This paper presents a new hybrid optimization strategy for training feedforward neural networks. The algorithm combines gradient-based optimization of nonlinear weights with singular value decomposition (SVD) computation of linear weights in one integrated routine. It is described for the multilayer perceptron (MLP) and radial basis function (RBF) networks and then extended to the local model network (LMN), a new feedforward structure in which a global nonlinear model is constructed from a set of locally valid submodels. Simulation results are presented demonstrating the superiority of the new hybrid training scheme compared to second-order gradient methods. It is particularly effective for the LMN architecture where the linear to nonlinear parameter ratio is large.
Constructing Neuronal Network Models in Massively Parallel Environments.
Ippen, Tammo; Eppler, Jochen M; Plesser, Hans E; Diesmann, Markus
2017-01-01
Recent advances in the development of data structures to represent spiking neuron network models enable us to exploit the complete memory of petascale computers for a single brain-scale network simulation. In this work, we investigate how well we can exploit the computing power of such supercomputers for the creation of neuronal networks. Using an established benchmark, we divide the runtime of simulation code into the phase of network construction and the phase during which the dynamical state is advanced in time. We find that on multi-core compute nodes network creation scales well with process-parallel code but exhibits a prohibitively large memory consumption. Thread-parallel network creation, in contrast, exhibits speedup only up to a small number of threads but has little overhead in terms of memory. We further observe that the algorithms creating instances of model neurons and their connections scale well for networks of ten thousand neurons, but do not show the same speedup for networks of millions of neurons. Our work uncovers that the lack of scaling of thread-parallel network creation is due to inadequate memory allocation strategies and demonstrates that thread-optimized memory allocators recover excellent scaling. An analysis of the loop order used for network construction reveals that more complex tests on the locality of operations significantly improve scaling and reduce runtime by allowing construction algorithms to step through large networks more efficiently than in existing code. The combination of these techniques increases performance by an order of magnitude and harnesses the increasingly parallel compute power of the compute nodes in high-performance clusters and supercomputers.
Constructing Neuronal Network Models in Massively Parallel Environments
Ippen, Tammo; Eppler, Jochen M.; Plesser, Hans E.; Diesmann, Markus
2017-01-01
Recent advances in the development of data structures to represent spiking neuron network models enable us to exploit the complete memory of petascale computers for a single brain-scale network simulation. In this work, we investigate how well we can exploit the computing power of such supercomputers for the creation of neuronal networks. Using an established benchmark, we divide the runtime of simulation code into the phase of network construction and the phase during which the dynamical state is advanced in time. We find that on multi-core compute nodes network creation scales well with process-parallel code but exhibits a prohibitively large memory consumption. Thread-parallel network creation, in contrast, exhibits speedup only up to a small number of threads but has little overhead in terms of memory. We further observe that the algorithms creating instances of model neurons and their connections scale well for networks of ten thousand neurons, but do not show the same speedup for networks of millions of neurons. Our work uncovers that the lack of scaling of thread-parallel network creation is due to inadequate memory allocation strategies and demonstrates that thread-optimized memory allocators recover excellent scaling. An analysis of the loop order used for network construction reveals that more complex tests on the locality of operations significantly improve scaling and reduce runtime by allowing construction algorithms to step through large networks more efficiently than in existing code. The combination of these techniques increases performance by an order of magnitude and harnesses the increasingly parallel compute power of the compute nodes in high-performance clusters and supercomputers. PMID:28559808
An Ethernet Java Applet for a Course for Non-Majors.
ERIC Educational Resources Information Center
Holliday, Mark A.
1997-01-01
Details the topics of a new course that introduces computing and communication technology to students not majoring in computer science. Discusses the process of developing a Java applet (a program that can be invoked through a World Wide Web browser) that illustrates the protocol used by ethernet local area networks to determine which computer can…
High throughput computing: a solution for scientific analysis
O'Donnell, M.
2011-01-01
handle job failures due to hardware, software, or network interruptions (obviating the need to manually resubmit the job after each stoppage); be affordable; and most importantly, allow us to complete very large, complex analyses that otherwise would not even be possible. In short, we envisioned a job-management system that would take advantage of unused FORT CPUs within a local area network (LAN) to effectively distribute and run highly complex analytical processes. What we found was a solution that uses High Throughput Computing (HTC) and High Performance Computing (HPC) systems to do exactly that (Figure 1).
Implementing Smart School Technology at the Secondary Level.
ERIC Educational Resources Information Center
Stallard, Charles K.
This paper describes the characteristics of "smart schools" and offers guidelines for developing such schools. Smart schools are defined as having three features: (1) they are computer networked via local area networks in order to share information through teleconferencing, databases, and electronic mail; (2) they are connected beyond…
A Three-Dimensional Computational Model of Collagen Network Mechanics
Lee, Byoungkoo; Zhou, Xin; Riching, Kristin; Eliceiri, Kevin W.; Keely, Patricia J.; Guelcher, Scott A.; Weaver, Alissa M.; Jiang, Yi
2014-01-01
Extracellular matrix (ECM) strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model) and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned). We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions. PMID:25386649
Research on Localization Algorithms Based on Acoustic Communication for Underwater Sensor Networks
Fan, Liying; Wu, Shan; Yan, Xueting
2017-01-01
The water source, as a significant body of the earth, with a high value, serves as a hot topic to study Underwater Sensor Networks (UWSNs). Various applications can be realized based on UWSNs. Our paper mainly concentrates on the localization algorithms based on the acoustic communication for UWSNs. An in-depth survey of localization algorithms is provided for UWSNs. We first introduce the acoustic communication, network architecture, and routing technique in UWSNs. The localization algorithms are classified into five aspects, namely, computation algorithm, spatial coverage, range measurement, the state of the nodes and communication between nodes that are different from all other survey papers. Moreover, we collect a lot of pioneering papers, and a comprehensive comparison is made. In addition, some challenges and open issues are raised in our paper. PMID:29301369
Bhattarai, Bishnu P.; Myers, Kurt S.; Bak-Jensen, Brigitte; ...
2017-05-17
This paper determines optimum aggregation areas for a given distribution network considering spatial distribution of loads and costs of aggregation. An elitist genetic algorithm combined with a hierarchical clustering and a Thevenin network reduction is implemented to compute strategic locations and aggregate demand within each area. The aggregation reduces large distribution networks having thousands of nodes to an equivalent network with few aggregated loads, thereby significantly reducing the computational burden. Furthermore, it not only helps distribution system operators in making faster operational decisions by understanding during which time of the day will be in need of flexibility, from which specificmore » area, and in which amount, but also enables the flexibilities stemming from small distributed resources to be traded in various power/energy markets. A combination of central and local aggregation scheme where a central aggregator enables market participation, while local aggregators materialize the accepted bids, is implemented to realize this concept. The effectiveness of the proposed method is evaluated by comparing network performances with and without aggregation. Finally, for a given network configuration, steady-state performance of aggregated network is significantly accurate (≈ ±1.5% error) compared to very high errors associated with forecast of individual consumer demand.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattarai, Bishnu P.; Myers, Kurt S.; Bak-Jensen, Brigitte
This paper determines optimum aggregation areas for a given distribution network considering spatial distribution of loads and costs of aggregation. An elitist genetic algorithm combined with a hierarchical clustering and a Thevenin network reduction is implemented to compute strategic locations and aggregate demand within each area. The aggregation reduces large distribution networks having thousands of nodes to an equivalent network with few aggregated loads, thereby significantly reducing the computational burden. Furthermore, it not only helps distribution system operators in making faster operational decisions by understanding during which time of the day will be in need of flexibility, from which specificmore » area, and in which amount, but also enables the flexibilities stemming from small distributed resources to be traded in various power/energy markets. A combination of central and local aggregation scheme where a central aggregator enables market participation, while local aggregators materialize the accepted bids, is implemented to realize this concept. The effectiveness of the proposed method is evaluated by comparing network performances with and without aggregation. Finally, for a given network configuration, steady-state performance of aggregated network is significantly accurate (≈ ±1.5% error) compared to very high errors associated with forecast of individual consumer demand.« less
Community Detection in Complex Networks via Clique Conductance.
Lu, Zhenqi; Wahlström, Johan; Nehorai, Arye
2018-04-13
Network science plays a central role in understanding and modeling complex systems in many areas including physics, sociology, biology, computer science, economics, politics, and neuroscience. One of the most important features of networks is community structure, i.e., clustering of nodes that are locally densely interconnected. Communities reveal the hierarchical organization of nodes, and detecting communities is of great importance in the study of complex systems. Most existing community-detection methods consider low-order connection patterns at the level of individual links. But high-order connection patterns, at the level of small subnetworks, are generally not considered. In this paper, we develop a novel community-detection method based on cliques, i.e., local complete subnetworks. The proposed method overcomes the deficiencies of previous similar community-detection methods by considering the mathematical properties of cliques. We apply the proposed method to computer-generated graphs and real-world network datasets. When applied to networks with known community structure, the proposed method detects the structure with high fidelity and sensitivity. When applied to networks with no a priori information regarding community structure, the proposed method yields insightful results revealing the organization of these complex networks. We also show that the proposed method is guaranteed to detect near-optimal clusters in the bipartition case.
Liu, Ziyi; Gao, Junfeng; Yang, Guoguo; Zhang, Huan; He, Yong
2016-02-11
We present a pipeline for the visual localization and classification of agricultural pest insects by computing a saliency map and applying deep convolutional neural network (DCNN) learning. First, we used a global contrast region-based approach to compute a saliency map for localizing pest insect objects. Bounding squares containing targets were then extracted, resized to a fixed size, and used to construct a large standard database called Pest ID. This database was then utilized for self-learning of local image features which were, in turn, used for classification by DCNN. DCNN learning optimized the critical parameters, including size, number and convolutional stride of local receptive fields, dropout ratio and the final loss function. To demonstrate the practical utility of using DCNN, we explored different architectures by shrinking depth and width, and found effective sizes that can act as alternatives for practical applications. On the test set of paddy field images, our architectures achieved a mean Accuracy Precision (mAP) of 0.951, a significant improvement over previous methods.
Liu, Ziyi; Gao, Junfeng; Yang, Guoguo; Zhang, Huan; He, Yong
2016-01-01
We present a pipeline for the visual localization and classification of agricultural pest insects by computing a saliency map and applying deep convolutional neural network (DCNN) learning. First, we used a global contrast region-based approach to compute a saliency map for localizing pest insect objects. Bounding squares containing targets were then extracted, resized to a fixed size, and used to construct a large standard database called Pest ID. This database was then utilized for self-learning of local image features which were, in turn, used for classification by DCNN. DCNN learning optimized the critical parameters, including size, number and convolutional stride of local receptive fields, dropout ratio and the final loss function. To demonstrate the practical utility of using DCNN, we explored different architectures by shrinking depth and width, and found effective sizes that can act as alternatives for practical applications. On the test set of paddy field images, our architectures achieved a mean Accuracy Precision (mAP) of 0.951, a significant improvement over previous methods. PMID:26864172
Abnormal functional global and local brain connectivity in female patients with anorexia nervosa
Geisler, Daniel; Borchardt, Viola; Lord, Anton R.; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A.; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan
2016-01-01
Background Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. Methods To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Results Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. Limitations The present results may be limited to the methods applied during preprocessing and network construction. Conclusion We demonstrated anorexia nervosa–related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger. PMID:26252451
Abnormal functional global and local brain connectivity in female patients with anorexia nervosa.
Geisler, Daniel; Borchardt, Viola; Lord, Anton R; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan
2016-01-01
Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. The present results may be limited to the methods applied during preprocessing and network construction. We demonstrated anorexia nervosa-related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger.
ERIC Educational Resources Information Center
Technology & Learning, 2005
2005-01-01
In recent years, the widespread availability of networks and the flexibility of Web browsers have shifted the industry from a client-server model to a Web-based one. In the client-server model of computing, clients run applications locally, with the servers managing storage, printing functions, and network traffic. Because every client is…
Technology and Transformation in Academic Libraries.
ERIC Educational Resources Information Center
Shaw, Ward
Academic library computing systems, which are among the most complex found in academic environments, now include external systems, such as online commercial search services and nationwide networks, and local systems that control and support internal operations. As librarians have realized the benefit of using computer systems to perform…
National Special Education Alliance.
ERIC Educational Resources Information Center
Pressman, Harvey
1987-01-01
The article describes the National Special Education Alliance, a network of parent-led organizations seeking to speed the delivery of computer technology to the disabled. Discussed are program origins, starting a local center, charter members of the alliance, benefits of Alliance membership, and the Alliance's relationship with Apple computer. (DB)
A network approach to decentralized coordination of energy production-consumption grids.
Omodei, Elisa; Arenas, Alex
2018-01-01
Energy grids are facing a relatively new paradigm consisting in the formation of local distributed energy sources and loads that can operate in parallel independently from the main power grid (usually called microgrids). One of the main challenges in microgrid-like networks management is that of self-adapting to the production and demands in a decentralized coordinated way. Here, we propose a stylized model that allows to analytically predict the coordination of the elements in the network, depending on the network topology. Surprisingly, almost global coordination is attained when users interact locally, with a small neighborhood, instead of the obvious but more costly all-to-all coordination. We compute analytically the optimal value of coordinated users in random homogeneous networks. The methodology proposed opens a new way of confronting the analysis of energy demand-side management in networked systems.
The birth of quantum networks: merging remote entanglement with local multi-qubit control
NASA Astrophysics Data System (ADS)
Hanson, Ronald
The realization of a highly connected network of qubit registers is a central challenge for quantum information processing and long-distance quantum communication. Diamond spins associated with NV centers are promising building blocks for such a network: they combine a coherent spin-photon interface that has already enabled creation of spin-spin entanglement over 1km with a local register of robust and well-controlled nuclear spin qubits for information processing and error correction. We are now entering a new research stage in which we can exploit these features simultaneously and build multi-qubit networks. I will present our latest results towards the first of such experiments: entanglement distillation between remote quantum network nodes. Finally, I will discuss the challenges and opportunities ahead on the road to large-scale networks of qubit registers for quantum computation and communication.
A Comprehensive and Cost-Effective Computer Infrastructure for K-12 Schools
NASA Technical Reports Server (NTRS)
Warren, G. P.; Seaton, J. M.
1996-01-01
Since 1993, NASA Langley Research Center has been developing and implementing a low-cost Internet connection model, including system architecture, training, and support, to provide Internet access for an entire network of computers. This infrastructure allows local area networks which exceed 50 machines per school to independently access the complete functionality of the Internet by connecting to a central site, using state-of-the-art commercial modem technology, through a single standard telephone line. By locating high-cost resources at this central site and sharing these resources and their costs among the school districts throughout a region, a practical, efficient, and affordable infrastructure for providing scale-able Internet connectivity has been developed. As the demand for faster Internet access grows, the model has a simple expansion path that eliminates the need to replace major system components and re-train personnel. Observations of optical Internet usage within an environment, particularly school classrooms, have shown that after an initial period of 'surfing,' the Internet traffic becomes repetitive. By automatically storing requested Internet information on a high-capacity networked disk drive at the local site (network based disk caching), then updating this information only when it changes, well over 80 percent of the Internet traffic that leaves a location can be eliminated by retrieving the information from the local disk cache.
Cui, Huanqing; Shu, Minglei; Song, Min; Wang, Yinglong
2017-03-01
Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors' memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm.
Cui, Huanqing; Shu, Minglei; Song, Min; Wang, Yinglong
2017-01-01
Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors’ memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm. PMID:28257060
Han, Zifa; Leung, Chi Sing; So, Hing Cheung; Constantinides, Anthony George
2017-08-15
A commonly used measurement model for locating a mobile source is time-difference-of-arrival (TDOA). As each TDOA measurement defines a hyperbola, it is not straightforward to compute the mobile source position due to the nonlinear relationship in the measurements. This brief exploits the Lagrange programming neural network (LPNN), which provides a general framework to solve nonlinear constrained optimization problems, for the TDOA-based localization. The local stability of the proposed LPNN solution is also analyzed. Simulation results are included to evaluate the localization accuracy of the LPNN scheme by comparing with the state-of-the-art methods and the optimality benchmark of Cramér-Rao lower bound.
Cloud computing applications for biomedical science: A perspective.
Navale, Vivek; Bourne, Philip E
2018-06-01
Biomedical research has become a digital data-intensive endeavor, relying on secure and scalable computing, storage, and network infrastructure, which has traditionally been purchased, supported, and maintained locally. For certain types of biomedical applications, cloud computing has emerged as an alternative to locally maintained traditional computing approaches. Cloud computing offers users pay-as-you-go access to services such as hardware infrastructure, platforms, and software for solving common biomedical computational problems. Cloud computing services offer secure on-demand storage and analysis and are differentiated from traditional high-performance computing by their rapid availability and scalability of services. As such, cloud services are engineered to address big data problems and enhance the likelihood of data and analytics sharing, reproducibility, and reuse. Here, we provide an introductory perspective on cloud computing to help the reader determine its value to their own research.
Cloud computing applications for biomedical science: A perspective
2018-01-01
Biomedical research has become a digital data–intensive endeavor, relying on secure and scalable computing, storage, and network infrastructure, which has traditionally been purchased, supported, and maintained locally. For certain types of biomedical applications, cloud computing has emerged as an alternative to locally maintained traditional computing approaches. Cloud computing offers users pay-as-you-go access to services such as hardware infrastructure, platforms, and software for solving common biomedical computational problems. Cloud computing services offer secure on-demand storage and analysis and are differentiated from traditional high-performance computing by their rapid availability and scalability of services. As such, cloud services are engineered to address big data problems and enhance the likelihood of data and analytics sharing, reproducibility, and reuse. Here, we provide an introductory perspective on cloud computing to help the reader determine its value to their own research. PMID:29902176
Meeting the memory challenges of brain-scale network simulation.
Kunkel, Susanne; Potjans, Tobias C; Eppler, Jochen M; Plesser, Hans Ekkehard; Morrison, Abigail; Diesmann, Markus
2011-01-01
The development of high-performance simulation software is crucial for studying the brain connectome. Using connectome data to generate neurocomputational models requires software capable of coping with models on a variety of scales: from the microscale, investigating plasticity, and dynamics of circuits in local networks, to the macroscale, investigating the interactions between distinct brain regions. Prior to any serious dynamical investigation, the first task of network simulations is to check the consistency of data integrated in the connectome and constrain ranges for yet unknown parameters. Thanks to distributed computing techniques, it is possible today to routinely simulate local cortical networks of around 10(5) neurons with up to 10(9) synapses on clusters and multi-processor shared-memory machines. However, brain-scale networks are orders of magnitude larger than such local networks, in terms of numbers of neurons and synapses as well as in terms of computational load. Such networks have been investigated in individual studies, but the underlying simulation technologies have neither been described in sufficient detail to be reproducible nor made publicly available. Here, we discover that as the network model sizes approach the regime of meso- and macroscale simulations, memory consumption on individual compute nodes becomes a critical bottleneck. This is especially relevant on modern supercomputers such as the Blue Gene/P architecture where the available working memory per CPU core is rather limited. We develop a simple linear model to analyze the memory consumption of the constituent components of neuronal simulators as a function of network size and the number of cores used. This approach has multiple benefits. The model enables identification of key contributing components to memory saturation and prediction of the effects of potential improvements to code before any implementation takes place. As a consequence, development cycles can be shorter and less expensive. Applying the model to our freely available Neural Simulation Tool (NEST), we identify the software components dominant at different scales, and develop general strategies for reducing the memory consumption, in particular by using data structures that exploit the sparseness of the local representation of the network. We show that these adaptations enable our simulation software to scale up to the order of 10,000 processors and beyond. As memory consumption issues are likely to be relevant for any software dealing with complex connectome data on such architectures, our approach and our findings should be useful for researchers developing novel neuroinformatics solutions to the challenges posed by the connectome project.
Performance Evaluation of Communication Software Systems for Distributed Computing
NASA Technical Reports Server (NTRS)
Fatoohi, Rod
1996-01-01
In recent years there has been an increasing interest in object-oriented distributed computing since it is better quipped to deal with complex systems while providing extensibility, maintainability, and reusability. At the same time, several new high-speed network technologies have emerged for local and wide area networks. However, the performance of networking software is not improving as fast as the networking hardware and the workstation microprocessors. This paper gives an overview and evaluates the performance of the Common Object Request Broker Architecture (CORBA) standard in a distributed computing environment at NASA Ames Research Center. The environment consists of two testbeds of SGI workstations connected by four networks: Ethernet, FDDI, HiPPI, and ATM. The performance results for three communication software systems are presented, analyzed and compared. These systems are: BSD socket programming interface, IONA's Orbix, an implementation of the CORBA specification, and the PVM message passing library. The results show that high-level communication interfaces, such as CORBA and PVM, can achieve reasonable performance under certain conditions.
Software Engineering Techniques for Computer-Aided Learning.
ERIC Educational Resources Information Center
Ibrahim, Bertrand
1989-01-01
Describes the process for developing tutorials for computer-aided learning (CAL) using a programing language rather than an authoring system. The workstation used is described, the use of graphics is discussed, the role of a local area network (LAN) is explained, and future plans are discussed. (five references) (LRW)
University Hopes Campuswide Network Will Help Give It a Competitive Edge.
ERIC Educational Resources Information Center
Watkins, Beverly T.
1992-01-01
Case Western Reserve University (Ohio) is hoping a high-powered campus information system will help diversify its student body and provide innovative education. A new optical-fiber network will connect computers in dormitory rooms, faculty and staff offices, classrooms, libraries, and laboratories and be linked with local, national, and…
On-Line Assessment: What, Why, How.
ERIC Educational Resources Information Center
Natal, Dottie
Recent increases in the speed and accessibility of computers and networks have made it possible to administer tests on-line. On-line assessment can be conducted in a controlled setting, such as a testing center, or distributed over local area networks or the Internet to libraries and student homes, allowing students the flexibility to complete…
Overview of the LINCS architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fletcher, J.G.; Watson, R.W.
1982-01-13
Computing at the Lawrence Livermore National Laboratory (LLNL) has evolved over the past 15 years with a computer network based resource sharing environment. The increasing use of low cost and high performance micro, mini and midi computers and commercially available local networking systems will accelerate this trend. Further, even the large scale computer systems, on which much of the LLNL scientific computing depends, are evolving into multiprocessor systems. It is our belief that the most cost effective use of this environment will depend on the development of application systems structured into cooperating concurrent program modules (processes) distributed appropriately over differentmore » nodes of the environment. A node is defined as one or more processors with a local (shared) high speed memory. Given the latter view, the environment can be characterized as consisting of: multiple nodes communicating over noisy channels with arbitrary delays and throughput, heterogenous base resources and information encodings, no single administration controlling all resources, distributed system state, and no uniform time base. The system design problem is - how to turn the heterogeneous base hardware/firmware/software resources of this environment into a coherent set of resources that facilitate development of cost effective, reliable, and human engineered applications. We believe the answer lies in developing a layered, communication oriented distributed system architecture; layered and modular to support ease of understanding, reconfiguration, extensibility, and hiding of implementation or nonessential local details; communication oriented because that is a central feature of the environment. The Livermore Interactive Network Communication System (LINCS) is a hierarchical architecture designed to meet the above needs. While having characteristics in common with other architectures, it differs in several respects.« less
Bernal, Javier; Torres-Jimenez, Jose
2015-01-01
SAGRAD (Simulated Annealing GRADient), a Fortran 77 program for computing neural networks for classification using batch learning, is discussed. Neural network training in SAGRAD is based on a combination of simulated annealing and Møller's scaled conjugate gradient algorithm, the latter a variation of the traditional conjugate gradient method, better suited for the nonquadratic nature of neural networks. Different aspects of the implementation of the training process in SAGRAD are discussed, such as the efficient computation of gradients and multiplication of vectors by Hessian matrices that are required by Møller's algorithm; the (re)initialization of weights with simulated annealing required to (re)start Møller's algorithm the first time and each time thereafter that it shows insufficient progress in reaching a possibly local minimum; and the use of simulated annealing when Møller's algorithm, after possibly making considerable progress, becomes stuck at a local minimum or flat area of weight space. Outlines of the scaled conjugate gradient algorithm, the simulated annealing procedure and the training process used in SAGRAD are presented together with results from running SAGRAD on two examples of training data.
A Novel Handwritten Letter Recognizer Using Enhanced Evolutionary Neural Network
NASA Astrophysics Data System (ADS)
Mahmoudi, Fariborz; Mirzashaeri, Mohsen; Shahamatnia, Ehsan; Faridnia, Saed
This paper introduces a novel design for handwritten letter recognition by employing a hybrid back-propagation neural network with an enhanced evolutionary algorithm. Feeding the neural network consists of a new approach which is invariant to translation, rotation, and scaling of input letters. Evolutionary algorithm is used for the global search of the search space and the back-propagation algorithm is used for the local search. The results have been computed by implementing this approach for recognizing 26 English capital letters in the handwritings of different people. The computational results show that the neural network reaches very satisfying results with relatively scarce input data and a promising performance improvement in convergence of the hybrid evolutionary back-propagation algorithms is exhibited.
Synchronization and desynchronization in a network of locally coupled Wilson-Cowan oscillators.
Campbell, S; Wang, D
1996-01-01
A network of Wilson-Cowan (WC) oscillators is constructed, and its emergent properties of synchronization and desynchronization are investigated by both computer simulation and formal analysis. The network is a 2D matrix, where each oscillator is coupled only to its neighbors. We show analytically that a chain of locally coupled oscillators (the piecewise linear approximation to the WC oscillator) synchronizes, and we present a technique to rapidly entrain finite numbers of oscillators. The coupling strengths change on a fast time scale based on a Hebbian rule. A global separator is introduced which receives input from and sends feedback to each oscillator in the matrix. The global separator is used to desynchronize different oscillator groups. Unlike many other models, the properties of this network emerge from local connections that preserve spatial relationships among components and are critical for encoding Gestalt principles of feature grouping. The ability to synchronize and desynchronize oscillator groups within this network offers a promising approach for pattern segmentation and figure/ground segregation based on oscillatory correlation.
Computer network environment planning and analysis
NASA Technical Reports Server (NTRS)
Dalphin, John F.
1989-01-01
The GSFC Computer Network Environment provides a broadband RF cable between campus buildings and ethernet spines in buildings for the interlinking of Local Area Networks (LANs). This system provides terminal and computer linkage among host and user systems thereby providing E-mail services, file exchange capability, and certain distributed computing opportunities. The Environment is designed to be transparent and supports multiple protocols. Networking at Goddard has a short history and has been under coordinated control of a Network Steering Committee for slightly more than two years; network growth has been rapid with more than 1500 nodes currently addressed and greater expansion expected. A new RF cable system with a different topology is being installed during summer 1989; consideration of a fiber optics system for the future will begin soon. Summmer study was directed toward Network Steering Committee operation and planning plus consideration of Center Network Environment analysis and modeling. Biweekly Steering Committee meetings were attended to learn the background of the network and the concerns of those managing it. Suggestions for historical data gathering have been made to support future planning and modeling. Data Systems Dynamic Simulator, a simulation package developed at NASA and maintained at GSFC was studied as a possible modeling tool for the network environment. A modeling concept based on a hierarchical model was hypothesized for further development. Such a model would allow input of newly updated parameters and would provide an estimation of the behavior of the network.
Analysis hierarchical model for discrete event systems
NASA Astrophysics Data System (ADS)
Ciortea, E. M.
2015-11-01
The This paper presents the hierarchical model based on discrete event network for robotic systems. Based on the hierarchical approach, Petri network is analysed as a network of the highest conceptual level and the lowest level of local control. For modelling and control of complex robotic systems using extended Petri nets. Such a system is structured, controlled and analysed in this paper by using Visual Object Net ++ package that is relatively simple and easy to use, and the results are shown as representations easy to interpret. The hierarchical structure of the robotic system is implemented on computers analysed using specialized programs. Implementation of hierarchical model discrete event systems, as a real-time operating system on a computer network connected via a serial bus is possible, where each computer is dedicated to local and Petri model of a subsystem global robotic system. Since Petri models are simplified to apply general computers, analysis, modelling, complex manufacturing systems control can be achieved using Petri nets. Discrete event systems is a pragmatic tool for modelling industrial systems. For system modelling using Petri nets because we have our system where discrete event. To highlight the auxiliary time Petri model using transport stream divided into hierarchical levels and sections are analysed successively. Proposed robotic system simulation using timed Petri, offers the opportunity to view the robotic time. Application of goods or robotic and transmission times obtained by measuring spot is obtained graphics showing the average time for transport activity, using the parameters sets of finished products. individually.
The Network for Astronomy in Education in Southwest New Mexico
NASA Astrophysics Data System (ADS)
Neely, B.
1998-12-01
The Network for Astronomy in Education was organized to use astronomy as a motivational tool to teach science methods and principles in the public schools. NFO is a small private research observatory, associated with the local University, Western New Mexico. We started our program in 1996 with an IDEA grant by introducing local teachers to the Internet, funding a portable planetarium (Starlab) for the students, and upgrading our local radio linked computer network. Grant County is a rural mining and ranching county in Southwest New Mexico. It is ethnically diverse and has a large portion of the population below the poverty line. It's dryness and 6000' foot elevation, along with dark skies, suite it to the appreciation of astronomy. We now have 8 local schools involved in astronomy at some level. Our main programs are the Starlab and Project Astro, and we will soon install a Sidewalk Solar System in the center of Silver City.
Discrete-state phasor neural networks
NASA Astrophysics Data System (ADS)
Noest, André J.
1988-08-01
An associative memory network with local variables assuming one of q equidistant positions on the unit circle (q-state phasors) is introduced, and its recall behavior is solved exactly for any q when the interactions are sparse and asymmetric. Such models can describe natural or artifical networks of (neuro-)biological, chemical, or electronic limit-cycle oscillators with q-fold instead of circular symmetry, or similar optical computing devices using a phase-encoded data representation.
Faithful qubit transmission in a quantum communication network with heterogeneous channels
NASA Astrophysics Data System (ADS)
Chen, Na; Zhang, Lin Xi; Pei, Chang Xing
2018-04-01
Quantum communication networks enable long-distance qubit transmission and distributed quantum computation. In this paper, a quantum communication network with heterogeneous quantum channels is constructed. A faithful qubit transmission scheme is presented. Detailed calculations and performance analyses show that even in a low-quality quantum channel with serious decoherence, only modest number of locally prepared target qubits are required to achieve near-deterministic qubit transmission.
NASA Astrophysics Data System (ADS)
Daminelli, Simone; Thomas, Josephine Maria; Durán, Claudio; Vittorio Cannistraci, Carlo
2015-11-01
Bipartite networks are powerful descriptions of complex systems characterized by two different classes of nodes and connections allowed only across but not within the two classes. Unveiling physical principles, building theories and suggesting physical models to predict bipartite links such as product-consumer connections in recommendation systems or drug-target interactions in molecular networks can provide priceless information to improve e-commerce or to accelerate pharmaceutical research. The prediction of nonobserved connections starting from those already present in the topology of a network is known as the link-prediction problem. It represents an important subject both in many-body interaction theory in physics and in new algorithms for applied tools in computer science. The rationale is that the existing connectivity structure of a network can suggest where new connections can appear with higher likelihood in an evolving network, or where nonobserved connections are missing in a partially known network. Surprisingly, current complex network theory presents a theoretical bottle-neck: a general framework for local-based link prediction directly in the bipartite domain is missing. Here, we overcome this theoretical obstacle and present a formal definition of common neighbour index and local-community-paradigm (LCP) for bipartite networks. As a consequence, we are able to introduce the first node-neighbourhood-based and LCP-based models for topological link prediction that utilize the bipartite domain. We performed link prediction evaluations in several networks of different size and of disparate origin, including technological, social and biological systems. Our models significantly improve topological prediction in many bipartite networks because they exploit local physical driving-forces that participate in the formation and organization of many real-world bipartite networks. Furthermore, we present a local-based formalism that allows to intuitively implement neighbourhood-based link prediction entirely in the bipartite domain.
Community detection using preference networks
NASA Astrophysics Data System (ADS)
Tasgin, Mursel; Bingol, Haluk O.
2018-04-01
Community detection is the task of identifying clusters or groups of nodes in a network where nodes within the same group are more connected with each other than with nodes in different groups. It has practical uses in identifying similar functions or roles of nodes in many biological, social and computer networks. With the availability of very large networks in recent years, performance and scalability of community detection algorithms become crucial, i.e. if time complexity of an algorithm is high, it cannot run on large networks. In this paper, we propose a new community detection algorithm, which has a local approach and is able to run on large networks. It has a simple and effective method; given a network, algorithm constructs a preference network of nodes where each node has a single outgoing edge showing its preferred node to be in the same community with. In such a preference network, each connected component is a community. Selection of the preferred node is performed using similarity based metrics of nodes. We use two alternatives for this purpose which can be calculated in 1-neighborhood of nodes, i.e. number of common neighbors of selector node and its neighbors and, the spread capability of neighbors around the selector node which is calculated by the gossip algorithm of Lind et.al. Our algorithm is tested on both computer generated LFR networks and real-life networks with ground-truth community structure. It can identify communities accurately in a fast way. It is local, scalable and suitable for distributed execution on large networks.
An Effective Cuckoo Search Algorithm for Node Localization in Wireless Sensor Network.
Cheng, Jing; Xia, Linyuan
2016-08-31
Localization is an essential requirement in the increasing prevalence of wireless sensor network (WSN) applications. Reducing the computational complexity, communication overhead in WSN localization is of paramount importance in order to prolong the lifetime of the energy-limited sensor nodes and improve localization performance. This paper proposes an effective Cuckoo Search (CS) algorithm for node localization. Based on the modification of step size, this approach enables the population to approach global optimal solution rapidly, and the fitness of each solution is employed to build mutation probability for avoiding local convergence. Further, the approach restricts the population in the certain range so that it can prevent the energy consumption caused by insignificant search. Extensive experiments were conducted to study the effects of parameters like anchor density, node density and communication range on the proposed algorithm with respect to average localization error and localization success ratio. In addition, a comparative study was conducted to realize the same localization task using the same network deployment. Experimental results prove that the proposed CS algorithm can not only increase convergence rate but also reduce average localization error compared with standard CS algorithm and Particle Swarm Optimization (PSO) algorithm.
An Effective Cuckoo Search Algorithm for Node Localization in Wireless Sensor Network
Cheng, Jing; Xia, Linyuan
2016-01-01
Localization is an essential requirement in the increasing prevalence of wireless sensor network (WSN) applications. Reducing the computational complexity, communication overhead in WSN localization is of paramount importance in order to prolong the lifetime of the energy-limited sensor nodes and improve localization performance. This paper proposes an effective Cuckoo Search (CS) algorithm for node localization. Based on the modification of step size, this approach enables the population to approach global optimal solution rapidly, and the fitness of each solution is employed to build mutation probability for avoiding local convergence. Further, the approach restricts the population in the certain range so that it can prevent the energy consumption caused by insignificant search. Extensive experiments were conducted to study the effects of parameters like anchor density, node density and communication range on the proposed algorithm with respect to average localization error and localization success ratio. In addition, a comparative study was conducted to realize the same localization task using the same network deployment. Experimental results prove that the proposed CS algorithm can not only increase convergence rate but also reduce average localization error compared with standard CS algorithm and Particle Swarm Optimization (PSO) algorithm. PMID:27589756
Jiang, Joe-Air; Chuang, Cheng-Long; Lin, Tzu-Shiang; Chen, Chia-Pang; Hung, Chih-Hung; Wang, Jiing-Yi; Liu, Chang-Wang; Lai, Tzu-Yun
2010-01-01
In recent years, various received signal strength (RSS)-based localization estimation approaches for wireless sensor networks (WSNs) have been proposed. RSS-based localization is regarded as a low-cost solution for many location-aware applications in WSNs. In previous studies, the radiation patterns of all sensor nodes are assumed to be spherical, which is an oversimplification of the radio propagation model in practical applications. In this study, we present an RSS-based cooperative localization method that estimates unknown coordinates of sensor nodes in a network. Arrangement of two external low-cost omnidirectional dipole antennas is developed by using the distance-power gradient model. A modified robust regression is also proposed to determine the relative azimuth and distance between a sensor node and a fixed reference node. In addition, a cooperative localization scheme that incorporates estimations from multiple fixed reference nodes is presented to improve the accuracy of the localization. The proposed method is tested via computer-based analysis and field test. Experimental results demonstrate that the proposed low-cost method is a useful solution for localizing sensor nodes in unknown or changing environments.
Radiology: "killer app" for next generation networks?
McNeill, Kevin M
2004-03-01
The core principles of digital radiology were well developed by the end of the 1980 s. During the following decade tremendous improvements in computer technology enabled realization of those principles at an affordable cost. In this decade work can focus on highly distributed radiology in the context of the integrated health care enterprise. Over the same period computer networking has evolved from a relatively obscure field used by a small number of researchers across low-speed serial links to a pervasive technology that affects nearly all facets of society. Development directions in network technology will ultimately provide end-to-end data paths with speeds that match or exceed the speeds of data paths within the local network and even within workstations. This article describes key developments in Next Generation Networks, potential obstacles, and scenarios in which digital radiology can become a "killer app" that helps to drive deployment of new network infrastructure.
On Using Home Networks and Cloud Computing for a Future Internet of Things
NASA Astrophysics Data System (ADS)
Niedermayer, Heiko; Holz, Ralph; Pahl, Marc-Oliver; Carle, Georg
In this position paper we state four requirements for a Future Internet and sketch our initial concept. The requirements: (1) more comfort, (2) integration of home networks, (3) resources like service clouds in the network, and (4) access anywhere on any machine. Future Internet needs future quality and future comfort. There need to be new possiblities for everyone. Our focus is on higher layers and related to the many overlay proposals. We consider them to run on top of a basic Future Internet core. A new user experience means to include all user devices. Home networks and services should be a fundamental part of the Future Internet. Home networks extend access and allow interaction with the environment. Cloud Computing can provide reliable resources beyond local boundaries. For access anywhere, we also need secure storage for data and profiles in the network, in particular for access with non-personal devices (Internet terminal, ticket machine, ...).
A network approach to decentralized coordination of energy production-consumption grids
Arenas, Alex
2018-01-01
Energy grids are facing a relatively new paradigm consisting in the formation of local distributed energy sources and loads that can operate in parallel independently from the main power grid (usually called microgrids). One of the main challenges in microgrid-like networks management is that of self-adapting to the production and demands in a decentralized coordinated way. Here, we propose a stylized model that allows to analytically predict the coordination of the elements in the network, depending on the network topology. Surprisingly, almost global coordination is attained when users interact locally, with a small neighborhood, instead of the obvious but more costly all-to-all coordination. We compute analytically the optimal value of coordinated users in random homogeneous networks. The methodology proposed opens a new way of confronting the analysis of energy demand-side management in networked systems. PMID:29364962
Wang, Likun; Yang, Luhe; Peng, Zuohan; Lu, Dan; Jin, Yan; McNutt, Michael; Yin, Yuxin
2015-01-01
With the burgeoning development of cloud technology and services, there are an increasing number of users who prefer cloud to run their applications. All software and associated data are hosted on the cloud, allowing users to access them via a web browser from any computer, anywhere. This paper presents cisPath, an R/Bioconductor package deployed on cloud servers for client users to visualize, manage, and share functional protein interaction networks. With this R package, users can easily integrate downloaded protein-protein interaction information from different online databases with private data to construct new and personalized interaction networks. Additional functions allow users to generate specific networks based on private databases. Since the results produced with the use of this package are in the form of web pages, cloud users can easily view and edit the network graphs via the browser, using a mouse or touch screen, without the need to download them to a local computer. This package can also be installed and run on a local desktop computer. Depending on user preference, results can be publicized or shared by uploading to a web server or cloud driver, allowing other users to directly access results via a web browser. This package can be installed and run on a variety of platforms. Since all network views are shown in web pages, such package is particularly useful for cloud users. The easy installation and operation is an attractive quality for R beginners and users with no previous experience with cloud services.
2015-01-01
Background With the burgeoning development of cloud technology and services, there are an increasing number of users who prefer cloud to run their applications. All software and associated data are hosted on the cloud, allowing users to access them via a web browser from any computer, anywhere. This paper presents cisPath, an R/Bioconductor package deployed on cloud servers for client users to visualize, manage, and share functional protein interaction networks. Results With this R package, users can easily integrate downloaded protein-protein interaction information from different online databases with private data to construct new and personalized interaction networks. Additional functions allow users to generate specific networks based on private databases. Since the results produced with the use of this package are in the form of web pages, cloud users can easily view and edit the network graphs via the browser, using a mouse or touch screen, without the need to download them to a local computer. This package can also be installed and run on a local desktop computer. Depending on user preference, results can be publicized or shared by uploading to a web server or cloud driver, allowing other users to directly access results via a web browser. Conclusions This package can be installed and run on a variety of platforms. Since all network views are shown in web pages, such package is particularly useful for cloud users. The easy installation and operation is an attractive quality for R beginners and users with no previous experience with cloud services. PMID:25708840
Cloud Computing for Pharmacometrics: Using AWS, NONMEM, PsN, Grid Engine, and Sonic
Sanduja, S; Jewell, P; Aron, E; Pharai, N
2015-01-01
Cloud computing allows pharmacometricians to access advanced hardware, network, and security resources available to expedite analysis and reporting. Cloud-based computing environments are available at a fraction of the time and effort when compared to traditional local datacenter-based solutions. This tutorial explains how to get started with building your own personal cloud computer cluster using Amazon Web Services (AWS), NONMEM, PsN, Grid Engine, and Sonic. PMID:26451333
Cloud Computing for Pharmacometrics: Using AWS, NONMEM, PsN, Grid Engine, and Sonic.
Sanduja, S; Jewell, P; Aron, E; Pharai, N
2015-09-01
Cloud computing allows pharmacometricians to access advanced hardware, network, and security resources available to expedite analysis and reporting. Cloud-based computing environments are available at a fraction of the time and effort when compared to traditional local datacenter-based solutions. This tutorial explains how to get started with building your own personal cloud computer cluster using Amazon Web Services (AWS), NONMEM, PsN, Grid Engine, and Sonic.
Fragmenting networks by targeting collective influencers at a mesoscopic level.
Kobayashi, Teruyoshi; Masuda, Naoki
2016-11-25
A practical approach to protecting networks against epidemic processes such as spreading of infectious diseases, malware, and harmful viral information is to remove some influential nodes beforehand to fragment the network into small components. Because determining the optimal order to remove nodes is a computationally hard problem, various approximate algorithms have been proposed to efficiently fragment networks by sequential node removal. Morone and Makse proposed an algorithm employing the non-backtracking matrix of given networks, which outperforms various existing algorithms. In fact, many empirical networks have community structure, compromising the assumption of local tree-like structure on which the original algorithm is based. We develop an immunization algorithm by synergistically combining the Morone-Makse algorithm and coarse graining of the network in which we regard a community as a supernode. In this way, we aim to identify nodes that connect different communities at a reasonable computational cost. The proposed algorithm works more efficiently than the Morone-Makse and other algorithms on networks with community structure.
Fragmenting networks by targeting collective influencers at a mesoscopic level
NASA Astrophysics Data System (ADS)
Kobayashi, Teruyoshi; Masuda, Naoki
2016-11-01
A practical approach to protecting networks against epidemic processes such as spreading of infectious diseases, malware, and harmful viral information is to remove some influential nodes beforehand to fragment the network into small components. Because determining the optimal order to remove nodes is a computationally hard problem, various approximate algorithms have been proposed to efficiently fragment networks by sequential node removal. Morone and Makse proposed an algorithm employing the non-backtracking matrix of given networks, which outperforms various existing algorithms. In fact, many empirical networks have community structure, compromising the assumption of local tree-like structure on which the original algorithm is based. We develop an immunization algorithm by synergistically combining the Morone-Makse algorithm and coarse graining of the network in which we regard a community as a supernode. In this way, we aim to identify nodes that connect different communities at a reasonable computational cost. The proposed algorithm works more efficiently than the Morone-Makse and other algorithms on networks with community structure.
Fragmenting networks by targeting collective influencers at a mesoscopic level
Kobayashi, Teruyoshi; Masuda, Naoki
2016-01-01
A practical approach to protecting networks against epidemic processes such as spreading of infectious diseases, malware, and harmful viral information is to remove some influential nodes beforehand to fragment the network into small components. Because determining the optimal order to remove nodes is a computationally hard problem, various approximate algorithms have been proposed to efficiently fragment networks by sequential node removal. Morone and Makse proposed an algorithm employing the non-backtracking matrix of given networks, which outperforms various existing algorithms. In fact, many empirical networks have community structure, compromising the assumption of local tree-like structure on which the original algorithm is based. We develop an immunization algorithm by synergistically combining the Morone-Makse algorithm and coarse graining of the network in which we regard a community as a supernode. In this way, we aim to identify nodes that connect different communities at a reasonable computational cost. The proposed algorithm works more efficiently than the Morone-Makse and other algorithms on networks with community structure. PMID:27886251
Faye, Grégory; Rankin, James; Chossat, Pascal
2013-05-01
The existence of spatially localized solutions in neural networks is an important topic in neuroscience as these solutions are considered to characterize working (short-term) memory. We work with an unbounded neural network represented by the neural field equation with smooth firing rate function and a wizard hat spatial connectivity. Noting that stationary solutions of our neural field equation are equivalent to homoclinic orbits in a related fourth order ordinary differential equation, we apply normal form theory for a reversible Hopf bifurcation to prove the existence of localized solutions; further, we present results concerning their stability. Numerical continuation is used to compute branches of localized solution that exhibit snaking-type behaviour. We describe in terms of three parameters the exact regions for which localized solutions persist.
Location estimation in wireless sensor networks using spring-relaxation technique.
Zhang, Qing; Foh, Chuan Heng; Seet, Boon-Chong; Fong, A C M
2010-01-01
Accurate and low-cost autonomous self-localization is a critical requirement of various applications of a large-scale distributed wireless sensor network (WSN). Due to its massive deployment of sensors, explicit measurements based on specialized localization hardware such as the Global Positioning System (GPS) is not practical. In this paper, we propose a low-cost WSN localization solution. Our design uses received signal strength indicators for ranging, light weight distributed algorithms based on the spring-relaxation technique for location computation, and the cooperative approach to achieve certain location estimation accuracy with a low number of nodes with known locations. We provide analysis to show the suitability of the spring-relaxation technique for WSN localization with cooperative approach, and perform simulation experiments to illustrate its accuracy in localization.
NASA Astrophysics Data System (ADS)
Unke, Oliver T.; Meuwly, Markus
2018-06-01
Despite the ever-increasing computer power, accurate ab initio calculations for large systems (thousands to millions of atoms) remain infeasible. Instead, approximate empirical energy functions are used. Most current approaches are either transferable between different chemical systems, but not particularly accurate, or they are fine-tuned to a specific application. In this work, a data-driven method to construct a potential energy surface based on neural networks is presented. Since the total energy is decomposed into local atomic contributions, the evaluation is easily parallelizable and scales linearly with system size. With prediction errors below 0.5 kcal mol-1 for both unknown molecules and configurations, the method is accurate across chemical and configurational space, which is demonstrated by applying it to datasets from nonreactive and reactive molecular dynamics simulations and a diverse database of equilibrium structures. The possibility to use small molecules as reference data to predict larger structures is also explored. Since the descriptor only uses local information, high-level ab initio methods, which are computationally too expensive for large molecules, become feasible for generating the necessary reference data used to train the neural network.
Reconstructing cerebrovascular networks under local physiological constraints by integer programming
Rempfler, Markus; Schneider, Matthias; Ielacqua, Giovanna D.; ...
2015-04-23
We introduce a probabilistic approach to vessel network extraction that enforces physiological constraints on the vessel structure. The method accounts for both image evidence and geometric relationships between vessels by solving an integer program, which is shown to yield the maximum a posteriori (MAP) estimate to the probabilistic model. Starting from an over-connected network, it is pruning vessel stumps and spurious connections by evaluating the local geometry and the global connectivity of the graph. We utilize a high-resolution micro computed tomography (µCT) dataset of a cerebrovascular corrosion cast to obtain a reference network and learn the prior distributions of ourmore » probabilistic model. As a result, we perform experiments on micro magnetic resonance angiography (µMRA) images of mouse brains and discuss properties of the networks obtained under different tracking and pruning approaches.« less
Adaptiveness in monotone pseudo-Boolean optimization and stochastic neural computation.
Grossi, Giuliano
2009-08-01
Hopfield neural network (HNN) is a nonlinear computational model successfully applied in finding near-optimal solutions of several difficult combinatorial problems. In many cases, the network energy function is obtained through a learning procedure so that its minima are states falling into a proper subspace (feasible region) of the search space. However, because of the network nonlinearity, a number of undesirable local energy minima emerge from the learning procedure, significantly effecting the network performance. In the neural model analyzed here, we combine both a penalty and a stochastic process in order to enhance the performance of a binary HNN. The penalty strategy allows us to gradually lead the search towards states representing feasible solutions, so avoiding oscillatory behaviors or asymptotically instable convergence. Presence of stochastic dynamics potentially prevents the network to fall into shallow local minima of the energy function, i.e., quite far from global optimum. Hence, for a given fixed network topology, the desired final distribution on the states can be reached by carefully modulating such process. The model uses pseudo-Boolean functions both to express problem constraints and cost function; a combination of these two functions is then interpreted as energy of the neural network. A wide variety of NP-hard problems fall in the class of problems that can be solved by the model at hand, particularly those having a monotonic quadratic pseudo-Boolean function as constraint function. That is, functions easily derived by closed algebraic expressions representing the constraint structure and easy (polynomial time) to maximize. We show the asymptotic convergence properties of this model characterizing its state space distribution at thermal equilibrium in terms of Markov chain and give evidence of its ability to find high quality solutions on benchmarks and randomly generated instances of two specific problems taken from the computational graph theory.
Compact VLSI neural computer integrated with active pixel sensor for real-time ATR applications
NASA Astrophysics Data System (ADS)
Fang, Wai-Chi; Udomkesmalee, Gabriel; Alkalai, Leon
1997-04-01
A compact VLSI neural computer integrated with an active pixel sensor has been under development to mimic what is inherent in biological vision systems. This electronic eye- brain computer is targeted for real-time machine vision applications which require both high-bandwidth communication and high-performance computing for data sensing, synergy of multiple types of sensory information, feature extraction, target detection, target recognition, and control functions. The neural computer is based on a composite structure which combines Annealing Cellular Neural Network (ACNN) and Hierarchical Self-Organization Neural Network (HSONN). The ACNN architecture is a programmable and scalable multi- dimensional array of annealing neurons which are locally connected with their local neurons. Meanwhile, the HSONN adopts a hierarchical structure with nonlinear basis functions. The ACNN+HSONN neural computer is effectively designed to perform programmable functions for machine vision processing in all levels with its embedded host processor. It provides a two order-of-magnitude increase in computation power over the state-of-the-art microcomputer and DSP microelectronics. A compact current-mode VLSI design feasibility of the ACNN+HSONN neural computer is demonstrated by a 3D 16X8X9-cube neural processor chip design in a 2-micrometers CMOS technology. Integration of this neural computer as one slice of a 4'X4' multichip module into the 3D MCM based avionics architecture for NASA's New Millennium Program is also described.
[Datanet 1 and the convergence of the computer and telecommunications].
de Wit, Onno
2008-01-01
This article describes the efforts of the Dutch national company for telecommunication, PTT, in introducing and developing a public network for data communication in the Netherlands in the last decades of the twentieth century. As early as the 1960s, private companies started to connect their local computers. As a result, small private computer networks started to emerge. As the state company offering general access to public services in telephony, the PTT strove to develop a public data network, accessible to every user and telephone subscriber. This ambition was realized with Datanet 1, the public data network which was officially opened in 1982. In the years that followed, Datanet became the dominant network for data transmission, despite competing efforts by private companies and computer manufacturers. The large-scale application of Datanet in public municipal administration serves as a case study for the development of data communication in practice, that shows that there was a gradual migration from X-25 to TCP/IP protocols. The article concludes by stating that the introduction and development of data transmission transformed the role of the PTT in Dutch society, brought new working practices, new services and new responsibilities, and resulted in a whole new phase in the history of the computer.
Characterization of essential proteins based on network topology in proteins interaction networks
NASA Astrophysics Data System (ADS)
Bakar, Sakhinah Abu; Taheri, Javid; Zomaya, Albert Y.
2014-06-01
The identification of essential proteins is theoretically and practically important as (1) it is essential to understand the minimal surviving requirements for cellular lives, and (2) it provides fundamental for development of drug. As conducting experimental studies to identify essential proteins are both time and resource consuming, here we present a computational approach in predicting them based on network topology properties from protein-protein interaction networks of Saccharomyces cerevisiae. The proposed method, namely EP3NN (Essential Proteins Prediction using Probabilistic Neural Network) employed a machine learning algorithm called Probabilistic Neural Network as a classifier to identify essential proteins of the organism of interest; it uses degree centrality, closeness centrality, local assortativity and local clustering coefficient of each protein in the network for such predictions. Results show that EP3NN managed to successfully predict essential proteins with an accuracy of 95% for our studied organism. Results also show that most of the essential proteins are close to other proteins, have assortativity behavior and form clusters/sub-graph in the network.
Campus-Wide Computing: Early Results Using Legion at the University of Virginia
2006-01-01
Bernard et al., “Primitives for Distributed Computing in a Heterogeneous Local Area Network Environ- ment”, IEEE Trans on Soft. Eng. vol. 15, no. 12...1994. [16] F. Ferstl, “CODINE Technical Overview,” Genias, April, 1993. [17] R. F. Freund and D. S. Cornwell , “Superconcurrency: A form of distributed
Law School Experience in Pervasive Electronic Communications.
ERIC Educational Resources Information Center
Shiels, Rosemary
1994-01-01
Installation of a schoolwide local area computer network at Chicago-Kent College of Law (Illinois) is described. Uses of electronic mail within a course on computer law are described. Additional social, administrative, and research uses of electronic mail are noted as are positive effects and emerging problems (e.g., burdens on recipients and…
Computer Managed Instruction at Arthur Andersen & Company: A Status Report.
ERIC Educational Resources Information Center
Dennis, Verl E.; Gruner, Dennis
1992-01-01
Computer managed instruction (CMI) based on the principle of mastery learning has been cost effective for job training in the tax division of Arthur Andersen & Company. The CMI software system, which uses computerized pretests and posttests to monitor training, has been upgraded from microcomputer use to local area networks. Success factors at…
NASA Astrophysics Data System (ADS)
Song, Chen; Zhong-Cheng, Wu; Hong, Lv
2018-03-01
Building Energy forecasting plays an important role in energy management and plan. Using mind evolutionary algorithm to find the optimal network weights and threshold, to optimize the BP neural network, can overcome the problem of the BP neural network into a local minimum point. The optimized network is used for time series prediction, and the same month forecast, to get two predictive values. Then two kinds of predictive values are put into neural network, to get the final forecast value. The effectiveness of the method was verified by experiment with the energy value of three buildings in Hefei.
NASA Technical Reports Server (NTRS)
Ortega, J. M.
1984-01-01
The research efforts of University of Virginia students under a NASA sponsored program are summarized and the status of the program is reported. The research includes: testing method evaluations for N version programming; a representation scheme for modeling three dimensional objects; fault tolerant protocols for real time local area networks; performance investigation of Cyber network; XFEM implementation; and vectorizing incomplete Cholesky conjugate gradients.
ERIC Educational Resources Information Center
Kupiainen, Jari
2006-01-01
In the Western Pacific, the People First Network project has since 2001 been building a growing network of rural email stations across the conflict-ridden Solomon Islands. These stations are based on robust technology and consist of solar panels, short-wave radios and compatible modems, laptop computers and printers to provide email communication…
Stop the World--West Georgia Is Getting On.
ERIC Educational Resources Information Center
Mitchell, Phyllis R.
1996-01-01
In 5 years, the schools and community of Carrollton, Georgia, created a school systemwide network of 1,400 computers and 70 CD-ROMs connected by a fiber wide-area network to other city institutions and the Internet with grants from local, state, and national industry. After incorporating the new technologies into the curriculum, the dropout rate…
NASA Astrophysics Data System (ADS)
Efrain Humpire-Mamani, Gabriel; Arindra Adiyoso Setio, Arnaud; van Ginneken, Bram; Jacobs, Colin
2018-04-01
Automatic localization of organs and other structures in medical images is an important preprocessing step that can improve and speed up other algorithms such as organ segmentation, lesion detection, and registration. This work presents an efficient method for simultaneous localization of multiple structures in 3D thorax-abdomen CT scans. Our approach predicts the location of multiple structures using a single multi-label convolutional neural network for each orthogonal view. Each network takes extra slices around the current slice as input to provide extra context. A sigmoid layer is used to perform multi-label classification. The output of the three networks is subsequently combined to compute a 3D bounding box for each structure. We used our approach to locate 11 structures of interest. The neural network was trained and evaluated on a large set of 1884 thorax-abdomen CT scans from patients undergoing oncological workup. Reference bounding boxes were annotated by human observers. The performance of our method was evaluated by computing the wall distance to the reference bounding boxes. The bounding boxes annotated by the first human observer were used as the reference standard for the test set. Using the best configuration, we obtained an average wall distance of 3.20~+/-~7.33 mm in the test set. The second human observer achieved 1.23~+/-~3.39 mm. For all structures, the results were better than those reported in previously published studies. In conclusion, we proposed an efficient method for the accurate localization of multiple organs. Our method uses multiple slices as input to provide more context around the slice under analysis, and we have shown that this improves performance. This method can easily be adapted to handle more organs.
Colucci, G; Giabbani, E; Barizzi, G; Urwyler, N; Alberio, L
2011-08-01
ROTEM(®) is considered a helpful point-of-care device to monitor blood coagulation. Centrally performed analysis is desirable but rapid transport of blood samples and real-time transmission of graphic results are an important prerequisite. The effect of sample transport through a pneumatic tube system on ROTEM(®) results is unknown. The aims of the present work were (i) to determine the influence of blood sample transport through a pneumatic tube system on ROTEM(®) parameters compared to manual transportation, and (ii) to verify whether graphic results can be transmitted on line via virtual network computing using local area network to the physician in charge of the patient. Single centre study with 30 normal volunteers. Two whole blood samples were transferred to the central haematology laboratory by either normal transport or pneumatic delivery. EXTEM, INTEM, FIBTEM and APTEM were analysed in parallel with two ROTEM(®) devices and compared. Connection between central laboratory, emergency and operating rooms was established using local area network. All collected ROTEM(®) parameters were within normal limits. No statistically significant differences between normal transport and pneumatic delivery were observed. Real-time transmission of the original ROTEM(®) curves using local area network is feasible and easy to establish. At our institution, transport of blood samples by pneumatic delivery does not influence ROTEM(®) parameters. Blood samples can be analysed centrally, and results transmitted live via virtual network computing to emergency or operating rooms. Prior to analyse blood samples centrally, the type of sample transport should be tested to exclude in vitro blood activation by local pneumatic transport system. © 2011 Blackwell Publishing Ltd.
Advanced On-the-Job Training System: System Specification
1990-05-01
3.1.5.2.10 Evaluation Subsystem spotfor the Traking Devopment and Deliery Subsystem ..... 22 3.1.5.2.11 TrIning Development=dDelivery Subsystem sL...e. Alsys Ada compiler f. Ethernet Local Area Network reference manual(s) g. Infotron 992 network reference manual(s) h. Computer Program Source...1989 a. Daily check of mainframe components, including all elements critical to support the terminal network . b. Restoration of mainframe equipment
Bio-inspired computational heuristics to study Lane-Emden systems arising in astrophysics model.
Ahmad, Iftikhar; Raja, Muhammad Asif Zahoor; Bilal, Muhammad; Ashraf, Farooq
2016-01-01
This study reports novel hybrid computational methods for the solutions of nonlinear singular Lane-Emden type differential equation arising in astrophysics models by exploiting the strength of unsupervised neural network models and stochastic optimization techniques. In the scheme the neural network, sub-part of large field called soft computing, is exploited for modelling of the equation in an unsupervised manner. The proposed approximated solutions of higher order ordinary differential equation are calculated with the weights of neural networks trained with genetic algorithm, and pattern search hybrid with sequential quadratic programming for rapid local convergence. The results of proposed solvers for solving the nonlinear singular systems are in good agreements with the standard solutions. Accuracy and convergence the design schemes are demonstrated by the results of statistical performance measures based on the sufficient large number of independent runs.
Mobility-Aware Caching and Computation Offloading in 5G Ultra-Dense Cellular Networks
Chen, Min; Hao, Yixue; Qiu, Meikang; Song, Jeungeun; Wu, Di; Humar, Iztok
2016-01-01
Recent trends show that Internet traffic is increasingly dominated by content, which is accompanied by the exponential growth of traffic. To cope with this phenomena, network caching is introduced to utilize the storage capacity of diverse network devices. In this paper, we first summarize four basic caching placement strategies, i.e., local caching, Device-to-Device (D2D) caching, Small cell Base Station (SBS) caching and Macrocell Base Station (MBS) caching. However, studies show that so far, much of the research has ignored the impact of user mobility. Therefore, taking the effect of the user mobility into consideration, we proposes a joint mobility-aware caching and SBS density placement scheme (MS caching). In addition, differences and relationships between caching and computation offloading are discussed. We present a design of a hybrid computation offloading and support it with experimental results, which demonstrate improved performance in terms of energy cost. Finally, we discuss the design of an incentive mechanism by considering network dynamics, differentiated user’s quality of experience (QoE) and the heterogeneity of mobile terminals in terms of caching and computing capabilities. PMID:27347975
Probabilistic inference in discrete spaces can be implemented into networks of LIF neurons.
Probst, Dimitri; Petrovici, Mihai A; Bytschok, Ilja; Bill, Johannes; Pecevski, Dejan; Schemmel, Johannes; Meier, Karlheinz
2015-01-01
The means by which cortical neural networks are able to efficiently solve inference problems remains an open question in computational neuroscience. Recently, abstract models of Bayesian computation in neural circuits have been proposed, but they lack a mechanistic interpretation at the single-cell level. In this article, we describe a complete theoretical framework for building networks of leaky integrate-and-fire neurons that can sample from arbitrary probability distributions over binary random variables. We test our framework for a model inference task based on a psychophysical phenomenon (the Knill-Kersten optical illusion) and further assess its performance when applied to randomly generated distributions. As the local computations performed by the network strongly depend on the interaction between neurons, we compare several types of couplings mediated by either single synapses or interneuron chains. Due to its robustness to substrate imperfections such as parameter noise and background noise correlations, our model is particularly interesting for implementation on novel, neuro-inspired computing architectures, which can thereby serve as a fast, low-power substrate for solving real-world inference problems.
Mobility-Aware Caching and Computation Offloading in 5G Ultra-Dense Cellular Networks.
Chen, Min; Hao, Yixue; Qiu, Meikang; Song, Jeungeun; Wu, Di; Humar, Iztok
2016-06-25
Recent trends show that Internet traffic is increasingly dominated by content, which is accompanied by the exponential growth of traffic. To cope with this phenomena, network caching is introduced to utilize the storage capacity of diverse network devices. In this paper, we first summarize four basic caching placement strategies, i.e., local caching, Device-to-Device (D2D) caching, Small cell Base Station (SBS) caching and Macrocell Base Station (MBS) caching. However, studies show that so far, much of the research has ignored the impact of user mobility. Therefore, taking the effect of the user mobility into consideration, we proposes a joint mobility-aware caching and SBS density placement scheme (MS caching). In addition, differences and relationships between caching and computation offloading are discussed. We present a design of a hybrid computation offloading and support it with experimental results, which demonstrate improved performance in terms of energy cost. Finally, we discuss the design of an incentive mechanism by considering network dynamics, differentiated user's quality of experience (QoE) and the heterogeneity of mobile terminals in terms of caching and computing capabilities.
Probabilistic inference in discrete spaces can be implemented into networks of LIF neurons
Probst, Dimitri; Petrovici, Mihai A.; Bytschok, Ilja; Bill, Johannes; Pecevski, Dejan; Schemmel, Johannes; Meier, Karlheinz
2015-01-01
The means by which cortical neural networks are able to efficiently solve inference problems remains an open question in computational neuroscience. Recently, abstract models of Bayesian computation in neural circuits have been proposed, but they lack a mechanistic interpretation at the single-cell level. In this article, we describe a complete theoretical framework for building networks of leaky integrate-and-fire neurons that can sample from arbitrary probability distributions over binary random variables. We test our framework for a model inference task based on a psychophysical phenomenon (the Knill-Kersten optical illusion) and further assess its performance when applied to randomly generated distributions. As the local computations performed by the network strongly depend on the interaction between neurons, we compare several types of couplings mediated by either single synapses or interneuron chains. Due to its robustness to substrate imperfections such as parameter noise and background noise correlations, our model is particularly interesting for implementation on novel, neuro-inspired computing architectures, which can thereby serve as a fast, low-power substrate for solving real-world inference problems. PMID:25729361
A Genetic Algorithm for the Bi-Level Topological Design of Local Area Networks
Camacho-Vallejo, José-Fernando; Mar-Ortiz, Julio; López-Ramos, Francisco; Rodríguez, Ricardo Pedraza
2015-01-01
Local access networks (LAN) are commonly used as communication infrastructures which meet the demand of a set of users in the local environment. Usually these networks consist of several LAN segments connected by bridges. The topological LAN design bi-level problem consists on assigning users to clusters and the union of clusters by bridges in order to obtain a minimum response time network with minimum connection cost. Therefore, the decision of optimally assigning users to clusters will be made by the leader and the follower will make the decision of connecting all the clusters while forming a spanning tree. In this paper, we propose a genetic algorithm for solving the bi-level topological design of a Local Access Network. Our solution method considers the Stackelberg equilibrium to solve the bi-level problem. The Stackelberg-Genetic algorithm procedure deals with the fact that the follower’s problem cannot be optimally solved in a straightforward manner. The computational results obtained from two different sets of instances show that the performance of the developed algorithm is efficient and that it is more suitable for solving the bi-level problem than a previous Nash-Genetic approach. PMID:26102502
Automated Synthesis of Long Communication Delays for Testing
NASA Technical Reports Server (NTRS)
Seibert, Marc; McKim, James
2005-01-01
Planetary-Ohio Network Emulator (p- ONE) is a computer program for local laboratory testing of high bandwidth data-communication systems subject to long delays in propagation over interplanetary distances. p-ONE is installed on a personal computer connected to two bidirectional Ethernet interfaces, denoted A and B, that represent local-area networks at opposite ends of a long propagation path. Traffic that is to be passed between A and B is encapsulated in IP (Internet Protocol) packets (e.g., User Data Protocol, UDP). Intercepting this traffic between A and B in both directions, p-ONE time-tags each packet and stores it in memory or on the hard disk of the computer for a user-specified interval that equals the propagation delay to be synthesized. At the expiration of its storage time, each such packet is sent to its destination (that is, if it was received from A, it is sent to B, or vice versa). The accuracy of the p-ONE software is very high, with zero packet loss through the system and negligible latency. Optionally, p-ONE can be configured to delay all network traffic to and from all network addresses on each Ethernet interface or to selectively delay traffic between specific addresses or traffic of specific types. p-ONE works well with Linux and is also designed to be compatible with other operating systems.
A price mechanism for supply demand matching in local grid of households with micro-CHP
NASA Astrophysics Data System (ADS)
Larsen, G. K. H.; van Foreest, N. D.; Scherpen, J. M. A.
2012-10-01
This paper describes a dynamic price mechanism to coordinate eletric power generation from micro Combined Heat and Power (micro-CHP) systems in a network of households. It is assumed that the households are prosumers, i.e. both producers and consumers of electricity. The control is done on household level in a completely distributed manner. Avoiding a centralized controller both eases computation complexity and preserves communication structure in the network. Local information is used to decide to turn on or off the micro-CHP, but through price signals between the prosumers the network as a whole operates in a cooperative way.
Probing many-body localization with neural networks
NASA Astrophysics Data System (ADS)
Schindler, Frank; Regnault, Nicolas; Neupert, Titus
2017-06-01
We show that a simple artificial neural network trained on entanglement spectra of individual states of a many-body quantum system can be used to determine the transition between a many-body localized and a thermalizing regime. Specifically, we study the Heisenberg spin-1/2 chain in a random external field. We employ a multilayer perceptron with a single hidden layer, which is trained on labeled entanglement spectra pertaining to the fully localized and fully thermal regimes. We then apply this network to classify spectra belonging to states in the transition region. For training, we use a cost function that contains, in addition to the usual error and regularization parts, a term that favors a confident classification of the transition region states. The resulting phase diagram is in good agreement with the one obtained by more conventional methods and can be computed for small systems. In particular, the neural network outperforms conventional methods in classifying individual eigenstates pertaining to a single disorder realization. It allows us to map out the structure of these eigenstates across the transition with spatial resolution. Furthermore, we analyze the network operation using the dreaming technique to show that the neural network correctly learns by itself the power-law structure of the entanglement spectra in the many-body localized regime.
Automated Help System For A Supercomputer
NASA Technical Reports Server (NTRS)
Callas, George P.; Schulbach, Catherine H.; Younkin, Michael
1994-01-01
Expert-system software developed to provide automated system of user-helping displays in supercomputer system at Ames Research Center Advanced Computer Facility. Users located at remote computer terminals connected to supercomputer and each other via gateway computers, local-area networks, telephone lines, and satellite links. Automated help system answers routine user inquiries about how to use services of computer system. Available 24 hours per day and reduces burden on human experts, freeing them to concentrate on helping users with complicated problems.
Real-space mapping of topological invariants using artificial neural networks
NASA Astrophysics Data System (ADS)
Carvalho, D.; García-Martínez, N. A.; Lado, J. L.; Fernández-Rossier, J.
2018-03-01
Topological invariants allow one to characterize Hamiltonians, predicting the existence of topologically protected in-gap modes. Those invariants can be computed by tracing the evolution of the occupied wave functions under twisted boundary conditions. However, those procedures do not allow one to calculate a topological invariant by evaluating the system locally, and thus require information about the wave functions in the whole system. Here we show that artificial neural networks can be trained to identify the topological order by evaluating a local projection of the density matrix. We demonstrate this for two different models, a one-dimensional topological superconductor and a two-dimensional quantum anomalous Hall state, both with spatially modulated parameters. Our neural network correctly identifies the different topological domains in real space, predicting the location of in-gap states. By combining a neural network with a calculation of the electronic states that uses the kernel polynomial method, we show that the local evaluation of the invariant can be carried out by evaluating a local quantity, in particular for systems without translational symmetry consisting of tens of thousands of atoms. Our results show that supervised learning is an efficient methodology to characterize the local topology of a system.
Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks.
Rangan, Aaditya V; Cai, David
2007-02-01
We discuss numerical methods for simulating large-scale, integrate-and-fire (I&F) neuronal networks. Important elements in our numerical methods are (i) a neurophysiologically inspired integrating factor which casts the solution as a numerically tractable integral equation, and allows us to obtain stable and accurate individual neuronal trajectories (i.e., voltage and conductance time-courses) even when the I&F neuronal equations are stiff, such as in strongly fluctuating, high-conductance states; (ii) an iterated process of spike-spike corrections within groups of strongly coupled neurons to account for spike-spike interactions within a single large numerical time-step; and (iii) a clustering procedure of firing events in the network to take advantage of localized architectures, such as spatial scales of strong local interactions, which are often present in large-scale computational models-for example, those of the primary visual cortex. (We note that the spike-spike corrections in our methods are more involved than the correction of single neuron spike-time via a polynomial interpolation as in the modified Runge-Kutta methods commonly used in simulations of I&F neuronal networks.) Our methods can evolve networks with relatively strong local interactions in an asymptotically optimal way such that each neuron fires approximately once in [Formula: see text] operations, where N is the number of neurons in the system. We note that quantifications used in computational modeling are often statistical, since measurements in a real experiment to characterize physiological systems are typically statistical, such as firing rate, interspike interval distributions, and spike-triggered voltage distributions. We emphasize that it takes much less computational effort to resolve statistical properties of certain I&F neuronal networks than to fully resolve trajectories of each and every neuron within the system. For networks operating in realistic dynamical regimes, such as strongly fluctuating, high-conductance states, our methods are designed to achieve statistical accuracy when very large time-steps are used. Moreover, our methods can also achieve trajectory-wise accuracy when small time-steps are used.
Latest Trends in Home Networking Technologies
NASA Astrophysics Data System (ADS)
Tsutsui, Akihiro
Broadband access service, including FTTH, is now in widespread use in Japan. More than half of the households that have broadband Internet access construct local area networks (home networks) in their homes. In addition, information appliances such as personal computers, networked audio, and visual devices and game machines are connected to home networks, and many novel service applications are provided via the Internet. However, it is still difficult to install and incorporate these devices and services because networked devices have been developed in different communities. I briefly explain the current status of information appliances and home networking technologies and services and discuss some of the problems in this and their solutions.
Computationally Efficient Nonlinear Bell Inequalities for Quantum Networks
NASA Astrophysics Data System (ADS)
Luo, Ming-Xing
2018-04-01
The correlations in quantum networks have attracted strong interest with new types of violations of the locality. The standard Bell inequalities cannot characterize the multipartite correlations that are generated by multiple sources. The main problem is that no computationally efficient method is available for constructing useful Bell inequalities for general quantum networks. In this work, we show a significant improvement by presenting new, explicit Bell-type inequalities for general networks including cyclic networks. These nonlinear inequalities are related to the matching problem of an equivalent unweighted bipartite graph that allows constructing a polynomial-time algorithm. For the quantum resources consisting of bipartite entangled pure states and generalized Greenberger-Horne-Zeilinger (GHZ) states, we prove the generic nonmultilocality of quantum networks with multiple independent observers using new Bell inequalities. The violations are maximal with respect to the presented Tsirelson's bound for Einstein-Podolsky-Rosen states and GHZ states. Moreover, these violations hold for Werner states or some general noisy states. Our results suggest that the presented Bell inequalities can be used to characterize experimental quantum networks.
ERIC Educational Resources Information Center
Mobray, Deborah, Ed.
Papers on local area networks (LANs), modelling techniques, software improvement, capacity planning, software engineering, microcomputers and end user computing, cost accounting and chargeback, configuration and performance management, and benchmarking presented at this conference include: (1) "Theoretical Performance Analysis of Virtual…
ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.
Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan
2017-07-20
Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.
Separating figure from ground with a parallel network.
Kienker, P K; Sejnowski, T J; Hinton, G E; Schumacher, L E
1986-01-01
The differentiation of figure from ground plays an important role in the perceptual organization of visual stimuli. The rapidity with which we can discriminate the inside from the outside of a figure suggests that at least this step in the process may be performed in visual cortex by a large number of neurons in several different areas working together in parallel. We have attempted to simulate this collective computation by designing a network of simple processing units that receives two types of information: bottom-up input from the image containing the outlines of a figure, which may be incomplete, and a top-down attentional input that biases one part of the image to be the inside of the figure. No presegmentation of the image was assumed. Two methods for performing the computation were explored: gradient descent, which seeks locally optimal states, and simulated annealing, which attempts to find globally optimal states by introducing noise into the computation. For complete outlines, gradient descent was faster, but the range of input parameters leading to successful performance was very narrow. In contrast, simulated annealing was more robust: it worked over a wider range of attention parameters and a wider range of outlines, including incomplete ones. Our network model is too simplified to serve as a model of human performance, but it does demonstrate that one global property of outlines can be computed through local interactions in a parallel network. Some features of the model, such as the role of noise in escaping from nonglobal optima, may generalize to more realistic models.
Pan, Xiaoyong; Shen, Hong-Bin
2018-05-02
RNA-binding proteins (RBPs) take over 5∼10% of the eukaryotic proteome and play key roles in many biological processes, e.g. gene regulation. Experimental detection of RBP binding sites is still time-intensive and high-costly. Instead, computational prediction of the RBP binding sites using pattern learned from existing annotation knowledge is a fast approach. From the biological point of view, the local structure context derived from local sequences will be recognized by specific RBPs. However, in computational modeling using deep learning, to our best knowledge, only global representations of entire RNA sequences are employed. So far, the local sequence information is ignored in the deep model construction process. In this study, we present a computational method iDeepE to predict RNA-protein binding sites from RNA sequences by combining global and local convolutional neural networks (CNNs). For the global CNN, we pad the RNA sequences into the same length. For the local CNN, we split a RNA sequence into multiple overlapping fixed-length subsequences, where each subsequence is a signal channel of the whole sequence. Next, we train deep CNNs for multiple subsequences and the padded sequences to learn high-level features, respectively. Finally, the outputs from local and global CNNs are combined to improve the prediction. iDeepE demonstrates a better performance over state-of-the-art methods on two large-scale datasets derived from CLIP-seq. We also find that the local CNN run 1.8 times faster than the global CNN with comparable performance when using GPUs. Our results show that iDeepE has captured experimentally verified binding motifs. https://github.com/xypan1232/iDeepE. xypan172436@gmail.com or hbshen@sjtu.edu.cn. Supplementary data are available at Bioinformatics online.
System analysis for the Huntsville Operation Support Center distributed computer system
NASA Technical Reports Server (NTRS)
Ingels, F. M.
1986-01-01
A simulation model of the NASA Huntsville Operational Support Center (HOSC) was developed. This simulation model emulates the HYPERchannel Local Area Network (LAN) that ties together the various computers of HOSC. The HOSC system is a large installation of mainframe computers such as the Perkin Elmer 3200 series and the Dec VAX series. A series of six simulation exercises of the HOSC model is described using data sets provided by NASA. The analytical analysis of the ETHERNET LAN and the video terminals (VTs) distribution system are presented. An interface analysis of the smart terminal network model which allows the data flow requirements due to VTs on the ETHERNET LAN to be estimated, is presented.
Practical applications of hand-held computers in dermatology.
Goldblum, Orin M
2002-09-01
For physicians, hand-held computers are gaining popularity as point of care reference tools. The convergence of hand-held computers, the Internet, and wireless networks will enable these devices to assume more essential roles as mobile transmitters and receivers of digital medical Information. In addition to serving as portable medical reference sources, these devices can be Internet-enabled, allowing them to communicate over wireless wide and local area networks. With enhanced wireless connectivity, hand-held computers can be used at the point of patient care for charge capture, electronic prescribing, laboratory test ordering, laboratory result retrieval, web access, e-mail communication, and other clinical and administrative tasks. Physicians In virtually every medical specialty have begun using these devices in various ways. This review of hand-held computer use in dermatology illustrates practical examples of the many different ways hand-held computers can be effectively used by the practicing dermatologist.
Tensor network method for reversible classical computation
NASA Astrophysics Data System (ADS)
Yang, Zhi-Cheng; Kourtis, Stefanos; Chamon, Claudio; Mucciolo, Eduardo R.; Ruckenstein, Andrei E.
2018-03-01
We develop a tensor network technique that can solve universal reversible classical computational problems, formulated as vertex models on a square lattice [Nat. Commun. 8, 15303 (2017), 10.1038/ncomms15303]. By encoding the truth table of each vertex constraint in a tensor, the total number of solutions compatible with partial inputs and outputs at the boundary can be represented as the full contraction of a tensor network. We introduce an iterative compression-decimation (ICD) scheme that performs this contraction efficiently. The ICD algorithm first propagates local constraints to longer ranges via repeated contraction-decomposition sweeps over all lattice bonds, thus achieving compression on a given length scale. It then decimates the lattice via coarse-graining tensor contractions. Repeated iterations of these two steps gradually collapse the tensor network and ultimately yield the exact tensor trace for large systems, without the need for manual control of tensor dimensions. Our protocol allows us to obtain the exact number of solutions for computations where a naive enumeration would take astronomically long times.
Automatic network coupling analysis for dynamical systems based on detailed kinetic models.
Lebiedz, Dirk; Kammerer, Julia; Brandt-Pollmann, Ulrich
2005-10-01
We introduce a numerical complexity reduction method for the automatic identification and analysis of dynamic network decompositions in (bio)chemical kinetics based on error-controlled computation of a minimal model dimension represented by the number of (locally) active dynamical modes. Our algorithm exploits a generalized sensitivity analysis along state trajectories and subsequent singular value decomposition of sensitivity matrices for the identification of these dominant dynamical modes. It allows for a dynamic coupling analysis of (bio)chemical species in kinetic models that can be exploited for the piecewise computation of a minimal model on small time intervals and offers valuable functional insight into highly nonlinear reaction mechanisms and network dynamics. We present results for the identification of network decompositions in a simple oscillatory chemical reaction, time scale separation based model reduction in a Michaelis-Menten enzyme system and network decomposition of a detailed model for the oscillatory peroxidase-oxidase enzyme system.
High-resolution method for evolving complex interface networks
NASA Astrophysics Data System (ADS)
Pan, Shucheng; Hu, Xiangyu Y.; Adams, Nikolaus A.
2018-04-01
In this paper we describe a high-resolution transport formulation of the regional level-set approach for an improved prediction of the evolution of complex interface networks. The novelty of this method is twofold: (i) construction of local level sets and reconstruction of a global level set, (ii) local transport of the interface network by employing high-order spatial discretization schemes for improved representation of complex topologies. Various numerical test cases of multi-region flow problems, including triple-point advection, single vortex flow, mean curvature flow, normal driven flow, dry foam dynamics and shock-bubble interaction show that the method is accurate and suitable for a wide range of complex interface-network evolutions. Its overall computational cost is comparable to the Semi-Lagrangian regional level-set method while the prediction accuracy is significantly improved. The approach thus offers a viable alternative to previous interface-network level-set method.
Running GUI Applications on Peregrine from OSX | High-Performance Computing
Learn how to use Virtual Network Computing to access a Linux graphical desktop environment on Peregrine local port (on, e.g., your laptop), starts a VNC server process that manages a virtual desktop on your virtual desktop. This is persistent, so remember it-you will use this password whenever accessing
ERIC Educational Resources Information Center
Beauvois, Margaret Healy; Eledge, Jean
1996-01-01
Describes the results of a pilot study to examine the attitudes of university students toward the use of computer-mediated communication in their French conversation and composition course. Results indicate that both introvert and extrovert personality types generally perceive the use of a local area network as a beneficial experience. (15…
Ur Rehman, Yasar Abbas; Tariq, Muhammad; Khan, Omar Usman
2015-01-01
Object localization plays a key role in many popular applications of Wireless Multimedia Sensor Networks (WMSN) and as a result, it has acquired a significant status for the research community. A significant body of research performs this task without considering node orientation, object geometry and environmental variations. As a result, the localized object does not reflect the real world scenarios. In this paper, a novel object localization scheme for WMSN has been proposed that utilizes range free localization, computer vision, and principle component analysis based algorithms. The proposed approach provides the best possible approximation of distance between a wmsn sink and an object, and the orientation of the object using image based information. Simulation results report 99% efficiency and an error ratio of 0.01 (around 1 ft) when compared to other popular techniques. PMID:26528919
Localization with a mobile beacon in underwater acoustic sensor networks.
Lee, Sangho; Kim, Kiseon
2012-01-01
Localization is one of the most important issues associated with underwater acoustic sensor networks, especially when sensor nodes are randomly deployed. Given that it is difficult to deploy beacon nodes at predetermined locations, localization schemes with a mobile beacon on the sea surface or along the planned path are inherently convenient, accurate, and energy-efficient. In this paper, we propose a new range-free Localization with a Mobile Beacon (LoMoB). The mobile beacon periodically broadcasts a beacon message containing its location. Sensor nodes are individually localized by passively receiving the beacon messages without inter-node communications. For location estimation, a set of potential locations are obtained as candidates for a node's location and then the node's location is determined through the weighted mean of all the potential locations with the weights computed based on residuals.
Localization with a Mobile Beacon in Underwater Acoustic Sensor Networks
Lee, Sangho; Kim, Kiseon
2012-01-01
Localization is one of the most important issues associated with underwater acoustic sensor networks, especially when sensor nodes are randomly deployed. Given that it is difficult to deploy beacon nodes at predetermined locations, localization schemes with a mobile beacon on the sea surface or along the planned path are inherently convenient, accurate, and energy-efficient. In this paper, we propose a new range-free Localization with a Mobile Beacon (LoMoB). The mobile beacon periodically broadcasts a beacon message containing its location. Sensor nodes are individually localized by passively receiving the beacon messages without inter-node communications. For location estimation, a set of potential locations are obtained as candidates for a node's location and then the node's location is determined through the weighted mean of all the potential locations with the weights computed based on residuals. PMID:22778597
Adaptive multi-sensor biomimetics for unsupervised submarine hunt (AMBUSH): Early results
NASA Astrophysics Data System (ADS)
Blouin, Stéphane
2014-10-01
Underwater surveillance is inherently difficult because acoustic wave propagation and transmission are limited and unpredictable when targets and sensors move around in the communication-opaque undersea environment. Today's Navy underwater sensors enable the collection of a massive amount of data, often analyzed offtine. The Navy of tomorrow will dominate by making sense of that data in real-time. DRDC's AMBUSH project proposes a new undersea-surveillance network paradigm that will enable such a real-time operation. Nature abounds with examples of collaborative tasks taking place despite limited communication and computational capabilities. This publication describes a year's worth of research efforts finding inspiration in Nature's collaborative tasks such as wolves hunting in packs. This project proposes the utilization of a heterogeneous network combining both static and mobile network nodes. The military objective is to enable an unsupervised surveillance capability while maximizing target localization performance and endurance. The scientific objective is to develop the necessary technology to acoustically and passively localize a noise-source of interest in shallow waters. The project fulfills these objectives via distributed computing and adaptation to changing undersea conditions. Specific research interests discussed here relate to approaches for performing: (a) network self-discovery, (b) network connectivity self-assessment, (c) opportunistic network routing, (d) distributed data-aggregation, and (e) simulation of underwater acoustic propagation. We present early results then followed by a discussion about future work.
Performance Analysis of the Mobile IP Protocol (RFC 3344 and Related RFCS)
2006-12-01
Encapsulation HMAC Keyed-Hash Message Authentication Code ICMP Internet Control Message Protocol IEEE Institute of Electrical and Electronics Engineers IETF...Internet Engineering Task Force IOS Internetwork Operating System IP Internet Protocol ITU International Telecommunication Union LAN Local Area...network computing. Most organizations today have sophisticated networks that are connected to the Internet. The major benefit reaped from such a
1986-04-01
a Local Area Network Environment. Submitted for Publication. 1982. [Barrnger 791 Barringer . H,. P. C. Capon, and R . Phillips. The Portable Compiling...configuration and hardware. [Chesley 81 Chesley, Harry R . and Bruce V. Hunt., % Squire - A Communications-Oriented Operating System. Computer Networks 5(2...copying the information. Transfers between machines and copying " - r pages as necemry. [Nelson 80] Nelson, Bruce Jay. Remote Procedure Call. PhD Thesis
Bernal, Javier; Torres-Jimenez, Jose
2015-01-01
SAGRAD (Simulated Annealing GRADient), a Fortran 77 program for computing neural networks for classification using batch learning, is discussed. Neural network training in SAGRAD is based on a combination of simulated annealing and Møller’s scaled conjugate gradient algorithm, the latter a variation of the traditional conjugate gradient method, better suited for the nonquadratic nature of neural networks. Different aspects of the implementation of the training process in SAGRAD are discussed, such as the efficient computation of gradients and multiplication of vectors by Hessian matrices that are required by Møller’s algorithm; the (re)initialization of weights with simulated annealing required to (re)start Møller’s algorithm the first time and each time thereafter that it shows insufficient progress in reaching a possibly local minimum; and the use of simulated annealing when Møller’s algorithm, after possibly making considerable progress, becomes stuck at a local minimum or flat area of weight space. Outlines of the scaled conjugate gradient algorithm, the simulated annealing procedure and the training process used in SAGRAD are presented together with results from running SAGRAD on two examples of training data. PMID:26958442
Extracting microtubule networks from superresolution single-molecule localization microscopy data
Zhang, Zhen; Nishimura, Yukako; Kanchanawong, Pakorn
2017-01-01
Microtubule filaments form ubiquitous networks that specify spatial organization in cells. However, quantitative analysis of microtubule networks is hampered by their complex architecture, limiting insights into the interplay between their organization and cellular functions. Although superresolution microscopy has greatly facilitated high-resolution imaging of microtubule filaments, extraction of complete filament networks from such data sets is challenging. Here we describe a computational tool for automated retrieval of microtubule filaments from single-molecule-localization–based superresolution microscopy images. We present a user-friendly, graphically interfaced implementation and a quantitative analysis of microtubule network architecture phenotypes in fibroblasts. PMID:27852898
Napolitano, Jr., Leonard M.
1995-01-01
The Lambda network is a single stage, packet-switched interprocessor communication network for a distributed memory, parallel processor computer. Its design arises from the desired network characteristics of minimizing mean and maximum packet transfer time, local routing, expandability, deadlock avoidance, and fault tolerance. The network is based on fixed degree nodes and has mean and maximum packet transfer distances where n is the number of processors. The routing method is detailed, as are methods for expandability, deadlock avoidance, and fault tolerance.
Bioinspired principles for large-scale networked sensor systems: an overview.
Jacobsen, Rune Hylsberg; Zhang, Qi; Toftegaard, Thomas Skjødeberg
2011-01-01
Biology has often been used as a source of inspiration in computer science and engineering. Bioinspired principles have found their way into network node design and research due to the appealing analogies between biological systems and large networks of small sensors. This paper provides an overview of bioinspired principles and methods such as swarm intelligence, natural time synchronization, artificial immune system and intercellular information exchange applicable for sensor network design. Bioinspired principles and methods are discussed in the context of routing, clustering, time synchronization, optimal node deployment, localization and security and privacy.
Use of a wireless local area network in an orthodontic clinic.
Mupparapu, Muralidhar; Binder, Robert E; Cummins, John M
2005-06-01
Radiographic images and other patient records, including medical histories, demographics, and health insurance information, can now be stored digitally and accessed via patient management programs. However, digital image acquisition and diagnosis and treatment planning are independent tasks, and each is time consuming, especially when performed at different computer workstations. Networking or linking the computers in an office enhances access to imaging and treatment planning tools. Access can be further enhanced if the entire network is wireless. Thanks to wireless technology, stand-alone, desk-bound personal computers have been replaced with mobile, hand-held devices that can communicate with each other and the rest of the world via the Internet. As with any emerging technology, some issues should be kept in mind when adapting to the wireless environment. Foremost is network security. Second is the choice of mobile hardware devices that are used by the orthodontist, office staff, and patients. This article details the standards and choices in wireless technology that can be implemented in an orthodontic clinic and suggests how to select suitable mobile hardware for accessing or adding data to a preexisting network. The network security protocols discussed comply with HIPAA regulations and boost the efficiency of a modern orthodontic clinic.
Phased Array Radar Network Experiment for Severe Weather
NASA Astrophysics Data System (ADS)
Ushio, T.; Kikuchi, H.; Mega, T.; Yoshikawa, E.; Mizutani, F.; Takahashi, N.
2017-12-01
Phased Array Weather Radar (PAWR) was firstly developed in 2012 by Osaka University and Toshiba under a grant of NICT using the Digital Beamforming Technique, and showed a impressive thunderstorm behavior with 30 second resolution. After that development, second PAWR was installed in Kobe city about 60 km away from the first PAWR site, and Tokyo Metropolitan University, Osaka Univeristy, Toshiba and the Osaka Local Government started a new project to develop the Osaka Urban Demonstration Network. The main sensor of the Osaka Network is a 2-node Phased Array Radar Network and lightning location system. Data products that are created both in local high performance computer and Toshiba Computer Cloud, include single and multi-radar data, vector wind, quantitative precipitation estimation, VIL, nowcasting, lightning location and analysis. Each radar node is calibarated by the baloon measurement and through the comparison with the GPM (Global Precipitation Measurement)/ DPR (Dual Frequency Space borne Radar) within 1 dB. The attenuated radar reflectivities obtained by the Phased Array Radar Network at X band are corrected based on the bayesian scheme proposed in Shimamura et al. [2016]. The obtained high resolution (every 30 seconds/ 100 elevation angles) 3D reflectivity and rain rate fields are used to nowcast the surface rain rate up to 30 minutes ahead. These new products are transferred to Osaka Local Government in operational mode and evaluated by several section in Osaka Prefecture. Furthermore, a new Phased Array Radar with polarimetric function has been developed in 2017, and will be operated in the fiscal year of 2017. In this presentation, Phased Array Radar, network architecuture, processing algorithm, evalution of the social experiment and first Multi-Prameter Phased Array Radar experiment are presented.
NASA Astrophysics Data System (ADS)
Barberis, Stefano; Carminati, Leonardo; Leveraro, Franco; Mazza, Simone Michele; Perini, Laura; Perlz, Francesco; Rebatto, David; Tura, Ruggero; Vaccarossa, Luca; Villaplana, Miguel
2015-12-01
We present the approach of the University of Milan Physics Department and the local unit of INFN to allow and encourage the sharing among different research areas of computing, storage and networking resources (the largest ones being those composing the Milan WLCG Tier-2 centre and tailored to the needs of the ATLAS experiment). Computing resources are organised as independent HTCondor pools, with a global master in charge of monitoring them and optimising their usage. The configuration has to provide satisfactory throughput for both serial and parallel (multicore, MPI) jobs. A combination of local, remote and cloud storage options are available. The experience of users from different research areas operating on this shared infrastructure is discussed. The promising direction of improving scientific computing throughput by federating access to distributed computing and storage also seems to fit very well with the objectives listed in the European Horizon 2020 framework for research and development.
Pezoulas, Vasileios C.; Zervakis, Michalis; Michelogiannis, Sifis; Klados, Manousos A.
2017-01-01
During the last years, it has been established that the prefrontal and posterior parietal brain lobes, which are mostly related to intelligence, have many connections to cerebellum. However, there is a limited research investigating cerebellum's relationship with cognitive processes. In this study, the network of cerebellum was analyzed in order to investigate its overall organization in individuals with low and high crystallized Intelligence Quotient (IQ). Functional magnetic resonance imaging (fMRI) data were selected from 136 subjects in resting-state from the Human Connectome Project (HCP) database and were further separated into two IQ groups composed of 69 low-IQ and 67 high-IQ subjects. Cerebellum was parcellated into 28 lobules/ROIs (per subject) using a standard cerebellum anatomical atlas. Thereafter, correlation matrices were constructed by computing Pearson's correlation coefficients between the average BOLD time-series for each pair of ROIs inside the cerebellum. By computing conventional graph metrics, small-world network properties were verified using the weighted clustering coefficient and the characteristic path length for estimating the trade-off between segregation and integration. In addition, a connectivity metric was computed for extracting the average cost per network. The concept of the Minimum Spanning Tree (MST) was adopted and implemented in order to avoid methodological biases in graph comparisons and retain only the strongest connections per network. Subsequently, six global and three local metrics were calculated in order to retrieve useful features concerning the characteristics of each MST. Moreover, the local metrics of degree and betweenness centrality were used to detect hubs, i.e., nodes with high importance. The computed set of metrics gave rise to extensive statistical analysis in order to examine differences between low and high-IQ groups, as well as between all possible gender-based group combinations. Our results reveal that both male and female networks have small-world properties with differences in females (especially in higher IQ females) indicative of higher neural efficiency in cerebellum. There is a trend toward the same direction in men, but without significant differences. Finally, three lobules showed maximum correlation with the median response time in low-IQ individuals, implying that there is an increased effort dedicated locally by this population in cognitive tasks. PMID:28491028
Pezoulas, Vasileios C; Zervakis, Michalis; Michelogiannis, Sifis; Klados, Manousos A
2017-01-01
During the last years, it has been established that the prefrontal and posterior parietal brain lobes, which are mostly related to intelligence, have many connections to cerebellum. However, there is a limited research investigating cerebellum's relationship with cognitive processes. In this study, the network of cerebellum was analyzed in order to investigate its overall organization in individuals with low and high crystallized Intelligence Quotient (IQ). Functional magnetic resonance imaging (fMRI) data were selected from 136 subjects in resting-state from the Human Connectome Project (HCP) database and were further separated into two IQ groups composed of 69 low-IQ and 67 high-IQ subjects. Cerebellum was parcellated into 28 lobules/ROIs (per subject) using a standard cerebellum anatomical atlas. Thereafter, correlation matrices were constructed by computing Pearson's correlation coefficients between the average BOLD time-series for each pair of ROIs inside the cerebellum. By computing conventional graph metrics, small-world network properties were verified using the weighted clustering coefficient and the characteristic path length for estimating the trade-off between segregation and integration. In addition, a connectivity metric was computed for extracting the average cost per network. The concept of the Minimum Spanning Tree (MST) was adopted and implemented in order to avoid methodological biases in graph comparisons and retain only the strongest connections per network. Subsequently, six global and three local metrics were calculated in order to retrieve useful features concerning the characteristics of each MST. Moreover, the local metrics of degree and betweenness centrality were used to detect hubs, i.e., nodes with high importance. The computed set of metrics gave rise to extensive statistical analysis in order to examine differences between low and high-IQ groups, as well as between all possible gender-based group combinations. Our results reveal that both male and female networks have small-world properties with differences in females (especially in higher IQ females) indicative of higher neural efficiency in cerebellum. There is a trend toward the same direction in men, but without significant differences. Finally, three lobules showed maximum correlation with the median response time in low-IQ individuals, implying that there is an increased effort dedicated locally by this population in cognitive tasks.
Condition monitoring of 3G cellular networks through competitive neural models.
Barreto, Guilherme A; Mota, João C M; Souza, Luis G M; Frota, Rewbenio A; Aguayo, Leonardo
2005-09-01
We develop an unsupervised approach to condition monitoring of cellular networks using competitive neural algorithms. Training is carried out with state vectors representing the normal functioning of a simulated CDMA2000 network. Once training is completed, global and local normality profiles (NPs) are built from the distribution of quantization errors of the training state vectors and their components, respectively. The global NP is used to evaluate the overall condition of the cellular system. If abnormal behavior is detected, local NPs are used in a component-wise fashion to find abnormal state variables. Anomaly detection tests are performed via percentile-based confidence intervals computed over the global and local NPs. We compared the performance of four competitive algorithms [winner-take-all (WTA), frequency-sensitive competitive learning (FSCL), self-organizing map (SOM), and neural-gas algorithm (NGA)] and the results suggest that the joint use of global and local NPs is more efficient and more robust than current single-threshold methods.
Zheng, Wei; Yan, Xiaoyong; Zhao, Wei; Qian, Chengshan
2017-12-20
A novel large-scale multi-hop localization algorithm based on regularized extreme learning is proposed in this paper. The large-scale multi-hop localization problem is formulated as a learning problem. Unlike other similar localization algorithms, the proposed algorithm overcomes the shortcoming of the traditional algorithms which are only applicable to an isotropic network, therefore has a strong adaptability to the complex deployment environment. The proposed algorithm is composed of three stages: data acquisition, modeling and location estimation. In data acquisition stage, the training information between nodes of the given network is collected. In modeling stage, the model among the hop-counts and the physical distances between nodes is constructed using regularized extreme learning. In location estimation stage, each node finds its specific location in a distributed manner. Theoretical analysis and several experiments show that the proposed algorithm can adapt to the different topological environments with low computational cost. Furthermore, high accuracy can be achieved by this method without setting complex parameters.
Graph Design via Convex Optimization: Online and Distributed Perspectives
NASA Astrophysics Data System (ADS)
Meng, De
Network and graph have long been natural abstraction of relations in a variety of applications, e.g. transportation, power system, social network, communication, electrical circuit, etc. As a large number of computation and optimization problems are naturally defined on graphs, graph structures not only enable important properties of these problems, but also leads to highly efficient distributed and online algorithms. For example, graph separability enables the parallelism for computation and operation as well as limits the size of local problems. More interestingly, graphs can be defined and constructed in order to take best advantage of those problem properties. This dissertation focuses on graph structure and design in newly proposed optimization problems, which establish a bridge between graph properties and optimization problem properties. We first study a new optimization problem called Geodesic Distance Maximization Problem (GDMP). Given a graph with fixed edge weights, finding the shortest path, also known as the geodesic, between two nodes is a well-studied network flow problem. We introduce the Geodesic Distance Maximization Problem (GDMP): the problem of finding the edge weights that maximize the length of the geodesic subject to convex constraints on the weights. We show that GDMP is a convex optimization problem for a wide class of flow costs, and provide a physical interpretation using the dual. We present applications of the GDMP in various fields, including optical lens design, network interdiction, and resource allocation in the control of forest fires. We develop an Alternating Direction Method of Multipliers (ADMM) by exploiting specific problem structures to solve large-scale GDMP, and demonstrate its effectiveness in numerical examples. We then turn our attention to distributed optimization on graph with only local communication. Distributed optimization arises in a variety of applications, e.g. distributed tracking and localization, estimation problems in sensor networks, multi-agent coordination. Distributed optimization aims to optimize a global objective function formed by summation of coupled local functions over a graph via only local communication and computation. We developed a weighted proximal ADMM for distributed optimization using graph structure. This fully distributed, single-loop algorithm allows simultaneous updates and can be viewed as a generalization of existing algorithms. More importantly, we achieve faster convergence by jointly designing graph weights and algorithm parameters. Finally, we propose a new problem on networks called Online Network Formation Problem: starting with a base graph and a set of candidate edges, at each round of the game, player one first chooses a candidate edge and reveals it to player two, then player two decides whether to accept it; player two can only accept limited number of edges and make online decisions with the goal to achieve the best properties of the synthesized network. The network properties considered include the number of spanning trees, algebraic connectivity and total effective resistance. These network formation games arise in a variety of cooperative multiagent systems. We propose a primal-dual algorithm framework for the general online network formation game, and analyze the algorithm performance by the competitive ratio and regret.
NASA Astrophysics Data System (ADS)
Timchenko, Leonid; Yarovyi, Andrii; Kokriatskaya, Nataliya; Nakonechna, Svitlana; Abramenko, Ludmila; Ławicki, Tomasz; Popiel, Piotr; Yesmakhanova, Laura
2016-09-01
The paper presents a method of parallel-hierarchical transformations for rapid recognition of dynamic images using GPU technology. Direct parallel-hierarchical transformations based on cluster CPU-and GPU-oriented hardware platform. Mathematic models of training of the parallel hierarchical (PH) network for the transformation are developed, as well as a training method of the PH network for recognition of dynamic images. This research is most topical for problems on organizing high-performance computations of super large arrays of information designed to implement multi-stage sensing and processing as well as compaction and recognition of data in the informational structures and computer devices. This method has such advantages as high performance through the use of recent advances in parallelization, possibility to work with images of ultra dimension, ease of scaling in case of changing the number of nodes in the cluster, auto scan of local network to detect compute nodes.
Mrsic-Flogel, Thomas D.
2017-01-01
Neurons within cortical microcircuits are interconnected with recurrent excitatory synaptic connections that are thought to amplify signals (Douglas and Martin, 2007), form selective subnetworks (Ko et al., 2011), and aid feature discrimination. Strong inhibition (Haider et al., 2013) counterbalances excitation, enabling sensory features to be sharpened and represented by sparse codes (Willmore et al., 2011). This balance between excitation and inhibition makes it difficult to assess the strength, or gain, of recurrent excitatory connections within cortical networks, which is key to understanding their operational regime and the computations that they perform. Networks that combine an unstable high-gain excitatory population with stabilizing inhibitory feedback are known as inhibition-stabilized networks (ISNs) (Tsodyks et al., 1997). Theoretical studies using reduced network models predict that ISNs produce paradoxical responses to perturbation, but experimental perturbations failed to find evidence for ISNs in cortex (Atallah et al., 2012). Here, we reexamined this question by investigating how cortical network models consisting of many neurons behave after perturbations and found that results obtained from reduced network models fail to predict responses to perturbations in more realistic networks. Our models predict that a large proportion of the inhibitory network must be perturbed to reliably detect an ISN regime robustly in cortex. We propose that wide-field optogenetic suppression of inhibition under promoters targeting a large fraction of inhibitory neurons may provide a perturbation of sufficient strength to reveal the operating regime of cortex. Our results suggest that detailed computational models of optogenetic perturbations are necessary to interpret the results of experimental paradigms. SIGNIFICANCE STATEMENT Many useful computational mechanisms proposed for cortex require local excitatory recurrence to be very strong, such that local inhibitory feedback is necessary to avoid epileptiform runaway activity (an “inhibition-stabilized network” or “ISN” regime). However, recent experimental results suggest that this regime may not exist in cortex. We simulated activity perturbations in cortical networks of increasing realism and found that, to detect ISN-like properties in cortex, large proportions of the inhibitory population must be perturbed. Current experimental methods for inhibitory perturbation are unlikely to satisfy this requirement, implying that existing experimental observations are inconclusive about the computational regime of cortex. Our results suggest that new experimental designs targeting a majority of inhibitory neurons may be able to resolve this question. PMID:29074575
NASA Technical Reports Server (NTRS)
Mengshoel, Ole J.; Roth, Dan; Wilkins, David C.
2001-01-01
Portfolio methods support the combination of different algorithms and heuristics, including stochastic local search (SLS) heuristics, and have been identified as a promising approach to solve computationally hard problems. While successful in experiments, theoretical foundations and analytical results for portfolio-based SLS heuristics are less developed. This article aims to improve the understanding of the role of portfolios of heuristics in SLS. We emphasize the problem of computing most probable explanations (MPEs) in Bayesian networks (BNs). Algorithmically, we discuss a portfolio-based SLS algorithm for MPE computation, Stochastic Greedy Search (SGS). SGS supports the integration of different initialization operators (or initialization heuristics) and different search operators (greedy and noisy heuristics), thereby enabling new analytical and experimental results. Analytically, we introduce a novel Markov chain model tailored to portfolio-based SLS algorithms including SGS, thereby enabling us to analytically form expected hitting time results that explain empirical run time results. For a specific BN, we show the benefit of using a homogenous initialization portfolio. To further illustrate the portfolio approach, we consider novel additive search heuristics for handling determinism in the form of zero entries in conditional probability tables in BNs. Our additive approach adds rather than multiplies probabilities when computing the utility of an explanation. We motivate the additive measure by studying the dramatic impact of zero entries in conditional probability tables on the number of zero-probability explanations, which again complicates the search process. We consider the relationship between MAXSAT and MPE, and show that additive utility (or gain) is a generalization, to the probabilistic setting, of MAXSAT utility (or gain) used in the celebrated GSAT and WalkSAT algorithms and their descendants. Utilizing our Markov chain framework, we show that expected hitting time is a rational function - i.e. a ratio of two polynomials - of the probability of applying an additive search operator. Experimentally, we report on synthetically generated BNs as well as BNs from applications, and compare SGSs performance to that of Hugin, which performs BN inference by compilation to and propagation in clique trees. On synthetic networks, SGS speeds up computation by approximately two orders of magnitude compared to Hugin. In application networks, our approach is highly competitive in Bayesian networks with a high degree of determinism. In addition to showing that stochastic local search can be competitive with clique tree clustering, our empirical results provide an improved understanding of the circumstances under which portfolio-based SLS outperforms clique tree clustering and vice versa.
The evolution of the ISOLDE control system
NASA Astrophysics Data System (ADS)
Jonsson, O. C.; Catherall, R.; Deloose, I.; Drumm, P.; Evensen, A. H. M.; Gase, K.; Focker, G. J.; Fowler, A.; Kugler, E.; Lettry, J.; Olesen, G.; Ravn, H. L.; Isolde Collaboration
The ISOLDE on-line mass separator facility is operating on a Personal Computer based control system since spring 1992. Front End Computers accessing the hardware are controlled from consoles running Microsoft Windows ™ through a Novell NetWare4 ™ local area network. The control system is transparently integrated in the CERN wide office network and makes heavy use of the CERN standard office application programs to control and to document the running of the ISOLDE isotope separators. This paper recalls the architecture of the control system, shows its recent developments and gives some examples of its graphical user interface.
The evolution of the ISOLDE control system
NASA Astrophysics Data System (ADS)
Jonsson, O. C.; Catherall, R.; Deloose, I.; Evensen, A. H. M.; Gase, K.; Focker, G. J.; Fowler, A.; Kugler, E.; Lettry, J.; Olesen, G.; Ravn, H. L.; Drumm, P.
1996-04-01
The ISOLDE on-line mass separator facility is operating on a Personal Computer based control system since spring 1992. Front End Computers accessing the hardware are controlled from consoles running Microsoft Windows® through a Novell NetWare4® local area network. The control system is transparently integrated in the CERN wide office network and makes heavy use of the CERN standard office application programs to control and to document the running of the ISOLDE isotope separators. This paper recalls the architecture of the control system, shows its recent developments and gives some examples of its graphical user interface.
Community Seismic Network (CSN)
NASA Astrophysics Data System (ADS)
Clayton, R. W.; Heaton, T. H.; Kohler, M. D.; Cheng, M.; Guy, R.; Chandy, M.; Krause, A.; Bunn, J.; Olson, M.; Faulkner, M.; Liu, A.; Strand, L.
2012-12-01
We report on developments in sensor connectivity, architecture, and data fusion algorithms executed in Cloud computing systems in the Community Seismic Network (CSN), a network of low-cost sensors housed in homes and offices by volunteers in the Pasadena, CA area. The network has over 200 sensors continuously reporting anomalies in local acceleration through the Internet to a Cloud computing service (the Google App Engine) that continually fuses sensor data to rapidly detect shaking from earthquakes. The Cloud computing system consists of data centers geographically distributed across the continent and is likely to be resilient even during earthquakes and other local disasters. The region of Southern California is partitioned in a multi-grid style into sets of telescoping cells called geocells. Data streams from sensors within a geocell are fused to detect anomalous shaking across the geocell. Temporal spatial patterns across geocells are used to detect anomalies across regions. The challenge is to detect earthquakes rapidly with an extremely low false positive rate. We report on two data fusion algorithms, one that tessellates the surface so as to fuse data from a large region around Pasadena and the other, which uses a standard tessellation of equal-sized cells. Since September 2011, the network has successfully detected earthquakes of magnitude 2.5 or higher within 40 Km of Pasadena. In addition to the standard USB device, which connects to the host's computer, we have developed a stand-alone sensor that directly connects to the internet via Ethernet or wifi. This bypasses security concerns that some companies have with the USB-connected devices, and allows for 24/7 monitoring at sites that would otherwise shut down their computers after working hours. In buildings we use the sensors to model the behavior of the structures during weak events in order to understand how they will perform during strong events. Visualization models of instrumented buildings ranging between five and 22 stories tall have been constructed using Google SketchUp. Ambient vibration records are used to identify the first set of horizontal vibrational modal frequencies of the buildings. These frequencies are used to compute the response on every floor of the building, given either observed data or scenario ground motion input at the buildings' base.
Serial network simplifies the design of multiple microcomputer systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folkes, D.
1981-01-01
Recently there has been a lot of interest in developing network communication schemes for carrying digital data between locally distributed computing stations. Many of these schemes have focused on distributed networking techniques for data processing applications. These applications suggest the use of a serial, multipoint bus, where a number of remote intelligent units act as slaves to a central or host computer. Each slave would be serially addressable from the host and would perform required operations upon being addressed by the host. Based on an MK3873 single-chip microcomputer, the SCU 20 is designed to be such a remote slave device.more » The capabilities of the SCU 20 and its use in systems applications are examined.« less
NASA Technical Reports Server (NTRS)
Engelberg, N.; Shaw, C., III
1984-01-01
The design of a uniform command language to be used in a local area network of heterogeneous, autonomous nodes is considered. After examining the major characteristics of such a network, and after considering the profile of a scientist using the computers on the net as an investigative aid, a set of reasonable requirements for the command language are derived. Taking into account the possible inefficiencies in implementing a guest-layered network operating system and command language on a heterogeneous net, the authors examine command language naming, process/procedure invocation, parameter acquisition, help and response facilities, and other features found in single-node command languages, and conclude that some features may extend simply to the network case, others extend after some restrictions are imposed, and still others require modifications. In addition, it is noted that some requirements considered reasonable (user accounting reports, for example) demand further study before they can be efficiently implemented on a network of the sort described.
On computer vision in wireless sensor networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, Nina M.; Ko, Teresa H.
Wireless sensor networks allow detailed sensing of otherwise unknown and inaccessible environments. While it would be beneficial to include cameras in a wireless sensor network because images are so rich in information, the power cost of transmitting an image across the wireless network can dramatically shorten the lifespan of the sensor nodes. This paper describe a new paradigm for the incorporation of imaging into wireless networks. Rather than focusing on transmitting images across the network, we show how an image can be processed locally for key features using simple detectors. Contrasted with traditional event detection systems that trigger an imagemore » capture, this enables a new class of sensors which uses a low power imaging sensor to detect a variety of visual cues. Sharing these features among relevant nodes cues specific actions to better provide information about the environment. We report on various existing techniques developed for traditional computer vision research which can aid in this work.« less
Xu, Yang; Luo, Xiong; Wang, Weiping; Zhao, Wenbing
2017-01-01
Integrating wireless sensor network (WSN) into the emerging computing paradigm, e.g., cyber-physical social sensing (CPSS), has witnessed a growing interest, and WSN can serve as a social network while receiving more attention from the social computing research field. Then, the localization of sensor nodes has become an essential requirement for many applications over WSN. Meanwhile, the localization information of unknown nodes has strongly affected the performance of WSN. The received signal strength indication (RSSI) as a typical range-based algorithm for positioning sensor nodes in WSN could achieve accurate location with hardware saving, but is sensitive to environmental noises. Moreover, the original distance vector hop (DV-HOP) as an important range-free localization algorithm is simple, inexpensive and not related to the environment factors, but performs poorly when lacking anchor nodes. Motivated by these, various improved DV-HOP schemes with RSSI have been introduced, and we present a new neural network (NN)-based node localization scheme, named RHOP-ELM-RCC, through the use of DV-HOP, RSSI and a regularized correntropy criterion (RCC)-based extreme learning machine (ELM) algorithm (ELM-RCC). Firstly, the proposed scheme employs both RSSI and DV-HOP to evaluate the distances between nodes to enhance the accuracy of distance estimation at a reasonable cost. Then, with the help of ELM featured with a fast learning speed with a good generalization performance and minimal human intervention, a single hidden layer feedforward network (SLFN) on the basis of ELM-RCC is used to implement the optimization task for obtaining the location of unknown nodes. Since the RSSI may be influenced by the environmental noises and may bring estimation error, the RCC instead of the mean square error (MSE) estimation, which is sensitive to noises, is exploited in ELM. Hence, it may make the estimation more robust against outliers. Additionally, the least square estimation (LSE) in ELM is replaced by the half-quadratic optimization technique. Simulation results show that our proposed scheme outperforms other traditional localization schemes. PMID:28085084
A convex optimization method for self-organization in dynamic (FSO/RF) wireless networks
NASA Astrophysics Data System (ADS)
Llorca, Jaime; Davis, Christopher C.; Milner, Stuart D.
2008-08-01
Next generation communication networks are becoming increasingly complex systems. Previously, we presented a novel physics-based approach to model dynamic wireless networks as physical systems which react to local forces exerted on network nodes. We showed that under clear atmospheric conditions the network communication energy can be modeled as the potential energy of an analogous spring system and presented a distributed mobility control algorithm where nodes react to local forces driving the network to energy minimizing configurations. This paper extends our previous work by including the effects of atmospheric attenuation and transmitted power constraints in the optimization problem. We show how our new formulation still results in a convex energy minimization problem. Accordingly, an updated force-driven mobility control algorithm is presented. Forces on mobile backbone nodes are computed as the negative gradient of the new energy function. Results show how in the presence of atmospheric obscuration stronger forces are exerted on network nodes that make them move closer to each other, avoiding loss of connectivity. We show results in terms of network coverage and backbone connectivity and compare the developed algorithms for different scenarios.
A Framework for Managing Inter-Site Storage Area Networks using Grid Technologies
NASA Technical Reports Server (NTRS)
Kobler, Ben; McCall, Fritz; Smorul, Mike
2006-01-01
The NASA Goddard Space Flight Center and the University of Maryland Institute for Advanced Computer Studies are studying mechanisms for installing and managing Storage Area Networks (SANs) that span multiple independent collaborating institutions using Storage Area Network Routers (SAN Routers). We present a framework for managing inter-site distributed SANs that uses Grid Technologies to balance the competing needs to control local resources, share information, delegate administrative access, and manage the complex trust relationships between the participating sites.
LWT Based Sensor Node Signal Processing in Vehicle Surveillance Distributed Sensor Network
NASA Astrophysics Data System (ADS)
Cha, Daehyun; Hwang, Chansik
Previous vehicle surveillance researches on distributed sensor network focused on overcoming power limitation and communication bandwidth constraints in sensor node. In spite of this constraints, vehicle surveillance sensor node must have signal compression, feature extraction, target localization, noise cancellation and collaborative signal processing with low computation and communication energy dissipation. In this paper, we introduce an algorithm for light-weight wireless sensor node signal processing based on lifting scheme wavelet analysis feature extraction in distributed sensor network.
Breaking through with Thin-Client Technologies: A Cost Effective Approach for Academic Libraries.
ERIC Educational Resources Information Center
Elbaz, Sohair W.; Stewart, Christofer
This paper provides an overview of thin-client/server computing in higher education. Thin-clients are like PCs in appearance, but they do not house hard drives or localized operating systems and cannot function without being connected to a server. Two types of thin-clients are described: the Network Computer (NC) and the Windows Terminal (WT).…
Neural node network and model, and method of teaching same
Parlos, A.G.; Atiya, A.F.; Fernandez, B.; Tsai, W.K.; Chong, K.T.
1995-12-26
The present invention is a fully connected feed forward network that includes at least one hidden layer. The hidden layer includes nodes in which the output of the node is fed back to that node as an input with a unit delay produced by a delay device occurring in the feedback path (local feedback). Each node within each layer also receives a delayed output (crosstalk) produced by a delay unit from all the other nodes within the same layer. The node performs a transfer function operation based on the inputs from the previous layer and the delayed outputs. The network can be implemented as analog or digital or within a general purpose processor. Two teaching methods can be used: (1) back propagation of weight calculation that includes the local feedback and the crosstalk or (2) more preferably a feed forward gradient decent which immediately follows the output computations and which also includes the local feedback and the crosstalk. Subsequent to the gradient propagation, the weights can be normalized, thereby preventing convergence to a local optimum. Education of the network can be incremental both on and off-line. An educated network is suitable for modeling and controlling dynamic nonlinear systems and time series systems and predicting the outputs as well as hidden states and parameters. The educated network can also be further educated during on-line processing. 21 figs.
Neural node network and model, and method of teaching same
Parlos, Alexander G.; Atiya, Amir F.; Fernandez, Benito; Tsai, Wei K.; Chong, Kil T.
1995-01-01
The present invention is a fully connected feed forward network that includes at least one hidden layer 16. The hidden layer 16 includes nodes 20 in which the output of the node is fed back to that node as an input with a unit delay produced by a delay device 24 occurring in the feedback path 22 (local feedback). Each node within each layer also receives a delayed output (crosstalk) produced by a delay unit 36 from all the other nodes within the same layer 16. The node performs a transfer function operation based on the inputs from the previous layer and the delayed outputs. The network can be implemented as analog or digital or within a general purpose processor. Two teaching methods can be used: (1) back propagation of weight calculation that includes the local feedback and the crosstalk or (2) more preferably a feed forward gradient decent which immediately follows the output computations and which also includes the local feedback and the crosstalk. Subsequent to the gradient propagation, the weights can be normalized, thereby preventing convergence to a local optimum. Education of the network can be incremental both on and off-line. An educated network is suitable for modeling and controlling dynamic nonlinear systems and time series systems and predicting the outputs as well as hidden states and parameters. The educated network can also be further educated during on-line processing.
[Medical computer-aided detection method based on deep learning].
Tao, Pan; Fu, Zhongliang; Zhu, Kai; Wang, Lili
2018-03-01
This paper performs a comprehensive study on the computer-aided detection for the medical diagnosis with deep learning. Based on the region convolution neural network and the prior knowledge of target, this algorithm uses the region proposal network, the region of interest pooling strategy, introduces the multi-task loss function: classification loss, bounding box localization loss and object rotation loss, and optimizes it by end-to-end. For medical image it locates the target automatically, and provides the localization result for the next stage task of segmentation. For the detection of left ventricular in echocardiography, proposed additional landmarks such as mitral annulus, endocardial pad and apical position, were used to estimate the left ventricular posture effectively. In order to verify the robustness and effectiveness of the algorithm, the experimental data of ultrasonic and nuclear magnetic resonance images are selected. Experimental results show that the algorithm is fast, accurate and effective.
Emergent Adaptive Noise Reduction from Communal Cooperation of Sensor Grid
NASA Technical Reports Server (NTRS)
Jones, Kennie H.; Jones, Michael G.; Nark, Douglas M.; Lodding, Kenneth N.
2010-01-01
In the last decade, the realization of small, inexpensive, and powerful devices with sensors, computers, and wireless communication has promised the development of massive sized sensor networks with dense deployments over large areas capable of high fidelity situational assessments. However, most management models have been based on centralized control and research has concentrated on methods for passing data from sensor devices to the central controller. Most implementations have been small but, as it is not scalable, this methodology is insufficient for massive deployments. Here, a specific application of a large sensor network for adaptive noise reduction demonstrates a new paradigm where communities of sensor/computer devices assess local conditions and make local decisions from which emerges a global behaviour. This approach obviates many of the problems of centralized control as it is not prone to single point of failure and is more scalable, efficient, robust, and fault tolerant
Adaptation disrupts motion integration in the primate dorsal stream
Patterson, Carlyn A.; Wissig, Stephanie C.; Kohn, Adam
2014-01-01
Summary Sensory systems adjust continuously to the environment. The effects of recent sensory experience—or adaptation—are typically assayed by recording in a relevant subcortical or cortical network. However, adaptation effects cannot be localized to a single, local network. Adjustments in one circuit or area will alter the input provided to others, with unclear consequences for computations implemented in the downstream circuit. Here we show that prolonged adaptation with drifting gratings, which alters responses in the early visual system, impedes the ability of area MT neurons to integrate motion signals in plaid stimuli. Perceptual experiments reveal a corresponding loss of plaid coherence. A simple computational model shows how the altered representation of motion signals in early cortex can derail integration in MT. Our results suggest that the effects of adaptation cascade through the visual system, derailing the downstream representation of distinct stimulus attributes. PMID:24507198
Learning-based computing techniques in geoid modeling for precise height transformation
NASA Astrophysics Data System (ADS)
Erol, B.; Erol, S.
2013-03-01
Precise determination of local geoid is of particular importance for establishing height control in geodetic GNSS applications, since the classical leveling technique is too laborious. A geoid model can be accurately obtained employing properly distributed benchmarks having GNSS and leveling observations using an appropriate computing algorithm. Besides the classical multivariable polynomial regression equations (MPRE), this study attempts an evaluation of learning based computing algorithms: artificial neural networks (ANNs), adaptive network-based fuzzy inference system (ANFIS) and especially the wavelet neural networks (WNNs) approach in geoid surface approximation. These algorithms were developed parallel to advances in computer technologies and recently have been used for solving complex nonlinear problems of many applications. However, they are rather new in dealing with precise modeling problem of the Earth gravity field. In the scope of the study, these methods were applied to Istanbul GPS Triangulation Network data. The performances of the methods were assessed considering the validation results of the geoid models at the observation points. In conclusion the ANFIS and WNN revealed higher prediction accuracies compared to ANN and MPRE methods. Beside the prediction capabilities, these methods were also compared and discussed from the practical point of view in conclusions.
Evolution of a designless nanoparticle network into reconfigurable Boolean logic
NASA Astrophysics Data System (ADS)
Bose, S. K.; Lawrence, C. P.; Liu, Z.; Makarenko, K. S.; van Damme, R. M. J.; Broersma, H. J.; van der Wiel, W. G.
2015-12-01
Natural computers exploit the emergent properties and massive parallelism of interconnected networks of locally active components. Evolution has resulted in systems that compute quickly and that use energy efficiently, utilizing whatever physical properties are exploitable. Man-made computers, on the other hand, are based on circuits of functional units that follow given design rules. Hence, potentially exploitable physical processes, such as capacitive crosstalk, to solve a problem are left out. Until now, designless nanoscale networks of inanimate matter that exhibit robust computational functionality had not been realized. Here we artificially evolve the electrical properties of a disordered nanomaterials system (by optimizing the values of control voltages using a genetic algorithm) to perform computational tasks reconfigurably. We exploit the rich behaviour that emerges from interconnected metal nanoparticles, which act as strongly nonlinear single-electron transistors, and find that this nanoscale architecture can be configured in situ into any Boolean logic gate. This universal, reconfigurable gate would require about ten transistors in a conventional circuit. Our system meets the criteria for the physical realization of (cellular) neural networks: universality (arbitrary Boolean functions), compactness, robustness and evolvability, which implies scalability to perform more advanced tasks. Our evolutionary approach works around device-to-device variations and the accompanying uncertainties in performance. Moreover, it bears a great potential for more energy-efficient computation, and for solving problems that are very hard to tackle in conventional architectures.
NASA Astrophysics Data System (ADS)
Gaonkar, Bilwaj; Hovda, David; Martin, Neil; Macyszyn, Luke
2016-03-01
Deep Learning, refers to large set of neural network based algorithms, have emerged as promising machine- learning tools in the general imaging and computer vision domains. Convolutional neural networks (CNNs), a specific class of deep learning algorithms, have been extremely effective in object recognition and localization in natural images. A characteristic feature of CNNs, is the use of a locally connected multi layer topology that is inspired by the animal visual cortex (the most powerful vision system in existence). While CNNs, perform admirably in object identification and localization tasks, typically require training on extremely large datasets. Unfortunately, in medical image analysis, large datasets are either unavailable or are extremely expensive to obtain. Further, the primary tasks in medical imaging are organ identification and segmentation from 3D scans, which are different from the standard computer vision tasks of object recognition. Thus, in order to translate the advantages of deep learning to medical image analysis, there is a need to develop deep network topologies and training methodologies, that are geared towards medical imaging related tasks and can work in a setting where dataset sizes are relatively small. In this paper, we present a technique for stacked supervised training of deep feed forward neural networks for segmenting organs from medical scans. Each `neural network layer' in the stack is trained to identify a sub region of the original image, that contains the organ of interest. By layering several such stacks together a very deep neural network is constructed. Such a network can be used to identify extremely small regions of interest in extremely large images, inspite of a lack of clear contrast in the signal or easily identifiable shape characteristics. What is even more intriguing is that the network stack achieves accurate segmentation even when it is trained on a single image with manually labelled ground truth. We validate this approach,using a publicly available head and neck CT dataset. We also show that a deep neural network of similar depth, if trained directly using backpropagation, cannot acheive the tasks achieved using our layer wise training paradigm.
Stetz, Gabrielle; Verkhivker, Gennady M.
2017-01-01
Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of allostery, we introduced a community-hopping model of allosteric communication. Atomistic reconstruction of signaling pathways in the DnaK structures captured a direction-specific mechanism and molecular details of signal transmission that are fully consistent with the mutagenesis experiments. The results of our study reconciled structural and functional experiments from a network-centric perspective by showing that global properties of the residue interaction networks and coevolutionary signatures may be linked with specificity and diversity of allosteric regulation mechanisms. PMID:28095400
Stetz, Gabrielle; Verkhivker, Gennady M
2017-01-01
Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of allostery, we introduced a community-hopping model of allosteric communication. Atomistic reconstruction of signaling pathways in the DnaK structures captured a direction-specific mechanism and molecular details of signal transmission that are fully consistent with the mutagenesis experiments. The results of our study reconciled structural and functional experiments from a network-centric perspective by showing that global properties of the residue interaction networks and coevolutionary signatures may be linked with specificity and diversity of allosteric regulation mechanisms.
Reliable, Memory Speed Storage for Cluster Computing Frameworks
2014-06-16
specification API that can capture computations in many of today’s popular data -parallel computing models, e.g., MapReduce and SQL. We also ported the Hadoop ...today’s big data workloads: • Immutable data : Data is immutable once written, since dominant underlying storage systems, such as HDFS [3], only support...network transfers, so reads can be data -local. • Program size vs. data size: In big data processing, the same operation is repeatedly applied on massive
Qin, Chao; Sun, Yongqi; Dong, Yadong
2017-01-01
Essential proteins are the proteins that are indispensable to the survival and development of an organism. Deleting a single essential protein will cause lethality or infertility. Identifying and analysing essential proteins are key to understanding the molecular mechanisms of living cells. There are two types of methods for predicting essential proteins: experimental methods, which require considerable time and resources, and computational methods, which overcome the shortcomings of experimental methods. However, the prediction accuracy of computational methods for essential proteins requires further improvement. In this paper, we propose a new computational strategy named CoTB for identifying essential proteins based on a combination of topological properties, subcellular localization information and orthologous protein information. First, we introduce several topological properties of the protein-protein interaction (PPI) network. Second, we propose new methods for measuring orthologous information and subcellular localization and a new computational strategy that uses a random forest prediction model to obtain a probability score for the proteins being essential. Finally, we conduct experiments on four different Saccharomyces cerevisiae datasets. The experimental results demonstrate that our strategy for identifying essential proteins outperforms traditional computational methods and the most recently developed method, SON. In particular, our strategy improves the prediction accuracy to 89, 78, 79, and 85 percent on the YDIP, YMIPS, YMBD and YHQ datasets at the top 100 level, respectively.
A system for distributed intrusion detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snapp, S.R.; Brentano, J.; Dias, G.V.
1991-01-01
The study of providing security in computer networks is a rapidly growing area of interest because the network is the medium over which most attacks or intrusions on computer systems are launched. One approach to solving this problem is the intrusion-detection concept, whose basic premise is that not only abandoning the existing and huge infrastructure of possibly-insecure computer and network systems is impossible, but also replacing them by totally-secure systems may not be feasible or cost effective. Previous work on intrusion-detection systems were performed on stand-alone hosts and on a broadcast local area network (LAN) environment. The focus of ourmore » present research is to extend our network intrusion-detection concept from the LAN environment to arbitarily wider areas with the network topology being arbitrary as well. The generalized distributed environment is heterogeneous, i.e., the network nodes can be hosts or servers from different vendors, or some of them could be LAN managers, like our previous work, a network security monitor (NSM), as well. The proposed architecture for this distributed intrusion-detection system consists of the following components: a host manager in each host; a LAN manager for monitoring each LAN in the system; and a central manager which is placed at a single secure location and which receives reports from various host and LAN managers to process these reports, correlate them, and detect intrusions. 11 refs., 2 figs.« less
Vattikonda, Anirudh; Surampudi, Bapi Raju; Banerjee, Arpan; Deco, Gustavo; Roy, Dipanjan
2016-08-01
Computational modeling of the spontaneous dynamics over the whole brain provides critical insight into the spatiotemporal organization of brain dynamics at multiple resolutions and their alteration to changes in brain structure (e.g. in diseased states, aging, across individuals). Recent experimental evidence further suggests that the adverse effect of lesions is visible on spontaneous dynamics characterized by changes in resting state functional connectivity and its graph theoretical properties (e.g. modularity). These changes originate from altered neural dynamics in individual brain areas that are otherwise poised towards a homeostatic equilibrium to maintain a stable excitatory and inhibitory activity. In this work, we employ a homeostatic inhibitory mechanism, balancing excitation and inhibition in the local brain areas of the entire cortex under neurological impairments like lesions to understand global functional recovery (across brain networks and individuals). Previous computational and empirical studies have demonstrated that the resting state functional connectivity varies primarily due to the location and specific topological characteristics of the lesion. We show that local homeostatic balance provides a functional recovery by re-establishing excitation-inhibition balance in all areas that are affected by lesion. We systematically compare the extent of recovery in the primary hub areas (e.g. default mode network (DMN), medial temporal lobe, medial prefrontal cortex) as well as other sensory areas like primary motor area, supplementary motor area, fronto-parietal and temporo-parietal networks. Our findings suggest that stability and richness similar to the normal brain dynamics at rest are achievable by re-establishment of balance. Copyright © 2016 Elsevier Inc. All rights reserved.
Napolitano, L.M. Jr.
1995-11-28
The Lambda network is a single stage, packet-switched interprocessor communication network for a distributed memory, parallel processor computer. Its design arises from the desired network characteristics of minimizing mean and maximum packet transfer time, local routing, expandability, deadlock avoidance, and fault tolerance. The network is based on fixed degree nodes and has mean and maximum packet transfer distances where n is the number of processors. The routing method is detailed, as are methods for expandability, deadlock avoidance, and fault tolerance. 14 figs.
Modeling Aggregation Processes of Lennard-Jones particles Via Stochastic Networks
NASA Astrophysics Data System (ADS)
Forman, Yakir; Cameron, Maria
2017-07-01
We model an isothermal aggregation process of particles/atoms interacting according to the Lennard-Jones pair potential by mapping the energy landscapes of each cluster size N onto stochastic networks, computing transition probabilities from the network for an N-particle cluster to the one for N+1, and connecting these networks into a single joint network. The attachment rate is a control parameter. The resulting network representing the aggregation of up to 14 particles contains 6427 vertices. It is not only time-irreversible but also reducible. To analyze its transient dynamics, we introduce the sequence of the expected initial and pre-attachment distributions and compute them for a wide range of attachment rates and three values of temperature. As a result, we find the configurations most likely to be observed in the process of aggregation for each cluster size. We examine the attachment process and conduct a structural analysis of the sets of local energy minima for every cluster size. We show that both processes taking place in the network, attachment and relaxation, lead to the dominance of icosahedral packing in small (up to 14 atom) clusters.
Extending the Stabilized Supralinear Network model for binocular image processing.
Selby, Ben; Tripp, Bryan
2017-06-01
The visual cortex is both extensive and intricate. Computational models are needed to clarify the relationships between its local mechanisms and high-level functions. The Stabilized Supralinear Network (SSN) model was recently shown to account for many receptive field phenomena in V1, and also to predict subtle receptive field properties that were subsequently confirmed in vivo. In this study, we performed a preliminary exploration of whether the SSN is suitable for incorporation into large, functional models of the visual cortex, considering both its extensibility and computational tractability. First, whereas the SSN receives abstract orientation signals as input, we extended it to receive images (through a linear-nonlinear stage), and found that the extended version behaved similarly. Secondly, whereas the SSN had previously been studied in a monocular context, we found that it could also reproduce data on interocular transfer of surround suppression. Finally, we reformulated the SSN as a convolutional neural network, and found that it scaled well on parallel hardware. These results provide additional support for the plausibility of the SSN as a model of lateral interactions in V1, and suggest that the SSN is well suited as a component of complex vision models. Future work will use the SSN to explore relationships between local network interactions and sophisticated vision processes in large networks. Copyright © 2017 Elsevier Ltd. All rights reserved.
Raja, Muhammad Asif Zahoor; Khan, Junaid Ali; Ahmad, Siraj-ul-Islam; Qureshi, Ijaz Mansoor
2012-01-01
A methodology for solution of Painlevé equation-I is presented using computational intelligence technique based on neural networks and particle swarm optimization hybridized with active set algorithm. The mathematical model of the equation is developed with the help of linear combination of feed-forward artificial neural networks that define the unsupervised error of the model. This error is minimized subject to the availability of appropriate weights of the networks. The learning of the weights is carried out using particle swarm optimization algorithm used as a tool for viable global search method, hybridized with active set algorithm for rapid local convergence. The accuracy, convergence rate, and computational complexity of the scheme are analyzed based on large number of independents runs and their comprehensive statistical analysis. The comparative studies of the results obtained are made with MATHEMATICA solutions, as well as, with variational iteration method and homotopy perturbation method. PMID:22919371
Bioinspired Principles for Large-Scale Networked Sensor Systems: An Overview
Jacobsen, Rune Hylsberg; Zhang, Qi; Toftegaard, Thomas Skjødeberg
2011-01-01
Biology has often been used as a source of inspiration in computer science and engineering. Bioinspired principles have found their way into network node design and research due to the appealing analogies between biological systems and large networks of small sensors. This paper provides an overview of bioinspired principles and methods such as swarm intelligence, natural time synchronization, artificial immune system and intercellular information exchange applicable for sensor network design. Bioinspired principles and methods are discussed in the context of routing, clustering, time synchronization, optimal node deployment, localization and security and privacy. PMID:22163841
Ten Commandments for Microcomputer Facility Planners.
ERIC Educational Resources Information Center
Espinosa, Leonard J.
1991-01-01
Presents factors involved in designing a microcomputer facility, including how computers will be used in the instructional program; educational specifications; planning committees; user input; quality of purchases; visual supervision considerations; location; workstation design; turnkey systems; electrical requirements; local area networks;…
Developing inexpensive crash countermeasures for Louisiana local roads : request for proposals
DOT National Transportation Integrated Search
2010-09-17
The intelligent transportation system (ITS) includes detectors that capture data from Floridas transportation network and computer hardware and software that process these data. Data processed in real-time can, for example, be used to develop mess...
ERIC Educational Resources Information Center
Gore, Al
1994-01-01
The new information marketplace is based on a network of wide, two-way highways comprised of private owners and developers, makers of information appliances (televisions, telephones, computers, and combinations of all three), information providers (local broadcasters, digital libraries, information service providers, and entrepreneurs), and…
ERIC Educational Resources Information Center
Elsweiler, John A., Jr.; And Others
1990-01-01
Presents summaries of 12 papers presented at the 1990 Computers in Libraries Conference. Topics discussed include online searching; microcomputer-based serials management; microcomputer-based workstations; online public access catalogs (OPACs); multitype library networking; CD-ROM searches; locally mounted online databases; collection evaluation;…
The medical science DMZ: a network design pattern for data-intensive medical science.
Peisert, Sean; Dart, Eli; Barnett, William; Balas, Edward; Cuff, James; Grossman, Robert L; Berman, Ari; Shankar, Anurag; Tierney, Brian
2017-10-06
We describe a detailed solution for maintaining high-capacity, data-intensive network flows (eg, 10, 40, 100 Gbps+) in a scientific, medical context while still adhering to security and privacy laws and regulations. High-end networking, packet-filter firewalls, network intrusion-detection systems. We describe a "Medical Science DMZ" concept as an option for secure, high-volume transport of large, sensitive datasets between research institutions over national research networks, and give 3 detailed descriptions of implemented Medical Science DMZs. The exponentially increasing amounts of "omics" data, high-quality imaging, and other rapidly growing clinical datasets have resulted in the rise of biomedical research "Big Data." The storage, analysis, and network resources required to process these data and integrate them into patient diagnoses and treatments have grown to scales that strain the capabilities of academic health centers. Some data are not generated locally and cannot be sustained locally, and shared data repositories such as those provided by the National Library of Medicine, the National Cancer Institute, and international partners such as the European Bioinformatics Institute are rapidly growing. The ability to store and compute using these data must therefore be addressed by a combination of local, national, and industry resources that exchange large datasets. Maintaining data-intensive flows that comply with the Health Insurance Portability and Accountability Act (HIPAA) and other regulations presents a new challenge for biomedical research. We describe a strategy that marries performance and security by borrowing from and redefining the concept of a Science DMZ, a framework that is used in physical sciences and engineering research to manage high-capacity data flows. By implementing a Medical Science DMZ architecture, biomedical researchers can leverage the scale provided by high-performance computer and cloud storage facilities and national high-speed research networks while preserving privacy and meeting regulatory requirements. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Findings from an Organizational Network Analysis to Support Local Public Health Management
Caldwell, Michael; Rockoff, Maxine L.; Gebbie, Kristine; Carley, Kathleen M.; Bakken, Suzanne
2008-01-01
We assessed the feasibility of using organizational network analysis in a local public health organization. The research setting was an urban/suburban county health department with 156 employees. The goal of the research was to study communication and information flow in the department and to assess the technique for public health management. Network data were derived from survey questionnaires. Computational analysis was performed with the Organizational Risk Analyzer. Analysis revealed centralized communication, limited interdependencies, potential knowledge loss through retirement, and possible informational silos. The findings suggested opportunities for more cross program coordination but also suggested the presences of potentially efficient communication paths and potentially beneficial social connectedness. Managers found the findings useful to support decision making. Public health organizations must be effective in an increasingly complex environment. Network analysis can help build public health capacity for complex system management. PMID:18481183
A model of individualized canonical microcircuits supporting cognitive operations
Peterson, Andre D. H.; Haueisen, Jens; Knösche, Thomas R.
2017-01-01
Major cognitive functions such as language, memory, and decision-making are thought to rely on distributed networks of a large number of basic elements, called canonical microcircuits. In this theoretical study we propose a novel canonical microcircuit model and find that it supports two basic computational operations: a gating mechanism and working memory. By means of bifurcation analysis we systematically investigate the dynamical behavior of the canonical microcircuit with respect to parameters that govern the local network balance, that is, the relationship between excitation and inhibition, and key intrinsic feedback architectures of canonical microcircuits. We relate the local behavior of the canonical microcircuit to cognitive processing and demonstrate how a network of interacting canonical microcircuits enables the establishment of spatiotemporal sequences in the context of syntax parsing during sentence comprehension. This study provides a framework for using individualized canonical microcircuits for the construction of biologically realistic networks supporting cognitive operations. PMID:29200435
Counting motifs in dynamic networks.
Mukherjee, Kingshuk; Hasan, Md Mahmudul; Boucher, Christina; Kahveci, Tamer
2018-04-11
A network motif is a sub-network that occurs frequently in a given network. Detection of such motifs is important since they uncover functions and local properties of the given biological network. Finding motifs is however a computationally challenging task as it requires solving the costly subgraph isomorphism problem. Moreover, the topology of biological networks change over time. These changing networks are called dynamic biological networks. As the network evolves, frequency of each motif in the network also changes. Computing the frequency of a given motif from scratch in a dynamic network as the network topology evolves is infeasible, particularly for large and fast evolving networks. In this article, we design and develop a scalable method for counting the number of motifs in a dynamic biological network. Our method incrementally updates the frequency of each motif as the underlying network's topology evolves. Our experiments demonstrate that our method can update the frequency of each motif in orders of magnitude faster than counting the motif embeddings every time the network changes. If the network evolves more frequently, the margin with which our method outperforms the existing static methods, increases. We evaluated our method extensively using synthetic and real datasets, and show that our method is highly accurate(≥ 96%) and that it can be scaled to large dense networks. The results on real data demonstrate the utility of our method in revealing interesting insights on the evolution of biological processes.
Interfacing External Quantum Devices to a Universal Quantum Computer
Lagana, Antonio A.; Lohe, Max A.; von Smekal, Lorenz
2011-01-01
We present a scheme to use external quantum devices using the universal quantum computer previously constructed. We thereby show how the universal quantum computer can utilize networked quantum information resources to carry out local computations. Such information may come from specialized quantum devices or even from remote universal quantum computers. We show how to accomplish this by devising universal quantum computer programs that implement well known oracle based quantum algorithms, namely the Deutsch, Deutsch-Jozsa, and the Grover algorithms using external black-box quantum oracle devices. In the process, we demonstrate a method to map existing quantum algorithms onto the universal quantum computer. PMID:22216276
Interfacing external quantum devices to a universal quantum computer.
Lagana, Antonio A; Lohe, Max A; von Smekal, Lorenz
2011-01-01
We present a scheme to use external quantum devices using the universal quantum computer previously constructed. We thereby show how the universal quantum computer can utilize networked quantum information resources to carry out local computations. Such information may come from specialized quantum devices or even from remote universal quantum computers. We show how to accomplish this by devising universal quantum computer programs that implement well known oracle based quantum algorithms, namely the Deutsch, Deutsch-Jozsa, and the Grover algorithms using external black-box quantum oracle devices. In the process, we demonstrate a method to map existing quantum algorithms onto the universal quantum computer. © 2011 Lagana et al.
Correlations between Community Structure and Link Formation in Complex Networks
Liu, Zhen; He, Jia-Lin; Kapoor, Komal; Srivastava, Jaideep
2013-01-01
Background Links in complex networks commonly represent specific ties between pairs of nodes, such as protein-protein interactions in biological networks or friendships in social networks. However, understanding the mechanism of link formation in complex networks is a long standing challenge for network analysis and data mining. Methodology/Principal Findings Links in complex networks have a tendency to cluster locally and form so-called communities. This widely existed phenomenon reflects some underlying mechanism of link formation. To study the correlations between community structure and link formation, we present a general computational framework including a theory for network partitioning and link probability estimation. Our approach enables us to accurately identify missing links in partially observed networks in an efficient way. The links having high connection likelihoods in the communities reveal that links are formed preferentially to create cliques and accordingly promote the clustering level of the communities. The experimental results verify that such a mechanism can be well captured by our approach. Conclusions/Significance Our findings provide a new insight into understanding how links are created in the communities. The computational framework opens a wide range of possibilities to develop new approaches and applications, such as community detection and missing link prediction. PMID:24039818
Explicit Content Caching at Mobile Edge Networks with Cross-Layer Sensing
Chen, Lingyu; Su, Youxing; Luo, Wenbin; Hong, Xuemin; Shi, Jianghong
2018-01-01
The deployment density and computational power of small base stations (BSs) are expected to increase significantly in the next generation mobile communication networks. These BSs form the mobile edge network, which is a pervasive and distributed infrastructure that can empower a variety of edge/fog computing applications. This paper proposes a novel edge-computing application called explicit caching, which stores selective contents at BSs and exposes such contents to local users for interactive browsing and download. We formulate the explicit caching problem as a joint content recommendation, caching, and delivery problem, which aims to maximize the expected user quality-of-experience (QoE) with varying degrees of cross-layer sensing capability. Optimal and effective heuristic algorithms are presented to solve the problem. The theoretical performance bounds of the explicit caching system are derived in simplified scenarios. The impacts of cache storage space, BS backhaul capacity, cross-layer information, and user mobility on the system performance are simulated and discussed in realistic scenarios. Results suggest that, compared with conventional implicit caching schemes, explicit caching can better exploit the mobile edge network infrastructure for personalized content dissemination. PMID:29565313
Explicit Content Caching at Mobile Edge Networks with Cross-Layer Sensing.
Chen, Lingyu; Su, Youxing; Luo, Wenbin; Hong, Xuemin; Shi, Jianghong
2018-03-22
The deployment density and computational power of small base stations (BSs) are expected to increase significantly in the next generation mobile communication networks. These BSs form the mobile edge network, which is a pervasive and distributed infrastructure that can empower a variety of edge/fog computing applications. This paper proposes a novel edge-computing application called explicit caching, which stores selective contents at BSs and exposes such contents to local users for interactive browsing and download. We formulate the explicit caching problem as a joint content recommendation, caching, and delivery problem, which aims to maximize the expected user quality-of-experience (QoE) with varying degrees of cross-layer sensing capability. Optimal and effective heuristic algorithms are presented to solve the problem. The theoretical performance bounds of the explicit caching system are derived in simplified scenarios. The impacts of cache storage space, BS backhaul capacity, cross-layer information, and user mobility on the system performance are simulated and discussed in realistic scenarios. Results suggest that, compared with conventional implicit caching schemes, explicit caching can better exploit the mobile edge network infrastructure for personalized content dissemination.
1995 Joseph E. Whitley, MD, Award. A World Wide Web gateway to the radiologic learning file.
Channin, D S
1995-12-01
Computer networks in general, and the Internet specifically, are changing the way information is manipulated in the world at large and in radiology. The goal of this project was to develop a computer system in which images from the Radiologic Learning File, available previously only via a single-user laser disc, are made available over a generic, high-availability computer network to many potential users simultaneously. Using a networked workstation in our laboratory and freely available distributed hypertext software, we established a World Wide Web (WWW) information server for radiology. Images from the Radiologic Learning File are requested through the WWW client software, digitized from a single laser disc containing the entire teaching file and then transmitted over the network to the client. The text accompanying each image is incorporated into the transmitted document. The Radiologic Learning File is now on-line, and requests to view the cases result in the delivery of the text and images. Image digitization via a frame grabber takes 1/30th of a second. Conversion of the image to a standard computer graphic format takes 45-60 sec. Text and image transmission speed on a local area network varies between 200 and 400 kilobytes (KB) per second depending on the network load. We have made images from a laser disc of the Radiologic Learning File available through an Internet-based hypertext server. The images previously available through a single-user system located in a remote section of our department are now ubiquitously available throughout our department via the department's computer network. We have thus converted a single-user, limited functionality system into a multiuser, widely available resource.
Computational Characterization of Type I collagen-based Extra-cellular Matrix
NASA Astrophysics Data System (ADS)
Liang, Long; Jones, Christopher Allen Rucksack; Lin, Daniel; Jiao, Yang; Sun, Bo
2015-03-01
A model of extracellular matrix (ECM) of collagen fibers has been built, in which cells could communicate with distant partners via fiber-mediated long-range-transmitted stress states. The ECM is modeled as a spring-like fiber network derived from skeletonized confocal microscopy data. Different local and global perturbations have been performed on the network, each followed by an optimized global Monte-Carlo (MC) energy minimization leading to the deformed network in response to the perturbations. In the optimization, a highly efficient local energy update procedure is employed and force-directed MC moves are used, which results in a convergence to the energy minimum state 20 times faster than the commonly used random displacement trial moves in MC. Further analysis and visualization of the distribution and correlation of the resulting force network reveal that local perturbations can give rise to global impacts: the force chains formed with a linear extent much further than the characteristic length scale associated with the perturbation sites and average fiber length. This behavior provides a strong evidence for our hypothesis of fiber-mediated long-range force transmission in ECM networks and the resulting long-range cell-cell mechanical signaling. ASU Seed Grant.
Whittington, James C. R.; Bogacz, Rafal
2017-01-01
To efficiently learn from feedback, cortical networks need to update synaptic weights on multiple levels of cortical hierarchy. An effective and well-known algorithm for computing such changes in synaptic weights is the error backpropagation algorithm. However, in this algorithm, the change in synaptic weights is a complex function of weights and activities of neurons not directly connected with the synapse being modified, whereas the changes in biological synapses are determined only by the activity of presynaptic and postsynaptic neurons. Several models have been proposed that approximate the backpropagation algorithm with local synaptic plasticity, but these models require complex external control over the network or relatively complex plasticity rules. Here we show that a network developed in the predictive coding framework can efficiently perform supervised learning fully autonomously, employing only simple local Hebbian plasticity. Furthermore, for certain parameters, the weight change in the predictive coding model converges to that of the backpropagation algorithm. This suggests that it is possible for cortical networks with simple Hebbian synaptic plasticity to implement efficient learning algorithms in which synapses in areas on multiple levels of hierarchy are modified to minimize the error on the output. PMID:28333583
Biology Inspired Approach for Communal Behavior in Sensor Networks
NASA Technical Reports Server (NTRS)
Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng
2006-01-01
Research in wireless sensor network technology has exploded in the last decade. Promises of complex and ubiquitous control of the physical environment by these networks open avenues for new kinds of science and business. Due to the small size and low cost of sensor devices, visionaries promise systems enabled by deployment of massive numbers of sensors working in concert. Although the reduction in size has been phenomenal it results in severe limitations on the computing, communicating, and power capabilities of these devices. Under these constraints, research efforts have concentrated on developing techniques for performing relatively simple tasks with minimal energy expense assuming some form of centralized control. Unfortunately, centralized control does not scale to massive size networks and execution of simple tasks in sparsely populated networks will not lead to the sophisticated applications predicted. These must be enabled by new techniques dependent on local and autonomous cooperation between sensors to effect global functions. As a step in that direction, in this work we detail a technique whereby a large population of sensors can attain a global goal using only local information and by making only local decisions without any form of centralized control.
Whittington, James C R; Bogacz, Rafal
2017-05-01
To efficiently learn from feedback, cortical networks need to update synaptic weights on multiple levels of cortical hierarchy. An effective and well-known algorithm for computing such changes in synaptic weights is the error backpropagation algorithm. However, in this algorithm, the change in synaptic weights is a complex function of weights and activities of neurons not directly connected with the synapse being modified, whereas the changes in biological synapses are determined only by the activity of presynaptic and postsynaptic neurons. Several models have been proposed that approximate the backpropagation algorithm with local synaptic plasticity, but these models require complex external control over the network or relatively complex plasticity rules. Here we show that a network developed in the predictive coding framework can efficiently perform supervised learning fully autonomously, employing only simple local Hebbian plasticity. Furthermore, for certain parameters, the weight change in the predictive coding model converges to that of the backpropagation algorithm. This suggests that it is possible for cortical networks with simple Hebbian synaptic plasticity to implement efficient learning algorithms in which synapses in areas on multiple levels of hierarchy are modified to minimize the error on the output.
Archer, Charles Jens; Musselman, Roy Glenn; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen; Wallenfelt, Brian Paul
2010-11-23
A massively parallel computer system contains an inter-nodal communications network of node-to-node links. Nodes vary a choice of routing policy for routing data in the network in a semi-random manner, so that similarly situated packets are not always routed along the same path. Semi-random variation of the routing policy tends to avoid certain local hot spots of network activity, which might otherwise arise using more consistent routing determinations. Preferably, the originating node chooses a routing policy for a packet, and all intermediate nodes in the path route the packet according to that policy. Policies may be rotated on a round-robin basis, selected by generating a random number, or otherwise varied.
Reduced integration and improved segregation of functional brain networks in Alzheimer’s disease
NASA Astrophysics Data System (ADS)
Kabbara, A.; Eid, H.; El Falou, W.; Khalil, M.; Wendling, F.; Hassan, M.
2018-04-01
Objective. Emerging evidence shows that cognitive deficits in Alzheimer’s disease (AD) are associated with disruptions in brain functional connectivity. Thus, the identification of alterations in AD functional networks has become a topic of increasing interest. However, to what extent AD induces disruption of the balance of local and global information processing in the human brain remains elusive. The main objective of this study is to explore the dynamic topological changes of AD networks in terms of brain network segregation and integration. Approach. We used electroencephalography (EEG) data recorded from 20 participants (10 AD patients and 10 healthy controls) during resting state. Functional brain networks were reconstructed using EEG source connectivity computed in different frequency bands. Graph theoretical analyses were performed assess differences between both groups. Main results. Results revealed that AD networks, compared to networks of age-matched healthy controls, are characterized by lower global information processing (integration) and higher local information processing (segregation). Results showed also significant correlation between the alterations in the AD patients’ functional brain networks and their cognitive scores. Significance. These findings may contribute to the development of EEG network-based test that could strengthen results obtained from currently-used neurophysiological tests in neurodegenerative diseases.
Reduced integration and improved segregation of functional brain networks in Alzheimer's disease.
Kabbara, A; Eid, H; El Falou, W; Khalil, M; Wendling, F; Hassan, M
2018-04-01
Emerging evidence shows that cognitive deficits in Alzheimer's disease (AD) are associated with disruptions in brain functional connectivity. Thus, the identification of alterations in AD functional networks has become a topic of increasing interest. However, to what extent AD induces disruption of the balance of local and global information processing in the human brain remains elusive. The main objective of this study is to explore the dynamic topological changes of AD networks in terms of brain network segregation and integration. We used electroencephalography (EEG) data recorded from 20 participants (10 AD patients and 10 healthy controls) during resting state. Functional brain networks were reconstructed using EEG source connectivity computed in different frequency bands. Graph theoretical analyses were performed assess differences between both groups. Results revealed that AD networks, compared to networks of age-matched healthy controls, are characterized by lower global information processing (integration) and higher local information processing (segregation). Results showed also significant correlation between the alterations in the AD patients' functional brain networks and their cognitive scores. These findings may contribute to the development of EEG network-based test that could strengthen results obtained from currently-used neurophysiological tests in neurodegenerative diseases.
Dynamic Routing for Delay-Tolerant Networking in Space Flight Operations
NASA Technical Reports Server (NTRS)
Burleigh, Scott
2008-01-01
Computational self-sufficiency - the making of communication decisions on the basis of locally available information that is already in place, rather than on the basis of information residing at other entities - is a fundamental principle of Delay-Tolerant Networking. Contact Graph Routing is an attempt to apply this principle to the problem of dynamic routing in an interplanetary DTN. Testing continues, but preliminary results are promising.
Neurocomputation by Reaction Diffusion
NASA Astrophysics Data System (ADS)
Liang, Ping
1995-08-01
This Letter demonstrates the possible role nonsynaptic diffusion neurotransmission may play in neurocomputation using an artificial neural network model. A reaction-diffusion neural network model with field-based information-processing mechanisms is proposed. The advantages of nonsynaptic field neurotransmission from a computational viewpoint demonstrated in this Letter include long-range inhibition using only local interaction, nonhardwired and changeable (target specific) long-range communication pathways, and multiple simultaneous spatiotemporal organization processes in the same medium.
An approach for heterogeneous and loosely coupled geospatial data distributed computing
NASA Astrophysics Data System (ADS)
Chen, Bin; Huang, Fengru; Fang, Yu; Huang, Zhou; Lin, Hui
2010-07-01
Most GIS (Geographic Information System) applications tend to have heterogeneous and autonomous geospatial information resources, and the availability of these local resources is unpredictable and dynamic under a distributed computing environment. In order to make use of these local resources together to solve larger geospatial information processing problems that are related to an overall situation, in this paper, with the support of peer-to-peer computing technologies, we propose a geospatial data distributed computing mechanism that involves loosely coupled geospatial resource directories and a term named as Equivalent Distributed Program of global geospatial queries to solve geospatial distributed computing problems under heterogeneous GIS environments. First, a geospatial query process schema for distributed computing as well as a method for equivalent transformation from a global geospatial query to distributed local queries at SQL (Structured Query Language) level to solve the coordinating problem among heterogeneous resources are presented. Second, peer-to-peer technologies are used to maintain a loosely coupled network environment that consists of autonomous geospatial information resources, thus to achieve decentralized and consistent synchronization among global geospatial resource directories, and to carry out distributed transaction management of local queries. Finally, based on the developed prototype system, example applications of simple and complex geospatial data distributed queries are presented to illustrate the procedure of global geospatial information processing.
NASA Astrophysics Data System (ADS)
Huang, Jinhui; Liu, Wenxiang; Su, Yingxue; Wang, Feixue
2018-02-01
Space networks, in which connectivity is deterministic and intermittent, can be modeled by delay/disruption tolerant networks. In space delay/disruption tolerant networks, a packet is usually transmitted from the source node to the destination node indirectly via a series of relay nodes. If anyone of the nodes in the path becomes congested, the packet will be dropped due to buffer overflow. One of the main reasons behind congestion is the unbalanced network traffic distribution. We propose a load balancing strategy which takes the congestion status of both the local node and relay nodes into account. The congestion status, together with the end-to-end delay, is used in the routing selection. A lookup-table enhancement is also proposed. The off-line computation and the on-line adjustment are combined together to make a more precise estimate of the end-to-end delay while at the same time reducing the onboard computation. Simulation results show that the proposed strategy helps to distribute network traffic more evenly and therefore reduces the packet drop ratio. In addition, the average delay is also decreased in most cases. The lookup-table enhancement provides a compromise between the need for better communication performance and the desire for less onboard computation.
Hierarchy of Information Processing in the Brain: A Novel 'Intrinsic Ignition' Framework.
Deco, Gustavo; Kringelbach, Morten L
2017-06-07
A general theory of brain function has to be able to explain local and non-local network computations over space and time. We propose a new framework to capture the key principles of how local activity influences global computation, i.e., describing the propagation of information and thus the broadness of communication driven by local activity. More specifically, we consider the diversity in space (nodes or brain regions) over time using the concept of intrinsic ignition, which are naturally occurring intrinsic perturbations reflecting the capability of a given brain area to propagate neuronal activity to other regions in a given brain state. Characterizing the profile of intrinsic ignition for a given brain state provides insight into the precise nature of hierarchical information processing. Combining this data-driven method with a causal whole-brain computational model can provide novel insights into the imbalance of brain states found in neuropsychiatric disorders. Copyright © 2017 Elsevier Inc. All rights reserved.
A wireless sensor network based personnel positioning scheme in coal mines with blind areas.
Liu, Zhigao; Li, Chunwen; Wu, Danchen; Dai, Wenhan; Geng, Shaobo; Ding, Qingqing
2010-01-01
This paper proposes a novel personnel positioning scheme for a tunnel network with blind areas, which compared with most existing schemes offers both low-cost and high-precision. Based on the data models of tunnel networks, measurement networks and mobile miners, the global positioning method is divided into four steps: (1) calculate the real time personnel location in local areas using a location engine, and send it to the upper computer through the gateway; (2) correct any localization errors resulting from the underground tunnel environmental interference; (3) determine the global three-dimensional position by coordinate transformation; (4) estimate the personnel locations in the blind areas. A prototype system constructed to verify the positioning performance shows that the proposed positioning system has good reliability, scalability, and positioning performance. In particular, the static localization error of the positioning system is less than 2.4 m in the underground tunnel environment and the moving estimation error is below 4.5 m in the corridor environment. The system was operated continuously over three months without any failures.
A distributed approach to the OPF problem
NASA Astrophysics Data System (ADS)
Erseghe, Tomaso
2015-12-01
This paper presents a distributed approach to optimal power flow (OPF) in an electrical network, suitable for application in a future smart grid scenario where access to resource and control is decentralized. The non-convex OPF problem is solved by an augmented Lagrangian method, similar to the widely known ADMM algorithm, with the key distinction that penalty parameters are constantly increased. A (weak) assumption on local solver reliability is required to always ensure convergence. A certificate of convergence to a local optimum is available in the case of bounded penalty parameters. For moderate sized networks (up to 300 nodes, and even in the presence of a severe partition of the network), the approach guarantees a performance very close to the optimum, with an appreciably fast convergence speed. The generality of the approach makes it applicable to any (convex or non-convex) distributed optimization problem in networked form. In the comparison with the literature, mostly focused on convex SDP approximations, the chosen approach guarantees adherence to the reference problem, and it also requires a smaller local computational complexity effort.
A Wireless Sensor Network Based Personnel Positioning Scheme in Coal Mines with Blind Areas
Liu, Zhigao; Li, Chunwen; Wu, Danchen; Dai, Wenhan; Geng, Shaobo; Ding, Qingqing
2010-01-01
This paper proposes a novel personnel positioning scheme for a tunnel network with blind areas, which compared with most existing schemes offers both low-cost and high-precision. Based on the data models of tunnel networks, measurement networks and mobile miners, the global positioning method is divided into four steps: (1) calculate the real time personnel location in local areas using a location engine, and send it to the upper computer through the gateway; (2) correct any localization errors resulting from the underground tunnel environmental interference; (3) determine the global three-dimensional position by coordinate transformation; (4) estimate the personnel locations in the blind areas. A prototype system constructed to verify the positioning performance shows that the proposed positioning system has good reliability, scalability, and positioning performance. In particular, the static localization error of the positioning system is less than 2.4 m in the underground tunnel environment and the moving estimation error is below 4.5 m in the corridor environment. The system was operated continuously over three months without any failures. PMID:22163446
Hiratani, Naoki; Fukai, Tomoki
2016-01-01
In the adult mammalian cortex, a small fraction of spines are created and eliminated every day, and the resultant synaptic connection structure is highly nonrandom, even in local circuits. However, it remains unknown whether a particular synaptic connection structure is functionally advantageous in local circuits, and why creation and elimination of synaptic connections is necessary in addition to rich synaptic weight plasticity. To answer these questions, we studied an inference task model through theoretical and numerical analyses. We demonstrate that a robustly beneficial network structure naturally emerges by combining Hebbian-type synaptic weight plasticity and wiring plasticity. Especially in a sparsely connected network, wiring plasticity achieves reliable computation by enabling efficient information transmission. Furthermore, the proposed rule reproduces experimental observed correlation between spine dynamics and task performance. PMID:27303271
NASA Astrophysics Data System (ADS)
Zhu, Aichun; Wang, Tian; Snoussi, Hichem
2018-03-01
This paper addresses the problems of the graphical-based human pose estimation in still images, including the diversity of appearances and confounding background clutter. We present a new architecture for estimating human pose using a Convolutional Neural Network (CNN). Firstly, a Relative Mixture Deformable Model (RMDM) is defined by each pair of connected parts to compute the relative spatial information in the graphical model. Secondly, a Local Multi-Resolution Convolutional Neural Network (LMR-CNN) is proposed to train and learn the multi-scale representation of each body parts by combining different levels of part context. Thirdly, a LMR-CNN based hierarchical model is defined to explore the context information of limb parts. Finally, the experimental results demonstrate the effectiveness of the proposed deep learning approach for human pose estimation.
NASA Astrophysics Data System (ADS)
Kan, Jia-Qian; Zhang, Hai-Feng
2017-03-01
In this paper, we study the interplay between the epidemic spreading and the diffusion of awareness in multiplex networks. In the model, an infectious disease can spread in one network representing the paths of epidemic spreading (contact network), leading to the diffusion of awareness in the other network (information network), and then the diffusion of awareness will cause individuals to take social distances, which in turn affects the epidemic spreading. As for the diffusion of awareness, we assume that, on the one hand, individuals can be informed by other aware neighbors in information network, on the other hand, the susceptible individuals can be self-awareness induced by the infected neighbors in the contact networks (local information) or mass media (global information). Through Markov chain approach and numerical computations, we find that the density of infected individuals and the epidemic threshold can be affected by the structures of the two networks and the effective transmission rate of the awareness. However, we prove that though the introduction of the self-awareness can lower the density of infection, which cannot increase the epidemic threshold no matter of the local information or global information. Our finding is remarkably different to many previous results on single-layer network: local information based behavioral response can alter the epidemic threshold. Furthermore, our results indicate that the nodes with more neighbors (hub nodes) in information networks are easier to be informed, as a result, their risk of infection in contact networks can be effectively reduced.
Local area network with fault-checking, priorities, and redundant backup
NASA Technical Reports Server (NTRS)
Morales, Sergio (Inventor); Friedman, Gary L. (Inventor)
1989-01-01
This invention is a redundant error detecting and correcting local area networked computer system having a plurality of nodes each including a network connector board within the node for connecting to an interfacing transceiver operably attached to a network cable. There is a first network cable disposed along a path to interconnect the nodes. The first network cable includes a plurality of first interfacing transceivers attached thereto. A second network cable is disposed in parallel with the first cable and, in like manner, includes a plurality of second interfacing transceivers attached thereto. There are a plurality of three position switches each having a signal input, three outputs for individual selective connection to the input, and a control input for receiving signals designating which of the outputs is to be connected to the signal input. Each of the switches includes means for designating a response address for responding to addressed signals appearing at the control input and each of the switches further has its signal input connected to a respective one of the input/output lines from the nodes. Also, one of the three outputs is connected to a repective one of the plurality of first interfacing transceivers. There is master switch control means having an output connected to the control inputs of the plurality of three position switches and an input for receiving directive signals for outputting addressed switch position signals to the three position switches as well as monitor and control computer means having a pair of network connector boards therein connected to respective ones of one of the first interfacing transceivers and one of the second interfacing transceivers and an output connected to the input of the master switch means for monitoring the status of the networked computer system by sending messages to the nodes and receiving and verifying messages therefrom and for sending control signals to the master switch to cause the master switch to cause respective ones of the nodes to use a desired one of the first and second cables for transmitting and receiving messages and for disconnecting desired ones of the nodes from both cables.
Nie, Xiaobing; Zheng, Wei Xing; Cao, Jinde
2015-11-01
The problem of coexistence and dynamical behaviors of multiple equilibrium points is addressed for a class of memristive Cohen-Grossberg neural networks with non-monotonic piecewise linear activation functions and time-varying delays. By virtue of the fixed point theorem, nonsmooth analysis theory and other analytical tools, some sufficient conditions are established to guarantee that such n-dimensional memristive Cohen-Grossberg neural networks can have 5(n) equilibrium points, among which 3(n) equilibrium points are locally exponentially stable. It is shown that greater storage capacity can be achieved by neural networks with the non-monotonic activation functions introduced herein than the ones with Mexican-hat-type activation function. In addition, unlike most existing multistability results of neural networks with monotonic activation functions, those obtained 3(n) locally stable equilibrium points are located both in saturated regions and unsaturated regions. The theoretical findings are verified by an illustrative example with computer simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Marchiori, Massimo; Latora, Vito
2000-10-01
The small-world phenomenon, popularly known as six degrees of separation, has been mathematically formalized by Watts and Strogatz in a study of the topological properties of a network. Small-world networks are defined in terms of two quantities: they have a high clustering coefficient C like regular lattices and a short characteristic path length L typical of random networks. Physical distances are of fundamental importance in applications to real cases; nevertheless, this basic ingredient is missing in the original formulation. Here, we introduce a new concept, the connectivity length D, that gives harmony to the whole theory. D can be evaluated on a global and on a local scale and plays in turn the role of L and 1/ C. Moreover, it can be computed for any metrical network and not only for the topological cases. D has a precise meaning in terms of information propagation and describes in a unified way, both the structural and the dynamical aspects of a network: small-worlds are defined by a small global and local D, i.e., by a high efficiency in propagating information both on a local and global scale. The neural system of the nematode C. elegans, the collaboration graph of film actors, and the oldest US subway system, can now be studied also as metrical networks and are shown to be small-worlds.
Supersonic projectile models for asynchronous shooter localization
NASA Astrophysics Data System (ADS)
Kozick, Richard J.; Whipps, Gene T.; Ash, Joshua N.
2011-06-01
In this work we consider the localization of a gunshot using a distributed sensor network measuring time differences of arrival between a firearm's muzzle blast and the shockwave induced by a supersonic bullet. This so-called MB-SW approach is desirable because time synchronization is not required between the sensors, however it suffers from increased computational complexity and requires knowledge of the bullet's velocity at all points along its trajectory. While the actual velocity profile of a particular gunshot is unknown, one may use a parameterized model for the velocity profile and simultaneously fit the model and localize the shooter. In this paper we study efficient solutions for the localization problem and identify deceleration models that trade off localization accuracy and computational complexity. We also develop a statistical analysis that includes bias due to mismatch between the true and actual deceleration models and covariance due to additive noise.
Wu, Siqi; Joseph, Antony; Hammonds, Ann S; Celniker, Susan E; Yu, Bin; Frise, Erwin
2016-04-19
Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set ofDrosophilaearly embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identified 21 principal patterns (PP). Providing a compact yet biologically interpretable representation ofDrosophilaexpression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior-posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. The performance of PP with theDrosophiladata suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data.
2011-01-01
and G. Armitage. Dening and evaluating greynets (sparse darknets ). In LCN: Proceedings of the IEEE Conference on Local Computer Networks 30th...analysis of distributed darknet trac. In IMC: Proceedings of the USENIX/ACM Internet Measurement Conference, 2005. Indexing Full Packet Capture Data
Systems Suitable for Information Professionals.
ERIC Educational Resources Information Center
Blair, John C., Jr.
1983-01-01
Describes computer operating systems applicable to microcomputers, noting hardware components, advantages and disadvantages of each system, local area networks, distributed processing, and a fully configured system. Lists of hardware components (disk drives, solid state disk emulators, input/output and memory components, and processors) and…
49 CFR 395.18 - Matter incorporated by reference.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Technology—Telecommunications and information exchange between systems—Local and metropolitan area networks...) Specifications,” IEEE Computer Society, Sponsored by the LAN/MAN Standards Committee: June 12, 2007 (IEEE Std... 446-2008, American National Standard for Information Technology—Identifying Attributes for Named...
Performance Support on the Shop Floor.
ERIC Educational Resources Information Center
Kasvi, Jyrki J. J.; Vartiainen, Matti
2000-01-01
Discussion of performance support on the shop floor highlights four support systems for assembly lines that incorporate personal computer workstations in local area networks and use multimedia documents. Considers new customer-focused production paradigms; organizational learning; knowledge development; and electronic performance support systems…
Micros for the 1990's: An Update.
ERIC Educational Resources Information Center
Grosch, Audrey N.
1991-01-01
Discusses new hardware and software developments for microcomputers and considers strategies for future library microcomputing. Topics discussed include developments with Macintosh computers; the importance of local area networks (LANs); upgrading options for hardware; operating system upgrades; dynamic data exchange (DDE); microcomputer…
Boorman, Erie D; Rajendran, Vani G; O'Reilly, Jill X; Behrens, Tim E
2016-03-16
Complex cognitive processes require sophisticated local processing but also interactions between distant brain regions. It is therefore critical to be able to study distant interactions between local computations and the neural representations they act on. Here we report two anatomically and computationally distinct learning signals in lateral orbitofrontal cortex (lOFC) and the dopaminergic ventral midbrain (VM) that predict trial-by-trial changes to a basic internal model in hippocampus. To measure local computations during learning and their interaction with neural representations, we coupled computational fMRI with trial-by-trial fMRI suppression. We find that suppression in a medial temporal lobe network changes trial-by-trial in proportion to stimulus-outcome associations. During interleaved choice trials, we identify learning signals that relate to outcome type in lOFC and to reward value in VM. These intervening choice feedback signals predicted the subsequent change to hippocampal suppression, suggesting a convergence of signals that update the flexible representation of stimulus-outcome associations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Working Memory and Decision-Making in a Frontoparietal Circuit Model
2017-01-01
Working memory (WM) and decision-making (DM) are fundamental cognitive functions involving a distributed interacting network of brain areas, with the posterior parietal cortex (PPC) and prefrontal cortex (PFC) at the core. However, the shared and distinct roles of these areas and the nature of their coordination in cognitive function remain poorly understood. Biophysically based computational models of cortical circuits have provided insights into the mechanisms supporting these functions, yet they have primarily focused on the local microcircuit level, raising questions about the principles for distributed cognitive computation in multiregional networks. To examine these issues, we developed a distributed circuit model of two reciprocally interacting modules representing PPC and PFC circuits. The circuit architecture includes hierarchical differences in local recurrent structure and implements reciprocal long-range projections. This parsimonious model captures a range of behavioral and neuronal features of frontoparietal circuits across multiple WM and DM paradigms. In the context of WM, both areas exhibit persistent activity, but, in response to intervening distractors, PPC transiently encodes distractors while PFC filters distractors and supports WM robustness. With regard to DM, the PPC module generates graded representations of accumulated evidence supporting target selection, while the PFC module generates more categorical responses related to action or choice. These findings suggest computational principles for distributed, hierarchical processing in cortex during cognitive function and provide a framework for extension to multiregional models. SIGNIFICANCE STATEMENT Working memory and decision-making are fundamental “building blocks” of cognition, and deficits in these functions are associated with neuropsychiatric disorders such as schizophrenia. These cognitive functions engage distributed networks with prefrontal cortex (PFC) and posterior parietal cortex (PPC) at the core. It is not clear, however, what the contributions of PPC and PFC are in light of the computations that subserve working memory and decision-making. We constructed a biophysical model of a reciprocally connected frontoparietal circuit that revealed shared and distinct functions for the PFC and PPC across working memory and decision-making tasks. Our parsimonious model connects circuit-level properties to cognitive functions and suggests novel design principles beyond those of local circuits for cognitive processing in multiregional brain networks. PMID:29114071
Working Memory and Decision-Making in a Frontoparietal Circuit Model.
Murray, John D; Jaramillo, Jorge; Wang, Xiao-Jing
2017-12-13
Working memory (WM) and decision-making (DM) are fundamental cognitive functions involving a distributed interacting network of brain areas, with the posterior parietal cortex (PPC) and prefrontal cortex (PFC) at the core. However, the shared and distinct roles of these areas and the nature of their coordination in cognitive function remain poorly understood. Biophysically based computational models of cortical circuits have provided insights into the mechanisms supporting these functions, yet they have primarily focused on the local microcircuit level, raising questions about the principles for distributed cognitive computation in multiregional networks. To examine these issues, we developed a distributed circuit model of two reciprocally interacting modules representing PPC and PFC circuits. The circuit architecture includes hierarchical differences in local recurrent structure and implements reciprocal long-range projections. This parsimonious model captures a range of behavioral and neuronal features of frontoparietal circuits across multiple WM and DM paradigms. In the context of WM, both areas exhibit persistent activity, but, in response to intervening distractors, PPC transiently encodes distractors while PFC filters distractors and supports WM robustness. With regard to DM, the PPC module generates graded representations of accumulated evidence supporting target selection, while the PFC module generates more categorical responses related to action or choice. These findings suggest computational principles for distributed, hierarchical processing in cortex during cognitive function and provide a framework for extension to multiregional models. SIGNIFICANCE STATEMENT Working memory and decision-making are fundamental "building blocks" of cognition, and deficits in these functions are associated with neuropsychiatric disorders such as schizophrenia. These cognitive functions engage distributed networks with prefrontal cortex (PFC) and posterior parietal cortex (PPC) at the core. It is not clear, however, what the contributions of PPC and PFC are in light of the computations that subserve working memory and decision-making. We constructed a biophysical model of a reciprocally connected frontoparietal circuit that revealed shared and distinct functions for the PFC and PPC across working memory and decision-making tasks. Our parsimonious model connects circuit-level properties to cognitive functions and suggests novel design principles beyond those of local circuits for cognitive processing in multiregional brain networks. Copyright © 2017 the authors 0270-6474/17/3712167-20$15.00/0.
A Low Complexity System Based on Multiple Weighted Decision Trees for Indoor Localization
Sánchez-Rodríguez, David; Hernández-Morera, Pablo; Quinteiro, José Ma.; Alonso-González, Itziar
2015-01-01
Indoor position estimation has become an attractive research topic due to growing interest in location-aware services. Nevertheless, satisfying solutions have not been found with the considerations of both accuracy and system complexity. From the perspective of lightweight mobile devices, they are extremely important characteristics, because both the processor power and energy availability are limited. Hence, an indoor localization system with high computational complexity can cause complete battery drain within a few hours. In our research, we use a data mining technique named boosting to develop a localization system based on multiple weighted decision trees to predict the device location, since it has high accuracy and low computational complexity. The localization system is built using a dataset from sensor fusion, which combines the strength of radio signals from different wireless local area network access points and device orientation information from a digital compass built-in mobile device, so that extra sensors are unnecessary. Experimental results indicate that the proposed system leads to substantial improvements on computational complexity over the widely-used traditional fingerprinting methods, and it has a better accuracy than they have. PMID:26110413
Cota-Ruiz, Juan; Rosiles, Jose-Gerardo; Sifuentes, Ernesto; Rivas-Perea, Pablo
2012-01-01
This research presents a distributed and formula-based bilateration algorithm that can be used to provide initial set of locations. In this scheme each node uses distance estimates to anchors to solve a set of circle-circle intersection (CCI) problems, solved through a purely geometric formulation. The resulting CCIs are processed to pick those that cluster together and then take the average to produce an initial node location. The algorithm is compared in terms of accuracy and computational complexity with a Least-Squares localization algorithm, based on the Levenberg-Marquardt methodology. Results in accuracy vs. computational performance show that the bilateration algorithm is competitive compared with well known optimized localization algorithms.
NASA Astrophysics Data System (ADS)
Müller, M. S.; Urban, S.; Jutzi, B.
2017-08-01
The number of unmanned aerial vehicles (UAVs) is increasing since low-cost airborne systems are available for a wide range of users. The outdoor navigation of such vehicles is mostly based on global navigation satellite system (GNSS) methods to gain the vehicles trajectory. The drawback of satellite-based navigation are failures caused by occlusions and multi-path interferences. Beside this, local image-based solutions like Simultaneous Localization and Mapping (SLAM) and Visual Odometry (VO) can e.g. be used to support the GNSS solution by closing trajectory gaps but are computationally expensive. However, if the trajectory estimation is interrupted or not available a re-localization is mandatory. In this paper we will provide a novel method for a GNSS-free and fast image-based pose regression in a known area by utilizing a small convolutional neural network (CNN). With on-board processing in mind, we employ a lightweight CNN called SqueezeNet and use transfer learning to adapt the network to pose regression. Our experiments show promising results for GNSS-free and fast localization.
NIF ICCS network design and loading analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tietbohl, G; Bryant, R
The National Ignition Facility (NIF) is housed within a large facility about the size of two football fields. The Integrated Computer Control System (ICCS) is distributed throughout this facility and requires the integration of about 40,000 control points and over 500 video sources. This integration is provided by approximately 700 control computers distributed throughout the NIF facility and a network that provides the communication infrastructure. A main control room houses a set of seven computer consoles providing operator access and control of the various distributed front-end processors (FEPs). There are also remote workstations distributed within the facility that allow providemore » operator console functions while personnel are testing and troubleshooting throughout the facility. The operator workstations communicate with the FEPs which implement the localized control and monitoring functions. There are different types of FEPs for the various subsystems being controlled. This report describes the design of the NIF ICCS network and how it meets the traffic loads that will are expected and the requirements of the Sub-System Design Requirements (SSDR's). This document supersedes the earlier reports entitled Analysis of the National Ignition Facility Network, dated November 6, 1996 and The National Ignition Facility Digital Video and Control Network, dated July 9, 1996. For an overview of the ICCS, refer to the document NIF Integrated Computer Controls System Description (NIF-3738).« less
NASA Astrophysics Data System (ADS)
Wolf, Matthias; Woodard, Anna; Li, Wenzhao; Hurtado Anampa, Kenyi; Tovar, Benjamin; Brenner, Paul; Lannon, Kevin; Hildreth, Mike; Thain, Douglas
2017-10-01
The University of Notre Dame (ND) CMS group operates a modest-sized Tier-3 site suitable for local, final-stage analysis of CMS data. However, through the ND Center for Research Computing (CRC), Notre Dame researchers have opportunistic access to roughly 25k CPU cores of computing and a 100 Gb/s WAN network link. To understand the limits of what might be possible in this scenario, we undertook to use these resources for a wide range of CMS computing tasks from user analysis through large-scale Monte Carlo production (including both detector simulation and data reconstruction.) We will discuss the challenges inherent in effectively utilizing CRC resources for these tasks and the solutions deployed to overcome them.
Soft computing methods for geoidal height transformation
NASA Astrophysics Data System (ADS)
Akyilmaz, O.; Özlüdemir, M. T.; Ayan, T.; Çelik, R. N.
2009-07-01
Soft computing techniques, such as fuzzy logic and artificial neural network (ANN) approaches, have enabled researchers to create precise models for use in many scientific and engineering applications. Applications that can be employed in geodetic studies include the estimation of earth rotation parameters and the determination of mean sea level changes. Another important field of geodesy in which these computing techniques can be applied is geoidal height transformation. We report here our use of a conventional polynomial model, the Adaptive Network-based Fuzzy (or in some publications, Adaptive Neuro-Fuzzy) Inference System (ANFIS), an ANN and a modified ANN approach to approximate geoid heights. These approximation models have been tested on a number of test points. The results obtained through the transformation processes from ellipsoidal heights into local levelling heights have also been compared.
NASA Astrophysics Data System (ADS)
Dai, Wenhui; Fan, Ling
Globalization is an inevitable developing trend of multimedia network teaching. In our contemporary society, the world has connected by internet; it is incredible that people can not use the boundless information through campus network, multimedia classroom or single multimedia computer with out connecting the WAN. The new internet based teaching method breaking the constrains of the limited resources, distance and size of the LAN, bringing multimedia network teaching method to the world. "Open University", "Virtual Schools", "Global Classroom" and a number of new teaching systems merged rapidly.
A Small World of Neuronal Synchrony
Yu, Shan; Huang, Debin; Singer, Wolf
2008-01-01
A small-world network has been suggested to be an efficient solution for achieving both modular and global processing—a property highly desirable for brain computations. Here, we investigated functional networks of cortical neurons using correlation analysis to identify functional connectivity. To reconstruct the interaction network, we applied the Ising model based on the principle of maximum entropy. This allowed us to assess the interactions by measuring pairwise correlations and to assess the strength of coupling from the degree of synchrony. Visual responses were recorded in visual cortex of anesthetized cats, simultaneously from up to 24 neurons. First, pairwise correlations captured most of the patterns in the population's activity and, therefore, provided a reliable basis for the reconstruction of the interaction networks. Second, and most importantly, the resulting networks had small-world properties; the average path lengths were as short as in simulated random networks, but the clustering coefficients were larger. Neurons differed considerably with respect to the number and strength of interactions, suggesting the existence of “hubs” in the network. Notably, there was no evidence for scale-free properties. These results suggest that cortical networks are optimized for the coexistence of local and global computations: feature detection and feature integration or binding. PMID:18400792
NASA Astrophysics Data System (ADS)
Clayton, R. W.; Kohler, M. D.; Massari, A.; Heaton, T. H.; Guy, R.; Chandy, M.; Bunn, J.; Strand, L.
2014-12-01
The CSN is now in its 3rdyear of operation and has expanded to 400 stations in the Los Angeles region. The goal of the network is to produce a map of strong shaking immediately following a major earthquake as a proxy for damage and a guide for first responders. We have also instrumented a number of buildings with the goal of determining the state of health of these structures before and after they have been shaken. In one 15-story structure, our sensors distributed two per floor, and show body waves propagating in the structure after a moderate local earthquake (M4.4 in Encino, CA). Sensors in a 52-story structure, which we plan to instrument with two sensors per floor as well, show the modes of the building (see Figure) down to the fundamental mode at 5 sec due to a M5.1 earthquake in La Habra, CA. The CSN utilizes a number of technologies that will likely be important in building robust low-cost networks. These include: Distributed computing - the sensors themselves are smart-sensors that perform the basic detection and size estimation in the onboard computers and send the results immediately (without packetization latency) to the central facility. Cloud computing - the central facility is housed in the cloud, which means it is more robust than a local site, and has expandable computing resources available so that it can operate with minimal resources during quiet times but still be able to exploit an very large computing facility during an earthquake. Low-cost/low-maintenance sensors - the MEM sensors are capable of staying onscale to +/- 2g, and can measure events in the Los Angeles Basin a low as magnitude 3.
NASA Astrophysics Data System (ADS)
Patanè, Domenico; Ferrari, Ferruccio; Giampiccolo, Elisabetta; Gresta, Stefano
Few automated data acquisition and processing systems operate on mainframes, some run on UNIX-based workstations and others on personal computers, equipped with either DOS/WINDOWS or UNIX-derived operating systems. Several large and complex software packages for automatic and interactive analysis of seismic data have been developed in recent years (mainly for UNIX-based systems). Some of these programs use a variety of artificial intelligence techniques. The first operational version of a new software package, named PC-Seism, for analyzing seismic data from a local network is presented in Patanè et al. (1999). This package, composed of three separate modules, provides an example of a new generation of visual object-oriented programs for interactive and automatic seismic data-processing running on a personal computer. In this work, we mainly discuss the automatic procedures implemented in the ASDP (Automatic Seismic Data-Processing) module and real time application to data acquired by a seismic network running in eastern Sicily. This software uses a multi-algorithm approach and a new procedure MSA (multi-station-analysis) for signal detection, phase grouping and event identification and location. It is designed for an efficient and accurate processing of local earthquake records provided by single-site and array stations. Results from ASDP processing of two different data sets recorded at Mt. Etna volcano by a regional network are analyzed to evaluate its performance. By comparing the ASDP pickings with those revised manually, the detection and subsequently the location capabilities of this software are assessed. The first data set is composed of 330 local earthquakes recorded in the Mt. Etna erea during 1997 by the telemetry analog seismic network. The second data set comprises about 970 automatic locations of more than 2600 local events recorded at Mt. Etna during the last eruption (July 2001) at the present network. For the former data set, a comparison of the automatic results with the manual picks indicates that the ASDP module can accurately pick 80% of the P-waves and 65% of S-waves. The on-line application on the latter data set shows that automatic locations are affected by larger errors, due to the preliminary setting of the configuration parameters in the program. However, both automatic ASDP and manual hypocenter locations are comparable within the estimated error bounds. New improvements of the PC-Seism software for on-line analysis are also discussed.
Quantum computation over the butterfly network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S.
2011-07-15
In order to investigate distributed quantum computation under restricted network resources, we introduce a quantum computation task over the butterfly network where both quantum and classical communications are limited. We consider deterministically performing a two-qubit global unitary operation on two unknown inputs given at different nodes, with outputs at two distinct nodes. By using a particular resource setting introduced by M. Hayashi [Phys. Rev. A 76, 040301(R) (2007)], which is capable of performing a swap operation by adding two maximally entangled qubits (ebits) between the two input nodes, we show that unitary operations can be performed without adding any entanglementmore » resource, if and only if the unitary operations are locally unitary equivalent to controlled unitary operations. Our protocol is optimal in the sense that the unitary operations cannot be implemented if we relax the specifications of any of the channels. We also construct protocols for performing controlled traceless unitary operations with a 1-ebit resource and for performing global Clifford operations with a 2-ebit resource.« less
NASA Technical Reports Server (NTRS)
Plumer, Edward S.
1991-01-01
A technique is developed for vehicle navigation and control in the presence of obstacles. A potential function was devised that peaks at the surface of obstacles and has its minimum at the proper vehicle destination. This function is computed using a systolic array and is guaranteed not to have local minima. A feedfoward neural network is then used to control the steering of the vehicle using local potential field information. In this case, the vehicle is a trailer truck backing up. Previous work has demonstrated the capability of a neural network to control steering of such a trailer truck backing to a loading platform, but without obstacles. Now, the neural network was able to learn to navigate a trailer truck around obstacles while backing toward its destination. The network is trained in an obstacle free space to follow the negative gradient of the field, after which the network is able to control and navigate the truck to its target destination in a space of obstacles which may be stationary or movable.
Guo, Hao; Qin, Mengna; Chen, Junjie; Xu, Yong; Xiang, Jie
2017-01-01
High-order functional connectivity networks are rich in time information that can reflect dynamic changes in functional connectivity between brain regions. Accordingly, such networks are widely used to classify brain diseases. However, traditional methods for processing high-order functional connectivity networks generally include the clustering method, which reduces data dimensionality. As a result, such networks cannot be effectively interpreted in the context of neurology. Additionally, due to the large scale of high-order functional connectivity networks, it can be computationally very expensive to use complex network or graph theory to calculate certain topological properties. Here, we propose a novel method of generating a high-order minimum spanning tree functional connectivity network. This method increases the neurological significance of the high-order functional connectivity network, reduces network computing consumption, and produces a network scale that is conducive to subsequent network analysis. To ensure the quality of the topological information in the network structure, we used frequent subgraph mining technology to capture the discriminative subnetworks as features and combined this with quantifiable local network features. Then we applied a multikernel learning technique to the corresponding selected features to obtain the final classification results. We evaluated our proposed method using a data set containing 38 patients with major depressive disorder and 28 healthy controls. The experimental results showed a classification accuracy of up to 97.54%.
Qin, Mengna; Chen, Junjie; Xu, Yong; Xiang, Jie
2017-01-01
High-order functional connectivity networks are rich in time information that can reflect dynamic changes in functional connectivity between brain regions. Accordingly, such networks are widely used to classify brain diseases. However, traditional methods for processing high-order functional connectivity networks generally include the clustering method, which reduces data dimensionality. As a result, such networks cannot be effectively interpreted in the context of neurology. Additionally, due to the large scale of high-order functional connectivity networks, it can be computationally very expensive to use complex network or graph theory to calculate certain topological properties. Here, we propose a novel method of generating a high-order minimum spanning tree functional connectivity network. This method increases the neurological significance of the high-order functional connectivity network, reduces network computing consumption, and produces a network scale that is conducive to subsequent network analysis. To ensure the quality of the topological information in the network structure, we used frequent subgraph mining technology to capture the discriminative subnetworks as features and combined this with quantifiable local network features. Then we applied a multikernel learning technique to the corresponding selected features to obtain the final classification results. We evaluated our proposed method using a data set containing 38 patients with major depressive disorder and 28 healthy controls. The experimental results showed a classification accuracy of up to 97.54%. PMID:29387141
Performance Analysis of Classification Methods for Indoor Localization in Vlc Networks
NASA Astrophysics Data System (ADS)
Sánchez-Rodríguez, D.; Alonso-González, I.; Sánchez-Medina, J.; Ley-Bosch, C.; Díaz-Vilariño, L.
2017-09-01
Indoor localization has gained considerable attention over the past decade because of the emergence of numerous location-aware services. Research works have been proposed on solving this problem by using wireless networks. Nevertheless, there is still much room for improvement in the quality of the proposed classification models. In the last years, the emergence of Visible Light Communication (VLC) brings a brand new approach to high quality indoor positioning. Among its advantages, this new technology is immune to electromagnetic interference and has the advantage of having a smaller variance of received signal power compared to RF based technologies. In this paper, a performance analysis of seventeen machine leaning classifiers for indoor localization in VLC networks is carried out. The analysis is accomplished in terms of accuracy, average distance error, computational cost, training size, precision and recall measurements. Results show that most of classifiers harvest an accuracy above 90 %. The best tested classifier yielded a 99.0 % accuracy, with an average error distance of 0.3 centimetres.
Unique Applications for Artificial Neural Networks. Phase 1
1991-08-08
significance. For the VRP, a problem that has received considerable attention in the literature, the new NGO-VRP methodology generates better solutions...represent the stop assignments of each route. The effect of the genetic recombinations is to make simple local exchanges to the relative positions of the...technique for representing a computer-based associative memory [Arbib, 1987]. In our routing system, the basic job of the neural network system is to accept
NASA Astrophysics Data System (ADS)
Gao, J. L.
2002-04-01
In this article, we present a system-level characterization of the energy consumption for sensor network application scenarios. We compute a power efficiency metric -- average watt-per-meter -- for each radio transmission and extend this local metric to find the global energy consumption. This analysis shows how overall energy consumption varies with transceiver characteristics, node density, data traffic distribution, and base-station location.
Rural District's Partnerships Bear Fruit in Three Years.
ERIC Educational Resources Information Center
Jensen, Dennis
1996-01-01
A partnership between Wayne State College, Wayne (Nebraska) community schools, and the local chamber of commerce produced fiber-optic telecommunications, Internet access, technology integration, automated libraries, computer networking, and a technology curriculum. The article describes project design, implementation, and growth, as well as…
Our Plan for a Wireless Loan Service.
ERIC Educational Resources Information Center
Allmang, Nancy
2003-01-01
Discusses the planning for wireless technology at the research library of the National Institute of Standards and Technology (NIST). Highlights include computer equipment, including laptops and PDAs; local area networks; equipment loan service; writing a business plan; infrastructure; training programs; and future considerations, including…
Acoustic Sensor Network for Relative Positioning of Nodes
De Marziani, Carlos; Ureña, Jesus; Hernandez, Álvaro; Mazo, Manuel; García, Juan Jesús; Jimenez, Ana; Rubio, María del Carmen Pérez; Álvarez, Fernando; Villadangos, José Manuel
2009-01-01
In this work, an acoustic sensor network for a relative localization system is analyzed by reporting the accuracy achieved in the position estimation. The proposed system has been designed for those applications where objects are not restricted to a particular environment and thus one cannot depend on any external infrastructure to compute their positions. The objects are capable of computing spatial relations among themselves using only acoustic emissions as a ranging mechanism. The object positions are computed by a multidimensional scaling (MDS) technique and, afterwards, a least-square algorithm, based on the Levenberg-Marquardt algorithm (LMA), is applied to refine results. Regarding the position estimation, all the parameters involved in the computation of the temporary relations with the proposed ranging mechanism have been considered. The obtained results show that a fine-grained localization can be achieved considering a Gaussian distribution error in the proposed ranging mechanism. Furthermore, since acoustic sensors require a line-of-sight to properly work, the system has been tested by modeling the lost of this line-of-sight as a non-Gaussian error. A suitable position estimation has been achieved even if it is considered a bias of up to 25 of the line-of-sight measurements among a set of nodes. PMID:22291520
Cross stratum resources protection in fog-computing-based radio over fiber networks for 5G services
NASA Astrophysics Data System (ADS)
Guo, Shaoyong; Shao, Sujie; Wang, Yao; Yang, Hui
2017-09-01
In order to meet the requirement of internet of things (IoT) and 5G, the cloud radio access network is a paradigm which converges all base stations computational resources into a cloud baseband unit (BBU) pool, while the distributed radio frequency signals are collected by remote radio head (RRH). A precondition for centralized processing in the BBU pool is an interconnection fronthaul network with high capacity and low delay. However, it has become more complex and frequent in the interaction between RRH and BBU and resource scheduling among BBUs in cloud. Cloud radio over fiber network has been proposed in our previous work already. In order to overcome the complexity and latency, in this paper, we first present a novel cross stratum resources protection (CSRP) architecture in fog-computing-based radio over fiber networks (F-RoFN) for 5G services. Additionally, a cross stratum protection (CSP) scheme considering the network survivability is introduced in the proposed architecture. The CSRP with CSP scheme can effectively pull the remote processing resource locally to implement the cooperative radio resource management, enhance the responsiveness and resilience to the dynamic end-to-end 5G service demands, and globally optimize optical network, wireless and fog resources. The feasibility and efficiency of the proposed architecture with CSP scheme are verified on our software defined networking testbed in terms of service latency, transmission success rate, resource occupation rate and blocking probability.
Blom, Philip Stephen; Marcillo, Omar Eduardo
2016-12-05
A method is developed to apply acoustic tomography methods to a localized network of infrasound arrays with intention of monitoring the atmosphere state in the region around the network using non-local sources without requiring knowledge of the precise source location or non-local atmosphere state. Closely spaced arrays provide a means to estimate phase velocities of signals that can provide limiting bounds on certain characteristics of the atmosphere. Larger spacing between such clusters provide a means to estimate celerity from propagation times along multiple unique stratospherically or thermospherically ducted propagation paths and compute more precise estimates of the atmosphere state. Inmore » order to avoid the commonly encountered complex, multimodal distributions for parametric atmosphere descriptions and to maximize the computational efficiency of the method, an optimal parametrization framework is constructed. This framework identifies the ideal combination of parameters for tomography studies in specific regions of the atmosphere and statistical model selection analysis shows that high quality corrections to the middle atmosphere winds can be obtained using as few as three parameters. Lastly, comparison of the resulting estimates for synthetic data sets shows qualitative agreement between the middle atmosphere winds and those estimated from infrasonic traveltime observations.« less
NASA Astrophysics Data System (ADS)
Li, Peng; Olmi, Claudio; Song, Gangbing
2010-04-01
Piezoceramic based transducers are widely researched and used for structural health monitoring (SHM) systems due to the piezoceramic material's inherent advantage of dual sensing and actuation. Wireless sensor network (WSN) technology benefits from advances made in piezoceramic based structural health monitoring systems, allowing easy and flexible installation, low system cost, and increased robustness over wired system. However, piezoceramic wireless SHM systems still faces some drawbacks, one of these is that the piezoceramic based SHM systems require relatively high computational capabilities to calculate damage information, however, battery powered WSN sensor nodes have strict power consumption limitation and hence limited computational power. On the other hand, commonly used centralized processing networks require wireless sensors to transmit all data back to the network coordinator for analysis. This signal processing procedure can be problematic for piezoceramic based SHM applications as it is neither energy efficient nor robust. In this paper, we aim to solve these problems with a distributed wireless sensor network for piezoceramic base structural health monitoring systems. Three important issues: power system, waking up from sleep impact detection, and local data processing, are addressed to reach optimized energy efficiency. Instead of sweep sine excitation that was used in the early research, several sine frequencies were used in sequence to excite the concrete structure. The wireless sensors record the sine excitations and compute the time domain energy for each sine frequency locally to detect the energy change. By comparing the data of the damaged concrete frame with the healthy data, we are able to find out the damage information of the concrete frame. A relative powerful wireless microcontroller was used to carry out the sampling and distributed data processing in real-time. The distributed wireless network dramatically reduced the data transmission between wireless sensor and the wireless coordinator, which in turn reduced the power consumption of the overall system.
The Brain as an Efficient and Robust Adaptive Learner.
Denève, Sophie; Alemi, Alireza; Bourdoukan, Ralph
2017-06-07
Understanding how the brain learns to compute functions reliably, efficiently, and robustly with noisy spiking activity is a fundamental challenge in neuroscience. Most sensory and motor tasks can be described as dynamical systems and could presumably be learned by adjusting connection weights in a recurrent biological neural network. However, this is greatly complicated by the credit assignment problem for learning in recurrent networks, e.g., the contribution of each connection to the global output error cannot be determined based only on locally accessible quantities to the synapse. Combining tools from adaptive control theory and efficient coding theories, we propose that neural circuits can indeed learn complex dynamic tasks with local synaptic plasticity rules as long as they associate two experimentally established neural mechanisms. First, they should receive top-down feedbacks driving both their activity and their synaptic plasticity. Second, inhibitory interneurons should maintain a tight balance between excitation and inhibition in the circuit. The resulting networks could learn arbitrary dynamical systems and produce irregular spike trains as variable as those observed experimentally. Yet, this variability in single neurons may hide an extremely efficient and robust computation at the population level. Copyright © 2017 Elsevier Inc. All rights reserved.
The medical science DMZ: a network design pattern for data-intensive medical science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peisert, Sean; Dart, Eli; Barnett, William
We describe a detailed solution for maintaining high-capacity, data-intensive network flows (eg, 10, 40, 100 Gbps+) in a scientific, medical context while still adhering to security and privacy laws and regulations.High-end networking, packet-filter firewalls, network intrusion-detection systems.We describe a "Medical Science DMZ" concept as an option for secure, high-volume transport of large, sensitive datasets between research institutions over national research networks, and give 3 detailed descriptions of implemented Medical Science DMZs.The exponentially increasing amounts of "omics" data, high-quality imaging, and other rapidly growing clinical datasets have resulted in the rise of biomedical research "Big Data." The storage, analysis, and networkmore » resources required to process these data and integrate them into patient diagnoses and treatments have grown to scales that strain the capabilities of academic health centers. Some data are not generated locally and cannot be sustained locally, and shared data repositories such as those provided by the National Library of Medicine, the National Cancer Institute, and international partners such as the European Bioinformatics Institute are rapidly growing. The ability to store and compute using these data must therefore be addressed by a combination of local, national, and industry resources that exchange large datasets. Maintaining data-intensive flows that comply with the Health Insurance Portability and Accountability Act (HIPAA) and other regulations presents a new challenge for biomedical research. We describe a strategy that marries performance and security by borrowing from and redefining the concept of a Science DMZ, a framework that is used in physical sciences and engineering research to manage high-capacity data flows.By implementing a Medical Science DMZ architecture, biomedical researchers can leverage the scale provided by high-performance computer and cloud storage facilities and national high-speed research networks while preserving privacy and meeting regulatory requirements.« less
Peisert, Sean; Barnett, William; Dart, Eli; Cuff, James; Grossman, Robert L; Balas, Edward; Berman, Ari; Shankar, Anurag; Tierney, Brian
2016-11-01
We describe use cases and an institutional reference architecture for maintaining high-capacity, data-intensive network flows (e.g., 10, 40, 100 Gbps+) in a scientific, medical context while still adhering to security and privacy laws and regulations. High-end networking, packet filter firewalls, network intrusion detection systems. We describe a "Medical Science DMZ" concept as an option for secure, high-volume transport of large, sensitive data sets between research institutions over national research networks. The exponentially increasing amounts of "omics" data, the rapid increase of high-quality imaging, and other rapidly growing clinical data sets have resulted in the rise of biomedical research "big data." The storage, analysis, and network resources required to process these data and integrate them into patient diagnoses and treatments have grown to scales that strain the capabilities of academic health centers. Some data are not generated locally and cannot be sustained locally, and shared data repositories such as those provided by the National Library of Medicine, the National Cancer Institute, and international partners such as the European Bioinformatics Institute are rapidly growing. The ability to store and compute using these data must therefore be addressed by a combination of local, national, and industry resources that exchange large data sets. Maintaining data-intensive flows that comply with HIPAA and other regulations presents a new challenge for biomedical research. Recognizing this, we describe a strategy that marries performance and security by borrowing from and redefining the concept of a "Science DMZ"-a framework that is used in physical sciences and engineering research to manage high-capacity data flows. By implementing a Medical Science DMZ architecture, biomedical researchers can leverage the scale provided by high-performance computer and cloud storage facilities and national high-speed research networks while preserving privacy and meeting regulatory requirements. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Barnett, William; Dart, Eli; Cuff, James; Grossman, Robert L; Balas, Edward; Berman, Ari; Shankar, Anurag; Tierney, Brian
2016-01-01
Objective We describe use cases and an institutional reference architecture for maintaining high-capacity, data-intensive network flows (e.g., 10, 40, 100 Gbps+) in a scientific, medical context while still adhering to security and privacy laws and regulations. Materials and Methods High-end networking, packet filter firewalls, network intrusion detection systems. Results We describe a “Medical Science DMZ” concept as an option for secure, high-volume transport of large, sensitive data sets between research institutions over national research networks. Discussion The exponentially increasing amounts of “omics” data, the rapid increase of high-quality imaging, and other rapidly growing clinical data sets have resulted in the rise of biomedical research “big data.” The storage, analysis, and network resources required to process these data and integrate them into patient diagnoses and treatments have grown to scales that strain the capabilities of academic health centers. Some data are not generated locally and cannot be sustained locally, and shared data repositories such as those provided by the National Library of Medicine, the National Cancer Institute, and international partners such as the European Bioinformatics Institute are rapidly growing. The ability to store and compute using these data must therefore be addressed by a combination of local, national, and industry resources that exchange large data sets. Maintaining data-intensive flows that comply with HIPAA and other regulations presents a new challenge for biomedical research. Recognizing this, we describe a strategy that marries performance and security by borrowing from and redefining the concept of a “Science DMZ”—a framework that is used in physical sciences and engineering research to manage high-capacity data flows. Conclusion By implementing a Medical Science DMZ architecture, biomedical researchers can leverage the scale provided by high-performance computer and cloud storage facilities and national high-speed research networks while preserving privacy and meeting regulatory requirements. PMID:27136944
Sabokrou, Mohammad; Fayyaz, Mohsen; Fathy, Mahmood; Klette, Reinhard
2017-02-17
This paper proposes a fast and reliable method for anomaly detection and localization in video data showing crowded scenes. Time-efficient anomaly localization is an ongoing challenge and subject of this paper. We propose a cubicpatch- based method, characterised by a cascade of classifiers, which makes use of an advanced feature-learning approach. Our cascade of classifiers has two main stages. First, a light but deep 3D auto-encoder is used for early identification of "many" normal cubic patches. This deep network operates on small cubic patches as being the first stage, before carefully resizing remaining candidates of interest, and evaluating those at the second stage using a more complex and deeper 3D convolutional neural network (CNN). We divide the deep autoencoder and the CNN into multiple sub-stages which operate as cascaded classifiers. Shallow layers of the cascaded deep networks (designed as Gaussian classifiers, acting as weak single-class classifiers) detect "simple" normal patches such as background patches, and more complex normal patches are detected at deeper layers. It is shown that the proposed novel technique (a cascade of two cascaded classifiers) performs comparable to current top-performing detection and localization methods on standard benchmarks, but outperforms those in general with respect to required computation time.
Epidemics and dimensionality in hierarchical networks
NASA Astrophysics Data System (ADS)
Zheng, Da-Fang; Hui, P. M.; Trimper, Steffen; Zheng, Bo
2005-07-01
Epidemiological processes are studied within a recently proposed hierarchical network model using the susceptible-infected-refractory dynamics of an epidemic. Within the network model, a population may be characterized by H independent hierarchies or dimensions, each of which consists of groupings of individuals into layers of subgroups. Detailed numerical simulations reveal that for H>1, global spreading results regardless of the degree of homophily of the individuals forming a social circle. For H=1, a transition from global to local spread occurs as the population becomes decomposed into increasingly homophilous groups. Multiple dimensions in classifying individuals (nodes) thus make a society (computer network) highly susceptible to large-scale outbreaks of infectious diseases (viruses).
Challenges in Securing the Interface Between the Cloud and Pervasive Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagesse, Brent J
2011-01-01
Cloud computing presents an opportunity for pervasive systems to leverage computational and storage resources to accomplish tasks that would not normally be possible on such resource-constrained devices. Cloud computing can enable hardware designers to build lighter systems that last longer and are more mobile. Despite the advantages cloud computing offers to the designers of pervasive systems, there are some limitations of leveraging cloud computing that must be addressed. We take the position that cloud-based pervasive system must be secured holistically and discuss ways this might be accomplished. In this paper, we discuss a pervasive system utilizing cloud computing resources andmore » issues that must be addressed in such a system. In this system, the user's mobile device cannot always have network access to leverage resources from the cloud, so it must make intelligent decisions about what data should be stored locally and what processes should be run locally. As a result of these decisions, the user becomes vulnerable to attacks while interfacing with the pervasive system.« less
Detailed description of the Mayo/IBM PACS
NASA Astrophysics Data System (ADS)
Gehring, Dale G.; Persons, Kenneth R.; Rothman, Melvyn L.; Salutz, James R.; Morin, Richard L.
1991-07-01
The Mayo Clinic and IBM/Rochester have jointly developed a picture archiving system (PACS) for use with Mayo's MRI and Neuro-CT imaging modalities. The system was developed to replace the imaging system's vendor-supplied magnetic tape archiving capability. The system consists of seven MR imagers and nine CT scanners, each interfaced to the PACS via IBM Personal System/2(tm) (PS/2) computers, which act as gateways from the imaging modality to the PACS network. The PAC system operates on the token-ring component of Mayo's city-wide local area network. Also on the PACS network are four optical storage subsystems used for image archival, three optical subsystems used for image retrieval, an IBM Application System/400(tm) (AS/400) computer used for database management and multiple PS/2-based image display systems and their image servers.
NASA Astrophysics Data System (ADS)
The present conference discusses topics in multiwavelength network technology and its applications, advanced digital radio systems in their propagation environment, mobile radio communications, switching programmability, advancements in computer communications, integrated-network management and security, HDTV and image processing in communications, basic exchange communications radio advancements in digital switching, intelligent network evolution, speech coding for telecommunications, and multiple access communications. Also discussed are network designs for quality assurance, recent progress in coherent optical systems, digital radio applications, advanced communications technologies for mobile users, communication software for switching systems, AI and expert systems in network management, intelligent multiplexing nodes, video and image coding, network protocols and performance, system methods in quality and reliability, the design and simulation of lightwave systems, local radio networks, mobile satellite communications systems, fiber networks restoration, packet video networks, human interfaces for future networks, and lightwave networking.
NASA Astrophysics Data System (ADS)
Khan, Kashif A.; Wang, Qi; Luo, Chunbo; Wang, Xinheng; Grecos, Christos
2014-05-01
Mobile cloud computing is receiving world-wide momentum for ubiquitous on-demand cloud services for mobile users provided by Amazon, Google etc. with low capital cost. However, Internet-centric clouds introduce wide area network (WAN) delays that are often intolerable for real-time applications such as video streaming. One promising approach to addressing this challenge is to deploy decentralized mini-cloud facility known as cloudlets to enable localized cloud services. When supported by local wireless connectivity, a wireless cloudlet is expected to offer low cost and high performance cloud services for the users. In this work, we implement a realistic framework that comprises both a popular Internet cloud (Amazon Cloud) and a real-world cloudlet (based on Ubuntu Enterprise Cloud (UEC)) for mobile cloud users in a wireless mesh network. We focus on real-time video streaming over the HTTP standard and implement a typical application. We further perform a comprehensive comparative analysis and empirical evaluation of the application's performance when it is delivered over the Internet cloud and the cloudlet respectively. The study quantifies the influence of the two different cloud networking architectures on supporting real-time video streaming. We also enable movement of the users in the wireless mesh network and investigate the effect of user's mobility on mobile cloud computing over the cloudlet and Amazon cloud respectively. Our experimental results demonstrate the advantages of the cloudlet paradigm over its Internet cloud counterpart in supporting the quality of service of real-time applications.
SIR model on a dynamical network and the endemic state of an infectious disease
NASA Astrophysics Data System (ADS)
Dottori, M.; Fabricius, G.
2015-09-01
In this work we performed a numerical study of an epidemic model that mimics the endemic state of whooping cough in the pre-vaccine era. We considered a stochastic SIR model on dynamical networks that involve local and global contacts among individuals and analysed the influence of the network properties on the characterization of the quasi-stationary state. We computed probability density functions (PDF) for infected fraction of individuals and found that they are well fitted by gamma functions, excepted the tails of the distributions that are q-exponentials. We also computed the fluctuation power spectra of infective time series for different networks. We found that network effects can be partially absorbed by rescaling the rate of infective contacts of the model. An explicit relation between the effective transmission rate of the disease and the correlation of susceptible individuals with their infective nearest neighbours was obtained. This relation quantifies the known screening of infective individuals observed in these networks. We finally discuss the goodness and limitations of the SIR model with homogeneous mixing and parameters taken from epidemiological data to describe the dynamic behaviour observed in the networks studied.
NASA Astrophysics Data System (ADS)
Kim, S. K.; Lee, J.; Zhang, C.; Ames, S.; Williams, D. N.
2017-12-01
Deep learning techniques have been successfully applied to solve many problems in climate and geoscience using massive-scaled observed and modeled data. For extreme climate event detections, several models based on deep neural networks have been recently proposed and attend superior performance that overshadows all previous handcrafted expert based method. The issue arising, though, is that accurate localization of events requires high quality of climate data. In this work, we propose framework capable of detecting and localizing extreme climate events in very coarse climate data. Our framework is based on two models using deep neural networks, (1) Convolutional Neural Networks (CNNs) to detect and localize extreme climate events, and (2) Pixel recursive recursive super resolution model to reconstruct high resolution climate data from low resolution climate data. Based on our preliminary work, we have presented two CNNs in our framework for different purposes, detection and localization. Our results using CNNs for extreme climate events detection shows that simple neural nets can capture the pattern of extreme climate events with high accuracy from very coarse reanalysis data. However, localization accuracy is relatively low due to the coarse resolution. To resolve this issue, the pixel recursive super resolution model reconstructs the resolution of input of localization CNNs. We present a best networks using pixel recursive super resolution model that synthesizes details of tropical cyclone in ground truth data while enhancing their resolution. Therefore, this approach not only dramat- ically reduces the human effort, but also suggests possibility to reduce computing cost required for downscaling process to increase resolution of data.
Immersive Technologies and Language Learning
ERIC Educational Resources Information Center
Blyth, Carl
2018-01-01
This article briefly traces the historical conceptualization of linguistic and cultural immersion through technological applications, from the early days of locally networked computers to the cutting-edge technologies known as virtual reality and augmented reality. Next, the article explores the challenges of immersive technologies for the field…
ERIC Educational Resources Information Center
Hazari, Sunil I.
1991-01-01
Local area networks (LANs) are systems of computers and peripherals connected together for the purposes of electronic mail and the convenience of sharing information and expensive resources. In planning the design of such a system, the components to consider are hardware, software, transmission media, topology, operating systems, and protocols.…
Wireless Acoustic Measurement System
NASA Technical Reports Server (NTRS)
Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.
2007-01-01
A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server can control the operations of the field stations for calibration and for recording of measurement data. A test engineer positions and activates the WAMS. The WAMS automatically establishes the wireless network. Next, the engineer performs pretest calibrations. Then the engineer executes the test and measurement procedures. After the test, the raw measurement files are copied and transferred, through the wireless network, to a hard disk in the control server. Subsequently, the data are processed into 1.3-octave spectrograms.
Wireless Acoustic Measurement System
NASA Technical Reports Server (NTRS)
Anderson, Paul D.; Dorland, Wade D.
2005-01-01
A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in "Predicting Rocket or Jet Noise in Real Time" (SSC-00215-1), which appears elsewhere in this issue of NASA Tech Briefs. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro-ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server can control the operations of the field stations for calibration and for recording of measurement data. A test engineer positions and activates the WAMS. The WAMS automatically establishes the wireless network. Next, the engineer performs pretest calibrations. Then the engineer executes the test and measurement procedures. After the test, the raw measurement files are copied and transferred, through the wireless network, to a hard disk in the control server. Subsequently, the data are processed into 1/3-octave spectrograms.
Distributed process manager for an engineering network computer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gait, J.
1987-08-01
MP is a manager for systems of cooperating processes in a local area network of engineering workstations. MP supports transparent continuation by maintaining multiple copies of each process on different workstations. Computational bandwidth is optimized by executing processes in parallel on different workstations. Responsiveness is high because workstations compete among themselves to respond to requests. The technique is to select a master from among a set of replicates of a process by a competitive election between the copies. Migration of the master when a fault occurs or when response slows down is effected by inducing the election of a newmore » master. Competitive response stabilizes system behavior under load, so MP exhibits realtime behaviors.« less
NASA Astrophysics Data System (ADS)
Shtrahman, E.; Maruyama, D.; Olariu, E.; Fink, C. G.; Zochowski, M.
2017-02-01
Astrocytes form interconnected networks in the brain and communicate via calcium signaling. We investigate how modes of coupling between astrocytes influence the spatio-temporal patterns of calcium signaling within astrocyte networks and specifically how these network interactions promote coordination within this group of cells. To investigate these complex phenomena, we study reduced cultured networks of astrocytes and neurons. We image the spatial temporal patterns of astrocyte calcium activity and quantify how perturbing the coupling between astrocytes influences astrocyte activity patterns. To gain insight into the pattern formation observed in these cultured networks, we compare the experimentally observed calcium activity patterns to the patterns produced by a reduced computational model, where we represent astrocytes as simple units that integrate input through two mechanisms: gap junction coupling (network transport) and chemical release (extracellular diffusion). We examine the activity patterns in the simulated astrocyte network and their dependence upon these two coupling mechanisms. We find that gap junctions and extracellular chemical release interact in astrocyte networks to modulate the spatiotemporal patterns of their calcium dynamics. We show agreement between the computational and experimental findings, which suggests that the complex global patterns can be understood as a result of simple local coupling mechanisms.
Spatial correlation of auroral zone geomagnetic variations
NASA Astrophysics Data System (ADS)
Jackel, B. J.; Davalos, A.
2016-12-01
Magnetic field perturbations in the auroral zone are produced by a combination of distant ionospheric and local ground induced currents. Spatial and temporal structure of these currents is scientifically interesting and can also have a significant influence on critical infrastructure.Ground-based magnetometer networks are an essential tool for studying these phenomena, with the existing complement of instruments in Canada providing extended local time coverage. In this study we examine the spatial correlation between magnetic field observations over a range of scale lengths. Principal component and canonical correlation analysis are used to quantify relationships between multiple sites. Results could be used to optimize network configurations, validate computational models, and improve methods for empirical interpolation.
Machine learning prediction for classification of outcomes in local minimisation
NASA Astrophysics Data System (ADS)
Das, Ritankar; Wales, David J.
2017-01-01
Machine learning schemes are employed to predict which local minimum will result from local energy minimisation of random starting configurations for a triatomic cluster. The input data consists of structural information at one or more of the configurations in optimisation sequences that converge to one of four distinct local minima. The ability to make reliable predictions, in terms of the energy or other properties of interest, could save significant computational resources in sampling procedures that involve systematic geometry optimisation. Results are compared for two energy minimisation schemes, and for neural network and quadratic functions of the inputs.
Yoshihiro, Akiko; Nakata, Norio; Harada, Junta; Tada, Shimpei
2002-01-01
Although local area networks (LANs) are commonplace in hospital-based radiology departments today, wireless LANs are still relatively unknown and untried. A linked wireless reporting system was developed to improve work throughput and efficiency. It allows radiologists, physicians, and technologists to review current radiology reports and images and instantly compare them with reports and images from previous examinations. This reporting system also facilitates creation of teaching files quickly, easily, and accurately. It consists of a Digital Imaging and Communications in Medicine 3.0-based picture archiving and communication system (PACS), a diagnostic report server, and portable laptop computers. The PACS interfaces with magnetic resonance imagers, computed tomographic scanners, and computed radiography equipment. The same kind of functionality is achievable with a wireless LAN as with a wired LAN, with comparable bandwidth but with less cabling infrastructure required. This wireless system is presently incorporated into the operations of the emergency and radiology departments, with future plans calling for applications in operating rooms, outpatient departments, all hospital wards, and intensive care units. No major problems have been encountered with the system, which is in constant use and appears to be quite successful. Copyright RSNA, 2002
Using IKAROS as a data transfer and management utility within the KM3NeT computing model
NASA Astrophysics Data System (ADS)
Filippidis, Christos; Cotronis, Yiannis; Markou, Christos
2016-04-01
KM3NeT is a future European deep-sea research infrastructure hosting a new generation neutrino detectors that - located at the bottom of the Mediterranean Sea - will open a new window on the universe and answer fundamental questions both in particle physics and astrophysics. IKAROS is a framework that enables creating scalable storage formations on-demand and helps addressing several limitations that the current file systems face when dealing with very large scale infrastructures. It enables creating ad-hoc nearby storage formations and can use a huge number of I/O nodes in order to increase the available bandwidth (I/O and network). IKAROS unifies remote and local access in the overall data flow, by permitting direct access to each I/O node. In this way we can handle the overall data flow at the network layer, limiting the interaction with the operating system. This approach allows virtually connecting, at the users level, the several different computing facilities used (Grids, Clouds, HPCs, Data Centers, Local computing Clusters and personal storage devices), on-demand, based on the needs, by using well known standards and protocols, like HTTP.
NASA Astrophysics Data System (ADS)
Bender, Walter; Chesnais, Pascal
1988-05-01
Over the past several years, the Electronic Publishing Group at the MIT Media Laboratory has been conducting a family of media experiments which explore a new kind of broadcast: the distribution of data and computer programs rather than pre-packaged material. This broadcast is not directed to a human recipient, but to a local computational agent acting on his behalf. In response to instructions from both the broadcaster and the reader, this agent selects from the incoming data and presents it in a manner suggestive of traditional media. The embodiment of these media experiments is a news retrieval system where the news editor has been replaced by the personal computer. A variety of both local and remote databases which operate passively as well as interac-tively are accessed by "reporters." These "reporters" are actually software interfaces, which are programmed to gather news. Ideally, they are "broadcatching" that is to say, watching all broadcast television channels, listening to all radio transmissions, and reading all newspapers, magazines, and journals. 1 A possible consequence of the synthesis of media through active processing is the merger of newspapers and television (figure 1). The result is either a newspaper with illustrations which move 2 or, conversely, print as television output. The latter is the theme of Network Plus.
Lahr, John C.
1999-01-01
This report provides Fortran source code and program manuals for HYPOELLIPSE, a computer program for determining hypocenters and magnitudes of near regional earthquakes and the ellipsoids that enclose the 68-percent confidence volumes of the computed hypocenters. HYPOELLIPSE was developed to meet the needs of U.S. Geological Survey (USGS) scientists studying crustal and sub-crustal earthquakes recorded by a sparse regional seismograph network. The program was extended to locate hypocenters of volcanic earthquakes recorded by seismographs distributed on and around the volcanic edifice, at elevations above and below the hypocenter. HYPOELLIPSE was used to locate events recorded by the USGS southern Alaska seismograph network from October 1971 to the early 1990s. Both UNIX and PC/DOS versions of the source code of the program are provided along with sample runs.
Job Scheduling in a Heterogeneous Grid Environment
NASA Technical Reports Server (NTRS)
Shan, Hong-Zhang; Smith, Warren; Oliker, Leonid; Biswas, Rupak
2004-01-01
Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically distributed resources. However, a number of major technical hurdles must be overcome before this potential can be realized. One problem that is critical to effective utilization of computational grids is the efficient scheduling of jobs. This work addresses this problem by describing and evaluating a grid scheduling architecture and three job migration algorithms. The architecture is scalable and does not assume control of local site resources. The job migration policies use the availability and performance of computer systems, the network bandwidth available between systems, and the volume of input and output data associated with each job. An extensive performance comparison is presented using real workloads from leading computational centers. The results, based on several key metrics, demonstrate that the performance of our distributed migration algorithms is significantly greater than that of a local scheduling framework and comparable to a non-scalable global scheduling approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Siqi; Joseph, Antony; Hammonds, Ann S.
Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set of Drosophila early embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identifiedmore » 21 principal patterns (PP). Providing a compact yet biologically interpretable representation of Drosophila expression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior-posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. In conclusion, the performance of PP with the Drosophila data suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data.« less
Wu, Siqi; Joseph, Antony; Hammonds, Ann S.; ...
2016-04-06
Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set of Drosophila early embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identifiedmore » 21 principal patterns (PP). Providing a compact yet biologically interpretable representation of Drosophila expression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior-posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. In conclusion, the performance of PP with the Drosophila data suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data.« less
2010-06-01
GMKPF represents a better and more flexible alternative to the Gaussian Maximum Likelihood (GML), and Exponential Maximum Likelihood ( EML ...accurate results relative to GML and EML when the network delays are modeled in terms of a single non-Gaussian/non-exponential distribution or as a...to the Gaussian Maximum Likelihood (GML), and Exponential Maximum Likelihood ( EML ) estimators for clock offset estimation in non-Gaussian or non
Geng, Shujie; Liu, Xiangyu; Biswal, Bharat B; Niu, Haijing
2017-01-01
As an emerging brain imaging technique, functional near infrared spectroscopy (fNIRS) has attracted widespread attention for advancing resting-state functional connectivity (FC) and graph theoretical analyses of brain networks. However, it remains largely unknown how the duration of the fNIRS signal scanning is related to stable and reproducible functional brain network features. To answer this question, we collected resting-state fNIRS signals (10-min duration, two runs) from 18 participants and then truncated the hemodynamic time series into 30-s time bins that ranged from 1 to 10 min. Measures of nodal efficiency, nodal betweenness, network local efficiency, global efficiency, and clustering coefficient were computed for each subject at each fNIRS signal acquisition duration. Analyses of the stability and between-run reproducibility were performed to identify optimal time length for each measure. We found that the FC, nodal efficiency and nodal betweenness stabilized and were reproducible after 1 min of fNIRS signal acquisition, whereas network clustering coefficient, local and global efficiencies stabilized after 1 min and were reproducible after 5 min of fNIRS signal acquisition for only local and global efficiencies. These quantitative results provide direct evidence regarding the choice of the resting-state fNIRS scanning duration for functional brain connectivity and topological metric stability of brain network connectivity.
Wood texture classification by fuzzy neural networks
NASA Astrophysics Data System (ADS)
Gonzaga, Adilson; de Franca, Celso A.; Frere, Annie F.
1999-03-01
The majority of scientific papers focusing on wood classification for pencil manufacturing take into account defects and visual appearance. Traditional methodologies are base don texture analysis by co-occurrence matrix, by image modeling, or by tonal measures over the plate surface. In this work, we propose to classify plates of wood without biological defects like insect holes, nodes, and cracks, by analyzing their texture. By this methodology we divide the plate image in several rectangular windows or local areas and reduce the number of gray levels. From each local area, we compute the histogram of difference sand extract texture features, given them as input to a Local Neuro-Fuzzy Network. Those features are from the histogram of differences instead of the image pixels due to their better performance and illumination independence. Among several features like media, contrast, second moment, entropy, and IDN, the last three ones have showed better results for network training. Each LNN output is taken as input to a Partial Neuro-Fuzzy Network (PNFN) classifying a pencil region on the plate. At last, the outputs from the PNFN are taken as input to a Global Fuzzy Logic doing the plate classification. Each pencil classification within the plate is done taking into account each quality index.
EEGNET: An Open Source Tool for Analyzing and Visualizing M/EEG Connectome.
Hassan, Mahmoud; Shamas, Mohamad; Khalil, Mohamad; El Falou, Wassim; Wendling, Fabrice
2015-01-01
The brain is a large-scale complex network often referred to as the "connectome". Exploring the dynamic behavior of the connectome is a challenging issue as both excellent time and space resolution is required. In this context Magneto/Electroencephalography (M/EEG) are effective neuroimaging techniques allowing for analysis of the dynamics of functional brain networks at scalp level and/or at reconstructed sources. However, a tool that can cover all the processing steps of identifying brain networks from M/EEG data is still missing. In this paper, we report a novel software package, called EEGNET, running under MATLAB (Math works, inc), and allowing for analysis and visualization of functional brain networks from M/EEG recordings. EEGNET is developed to analyze networks either at the level of scalp electrodes or at the level of reconstructed cortical sources. It includes i) Basic steps in preprocessing M/EEG signals, ii) the solution of the inverse problem to localize / reconstruct the cortical sources, iii) the computation of functional connectivity among signals collected at surface electrodes or/and time courses of reconstructed sources and iv) the computation of the network measures based on graph theory analysis. EEGNET is the unique tool that combines the M/EEG functional connectivity analysis and the computation of network measures derived from the graph theory. The first version of EEGNET is easy to use, flexible and user friendly. EEGNET is an open source tool and can be freely downloaded from this webpage: https://sites.google.com/site/eegnetworks/.
EEGNET: An Open Source Tool for Analyzing and Visualizing M/EEG Connectome
Hassan, Mahmoud; Shamas, Mohamad; Khalil, Mohamad; El Falou, Wassim; Wendling, Fabrice
2015-01-01
The brain is a large-scale complex network often referred to as the “connectome”. Exploring the dynamic behavior of the connectome is a challenging issue as both excellent time and space resolution is required. In this context Magneto/Electroencephalography (M/EEG) are effective neuroimaging techniques allowing for analysis of the dynamics of functional brain networks at scalp level and/or at reconstructed sources. However, a tool that can cover all the processing steps of identifying brain networks from M/EEG data is still missing. In this paper, we report a novel software package, called EEGNET, running under MATLAB (Math works, inc), and allowing for analysis and visualization of functional brain networks from M/EEG recordings. EEGNET is developed to analyze networks either at the level of scalp electrodes or at the level of reconstructed cortical sources. It includes i) Basic steps in preprocessing M/EEG signals, ii) the solution of the inverse problem to localize / reconstruct the cortical sources, iii) the computation of functional connectivity among signals collected at surface electrodes or/and time courses of reconstructed sources and iv) the computation of the network measures based on graph theory analysis. EEGNET is the unique tool that combines the M/EEG functional connectivity analysis and the computation of network measures derived from the graph theory. The first version of EEGNET is easy to use, flexible and user friendly. EEGNET is an open source tool and can be freely downloaded from this webpage: https://sites.google.com/site/eegnetworks/. PMID:26379232
Local excitation-inhibition ratio for synfire chain propagation in feed-forward neuronal networks
NASA Astrophysics Data System (ADS)
Guo, Xinmeng; Yu, Haitao; Wang, Jiang; Liu, Jing; Cao, Yibin; Deng, Bin
2017-09-01
A leading hypothesis holds that spiking activity propagates along neuronal sub-populations which are connected in a feed-forward manner, and the propagation efficiency would be affected by the dynamics of sub-populations. In this paper, how the interaction between local excitation and inhibition effects on synfire chain propagation in feed-forward network (FFN) is investigated. The simulation results show that there is an appropriate excitation-inhibition (EI) ratio maximizing the performance of synfire chain propagation. The optimal EI ratio can significantly enhance the selectivity of FFN to synchronous signals, which thereby increases the stability to background noise. Moreover, the effect of network topology on synfire chain propagation is also investigated. It is found that synfire chain propagation can be maximized by an optimal interlayer linking probability. We also find that external noise is detrimental to synchrony propagation by inducing spiking jitter. The results presented in this paper may provide insights into the effects of network dynamics on neuronal computations.
Comparison of Event Detection Methods for Centralized Sensor Networks
NASA Technical Reports Server (NTRS)
Sauvageon, Julien; Agogiono, Alice M.; Farhang, Ali; Tumer, Irem Y.
2006-01-01
The development of an Integrated Vehicle Health Management (IVHM) for space vehicles has become a great concern. Smart Sensor Networks is one of the promising technologies that are catching a lot of attention. In this paper, we propose to a qualitative comparison of several local event (hot spot) detection algorithms in centralized redundant sensor networks. The algorithms are compared regarding their ability to locate and evaluate the event under noise and sensor failures. The purpose of this study is to check if the ratio performance/computational power of the Mote Fuzzy Validation and Fusion algorithm is relevant compare to simpler methods.
Griffiths, K R; Grieve, S M; Kohn, M R; Clarke, S; Williams, L M; Korgaonkar, M S
2016-01-01
Although multiple studies have reported structural deficits in multiple brain regions in attention-deficit hyperactivity disorder (ADHD), we do not yet know if these deficits reflect a more systematic disruption to the anatomical organization of large-scale brain networks. Here we used a graph theoretical approach to quantify anatomical organization in children and adolescents with ADHD. We generated anatomical networks based on covariance of gray matter volumes from 92 regions across the brain in children and adolescents with ADHD (n=34) and age- and sex-matched healthy controls (n=28). Using graph theory, we computed metrics that characterize both the global organization of anatomical networks (interconnectivity (clustering), integration (path length) and balance of global integration and localized segregation (small-worldness)) and their local nodal measures (participation (degree) and interaction (betweenness) within a network). Relative to Controls, ADHD participants exhibited altered global organization reflected in more clustering or network segregation. Locally, nodal degree and betweenness were increased in the subcortical amygdalae in ADHD, but reduced in cortical nodes in the anterior cingulate, posterior cingulate, mid temporal pole and rolandic operculum. In ADHD, anatomical networks were disrupted and reflected an emphasis on subcortical local connections centered around the amygdala, at the expense of cortical organization. Brains of children and adolescents with ADHD may be anatomically configured to respond impulsively to the automatic significance of stimulus input without having the neural organization to regulate and inhibit these responses. These findings provide a novel addition to our current understanding of the ADHD connectome. PMID:27824356
Client/Server Architecture Promises Radical Changes.
ERIC Educational Resources Information Center
Freeman, Grey; York, Jerry
1991-01-01
This article discusses the emergence of the client/server paradigm for the delivery of computer applications, its emergence in response to the proliferation of microcomputers and local area networks, the applicability of the model in academic institutions, and its implications for college campus information technology organizations. (Author/DB)
Have You Got What It Takes...And Are You Using All You Could?
ERIC Educational Resources Information Center
Dyer, Hilary
1994-01-01
Suggests ways of using personal computers in special libraries, including online searching; CD-ROM networks; reference work; current awareness services; press cuttings services; selective dissemination of information; local databases; object linking and embedding; cataloging; acquisitions; circulation; serials control; interlibrary loan; space…
Lexical Problems in Large Distributed Information Systems.
ERIC Educational Resources Information Center
Berkovich, Simon Ya; Shneiderman, Ben
1980-01-01
Suggests a unified concept of a lexical subsystem as part of an information system to deal with lexical problems in local and network environments. The linguistic and control functions of the lexical subsystems in solving problems for large computer systems are described, and references are included. (Author/BK)
He, Chenlong; Feng, Zuren; Ren, Zhigang
2018-02-03
For Wireless Sensor Networks (WSNs), the Voronoi partition of a region is a challenging problem owing to the limited sensing ability of each sensor and the distributed organization of the network. In this paper, an algorithm is proposed for each sensor having a limited sensing range to compute its limited Voronoi cell autonomously, so that the limited Voronoi partition of the entire WSN is generated in a distributed manner. Inspired by Graham's Scan (GS) algorithm used to compute the convex hull of a point set, the limited Voronoi cell of each sensor is obtained by sequentially scanning two consecutive bisectors between the sensor and its neighbors. The proposed algorithm called the Boundary Scan (BS) algorithm has a lower computational complexity than the existing Range-Constrained Voronoi Cell (RCVC) algorithm and reaches the lower bound of the computational complexity of the algorithms used to solve the problem of this kind. Moreover, it also improves the time efficiency of a key step in the Adjust-Sensing-Radius (ASR) algorithm used to compute the exact Voronoi cell. Extensive numerical simulations are performed to demonstrate the correctness and effectiveness of the BS algorithm. The distributed realization of the BS combined with a localization algorithm in WSNs is used to justify the WSN nature of the proposed algorithm.
Distributed Algorithm for Voronoi Partition of Wireless Sensor Networks with a Limited Sensing Range
Feng, Zuren; Ren, Zhigang
2018-01-01
For Wireless Sensor Networks (WSNs), the Voronoi partition of a region is a challenging problem owing to the limited sensing ability of each sensor and the distributed organization of the network. In this paper, an algorithm is proposed for each sensor having a limited sensing range to compute its limited Voronoi cell autonomously, so that the limited Voronoi partition of the entire WSN is generated in a distributed manner. Inspired by Graham’s Scan (GS) algorithm used to compute the convex hull of a point set, the limited Voronoi cell of each sensor is obtained by sequentially scanning two consecutive bisectors between the sensor and its neighbors. The proposed algorithm called the Boundary Scan (BS) algorithm has a lower computational complexity than the existing Range-Constrained Voronoi Cell (RCVC) algorithm and reaches the lower bound of the computational complexity of the algorithms used to solve the problem of this kind. Moreover, it also improves the time efficiency of a key step in the Adjust-Sensing-Radius (ASR) algorithm used to compute the exact Voronoi cell. Extensive numerical simulations are performed to demonstrate the correctness and effectiveness of the BS algorithm. The distributed realization of the BS combined with a localization algorithm in WSNs is used to justify the WSN nature of the proposed algorithm. PMID:29401649
Design Of Computer Based Test Using The Unified Modeling Language
NASA Astrophysics Data System (ADS)
Tedyyana, Agus; Danuri; Lidyawati
2017-12-01
The Admission selection of Politeknik Negeri Bengkalis through interest and talent search (PMDK), Joint Selection of admission test for state Polytechnics (SB-UMPN) and Independent (UM-Polbeng) were conducted by using paper-based Test (PBT). Paper Based Test model has some weaknesses. They are wasting too much paper, the leaking of the questios to the public, and data manipulation of the test result. This reasearch was Aimed to create a Computer-based Test (CBT) models by using Unified Modeling Language (UML) the which consists of Use Case diagrams, Activity diagram and sequence diagrams. During the designing process of the application, it is important to pay attention on the process of giving the password for the test questions before they were shown through encryption and description process. RSA cryptography algorithm was used in this process. Then, the questions shown in the questions banks were randomized by using the Fisher-Yates Shuffle method. The network architecture used in Computer Based test application was a client-server network models and Local Area Network (LAN). The result of the design was the Computer Based Test application for admission to the selection of Politeknik Negeri Bengkalis.
NASA Technical Reports Server (NTRS)
Aretskin-Hariton, Eliot D.; Zinnecker, Alicia Mae; Culley, Dennis E.
2014-01-01
Distributed Engine Control (DEC) is an enabling technology that has the potential to advance the state-of-the-art in gas turbine engine control. To analyze the capabilities that DEC offers, a Hardware-In-the-Loop (HIL) test bed is being developed at NASA Glenn Research Center. This test bed will support a systems-level analysis of control capabilities in closed-loop engine simulations. The structure of the HIL emulates a virtual test cell by implementing the operator functions, control system, and engine on three separate computers. This implementation increases the flexibility and extensibility of the HIL. Here, a method is discussed for implementing these interfaces by connecting the three platforms over a dedicated Local Area Network (LAN). This approach is verified using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k), which is typically implemented on one computer. There are marginal differences between the results from simulation of the typical and the three-computer implementation. Additional analysis of the LAN network, including characterization of network load, packet drop, and latency, is presented. The three-computer setup supports the incorporation of complex control models and proprietary engine models into the HIL framework.
Molecular clock on a neutral network.
Raval, Alpan
2007-09-28
The number of fixed mutations accumulated in an evolving population often displays a variance that is significantly larger than the mean (the overdispersed molecular clock). By examining a generic evolutionary process on a neutral network of high-fitness genotypes, we establish a formalism for computing all cumulants of the full probability distribution of accumulated mutations in terms of graph properties of the neutral network, and use the formalism to prove overdispersion of the molecular clock. We further show that significant overdispersion arises naturally in evolution when the neutral network is highly sparse, exhibits large global fluctuations in neutrality, and small local fluctuations in neutrality. The results are also relevant for elucidating aspects of neutral network topology from empirical measurements of the substitution process.
Molecular Clock on a Neutral Network
NASA Astrophysics Data System (ADS)
Raval, Alpan
2007-09-01
The number of fixed mutations accumulated in an evolving population often displays a variance that is significantly larger than the mean (the overdispersed molecular clock). By examining a generic evolutionary process on a neutral network of high-fitness genotypes, we establish a formalism for computing all cumulants of the full probability distribution of accumulated mutations in terms of graph properties of the neutral network, and use the formalism to prove overdispersion of the molecular clock. We further show that significant overdispersion arises naturally in evolution when the neutral network is highly sparse, exhibits large global fluctuations in neutrality, and small local fluctuations in neutrality. The results are also relevant for elucidating aspects of neutral network topology from empirical measurements of the substitution process.
Temporal coding of reward-guided choice in the posterior parietal cortex
Hawellek, David J.; Wong, Yan T.; Pesaran, Bijan
2016-01-01
Making a decision involves computations across distributed cortical and subcortical networks. How such distributed processing is performed remains unclear. We test how the encoding of choice in a key decision-making node, the posterior parietal cortex (PPC), depends on the temporal structure of the surrounding population activity. We recorded spiking and local field potential (LFP) activity in the PPC while two rhesus macaques performed a decision-making task. We quantified the mutual information that neurons carried about an upcoming choice and its dependence on LFP activity. The spiking of PPC neurons was correlated with LFP phases at three distinct time scales in the theta, beta, and gamma frequency bands. Importantly, activity at these time scales encoded upcoming decisions differently. Choice information contained in neural firing varied with the phase of beta and gamma activity. For gamma activity, maximum choice information occurred at the same phase as the maximum spike count. However, for beta activity, choice information and spike count were greatest at different phases. In contrast, theta activity did not modulate the encoding properties of PPC units directly but was correlated with beta and gamma activity through cross-frequency coupling. We propose that the relative timing of local spiking and choice information reveals temporal reference frames for computations in either local or large-scale decision networks. Differences between the timing of task information and activity patterns may be a general signature of distributed processing across large-scale networks. PMID:27821752
Pseudo-orthogonalization of memory patterns for associative memory.
Oku, Makito; Makino, Takaki; Aihara, Kazuyuki
2013-11-01
A new method for improving the storage capacity of associative memory models on a neural network is proposed. The storage capacity of the network increases in proportion to the network size in the case of random patterns, but, in general, the capacity suffers from correlation among memory patterns. Numerous solutions to this problem have been proposed so far, but their high computational cost limits their scalability. In this paper, we propose a novel and simple solution that is locally computable without any iteration. Our method involves XNOR masking of the original memory patterns with random patterns, and the masked patterns and masks are concatenated. The resulting decorrelated patterns allow higher storage capacity at the cost of the pattern length. Furthermore, the increase in the pattern length can be reduced through blockwise masking, which results in a small amount of capacity loss. Movie replay and image recognition are presented as examples to demonstrate the scalability of the proposed method.
Nickerson, Naomi H; Li, Ying; Benjamin, Simon C
2013-01-01
A scalable quantum computer could be built by networking together many simple processor cells, thus avoiding the need to create a single complex structure. The difficulty is that realistic quantum links are very error prone. A solution is for cells to repeatedly communicate with each other and so purify any imperfections; however prior studies suggest that the cells themselves must then have prohibitively low internal error rates. Here we describe a method by which even error-prone cells can perform purification: groups of cells generate shared resource states, which then enable stabilization of topologically encoded data. Given a realistically noisy network (≥10% error rate) we find that our protocol can succeed provided that intra-cell error rates for initialisation, state manipulation and measurement are below 0.82%. This level of fidelity is already achievable in several laboratory systems.
Active matter logic for autonomous microfluidics
NASA Astrophysics Data System (ADS)
Woodhouse, Francis G.; Dunkel, Jörn
2017-04-01
Chemically or optically powered active matter plays an increasingly important role in materials design, but its computational potential has yet to be explored systematically. The competition between energy consumption and dissipation imposes stringent physical constraints on the information transport in active flow networks, facilitating global optimization strategies that are not well understood. Here, we combine insights from recent microbial experiments with concepts from lattice-field theory and non-equilibrium statistical mechanics to introduce a generic theoretical framework for active matter logic. Highlighting conceptual differences with classical and quantum computation, we demonstrate how the inherent non-locality of incompressible active flow networks can be utilized to construct universal logical operations, Fredkin gates and memory storage in set-reset latches through the synchronized self-organization of many individual network components. Our work lays the conceptual foundation for developing autonomous microfluidic transport devices driven by bacterial fluids, active liquid crystals or chemically engineered motile colloids.
Lin, Chuan-Kai; Wang, Sheng-De
2004-11-01
A new autopilot design for bank-to-turn (BTT) missiles is presented. In the design of autopilot, a ridge Gaussian neural network with local learning capability and fewer tuning parameters than Gaussian neural networks is proposed to model the controlled nonlinear systems. We prove that the proposed ridge Gaussian neural network, which can be a universal approximator, equals the expansions of rotated and scaled Gaussian functions. Although ridge Gaussian neural networks can approximate the nonlinear and complex systems accurately, the small approximation errors may affect the tracking performance significantly. Therefore, by employing the Hinfinity control theory, it is easy to attenuate the effects of the approximation errors of the ridge Gaussian neural networks to a prescribed level. Computer simulation results confirm the effectiveness of the proposed ridge Gaussian neural networks-based autopilot with Hinfinity stabilization.
Building and measuring a high performance network architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, William T.C.; Toole, Timothy; Fisher, Chuck
2001-04-20
Once a year, the SC conferences present a unique opportunity to create and build one of the most complex and highest performance networks in the world. At SC2000, large-scale and complex local and wide area networking connections were demonstrated, including large-scale distributed applications running on different architectures. This project was designed to use the unique opportunity presented at SC2000 to create a testbed network environment and then use that network to demonstrate and evaluate high performance computational and communication applications. This testbed was designed to incorporate many interoperable systems and services and was designed for measurement from the very beginning.more » The end results were key insights into how to use novel, high performance networking technologies and to accumulate measurements that will give insights into the networks of the future.« less
Fiber optic configurations for local area networks
NASA Technical Reports Server (NTRS)
Nassehi, M. M.; Tobagi, F. A.; Marhic, M. E.
1985-01-01
A number of fiber optic configurations for a new class of demand assignment multiple-access local area networks requiring a physical ordering among stations are proposed. In such networks, the data transmission and linear-ordering functions may be distinguished and be provided by separate data and control subnetworks. The configurations proposed for the data subnetwork are based on the linear, star, and tree topologies. To provide the linear-ordering function, the control subnetwork must always have a linear unidirectional bus structure. Due to the reciprocity and excess loss of optical couplers, the number of stations that can be accommodated on a linear fiber optic bus is severely limited. Two techniques are proposed to overcome this limitation. For each of the data and control subnetwork configurations, the maximum number of stations as a function of the power margin, for both reciprocal and nonreciprocal couplers, is computed.
Leccese, Fabio; Cagnetti, Marco; Trinca, Daniele
2014-01-01
A smart city application has been realized and tested. It is a fully remote controlled isle of lamp posts based on new technologies. It has been designed and organized in different hierarchical layers, which perform local activities to physically control the lamp posts and transmit information with another for remote control. Locally, each lamp post uses an electronic card for management and a ZigBee tlc network transmits data to a central control unit, which manages the whole isle. The central unit is realized with a Raspberry-Pi control card due to its good computing performance at very low price. Finally, a WiMAX connection was tested and used to remotely control the smart grid, thus overcoming the distance limitations of commercial Wi-Fi networks. The isle has been realized and tested for some months in the field. PMID:25529206
Photonic multipartite entanglement conversion using nonlocal operations
NASA Astrophysics Data System (ADS)
Tashima, T.; Tame, M. S.; Özdemir, Ş. K.; Nori, F.; Koashi, M.; Weinfurter, H.
2016-11-01
We propose a simple setup for the conversion of multipartite entangled states in a quantum network with restricted access. The scheme uses nonlocal operations to enable the preparation of states that are inequivalent under local operations and classical communication, but most importantly does not require full access to the states. It is based on a flexible linear optical conversion gate that uses photons, which are ideally suited for distributed quantum computation and quantum communication in extended networks. In order to show the basic working principles of the gate, we focus on converting a four-qubit entangled cluster state to other locally inequivalent four-qubit states, such as the Greenberger-Horne-Zeilinger and symmetric Dicke states. We also show how the gate can be incorporated into extended graph state networks and can be used to generate variable entanglement and quantum correlations without entanglement but nonvanishing quantum discord.
Leccese, Fabio; Cagnetti, Marco; Trinca, Daniele
2014-12-18
A smart city application has been realized and tested. It is a fully remote controlled isle of lamp posts based on new technologies. It has been designed and organized in different hierarchical layers, which perform local activities to physically control the lamp posts and transmit information with another for remote control. Locally, each lamp post uses an electronic card for management and a ZigBee tlc network transmits data to a central control unit, which manages the whole isle. The central unit is realized with a Raspberry-Pi control card due to its good computing performance at very low price. Finally, a WiMAX connection was tested and used to remotely control the smart grid, thus overcoming the distance limitations of commercial Wi-Fi networks. The isle has been realized and tested for some months in the field.
Value-Range Analysis of C Programs
NASA Astrophysics Data System (ADS)
Simon, Axel
In 1988, Robert T. Morris exploited a so-called buffer-overflow bug in finger (a dæmon whose job it is to return information on local users) to mount a denial-of-service attack on hundreds of VAX and Sun-3 computers [159]. He created what is nowadays called a worm; that is, a crafted stream of bytes that, when sent to a computer over the network, utilises a buffer-overflow bug in the software of that computer to execute code encoded in the byte stream. In the case of a worm, this code will send the very same byte stream to other computers on the network, thereby creating an avalanche of network traffic that ultimately renders the network and all computers involved in replicating the worm inaccessible. Besides duplicating themselves, worms can alter data on the host that they are running on. The most famous example in recent years was the MSBlaster32 worm, which altered the configuration database on many Microsoft Windows machines, thereby forcing the computers to reboot incessantly. Although this worm was rather benign, it caused huge damage to businesses who were unable to use their IT infrastructure for hours or even days after the appearance of the worm. A more malicious worm is certainly conceivable [187] due to the fact that worms are executed as part of a dæmon (also known as "service" on Windows machines) and thereby run at a privileged level, allowing access to any data stored on the remote computer. While the deletion of data presents a looming threat to valuable information, even more serious uses are espionage and theft, in particular because worms do not have to affect the running system and hence may be impossible to detect.
Mobile Transactional Modelling: From Concepts to Incremental Knowledge
NASA Astrophysics Data System (ADS)
Launders, Ivan; Polovina, Simon; Hill, Richard
In 1988, Robert T. Morris exploited a so-called buffer-overflow bug in finger (a dæmon whose job it is to return information on local users) to mount a denial-of-service attack on hundreds of VAX and Sun-3 computers [159]. He created what is nowadays called a worm; that is, a crafted stream of bytes that, when sent to a computer over the network, utilises a buffer-overflow bug in the software of that computer to execute code encoded in the byte stream. In the case of a worm, this code will send the very same byte stream to other computers on the network, thereby creating an avalanche of network traffic that ultimately renders the network and all computers involved in replicating the worm inaccessible. Besides duplicating themselves, worms can alter data on the host that they are running on. The most famous example in recent years was the MSBlaster32 worm, which altered the configuration database on many Microsoft Windows machines, thereby forcing the computers to reboot incessantly. Although this worm was rather benign, it caused huge damage to businesses who were unable to use their IT infrastructure for hours or even days after the appearance of the worm. A more malicious worm is certainly conceivable [187] due to the fact that worms are executed as part of a dæmon (also known as "service" on Windows machines) and thereby run at a privileged level, allowing access to any data stored on the remote computer. While the deletion of data presents a looming threat to valuable information, even more serious uses are espionage and theft, in particular because worms do not have to affect the running system and hence may be impossible to detect.
Dexmedetomidine Disrupts the Local and Global Efficiencies of Large-scale Brain Networks.
Hashmi, Javeria A; Loggia, Marco L; Khan, Sheraz; Gao, Lei; Kim, Jieun; Napadow, Vitaly; Brown, Emery N; Akeju, Oluwaseun
2017-03-01
A clear understanding of the neural basis of consciousness is fundamental to research in clinical and basic neuroscience disciplines and anesthesia. Recently, decreased efficiency of information integration was suggested as a core network feature of propofol-induced unconsciousness. However, it is unclear whether this finding can be generalized to dexmedetomidine, which has a different molecular target. Dexmedetomidine was administered as a 1-μg/kg bolus over 10 min, followed by a 0.7-μg · kg · h infusion to healthy human volunteers (age range, 18 to 36 yr; n = 15). Resting-state functional magnetic resonance imaging data were acquired during baseline, dexmedetomidine-induced altered arousal, and recovery states. Zero-lag correlations between resting-state functional magnetic resonance imaging signals extracted from 131 brain parcellations were used to construct weighted brain networks. Network efficiency, degree distribution, and node strength were computed using graph analysis. Parcellated brain regions were also mapped to known resting-state networks to study functional connectivity changes. Dexmedetomidine significantly reduced the local and global efficiencies of graph theory-derived networks. Dexmedetomidine also reduced the average brain connectivity strength without impairing the degree distribution. Functional connectivity within and between all resting-state networks was modulated by dexmedetomidine. Dexmedetomidine is associated with a significant drop in the capacity for efficient information transmission at both the local and global levels. These changes result from reductions in the strength of connectivity and also manifest as reduced within and between resting-state network connectivity. These findings strengthen the hypothesis that conscious processing relies on an efficient system of information transfer in the brain.
Research on the exponential growth effect on network topology: Theoretical and empirical analysis
NASA Astrophysics Data System (ADS)
Li, Shouwei; You, Zongjun
Integrated circuit (IC) industry network has been built in Yangtze River Delta with the constant expansion of IC industry. The IC industry network grows exponentially with the establishment of new companies and the establishment of contacts with old firms. Based on preferential attachment and exponential growth, the paper presents the analytical results in which the vertices degree of scale-free network follows power-law distribution p(k)˜k‑γ (γ=2β+1) and parameter β satisfies 0.5≤β≤1. At the same time, we find that the preferential attachment takes place in a dynamic local world and the size of the dynamic local world is in direct proportion to the size of whole networks. The paper also gives the analytical results of no-preferential attachment and exponential growth on random networks. The computer simulated results of the model illustrate these analytical results. Through some investigations on the enterprises, this paper at first presents the distribution of IC industry, composition of industrial chain and service chain firstly. Then, the correlative network and its analysis of industrial chain and service chain are presented. The correlative analysis of the whole IC industry is also presented at the same time. Based on the theory of complex network, the analysis and comparison of industrial chain network and service chain network in Yangtze River Delta are provided in the paper.
KIDLINK: A Challenging and Safe Place for Children across the World.
ERIC Educational Resources Information Center
Burleigh, Mike; Weeg, Patti
1993-01-01
Describes the activities of KIDLINK, an international electronic conferencing system that was developed to establish communication between children 10 to 15 years old around the world using the Internet and other computer networks. A list of local KIDLINK contacts in 29 countries is included. (LRW)
Fiber Optics and Library Technology.
ERIC Educational Resources Information Center
Koenig, Michael
1984-01-01
This article examines fiber optic technology, explains some of the key terminology, and speculates about the way fiber optics will change our world. Applications of fiber optics to library systems in three major areas--linkage of a number of mainframe computers, local area networks, and main trunk communications--are highlighted. (EJS)
How Do Local School Districts Formulate Educational Technology Policy?
ERIC Educational Resources Information Center
Hunt, Jeffrey L.; Lockard, James
This study reports on the formulation of educational technology policy in three Illinois K-12 school districts (n=36). Major findings included: (1) educational policy formulation in the districts focused on collecting the objects of technology, such as computers, modems, networks, rather than viewing educational technology as a systematic process…
Automated Bilingual Circulation System Using PC Local Area Networks.
ERIC Educational Resources Information Center
Iskanderani, A. I.; Anwar, M. A.
1992-01-01
Describes a personal computer and LAN-based automated circulation system capable of handling both Arabic and Latin characters that was developed for use at King Abdullaziz University (Jeddah, Saudi Arabia). Outlines system requirements, system structure, hardware needs, and individual functional modules of the system. Numerous examples and flow…
2007-10-28
Shin (U Mich) John Stankovic (UVA) Phil Koopman (CMU) Wenliang Du (Syracuse U.) Virgil Gligor (UMD) Radha Poovendran ( UW ) Adrian Perrig (CMU...Department of Computer Sciences, University of Wisconsin, Madison , WI 53706, USA Email: suman@cs.wisc.edu 1 Introduction Wireless communication...NetworkinG Systems (WiNGS) Laboratory Wireless localization Madison municipal WiFi mesh network • • 9 square miles area • 200+ APs 2 Wireless AP radio
1983-12-01
Initializes the data tables shared by both the Local and Netowrk Operating Systems. 3. Invint: Written in Assembly Language. Initializes the Input/Output...connection with an appropriate type and grade of transport service and appropriate security authentication (Ref 6:38). Data Transfer within a session...V.; Kent, S. Security in oihr Level Protocolst Anorgaches. Alternatives and Recommendations, Draft Report ICST/HLNP-81-19, Wash ingt on,,D.C.: Dept
2015-09-01
Gateway 2 4. Voice Packet Flow: SIP , Session Description Protocol (SDP), and RTP 3 5. Voice Data Analysis 5 6. Call Analysis 6 7. Call Metrics 6...analysis processing is designed for a general VoIP system architecture based on Session Initiation Protocol ( SIP ) for negotiating call sessions and...employs Skinny Client Control Protocol for network communication between the phone and the local CallManager (e.g., for each dialed digit), SIP
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Science, Space and Technology.
The report of these two hearings on high definition information systems begins by noting that they are digital, and that they are likely to handle computing, telecommunications, home security, computer imaging, storage, fiber optics networks, multi-dimensional libraries, and many other local, national, and international systems. (It is noted that…
Response to defects in multipartite and bipartite entanglement of isotropic quantum spin networks
NASA Astrophysics Data System (ADS)
Roy, Sudipto Singha; Dhar, Himadri Shekhar; Rakshit, Debraj; SenDe, Aditi; Sen, Ujjwal
2018-05-01
Quantum networks are an integral component in performing efficient computation and communication tasks that are not accessible using classical systems. A key aspect in designing an effective and scalable quantum network is generating entanglement between its nodes, which is robust against defects in the network. We consider an isotropic quantum network of spin-1/2 particles with a finite fraction of defects, where the corresponding wave function of the network is rotationally invariant under the action of local unitaries. By using quantum information-theoretic concepts like strong subadditivity of von Neumann entropy and approximate quantum telecloning, we prove analytically that in the presence of defects, caused by loss of a finite fraction of spins, the network, composed of a fixed numbers of lattice sites, sustains genuine multisite entanglement and at the same time may exhibit finite moderate-range bipartite entanglement, in contrast to the network with no defects.
Analysis of complex network performance and heuristic node removal strategies
NASA Astrophysics Data System (ADS)
Jahanpour, Ehsan; Chen, Xin
2013-12-01
Removing important nodes from complex networks is a great challenge in fighting against criminal organizations and preventing disease outbreaks. Six network performance metrics, including four new metrics, are applied to quantify networks' diffusion speed, diffusion scale, homogeneity, and diameter. In order to efficiently identify nodes whose removal maximally destroys a network, i.e., minimizes network performance, ten structured heuristic node removal strategies are designed using different node centrality metrics including degree, betweenness, reciprocal closeness, complement-derived closeness, and eigenvector centrality. These strategies are applied to remove nodes from the September 11, 2001 hijackers' network, and their performance are compared to that of a random strategy, which removes randomly selected nodes, and the locally optimal solution (LOS), which removes nodes to minimize network performance at each step. The computational complexity of the 11 strategies and LOS is also analyzed. Results show that the node removal strategies using degree and betweenness centralities are more efficient than other strategies.
Ma, Junjie; Meng, Fansheng; Zhou, Yuexi; Wang, Yeyao; Shi, Ping
2018-02-16
Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.
Zhou, Yuexi; Wang, Yeyao; Shi, Ping
2018-01-01
Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths. PMID:29462929
ICPP: Approach for Understanding Complexity of Plasma
NASA Astrophysics Data System (ADS)
Sato, Tetsuya
2000-10-01
In this talk I wish to present an IT system that could promote Science of Complexity. In order to deal with a seemingly `complex' phenomenon, which means `beyond analytical manipulation', computer simulation is a viable powerful tool. However, complexity implies a concept beyond the horizon of reductionism. Therefore, rather than simply solving a complex phenomenon for a given boundary condition, one must establish an intelligent way of attacking mutual evolution of a system and its environment. NIFS-TCSC has been developing a prototype system that consists of supercomputers, virtual reality devices and high-speed network system. Let us explain this by picking up a global atmospheric circulation group, global oceanic circulation group and local weather prediction group. Local weather prediction group predicts the local change of the weather such as the creation of cloud and rain in the near future under the global conditions obtained by the global atmospheric and ocean groups. The global groups run simulations by modifying the local heat source/sink evaluated by the local weather prediction and then obtain the global conditions in the next time step. By repeating such a feedback performance one can predict the mutual evolution of the local system and its environment. Mutual information exchanges among multiple groups are carried out instantaneously by the networked common virtual reality space in which 3-D global and local images of the atmospheric and oceanic circulation and the cloud and rain maps are arbitrarily manipulated by any of the groups and commonly viewed. The present networking system has a great advantage that any simulation groups can freely and arbitrarily change their alignment, so that mutual evolution of any stratum system can become tractable by utilizing this network system.
Learning to play Go using recursive neural networks.
Wu, Lin; Baldi, Pierre
2008-11-01
Go is an ancient board game that poses unique opportunities and challenges for artificial intelligence. Currently, there are no computer Go programs that can play at the level of a good human player. However, the emergence of large repositories of games is opening the door for new machine learning approaches to address this challenge. Here we develop a machine learning approach to Go, and related board games, focusing primarily on the problem of learning a good evaluation function in a scalable way. Scalability is essential at multiple levels, from the library of local tactical patterns, to the integration of patterns across the board, to the size of the board itself. The system we propose is capable of automatically learning the propensity of local patterns from a library of games. Propensity and other local tactical information are fed into recursive neural networks, derived from a probabilistic Bayesian network architecture. The recursive neural networks in turn integrate local information across the board in all four cardinal directions and produce local outputs that represent local territory ownership probabilities. The aggregation of these probabilities provides an effective strategic evaluation function that is an estimate of the expected area at the end, or at various other stages, of the game. Local area targets for training can be derived from datasets of games played by human players. In this approach, while requiring a learning time proportional to N(4), skills learned on a board of size N(2) can easily be transferred to boards of other sizes. A system trained using only 9 x 9 amateur game data performs surprisingly well on a test set derived from 19 x 19 professional game data. Possible directions for further improvements are briefly discussed.
High level cognitive information processing in neural networks
NASA Technical Reports Server (NTRS)
Barnden, John A.; Fields, Christopher A.
1992-01-01
Two related research efforts were addressed: (1) high-level connectionist cognitive modeling; and (2) local neural circuit modeling. The goals of the first effort were to develop connectionist models of high-level cognitive processes such as problem solving or natural language understanding, and to understand the computational requirements of such models. The goals of the second effort were to develop biologically-realistic model of local neural circuits, and to understand the computational behavior of such models. In keeping with the nature of NASA's Innovative Research Program, all the work conducted under the grant was highly innovative. For instance, the following ideas, all summarized, are contributions to the study of connectionist/neural networks: (1) the temporal-winner-take-all, relative-position encoding, and pattern-similarity association techniques; (2) the importation of logical combinators into connection; (3) the use of analogy-based reasoning as a bridge across the gap between the traditional symbolic paradigm and the connectionist paradigm; and (4) the application of connectionism to the domain of belief representation/reasoning. The work on local neural circuit modeling also departs significantly from the work of related researchers. In particular, its concentration on low-level neural phenomena that could support high-level cognitive processing is unusual within the area of biological local circuit modeling, and also serves to expand the horizons of the artificial neural net field.
The Gain of Resource Delegation in Distributed Computing Environments
NASA Astrophysics Data System (ADS)
Fölling, Alexander; Grimme, Christian; Lepping, Joachim; Papaspyrou, Alexander
In this paper, we address job scheduling in Distributed Computing Infrastructures, that is a loosely coupled network of autonomous acting High Performance Computing systems. In contrast to the common approach of mutual workload exchange, we consider the more intuitive operator's viewpoint of load-dependent resource reconfiguration. In case of a site's over-utilization, the scheduling system is able to lease resources from other sites to keep up service quality for its local user community. Contrary, the granting of idle resources can increase utilization in times of low local workload and thus ensure higher efficiency. The evaluation considers real workload data and is done with respect to common service quality indicators. For two simple resource exchange policies and three basic setups we show the possible gain of this approach and analyze the dynamics in workload-adaptive reconfiguration behavior.
Screening the Molecular Framework Underlying Local Dendritic mRNA Translation
Namjoshi, Sanjeev V.; Raab-Graham, Kimberly F.
2017-01-01
In the last decade, bioinformatic analyses of high-throughput proteomics and transcriptomics data have enabled researchers to gain insight into the molecular networks that may underlie lasting changes in synaptic efficacy. Development and utilization of these techniques have advanced the field of learning and memory significantly. It is now possible to move from the study of activity-dependent changes of a single protein to modeling entire network changes that require local protein synthesis. This data revolution has necessitated the development of alternative computational and statistical techniques to analyze and understand the patterns contained within. Thus, the focus of this review is to provide a synopsis of the journey and evolution toward big data techniques to address still unanswered questions regarding how synapses are modified to strengthen neuronal circuits. We first review the seminal studies that demonstrated the pivotal role played by local mRNA translation as the mechanism underlying the enhancement of enduring synaptic activity. In the interest of those who are new to the field, we provide a brief overview of molecular biology and biochemical techniques utilized for sample preparation to identify locally translated proteins using RNA sequencing and proteomics, as well as the computational approaches used to analyze these data. While many mRNAs have been identified, few have been shown to be locally synthesized. To this end, we review techniques currently being utilized to visualize new protein synthesis, a task that has proven to be the most difficult aspect of the field. Finally, we provide examples of future applications to test the physiological relevance of locally synthesized proteins identified by big data approaches. PMID:28286470
NASA Astrophysics Data System (ADS)
Shy, L. Y.; Eichinger, B. E.
1989-05-01
Computer simulations of the formation of trifunctional and tetrafunctional polydimethyl-siloxane networks that are crosslinked by condensation of telechelic chains with multifunctional crosslinking agents have been carried out on systems containing up to 1.05×106 chains. Eigenvalue spectra of Kirchhoff matrices for these networks have been evaluated at two levels of approximation: (1) inclusion of all midchain modes, and (2) suppression of midchain modes. By use of the recursion method of Haydock and Nex, we have been able to effectively diagonalize matrices with 730 498 rows and columns without actually constructing matrices of this size. The small eigenvalues have been computed by use of the Lanczos algorithm. We demonstrate the following results: (1) The smallest eigenvalues (with chain modes suppressed) vary as μ-2/3 for sufficiently large μ, where μ is the number of junctions in the network; (2) the eigenvalue spectra of the Kirchhoff matrices are well described by McKay's theory for random regular graphs in the range of the larger eigenvalues, but there are significant departures in the region of small eigenvalues where computed spectra have many more small eigenvalues than random regular graphs; (3) the smallest eigenvalues vary as n-1.78 where n is the number of Rouse beads in the chains that comprise the network. Computations are done for both monodisperse and polydisperse chain length distributions. Large eigenvalues associated with localized motion of the junctions are found as predicted by theory. The relationship between the small eigenvalues and the equilibrium modulus of elasticity is discussed, as is the relationship between viscoelasticity and the band edge of the spectrum.
Hiding the Disk and Network Latency of Out-of-Core Visualization
NASA Technical Reports Server (NTRS)
Ellsworth, David
2001-01-01
This paper describes an algorithm that improves the performance of application-controlled demand paging for out-of-core visualization by hiding the latency of reading data from both local disks or disks on remote servers. The performance improvements come from better overlapping the computation with the page reading process, and by performing multiple page reads in parallel. The paper includes measurements that show that the new multithreaded paging algorithm decreases the time needed to compute visualizations by one third when using one processor and reading data from local disk. The time needed when using one processor and reading data from remote disk decreased by two thirds. Visualization runs using data from remote disk actually ran faster than ones using data from local disk because the remote runs were able to make use of the remote server's high performance disk array.
Event detection and localization for small mobile robots using reservoir computing.
Antonelo, E A; Schrauwen, B; Stroobandt, D
2008-08-01
Reservoir Computing (RC) techniques use a fixed (usually randomly created) recurrent neural network, or more generally any dynamic system, which operates at the edge of stability, where only a linear static readout output layer is trained by standard linear regression methods. In this work, RC is used for detecting complex events in autonomous robot navigation. This can be extended to robot localization tasks which are solely based on a few low-range, high-noise sensory data. The robot thus builds an implicit map of the environment (after learning) that is used for efficient localization by simply processing the input stream of distance sensors. These techniques are demonstrated in both a simple simulation environment and in the physically realistic Webots simulation of the commercially available e-puck robot, using several complex and even dynamic environments.
Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung
2017-01-01
Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images. PMID:28335510
Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung
2017-03-20
Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images.
NASA Astrophysics Data System (ADS)
Radziszewski, Kacper
2017-10-01
The following paper presents the results of the research in the field of the machine learning, investigating the scope of application of the artificial neural networks algorithms as a tool in architectural design. The computational experiment was held using the backward propagation of errors method of training the artificial neural network, which was trained based on the geometry of the details of the Roman Corinthian order capital. During the experiment, as an input training data set, five local geometry parameters combined has given the best results: Theta, Pi, Rho in spherical coordinate system based on the capital volume centroid, followed by Z value of the Cartesian coordinate system and a distance from vertical planes created based on the capital symmetry. Additionally during the experiment, artificial neural network hidden layers optimal count and structure was found, giving results of the error below 0.2% for the mentioned before input parameters. Once successfully trained artificial network, was able to mimic the details composition on any other geometry type given. Despite of calculating the transformed geometry locally and separately for each of the thousands of surface points, system could create visually attractive and diverse, complex patterns. Designed tool, based on the supervised learning method of machine learning, gives possibility of generating new architectural forms- free of the designer’s imagination bounds. Implementing the infinitely broad computational methods of machine learning, or Artificial Intelligence in general, not only could accelerate and simplify the design process, but give an opportunity to explore never seen before, unpredictable forms or everyday architectural practice solutions.
Increased entropy of signal transduction in the cancer metastasis phenotype.
Teschendorff, Andrew E; Severini, Simone
2010-07-30
The statistical study of biological networks has led to important novel biological insights, such as the presence of hubs and hierarchical modularity. There is also a growing interest in studying the statistical properties of networks in the context of cancer genomics. However, relatively little is known as to what network features differ between the cancer and normal cell physiologies, or between different cancer cell phenotypes. Based on the observation that frequent genomic alterations underlie a more aggressive cancer phenotype, we asked if such an effect could be detectable as an increase in the randomness of local gene expression patterns. Using a breast cancer gene expression data set and a model network of protein interactions we derive constrained weighted networks defined by a stochastic information flux matrix reflecting expression correlations between interacting proteins. Based on this stochastic matrix we propose and compute an entropy measure that quantifies the degree of randomness in the local pattern of information flux around single genes. By comparing the local entropies in the non-metastatic versus metastatic breast cancer networks, we here show that breast cancers that metastasize are characterised by a small yet significant increase in the degree of randomness of local expression patterns. We validate this result in three additional breast cancer expression data sets and demonstrate that local entropy better characterises the metastatic phenotype than other non-entropy based measures. We show that increases in entropy can be used to identify genes and signalling pathways implicated in breast cancer metastasis and provide examples of de-novo discoveries of gene modules with known roles in apoptosis, immune-mediated tumour suppression, cell-cycle and tumour invasion. Importantly, we also identify a novel gene module within the insulin growth factor signalling pathway, alteration of which may predispose the tumour to metastasize. These results demonstrate that a metastatic cancer phenotype is characterised by an increase in the randomness of the local information flux patterns. Measures of local randomness in integrated protein interaction mRNA expression networks may therefore be useful for identifying genes and signalling pathways disrupted in one phenotype relative to another. Further exploration of the statistical properties of such integrated cancer expression and protein interaction networks will be a fruitful endeavour.
Locality Aware Concurrent Start for Stencil Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, Sunil; Gao, Guang R.; Manzano Franco, Joseph B.
Stencil computations are at the heart of many physical simulations used in scientific codes. Thus, there exists a plethora of optimization efforts for this family of computations. Among these techniques, tiling techniques that allow concurrent start have proven to be very efficient in providing better performance for these critical kernels. Nevertheless, with many core designs being the norm, these optimization techniques might not be able to fully exploit locality (both spatial and temporal) on multiple levels of the memory hierarchy without compromising parallelism. It is no longer true that the machine can be seen as a homogeneous collection of nodesmore » with caches, main memory and an interconnect network. New architectural designs exhibit complex grouping of nodes, cores, threads, caches and memory connected by an ever evolving network-on-chip design. These new designs may benefit greatly from carefully crafted schedules and groupings that encourage parallel actors (i.e. threads, cores or nodes) to be aware of the computational history of other actors in close proximity. In this paper, we provide an efficient tiling technique that allows hierarchical concurrent start for memory hierarchy aware tile groups. Each execution schedule and tile shape exploit the available parallelism, load balance and locality present in the given applications. We demonstrate our technique on the Intel Xeon Phi architecture with selected and representative stencil kernels. We show improvement ranging from 5.58% to 31.17% over existing state-of-the-art techniques.« less
Collaborative voxel-based surgical virtual environments.
Acosta, Eric; Muniz, Gilbert; Armonda, Rocco; Bowyer, Mark; Liu, Alan
2008-01-01
Virtual Reality-based surgical simulators can utilize Collaborative Virtual Environments (C-VEs) to provide team-based training. To support real-time interactions, C-VEs are typically replicated on each user's local computer and a synchronization method helps keep all local copies consistent. This approach does not work well for voxel-based C-VEs since large and frequent volumetric updates make synchronization difficult. This paper describes a method that allows multiple users to interact within a voxel-based C-VE for a craniotomy simulator being developed. Our C-VE method requires smaller update sizes and provides faster synchronization update rates than volumetric-based methods. Additionally, we address network bandwidth/latency issues to simulate networked haptic and bone drilling tool interactions with a voxel-based skull C-VE.
NASA Astrophysics Data System (ADS)
Gupta, V.; Gupta, N.; Gupta, S.; Field, E.; Maechling, P.
2003-12-01
Modern laptop computers, and personal computers, can provide capabilities that are, in many ways, comparable to workstations or departmental servers. However, this doesn't mean we should run all computations on our local computers. We have identified several situations in which it preferable to implement our seismological application programs in a distributed, server-based, computing model. In this model, application programs on the user's laptop, or local computer, invoke programs that run on an organizational server, and the results are returned to the invoking system. Situations in which a server-based architecture may be preferred include: (a) a program is written in a language, or written for an operating environment, that is unsupported on the local computer, (b) software libraries or utilities required to execute a program are not available on the users computer, (c) a computational program is physically too large, or computationally too expensive, to run on a users computer, (d) a user community wants to enforce a consistent method of performing a computation by standardizing on a single implementation of a program, and (e) the computational program may require current information, that is not available to all client computers. Until recently, distributed, server-based, computational capabilities were implemented using client/server architectures. In these architectures, client programs were often written in the same language, and they executed in the same computing environment, as the servers. Recently, a new distributed computational model, called Web Services, has been developed. Web Services are based on Internet standards such as XML, SOAP, WDSL, and UDDI. Web Services offer the promise of platform, and language, independent distributed computing. To investigate this new computational model, and to provide useful services to the SCEC Community, we have implemented several computational and utility programs using a Web Service architecture. We have hosted these Web Services as a part of the SCEC Community Modeling Environment (SCEC/CME) ITR Project (http://www.scec.org/cme). We have implemented Web Services for several of the reasons sited previously. For example, we implemented a FORTRAN-based Earthquake Rupture Forecast (ERF) as a Web Service for use by client computers that don't support a FORTRAN runtime environment. We implemented a Generic Mapping Tool (GMT) Web Service for use by systems that don't have local access to GMT. We implemented a Hazard Map Calculator Web Service to execute Hazard calculations that are too computationally intensive to run on a local system. We implemented a Coordinate Conversion Web Service to enforce a standard and consistent method for converting between UTM and Lat/Lon. Our experience developing these services indicates both strengths and weakness in current Web Service technology. Client programs that utilize Web Services typically need network access, a significant disadvantage at times. Programs with simple input and output parameters were the easiest to implement as Web Services, while programs with complex parameter-types required a significant amount of additional development. We also noted that Web services are very data-oriented, and adapting object-oriented software into the Web Service model proved problematic. Also, the Web Service approach of converting data types into XML format for network transmission has significant inefficiencies for some data sets.
VRML and Collaborative Environments: New Tools for Networked Visualization
NASA Astrophysics Data System (ADS)
Crutcher, R. M.; Plante, R. L.; Rajlich, P.
We present two new applications that engage the network as a tool for astronomical research and/or education. The first is a VRML server which allows users over the Web to interactively create three-dimensional visualizations of FITS images contained in the NCSA Astronomy Digital Image Library (ADIL). The server's Web interface allows users to select images from the ADIL, fill in processing parameters, and create renderings featuring isosurfaces, slices, contours, and annotations; the often extensive computations are carried out on an NCSA SGI supercomputer server without the user having an individual account on the system. The user can then download the 3D visualizations as VRML files, which may be rotated and manipulated locally on virtually any class of computer. The second application is the ADILBrowser, a part of the NCSA Horizon Image Data Browser Java package. ADILBrowser allows a group of participants to browse images from the ADIL within a collaborative session. The collaborative environment is provided by the NCSA Habanero package which includes text and audio chat tools and a white board. The ADILBrowser is just an example of a collaborative tool that can be built with the Horizon and Habanero packages. The classes provided by these packages can be assembled to create custom collaborative applications that visualize data either from local disk or from anywhere on the network.
Karanovic, Marinko; Muffels, Christopher T.; Tonkin, Matthew J.; Hunt, Randall J.
2012-01-01
Models of environmental systems have become increasingly complex, incorporating increasingly large numbers of parameters in an effort to represent physical processes on a scale approaching that at which they occur in nature. Consequently, the inverse problem of parameter estimation (specifically, model calibration) and subsequent uncertainty analysis have become increasingly computation-intensive endeavors. Fortunately, advances in computing have made computational power equivalent to that of dozens to hundreds of desktop computers accessible through a variety of alternate means: modelers have various possibilities, ranging from traditional Local Area Networks (LANs) to cloud computing. Commonly used parameter estimation software is well suited to take advantage of the availability of such increased computing power. Unfortunately, logistical issues become increasingly important as an increasing number and variety of computers are brought to bear on the inverse problem. To facilitate efficient access to disparate computer resources, the PESTCommander program documented herein has been developed to provide a Graphical User Interface (GUI) that facilitates the management of model files ("file management") and remote launching and termination of "slave" computers across a distributed network of computers ("run management"). In version 1.0 described here, PESTCommander can access and ascertain resources across traditional Windows LANs: however, the architecture of PESTCommander has been developed with the intent that future releases will be able to access computing resources (1) via trusted domains established in Wide Area Networks (WANs) in multiple remote locations and (2) via heterogeneous networks of Windows- and Unix-based operating systems. The design of PESTCommander also makes it suitable for extension to other computational resources, such as those that are available via cloud computing. Version 1.0 of PESTCommander was developed primarily to work with the parameter estimation software PEST; the discussion presented in this report focuses on the use of the PESTCommander together with Parallel PEST. However, PESTCommander can be used with a wide variety of programs and models that require management, distribution, and cleanup of files before or after model execution. In addition to its use with the Parallel PEST program suite, discussion is also included in this report regarding the use of PESTCommander with the Global Run Manager GENIE, which was developed simultaneously with PESTCommander.
NASA Astrophysics Data System (ADS)
Erkol, Şirag; Yücel, Gönenç
In this study, the problem of seed selection is investigated. This problem is mainly treated as an optimization problem, which is proved to be NP-hard. There are several heuristic approaches in the literature which mostly use algorithmic heuristics. These approaches mainly focus on the trade-off between computational complexity and accuracy. Although the accuracy of algorithmic heuristics are high, they also have high computational complexity. Furthermore, in the literature, it is generally assumed that complete information on the structure and features of a network is available, which is not the case in most of the times. For the study, a simulation model is constructed, which is capable of creating networks, performing seed selection heuristics, and simulating diffusion models. Novel metric-based seed selection heuristics that rely only on partial information are proposed and tested using the simulation model. These heuristics use local information available from nodes in the synthetically created networks. The performances of heuristics are comparatively analyzed on three different network types. The results clearly show that the performance of a heuristic depends on the structure of a network. A heuristic to be used should be selected after investigating the properties of the network at hand. More importantly, the approach of partial information provided promising results. In certain cases, selection heuristics that rely only on partial network information perform very close to similar heuristics that require complete network data.
Integration of the White Sands Complex into a Wide Area Network
NASA Technical Reports Server (NTRS)
Boucher, Phillip Larry; Horan, Sheila, B.
1996-01-01
The NASA White Sands Complex (WSC) satellite communications facility consists of two main ground stations, an auxiliary ground station, a technical support facility, and a power plant building located on White Sands Missile Range. When constructed, terrestrial communication access to these facilities was limited to copper telephone circuits. There was no local or wide area communications network capability. This project incorporated a baseband local area network (LAN) topology at WSC and connected it to NASA's wide area network using the Program Support Communications Network-Internet (PSCN-I). A campus-style LAN is configured in conformance with the International Standards Organization (ISO) Open Systems Interconnect (ISO) model. Ethernet provides the physical and data link layers. Transmission Control Protocol and Internet Protocol (TCP/IP) are used for the network and transport layers. The session, presentation, and application layers employ commercial software packages. Copper-based Ethernet collision domains are constructed in each of the primary facilities and these are interconnected by routers over optical fiber links. The network and each of its collision domains are shown to meet IEEE technical configuration guidelines. The optical fiber links are analyzed for the optical power budget and bandwidth allocation and are found to provide sufficient margin for this application. Personal computers and work stations attached to the LAN communicate with and apply a wide variety of local and remote administrative software tools. The Internet connection provides wide area network (WAN) electronic access to other NASA centers and the world wide web (WWW). The WSC network reduces and simplifies the administrative workload while providing enhanced and advanced inter-communications capabilities among White Sands Complex departments and with other NASA centers.
Distributed processing of a GPS receiver network for a regional ionosphere map
NASA Astrophysics Data System (ADS)
Choi, Kwang Ho; Hoo Lim, Joon; Yoo, Won Jae; Lee, Hyung Keun
2018-01-01
This paper proposes a distributed processing method applicable to GPS receivers in a network to generate a regional ionosphere map accurately and reliably. For accuracy, the proposed method is operated by multiple local Kalman filters and Kriging estimators. Each local Kalman filter is applied to a dual-frequency receiver to estimate the receiver’s differential code bias and vertical ionospheric delays (VIDs) at different ionospheric pierce points. The Kriging estimator selects and combines several VID estimates provided by the local Kalman filters to generate the VID estimate at each ionospheric grid point. For reliability, the proposed method uses receiver fault detectors and satellite fault detectors. Each receiver fault detector compares the VID estimates of the same local area provided by different local Kalman filters. Each satellite fault detector compares the VID estimate of each local area with that projected from the other local areas. Compared with the traditional centralized processing method, the proposed method is advantageous in that it considerably reduces the computational burden of each single Kalman filter and enables flexible fault detection, isolation, and reconfiguration capability. To evaluate the performance of the proposed method, several experiments with field collected measurements were performed.
Defense strategies for cloud computing multi-site server infrastructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S.; Ma, Chris Y. T.; He, Fei
We consider cloud computing server infrastructures for big data applications, which consist of multiple server sites connected over a wide-area network. The sites house a number of servers, network elements and local-area connections, and the wide-area network plays a critical, asymmetric role of providing vital connectivity between them. We model this infrastructure as a system of systems, wherein the sites and wide-area network are represented by their cyber and physical components. These components can be disabled by cyber and physical attacks, and also can be protected against them using component reinforcements. The effects of attacks propagate within the systems, andmore » also beyond them via the wide-area network.We characterize these effects using correlations at two levels using: (a) aggregate failure correlation function that specifies the infrastructure failure probability given the failure of an individual site or network, and (b) first-order differential conditions on system survival probabilities that characterize the component-level correlations within individual systems. We formulate a game between an attacker and a provider using utility functions composed of survival probability and cost terms. At Nash Equilibrium, we derive expressions for the expected capacity of the infrastructure given by the number of operational servers connected to the network for sum-form, product-form and composite utility functions.« less
Router Agent Technology for Policy-Based Network Management
NASA Technical Reports Server (NTRS)
Chow, Edward T.; Sudhir, Gurusham; Chang, Hsin-Ping; James, Mark; Liu, Yih-Chiao J.; Chiang, Winston
2011-01-01
This innovation can be run as a standalone network application on any computer in a networked environment. This design can be configured to control one or more routers (one instance per router), and can also be configured to listen to a policy server over the network to receive new policies based on the policy- based network management technology. The Router Agent Technology transforms the received policies into suitable Access Control List syntax for the routers it is configured to control. It commits the newly generated access control lists to the routers and provides feedback regarding any errors that were faced. The innovation also automatically generates a time-stamped log file regarding all updates to the router it is configured to control. This technology, once installed on a local network computer and started, is autonomous because it has the capability to keep listening to new policies from the policy server, transforming those policies to router-compliant access lists, and committing those access lists to a specified interface on the specified router on the network with any error feedback regarding commitment process. The stand-alone application is named RouterAgent and is currently realized as a fully functional (version 1) implementation for the Windows operating system and for CISCO routers.
NASA Astrophysics Data System (ADS)
Thomas, R. N.; Ebigbo, A.; Paluszny, A.; Zimmerman, R. W.
2016-12-01
The macroscopic permeability of 3D anisotropic geomechanically-generated fractured rock masses is investigated. The explicitly computed permeabilities are compared to the predictions of classical inclusion-based effective medium theories, and to the permeability of networks of randomly oriented and stochastically generated fractures. Stochastically generated fracture networks lack features that arise from fracture interaction, such as non-planarity, and termination of fractures upon intersection. Recent discrete fracture network studies include heuristic rules that introduce these features to some extent. In this work, fractures grow and extend under tension from a finite set of initial flaws. The finite element method is used to compute displacements, and modal stress intensity factors are computed around each fracture tip using the interaction integral accumulated over a set of virtual discs. Fracture apertures emerge as a result of simulations that honour the constraints of stress equilibrium and mass conservation. The macroscopic permeabilities are explicitly calculated by solving the local cubic law in the fractures, on an element-by-element basis, coupled to Darcy's law in the matrix. The permeabilities are then compared to the estimates given by the symmetric and asymmetric versions of the self-consistent approximation, which, for randomly fractured volumes, were previously demonstrated to be most accurate of the inclusion-based effective medium methods (Ebigbo et al., Transport in Porous Media, 2016). The permeabilities of several dozen geomechanical networks are computed as a function of density and in situ stresses. For anisotropic networks, we find that the asymmetric and symmetric self-consistent methods overestimate the effective permeability in the direction of the dominant fracture set. Effective permeabilities that are more strongly dependent on the connectivity of two or more fracture sets are more accurately captured by the effective medium models.
Li, Dandan; Li, Ting; Niu, Yan; Xiang, Jie; Cao, Rui; Liu, Bo; Zhang, Hui; Wang, Bin
2018-05-11
Despite many studies reporting a variety of alterations in brain networks in patients with attention deficit hyperactivity disorder (ADHD), alterations in hemispheric anatomical networks are still unclear. In this study, we investigated topology alterations in hemispheric white matter in patients with ADHD and the relationship between these alterations and clinical features of the illness. Weighted hemispheric brain anatomical networks were first constructed for each of 40 right-handed patients with ADHD and 53 matched normal controls. Then, graph theoretical approaches were utilized to compute hemispheric topological properties. The small-world property was preserved in the hemispheric network. Furthermore, a significant group-by-hemisphere interaction was revealed in global efficiency, local efficiency and characteristic path length, attributed to the significantly reduced hemispheric asymmetry of global and local integration in patients with ADHD compared with normal controls. Specifically, reduced asymmetric regional efficiency was found in three regions. Finally, we found that the abnormal asymmetry of hemispheric brain anatomical network topology and regional efficiency were both associated with clinical features (the Adult ADHD Self-Report Scale and Wechsler Adult Intelligence Scale) in patients. Our findings provide new insights into the lateralized nature of hemispheric dysconnectivity and highlight the potential for using brain network measures of hemispheric asymmetry as neural biomarkers for ADHD and its clinical features.
Dynamic Routing for Delay-Tolerant Networking in Space Flight Operations
NASA Technical Reports Server (NTRS)
Burleigh, Scott C.
2008-01-01
Contact Graph Routing (CGR) is a dynamic routing system that computes routes through a time-varying topology composed of scheduled, bounded communication contacts in a network built on the Delay-Tolerant Networking (DTN) architecture. It is designed to support operations in a space network based on DTN, but it also could be used in terrestrial applications where operation according to a predefined schedule is preferable to opportunistic communication, as in a low-power sensor network. This paper will describe the operation of the CGR system and explain how it can enable data delivery over scheduled transmission opportunities, fully utilizing the available transmission capacity, without knowing the current state of any bundle protocol node (other than the local node itself) and without exhausting processing resources at any bundle router.
The Community Seismic Network: Enabling Observations Through Citizen Science Participation
NASA Astrophysics Data System (ADS)
Kohler, M. D.; Clayton, R. W.; Heaton, T. H.; Bunn, J.; Guy, R.; Massari, A.; Chandy, K. M.
2017-12-01
The Community Seismic Network is a dense accelerometer array deployed in the greater Los Angeles area and represents the future of densely instrumented urban cities where localized vibration measurements are collected continuously throughout the free-field and built environment. The hardware takes advantage of developments in the semiconductor industry in the form of inexpensive MEMS accelerometers that are each coupled with a single board computer. The data processing and archival architecture borrows from developments in cloud computing and network connectedness. The ability to deploy densely in the free field and in upper stories of mid/high-rise buildings is enabled by community hosts for sensor locations. To this end, CSN has partnered with the Los Angeles Unified School District (LAUSD), the NASA-Jet Propulsion Laboratory (JPL), and commercial and civic building owners to host sensors. At these sites, site amplification estimates from RMS noise measurements illustrate the lateral variation in amplification over length scales of 100 m or less, that correlate with gradients in the local geology such as sedimentary basins that abut crystalline rock foothills. This is complemented by high-resolution, shallow seismic velocity models obtained using an H/V method. In addition, noise statistics are used to determine the reliability of sites for ShakeMap and earthquake early warning data. The LAUSD and JPL deployments are examples of how situational awareness and centralized warning products such as ShakeMap and ShakeCast are enabled by citizen science participation. Several buildings have been instrumented with at least one triaxial accelerometer per floor, providing measurements for real-time structural health monitoring through local, customized displays. For real-time and post-event evaluation, the free-field and built environment CSN data and products illustrate the feasibility of order-of-magnitude higher spatial resolution mapping compared to what is currently possible with traditional, regional seismic networks. The JPL experiment in particular represents a miniature prototype for city-wide earthquake monitoring that combines free-field measurements for ground shaking intensities, with mid-rise building response through advanced fragility curve computations.
Upscaling of spectral induced polarization response using random tube networks
NASA Astrophysics Data System (ADS)
Maineult, Alexis; Revil, André; Camerlynck, Christian; Florsch, Nicolas; Titov, Konstantin
2017-05-01
In order to upscale the induced polarization (IP) response of porous media, from the pore scale to the sample scale, we implement a procedure to compute the macroscopic complex resistivity response of random tube networks. A network is made of a 2-D square-meshed grid of connected tubes, which obey to a given tube radius distribution. In a simplified approach, the electrical impedance of each tube follows a local Pelton resistivity model, with identical resistivity, chargeability and Cole-Cole exponent values for all the tubes-only the time constant varies, as it depends on the radius of each tube and on a diffusion coefficient also identical for all the tubes. By solving the conservation law for the electrical charge, the macroscopic IP response of the network is obtained. We fit successfully the macroscopic complex resistivity also by a Pelton resistivity model. Simulations on uncorrelated and correlated networks, for which the tube radius distribution is so that the decimal logarithm of the radius is normally distributed, evidence that the local and macroscopic model parameters are the same, except the Cole-Cole exponent: its macroscopic value diminishes with increasing heterogeneity (i.e. with increasing standard deviation of the radius distribution), compared to its local value. The methodology is also applied to six siliciclastic rock samples, for which the pore radius distributions from mercury porosimetry are available. These samples exhibit the same behaviour as synthetic media, that is, the macroscopic Cole-Cole exponent is always lower than the local one. As a conclusion, the pore network method seems to be a promising tool for studying the upscaling of the IP response of porous media.
Identifying critical transitions and their leading biomolecular networks in complex diseases.
Liu, Rui; Li, Meiyi; Liu, Zhi-Ping; Wu, Jiarui; Chen, Luonan; Aihara, Kazuyuki
2012-01-01
Identifying a critical transition and its leading biomolecular network during the initiation and progression of a complex disease is a challenging task, but holds the key to early diagnosis and further elucidation of the essential mechanisms of disease deterioration at the network level. In this study, we developed a novel computational method for identifying early-warning signals of the critical transition and its leading network during a disease progression, based on high-throughput data using a small number of samples. The leading network makes the first move from the normal state toward the disease state during a transition, and thus is causally related with disease-driving genes or networks. Specifically, we first define a state-transition-based local network entropy (SNE), and prove that SNE can serve as a general early-warning indicator of any imminent transitions, regardless of specific differences among systems. The effectiveness of this method was validated by functional analysis and experimental data.
Computing the shape of brain networks using graph filtration and Gromov-Hausdorff metric.
Lee, Hyekyoung; Chung, Moo K; Kang, Hyejin; Kim, Boong-Nyun; Lee, Dong Soo
2011-01-01
The difference between networks has been often assessed by the difference of global topological measures such as the clustering coefficient, degree distribution and modularity. In this paper, we introduce a new framework for measuring the network difference using the Gromov-Hausdorff (GH) distance, which is often used in shape analysis. In order to apply the GH distance, we define the shape of the brain network by piecing together the patches of locally connected nearest neighbors using the graph filtration. The shape of the network is then transformed to an algebraic form called the single linkage matrix. The single linkage matrix is subsequently used in measuring network differences using the GH distance. As an illustration, we apply the proposed framework to compare the FDG-PET based functional brain networks out of 24 attention deficit hyperactivity disorder (ADHD) children, 26 autism spectrum disorder (ASD) children and 11 pediatric control subjects.
Neurosemantics, neurons and system theory.
Breidbach, Olaf
2007-08-01
Following the concept of internal representations, signal processing in a neuronal system has to be evaluated exclusively based on internal system characteristics. Thus, this approach omits the external observer as a control function for sensory integration. Instead, the configuration of the system and its computational performance are the effects of endogenous factors. Such self-referential operation is due to a strictly local computation in a network and, thereby, computations follow a set of rules that constitute the emergent behaviour of the system. These rules can be shown to correspond to a "logic" that is intrinsic to the system, an idea which provides the basis for neurosemantics.
Algorithm implementation on the Navier-Stokes computer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krist, S.E.; Zang, T.A.
1987-03-01
The Navier-Stokes Computer is a multi-purpose parallel-processing supercomputer which is currently under development at Princeton University. It consists of multiple local memory parallel processors, called Nodes, which are interconnected in a hypercube network. Details of the procedures involved in implementing an algorithm on the Navier-Stokes computer are presented. The particular finite difference algorithm considered in this analysis was developed for simulation of laminar-turbulent transition in wall bounded shear flows. Projected timing results for implementing this algorithm indicate that operation rates in excess of 42 GFLOPS are feasible on a 128 Node machine.
Algorithm implementation on the Navier-Stokes computer
NASA Technical Reports Server (NTRS)
Krist, Steven E.; Zang, Thomas A.
1987-01-01
The Navier-Stokes Computer is a multi-purpose parallel-processing supercomputer which is currently under development at Princeton University. It consists of multiple local memory parallel processors, called Nodes, which are interconnected in a hypercube network. Details of the procedures involved in implementing an algorithm on the Navier-Stokes computer are presented. The particular finite difference algorithm considered in this analysis was developed for simulation of laminar-turbulent transition in wall bounded shear flows. Projected timing results for implementing this algorithm indicate that operation rates in excess of 42 GFLOPS are feasible on a 128 Node machine.
The governance of innovation diffusion - a socio-technical analysis of energy policy
NASA Astrophysics Data System (ADS)
Nolden, C.
2012-10-01
This paper describes a dynamic price mechanism to coordinate eletric power generation from micro Combined Heat and Power (micro-CHP) systems in a network of households. It is assumed that the households are prosumers, i.e. both producers and consumers of electricity. The control is done on household level in a completely distributed manner. Avoiding a centralized controller both eases computation complexity and preserves communication structure in the network. Local information is used to decide to turn on or off the micro-CHP, but through price signals between the prosumers the network as a whole operates in a cooperative way.
Generalized reproduction numbers and the prediction of patterns in waterborne disease
Gatto, Marino; Mari, Lorenzo; Bertuzzo, Enrico; Casagrandi, Renato; Righetto, Lorenzo; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea
2012-01-01
Understanding, predicting, and controlling outbreaks of waterborne diseases are crucial goals of public health policies, but pose challenging problems because infection patterns are influenced by spatial structure and temporal asynchrony. Although explicit spatial modeling is made possible by widespread data mapping of hydrology, transportation infrastructure, population distribution, and sanitation, the precise condition under which a waterborne disease epidemic can start in a spatially explicit setting is still lacking. Here we show that the requirement that all the local reproduction numbers be larger than unity is neither necessary nor sufficient for outbreaks to occur when local settlements are connected by networks of primary and secondary infection mechanisms. To determine onset conditions, we derive general analytical expressions for a reproduction matrix , explicitly accounting for spatial distributions of human settlements and pathogen transmission via hydrological and human mobility networks. At disease onset, a generalized reproduction number (the dominant eigenvalue of ) must be larger than unity. We also show that geographical outbreak patterns in complex environments are linked to the dominant eigenvector and to spectral properties of . Tests against data and computations for the 2010 Haiti and 2000 KwaZulu-Natal cholera outbreaks, as well as against computations for metapopulation networks, demonstrate that eigenvectors of provide a synthetic and effective tool for predicting the disease course in space and time. Networked connectivity models, describing the interplay between hydrology, epidemiology, and social behavior sustaining human mobility, thus prove to be key tools for emergency management of waterborne infections. PMID:23150538
Stimulus-dependent spiking relationships with the EEG
Snyder, Adam C.
2015-01-01
The development and refinement of noninvasive techniques for imaging neural activity is of paramount importance for human neuroscience. Currently, the most accessible and popular technique is electroencephalography (EEG). However, nearly all of what we know about the neural events that underlie EEG signals is based on inference, because of the dearth of studies that have simultaneously paired EEG recordings with direct recordings of single neurons. From the perspective of electrophysiologists there is growing interest in understanding how spiking activity coordinates with large-scale cortical networks. Evidence from recordings at both scales highlights that sensory neurons operate in very distinct states during spontaneous and visually evoked activity, which appear to form extremes in a continuum of coordination in neural networks. We hypothesized that individual neurons have idiosyncratic relationships to large-scale network activity indexed by EEG signals, owing to the neurons' distinct computational roles within the local circuitry. We tested this by recording neuronal populations in visual area V4 of rhesus macaques while we simultaneously recorded EEG. We found substantial heterogeneity in the timing and strength of spike-EEG relationships and that these relationships became more diverse during visual stimulation compared with the spontaneous state. The visual stimulus apparently shifts V4 neurons from a state in which they are relatively uniformly embedded in large-scale network activity to a state in which their distinct roles within the local population are more prominent, suggesting that the specific way in which individual neurons relate to EEG signals may hold clues regarding their computational roles. PMID:26108954
Rudd, Michael E.
2014-01-01
Previous work has demonstrated that perceived surface reflectance (lightness) can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatially integrates these steps along paths through the image to compute lightness (Rudd and Zemach, 2004, 2005, 2007). This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013) suggests that human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010) further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer's interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd and Zemach, 2005). Here, I show how the separate influences of grouping and attention on lightness can be modeled in tandem by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013), and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4. PMID:25202253
Rudd, Michael E
2014-01-01
Previous work has demonstrated that perceived surface reflectance (lightness) can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatially integrates these steps along paths through the image to compute lightness (Rudd and Zemach, 2004, 2005, 2007). This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013) suggests that human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010) further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer's interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd and Zemach, 2005). Here, I show how the separate influences of grouping and attention on lightness can be modeled in tandem by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013), and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4.
A feedback model of figure-ground assignment.
Domijan, Drazen; Setić, Mia
2008-05-30
A computational model is proposed in order to explain how bottom-up and top-down signals are combined into a unified perception of figure and background. The model is based on the interaction between the ventral and the dorsal stream. The dorsal stream computes saliency based on boundary signals provided by the simple and the complex cortical cells. Output from the dorsal stream is projected to the surface network which serves as a blackboard on which the surface representation is formed. The surface network is a recurrent network which segregates different surfaces by assigning different firing rates to them. The figure is labeled by the maximal firing rate. Computer simulations showed that the model correctly assigns figural status to the surface with a smaller size, a greater contrast, convexity, surroundedness, horizontal-vertical orientation and a higher spatial frequency content. The simple gradient of activity in the dorsal stream enables the simulation of the new principles of the lower region and the top-bottom polarity. The model also explains how the exogenous attention and the endogenous attention may reverse the figural assignment. Due to the local excitation in the surface network, neural activity at the cued region will spread over the whole surface representation. Therefore, the model implements the object-based attentional selection.
Hierarchical neural network model of the visual system determining figure/ground relation
NASA Astrophysics Data System (ADS)
Kikuchi, Masayuki
2017-07-01
One of the most important functions of the visual perception in the brain is figure/ground interpretation from input images. Figural region in 2D image corresponding to object in 3D space are distinguished from background region extended behind the object. Previously the author proposed a neural network model of figure/ground separation constructed on the standpoint that local geometric features such as curvatures and outer angles at corners are extracted and propagated along input contour in a single layer network (Kikuchi & Akashi, 2001). However, such a processing principle has the defect that signal propagation requires manyiterations despite the fact that actual visual system determines figure/ground relation within the short period (Zhou et al., 2000). In order to attain speed-up for determining figure/ground, this study incorporates hierarchical architecture into the previous model. This study confirmed the effect of the hierarchization as for the computation time by simulation. As the number of layers increased, the required computation time reduced. However, such speed-up effect was saturatedas the layers increased to some extent. This study attempted to explain this saturation effect by the notion of average distance between vertices in the area of complex network, and succeeded to mimic the saturation effect by computer simulation.
Exploiting Semi-Directional Transceivers for Localization in Communication Systems
2006-03-01
some of those late nights. To Patrick S. and Maura D., you guys made AFIT home away from home for me. Additionally to all of my classmates and...conference on Mobile com- puting and networking, 151–159. IEEE Computer Society, ACM Press, Berkeley, CA, November 1995. 6. Kelly , Ian and Alcherio Martinoli
ERIC Educational Resources Information Center
Hathaway, Walter E.
Efficient and convenient comprehensive information systems, long kept from coming into being by a variety of obstacles, are now made possible by the concept of distributive processing and the technology of micro- and mini-computer networks. Such systems can individualize instruction, group students efficiently, cut administrative costs, streamline…
Reality Is Our Laboratory: Communities of Practice in Applied Computer Science
ERIC Educational Resources Information Center
Rohde, M.; Klamma, R.; Jarke, M.; Wulf, V.
2007-01-01
The present paper presents a longitudinal study of the course "High-tech Entrepreneurship and New Media." The course design is based on socio-cultural theories of learning and considers the role of social capital in entrepreneurial networks. By integrating student teams into the communities of practice of local start-ups, we offer…
TITAN: Transforming Instruction through Technology and Networking.
ERIC Educational Resources Information Center
Fitzpatrick, Corine; Nicholson, Karen; Mucciardi, Michael; Musal, Richard
This paper describes an effort by Manhattan College, New York, and its consortium of partners (a local school district, the Archdiocese of New York, Apple Computer, and Educational Video Conferencing) to ensure the availability of technology-proficient educators in the area's inner city schools, where the digital divide is most prominent. A TITAN…
System Architectural Concepts: Army Battlefield Command and Control Information Utility (CCIU).
1982-07-25
produce (device-type), the computers they may interface with (required- host), and the identification number of the devices (device- number). Line- printers ...interface in a network PE ( ZINK Sol. A-5 GLOSSARY Kernel A layer of the PEOS; implements the basic system primitives. LUS Local Name Space Locking A
The Genie Is Out of the Bottle
ERIC Educational Resources Information Center
Katz, Richard N.
2004-01-01
Starting in the late 1960s, data networks were created to connect supercomputers and, later, other intelligent devices. A revolution in communications was in the making. By the late 1970s, computing and communications technologies were leading us from a world of local markets trading in capital goods to one of global markets trading in capital…
NASA Astrophysics Data System (ADS)
Gardezi, A.; Umer, T.; Butt, F.; Young, R. C. D.; Chatwin, C. R.
2016-04-01
A spatial domain optimal trade-off Maximum Average Correlation Height (SPOT-MACH) filter has been previously developed and shown to have advantages over frequency domain implementations in that it can be made locally adaptive to spatial variations in the input image background clutter and normalised for local intensity changes. The main concern for using the SPOT-MACH is its computationally intensive nature. However in the past enhancements techniques were proposed for the SPOT-MACH to make its execution time comparable to its frequency domain counterpart. In this paper a novel approach is discussed which uses VANET parameters coupled with the SPOT-MACH in order to minimise the extensive processing of the large video dataset acquired from the Pakistan motorways surveillance system. The use of VANET parameters gives us an estimation criterion of the flow of traffic on the Pakistan motorway network and acts as a precursor to the training algorithm. The use of VANET in this scenario would contribute heavily towards the computational complexity minimization of the proposed monitoring system.
Comprehensive, Multi-Source Cyber-Security Events Data Set
Kent, Alexander D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-05-21
This data set represents 58 consecutive days of de-identified event data collected from five sources within Los Alamos National Laboratory’s corporate, internal computer network. The data sources include Windows-based authentication events from both individual computers and centralized Active Directory domain controller servers; process start and stop events from individual Windows computers; Domain Name Service (DNS) lookups as collected on internal DNS servers; network flow data as collected on at several key router locations; and a set of well-defined red teaming events that present bad behavior within the 58 days. In total, the data set is approximately 12 gigabytes compressed across the five data elements and presents 1,648,275,307 events in total for 12,425 users, 17,684 computers, and 62,974 processes. Specific users that are well known system related (SYSTEM, Local Service) were not de-identified though any well-known administrators account were still de-identified. In the network flow data, well-known ports (e.g. 80, 443, etc) were not de-identified. All other users, computers, process, ports, times, and other details were de-identified as a unified set across all the data elements (e.g. U1 is the same U1 in all of the data). The specific timeframe used is not disclosed for security purposes. In addition, no data that allows association outside of LANL’s network is included. All data starts with a time epoch of 1 using a time resolution of 1 second. In the authentication data, failed authentication events are only included for users that had a successful authentication event somewhere within the data set.
A Distributed Data Acquisition System for the Sensor Network of the TAWARA_RTM Project
NASA Astrophysics Data System (ADS)
Fontana, Cristiano Lino; Donati, Massimiliano; Cester, Davide; Fanucci, Luca; Iovene, Alessandro; Swiderski, Lukasz; Moretto, Sandra; Moszynski, Marek; Olejnik, Anna; Ruiu, Alessio; Stevanato, Luca; Batsch, Tadeusz; Tintori, Carlo; Lunardon, Marcello
This paper describes a distributed Data Acquisition System (DAQ) developed for the TAWARA_RTM project (TAp WAter RAdioactivity Real Time Monitor). The aim is detecting the presence of radioactive contaminants in drinking water; in order to prevent deliberate or accidental threats. Employing a set of detectors, it is possible to detect alpha, beta and gamma radiations, from emitters dissolved in water. The Sensor Network (SN) consists of several heterogeneous nodes controlled by a centralized server. The SN cyber-security is guaranteed in order to protect it from external intrusions and malicious acts. The nodes were installed in different locations, along the water treatment processes, in the waterworks plant supplying the aqueduct of Warsaw, Poland. Embedded computers control the simpler nodes, and are directly connected to the SN. Local-PCs (LPCs) control the more complex nodes that consist signal digitizers acquiring data from several detectors. The DAQ in the LPC is split in several processes communicating with sockets in a local sub-network. Each process is dedicated to a very simple task (e.g. data acquisition, data analysis, hydraulics management) in order to have a flexible and fault-tolerant system. The main SN and the local DAQ networks are separated by data routers to ensure the cyber-security.
Final Report. Analysis and Reduction of Complex Networks Under Uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marzouk, Youssef M.; Coles, T.; Spantini, A.
2013-09-30
The project was a collaborative effort among MIT, Sandia National Laboratories (local PI Dr. Habib Najm), the University of Southern California (local PI Prof. Roger Ghanem), and The Johns Hopkins University (local PI Prof. Omar Knio, now at Duke University). Our focus was the analysis and reduction of large-scale dynamical systems emerging from networks of interacting components. Such networks underlie myriad natural and engineered systems. Examples important to DOE include chemical models of energy conversion processes, and elements of national infrastructure—e.g., electric power grids. Time scales in chemical systems span orders of magnitude, while infrastructure networks feature both local andmore » long-distance connectivity, with associated clusters of time scales. These systems also blend continuous and discrete behavior; examples include saturation phenomena in surface chemistry and catalysis, and switching in electrical networks. Reducing size and stiffness is essential to tractable and predictive simulation of these systems. Computational singular perturbation (CSP) has been effectively used to identify and decouple dynamics at disparate time scales in chemical systems, allowing reduction of model complexity and stiffness. In realistic settings, however, model reduction must contend with uncertainties, which are often greatest in large-scale systems most in need of reduction. Uncertainty is not limited to parameters; one must also address structural uncertainties—e.g., whether a link is present in a network—and the impact of random perturbations, e.g., fluctuating loads or sources. Research under this project developed new methods for the analysis and reduction of complex multiscale networks under uncertainty, by combining computational singular perturbation (CSP) with probabilistic uncertainty quantification. CSP yields asymptotic approximations of reduceddimensionality “slow manifolds” on which a multiscale dynamical system evolves. Introducing uncertainty in this context raised fundamentally new issues, e.g., how is the topology of slow manifolds transformed by parametric uncertainty? How to construct dynamical models on these uncertain manifolds? To address these questions, we used stochastic spectral polynomial chaos (PC) methods to reformulate uncertain network models and analyzed them using CSP in probabilistic terms. Finding uncertain manifolds involved the solution of stochastic eigenvalue problems, facilitated by projection onto PC bases. These problems motivated us to explore the spectral properties stochastic Galerkin systems. We also introduced novel methods for rank-reduction in stochastic eigensystems—transformations of a uncertain dynamical system that lead to lower storage and solution complexity. These technical accomplishments are detailed below. This report focuses on the MIT portion of the joint project.« less