Sample records for local defect layer

  1. Method to repair localized amplitude defects in a EUV lithography mask blank

    DOEpatents

    Stearns, Daniel G.; Sweeney, Donald W.; Mirkarimi, Paul B.; Chapman, Henry N.

    2005-11-22

    A method and apparatus are provided for the repair of an amplitude defect in a multilayer coating. A significant number of layers underneath the amplitude defect are undamaged. The repair technique restores the local reflectivity of the coating by physically removing the defect and leaving a wide, shallow crater that exposes the underlying intact layers. The particle, pit or scratch is first removed the remaining damaged region is etched away without disturbing the intact underlying layers.

  2. Characterization of high-quality kerfless epitaxial silicon for solar cells: Defect sources and impact on minority-carrier lifetime

    DOE PAGES

    Kivambe, Maulid M.; Powell, Douglas M.; Castellanos, Sergio; ...

    2017-11-14

    We investigate the types and origins of structural defects in thin (<100 μm) kerfless epitaxial single crystal silicon grown on top of reorganized porous silicon layers. Although the structural defect density is low (has average defect density < 10 4 cm -2), localized areas with a defect density > 10 5 cm -2 are observed. Cross-sectional and systematic plan-view defect etching and microscopy reveals that the majority of stacking faults and dislocations originate at the interface between the porous silicon layer and the epitaxial wafer. Localised dislocation clusters are observed in regions of collapsed/deformed porous silicon and at decorated stackingmore » faults. In localized regions of high extended defect density, increased minority-carrier recombination activity is observed. Evidence for impurity segregation to the extended defects (internal gettering), which is known to exacerbate carrier recombination is demonstrated. In conclusion, the impact of the defects on material performance and substrate re-use is also discussed.« less

  3. Characterization of high-quality kerfless epitaxial silicon for solar cells: Defect sources and impact on minority-carrier lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kivambe, Maulid M.; Powell, Douglas M.; Castellanos, Sergio

    We investigate the types and origins of structural defects in thin (<100 μm) kerfless epitaxial single crystal silicon grown on top of reorganized porous silicon layers. Although the structural defect density is low (has average defect density < 10 4 cm -2), localized areas with a defect density > 10 5 cm -2 are observed. Cross-sectional and systematic plan-view defect etching and microscopy reveals that the majority of stacking faults and dislocations originate at the interface between the porous silicon layer and the epitaxial wafer. Localised dislocation clusters are observed in regions of collapsed/deformed porous silicon and at decorated stackingmore » faults. In localized regions of high extended defect density, increased minority-carrier recombination activity is observed. Evidence for impurity segregation to the extended defects (internal gettering), which is known to exacerbate carrier recombination is demonstrated. In conclusion, the impact of the defects on material performance and substrate re-use is also discussed.« less

  4. Characterization of high-quality kerfless epitaxial silicon for solar cells: Defect sources and impact on minority-carrier lifetime

    NASA Astrophysics Data System (ADS)

    Kivambe, Maulid M.; Powell, Douglas M.; Castellanos, Sergio; Jensen, Mallory Ann; Morishige, Ashley E.; Lai, Barry; Hao, Ruiying; Ravi, T. S.; Buonassisi, Tonio

    2018-02-01

    We investigate the types and origins of structural defects in thin (<100 μm) kerfless epitaxial single crystal silicon grown on top of reorganized porous silicon layers. Although the structural defect density is low (has average defect density < 104 cm-2), localized areas with a defect density > 105 cm-2 are observed. Cross-sectional and systematic plan-view defect etching and microscopy reveals that the majority of stacking faults and dislocations originate at the interface between the porous silicon layer and the epitaxial wafer. Localised dislocation clusters are observed in regions of collapsed/deformed porous silicon and at decorated stacking faults. In localized regions of high extended defect density, increased minority-carrier recombination activity is observed. Evidence for impurity segregation to the extended defects (internal gettering), which is known to exacerbate carrier recombination is demonstrated. The impact of the defects on material performance and substrate re-use is also discussed.

  5. Near Infrared Emission from Defects in Few-Layer Phosphorene

    NASA Astrophysics Data System (ADS)

    Aghaeimeibodi, Shahriar; Kim, Je-Hyung; Waks, Edo

    Atomically thin films of black phosphorus have recently received significant attention as low dimensional optical materials with a direct exciton emission whose wavelength is tunable by controlling the number of layers. In addition to this excitonic emission, recent work has revealed emission from defect states and reported new methods to manipulate them. Monolayer phosphorene exhibits emission from localized defect states at wavelengths near 920 nm. Increasing the number of layers should shift defect emission to longer wavelengths, enabling the material to span a broader spectral range. But defect emission from few-layer phosphorene has not yet been reported. Here, we demonstrate a new class of near infrared defects in few layer phosphorene. Photoluminescence measurement shows a bright emission around 1240 nm with a sublinear growth of emission intensity with linear increase of excitation intensity, confirming the defect nature of this emission. From time-resolved lifetime measurements we determine an emission lifetime of 1.2 ns, in contrast to exciton and trion lifetimes from few layer phosphorene previously reported to be in the range of a few hundred picoseconds. This work highlights the potential of bright defects of phosphorene for near infrared optoelectronic applications.

  6. Observation of nanometer-sized electro-active defects in insulating layers by fluorescence microscopy and electrochemistry.

    PubMed

    Renault, Christophe; Marchuk, Kyle; Ahn, Hyun S; Titus, Eric J; Kim, Jiyeon; Willets, Katherine A; Bard, Allen J

    2015-06-02

    We report a method to study electro-active defects in passivated electrodes. This method couples fluorescence microscopy and electrochemistry to localize and size electro-active defects. The method was validated by comparison with a scanning probe technique, scanning electrochemical microscopy. We used our method for studying electro-active defects in thin TiO2 layers electrodeposited on 25 μm diameter Pt ultramicroelectrodes (UMEs). The permeability of the TiO2 layer was estimated by measuring the oxidation of ferrocenemethanol at the UME. Blocking of current ranging from 91.4 to 99.8% was achieved. Electro-active defects with an average radius ranging between 9 and 90 nm were observed in these TiO2 blocking layers. The distribution of electro-active defects over the TiO2 layer is highly inhomogeneous and the number of electro-active defect increases for lower degree of current blocking. The interest of the proposed technique is the possibility to quickly (less than 15 min) image samples as large as several hundreds of μm(2) while being able to detect electro-active defects of only a few tens of nm in radius.

  7. Localized states and their stability in an anharmonic medium with a nonlinear defect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerasimchuk, I. V., E-mail: igor.gera@gmail.com

    2015-10-15

    A comprehensive analysis of soliton states localized near a plane defect (a defect layer) possessing nonlinear properties is carried out within a quasiclassical approach for different signs of nonlinearity of the medium and different characters of interaction of elementary excitations of the medium with the defect. A quantum interpretation is given to these nonlinear localized modes as a bound state of a large number of elementary excitations. The domains of existence of such states are determined, and their properties are analyzed as a function of the character of interaction of elementary excitations between each other and with the defect. Amore » full analysis of the stability of all the localized states with respect to small perturbations of amplitude and phase is carried out analytically, and the frequency of small oscillations of the state localized on the defect is determined.« less

  8. Yarn-dyed fabric defect classification based on convolutional neural network

    NASA Astrophysics Data System (ADS)

    Jing, Junfeng; Dong, Amei; Li, Pengfei; Zhang, Kaibing

    2017-09-01

    Considering that manual inspection of the yarn-dyed fabric can be time consuming and inefficient, we propose a yarn-dyed fabric defect classification method by using a convolutional neural network (CNN) based on a modified AlexNet. CNN shows powerful ability in performing feature extraction and fusion by simulating the learning mechanism of human brain. The local response normalization layers in AlexNet are replaced by the batch normalization layers, which can enhance both the computational efficiency and classification accuracy. In the training process of the network, the characteristics of the defect are extracted step by step and the essential features of the image can be obtained from the fusion of the edge details with several convolution operations. Then the max-pooling layers, the dropout layers, and the fully connected layers are employed in the classification model to reduce the computation cost and extract more precise features of the defective fabric. Finally, the results of the defect classification are predicted by the softmax function. The experimental results show promising performance with an acceptable average classification rate and strong robustness on yarn-dyed fabric defect classification.

  9. Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT.

    PubMed

    Horn, Folkert K; Mardin, Christian Y; Laemmer, Robert; Baleanu, Delia; Juenemann, Anselm M; Kruse, Friedrich E; Tornow, Ralf P

    2009-05-01

    To study the correlation between local perimetric field defects and glaucoma-induced thickness reduction of the nerve layer measured in the peripapillary area with scanning laser polarimetry (SLP) and spectral domain optical coherence tomography (SOCT) and to compare the results with those of a theoretical model. The thickness of the retinal nerve fiber layer was determined in 32 sectors (11.25 degrees each) by using SLP with variable cornea compensation (GDxVCC; Laser Diagnostics, San Diego, CA) and the newly introduced high-resolution SOCT (Spectralis; Heidelberg Engineering, Heidelberg, Germany). Eighty-eight healthy subjects served as control subjects, to determine the thickness deviation in patients with glaucoma. The relationship between glaucomatous nerve fiber reduction and visual field losses was calculated in six nerve fiber bundle-related areas. Sixty-four patients at different stages of open-angle glaucoma and 26 patients with ocular hypertension underwent perimetry (Octopus G1; Haag-Streit, Köniz, Switzerland) and measurements with the two morphometric techniques. Sector-shaped analyses between local perimetric losses and reduction of the retinal nerve fiber layer thickness showed a significant association for corresponding areas except for the central visual field in SLP. Correlation coefficients were highest in the area of the nasal inferior visual field (SOCT, -0.81; SLP, -0.57). A linear model describes the association between structural and functional damage. Localized perimetric defects can be explained by reduced nerve fiber layer thickness. The data indicate that the present SOCT is useful for determining the functional-structural relationship in peripapillary areas and that association between perimetric defects and corresponding nerve fiber losses is stronger for SOCT than for the present SLP. (ClinicalTrials.gov number, NCT00494923.).

  10. Confined states in photonic-magnonic crystals with complex unit cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dadoenkova, Yu. S.; Novgorod State University, 173003 Veliky Novgorod; Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 83114 Donetsk

    2016-08-21

    We have investigated multifunctional periodic structures in which electromagnetic waves and spin waves can be confined in the same areas. Such simultaneous localization of both sorts of excitations can potentially enhance the interaction between electromagnetic waves and spin waves. The system we considered has a form of one dimensional photonic-magnonic crystal with two types of magnetic layers (thicker and thinner ones) separated by sections of the dielectric photonic crystals. We focused on the electromagnetic defect modes localized in the magnetic layers (areas where spin waves can be excited) and decaying in the sections of conventional (nonmagnetic) photonic crystals. We showedmore » how the change of relative thickness of two types of the magnetic layers can influence on the spectrum of spin waves and electromagnetic defect modes, both localized in magnetic parts of the system.« less

  11. Modified Oxygen Defect Chemistry at Transition Metal Oxide Heterostructures Probed by Hard X-ray Photoelectron Spectroscopy and X-ray Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yan; Fong, Dillon D.; Herbert, F. William

    Transition metal oxide hetero-structures are interesting due to the distinctly different properties that can arise from their interfaces, such as superconductivity, high catalytic activity and magnetism. Oxygen point defects can play an important role at these interfaces in inducing potentially novel properties. The design of oxide hetero-structures in which the oxygen defects are manipulated to attain specific functionalities requires the ability to resolve the state and concentration of local oxygen defects across buried interfaces. In this work, we utilized a novel combination of hard x-ray photoelectron spectroscopy (HAXPES) and high resolution xray diffraction (HRXRD) to probe the local oxygen defectmore » distribution across the buried interfaces of oxide heterolayers. This approach provides a non-destructive way to qualitatively probe locally the oxygen defects in transition metal oxide hetero-structures. We studied two trilayer structures as model systems - the La 0.8Sr 0.2CoO 3-δ/(La 0.5Sr 0.5) 2CoO 4/La 0.8Sr 0.2CoO 3-δ (LSC 113/LSC 214) and the La 0.8Sr 0.2CoO 3-δ/La 2NiO 4+δ/La 0.8Sr 0.2CoO 3-δ (LSC 113/LNO 214) on SrTiO 3(001) single crystal substrates. We found that the oxygen defect chemistry of these transition metal oxides was strongly impacted by the presence of interfaces and the properties of the adjacent phases. Under reducing conditions, the LSC 113 in the LSC 113/LNO 214 tri-layer had less oxygen vacancies than the LSC 113 in the LSC 113/LSC 214 tri-layer and the LSC 113 single phase film. On the other hand, LSC 214 and LNO 214 were more reduced in the two tri-layer structures when in contact with the LSC 113 layer compared to their single phase counterparts. Furthermore, the results point out a potential way to modify the local oxygen defect states at oxide hetero-interfaces.« less

  12. Modified Oxygen Defect Chemistry at Transition Metal Oxide Heterostructures Probed by Hard X-ray Photoelectron Spectroscopy and X-ray Diffraction

    DOE PAGES

    Chen, Yan; Fong, Dillon D.; Herbert, F. William; ...

    2018-04-17

    Transition metal oxide hetero-structures are interesting due to the distinctly different properties that can arise from their interfaces, such as superconductivity, high catalytic activity and magnetism. Oxygen point defects can play an important role at these interfaces in inducing potentially novel properties. The design of oxide hetero-structures in which the oxygen defects are manipulated to attain specific functionalities requires the ability to resolve the state and concentration of local oxygen defects across buried interfaces. In this work, we utilized a novel combination of hard x-ray photoelectron spectroscopy (HAXPES) and high resolution xray diffraction (HRXRD) to probe the local oxygen defectmore » distribution across the buried interfaces of oxide heterolayers. This approach provides a non-destructive way to qualitatively probe locally the oxygen defects in transition metal oxide hetero-structures. We studied two trilayer structures as model systems - the La 0.8Sr 0.2CoO 3-δ/(La 0.5Sr 0.5) 2CoO 4/La 0.8Sr 0.2CoO 3-δ (LSC 113/LSC 214) and the La 0.8Sr 0.2CoO 3-δ/La 2NiO 4+δ/La 0.8Sr 0.2CoO 3-δ (LSC 113/LNO 214) on SrTiO 3(001) single crystal substrates. We found that the oxygen defect chemistry of these transition metal oxides was strongly impacted by the presence of interfaces and the properties of the adjacent phases. Under reducing conditions, the LSC 113 in the LSC 113/LNO 214 tri-layer had less oxygen vacancies than the LSC 113 in the LSC 113/LSC 214 tri-layer and the LSC 113 single phase film. On the other hand, LSC 214 and LNO 214 were more reduced in the two tri-layer structures when in contact with the LSC 113 layer compared to their single phase counterparts. Furthermore, the results point out a potential way to modify the local oxygen defect states at oxide hetero-interfaces.« less

  13. Characterization of micron-sized, optical coating defects by photothermal deflection microscopy

    NASA Astrophysics Data System (ADS)

    Abate, J. A.; Schmid, A. W.; Guardalben, M. G.; Smith, D. J.; Jacobs, S. D.

    1984-04-01

    Information about the localized absorbing defects in optical thin films is required for a better understanding of laser induced damage. Photothermal deflection microscopy offers a nondestructive optical diagnostic which yields spatially resolved absorption data on simple and multiple layer AR and HR dielectric coatings. The computer controlled apparatus used to generate absorption maps of dielectric thin films and an experiment in which a partial correlation between localized absorption sites and damage caused by nanosecond laser irradiation at 351 nm is established are described. An absolute calibration of absorption for our measurement technique is presented here. Micron sized absorbtive defects of Cu were introduced into our coatings to provide a means of calibration. Also presented here are some preliminary data on the modification of the absorption signatures measured by photothermal deflection as a function of the location of the defect within the coating layers.

  14. Yarn-dyed fabric defect classification based on convolutional neural network

    NASA Astrophysics Data System (ADS)

    Jing, Junfeng; Dong, Amei; Li, Pengfei

    2017-07-01

    Considering that the manual inspection of the yarn-dyed fabric can be time consuming and less efficient, a convolutional neural network (CNN) solution based on the modified AlexNet structure for the classification of the yarn-dyed fabric defect is proposed. CNN has powerful ability of feature extraction and feature fusion which can simulate the learning mechanism of the human brain. In order to enhance computational efficiency and detection accuracy, the local response normalization (LRN) layers in AlexNet are replaced by the batch normalization (BN) layers. In the process of the network training, through several convolution operations, the characteristics of the image are extracted step by step, and the essential features of the image can be obtained from the edge features. And the max pooling layers, the dropout layers, the fully connected layers are also employed in the classification model to reduce the computation cost and acquire more precise features of fabric defect. Finally, the results of the defect classification are predicted by the softmax function. The experimental results show the capability of defect classification via the modified Alexnet model and indicate its robustness.

  15. Polariton Local States in Periodic Bragg Multiple Quantum Well Structures

    NASA Astrophysics Data System (ADS)

    Deych, Lev; Yamilov, Alexey; Lisyansky, Alexander

    2000-11-01

    We analytically study defect polariton states in Bragg MQW structures, and defect induced changes in transmission and reflection spectra. Defect layers can differ from the host layers in three different ways: in the exciton-light coupling strength, in the exciton resonance frequency, and in interwell spacing. We show that a single defect leads to two local polariton modes in the photonic band gap. These modes lead to peculiarities in reflection and transmission spectra. Each type of defect can be reproduced experimentally, and we show that each of them play distinctly different roles in the optical properties of the system. We obtain closed analytical expressions for respective local frequencies, as well as for reflection and transmission coefficients. On the basis of the results obtained, we give practical recommendation for experimental observation of the studied effects in samples used in Refs. [1,2]. [1] M.Hübner, J. Kuhl, T. Stroucken, A. Knorr, S.W. Koch, R. Hey, K. Ploog, Phys. Rev. Lett. 76, 4199 (1996). [2] M.Hübner, J.P. Prineas, C. Ell, P. Brick, E.S. Lee, G. Khitrova, H.M. Gibbs, S.W. Koch, Phys. Rev. Lett. 83, 2841 (1999).

  16. Localized modes in optics of photonic liquid crystals with local anisotropy of absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyakov, V. A., E-mail: bel1937@mail.ru, E-mail: bel@landau.ac.ru; Semenov, S. V.

    2016-05-15

    The localized optical modes in spiral photonic liquid crystals are theoretically studied for the certainty at the example of chiral liquid crystals (CLCs) for the case of CLC with an anisotropic local absorption. The model adopted here (absence of dielectric interfaces in the structures under investigation) makes it possible to get rid of mixing of polarizations on the surfaces of the CLC layer and of the defect structure and to reduce the corresponding equations to only the equations for light with polarization diffracting in the CLC. The dispersion equations determining connection of the edge mode (EM) and defect mode (DM)more » frequencies with the CLC layer parameters (anisotropy of local absorption, CLC order parameter) and other parameters of the DMS are obtained. Analytic expressions for the transmission and reflection coefficients of CLC layer and DMS for the case of CLC with an anisotropic local absorption are presented and analyzed. It is shown that the CLC layers with locally anisotropic absorption reduce the EM and DM lifetimes (and increase the lasing threshold) in the way different from the case of CLC with an isotropic local absorption. Due to the Borrmann effect revealing of which is different at the opposite stop-band edges in the case of CLC layers with an anisotropic local absorption the EM life-times for the EM frequencies at the opposite stop-bands edges may be significantly different. The options of experimental observations of the theoretically revealed phenomena are briefly discussed.« less

  17. Localized modes in optics of photonic liquid crystals with local anisotropy of absorption

    NASA Astrophysics Data System (ADS)

    Belyakov, V. A.; Semenov, S. V.

    2016-05-01

    The localized optical modes in spiral photonic liquid crystals are theoretically studied for the certainty at the example of chiral liquid crystals (CLCs) for the case of CLC with an anisotropic local absorption. The model adopted here (absence of dielectric interfaces in the structures under investigation) makes it possible to get rid of mixing of polarizations on the surfaces of the CLC layer and of the defect structure and to reduce the corresponding equations to only the equations for light with polarization diffracting in the CLC. The dispersion equations determining connection of the edge mode (EM) and defect mode (DM) frequencies with the CLC layer parameters (anisotropy of local absorption, CLC order parameter) and other parameters of the DMS are obtained. Analytic expressions for the transmission and reflection coefficients of CLC layer and DMS for the case of CLC with an anisotropic local absorption are presented and analyzed. It is shown that the CLC layers with locally anisotropic absorption reduce the EM and DM lifetimes (and increase the lasing threshold) in the way different from the case of CLC with an isotropic local absorption. Due to the Borrmann effect revealing of which is different at the opposite stop-band edges in the case of CLC layers with an anisotropic local absorption the EM life-times for the EM frequencies at the opposite stop-bands edges may be significantly different. The options of experimental observations of the theoretically revealed phenomena are briefly discussed.

  18. Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect.

    PubMed

    Vincenti, M A; de Ceglia, D; Grande, M; D'Orazio, A; Scalora, M

    2013-09-15

    Perfect, narrow-band absorption is achieved in an asymmetric 1D photonic crystal with a monolayer graphene defect. Thanks to the large third-order nonlinearity of graphene and field localization in the defect layer we demonstrate the possibility to achieve controllable, saturable absorption for the pump frequency.

  19. Optical transmission properties of an anisotropic defect cavity in one-dimensional photonic crystal

    NASA Astrophysics Data System (ADS)

    Ouchani, Noama; El Moussaouy, Abdelaziz; Aynaou, Hassan; El Hassouani, Youssef; El Boudouti, El Houssaine; Djafari-Rouhani, Bahram

    2018-01-01

    We investigate theoretically the possibility to control the optical transmission in the visible and infrared regions by a defective one dimensional photonic crystal formed by a combination of a finite isotropic superlattice and an anisotropic defect layer. The Green's function approach has been used to derive the reflection and the transmission coefficients, as well as the densities of states of the optical modes. We evaluate the delay times of the localized modes and we compare their behavior with the total densities of states. We show that the birefringence of an anisotropic defect layer has a significant impact on the behavior of the optical modes in the electromagnetic forbidden bands of the structure. The amplitudes of the defect modes in the transmission and the delay time spectrum, depend strongly on the position of the cavity layer within the photonic crystal. The anisotropic defect layer induces transmission zeros in one of the two components of the transmission as a consequence of a destructive interference of the two polarized waves within this layer, giving rise to negative delay times for some wavelengths in the visible and infrared light ranges. This property is a typical characteristic of the anisotropic photonic layer and is without analogue in their counterpart isotropic defect layers. This structure offers several possibilities for controlling the frequencies, transmitted intensities and the delay times of the optical modes in the visible and infrared regions. It can be a good candidate for realizing high-precision optical filters.

  20. Study on ion implantation conditions in fabricating compressively strained Si/relaxed Si1-xCx heterostructures using the defect control by ion implantation technique

    NASA Astrophysics Data System (ADS)

    Arisawa, You; Sawano, Kentarou; Usami, Noritaka

    2017-06-01

    The influence of ion implantation energies on compressively strained Si/relaxed Si1-xCx heterostructures formed on Ar ion implanted Si substrates was investigated. It was found that relaxation ratio can be enhanced over 100% at relatively low implantation energies, and compressive strain in the topmost Si layer is maximized at 45 keV due to large lattice mismatch. Cross-sectional transmission electron microscope images revealed that defects are localized around the hetero-interface between the Si1-xCx layer and the Ar+-implanted Si substrate when the implantation energy is 45 keV, which decreases the amount of defects in the topmost Si layer and the upper part of the Si1-xCx buffer layer.

  1. Nanoforging Single Layer MoSe 2 Through Defect Engineering with Focused Helium Ion Beams

    DOE PAGES

    Iberi, Vighter; Liang, Liangbo; Ievlev, Anton V.; ...

    2016-08-02

    Development of devices and structures based on the layered 2D materials critically hinges on the capability to induce, control, and tailor the electronic, transport, and optoelectronic properties via defect engineering, much like doping strategies have enabled semiconductor electronics and forging enabled introduction of iron age. Here, we demonstrate the use of a scanning helium ion microscope (HIM) for tailoring the functionality of single layer MoSe 2 locally, and decipher associated mechanisms at atomic level. We demonstrate He + beam bombardment that locally creates vacancies, shifts the Fermi energy landscape and thereby increases the Young s modulus of elasticity. Furthermore, wemore » observe for the first time, an increase in the B-exciton photoluminescence signal from the nanoforged regions at room temperature. In conclusion, the approach for precise defect engineering demonstrated here opens opportunities for creating functional 2D optoelectronic devices with a wide range of customizable properties that include operating in the visible region.« less

  2. Nanoforging Single Layer MoSe 2 Through Defect Engineering with Focused Helium Ion Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iberi, Vighter; Liang, Liangbo; Ievlev, Anton V.

    Development of devices and structures based on the layered 2D materials critically hinges on the capability to induce, control, and tailor the electronic, transport, and optoelectronic properties via defect engineering, much like doping strategies have enabled semiconductor electronics and forging enabled introduction of iron age. Here, we demonstrate the use of a scanning helium ion microscope (HIM) for tailoring the functionality of single layer MoSe 2 locally, and decipher associated mechanisms at atomic level. We demonstrate He + beam bombardment that locally creates vacancies, shifts the Fermi energy landscape and thereby increases the Young s modulus of elasticity. Furthermore, wemore » observe for the first time, an increase in the B-exciton photoluminescence signal from the nanoforged regions at room temperature. In conclusion, the approach for precise defect engineering demonstrated here opens opportunities for creating functional 2D optoelectronic devices with a wide range of customizable properties that include operating in the visible region.« less

  3. Nanoforging Single Layer MoSe2 Through Defect Engineering with Focused Helium Ion Beams

    NASA Astrophysics Data System (ADS)

    Iberi, Vighter; Liang, Liangbo; Ievlev, Anton V.; Stanford, Michael G.; Lin, Ming-Wei; Li, Xufan; Mahjouri-Samani, Masoud; Jesse, Stephen; Sumpter, Bobby G.; Kalinin, Sergei V.; Joy, David C.; Xiao, Kai; Belianinov, Alex; Ovchinnikova, Olga S.

    2016-08-01

    Development of devices and structures based on the layered 2D materials critically hinges on the capability to induce, control, and tailor the electronic, transport, and optoelectronic properties via defect engineering, much like doping strategies have enabled semiconductor electronics and forging enabled introduction the of iron age. Here, we demonstrate the use of a scanning helium ion microscope (HIM) for tailoring the functionality of single layer MoSe2 locally, and decipher associated mechanisms at the atomic level. We demonstrate He+ beam bombardment that locally creates vacancies, shifts the Fermi energy landscape and increases the Young’s modulus of elasticity. Furthermore, we observe for the first time, an increase in the B-exciton photoluminescence signal from the nanoforged regions at the room temperature. The approach for precise defect engineering demonstrated here opens opportunities for creating functional 2D optoelectronic devices with a wide range of customizable properties that include operating in the visible region.

  4. Modification of electronic structure, magnetic structure, and topological phase of bismuthene by point defects

    NASA Astrophysics Data System (ADS)

    Kadioglu, Yelda; Kilic, Sevket Berkay; Demirci, Salih; Aktürk, O. Üzengi; Aktürk, Ethem; Ciraci, Salim

    2017-12-01

    This paper reveals how the electronic structure, magnetic structure, and topological phase of two-dimensional (2D), single-layer structures of bismuth are modified by point defects. We first showed that a free-standing, single-layer, hexagonal structure of bismuth, named h-bismuthene, exhibits nontrivial band topology. We then investigated interactions between single foreign adatoms and bismuthene structures, which comprise stability, bonding, electronic structure, and magnetic structures. Localized states in diverse locations of the band gap and resonant states in band continua of bismuthene are induced upon the adsorption of different adatoms, which modify electronic and magnetic properties. Specific adatoms result in reconstruction around the adsorption site. Single vacancies and divacancies can form readily in bismuthene structures and remain stable at high temperatures. Through rebondings, Stone-Whales-type defects are constructed by divacancies, which transform into a large hole at high temperature. Like adsorbed adatoms, vacancies induce also localized gap states, which can be eliminated through rebondings in divacancies. We also showed that not only the optical and magnetic properties, but also the topological features of pristine h-bismuthene can be modified by point defects. The modification of the topological features depends on the energies of localized states and also on the strength of coupling between point defects.

  5. Anderson localization of graphene by helium ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naitou, Y., E-mail: yu-naitou@aist.go.jp; Ogawa, S.

    Irradiation of a single-layer graphene (SLG) with accelerated helium ions (He{sup +}) controllably generates defect distributions, which create a charge carrier scattering source within the SLG. We report direct experimental observation of metal-insulator transition in SLG on SiO{sub 2}/Si substrates induced by Anderson localization. This transition was investigated using scanning capacitance microscopy by monitoring the He{sup +} dose conditions on the SLG. The experimental data show that a defect density of more than ∼1.2% induced Anderson localization. We also investigated the localization length by determining patterned placement of the defects and estimated the length to be several dozen nanometers. Thesemore » findings provide valuable insight for patterning and designing graphene-based nanostructures using helium ion microscopy.« less

  6. Nondestructive optical testing of the materials surface structure based on liquid crystals

    NASA Astrophysics Data System (ADS)

    Tomilin, M. G.; Stafeev, S. K.

    2011-08-01

    Thin layers of nematic liquid crystals (NLCs) may be used as recording media for visualizing structural and microrelief defects, distribution of low power physical fields and modifications of the surface. NLCs are more sensitive in comparison with cholesteric and smectic LCs having super molecular structures. The detecting properties of NLCs are based on local layers deformation, induced by surface fields and observed in polarizing microscope. The structural surface defects or physical field's distribution are dramatically change the distribution of surface tension. Surface defects recording becomes possible if NLC deformed structure is illuminated in transparent or reflective modes and observed in optical polarizing microscope and appearing image is compared with background structure. In this case one observes not the real defect but the local deformation in NLCs. The theory was developed to find out the real size of defects. The resolution of NLC layer is more than 2000 lines/mm. The fields of NLC application are solid crystals symmetry, minerals, metals, semiconductors, polymers and glasses structure inhomogeneities and optical coatings defects detecting. The efficiency of NLC method in biophotonics is illustrated by objective detecting cancer tissues character and visualizing the interaction traces of grippe viruses with antibodies. NLCs may detect solvent components structure in tea, wine and perfume giving unique information of their structure. It presents diagnostic information alternative to dyes and fluorescence methods. For the first time the structures of some juices and beverages are visualized to illustrate the unique possibilities of NLCs.

  7. Multiscale real-space quantum-mechanical tight-binding calculations of electronic structure in crystals with defects using perfectly matched layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourmatin, Hossein, E-mail: mpourmat@andrew.cmu.edu; Dayal, Kaushik, E-mail: kaushik@cmu.edu

    2016-10-15

    Graphical abstract: - Abstract: We consider the scattering of incident plane-wave electrons from a defect in a crystal modeled by the time-harmonic Schrödinger equation. While the defect potential is localized, the far-field potential is periodic, unlike standard free-space scattering problems. Previous work on the Schrödinger equation has been almost entirely in free-space conditions; a few works on crystals have been in one-dimension. We construct absorbing boundary conditions for this problem using perfectly matched layers in a tight-binding formulation. Using the example of a point defect in graphene, we examine the efficiency and convergence of the proposed absorbing boundary condition.

  8. Repair of localized defects in multilayer-coated reticle blanks for extreme ultraviolet lithography

    DOEpatents

    Stearns, Daniel G [Los Altos, CA; Sweeney, Donald W [San Ramon, CA; Mirkarimi, Paul B [Sunol, CA

    2004-11-23

    A method is provided for repairing defects in a multilayer coating layered onto a reticle blank used in an extreme ultraviolet lithography (EUVL) system. Using high lateral spatial resolution, energy is deposited in the multilayer coating in the vicinity of the defect. This can be accomplished using a focused electron beam, focused ion beam or a focused electromagnetic radiation. The absorbed energy will cause a structural modification of the film, producing a localized change in the film thickness. The change in film thickness can be controlled with sub-nanometer accuracy by adjusting the energy dose. The lateral spatial resolution of the thickness modification is controlled by the localization of the energy deposition. The film thickness is adjusted locally to correct the perturbation of the reflected field. For example, when the structural modification is a localized film contraction, the repair of a defect consists of flattening a mound or spreading out the sides of a depression.

  9. Temporal patterning of the potential induced by localized corrosion of iron passivity in acid media. Growth and breakdown of the oxide film described in terms of a point defect model.

    PubMed

    Sazou, Dimitra; Pavlidou, Maria; Pagitsas, Michael

    2009-10-21

    This work analyses the nature of temporal patterning of the anodic potential induced by chlorides during polarization of iron under current-controlled conditions in acid solutions. It is shown that potential oscillations emerged as a result of the local chloride attack of a thin oxide layer, which covers the iron surface in its passive state. The mechanism by which both the local oxide breakdown and the subsequent localized active dissolution (pitting) occur is explained by considering a point defect model (PDM) developed to describe the oxide growth and breakdown. According to the PDM, chlorides occupy oxygen vacancies resulting in the inhibition of oxide growth and autocatalytic generation of cation vacancies that destabilize the oxide layer. Simultaneous transformation of the outer surface of the inner oxide layer to non-adherent ferrous chloride or oxo-chloride species leads to a further thinning of the oxide layer and its lifting-on from the iron surface. The process repeats again yielding sustained oscillations of the anodic potential. Analysis of the oscillatory response obtained under current-controlled conditions as a function of either the current or the time allows the suggestion of a set of alternate diagnostic criteria, which might be used to characterize localized corrosion of iron in acid solutions.

  10. Rapid Detection Methods for Asphalt Pavement Thicknesses and Defects by a Vehicle-Mounted Ground Penetrating Radar (GPR) System

    PubMed Central

    Dong, Zehua; Ye, Shengbo; Gao, Yunze; Fang, Guangyou; Zhang, Xiaojuan; Xue, Zhongjun; Zhang, Tao

    2016-01-01

    The thickness estimation of the top surface layer and surface layer, as well as the detection of road defects, are of great importance to the quality conditions of asphalt pavement. Although ground penetrating radar (GPR) methods have been widely used in non-destructive detection of pavements, the thickness estimation of the thin top surface layer is still a difficult problem due to the limitations of GPR resolution and the similar permittivity of asphalt sub-layers. Besides, the detection of some road defects, including inadequate compaction and delamination at interfaces, require further practical study. In this paper, a newly-developed vehicle-mounted GPR detection system is introduced. We used a horizontal high-pass filter and a modified layer localization method to extract the underground layers. Besides, according to lab experiments and simulation analysis, we proposed theoretical methods for detecting the degree of compaction and delamination at the interface, respectively. Moreover, a field test was carried out and the estimated results showed a satisfactory accuracy of the system and methods. PMID:27929409

  11. Rapid Detection Methods for Asphalt Pavement Thicknesses and Defects by a Vehicle-Mounted Ground Penetrating Radar (GPR) System.

    PubMed

    Dong, Zehua; Ye, Shengbo; Gao, Yunze; Fang, Guangyou; Zhang, Xiaojuan; Xue, Zhongjun; Zhang, Tao

    2016-12-06

    The thickness estimation of the top surface layer and surface layer, as well as the detection of road defects, are of great importance to the quality conditions of asphalt pavement. Although ground penetrating radar (GPR) methods have been widely used in non-destructive detection of pavements, the thickness estimation of the thin top surface layer is still a difficult problem due to the limitations of GPR resolution and the similar permittivity of asphalt sub-layers. Besides, the detection of some road defects, including inadequate compaction and delamination at interfaces, require further practical study. In this paper, a newly-developed vehicle-mounted GPR detection system is introduced. We used a horizontal high-pass filter and a modified layer localization method to extract the underground layers. Besides, according to lab experiments and simulation analysis, we proposed theoretical methods for detecting the degree of compaction and delamination at the interface, respectively. Moreover, a field test was carried out and the estimated results showed a satisfactory accuracy of the system and methods.

  12. Localization of burn mark under an abnormal topography on MOSFET chip surface using liquid crystal and emission microscopy tools.

    PubMed

    Lau, C K; Sim, K S; Tso, C P

    2011-01-01

    This article focuses on the localization of burn mark in MOSFET and the scanning electron microscope (SEM) inspection on the defect location. When a suspect abnormal topography is shown on the die surface, further methods to pin-point the defect location is necessary. Fault localization analysis becomes important because an abnormal spot on the chip surface may and may not have a defect underneath it. The chip surface topography can change due to the catastrophic damage occurred at layers under the chip surface, but it could also be due to inconsistency during metal deposition in the wafer fabrication process. Two localization techniques, liquid crystal thermography and emission microscopy, were performed to confirm that the abnormal topography spot is the actual defect location. The tiny burn mark was surfaced by performing a surface decoration at the defect location using hot hydrochloric acid. SEM imaging, which has the high magnification and three-dimensional capabilities, was used to capture the images of the burn mark. Copyright © 2011 Wiley Periodicals, Inc.

  13. Adhesion characterization and defect sizing of sandwich honeycomb composites.

    PubMed

    Ndiaye, Elhadji Barra; Maréchal, Pierre; Duflo, Hugues

    2015-09-01

    Defects may appear in composite structures during their life cycle. A 10MHz 128 elements phased array transducer was investigated to characterize join bonds and defects in sandwich honeycomb composite structures. An adequate focal law throughout the composite skin gives the ultrasonic dispersive properties of the composite skin and glue layer behind. The resulting B-scan cartographies allow characterizing locally the honeycomb adhesion. Experimental measurements are compared in good agreement with the Debye Series Method (DSM). In the processed C-scan image, flaws are detectable and measurable, localized both in the scanning plane and in the thickness of the composite skin. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Mechanism of Na-Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhifei; Bommier, Clement; Chong, Zhi Sen

    Hard carbon is the candidate anode material for the commercialization of Na-ion batteries the batteries that by virtue of being constructed from inexpensive and abundant components open the door for massive scale up of battery-based storage of electrical energy. Holding back the development of these batteries is that a complete understanding of the mechanism of Na-ion storage in hard carbon has remained elusive. Although as an amorphous carbon, hard carbon possesses a subtle and complex structure composed of domains of layered rumpled sheets that have local order resembling graphene within each layer but complete disorder along the c-axis between layers.more » Here, we present two key discoveries: first that characteristics of hard carbon s structure can be modified systematically by heteroatom doping, and second, that these changes greatly affect Na-ion storage properties, which reveal the mechanisms for Na storage in hard carbon. Specifically, P, S and B doping was used to engineer the density of local defects in graphenic layers, and to modify the spacing between the layers. While opening the interlayer spacing through P or S doping extends the low-voltage capacity plateau, and increasing the defect concentration with P or B doping high first sodiation capacity is achieved. Furthermore, we observe that the highly defective B-doped hard carbon suffers a tremendous irreversible capacity in the first desodiation cycle. Our combined first principles calculations and experimental studies revealed a new trapping mechanism, showing that the high binding energies between B-doping induced defects and Na-ions are responsible for the irreversible capacity. The understanding generated in this work provides a totally new set of guiding principles for materials engineers working to optimize hard carbon for Na-ion battery applications.« less

  15. Mechanism of Na-Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping

    DOE PAGES

    Li, Zhifei; Bommier, Clement; Chong, Zhi Sen; ...

    2017-05-23

    Hard carbon is the candidate anode material for the commercialization of Na-ion batteries the batteries that by virtue of being constructed from inexpensive and abundant components open the door for massive scale up of battery-based storage of electrical energy. Holding back the development of these batteries is that a complete understanding of the mechanism of Na-ion storage in hard carbon has remained elusive. Although as an amorphous carbon, hard carbon possesses a subtle and complex structure composed of domains of layered rumpled sheets that have local order resembling graphene within each layer but complete disorder along the c-axis between layers.more » Here, we present two key discoveries: first that characteristics of hard carbon s structure can be modified systematically by heteroatom doping, and second, that these changes greatly affect Na-ion storage properties, which reveal the mechanisms for Na storage in hard carbon. Specifically, P, S and B doping was used to engineer the density of local defects in graphenic layers, and to modify the spacing between the layers. While opening the interlayer spacing through P or S doping extends the low-voltage capacity plateau, and increasing the defect concentration with P or B doping high first sodiation capacity is achieved. Furthermore, we observe that the highly defective B-doped hard carbon suffers a tremendous irreversible capacity in the first desodiation cycle. Our combined first principles calculations and experimental studies revealed a new trapping mechanism, showing that the high binding energies between B-doping induced defects and Na-ions are responsible for the irreversible capacity. The understanding generated in this work provides a totally new set of guiding principles for materials engineers working to optimize hard carbon for Na-ion battery applications.« less

  16. Evolution of Metastable Defects and Its Effect on the Electronic Properties of MoS2 Films.

    PubMed

    Precner, M; Polaković, T; Qiao, Qiao; Trainer, D J; Putilov, A V; Di Giorgio, C; Cone, I; Zhu, Y; Xi, X X; Iavarone, M; Karapetrov, G

    2018-04-30

    We report on structural and electronic properties of defects in chemical vapor-deposited monolayer and few-layer MoS 2 films. Scanning tunneling microscopy, Kelvin probe force microscopy, and transmission electron microscopy were used to obtain high resolution images and quantitative measurements of the local density of states, work function and nature of defects in MoS 2 films. We track the evolution of defects that are formed under heating and electron beam irradiation. We observe formation of metastable domains with different work function values after annealing the material in ultra-high vacuum to moderate temperatures. We attribute these metastable values of the work function to evolution of crystal defects forming during the annealing. The experiments show that sulfur vacancies formed after exposure to elevated temperatures diffuse, coalesce, and migrate bringing the system from a metastable to equilibrium ground state. The process could be thermally or e-beam activated with estimated energy barrier for sulfur vacancy migration of 0.6 eV in single unit cell MoS 2 . Even at equilibrium conditions, the work function and local density of states values are strongly affected near grain boundaries and edges. The results provide initial estimates of the thermal budgets available for reliable fabrication of MoS 2 -based integrated electronics and indicate the importance of defect control and layer passivation.

  17. Evolution of Metastable Defects and Its Effect on the Electronic Properties of MoS 2 Films

    DOE PAGES

    Precner, Marian; Polakovic, T.; Qiao, Qiao; ...

    2018-04-30

    Here, we report on structural and electronic properties of defects in chemical vapor-deposited monolayer and few-layer MoS 2 films. Scanning tunneling microscopy, Kelvin probe force microscopy, and transmission electron microscopy were used to obtain high resolution images and quantitative measurements of the local density of states, work function and nature of defects in MoS 2 films. We track the evolution of defects that are formed under heating and electron beam irradiation. We observe formation of metastable domains with different work function values after annealing the material in ultra-high vacuum to moderate temperatures. We attribute these metastable values of the workmore » function to evolution of crystal defects forming during the annealing. The experiments show that sulfur vacancies formed after exposure to elevated temperatures diffuse, coalesce, and migrate bringing the system from a metastable to equilibrium ground state. The process could be thermally or e-beam activated with estimated energy barrier for sulfur vacancy migration of 0.6 eV in single unit cell MoS 2. Even at equilibrium conditions, the work function and local density of states values are strongly affected near grain boundaries and edges. The results provide initial estimates of the thermal budgets available for reliable fabrication of MoS 2-based integrated electronics and indicate the importance of defect control and layer passivation.« less

  18. Evolution of Metastable Defects and Its Effect on the Electronic Properties of MoS 2 Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Precner, Marian; Polakovic, T.; Qiao, Qiao

    Here, we report on structural and electronic properties of defects in chemical vapor-deposited monolayer and few-layer MoS 2 films. Scanning tunneling microscopy, Kelvin probe force microscopy, and transmission electron microscopy were used to obtain high resolution images and quantitative measurements of the local density of states, work function and nature of defects in MoS 2 films. We track the evolution of defects that are formed under heating and electron beam irradiation. We observe formation of metastable domains with different work function values after annealing the material in ultra-high vacuum to moderate temperatures. We attribute these metastable values of the workmore » function to evolution of crystal defects forming during the annealing. The experiments show that sulfur vacancies formed after exposure to elevated temperatures diffuse, coalesce, and migrate bringing the system from a metastable to equilibrium ground state. The process could be thermally or e-beam activated with estimated energy barrier for sulfur vacancy migration of 0.6 eV in single unit cell MoS 2. Even at equilibrium conditions, the work function and local density of states values are strongly affected near grain boundaries and edges. The results provide initial estimates of the thermal budgets available for reliable fabrication of MoS 2-based integrated electronics and indicate the importance of defect control and layer passivation.« less

  19. Optimum inhomogeneity of local lattice distortions in La2CuO4+y

    PubMed Central

    Poccia, Nicola; Ricci, Alessandro; Campi, Gaetano; Fratini, Michela; Puri, Alessandro; Gioacchino, Daniele Di; Marcelli, Augusto; Reynolds, Michael; Burghammer, Manfred; Saini, Naurang Lal; Aeppli, Gabriel; Bianconi, Antonio

    2012-01-01

    Electronic functionalities in materials from silicon to transition metal oxides are, to a large extent, controlled by defects and their relative arrangement. Outstanding examples are the oxides of copper, where defect order is correlated with their high superconducting transition temperatures. The oxygen defect order can be highly inhomogeneous, even in optimal superconducting samples, which raises the question of the nature of the sample regions where the order does not exist but which nonetheless form the “glue” binding the ordered regions together. Here we use scanning X-ray microdiffraction (with a beam 300 nm in diameter) to show that for La2CuO4+y, the glue regions contain incommensurate modulated local lattice distortions, whose spatial extent is most pronounced for the best superconducting samples. For an underdoped single crystal with mobile oxygen interstitials in the spacer La2O2+y layers intercalated between the CuO2 layers, the incommensurate modulated local lattice distortions form droplets anticorrelated with the ordered oxygen interstitials, and whose spatial extent is most pronounced for the best superconducting samples. In this simplest of high temperature superconductors, there are therefore not one, but two networks of ordered defects which can be tuned to achieve optimal superconductivity. For a given stoichiometry, the highest transition temperature is obtained when both the ordered oxygen and lattice defects form fractal patterns, as opposed to appearing in isolated spots. We speculate that the relationship between material complexity and superconducting transition temperature Tc is actually underpinned by a fundamental relation between Tc and the distribution of ordered defect networks supported by the materials. PMID:22961255

  20. The preparation of high quality alumina defective photonic crystals and their application of photoluminescence enhancement

    NASA Astrophysics Data System (ADS)

    An, Yu-Ying; Wang, Jian; Zhou, Wen-Ming; Jin, Hong-Xia; Li, Jian-Feng; Wang, Cheng-Wei

    2018-07-01

    The high quality anodic aluminum oxide (AAO) defective photonic crystals (DPCs) have been successfully prepared by using a modified periodic pulse anodization technique including an effective voltage compensating strategy. The test results confirmed that the AAO DPCs were with a perfect regular layered-structure and had a narrow defective photonic band gap (DPBG) with a high quality defective mode. When the rhodamine B (rhB) was absorbed onto the pore walls of the AAO DPCs, it was found that the DPBG blue edge and localized defective mode inside could significantly enhance the photoluminescence (PL) intensity of rhodamine B (rhB), while they were carefully regulated to match with the emission peak position of rhB respectively. Even more intriguing was that the localized defective peak in DPBG had more notable effect on rhB's photoluminescence, 3.1 times higher than that of the control samples under the same conditions. The corresponding mechanism for photoluminescence enhancement was also discussed in detail.

  1. Structure-rheology relationship in a sheared lamellar fluid.

    PubMed

    Jaju, S J; Kumaran, V

    2016-03-01

    The structure-rheology relationship in the shear alignment of a lamellar fluid is studied using a mesoscale model which provides access to the lamellar configurations and the rheology. Based on the equations and free energy functional, the complete set of dimensionless groups that characterize the system are the Reynolds number (ργL(2)/μ), the Schmidt number (μ/ρD), the Ericksen number (μγ/B), the interface sharpness parameter r, the ratio of the viscosities of the hydrophilic and hydrophobic parts μ(r), and the ratio of the system size and layer spacing (L/λ). Here, ρ and μ are the fluid density and average viscosity, γ is the applied strain rate, D is the coefficient of diffusion, B is the compression modulus, μ(r) is the maximum difference in the viscosity of the hydrophilic and hydrophobic parts divided by the average viscosity, and L is the system size in the cross-stream direction. The lattice Boltzmann method is used to solve the concentration and momentum equations for a two dimensional system of moderate size (L/λ=32) and for a low Reynolds number, and the other parameters are systematically varied to examine the qualitative features of the structure and viscosity evolution in different regimes. At low Schmidt numbers where mass diffusion is faster than momentum diffusion, there is fast local formation of randomly aligned domains with "grain boundaries," which are rotated by the shear flow to align along the extensional axis as time increases. This configuration offers a high resistance to flow, and the layers do not align in the flow direction even after 1000 strain units, resulting in a viscosity higher than that for an aligned lamellar phase. At high Schmidt numbers where momentum diffusion is fast, the shear flow disrupts layers before they are fully formed by diffusion, and alignment takes place by the breakage and reformation of layers by shear, resulting in defects (edge dislocations) embedded in a background of nearly aligned layers. At high Ericksen number where the viscous forces are large compared to the restoring forces due to layer compression and bending, shear tends to homogenize the concentration field, and the viscosity decreases significantly. At very high Ericksen number, shear even disrupts the layering of the lamellar phase. At low Ericksen number, shear results in the formation of well aligned layers with edge dislocations. However, these edge dislocations take a long time to anneal; the relatively small misalignment due to the defects results in a large increase in viscosity due to high layer stiffness and due to shear localization, because the layers between defects get pinned and move as a plug with no shear. An increase in the viscosity contrast between the hydrophilic and hydrophobic parts does not alter the structural characteristics during alignment. However, there is a significant increase in the viscosity, due to pinning of the layers between defects, which results in a plug flow between defects and a localization of the shear to a part of the domain.

  2. The hydration structure at yttria-stabilized cubic zirconia (110)-water interface with sub-Ångström resolution

    DOE PAGES

    Hou, Binyang; Kim, Seunghyun; Kim, Taeho; ...

    2016-06-15

    The interfacial hydration structure of yttria-stabilized cubic zirconia (110) surface in contact with water was determined with ~0.5 Å resolution by high-resolution X-ray reflectivity measurement. The terminal layer shows a reduced electron density compared to the following substrate lattice layers, which indicates there are additional defects generated by metal depletion as well as intrinsic oxygen vacancies, both of which are apparently filled by water species. Above this top surface layer, two additional adsorbed layers are observed forming a characteristic interfacial hydration structure. The first adsorbed layer shows abnormally high density as pure water and likely includes metal species, whereas themore » second layer consists of pure water. The observed interfacial hydration structure seems responsible for local equilibration of the defective surface in water and eventually regulating the long-term degradation processes. As a result, the multitude of water interactions with the zirconia surface results in the complex but highly ordered interfacial structure constituting the reaction front.« less

  3. Electronic and structural properties of vacancies and hydrogen adsorbates on trilayer graphene

    NASA Astrophysics Data System (ADS)

    Menezes, Marcos G.; Capaz, Rodrigo B.

    2015-08-01

    Using ab initio calculations, we study the electronic and structural properties of vacancies and hydrogen adsorbates on trilayer graphene. Those defects are found to share similar low-energy electronic features, since they both remove a pz electron from the honeycomb lattice and induce a defect level near the Fermi energy. However, a vacancy also leaves unpaired σ electrons on the lattice, which lead to important structural differences and also contribute to magnetism. We explore both ABA and ABC stackings and compare properties such as formation energies, magnetic moments, spin density and the local density of states (LDOS) of the defect levels. These properties show a strong sensitivity to the layer in which the defect is placed and smaller sensitivities to sublattice placing and stacking type. Finally, for the ABC trilayer, we also study how these states behave in the presence of an external field, which opens a tunable gap in the band structure of the non-defective system. The pz defect states show a strong hybridization with band states as the field increases, with reduction and eventually loss of magnetization, and a non-magnetic, midgap-like state is found when the defect is at the middle layer.

  4. Electronic and Structural Properties of Vacancies and Hydrogen Adsorbates on Trilayer Graphene

    NASA Astrophysics Data System (ADS)

    Menezes, Marcos; Capaz, Rodrigo

    2015-03-01

    Using ab initio calculations, we study the electronic and structural properties of vacancies and hydrogen adsorbates on trilayer graphene. Those defects are found to share similar low-energy electronic features, since they both remove a pz electron from the honeycomb lattice and induce a defect level near the Fermi energy. However, a vacancy also leaves unpaired σ electrons on the lattice, which lead to important structural differences and also contribute to magnetism. We explore both ABA and ABC stackings and compare properties such as formation energies, magnetic moments, spin density and the local density of states (LDOS) of the defect levels. These properties show a strong sensitivity to the layer in which the defect is placed and smaller sensitivities to sublattice placing and stacking type. Finally, for the ABC trilayer, we also study how these states behave in the presence of an external electrical field, which opens a tunable gap in the band structure of the non-defective system. The pz defect states show a strong hybridization with band states as the field increases, with reduction and eventually loss of magnetization, and a non-magnetic, midgap-like state is found when the defect is at the middle layer.

  5. Minimizing performance degradation induced by interfacial recombination in perovskite solar cells through tailoring of the transport layer electronic properties

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Molaei Imenabadi, Rouzbeh; Vandenberghe, William G.; Hsu, Julia W. P.

    2018-03-01

    The performance of hybrid organic-inorganic metal halide perovskite solar cells is investigated using one-dimensional drift-diffusion device simulations. We study the effects of interfacial defect density, doping concentration, and electronic level positions of the charge transport layer (CTL). Choosing CTLs with a favorable band alignment, rather than passivating CTL-perovskite interfacial defects, is shown to be beneficial for maintaining high power-conversion efficiency, due to reduced minority carrier density arising from a favorable local electric field profile. Insights from this study provide theoretical guidance on practical selection of CTL materials for achieving high-performance perovskite solar cells.

  6. Determination of atomic vacancies in InAs/GaSb strained-layer superlattices by atomic strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Honggyu; Meng, Yifei; Kwon, Ji-Hwan

    Determining vacancy in complex crystals or nanostructures represents an outstanding crystallographic problem that has a large impact on technology, especially for semiconductors, where vacancies introduce defect levels and modify the electronic structure. However, vacancy is hard to locate and its structure is difficult to probe experimentally. Reported here are atomic vacancies in the InAs/GaSb strained-layer superlattice (SLS) determined by atomic-resolution strain mapping at picometre precision. It is shown that cation and anion vacancies in the InAs/GaSb SLS give rise to local lattice relaxations, especially the nearest atoms, which can be detected using a statistical method and confirmed by simulation. Themore » ability to map vacancy defect-induced strain and identify its location represents significant progress in the study of vacancy defects in compound semiconductors.« less

  7. Determination of atomic vacancies in InAs/GaSb strained-layer superlattices by atomic strain

    DOE PAGES

    Kim, Honggyu; Meng, Yifei; Kwon, Ji-Hwan; ...

    2018-01-01

    Determining vacancy in complex crystals or nanostructures represents an outstanding crystallographic problem that has a large impact on technology, especially for semiconductors, where vacancies introduce defect levels and modify the electronic structure. However, vacancy is hard to locate and its structure is difficult to probe experimentally. Reported here are atomic vacancies in the InAs/GaSb strained-layer superlattice (SLS) determined by atomic-resolution strain mapping at picometre precision. It is shown that cation and anion vacancies in the InAs/GaSb SLS give rise to local lattice relaxations, especially the nearest atoms, which can be detected using a statistical method and confirmed by simulation. Themore » ability to map vacancy defect-induced strain and identify its location represents significant progress in the study of vacancy defects in compound semiconductors.« less

  8. Comparison of localized retinal nerve fiber layer defects between a low-teen intraocular pressure group and a high-teen intraocular pressure group in normal-tension glaucoma patients.

    PubMed

    Kim, Dong Myung; Seo, Je Hyun; Kim, Seok Hwan; Hwang, Seung-Sik

    2007-05-01

    To compare the features of localized retinal nerve fiber layer (RNFL) defects between a low-teen intraocular pressure (IOP) group and a high-teen IOP group in normal-tension glaucoma (NTG) patients. Seventy-seven eyes of 77 NTG patients showing localized RNFL defects on RNFL photographs and corresponding visual filed defects at the initial visit to a glaucoma specialist were selected for this study. Patients with range of diurnal IOP within low-teen or high-teen in both eyes were included. All participants completed refraction, diurnal IOP measurement, central corneal thickness (CCT) measurement, stereoscopic disc photography, RNFL photography, and automated perimetry. On RNFL photograph, approximation of the defect to the macula (angle alpha) and width of the defects (angle beta) were measured to represent RNFL defects. The patients were divided into 2 groups according to the level of IOP. A low-teen group had highest IOP of 15 mm Hg (group B). Age at diagnosis, percentage of male patients, systemic disease, refraction, CCT, highest IOP, angle alpha, angle beta, and mean deviation and pattern standard deviation of visual field were compared between the 2 groups. Age at diagnosis of NTG, age distribution, percentage of male patients, systemic disease, spherical equivalent of refraction, CCT, mean deviation, and pattern standard deviation were not different between the 2 groups. Highest IOP was 13.8+/-1.2 mm Hg in group A and 19.2+/-1.4 mm Hg in group B (P<0.001). Angle alpha was significantly smaller in group A than in group B (37.0+/-14.0 vs. 56.5+/-21.2 degrees, P<0.001), whereas angle beta was not different between the 2 groups (39.9+/-17.9 vs. 37.5+/-15.9 degrees, P=0.54). There were no significant correlations between spherical equivalent and angle alpha (r=-0.03, P=0.82), between spherical equivalent and angle beta (r=-0.04, P=0.74), and between angle alpha and angle beta (r=-0.21, P=0.07). Localized RNFL defect was closer to the center of the macula in group A than in group B, whereas width of defects was not different between the 2 groups. These findings provide indirect evidence to suggest that more than one pathogenic mechanism may exist in the development of RNFL defects in NTG.

  9. Deep Defects Seen on Visual Fields Spatially Correspond Well to Loss of Retinal Nerve Fiber Layer Seen on Circumpapillary OCT Scans.

    PubMed

    Mavrommatis, Maria A; Wu, Zhichao; Naegele, Saskia I; Nunez, Jason; De Moraes, Carlos; Ritch, Robert; Hood, Donald C

    2018-02-01

    To examine the structure-function relationship in glaucoma between deep defects on visual fields (VF) and deep losses in the circumpapillary retinal nerve fiber layer (cpRNFL) on optical coherence tomography (OCT) circle scans. Thirty two glaucomatous eyes with deep VF defects, as defined by at least one test location worse than ≤ -15 dB on the 10-2 and/or 24-2 VF pattern deviation (PD) plots, were included from 87 eyes with "early" glaucoma (i.e., 24-2 mean deviation better than -6 dB). Using the location of the deep VF points and a schematic model, the location of local damage on an OCT circle scan was predicted. The thinnest location of cpRNFL (i.e., deepest loss) was also determined. In 19 of 32 eyes, a region of complete or near complete cpRNFL loss was observed. All 19 of these had deep VF defects on the 24-2 and/or 10-2. All of the 32 eyes with deep VF defects had abnormal cpRNFL regions (red, 1%) and all but 2 had a region of cpRNFL thickness <21 μm. The midpoint of the VF defect and the location of deepest cpRNFL had a 95% limit of agreement within approximately two-thirds of a clock-hour (or 30°) sector (between -22.1° to 25.2°). Individual fovea-to-disc angle (FtoDa) adjustment improved agreement in one eye with an extreme FtoDa. Although studies relating local structural (OCT) and functional (VF) measures typically show poor to moderate correlations, there is good qualitative agreement between the location of deep cpRNFL loss and deep defects on VFs.

  10. Photonic band gap and defects modes in inorganic/organic photonic crystal based on Si and HMDSO layers deposited by sputtering and PECVD

    NASA Astrophysics Data System (ADS)

    Amri, R.; Sahel, S.; Gamra, D.; Lejeune, M.; Clin, M.; Zellama, K.; Bouchriha, H.

    2018-02-01

    Hybrid inorganic/organic one dimensional photonic crystal based on alternating layers of Si/HMDSO is elaborated. The inorganic silicon is deposited by radiofrequency magnetron sputtering and the organic HMDSO is deposited by PECVD technique. As the Si refractive index is n = 3.4, and the refractive index of HMDSO layer depend on the deposition conditions, to get a photonic crystal with high and low refractive index presenting a good contrast, we have varied the radiofrequency power of PECVD process to obtain HMDSO layer with low refractive index (n = 1.45). Photonic band gap of this hybrid structure is obtained from the transmission and reflection spectra and appears after 9 alternative layers of Si/HMDSO. The introduction of defects in our photonic crystal leads to the emergence of localized modes within the photonic band gap. Our results are interpreted by using a theoretical model based on transfer matrix.

  11. Effect of anisotropy on defect mode peculiarities in chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Gevorgyan, A. H.; Oganesyan, K. B.

    2018-01-01

    The effect of anisotropy on defect mode peculiarities in cholesteric liquid crystals is investigated. The light transmission through the cholesteric liquid crystal layer with an anisotropic layer defect inside is solved by Ambartsumian’s layer addition modified method. Two cases are considered. In the first case, it is assumed that the defect layer is non-absorbing, and the effect of refraction anisotropy on the reflection, relative photonic density of states and the total field intensity produced in the defect layer are studied. In the second case, the defect layer is assumed to be isotropic for refraction and anisotropic for absorption, and the influence of defect layer absorption anisotropy on reflection, absorption, relative photonic density of states and the total field intensity produced in the defect layer are investigated.

  12. Chiral photonic crystals with an anisotropic defect layer.

    PubMed

    Gevorgyan, A H; Harutyunyan, M Z

    2007-09-01

    In the present paper we consider some properties of defect modes in chiral photonic crystals with an anisotropic defect layer. We solved the problem by Ambartsumian's layer addition method. We investigated the influence of the defect layer thickness variation and its location in the chiral photonic crystal (CPC) and also its optical axes orientation, as well as of CPC thickness variation on defect mode properties. Variations of the optical thickness of the defect layer have its impact on the defect mode linewidth and the light accumulation in the defect. We obtain that CPCs lose their base property at certain defect layer thicknesses; namely, they lose their diffraction reflection dependence on light polarization. We also show that the circular polarization handedness changes from right-handed to left-handed if the defect layer location is changed, and therefore, such systems can be used to create sources of elliptically polarized light with tunable ellipticity. Some nonreciprocity properties of such systems are investigated, too. In particular, it is also shown that such a system can work as a practically ideal wide band optical diode for circularly polarized incident light provided the defect layer thickness is properly chosen, and it can work as a narrow band diode at small defect layer thicknesses.

  13. Total Scattering Analysis of Disordered Nanosheet Materials

    NASA Astrophysics Data System (ADS)

    Metz, Peter C.

    Two dimensional materials are of increasing interest as building blocks for functional coatings, catalysts, and electrochemical devices. While increasingly sophisticated processing routes have been designed to obtain high-quality exfoliated nanosheets and controlled, self-assembled mesostructures, structural characterization of these materials remains challenging. This work presents a novel method of analyzing pair distribution function (PDF) data for disordered nanosheet ensembles, where supercell stacking models are used to infer atom correlations over as much as 50 A. Hierarchical models are used to reduce the parameter space of the refined model and help eliminate strongly correlated parameters. Three data sets for restacked nanosheet assemblies with stacking disorder are analyzed using these methods: simulated data for graphene-like layers, experimental data for 1 nm thick perovskite layers, and experimental data for highly defective delta-MnO2 layers. In each case, the sensitivity of the PDF to the real-space distribution of layer positions is demonstrated by exploring the fit residual as a function of stacking vectors. The refined models demonstrate that nanosheets tend towards local interlayer ordering, which is hypothesized to be driven by the electrostatic potential of the layer surfaces. Correctly accounting for interlayer atom correlations permits more accurate refinement of local structural details including local structure perturbations and defect site occupancies. In the delta-MnO2 nanosheet material, the new modeling approach identified 14% Mn vacancies while application of 3D periodic crystalline models to the < 7 A PDF region suggests a 25% vacancy concentration. In contrast, the perovskite nanosheet material is demonstrated to exhibit almost negligible structural relaxation in contrast with the bulk crystalline material from which it is derived.

  14. Evaluation of Repair Efficiency in Structures Made of Fibrous Polymer Composite Materials

    NASA Astrophysics Data System (ADS)

    Anoshkin, A. N.; Vil'deman, V. E.; Lobanov, D. S.; Chikhachev, A. I.

    2014-07-01

    Full-scale experimental investigations into the residual strength of structurally similar elements of acoustical panels after a local repair of defects, such as through breakdown, were conducted. Local repairs without using the vacuum technology were carried out. The technology of repair consists in removing and layer-bylayer replacing the damaged layers of material with repaired ones. For comparison, undamaged and repaired sandwich panel specimens were tested in tension and compression. The specimens were produced by serial technology from a VPS-33 fiberglass prepreg. Their deformation and fracture mechanisms are analyzed, and their loading diagrams are obtained.

  15. Identification of Defect Candidates and their Effects on Carrier Lifetimes and Dark Currents in InAs/InAsSb Strained-Layer Superlattices for Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Kioussis, Nicholas

    The InAs/GaSb and InAs/InAsSb type-II strain-layer superlattices (T2SLS) are of great importance and show great promise for mid-wave and long-wave infrared (IR) detectors for a variety of civil and military applications. The T2SLS offer several advantages over present day detection technologies including suppressed Auger recombination relative to the bulk MCT material, high quantum efficiencies, and commercial availability of low defect density substrates. While the T2SLS detectors are approaching the empirical Rule-07 benchmark of MCT's performance level, the dark-current density is still significantly higher than that of bulk MCT detectors. One of the major origins of dark current is associated with the Shockley-Read- Hall (SRH) process in the depletion region of the detector. I will present results of ab initio electronic structure calculations of the stability of a wide range of point defects [As and In vacancies, In, As and Sb antisites, In interstitials, As interstitials, and Sb interstitials] in various charged states in bulk InAs, InSb, and InAsSb systems and T2SLS. I will also present results of the transition energy levels. The calculations reveal that compared to defects in bulk materials, the formation and defect properties in InAs/InAsSb T2SLS can be affected by various structural features, such as strain, interface, and local chemical environment. I will present examples where the effect of strain or local chemical environment shifts the transition energy levels of certain point defects either above or below the conduction band minimum, thus suppressing their contribution to the SRH recombination.

  16. Tunneling interferometry and measurement of the thickness of ultrathin metallic Pb(111) films

    NASA Astrophysics Data System (ADS)

    Ustavshchikov, S. S.; Putilov, A. V.; Aladyshkin, A. Yu.

    2017-10-01

    Spectra of the differential tunneling conductivity for ultrathin lead films grown on Si(111) 7 × 7 single crystals with a thickness of 9 to 50 ML have been studied by low-temperature scanning tunneling microscopy and spectroscopy. The presence of local maxima of the tunneling conductivity is characteristic of such systems. The energies of maxima of the differential conductivity are determined by the spectrum of quantum-confined states of electrons in a metallic layer and, consequently, the local thickness of the layer. It has been shown that features of the microstructure of substrates, such as steps of monatomic height, structural defects, and inclusions of other materials covered with a lead layer, can be visualized by bias-modulation scanning tunneling spectroscopy.

  17. Investigation of 3C-SiC/SiO2 interfacial point defects from ab initio g-tensor calculations and electron paramagnetic resonance measurements

    NASA Astrophysics Data System (ADS)

    Nugraha, T. A.; Rohrmueller, M.; Gerstmann, U.; Greulich-Weber, S.; Stellhorn, A.; Cantin, J. L.; von Bardeleben, J.; Schmidt, W. G.; Wippermann, S.

    SiC is widely used in high-power, high-frequency electronic devices. Recently, it has also been employed as a building block in nanocomposites used as light absorbers in solar energy conversion devices. Analogous to Si, SiC features SiO2 as native oxide that can be used for passivation and insulating layers. However, a significant number of defect states are reported to form at SiC/SiO2 interfaces, limiting mobility and increasing recombination of free charge carriers. We investigated the growth of oxide on different 3C-SiC surfaces from first principles. Carbon antisite Csi defects are found to be strongly stabilized in particular at the interface, because carbon changes its hybridization from sp3 in the SiC-bulk to sp2 at the interface, creating a dangling bond inside a porous region of the SiO2 passivating layer. Combining ab initio g-tensor calculations and electron paramagnetic resonance (EPR) measurements, we show that Csi defects explain the measured EPR signatures, while the hyperfine structure allows to obtain local structural information of the oxide layer. Financial support from BMBF NanoMatFutur Grant 13N12972 and DFG priority program SPP-1601 is gratefully acknowledged.

  18. X-ray photoelectron spectroscopy for identification of morphological defects and disorders in graphene devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aydogan, Pinar; Suzer, Sefik, E-mail: suzer@fen.bilkent.edu.tr; Polat, Emre O.

    The progress in the development of graphene devices is promising, and they are now considered as an option for the current Si-based electronics. However, the structural defects in graphene may strongly influence the local electronic and mechanical characteristics. Although there are well-established analytical characterization methods to analyze the chemical and physical parameters of this material, they remain incapable of fully understanding of the morphological disorders. In this study, x-ray photoelectron spectroscopy (XPS) with an external voltage bias across the sample is used for the characterization of morphological defects in large area of a few layers graphene in a chemically specificmore » fashion. For the XPS measurements, an external +6 V bias applied between the two electrodes and areal analysis for three different elements, C1s, O1s, and Au4f, were performed. By monitoring the variations of the binding energy, the authors extract the voltage variations in the graphene layer which reveal information about the structural defects, cracks, impurities, and oxidation levels in graphene layer which are created purposely or not. Raman spectroscopy was also utilized to confirm some of the findings. This methodology the authors offer is simple but provides promising chemically specific electrical and morphological information.« less

  19. Laser-induced erasable patterns in a N* liquid crystal on an iron doped lithium niobate surface.

    PubMed

    Habibpourmoghadam, Atefeh; Lucchetti, Liana; Evans, Dean R; Reshetnyak, Victor Y; Omairat, Faissal; Schafforz, Samuel L; Lorenz, Alexander

    2017-10-16

    A chiral nematic (N*) liquid crystal (LC) was hybridized with a z-cut iron doped lithium niobate (Fe:LN) substrate and exposed with a focused continuous wave diode laser beam. The N* LC layer was confined with a cover glass to provide a homogeneous LC layer thickness. Two distinct kinds of test cells were investigated, one with an uncoated glass covering slip and one with an indium tin oxide (ITO) coated cover glass. Photo generated electric fields (generated in the Fe:LN) resulted in a localized defect formation and textural transitions in the N* LC. Due to field confinement, the field induced responses were more localized in samples with ITO coated cover glasses. By scanning the laser beam on programmed trajectories, formation of persistent patterns could be achieved in the N* LC layer. Polarized optical microscopy of the exposed samples revealed that these patterns consisted of adjacent circular Frank-Pryce defects. Exposure with a slightly defocused laser beam could be applied selectively to erase these patterns. Thus, a promising method is reported to generate reconfigurable patterns, photonic motives, and touch sensitive devices in a hybridized N* LC with micron accuracy.

  20. Process defects and in situ monitoring methods in metal powder bed fusion: a review

    NASA Astrophysics Data System (ADS)

    Grasso, Marco; Colosimo, Bianca Maria

    2017-04-01

    Despite continuous technological enhancements of metal Additive Manufacturing (AM) systems, the lack of process repeatability and stability still represents a barrier for the industrial breakthrough. The most relevant metal AM applications currently involve industrial sectors (e.g. aerospace and bio-medical) where defects avoidance is fundamental. Because of this, there is the need to develop novel in situ monitoring tools able to keep under control the stability of the process on a layer-by-layer basis, and to detect the onset of defects as soon as possible. On the one hand, AM systems must be equipped with in situ sensing devices able to measure relevant quantities during the process, a.k.a. process signatures. On the other hand, in-process data analytics and statistical monitoring techniques are required to detect and localize the defects in an automated way. This paper reviews the literature and the commercial tools for in situ monitoring of powder bed fusion (PBF) processes. It explores the different categories of defects and their main causes, the most relevant process signatures and the in situ sensing approaches proposed so far. Particular attention is devoted to the development of automated defect detection rules and the study of process control strategies, which represent two critical fields for the development of future smart PBF systems.

  1. Point defects in the 1 T' and 2 H phases of single-layer MoS2: A comparative first-principles study

    NASA Astrophysics Data System (ADS)

    Pizzochero, Michele; Yazyev, Oleg V.

    2017-12-01

    The metastable 1 T' phase of layered transition metal dichalcogenides has recently attracted considerable interest due to electronic properties, possible topological phases, and catalytic activity. We report a comprehensive theoretical investigation of intrinsic point defects in the 1 T' crystalline phase of single-layer molybdenum disulfide (1 T'-MoS2 ) and provide comparison to the well-studied semiconducting 2 H phase. Based on density functional theory calculations, we explore a large number of configurations of vacancy, adatom, and antisite defects and analyze their atomic structure, thermodynamic stability, and electronic and magnetic properties. The emerging picture suggests that, under thermodynamic equilibrium, 1 T'-MoS2 is more prone to hosting lattice imperfections than the 2 H phase. More specifically, our findings reveal that the S atoms that are closer to the Mo atomic plane are the most reactive sites. Similarly to the 2 H phase, S vacancies and adatoms in 1 T'-MoS2 are very likely to occur while Mo adatoms and antisites induce local magnetic moments. Contrary to the 2 H phase, Mo vacancies in 1 T'-MoS2 are expected to be an abundant defect due to the structural relaxation that plays a major role in lowering the defect formation energy. Overall, our study predicts that the realization of high-quality flakes of 1 T'-MoS2 should be carried out under very careful laboratory conditions but at the same time the facile defects introduction can be exploited to tailor physical and chemical properties of this polymorph.

  2. Time-resolved atomic force microscopy imaging studies of asymmetric PS-b-PMMA ultrathin films: Dislocation and disclination transformations, defect mobility, and evolution of nanoscale morphology

    NASA Astrophysics Data System (ADS)

    Hahm, J.; Sibener, S. J.

    2001-03-01

    Time-sequenced atomic force microscopy (AFM) studies of ultrathin films of cylinder-forming polystyrene-block-polymethylmethacrylate (PS-b-PMMA) copolymer are presented which delineate thin film mobility kinetics and the morphological changes which occur in microphase-separated films as a function of annealing temperature. Of particular interest are defect mobilities in the single layer (L thick) region, as well as the interfacial morphological changes which occur between L thick and adjacent 3L/2 thick layers, i.e., structural changes which occur during multilayer evolution. These measurements have revealed the dominant pathways by which disclinations and dislocations transform, annihilate, and topologically evolve during thermal annealing of such films. Mathematical combining equations are given to better explain such defect transformations and show the topological outcomes which result from defect-defect encounters. We also report a collective, Arrhenius-type flow of defects in localized L thick regions of the film; these are characterized by an activation energy of 377 kJ/mol. These measurements represent the first direct investigation of time-lapse interfacial morphological changes including associated defect evolution pathways for polymeric ultrathin films. Such observations will facilitate a more thorough and predictive understanding of diblock copolymer thin film dynamics, which in turn will further enable the utilization of these nanoscale phase-separated materials in a range of physical and chemical applications.

  3. Experimental detection of active defects in few layers MoS2 through random telegraphic signals analysis observed in its FET characteristics

    NASA Astrophysics Data System (ADS)

    Fang, Nan; Nagashio, Kosuke; Toriumi, Akira

    2017-03-01

    Transition-metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS2), are expected to be promising for next generation device applications. The existence of sulfur vacancies formed in MoS2, however, will potentially make devices unstable and problematic. Random telegraphic signals (RTSs) have often been studied in small area Si metal-oxide-semiconductor field-effect transistors (MOSFETs) to identify the carrier capture and emission processes at defects. In this paper, we have systemically analyzed RTSs observed in atomically thin layer MoS2 FETs. Several types of RTSs have been analyzed. One is the simple on/off type of telegraphic signals, the second is multilevel telegraphic signals with a superposition of the simple signals, and the third is multilevel telegraphic signals that are correlated with each other. The last one is discussed from the viewpoint of the defect-defect interaction in MoS2 FETs with a weak screening in atomically confined two-dimensional electron-gas systems. Furthermore, the position of defects causing RTSs has also been investigated by preparing MoS2 FETs with multi-probes. The electron beam was locally irradiated to intentionally generate defects in the MoS2 channel. It is clearly demonstrated that the MoS2 channel is one of the RTS origins. RTS analysis enables us to analyze the defect dynamics of TMD devices.

  4. Influence of the local environment on Mn acceptors in GaAs

    NASA Astrophysics Data System (ADS)

    Lee, Donghun; Gohlke, David; Benjamin, Anne; Gupta, Jay A.

    2015-04-01

    As transistors continue to shrink toward nanoscale dimensions, their characteristics are increasingly dependent on the statistical variations of impurities in the semiconductor material. The scanning tunneling microscope (STM) can be used to not only study prototype devices with atomically precise placement of impurity atoms, but can also probe how the properties of these impurities depend on the local environment. Tunneling spectroscopy of Mn acceptors in GaAs indicates that surface-layer Mn act as a deep acceptor, with a hole binding energy that can be tuned by positioning charged defects nearby. Band bending induced by the tip or by these defects can also tune the ionization state of the acceptor complex, evident as a ring-like contrast in STM images. The interplay of these effects is explored over a wide range of defect distances, and understood using iterative simulations of tip-induced band bending.

  5. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe 2: Enabling nanoscale direct write homo-junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanford, Michael; Noh, Joo Hyon; Koehler, Michael R.

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe 2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe 2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe 2more » thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe 2 is degraded more severely relative to electron transport after helium ion irradiation. Moreover, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe 2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.« less

  6. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe 2: Enabling nanoscale direct write homo-junctions

    DOE PAGES

    Stanford, Michael; Noh, Joo Hyon; Koehler, Michael R.; ...

    2016-06-06

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe 2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe 2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe 2more » thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe 2 is degraded more severely relative to electron transport after helium ion irradiation. Moreover, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe 2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.« less

  7. Space Propulsion and Power

    DTIC Science & Technology

    2013-03-08

    crystals with tunable band gaps possible Refractive index N is imaginary - Bulk Electromagnetic waves cannot propogate But surface plasmons...Directional wave radiation through plasmon resonances Directional wave guiding through mid-band defect wave localization Distribution A: Approved for... acoustic damping, shear- layer instability (PERTURBATION EXPANSION EXAMPLE) classical wave equation for combustion instability: model

  8. Intelligent technologies in process of highly-precise products manufacturing

    NASA Astrophysics Data System (ADS)

    Vakhidova, K. L.; Khakimov, Z. L.; Isaeva, M. R.; Shukhin, V. V.; Labazanov, M. A.; Ignatiev, S. A.

    2017-10-01

    One of the main control methods of the surface layer of bearing parts is the eddy current testing method. Surface layer defects of bearing parts, like burns, cracks and some others, are reflected in the results of the rolling surfaces scan. The previously developed method for detecting defects from the image of the raceway was quite effective, but the processing algorithm is complicated and lasts for about 12 ... 16 s. The real non-stationary signals from an eddy current transducer (ECT) consist of short-time high-frequency and long-time low-frequency components, therefore a transformation is used for their analysis, which provides different windows for different frequencies. The wavelet transform meets these conditions. Based on aforesaid, a methodology for automatically detecting and recognizing local defects in bearing parts surface layer has been developed on the basis of wavelet analysis using integral estimates. Some of the defects are recognized by the amplitude component, otherwise an automatic transition to recognition by the phase component of information signals (IS) is carried out. The use of intelligent technologies in the manufacture of bearing parts will, firstly, significantly improve the quality of bearings, and secondly, significantly improve production efficiency by reducing (eliminating) rejections in the manufacture of products, increasing the period of normal operation of the technological equipment (inter-adjustment period), the implementation of the system of Flexible facilities maintenance, as well as reducing production costs.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skupov, A. V., E-mail: skav10@mail.ru

    TRISQD software is developed for the computer simulation of processes in which radiation defects are formed under the corpuscular irradiation of semiconductor heterostructures with lenticular nanoinclusions of various shapes. The computer program is used to study defect-formation processes in p-i-n diodes with the i region having a built-in 20-period lattice of self-assembled Ge(Si) nanoislands formed under irradiation with high-energy neutrons. It is found that the fraction of Ge(Si) nanoislands in which point radiation defects are formed under the impact of atomic-displacement cascades is ≤3% of their total number in the lattice. More than 94% of the defects are localized inmore » the bulk of the p, n, and i regions of the diode and in silicon layers that separate sheets of Ge(Si) nanoislands.« less

  10. Effect of antimony on the deep-level traps in GaInNAsSb thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, Muhammad Monirul, E-mail: islam.monir.ke@u.tsukuba.ac.jp; Miyashita, Naoya; Ahsan, Nazmul

    2014-09-15

    Admittance spectroscopy has been performed to investigate the effect of antimony (Sb) on GaInNAs material in relation to the deep-level defects in this material. Two electron traps, E1 and E2 at an energy level 0.12 and 0.41 eV below the conduction band (E{sub C}), respectively, were found in undoped GaInNAs. Bias-voltage dependent admittance confirmed that E1 is an interface-type defect being spatially localized at the GaInNAs/GaAs interface, while E2 is a bulk-type defect located around mid-gap of GaInNAs layer. Introduction of Sb improved the material quality which was evident from the reduction of both the interface and bulk-type defects.

  11. Analysis of Nanoporosity in Moisture Permeation Barrier Layers by Electrochemical Impedance Spectroscopy.

    PubMed

    Perrotta, Alberto; García, Santiago J; Michels, Jasper J; Andringa, Anne-Marije; Creatore, Mariadriana

    2015-07-29

    Water permeation in inorganic moisture permeation barriers occurs through macroscale defects/pinholes and nanopores, the latter with size approaching the water kinetic diameter (0.27 nm). Both permeation paths can be identified by the calcium test, i.e., a time-consuming and expensive optical method for determining the water vapor transmission rate (WVTR) through barrier layers. Recently, we have shown that ellipsometric porosimetry (i.e., a combination of spectroscopic ellipsometry and isothermal adsorption studies) is a valid method to classify and quantify the nanoporosity and correlate it with the WVTR values. Nevertheless, no information is obtained about the macroscale defects or the kinetics of water permeation through the barrier, both essential in assessing the quality of the barrier layer. In this study, electrochemical impedance spectroscopy (EIS) is shown as a sensitive and versatile method to obtain information on nanoporosity and macroscale defects, water permeation, and diffusivity of moisture barrier layers, complementing the barrier property characterization obtained by means of EP and calcium test. EIS is performed on thin SiO2 barrier layers deposited by plasma enhanced-CVD. It allows the determination of the relative water uptake in the SiO2 layers, found to be in agreement with the nanoporosity content inferred by EP. Furthermore, the kinetics of water permeation is followed by EIS, and the diffusivity (D) is determined and found to be in accordance with literature values. Moreover, differently from EP, EIS data are shown to be sensitive to the presence of local macrodefects, correlated with the barrier failure during the calcium test.

  12. Prevalence of Split Nerve Fiber Layer Bundles in Healthy People Imaged with Spectral Domain Optical Coherence Tomography.

    PubMed

    Gür Güngör, Sirel; Akman, Ahmet; Sarıgül Sezenöz, Almila; Tanrıaşıkı, Gülşah

    2016-12-01

    The presence of retinal nerve fiber layer (RNFL) split bundles was recently described in normal eyes scanned using scanning laser polarimetry and by histologic studies. Split bundles may resemble RNFL loss in healthy eyes. The aim of our study was to determine the prevalence of nerve fiber layer split bundles in healthy people. We imaged 718 eyes of 359 healthy persons with the spectral domain optical coherence tomography in this cross-sectional study. All eyes had intraocular pressure of 21 mmHg or less, normal appearance of the optic nerve head, and normal visual fields (Humphrey Field Analyzer 24-2 full threshold program). In our study, a bundle was defined as 'split' when there is localized defect not resembling a wedge defect in the RNFL deviation map with a symmetrically divided RNFL appearance on the RNFL thickness map. The classification was performed by two independent observers who used an identical set of reference examples to standardize the classification. Inter-observer consensus was reached in all cases. Bilateral superior split bundles were seen in 19 cases (5.29%) and unilateral superior split was observed in 15 cases (4.16%). In 325 cases (90.52%) there was no split bundle. Split nerve fiber layer bundles, in contrast to single nerve fiber layer bundles, are not common findings in healthy eyes. In eyes with normal optic disc appearance, especially when a superior RNFL defect is observed in RNFL deviation map, the RNLF thickness map and graphs should also be examined for split nerve fiber layer bundles.

  13. Interfacial Cation-Defect Charge Dipoles in Stacked TiO2/Al2O3 Gate Dielectrics.

    PubMed

    Zhang, Liangliang; Janotti, Anderson; Meng, Andrew C; Tang, Kechao; Van de Walle, Chris G; McIntyre, Paul C

    2018-02-14

    Layered atomic-layer-deposited and forming-gas-annealed TiO 2 /Al 2 O 3 dielectric stacks, with the Al 2 O 3 layer interposed between the TiO 2 and a p-type germanium substrate, are found to exhibit a significant interface charge dipole that causes a ∼-0.2 V shift of the flat-band voltage and suppresses the leakage current density for gate injection of electrons. These effects can be eliminated by the formation of a trilayer dielectric stack, consistent with the cancellation of one TiO 2 /Al 2 O 3 interface dipole by the addition of another dipole of opposite sign. Density functional theory calculations indicate that the observed interface-dependent properties of TiO 2 /Al 2 O 3 dielectric stacks are consistent in sign and magnitude with the predicted behavior of Al Ti and Ti Al point-defect dipoles produced by local intermixing of the Al 2 O 3 /TiO 2 layers across the interface. Evidence for such intermixing is found in both electrical and physical characterization of the gate stacks.

  14. First-principles theory of doping in layered oxide electrode materials

    NASA Astrophysics Data System (ADS)

    Hoang, Khang

    2017-12-01

    Doping lithium-ion battery electrode materials Li M O2 (M = Co, Ni, Mn) with impurities has been shown to be an effective way to optimize their electrochemical properties. Here, we report a detailed first-principles study of layered oxides LiCoO2, LiNiO2, and LiMnO2 lightly doped with transition-metal (Fe, Co, Ni, Mn) and non-transition-metal (Mg, Al) impurities using hybrid-density-functional defect calculations. We find that the lattice site preference is dependent on both the dopant's charge and spin states, which are coupled strongly to the local lattice environment and can be affected by the presence of codopant(s), and the relative abundance of the host compound's constituting elements in the synthesis environment. On the basis of the structure and energetics of the impurities and their complexes with intrinsic point defects, we determine all possible low-energy impurity-related defect complexes, thus providing defect models for further analyses of the materials. From a materials modeling perspective, these lightly doped compounds also serve as model systems for understanding the more complex, mixed-metal, Li M O2 -based battery cathode materials.

  15. Nano-size defects in arsenic-implanted HgCdTe films: a HRTEM study

    NASA Astrophysics Data System (ADS)

    Bonchyk, O. Yu.; Savytskyy, H. V.; Swiatek, Z.; Morgiel, Y.; Izhnin, I. I.; Voitsekhovskii, A. V.; Korotaev, A. G.; Mynbaev, K. D.; Fitsych, O. I.; Varavin, V. S.; Dvoretsky, S. A.; Marin, D. V.; Yakushev, M. V.

    2018-02-01

    Radiation damage and its transformation under annealing were studied with bright-field and high-resolution transmission electron microscopy for arsenic-implanted HgCdTe films with graded-gap surface layers. In addition to typical highly defective layers in as-implanted material, a 50 nm-thick sub-surface layer with very low defect density was observed. The main defects in other layers after implantation were dislocation loops, yet after arsenic activation annealing, the dominating defects were single dislocations. Transport (from depth to surface), transformation and annihilation of radiation-induced defects were observed as a result of annealing, with the depth with the maximum defect density decreasing from 110 to 40 nm.

  16. Electrical Characteristics of Organic Field Effect Transistor Formed by Gas Treatment of High-k Al2O3 at Low Temperature

    NASA Astrophysics Data System (ADS)

    Lee, Sunwoo; Yoon, Seungki; Park, In-Sung; Ahn, Jinho

    2009-04-01

    We studied the electrical characteristics of an organic field effect transistor (OFET) formed by the hydrogen (H2) and nitrogen (N2) mixed gas treatment of a gate dielectric layer. We also investigated how device mobility is related to the length and width variations of the channel. Aluminum oxide (Al2O3) was used as the gate dielectric layer. After the treatment, the mobility and subthreshold swing were observed to be significantly improved by the decreased hole carrier localization at the interfacial layer between the gate oxide and pentacene channel layers. H2 gas plays an important role in removing the defects of the gate oxide layer at temperatures below 100 °C.

  17. Controlled drive-in and precipitation of hydrogen during plasma hydrogenation of silicon using a thin compressively strained SiGe layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okba, F.; Departement Optique et Mecanique de Precision, Faculte des Sciences de l'Ingenieur, Universite Ferhat Abbas, Setif 19000; Cherkashin, N.

    2010-07-19

    We have quantitatively studied by transmission electron microscopy the growth kinetics of platelets formed during the continuous hydrogenation of a Si substrate/SiGe/Si heterostructure. We have evidenced and explained the massive transfer of hydrogen from a population of platelets initially generated in the upper Si layer by plasma hydrogenation towards a population of larger platelets located in the SiGe layer. We demonstrate that this type of process can be used not only to precisely localize the micro-cracks, then the fracture line at a given depth but also to 'clean' the top layer from pre-existing defects.

  18. Screening method for selecting semiconductor substrates having defects below a predetermined level in an oxide layer

    DOEpatents

    Warren, William L.; Vanheusden, Karel J. R.; Schwank, James R.; Fleetwood, Daniel M.; Shaneyfelt, Marty R.; Winokur, Peter S.; Devine, Roderick A. B.

    1998-01-01

    A method for screening or qualifying semiconductor substrates for integrated circuit fabrication. The method comprises the steps of annealing at least one semiconductor substrate at a first temperature in a defect-activating ambient (e.g. hydrogen, forming gas, or ammonia) for sufficient time for activating any defects within on oxide layer of the substrate; measuring a defect-revealing electrical characteristic of at least a portion of the oxide layer for determining a quantity of activated defects therein; and selecting substrates for which the quantity of activated defects is below a predetermined level. The defect-revealing electrical characteristic may be a capacitance-versus-voltage (C-V) characteristic or a current-versus-voltage (I-V) characteristic that is dependent on an electrical charge in the oxide layer generated by the activated defects. Embodiments of the present invention may be applied for screening any type of semiconductor substrate or wafer having an oxide layer formed thereon or therein. This includes silicon-on-insulator substrates formed by a separation by the implantation of oxygen (SIMOX) process or the bond and etch back silicon-on-insulator (BESOI) process, as well as silicon substrates having a thermal oxide layer or a deposited oxide layer.

  19. Nondestructive testing of thin films using surface acoustic waves and laser ultrasonics

    NASA Astrophysics Data System (ADS)

    Jenot, Frédéric; Fourez, Sabrina; Ouaftouh, Mohammadi; Duquennoy, Marc

    2018-04-01

    Thin films are widely used in many fields such as electronics, optics or materials science. For example, they find applications in thermal or mechanical sensors design. They are also very useful as protective or reinforcement layers for many structures. However, some coating defects such as thickness variations, microfissuring or poor adhesion are common problems. Therefore, nondestructive testing of these structures using acoustic waves generated and detected by lasers represents a major interest. Indeed, in comparison with conventional methods based on the use of piezoelectric transducers, laser ultrasonics leads to non-contact investigations with a large bandwidth. Usually, bulk acoustic waves are used and a pulse-echo technique is considered that needs high frequencies and implies local measurements. In order to avoid this limitation, we propose to use surface acoustic waves in a frequency range up to 45 MHz. The samples consist of a micrometric gold layer deposited on silicon substrates. In a first part, using dispersion analysis, theoretical and experimental results clearly reveal that the first Rayleigh mode allows the detection of film thickness variations and open cracks. In a second part, a localized adhesion defect is introduced in a similar sample. The effects of such a flaw on the Rayleigh modes dispersion curves are theoretically described. Finally, we experimentally show that the first Rayleigh mode allows the defect detection only under specific conditions.

  20. Efficient and accurate approach to modeling the microstructure and defect properties of LaCoO3

    NASA Astrophysics Data System (ADS)

    Buckeridge, J.; Taylor, F. H.; Catlow, C. R. A.

    2016-04-01

    Complex perovskite oxides are promising materials for cathode layers in solid oxide fuel cells. Such materials have intricate electronic, magnetic, and crystalline structures that prove challenging to model accurately. We analyze a wide range of standard density functional theory approaches to modeling a highly promising system, the perovskite LaCoO3, focusing on optimizing the Hubbard U parameter to treat the self-interaction of the B-site cation's d states, in order to determine the most appropriate method to study defect formation and the effect of spin on local structure. By calculating structural and electronic properties for different magnetic states we determine that U =4 eV for Co in LaCoO3 agrees best with available experiments. We demonstrate that the generalized gradient approximation (PBEsol +U ) is most appropriate for studying structure versus spin state, while the local density approximation (LDA +U ) is most appropriate for determining accurate energetics for defect properties.

  1. Mechanical properties and fracture behaviour of defective phosphorene nanotubes under uniaxial tension

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Pei, Qing-Xiang; Huang, Wei; Zhang, Yong-Wei

    2017-12-01

    The easy formation of vacancy defects and the asymmetry in the two sublayers of phosphorene nanotubes (PNTs) may result in brand new mechanical properties and failure behaviour. Herein, we investigate the mechanical properties and fracture behaviour of defective PNTs under uniaxial tension using molecular dynamics simulations. Our simulation results show that atomic vacancies cause local stress concentration and thus significantly reduce the fracture strength and fracture strain of PNTs. More specifically, a 1% defect concentration is able to reduce the fracture strength and fracture strain by as much as 50% and 66%, respectively. Interestingly, the reduction in the mechanical properties is found to depend on the defect location: a defect located in the outer sublayer has a stronger effect than one located in the inner layer, especially for PNTs with a small diameter. Temperature is also found to strongly influence the mechanical properties of both defect-free and defective PNTs. When the temperature is increased from 0 K to 400 K, the fracture strength and fracture strain of defective PNTs with a defect concentration of 1% are reduced further by 71% and 61%, respectively. These findings are of great importance for the structural design of PNTs as building blocks in nanodevices.

  2. Specific features of the circular dichroism of a chiral photonic crystal with a defect layer inside in the presence of a gain

    NASA Astrophysics Data System (ADS)

    Gevorgyan, A. H.

    2017-01-01

    The specific features of the circular dichroism (CD) spectra of a cholesteric liquid crystal (CLC) layer with a defect layer inside in the presence of gain have been investigated. The features of the dependence of CD on the parameter characterizing the gain on the defect mode are analyzed for two cases: (i) gain is present in the defect layer and is absent in the CLC sublayers and (ii) gain is absent in the defect layer but is present in the CLC sublayers. It is shown that these dependences significantly differ in the two aforementioned cases. The dependences of the reflection, transmission, and absorption on the defect mode on the gain parameter have been investigated for incident light with both circular polarizations.

  3. Polarization-induced local pore-wall functionalization for biosensing: from micropore to nanopore.

    PubMed

    Liu, Jie; Pham, Pascale; Haguet, Vincent; Sauter-Starace, Fabien; Leroy, Loïc; Roget, André; Descamps, Emeline; Bouchet, Aurélie; Buhot, Arnaud; Mailley, Pascal; Livache, Thierry

    2012-04-03

    The use of biological-probe-modified solid-state pores in biosensing is currently hindered by difficulties in pore-wall functionalization. The surface to be functionalized is small and difficult to target and is usually chemically similar to the bulk membrane. Herein, we demonstrate the contactless electrofunctionalization (CLEF) approach and its mechanism. This technique enables the one-step local functionalization of the single pore wall fabricated in a silica-covered silicon membrane. CLEF is induced by polarization of the pore membrane in an electric field and requires a sandwich-like composition and a conducting or semiconducting core for the pore membrane. The defects in the silica layer of the micropore wall enable the creation of an electric pathway through the silica layer, which allows electrochemical reactions to take place locally on the pore wall. The pore diameter is not a limiting factor for local wall modification using CLEF. Nanopores with a diameter of 200 nm fabricated in a silicon membrane and covered with native silica layer have been successfully functionalized with this method, and localized pore-wall modification was obtained. Furthermore, through proof-of-concept experiments using ODN-modified nanopores, we show that functionalized nanopores are suitable for translocation-based biosensing.

  4. Thin-Film Module Reverse-Bias Breakdown Sites Identified by Thermal Imaging: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Steven; Sulas, Dana; Guthrey, Harvey L

    Thin-film module sections are stressed under reverse bias to simulate partial shading conditions. Such stresses can cause permanent damage in the form of 'wormlike' defects due to thermal runaway. When large reverse biases with limited current are applied to the cells, dark lock-in thermography (DLIT) can detect where spatially-localized breakdown initiates before thermal runaway leads to permanent damage. Predicted breakdown defect sites have been identified in both CIGS and CdTe modules using DLIT. These defects include small pinholes, craters, or voids in the absorber layer of the film that lead to built-in areas of weakness where high current densities maymore » cause thermal damage in a partial-shading event.« less

  5. Thin-Film Module Reverse-Bias Breakdown Sites Identified by Thermal Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Steven; Sulas, Dana; Guthrey, Harvey L

    Thin-film module sections are stressed under reverse bias to simulate partial shading conditions. Such stresses can cause permanent damage in the form of 'wormlike' defects due to thermal runaway. When large reverse biases with limited current are applied to the cells, dark lock-in thermography (DLIT) can detect where spatially-localized breakdown initiates before thermal runaway leads to permanent damage. Predicted breakdown defect sites have been identified in both CIGS and CdTe modules using DLIT. These defects include small pinholes, craters, or voids in the absorber layer of the film that lead to built-in areas of weakness where high current densities maymore » cause thermal damage in a partial-shading event.« less

  6. High-frequency guided ultrasonic waves for hidden defect detection in multi-layered aircraft structures.

    PubMed

    Masserey, Bernard; Raemy, Christian; Fromme, Paul

    2014-09-01

    Aerospace structures often contain multi-layered metallic components where hidden defects such as fatigue cracks and localized disbonds can develop, necessitating non-destructive testing. Employing standard wedge transducers, high frequency guided ultrasonic waves that penetrate through the complete thickness were generated in a model structure consisting of two adhesively bonded aluminium plates. Interference occurs between the wave modes during propagation along the structure, resulting in a frequency dependent variation of the energy through the thickness with distance. The wave propagation along the specimen was measured experimentally using a laser interferometer. Good agreement with theoretical predictions and two-dimensional finite element simulations was found. Significant propagation distance with a strong, non-dispersive main wave pulse was achieved. The interaction of the high frequency guided ultrasonic waves with small notches in the aluminium layer facing the sealant and on the bottom surface of the multilayer structure was investigated. Standard pulse-echo measurements were conducted to verify the detection sensitivity and the influence of the stand-off distance predicted from the finite element simulations. The results demonstrated the potential of high frequency guided waves for hidden defect detection at critical and difficult to access locations in aerospace structures from a stand-off distance. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Multi-Scale Simulation of Interfacial Phenomena and Nano-Particle Placement in Polymer Matrix Composites

    DTIC Science & Technology

    2012-08-01

    Molecular Dynamics Simulations Coarse-Grain Particle Dynamics Simulations Local structure; Force field parameterization Extended structure...K) C8H18 C12H26 C16H34 Adhesive forces can cause local density gradients and defects " Pronounced layering of polymer near interfaces...reactive end groups (CnH2n+1S) on Cu Gap SubPc on C60 Pentacene on a-SiO2 Cyclopentene on Au Crystalline CuPc on Al Polyimide on Si

  8. Mitigation of substrate defects in reticles using multilayer buffer layers

    DOEpatents

    Mirkarimi, Paul B.; Bajt, Sasa; Stearns, Daniel G.

    2001-01-01

    A multilayer film is used as a buffer layer to minimize the size of defects on a reticle substrate prior to deposition of a reflective coating on the substrate. The multilayer buffer layer deposited intermediate the reticle substrate and the reflective coating produces a smoothing of small particles and other defects on the reticle substrate. The reduction in defect size is controlled by surface relaxation during the buffer layer growth process and by the degree of intermixing and volume contraction of the materials at the multilayer interfaces. The buffer layers are deposited at near-normal incidence via a low particulate ion beam sputtering process. The growth surface of the buffer layer may also be heated by a secondary ion source to increase the degree of intermixing and improve the mitigation of defects.

  9. Screening method for selecting semiconductor substrates having defects below a predetermined level in an oxide layer

    DOEpatents

    Warren, W.L.; Vanheusden, K.J.R.; Schwank, J.R.; Fleetwood, D.M.; Shaneyfelt, M.R.; Winokur, P.S.; Devine, R.A.B.

    1998-07-28

    A method is disclosed for screening or qualifying semiconductor substrates for integrated circuit fabrication. The method comprises the steps of annealing at least one semiconductor substrate at a first temperature in a defect-activating ambient (e.g. hydrogen, forming gas, or ammonia) for sufficient time for activating any defects within on oxide layer of the substrate; measuring a defect-revealing electrical characteristic of at least a portion of the oxide layer for determining a quantity of activated defects therein; and selecting substrates for which the quantity of activated defects is below a predetermined level. The defect-revealing electrical characteristic may be a capacitance-versus voltage (C-V) characteristic or a current-versus-voltage (I-V) characteristic that is dependent on an electrical charge in the oxide layer generated by the activated defects. Embodiments of the present invention may be applied for screening any type of semiconductor substrate or wafer having an oxide layer formed thereon or therein. This includes silicon-on-insulator substrates formed by a separation by the implantation of oxygen (SIMOX) process or the bond and etch back silicon-on-insulator (BESOI) process, as well as silicon substrates having a thermal oxide layer or a deposited oxide layer. 5 figs.

  10. Local epitaxial growth of ZrO2 on Ge (100) substrates by atomic layer epitaxy

    NASA Astrophysics Data System (ADS)

    Kim, Hyoungsub; Chui, Chi On; Saraswat, Krishna C.; McIntyre, Paul C.

    2003-09-01

    High-k dielectric deposition processes for gate dielectric preparation on Si surfaces usually result in the unavoidable and uncontrolled formation of a thin interfacial oxide layer. Atomic layer deposition of ˜55-Å ZrO2 film on a Ge (100) substrate using ZrCl4 and H2O at 300 °C was found to produce local epitaxial growth [(001) Ge//(001) ZrO2 and [100] Ge//[100] ZrO2] without a distinct interfacial layer, unlike the situation observed when ZrO2 is deposited using the same method on Si. Relatively large lattice mismatch (˜10%) between ZrO2 and Ge produced a high areal density of interfacial misfit dislocations. Large hysteresis (>200 mV) and high frequency dispersion were observed in capacitance-voltage measurements due to the high density of interface states. However, a low leakage current density, comparable to values obtained on Si substrates, was observed with the same capacitance density regardless of the high defect density.

  11. On a chaotic potential at the surface of a compensated semiconductor under conditions of the self-assembly of electrically active defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bondarenko, V. B., E-mail: enter@spbstu.ru; Filimonov, A. V.

    2015-09-15

    Natural irregularities of the electric potential on the surface of a semiconductor under conditions of the partial self-assembly of electrically active defects, i.e., on the formation of donor–acceptor pairs in depletion layers, are studied. The amplitude and character of the spatial distribution of the chaotic potential on the surface of a semiconductor in the cases of localized and delocalized states are determined. The dependence of the amplitude of the chaotic potential on the degree of compensation of the semiconductor is obtained.

  12. Strain engineering in epitaxial Ge1- x Sn x : a path towards low-defect and high Sn-content layers

    NASA Astrophysics Data System (ADS)

    Margetis, Joe; Yu, Shui-Qing; Bhargava, Nupur; Li, Baohua; Du, Wei; Tolle, John

    2017-12-01

    The plastic strain relaxation of CVD-grown Ge1-x Sn x layers was investigated in x = 0.09 samples with thicknesses of 152, 180, 257, 570, and 865 nm. X-ray diffraction-reciprocal space mapping was used to determine the strain, composition, and the nature of defects in each layer. Secondary ion mass spectrometry was used to examine the evolution of the compositional profile. These results indicate that growth beyond the critical thickness results in the spontaneous formation of a relaxed and highly defective 9% Sn layer followed by a low defect 12% Sn secondary layer. We find that this growth method can be used to engineer thick, strain-relaxed, and low defect density layers. Furthermore we utilize this strain-dependent Sn incorporation behavior to achieve Sn compositions of 17.5%. Photoluminesence of these layers produces light emission at 3.1 μm.

  13. Probing defect states in polycrystalline GaN grown on Si(111) by sub-bandgap laser-excited scanning tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Hsiao, F.-M.; Schnedler, M.; Portz, V.; Huang, Y.-C.; Huang, B.-C.; Shih, M.-C.; Chang, C.-W.; Tu, L.-W.; Eisele, H.; Dunin-Borkowski, R. E.; Ebert, Ph.; Chiu, Y.-P.

    2017-01-01

    We demonstrate the potential of sub-bandgap laser-excited cross-sectional scanning tunneling microscopy and spectroscopy to investigate the presence of defect states in semiconductors. The characterization method is illustrated on GaN layers grown on Si(111) substrates without intentional buffer layers. According to high-resolution transmission electron microscopy and cathodoluminescence spectroscopy, the GaN layers consist of nanoscale wurtzite and zincblende crystallites with varying crystal orientations and hence contain high defect state densities. In order to discriminate between band-to-band excitation and defect state excitations, we use sub-bandgap laser excitation. We probe a clear increase in the tunnel current at positive sample voltages during sub-bandgap laser illumination for the GaN layer with high defect density, but no effect is found for high quality GaN epitaxial layers. This demonstrates the excitation of free charge carriers at defect states. Thus, sub-bandgap laser-excited scanning tunneling spectroscopy is a powerful complimentary characterization tool for defect states.

  14. The narrow pass band filter of tunable 1D phononic crystals with a dielectric elastomer layer

    NASA Astrophysics Data System (ADS)

    Wu, Liang-Yu; Wu, Mei-Ling; Chen, Lien-Wen

    2009-01-01

    In this paper, we study the defect bands of a 1D phononic crystal consisting of aluminum (Al) and polymethyl methacrylate (PMMA) layers with a dielectric elastomer (DE) defect layer. The plane wave expansion (PWE) method and supercell calculation are used to calculate the band structure and the defect bands. The transmission spectra are obtained using the finite element method (FEM). Since the thickness of the dielectric elastomer defect layer is controlled by applying an electric voltage, the frequencies of the defect bands can be tuned. A narrow pass band filter can be developed and designed by using the dielectric elastomer.

  15. Near-infrared imaging of enamel hypomineralization due to developmental defects

    NASA Astrophysics Data System (ADS)

    Lee, Robert C.; Jang, Andrew; Fried, Daniel

    2017-02-01

    The increasing prevalence of mild hypomineralization due to developmental defects on tooth surfaces poses a challenge for caries detection and caries risk assessment and reliable methods need to be developed to discriminate such lesions from active caries lesions that need intervention. Previous studies have demonstrated that areas of hypomineralization are typically covered with a relatively thick surface layer of highly mineralized and transparent enamel similar to arrested lesions. Seventy-six extracted human teeth with mild to moderate degrees of suspicious fluorosis were imaged using near-infrared reflectance and transillumination. Enamel hypomineralization was clearly visible in both modalities. However, it was difficult to distinguish hypomineralization due to developmental defects from caries lesions with contrast measurements alone. The location of the lesion on tooth coronal surface (i.e. generalized vs. localized) seems to be the most important indicator for the presence of enamel hypomineralization due to developmental defects.

  16. Near-infrared imaging of enamel hypomineralization due to developmental defects.

    PubMed

    Lee, Robert C; Jang, Andrew; Fried, Daniel

    2017-01-28

    The increasing prevalence of mild hypomineralization due to developmental defects on tooth surfaces poses a challenge for caries detection and caries risk assessment and reliable methods need to be developed to discriminate such lesions from active caries lesions that need intervention. Previous studies have demonstrated that areas of hypomineralization are typically covered with a relatively thick surface layer of highly mineralized and transparent enamel similar to arrested lesions. Seventy-six extracted human teeth with mild to moderate degrees of suspicious fluorosis were imaged using near-infrared reflectance and transillumination. Enamel hypomineralization was clearly visible in both modalities. However, it was difficult to distinguish hypomineralization due to developmental defects from caries lesions with contrast measurements alone. The location of the lesion on tooth coronal surface (i.e. generalized vs. localized) seems to be the most important indicator for the presence of enamel hypomineralization due to developmental defects.

  17. Investigations on entropy layer along hypersonic hyperboloids using a defect boundary layer

    NASA Technical Reports Server (NTRS)

    Brazier, J. P.; Aupoix, B.; Cousteix, J.

    1992-01-01

    A defect approach coupled with matched asymptotic expansions is used to derive a new set of boundary layer equations. This method ensures a smooth matching of the boundary layer with the inviscid solution. These equations are solved to calculate boundary layers over hypersonic blunt bodies involving the entropy gradient effect. Systematic comparisons are made for both axisymmetric and plane flows in several cases with different Mach and Reynolds numbers. After a brief survey of the entropy layer characteristics, the defect boundary layer results are compared with standard boundary layer and full Navier-Stokes solutions. The entropy gradient effects are found to be more important in the axisymmetric case than in the plane one. The wall temperature has a great influence on the results through the displacement effect. Good predictions can be obtained with the defect approach over a cold wall in the nose region, with a first order solution. However, the defect approach gives less accurate results far from the nose on axisymmetric bodies because of the thinning of the entropy layer.

  18. Metallurgical investigation of wire breakage of tyre bead grade.

    PubMed

    Palit, Piyas; Das, Souvik; Mathur, Jitendra

    2015-10-01

    Tyre bead grade wire is used for tyre making application. The wire is used as reinforcement inside the polymer of tyre. The wire is available in different size/section such as 1.6-0.80 mm thin Cu coated wire. During tyre making operation at tyre manufacturer company, wire failed frequently. In this present study, different broken/defective wire samples were collected from wire mill for detailed investigation of the defect. The natures of the defects were localized and similar in nature. The fracture surface was of finger nail type. Crow feet like defects including button like surface abnormalities were also observed on the broken wire samples. The defect was studied at different directions under microscope. Different advanced metallographic techniques have been used for detail investigation. The analysis revealed that, white layer of surface martensite was formed and it caused the final breakage of wire. In this present study we have also discussed about the possible reason for the formation of such kind of surface martensite (hard-phase).

  19. Defect Characterization in SiGe/SOI Epitaxial Semiconductors by Positron Annihilation

    PubMed Central

    2010-01-01

    The potential of positron annihilation spectroscopy (PAS) for defect characterization at the atomic scale in semiconductors has been demonstrated in thin multilayer structures of SiGe (50 nm) grown on UTB (ultra-thin body) SOI (silicon-on-insulator). A slow positron beam was used to probe the defect profile. The SiO2/Si interface in the UTB-SOI was well characterized, and a good estimation of its depth has been obtained. The chemical analysis indicates that the interface does not contain defects, but only strongly localized charged centers. In order to promote the relaxation, the samples have been submitted to a post-growth annealing treatment in vacuum. After this treatment, it was possible to observe the modifications of the defect structure of the relaxed film. Chemical analysis of the SiGe layers suggests a prevalent trapping site surrounded by germanium atoms, presumably Si vacancies associated with misfit dislocations and threading dislocations in the SiGe films. PMID:21170391

  20. Automated retinal nerve fiber layer defect detection using fundus imaging in glaucoma.

    PubMed

    Panda, Rashmi; Puhan, N B; Rao, Aparna; Padhy, Debananda; Panda, Ganapati

    2018-06-01

    Retinal nerve fiber layer defect (RNFLD) provides an early objective evidence of structural changes in glaucoma. RNFLD detection is currently carried out using imaging modalities like OCT and GDx which are expensive for routine practice. In this regard, we propose a novel automatic method for RNFLD detection and angular width quantification using cost effective redfree fundus images to be practically useful for computer-assisted glaucoma risk assessment. After blood vessel inpainting and CLAHE based contrast enhancement, the initial boundary pixels are identified by local minima analysis of the 1-D intensity profiles on concentric circles. The true boundary pixels are classified using random forest trained by newly proposed cumulative zero count local binary pattern (CZC-LBP) and directional differential energy (DDE) along with Shannon, Tsallis entropy and intensity features. Finally, the RNFLD angular width is obtained by random sample consensus (RANSAC) line fitting on the detected set of boundary pixels. The proposed method is found to achieve high RNFLD detection performance on a newly created dataset with sensitivity (SN) of 0.7821 at 0.2727 false positives per image (FPI) and the area under curve (AUC) value is obtained as 0.8733. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Structural defects in GaN revealed by Transmission Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liliental-Weber, Zuzanna

    This paper reviews the various types of structural defects observed by Transmission Electron Microscopy in GaN heteroepitaxial layers grown on foreign substrates and homoepitaxial layers grown on bulk GaN substrates. The structural perfection of these layers is compared to the platelet self-standing crystals grown by High Nitrogen Pressure Solution. Defects in undoped and Mg doped GaN are discussed. Lastly, some models explaining the formation of inversion domains in heavily Mg doped layers that are possible defects responsible for the difficulties of p-doping in GaN are also reviewed.

  2. Structural defects in GaN revealed by Transmission Electron Microscopy

    DOE PAGES

    Liliental-Weber, Zuzanna

    2014-09-08

    This paper reviews the various types of structural defects observed by Transmission Electron Microscopy in GaN heteroepitaxial layers grown on foreign substrates and homoepitaxial layers grown on bulk GaN substrates. The structural perfection of these layers is compared to the platelet self-standing crystals grown by High Nitrogen Pressure Solution. Defects in undoped and Mg doped GaN are discussed. Lastly, some models explaining the formation of inversion domains in heavily Mg doped layers that are possible defects responsible for the difficulties of p-doping in GaN are also reviewed.

  3. Formation Energies of Native Point Defects in Strained-Layer Superlattices (Postprint)

    DTIC Science & Technology

    2017-06-05

    AFRL-RX-WP-JA-2017-0217 FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES (POSTPRINT) Zhi-Gang Yu...2016 Interim 11 September 2013 – 5 November 2016 4. TITLE AND SUBTITLE FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES...native point defect (NPD) formation energies and absence of mid-gap levels. In this Letter we use first-principles calculations to study the formation

  4. Formation Energies of Native Point Defects in Strained layer Superlattices (Postprint)

    DTIC Science & Technology

    2017-06-05

    AFRL-RX-WP-JA-2017-0440 FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES (POSTPRINT) Zhi Gang Yu...2017 Interim 11 September 2013 – 31 May 2017 4. TITLE AND SUBTITLE FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES...Hamiltonian, tight-binding Hamiltonian, and Green’s function techniques to obtain energy levels arising from native point defects (NPDs) in InAs-GaSb and

  5. Evaluation of Bending Strength of Carburized Gears Based on Inferential Identification of Principal Surface Layer Defects

    NASA Astrophysics Data System (ADS)

    Masuyama, Tomoya; Inoue, Katsumi; Yamanaka, Masashi; Kitamura, Kenichi; Saito, Tomoyuki

    High load capacity of carburized gears originates mainly from the hardened layer and induced residual stress. On the other hand, surface decarburization, which causes a nonmartensitic layer, and inclusions such as oxides and segregation act as latent defects which considerably reduce fatigue strength. In this connection, the authors have proposed a formula of strength evaluation by separately quantifying defect influence. However, the principal defect which limits strength of gears with several different defects remains unclarified. This study presents a method of inferential identification of principal defects based on test results of carburized gears made of SCM420 clean steel, gears with both an artificial notch and nonmartensitic layer at the tooth fillet, and so forth. It clarifies practical uses of presented methods, and strength of carburized gears can be evaluated by focusing on principal defect size.

  6. Thin-film limit formalism applied to surface defect absorption.

    PubMed

    Holovský, Jakub; Ballif, Christophe

    2014-12-15

    The thin-film limit is derived by a nonconventional approach and equations for transmittance, reflectance and absorptance are presented in highly versatile and accurate form. In the thin-film limit the optical properties do not depend on the absorption coefficient, thickness and refractive index individually, but only on their product. We show that this formalism is applicable to the problem of ultrathin defective layer e.g. on a top of a layer of amorphous silicon. We develop a new method of direct evaluation of the surface defective layer and the bulk defects. Applying this method to amorphous silicon on glass, we show that the surface defective layer differs from bulk amorphous silicon in terms of light soaking.

  7. A New Classification for Pathologies of Spinal Meninges, Part 1: Dural Cysts, Dissections, and Ectasias.

    PubMed

    Klekamp, Jörg

    2017-07-01

    The clinical significance of pathologies of the spinal dura is often unclear and their management controversial. To classify spinal dural pathologies analogous to vascular aneurysms, present their symptoms and surgical results. Among 1519 patients with spinal space-occupying lesions, 66 patients demonstrated dural pathologies. Neuroradiological and surgical features were reviewed and clinical data analyzed. Saccular dural diverticula (type I, n = 28) caused by defects of both dural layers, dissections between dural layers (type II, n = 29) due to defects of the inner layer, and dural ectasias (type III, n = 9) related to structural changes of the dura were distinguished. For all types, symptoms consisted of local pain followed by signs of radiculopathy or myelopathy, while one patient with dural ectasia presented a low-pressure syndrome and 10 patients with dural dissections additional spinal cord herniation. Type I and type II pathologies required occlusion of their dural defects via extradural (type I) or intradural (type II) approaches. For type III pathologies of the dural sac no surgery was recommended. Favorable results were obtained in all 14 patients with type I and 13 of 15 patients with type II pathologies undergoing surgery. The majority of dural pathologies involving root sleeves remain asymptomatic, while those of the dural sac commonly lead to pain and neurological symptoms. Type I and type II pathologies were treated with good long-term results occluding their dural defects, while ectasias of the dural sac (type III) were managed conservatively. Copyright © 2017 by the Congress of Neurological Surgeons

  8. Extended defects and hydrogen interactions in ion implanted silicon

    NASA Astrophysics Data System (ADS)

    Rangan, Sanjay

    The structural and electrical properties of extended defects generated because of ion implantation and the interaction of hydrogen with these defects have been studied in this work. Two distinct themes have been studied, the first where defects are a detrimental and the second where they are useful. In the first scenario, transient enhanced diffusion of boron has been studied and correlated with defect evolution studies due to silicon and argon ion implants. Spreading resistance profiles (SRP) correlated with deep level transient spectroscopy (DLTS) measurements, reveal that a low anneal temperatures (<650°C) defect dissolution and defect injection dominates, resulting in increased junction depths. At higher anneal temperatures, however, repair dominates over defect injection resulting in shallower junctions. Hydrogenation experiments shows that hydrogen enhances dopant activation and reduces TED at low anneal temperatures (<550°C). At anneal temperatures >550°C, the effect of hydrogen is lost, due to its out-diffusion. Moreover, due to catastrophic out-diffusion of hydrogen, additional damage is created resulting in deeper junctions in hydrogenated samples, compared to the non-hydrogenated ones. Comparing defect evolution due to Si and Ar ion implants at different anneal temperatures, while the type of defects is the same in the two cases, their (defect) dissolution occurs at lower anneal temperatures (˜850°C) for Si implants. Dissolution for Ar implants seems to occur at higher anneal temperatures. The difference has been attributed to the increased number of vacancies created by Ar to that of silicon implant. In second aspect, nano-cavity formation due to vacancy agglomeration has been studied by helium ion implantation and furnace anneal, where the effect of He dose, implant energy and anneal time have been processing parameters that have been varied. Cavities are formed only when the localized concentration of He is greater than 3 x 1020 cm-3. While at high implant doses, a continuous cavity layer is formed, at low implant doses a discontinuous layer is observed. The formation of cavities at low doses has been observed for the first time. Variation of anneal times reveal that cavities are initially facetted (for short anneal times) and tend to become spherical when annealed for along time (300min). Also presented is the recipe for formation of multiple cavity layers and the electrical and optical properties of these cavities. Electrically, these cavities are metastable, with two strong minority carrier peaks formed by multiple defect levels. Photoluminescence measurements reveal a strong 0.8eV photon peak.

  9. Studies of morphological instability and defect formation in heteroepitaxial Si(1-x)Ge(x) thin films via controlled annealing experiments

    NASA Astrophysics Data System (ADS)

    Ozkan, Cengiz Sinan

    Strained layer semiconductor structures provide possibilities for novel electronic devices. When a semiconductor layer is deposited epitaxially onto a single crystal substrate with the same structure but a slightly different lattice parameter, the semiconductor layer grows commensurately with a misfit strain that can be accommodated elastically below a critical thickness. When the critical thickness is exceeded, the elastic strain energy builds up to a point where it becomes energetically favorable to form misfit dislocations. In addition, in the absence of a capping layer, Sisb{1-x}Gesb{x} films exhibit surface roughening via surface diffusion under the effect of a compressive stress which is caused by a lattice mismatch. Surface roughening takes place in the form of ridges aligned along {<}100{>} or {<}110{>} directions depending on the film thickness and the rate of strain relief. Recent work has shown that surface roughening makes a very significant contribution to strain relaxation in heteroepitaxial thin films. At sharp valley regions on the surface, amplified local stresses can cause further defect nucleation and propagation, such as stacking faults and 90sp° dislocations. In addition, capping layers with suitable thickness will surpress surface roughening and keep most of the strain in the film. We study surface roughening and defect formation by conducting controlled annealing experiments on initially flat and defect free films grown by LPCVD in a hydrogen ambient. We study films with both subcritical and supercritical thicknesses. In addition, we compare the relaxation behaviour of capped and uncapped films where surface roughening was inhibited in films with a capping layer. TEM and AFM studies were conducted to study the morphology and microstructure of these films. X-ray diffraction measurements were made to determine the amount of strain relaxation in these films. Further studies of surface roughening on heteroepitaxial films under a positive biaxial stress have shown that, morphological evolution occurs regardless of the sign of stress in the film. Finally, we have studied surface roughening processes in real time by conducting in-situ TEM experiments. We have observed that the kinetics of roughening depend strongly on the annealing ambient.

  10. Burning Graphene Layer-by-Layer

    PubMed Central

    Ermakov, Victor A.; Alaferdov, Andrei V.; Vaz, Alfredo R.; Perim, Eric; Autreto, Pedro A. S.; Paupitz, Ricardo; Galvao, Douglas S.; Moshkalev, Stanislav A.

    2015-01-01

    Graphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in “cold-wall” reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material. PMID:26100466

  11. Defects in paramagnetic Co-doped ZnO films studied by transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovacs, Andras; Ney, A.; Duchamp, Martial

    2013-12-23

    We have studied planar defects in epitaxial Co:ZnO dilute magnetic semiconductor thin films deposited on c-plane sapphire (Al2O3) and the Co:ZnO/Al2O3 interface structure at atomic resolution using aberration-corrected transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). Comparing Co:ZnO samples deposited by pulsed laser deposition and reactive magnetron sputtering, both exhibit extrinsic stacking faults, incoherent interface structures, and compositional variations within the first 3-4 Co:ZnO layers at the interface.. In addition, we have measured the local strain which reveals the lattice distortion around the stacking faults.

  12. Spatially-resolved studies on the role of defects and boundaries in electronic behavior of 2D materials

    NASA Astrophysics Data System (ADS)

    Hus, Saban M.; Li, An-Ping

    2017-08-01

    Two-dimensional (2D) materials are intrinsically heterogeneous. Both localized defects, such as vacancies and dopants, and mesoscopic boundaries, such as surfaces and interfaces, give rise to compositional or structural heterogeneities. The presence of defects and boundaries can break lattice symmetry, modify the energy landscape, and create quantum confinement, leading to fascinating electronic properties different from the ;ideal; 2D sheets. This review summarizes recent progress in understanding the roles of defects and boundaries in electronic, magnetic, thermoelectric, and transport properties of 2D layered materials. The focus is on the understanding of correlation of atomic-scale structural information with electronic functions by interrogating heterogeneities individually. The materials concerned are graphene, transition metal dichalcogenides (TMDs), hexagonal boron nitride (hBN), and topological insulators (TIs). The experimental investigations benefit from new methodologies and techniques in scanning tunneling microscopy (STM), including spin-polarized STM, scanning tunneling potentiometry (STP), scanning tunneling thermopower microscopy, and multi-probe STM. The experimental effort is complemented by the computational and theoretical approaches, capable of discriminating between closely competing states and achieving the length scales necessary to bridge across features such as local defects and complex heterostructures. The goal is to provide a general view of current understanding and challenges in studying the heterogeneities in 2D materials and to evaluate the potential of controlling and exploiting these heterogeneities for novel functionalities and electron devices.

  13. Tunable Bragg filters with a phase transition material defect layer

    DOE PAGES

    Wang, Xi; Gong, Zilun; Dong, Kaichen; ...

    2016-01-01

    We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities.

  14. Tunable Bragg filters with a phase transition material defect layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xi; Gong, Zilun; Dong, Kaichen

    We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities.

  15. Positron annihilation spectroscopy for the determination of thickness and defect profile in thin semiconductor layers

    NASA Astrophysics Data System (ADS)

    Zubiaga, A.; García, J. A.; Plazaola, F.; Tuomisto, F.; Zúñiga-Pérez, J.; Muñoz-Sanjosé, V.

    2007-05-01

    We present a method, based on positron annihilation spectroscopy, to obtain information on the defect depth profile of layers grown over high-quality substrates. We have applied the method to the case of ZnO layers grown on sapphire, but the method can be very easily generalized to other heterostructures (homostructures) where the positron mean diffusion length is small enough. Applying the method to the ratio of W and S parameters obtained from Doppler broadening measurements, W/S plots, it is possible to determine the thickness of the layer and the defect profile in the layer, when mainly one defect trapping positron is contributing to positron trapping at the measurement temperature. Indeed, the quality of such characterization is very important for potential technological applications of the layer.

  16. Context-based automated defect classification system using multiple morphological masks

    DOEpatents

    Gleason, Shaun S.; Hunt, Martin A.; Sari-Sarraf, Hamed

    2002-01-01

    Automatic detection of defects during the fabrication of semiconductor wafers is largely automated, but the classification of those defects is still performed manually by technicians. This invention includes novel digital image analysis techniques that generate unique feature vector descriptions of semiconductor defects as well as classifiers that use these descriptions to automatically categorize the defects into one of a set of pre-defined classes. Feature extraction techniques based on multiple-focus images, multiple-defect mask images, and segmented semiconductor wafer images are used to create unique feature-based descriptions of the semiconductor defects. These feature-based defect descriptions are subsequently classified by a defect classifier into categories that depend on defect characteristics and defect contextual information, that is, the semiconductor process layer(s) with which the defect comes in contact. At the heart of the system is a knowledge database that stores and distributes historical semiconductor wafer and defect data to guide the feature extraction and classification processes. In summary, this invention takes as its input a set of images containing semiconductor defect information, and generates as its output a classification for the defect that describes not only the defect itself, but also the location of that defect with respect to the semiconductor process layers.

  17. Chip-scale thermal management of high-brightness LED packages

    NASA Astrophysics Data System (ADS)

    Arik, Mehmet; Weaver, Stanton

    2004-10-01

    The efficiency and reliability of the solid-state lighting devices strongly depend on successful thermal management. Light emitting diodes, LEDs, are a strong candidate for the next generation, general illumination applications. LEDs are making great strides in terms of lumen performance and reliability, however the barrier to widespread use in general illumination still remains the cost or $/Lumen. LED packaging designers are pushing the LED performance to its limits. This is resulting in increased drive currents, and thus the need for lower thermal resistance packaging designs. As the power density continues to rise, the integrity of the package electrical and thermal interconnect becomes extremely important. Experimental results with high brightness LED packages show that chip attachment defects can cause significant thermal gradients across the LED chips leading to premature failures. A numerical study was also carried out with parametric models to understand the chip active layer temperature profile variation due to the bump defects. Finite element techniques were utilized to evaluate the effects of localized hot spots at the chip active layer. The importance of "zero defects" in one of the more popular interconnect schemes; the "epi down" soldered flip chip configuration is investigated and demonstrated.

  18. In situ study of heavy ion irradiation response of immiscible Cu/Fe multilayers

    DOE PAGES

    Chen, Youxing; Li, Nan; Bufford, Daniel Charles; ...

    2016-04-09

    By providing active defect sinks that capture and annihilate radiation induced defect clusters immiscible metallic multilayers with incoherent interfaces can effectively reduce defect density in ion irradiated metals. Although it is anticipated that defect density within the layers should vary as a function of distance to the layer interface, there is, to date, little in situ TEM evidence to validate this hypothesis. In our study monolithic Cu films and Cu/Fe multilayers with individual layer thickness, h, of 100 and 5 nm were subjected to in situ Cu ion irradiation at room temperature to nominally 1 displacement-per-atom inside a transmission electronmore » microscope. Rapid formation and propagation of defect clusters were observed in monolithic Cu, whereas fewer defects with smaller dimensions were generated in Cu/Fe multilayers with smaller h. Moreover, in situ video shows that the cumulative defect density in Cu/Fe 100 nm multilayers indeed varies, as a function of distance to the layer interfaces, supporting a long postulated hypothesis.« less

  19. Topological defects in electric double layers of ionic liquids at carbon interfaces

    DOE PAGES

    Black, Jennifer M.; Okatan, Mahmut Baris; Feng, Guang; ...

    2015-06-07

    The structure and properties of the electrical double layer in ionic liquids is of interest in a wide range of areas including energy storage, catalysis, lubrication, and many more. Theories describing the electrical double layer for ionic liquids have been proposed, however a full molecular level description of the double layer is lacking. To date, studies have been predominantly focused on ion distributions normal to the surface, however the 3D nature of the electrical double layer in ionic liquids requires a full picture of the double layer structure not only normal to the surface, but also in plane. Here wemore » utilize 3D force mapping to probe the in plane structure of an ionic liquid at a graphite interface and report the direct observation of the structure and properties of topological defects. The observation of ion layering at structural defects such as step-edges, reinforced by molecular dynamics simulations, defines the spatial resolution of the method. Observation of defects allows for the establishment of the universality of ionic liquid behavior vs. separation from the carbon surface and to map internal defect structure. In conclusion, these studies offer a universal pathway for probing the internal structure of topological defects in soft condensed matter on the nanometer level in three dimensions.« less

  20. Hydrogen-related defects in Al2O3 layers grown on n-type Si by the atomic layer deposition technique

    NASA Astrophysics Data System (ADS)

    Kolkovsky, Vl.; Stübner, R.

    2018-04-01

    The electrical properties of alumina films with thicknesses varying from 15 nm to 150 nm, grown by the atomic layer deposition technique on n-type Si, were investigated. We demonstrated that the annealing of the alumina layers in argon (Ar) or hydrogen (H) atmosphere at about 700 K resulted in the introduction of negatively charged defects irrespective of the type of the substrate. These defects were also observed in samples subjected to a dc H plasma treatment at temperatures below 400 K, whereas they were not detected in as-grown samples and in samples annealed in Ar atmosphere at temperatures below 400 K. The concentration of these defects increased with a higher H content in the alumina films. In good agreement with theory we assigned these defects to interstitial H-related defects.

  1. Eddy Current Testing for Detecting Small Defects in Thin Films

    NASA Astrophysics Data System (ADS)

    Obeid, Simon; Tranjan, Farid M.; Dogaru, Teodor

    2007-03-01

    Presented here is a technique of using Eddy Current based Giant Magneto-Resistance sensor (GMR) to detect surface and sub-layered minute defects in thin films. For surface crack detection, a measurement was performed on a copper metallization of 5-10 microns thick. It was done by scanning the GMR sensor on the surface of the wafer that had two scratches of 0.2 mm, and 2.5 mm in length respectively. In another experiment, metal coatings were deposited over the layers containing five defects with known lengths such that the defects were invisible from the surface. The limit of detection (resolution), in terms of defect size, of the GMR high-resolution Eddy Current probe was studied using this sample. Applications of Eddy Current testing include detecting defects in thin film metallic layers, and quality control of metallization layers on silicon wafers for integrated circuits manufacturing.

  2. Point Defects in Two-Dimensional Layered Semiconductors: Physics and Its Applications

    NASA Astrophysics Data System (ADS)

    Suh, Joonki

    Recent advances in material science and semiconductor processing have been achieved largely based on in-depth understanding, efficient management and advanced application of point defects in host semiconductors, thus finding the relevant techniques such as doping and defect engineering as a traditional scientific and technological solution. Meanwhile, two- dimensional (2D) layered semiconductors currently draw tremendous attentions due to industrial needs and their rich physics at the nanoscale; as we approach the end of critical device dimensions in silicon-based technology, ultra-thin semiconductors have the potential as next- generation channel materials, and new physics also emerges at such reduced dimensions where confinement of electrons, phonons, and other quasi-particles is significant. It is therefore rewarding and interesting to understand and redefine the impact of lattice defects by investigating their interactions with energy/charge carriers of the host matter. Potentially, the established understanding will provide unprecedented opportunities for realizing new functionalities and enhancing the performance of energy harvesting and optoelectronic devices. In this thesis, multiple novel 2D layered semiconductors, such as bismuth and transition- metal chalcogenides, are explored. Following an introduction of conventional effects induced by point defects in semiconductors, the related physics of electronically active amphoteric defects is revisited in greater details. This can elucidate the complication of a two-dimensional electron gas coexisting with the topological states on the surface of bismuth chalcogenides, recently suggested as topological insulators. Therefore, native point defects are still one of the keys to understand and exploit topological insulators. In addition to from a fundamental science point of view, the effects of point defects on the integrated thermal-electrical transport, as well as the entropy-transporting process in thermoelectric materials are thoroughly investigated. Point defects can potentially beat the undesired coupling, often term "thermoelectric Bermuda triangle", among electrical conductivity, thermal conductivity and thermopower. The maximum thermoelectric performance is demonstrated with an intermediate density of defects when they beneficially and multi-functionally act as electron donors, as well as strongly energy-dependent electron and phonon scatterers. Therefore, this is a good example of how fundamental defect physics can be applied for practical devices toward renewable energy technology. Another interesting field of layered nanomaterials is on transition-metal dichalcogenides (TMDs), sensational candidates for 2D semiconductor physics and applications. At the reduced dimensionality of 2D where a far stronger correlation between point defects and charge carriers is expected, it is studied how chalcogen vacancies alter optical properties of monolayer TMDs. A new, sub-bandgap broad emission lines as well as increase in the overall photoluminescence intensity at low temperatures are reported as a result of high quantum efficiency of excitons, i.e., bound electron-hole pairs, localized at defect sites. On electrical transport, both n- and p-type materials are needed to form junctions and support bipolar carrier conduction while typically only one type of doping is stable for a particular TMD. For example, MoS2 is natively n-type, thus the lack of p-type doping hampers the development of charge-splitting p-n junctions of MoS2. To address this issue, we demonstrate stable p-type conduction in MoS2 by substitutional Nb doping up to the degenerate level. Proof-of-concept, van der Waals p-n homo-junctions based on vertically stacked MoS2 layers are also fabricated which enable gate-tuneable current rectification. Various electronic devices fabricated are stable in ambient air even without additional treatment such as capping layer protection, thanks to the substitutionality nature of the doping; this is in stark contrast to the existing approach of using molecular doping, which usually suffers from volatility and reactivity with air and/or water molecules.

  3. Quasibound states in short SNS junctions with point defects

    NASA Astrophysics Data System (ADS)

    Bespalov, A. A.

    2018-04-01

    Using the Green functions technique, we study the subgap spectrum of short three-dimensional superconductor-normal metal-superconductor junctions containing one or two point impurities in the normal layer. We find that a single nonmagnetic or magnetic defect induces two quasibound Shiba-like states. If the defect is located close to the junction edge, the energies of these states oscillate as functions of the distance between the impurity and the edge. In the case of two nonmagnetic impurities, there are generally four quasibound states (two per spin projection). Their energies oscillate as functions of the distance between the impurities, and reach their asymptotic values when this distance becomes much larger than the Fermi wavelength. The contributions of the impurities to the Josephson current, local density of states, and to the normal-state conductance of the junction are analyzed.

  4. Field-induced strain degradation of AlGaN/GaN high electron mobility transistors on a nanometer scale

    NASA Astrophysics Data System (ADS)

    Lin, Chung-Han; Doutt, D. R.; Mishra, U. K.; Merz, T. A.; Brillson, L. J.

    2010-11-01

    Nanoscale Kelvin probe force microscopy and depth-resolved cathodoluminescence spectroscopy reveal an electronic defect evolution inside operating AlGaN/GaN high electron mobility transistors with degradation under electric-field-induced stress. Off-state electrical stress results in micron-scale areas within the extrinsic drain expanding and decreasing in electric potential, midgap defects increasing by orders-of-magnitude at the AlGaN layer, and local Fermi levels lowering as gate-drain voltages increase above a characteristic stress threshold. The pronounced onset of defect formation, Fermi level movement, and transistor degradation at the threshold gate-drain voltage of J. A. del Alamo and J. Joh [Microelectron. Reliab. 49, 1200 (2009)] is consistent with crystal deformation and supports the inverse piezoelectric model of high electron mobility transistor degradation.

  5. Chloride ions induce order-disorder transition at water-oxide interfaces

    NASA Astrophysics Data System (ADS)

    Deshmukh, Sanket; Kamath, Ganesh; Ramanathan, Shriram; Sankaranarayanan, Subramanian K. R. S.

    2013-12-01

    Water can form quasi-two-dimensional ordered layers near a solid interface. The solvation dynamics and ionic transport phenomena through this ordered water structure is of direct relevance to a variety of problems in interface science. Molecular dynamics simulations are used to study the impact of local fluctuation of the chloride ion density in the vicinity of an oxide surface on the structure and dynamics of water layers. We demonstrate that local increase in chloride ions beyond a threshold concentration near the water-MgO (100) interface introduces an order-disorder transition of this two-dimensional layered network into bulklike water, leading to increased diffusional characteristics and reduced hydrogen bonding lifetimes. We find that the extent of this order-disorder transition can be tuned by modifying the defect chemistry and nature of the underlying substrate. The kinetic fluidity resulting from order-disorder transition at high chloride ion concentration has significance for a broad range of phenomena, ranging from freezing point depression of brine to onset of aqueous corrosion.

  6. Research on c-HfO2 (0 0 1)/α -Al2O3 (1 -1 0 2) interface in CTM devices based on first principle theory

    NASA Astrophysics Data System (ADS)

    Lu, Wenjuan; Dai, Yuehua; Wang, Feifei; Yang, Fei; Ma, Chengzhi; Zhang, Xu; Jiang, Xianwei

    2017-12-01

    With the growing application of high-k dielectrics, the interface between HfO2 and Al2O3 play a crucial role in CTM devices. To clearly understand the interaction of the HfO-AlO interface at the atomic and electronic scale, the bonding feature, electronic properties and charge localized character of c- HfO2 (0 0 1)/α-Al2O3 (1 -1 0 2) interface has been investigated by first principle calculations. The c- HfO2 (0 0 1)/α-Al2O3 (1 -1 0 2) interface has adhesive energy about -1.754 J/m2, suggesting that this interface can exist stably. Through analysis of Bader charge and charge density difference, the intrinsic interfacial gap states are mainly originated from the OII and OIII types oxygen atoms at the interface, and only OIII type oxygen atoms can localized electrons effectively and are provided with good reliability during P/E cycles, which theoretically validate the experimental results that HfO2/Al2O3 multi-layered charge trapping layer can generate more effective traps in memory device. Furthermore, the influence of interfacial gap states during P/E cycles in the defective interface system have also been studied, and the results imply that defective system displays the degradation on the reliability during P/E cycles, while, the charge localized ability of interfacial states is stronger than intrinsic oxygen vacancy in the trapping layer. Besides, these charge localized characters are further explained by the analysis of the density of states correspondingly. In sum, our results compare well with similar experimental observations in other literatures, and the study of the interfacial gap states in this work would facilitate further development of interface passivation.

  7. Defect tolerance in resistor-logic demultiplexers for nanoelectronics.

    PubMed

    Kuekes, Philip J; Robinett, Warren; Williams, R Stanley

    2006-05-28

    Since defect rates are expected to be high in nanocircuitry, we analyse the performance of resistor-based demultiplexers in the presence of defects. The defects observed to occur in fabricated nanoscale crossbars are stuck-open, stuck-closed, stuck-short, broken-wire, and adjacent-wire-short defects. We analyse the distribution of voltages on the nanowire output lines of a resistor-logic demultiplexer, based on an arbitrary constant-weight code, when defects occur. These analyses show that resistor-logic demultiplexers can tolerate small numbers of stuck-closed, stuck-open, and broken-wire defects on individual nanowires, at the cost of some degradation in the circuit's worst-case voltage margin. For stuck-short and adjacent-wire-short defects, and for nanowires with too many defects of the other types, the demultiplexer can still achieve error-free performance, but with a smaller set of output lines. This design thus has two layers of defect tolerance: the coding layer improves the yield of usable output lines, and an avoidance layer guarantees that error-free performance is achieved.

  8. Probing the effects of defects on ferroelectricity in ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Lin

    Ferroelectric materials have been intensively studied due to their interesting properties such as piezoelectricity, ferroelectricity including spontaneous polarization, remnant polarization, hysteresis loop, and etc. In this study, effects of defects, thickness, and temperature on ferroelectric stability, hysteresis loop, and phase transition in ferroelectric thin films have been investigated using molecular dynamics simulations with first-principles effective Hamiltonian. Various types of defects are considered including oxygen vacancy, hydrogen contamination, and dead layer. We first study the effects of oxygen vacancy on ferroelectricity in PbTiO3 (PTO) thin films. An oxygen vacancy has been modeled as a +2q charged point defect which generates local strain and electrostatic fields. Atomic displacements induced by an oxygen vacancy were obtained by first-principles calculations and the corresponding strain field was fitted with elastic continuum model of a point defect. The obtained local strain and electrostatic fields are the inputs to the molecular dynamics (MD) simulations. We limited the oxygen vacancies in the interfacial layers between the film and electrodes. Oxygen vacancies reduce the spontaneous polarization and significantly increase the critical thickness below which the spontaneous polarization disappears. With the presence of oxygen vacancy only at one interface layer, PTO film exhibits asymmetric hysteresis loop which is consistent with experimental observations about the imprint effect. In the heating-up and cooling-down processes, oxygen vacancies weaken the phase transitions, but contribute tension along the thickness direction at high temperature. First-principles calculations are performed to determine the possible position, formation energy, and mobility of the interstitial hydrogen atom, and the calculated results are used as inputs to MD simulations in a large system. The hydrogen atom is able to move within one unit cell with small energy barriers. The energy difference between a hydrogen contaminated PTO and a pure PTO is considered as an energy penalty term induced by hydrogen contamination. Then, the effective Hamiltonian with the energy penalty is employed in MD simulations to investigate the effects of hydrogen contamination on the ferroelectric responses of PTO films. The hysteresis loops are presented and analyzed for PTO films with various concentrations of hydrogen impurities and thicknesses. Hydrogen contamination reduces the remnant polarization, especially for thin films. As the concentration of hydrogen impurities increases, the critical thickness increases. By analyzing the vertical cross section snapshots, it has been found that the hydrogen impurities near interfaces affect the polarization throughout the entire PTO film. To study the effect of the dead layer (depolarization field), the soft modes in the top and bottom layers are constrained to be zero, which gives rise to the reduced polarization and increased critical thickness. Negative capacitance is a new and hot topic, which was recently observed by experiment. It is a transient effect that correlated with depolarization field. Some preliminary results and application of negative capacitance are discussed.

  9. Studies of molecular-beam epitaxy growth of GaAs on porous Si substrates

    NASA Technical Reports Server (NTRS)

    Mii, Y. J.; Kao, Y. C.; Wu, B. J.; Wang, K. L.; Lin, T. L.; Liu, J. K.

    1988-01-01

    GaAs has been grown on porous Si directly and on Si buffer layer-porous Si substrates by molecular-beam epitaxy. In the case of GaAs growth on porous Si, transmission electron microscopy (TEM) reveals that the dominant defects in GaAs layers grown on porous Si are microtwins and stacking faults, which originate from the GaAs/porous Si interface. GaAs is found to penetrate into the porous Si layers. By using a thin Si buffer layer (50 nm), GaAs penetration diminishes and the density of microtwins and stacking faults is largely reduced and localized at the GaAs/Si buffer interface. However, there is a high density of threading dislocations remaining. Both Si (100) aligned and four degree tilted substrates have been examined in this study. TEM results show no observable effect of the tilted substrates on the quality of the GaAs epitaxial layer.

  10. Photoluminescence enhancement through vertical stacking of defect-engineered Ge on Si quantum dots

    NASA Astrophysics Data System (ADS)

    Groiss, Heiko; Spindlberger, Lukas; Oberhumer, Peter; Schäffler, Friedrich; Fromherz, Thomas; Grydlik, Martyna; Brehm, Moritz

    2017-02-01

    In this work, we show that the room-temperature photoluminescence intensity from Ge ion-bombarded (GIB) epitaxial Ge on Si quantum dots (QD) can be improved by their vertical stacking. We stress that the growth of GIB-QD multilayers is more demanding compared to all-crystalline epitaxial QDs, as a consequence of local amorphous regions within the GIB-QDs required during their genesis. We show that in spite of those amorphous regions, for accurately chosen growth temperatures of the Si spacer layers separating the GIB-QD layers, multiple GIB-QD layers can be stacked without detrimental break-down of epitaxial growth. Compared to a single GIB-QD layer, we observe a 650% increase in PL intensity for an eleven-layer GIB-QD stack, indicating that such multilayers are promising candidates as gain material for all-group-IV nano-photonic lasers.

  11. Effects of microstructural defects on the performance of base-metal multilayer ceramic capacitors

    NASA Astrophysics Data System (ADS)

    Samantaray, Malay M.

    Multilayer ceramic capacitors (MLCCs), owing to their processing conditions, can exhibit microstructure defects such as electrode porosity and roughness. The effect of such extrinsic defects on the electrical performance of these devices needs to be understood in order to achieve successful miniaturization into the submicron dielectric layer thickness regime. Specifically, the presence of non-planar and discontinuous electrodes can lead to local field enhancements while the relative morphologies of two adjacent electrodes determine variations in the local dielectric thickness. To study the effects of electrode morphologies, an analytical approach is taken to calculate the electric field enhancement and leakage current with respect to an ideal parallel-plate capacitor. Idealized electrode defects are used to simulate the electric field distribution. It is shown that the electrode roughness causes both the electric field and the leakage current to increase with respect to that of the ideal flat parallel-plate capacitor. Moreover, finite element methods are used to predict electric field enhancements by as high as 100% within capacitor structures containing rough interfaces and porosity. To understand the influence of microstructural defects on field distributions and leakage current, the real three-dimensional microstructure of local regions in MLCCs are reconstructed using a serial-sectioning technique in the focused ion beam. These microstructures are then converted into a finite element model in order to simulate the perturbations in electric field due to the presence of electrode defects. The electric field is three times the average value, and this leads to increase in current density of these devices. It is also shown that increasing sintering rates of MLCCs leads to improved electrode morphology with smoother more continuous electrodes, which in turn leads to a decrease in electric field enhancement and calculated leakage current density. To simulate scaling effects, the dielectric layer thickness is reduced from 2.0mum to 0.5mum in the three-dimensional microstructure keeping the same electrode morphology. It is seen that the effect of microstructure defects is more pronounced as one approaches thinner layers, leading to higher local electric field concentrations and a concomitant drop in insulation resistance. It is also seen that the electric field values are as high as 3.8 times the average field in termination regions due the disintegrated structure of the electrodes. In order to assess the effect of microstructure on MLCC performance, two sets of multilayer capacitors subjected to two vastly different sintering rates of 150ºC/hr and 3000ºC/hr are compared for their electrical properties. Capacitors with higher electrode continuity exhibit proportionally higher capacitance, provided the grain size distributions are similar. From the leakage current measurements, it is found that the Schottky barrier at the electrode-dielectric interface controls the conduction mechanism. This barrier height is calculated to be 1.06 eV for slow-fired MLCCs and was 1.15 for fast-fired MLCCs. This shows that high concentration of electrode defects cause field perturbations and subsequent drop in the net Schottky barrier height. These results are further supported by frequency-dependent impedance measurements. With temperature dependence behavior of current-voltage trends we note that below temperatures of 135°C, the conduction is controlled by interfacial effects, whereas at higher temperatures it is consistent with bulk-controlled space charge limited current for the samples that are highly reoxidized. The final part of this work studies the various aspects of the initial stages of degradation of MLCCs. MLCCs subjected to unipolar and bipolar degradation are studied for changes in microstructure and electrical properties. With bipolar degradation studies new insights into degradation are gained. First, the ionic accumulation with oxygen vacancies at cathodes is only partially reversible. This has implications on the controlling interface with electronic conduction. Also, it is shown that oxygen vacancy accumulation near the cathodes leads to a drop in insulation resistance. The capacitance also increases with progressive steps of degradation due to the effective thinning of dielectric layer. The reduction in interfacial resistance is also confirmed by impedance analysis. Finally, it is observed that on degradation, the dominant leakage current mechanism changes from being controlled by cathodic injection of electrons to being controlled by their anodic extraction. (Abstract shortened by UMI.)

  12. Defect analysis in low temperature atomic layer deposited Al{sub 2}O{sub 3} and physical vapor deposited SiO barrier films and combination of both to achieve high quality moisture barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maindron, Tony, E-mail: tony.maindron@cea.fr; Jullien, Tony; André, Agathe

    2016-05-15

    Al{sub 2}O{sub 3} [20 nm, atomic layer deposition (ALD)] and SiO films' [25 nm, physical vacuum deposition (PVD)] single barriers as well as hybrid barriers of the Al{sub 2}O{sub 3}/SiO or SiO/Al{sub 2}O{sub 3} have been deposited onto single 100 nm thick tris-(8-hydroxyquinoline) aluminum (AlQ{sub 3}) organic films made onto silicon wafers. The defects in the different barrier layers could be easily observed as nonfluorescent AlQ{sub 3} black spots, under ultraviolet light on the different systems stored into accelerated aging conditions (85 °C/85% RH, ∼2000 h). It has been observed that all devices containing an Al{sub 2}O{sub 3} layer present a lag time τ frommore » which defect densities of the different systems start to increase significantly. This is coherent with the supposed pinhole-free nature of fresh, ALD-deposited, Al{sub 2}O{sub 3} films. For t > τ, the number of defect grows linearly with storage time. For devices with the single Al{sub 2}O{sub 3} barrier layer, τ has been estimated to be 64 h. For t > τ, the defect occurrence rate has been calculated to be 0.268/cm{sup 2}/h. Then, a total failure of fluorescence of the AlQ{sub 3} film appears between 520 and 670 h, indicating that the Al{sub 2}O{sub 3} barrier has been totally degraded by the hot moisture. Interestingly, the device with the hybrid barrier SiO/Al{sub 2}O{sub 3} shows the same characteristics as the device with the single Al{sub 2}O{sub 3} barrier (τ = 59 h; 0.246/cm{sup 2}/h for t > τ), indicating that Al{sub 2}O{sub 3} ALD is the factor that limits the performance of the barrier system when it is directly exposed to moisture condensation. At the end of the storage period (1410 h), the defect density for the system with the hybrid SiO/Al{sub 2}O{sub 3} barrier is 120/cm{sup 2}. The best sequence has been obtained when Al{sub 2}O{sub 3} is passivated by the SiO layer (Al{sub 2}O{sub 3}/SiO). In that case, a large lag time of 795 h and a very low defect growth rate of 0.032/cm{sup 2}/h (t > τ) have been measured. At the end of the storage test (2003 h), the defect density remains very low, i.e., only 50/cm{sup 2}. On the other hand, the device with the single PVD-deposited SiO barrier layer shows no significant lag time (τ ∼ 0), and the number of defects grows linearly from initial time with a high occurrence rate of 0.517/cm{sup 2}/h. This is coherent with the pinhole-full nature of fresh, PVD-deposited, SiO films. At intermediate times, a second regime shows a lower defect occurrence rate of 0.062/cm{sup 2}/h. At a longer time span (t > 1200 h), the SiO barrier begins to degrade, and a localized crystallization onto the oxide surface, giving rise to new defects (occurrence rate 0.461/cm{sup 2}/h), could be observed. At the end of the test (2003 h), single SiO films show a very high defect density of 600/cm{sup 2}. Interestingly, the SiO surface in the Al{sub 2}O{sub 3}/SiO device does not appeared crystallized at a high time span, suggesting that the crystallization observed on the SiO surface in the AlQ{sub 3}/SiO device rather originates into the AlQ{sub 3} layer, due to high humidity ingress on the organic layer through SiO pinholes. This has been confirmed by atomic force microscopy surface imaging of the AlQ{sub 3}/SiO surface showing a central hole in the crystallization zone with a 60 nm depth, deeper than SiO thickness (25 nm). Using the organic AlQ{sub 3} sensor, the different observations made in this work give a quantitative comparison of defects' occurrence and growth in ALD-deposited versus PVD-deposited oxide films, as well as in their combination PVD/ALD and ALD/PVD.« less

  13. Silicide formation process of Er films with Ta and TaN capping layers.

    PubMed

    Choi, Juyun; Choi, Seongheum; Kim, Jungwoo; Na, Sekwon; Lee, Hoo-Jeong; Lee, Seok-Hee; Kim, Hyoungsub

    2013-12-11

    The phase development and defect formation during the silicidation reaction of sputter-deposited Er films on Si with ∼20-nm-thick Ta and TaN capping layers were examined. TaN capping effectively prevented the oxygen incorporation from the annealing atmosphere, which resulted in complete conversion to the ErSi2-x phase. However, significant oxygen penetration through the Ta capping layer inhibited the ErSi2-x formation, and incurred the growth of several Er-Si-O phases, even consuming the ErSi2-x layer formed earlier. Both samples produced a number of small recessed defects at an early silicidation stage. However, large rectangular or square-shaped surface defects, which were either pitlike or pyramidal depending on the capping layer identity, were developed as the annealing temperature increased. The origin of different defect generation mechanisms was suggested based on the capping layer-dependent silicidation kinetics.

  14. Electronic transport of bilayer graphene with asymmetry line defects

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-Ming; Wu, Ya-Jie; Chen, Chan; Liang, Ying; Kou, Su-Peng

    2016-11-01

    In this paper, we study the quantum properties of a bilayer graphene with (asymmetry) line defects. The localized states are found around the line defects. Thus, the line defects on one certain layer of the bilayer graphene can lead to an electric transport channel. By adding a bias potential along the direction of the line defects, we calculate the electric conductivity of bilayer graphene with line defects using the Landauer-Büttiker theory, and show that the channel affects the electric conductivity remarkably by comparing the results with those in a perfect bilayer graphene. This one-dimensional line electric channel has the potential to be applied in nanotechnology engineering. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB921803 and 2012CB921704), the National Natural Science Foundation of China (Grant Nos. 11174035, 11474025, 11504285, and 11404090), the Specialized Research Fund for the Doctoral Program of Higher Education, China, the Fundamental Research Funds for the Central Universities, China, the Scientific Research Program Fund of the Shaanxi Provincial Education Department, China (Grant No. 15JK1363), and the Young Talent Fund of University Association for Science and Technology in Shaanxi Province, China.

  15. Identification and Analysis of Partial Shading Breakdown Sites in CuIn xGa (1-x)Se 2 Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmiotti, Elizabeth; Johnston, Steven; Gerber, Andreas

    In this paper, CuIn xGa (1-x) (CIGS) mini-modules are stressed under reverse bias, resembling partial shading conditions, to predict and characterize where failures occur. Partial shading can cause permanent damage in the form of 'wormlike' defects on thin-film modules due to thermal runaway. This results in module-scale power losses. We have used dark lock-in thermography (DLIT) to spatially observe localized heating when reverse-bias breakdown occurs on various CIGS mini-modules. For better understanding of how and where these defects originated and propagated, we have developed techniques where the current is limited during reverse-bias stressing. This allows for DLIT-based detection and detailedmore » studying of the region where breakdown is initiated before thermal runaway leads to permanent damage. Statistics of breakdown sites using current-limited conditions has allowed for reasonable identification of the as-grown defects where permanent breakdown will likely originate. Scanning electron microscope results and wormlike defect analysis show that breakdown originates in defects such as small pits, craters, or cracks in the CIGS layer, and the wormlike defects propagate near the top CIGS interface.« less

  16. Identification and Analysis of Partial Shading Breakdown Sites in CuIn xGa (1-x)Se 2 Modules

    DOE PAGES

    Palmiotti, Elizabeth; Johnston, Steven; Gerber, Andreas; ...

    2017-12-20

    In this paper, CuIn xGa (1-x) (CIGS) mini-modules are stressed under reverse bias, resembling partial shading conditions, to predict and characterize where failures occur. Partial shading can cause permanent damage in the form of 'wormlike' defects on thin-film modules due to thermal runaway. This results in module-scale power losses. We have used dark lock-in thermography (DLIT) to spatially observe localized heating when reverse-bias breakdown occurs on various CIGS mini-modules. For better understanding of how and where these defects originated and propagated, we have developed techniques where the current is limited during reverse-bias stressing. This allows for DLIT-based detection and detailedmore » studying of the region where breakdown is initiated before thermal runaway leads to permanent damage. Statistics of breakdown sites using current-limited conditions has allowed for reasonable identification of the as-grown defects where permanent breakdown will likely originate. Scanning electron microscope results and wormlike defect analysis show that breakdown originates in defects such as small pits, craters, or cracks in the CIGS layer, and the wormlike defects propagate near the top CIGS interface.« less

  17. Probing nanofriction and Aubry-type signatures in a finite self-organized system

    PubMed Central

    Kiethe, J.; Nigmatullin, R.; Kalincev, D.; Schmirander, T.; Mehlstäubler, T. E.

    2017-01-01

    Friction in ordered atomistic layers plays a central role in various nanoscale systems ranging from nanomachines to biological systems. It governs transport properties, wear and dissipation. Defects and incommensurate lattice constants markedly change these properties. Recently, experimental systems have become accessible to probe the dynamics of nanofriction. Here, we present a model system consisting of laser-cooled ions in which nanofriction and transport processes in self-organized systems with back action can be studied with atomic resolution. We show that in a system with local defects resulting in incommensurate layers, there is a transition from sticking to sliding with Aubry-type signatures. We demonstrate spectroscopic measurements of the soft vibrational mode driving this transition and a measurement of the order parameter. We show numerically that both exhibit critical scaling near the transition point. Our studies demonstrate a simple, well-controlled system in which friction in self-organized structures can be studied from classical- to quantum-regimes. PMID:28504271

  18. Lithium implantation at low temperature in silicon for sharp buried amorphous layer formation and defect engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliviero, E.; David, M. L.; Beaufort, M. F.

    The crystalline-to-amorphous transformation induced by lithium ion implantation at low temperature has been investigated. The resulting damage structure and its thermal evolution have been studied by a combination of Rutherford backscattering spectroscopy channelling (RBS/C) and cross sectional transmission electron microscopy (XTEM). Lithium low-fluence implantation at liquid nitrogen temperature is shown to produce a three layers structure: an amorphous layer surrounded by two highly damaged layers. A thermal treatment at 400 Degree-Sign C leads to the formation of a sharp amorphous/crystalline interfacial transition and defect annihilation of the front heavily damaged layer. After 600 Degree-Sign C annealing, complete recrystallization takes placemore » and no extended defects are left. Anomalous recrystallization rate is observed with different motion velocities of the a/c interfaces and is ascribed to lithium acting as a surfactant. Moreover, the sharp buried amorphous layer is shown to be an efficient sink for interstitials impeding interstitial supersaturation and {l_brace}311{r_brace} defect formation in case of subsequent neon implantation. This study shows that lithium implantation at liquid nitrogen temperature can be suitable to form a sharp buried amorphous layer with a well-defined crystalline front layer, thus having potential applications for defects engineering in the improvement of post-implantation layers quality and for shallow junction formation.« less

  19. Effects of superconducting film on the defect mode in dielectric photonic crystal heterostructure

    NASA Astrophysics Data System (ADS)

    Hu, Chung-An; Liu, Jia-Wei; Wu, Chien-Jang; Yang, Tzong-Jer; Yang, Su-Lin

    2013-03-01

    Effects of superconducting thin film on the defect mode in a dielectric photonic crystal heterostructure (PCH) are theoretically investigated. The considered structure is (12)NS(21)N, in which both layers 1 and 2 are dielectrics, layer S is a high-temperature superconducting layer, and N is the stack number. The defect mode is analyzed based on the transmission spectrum calculated by using the transfer matrix method. It is found that, in the normal incidence, the defect mode existing in the host PCH of (12)N(21)N will be blue-shifted as the thickness of layer S increases. In addition, the defect mode is also blue-shifted for both TE and TM modes in the case of oblique incidence. The embedded superconducting thin film plays the role of tuning agent for the defect mode of PCH. As a result, the proposed structure can be designed as a tunable narrowband transmission filter which could be of technical use in the optoelectronic applications.

  20. Synthesis of 1D Bragg gratings by a layer-aggregation method.

    PubMed

    Capmany, José; Muriel, Miguel A; Sales, Salvador

    2007-08-15

    We present what we believe to be a novel method for the synthesis of complex 1D (fiber and waveguide) Bragg gratings, which is based on an impedance reconstruction layer aggregation technique. The main advantage brought by the method is the possibility of synthesizing structures containing defects or discontinuities of the size of the local period, a feature that is not possible with prior reported methods. In addition, this enhanced spatial resolution allows the synthesis of very strong fiber Bragg grating devices providing convergent solutions. The method directly renders the refractive index profile n(z) as it does not rely on the coupled-mode theory.

  1. Advanced in-production hotspot prediction and monitoring with micro-topography

    NASA Astrophysics Data System (ADS)

    Fanton, P.; Hasan, T.; Lakcher, A.; Le-Gratiet, B.; Prentice, C.; Simiz, J.-G.; La Greca, R.; Depre, L.; Hunsche, S.

    2017-03-01

    At 28nm technology node and below, hot spot prediction and process window control across production wafers have become increasingly critical to prevent hotspots from becoming yield-limiting defects. We previously established proof of concept for a systematic approach to identify the most critical pattern locations, i.e. hotspots, in a reticle layout by computational lithography and combining process window characteristics of these patterns with across-wafer process variation data to predict where hotspots may become yield impacting defects [1,2]. The current paper establishes the impact of micro-topography on a 28nm metal layer, and its correlation with hotspot best focus variations across a production chip layout. Detailed topography measurements are obtained from an offline tool, and pattern-dependent best focus (BF) shifts are determined from litho simulations that include mask-3D effects. We also establish hotspot metrology and defect verification by SEM image contour extraction and contour analysis. This enables detection of catastrophic defects as well as quantitative characterization of pattern variability, i.e. local and global CD uniformity, across a wafer to establish hotspot defect and variability maps. Finally, we combine defect prediction and verification capabilities for process monitoring by on-product, guided hotspot metrology, i.e. with sampling locations being determined from the defect prediction model and achieved prediction accuracy (capture rate) around 75%

  2. The effect of a defective BSF layer on solar cell open circuit voltage. [Back Surface Field

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.

    1985-01-01

    A straightforward analysis of special limiting cases has permitted the determination of the range of possible open circuit voltage losses due to a defective BSF (back surface field) layer. An important result of the analysis is the finding that it is possible to have a fully effective BSF region, regardless of the spatial distribution of the defective areas, as long as the total defective area is reduced below certain limits. Distributed defects were found to be much more harmful than lumped defects.

  3. Evaluation of Surface Cleaning of Si(211) for Molecular-Beam Epitaxy Deposition of Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Jaime-Vasquez, M.; Jacobs, R. N.; Benson, J. D.; Stoltz, A. J.; Almeida, L. A.; Bubulac, L. O.; Chen, Y.; Brill, G.

    2010-07-01

    We report an assessment of the reproducibility of the HF cleaning process and As passivation prior to the nucleation of ZnTe on the Si(211) surface using temperature desorption spectroscopy, ion scattering spectroscopy, and electron spectroscopy. Observations suggest full H coverage of the Si(211) surface with mostly monohydride and small amounts of dihydride states, and that F is uniformly distributed across the top layer as a physisorbed species. Variations in major contaminants are observed across the Si surface and at the CdTe-ZnTe/Si interface. Defects act as getters for impurities present on the Si surface, and some are buried under the CdTe/ZnTe heterostructure. Overall, the data show evidence of localized concentration of major impurities around defects, supporting the hypothesis of a physical model explaining the electrical activation of defects in long-wave infrared (LWIR) HgCdTe/CdTe/Si devices.

  4. Morphogenetic Pathway of Spore Wall Assembly in Saccharomyces cerevisiae

    PubMed Central

    Coluccio, Alison; Bogengruber, Edith; Conrad, Michael N.; Dresser, Michael E.; Briza, Peter; Neiman, Aaron M.

    2004-01-01

    The Saccharomyces cerevisiae spore is protected from environmental damage by a multilaminar extracellular matrix, the spore wall, which is assembled de novo during spore formation. A set of mutants defective in spore wall assembly were identified in a screen for mutations causing sensitivity of spores to ether vapor. The spore wall defects in 10 of these mutants have been characterized in a variety of cytological and biochemical assays. Many of the individual mutants are defective in the assembly of specific layers within the spore wall, leading to arrests at discrete stages of assembly. The localization of several of these gene products has been determined and distinguishes between proteins that likely are involved directly in spore wall assembly and probable regulatory proteins. The results demonstrate that spore wall construction involves a series of dependent steps and provide the outline of a morphogenetic pathway for assembly of a complex extracellular structure. PMID:15590821

  5. First principles molecular dynamics study of nitrogen vacancy complexes in boronitrene

    NASA Astrophysics Data System (ADS)

    Ukpong, A. M.; Chetty, N.

    2012-07-01

    We present the results of first principles molecular dynamics simulations of nitrogen vacancy complexes in monolayer hexagonal boron nitride. The threshold for local structure reconstruction is found to be sensitive to the presence of a substitutional carbon impurity. We show that activated nitrogen dynamics triggers the annihilation of defects in the layer through formation of Stone-Wales-type structures. The lowest energy state of nitrogen vacancy complexes is negatively charged and spin polarized. Using the divacancy complex, we show that their formation induces spontaneous magnetic moments, which is tunable by electron or hole injection. The Fermi level s-resonant defect state is identified as a unique signature of the ground state of the divacancy complex. Due to their ability to enhance structural cohesion, only the divacancy and the nitrogen vacancy carbon-antisite complexes are able to suppress the Fermi level resonant defect state to open a gap between the conduction and valence bands.

  6. Pyramidal defects in highly Mg-doped GaN: atomic structure and influence on optoelectronic properties

    NASA Astrophysics Data System (ADS)

    Leroux, M.; Vennéguès, P.; Dalmasso, S.; de Mierry, P.; Lorenzini, P.; Damilano, B.; Beaumont, B.; Gibart, P.; Massies, J.

    2004-07-01

    A detailed transmission electron microscopy study is performed on the pyramidal inversion domains that appear in highly Mg-doped GaN grown by metalorganics vapor phase epitaxy or by the high-pressure, high-temperature method. From a comparison between high resolution images of the inversion domain boundaries and simulations using different atomic models, we conclude that both basal and inclined domain boundaries are likely formed of a monomolecular layer of the definite compound Mg{3}N{2}. We show that, due to their high concentration, the formation of these defects may account for auto-compensation in Mg-doped GaN. We also show that the local band bending induced by the polarity inversion due to these defects can be at the origin of the blue luminescence of highly Mg-doped GaN, always observed when nanometric pyramidal inversion domains are also present.

  7. Electrical level of defects in single-layer two-dimensional TiO2

    NASA Astrophysics Data System (ADS)

    Song, X. F.; Hu, L. F.; Li, D. H.; Chen, L.; Sun, Q. Q.; Zhou, P.; Zhang, D. W.

    2015-11-01

    The remarkable properties of graphene and transition metal dichalcogenides (TMDCs) have attracted increasing attention on two-dimensional materials, but the gate oxide, one of the key components of two-dimensional electronic devices, has rarely reported. We found the single-layer oxide can be used as the two dimensional gate oxide in 2D electronic structure, such as TiO2. However, the electrical performance is seriously influenced by the defects existing in the single-layer oxide. In this paper, a nondestructive and noncontact solution based on spectroscopic ellipsometry has been used to detect the defect states and energy level of single-layer TiO2 films. By fitting the Lorentz oscillator model, the results indicate the exact position of defect energy levels depends on the estimated band gap and the charge state of the point defects of TiO2.

  8. Streaked X Ray Spectra from Polar Direct Drive Capsules with an Equatorial Defect

    NASA Astrophysics Data System (ADS)

    Murphy, T. J.; Bradley, P. A.; Cobble, J. A.; Hsu, S. C.; Krasheninnikova, N. S.; Magelssen, G. R.; Schmitt, M. J.; Tregillis, I. L.; Wysocki, F. J.

    2011-10-01

    In the Defect Implosion Experiment (DIME) on Omega, capsules with an equatorial ``trench'' defect have been imploded to study defect-induced mix processes. The capsules contain layers doped with titanium and/or vanadium, with doped layers in contact with the deuterium fill gas on some targets, and separated from the gas by a layer of undoped plastic in others. Streaked x-ray spectra from the capsule implosions provide information on conditions in the mix layer. Polar direct drive was utilized in preparation for experiments planned for the National Ignition Facility in 2012. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  9. Determination of defect content and defect profile in semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Zubiaga, A.; Garcia, J. A.; Plazaola, F.; Zúñiga-Pérez, J.; Muñoz-Sanjosé, V.

    2011-01-01

    In this article we present an overview of the technique to obtain the defects depth profile and width of a deposited layer and multilayer based on positron annihilation spectroscopy. In particular we apply the method to ZnO and ZnO/ZnCdO layers deposited on sapphire substrates. After introducing some terminology we first calculate the trend that the W/S parameters of the Doppler broadening measurements must follow, both in a qualitative and quantitative way. From this point we extend the results to calculate the width and defect profiles in deposited layer samples.

  10. Multiple-digit resurfacing using a thin latissimus dorsi perforator flap.

    PubMed

    Kim, Sang Wha; Lee, Ho Jun; Kim, Jeong Tae; Kim, Youn Hwan

    2014-01-01

    Traumatic digit defects of high complexity and with inadequate local tissue represent challenging surgical problems. Recently, perforator flaps have been proposed for reconstructing large defects of the hand because of their thinness and pliability and minimal donor site morbidity. Here, we illustrate the use of thin latissimus dorsi perforator flaps for resurfacing multiple defects of distal digits. We describe the cases of seven patients with large defects, including digits, circumferential defects and multiple-digit defects, who underwent reconstruction with thin latissimus dorsi perforator flaps between January 2008 and March 2012. Single-digit resurfacing procedures were excluded. The mean age was 56.3 years and the mean flap size was 160.4 cm(2). All the flaps survived completely. Two patients had minor complications including partial flap loss and scar contracture. The mean follow-up period was 11.7 months. The ideal flap for digit resurfacing should be thin and amenable to moulding, have a long pedicle for microanastomosis and have minimal donor site morbidity. Thin flaps can be harvested by excluding the deep adipose layer, and their high pliability enables resurfacing without multiple debulking procedures. The latissimus dorsi perforator flap may be the best flap for reconstructing complex defects of the digits, such as large, multiple-digit or circumferential defects, which require complete wrapping of volar and dorsal surfaces. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  11. A numerical study of defect detection in a plaster dome ceiling using structural acoustics.

    PubMed

    Bucaro, J A; Romano, A J; Valdivia, N; Houston, B H; Dey, S

    2009-07-01

    A numerical study is carried out to evaluate the effectiveness of using measured surface displacements resulting from acoustic speaker excitation to detect and localize flaws in a domed, plaster ceiling. The response of the structure to an incident acoustic pressure is obtained at four frequencies between 100 and 400 Hz using a parallel h-p structural acoustic finite element-based code. Three ceiling conditions are modeled: the pristine ceiling considered rigidly attached to the domed-shape support, partial detachment of a segment of the plaster layer from the support, and an interior pocket of plaster deconsolidation modeled as a heavy fluid. Spatial maps of the normal displacement resulting from speaker excitation are interpreted with the help of predictions based on static analysis. It is found that acoustic speaker excitation can provide displacement levels readily detected by commercially available laser Doppler vibrometer systems. Further, it is concluded that for 1 in. thick plaster layers, detachment sizes as small as 4 cm are detectable by direct observation of the measured displacement maps. Finally, spatial structure differences are observed in the displacement maps beneath the two defect types, which may provide a wavenumber-based feature useful for distinguishing plaster detachment from other defects such as deconsolidation.

  12. Defects in Arsenic Implanted p + -n- and n + -p- Structures Based on MBE Grown CdHgTe Films

    NASA Astrophysics Data System (ADS)

    Izhnin, I. I.; Fitsych, E. I.; Voitsekhovskii, A. V.; Korotaev, A. G.; Mynbaev, K. D.; Varavin, V. S.; Dvoretsky, S. A.; Mikhailov, N. N.; Yakushev, M. V.; Bonchyk, A. Yu.; Savytskyy, H. V.; Świątek, Z.

    2018-02-01

    Complex studies of the defect structure of arsenic-implanted (with the energy of 190 keV) Cd x Hg 1-x Te ( x = 0.22) films grown by molecular-beam epitaxy are carried out. The investigations were performed using secondary-ion mass spectroscopy, transmission electron microscopy, optical reflection in the visible region of the spectrum, and electrical measurements. Radiation donor defects were studied in n +- p- and n +- n-structures obtained by implantation and formed on the basis of p-type and n-type materials, respectively, without activation annealing. It is shown that in the layer of the distribution of implanted ions, a layer of large extended defects with low density is formed in the near-surface region followed by a layer of smaller extended defects with larger density. A different character of accumulation of electrically active donor defects in the films with and without a protective graded-gap surface layer has been revealed. It is demonstrated that p +- n- structures are formed on the basis of n-type material upon activation of arsenic in the process of postimplantation thermal annealing with 100% activation of impurity and complete annihilation of radiation donor defects.

  13. Excess Oxygen Defects in Layered Cuprates

    DOE R&D Accomplishments Database

    Lightfoot, P.; Pei, S. Y.; Jorgensen, J. D.; Manthiram, A.; Tang, X. X.; Goodenough, J. B.

    1990-09-01

    Neutron powder diffraction has been used to study the oxygen defect chemistry of two non-superconducting layered cuprates, La{sub 1. 25}Dy{sub 0.75}Cu{sub 3.75}F{sub 0.5}, having a T{sup {asterisk}}- related structure, and La{sub 1.85}Sr{sub 1.15}Cu{sub 2}O{sub 6.25}, having a structure related to that of the newly discovered double-layer superconductor La{sub 2-x}Sr{sub x}CaCu{sub 2}O{sub 6}. The role played by oxygen defects in determining the superconducting properties of layered cuprates is discussed.

  14. Phase time delay and Hartman effect in a one-dimensional photonic crystal with four-level atomic defect layer

    NASA Astrophysics Data System (ADS)

    Jamil, Rabia; Ali, Abu Bakar; Abbas, Muqaddar; Badshah, Fazal; Qamar, Sajid

    2017-08-01

    The Hartman effect is revisited using a Gaussian beam incident on a one-dimensional photonic crystal (1DPC) having a defect layer doped with four-level atoms. It is considered that each atom of the defect layer interacts with three driving fields, whereas a Gaussian beam of width w is used as a probe light to study Hartman effect. The atom-field interaction inside the defect layer exhibits electromagnetically induced transparency (EIT). The 1DPC acts as positive index material (PIM) and negative index material (NIM) corresponding to the normal and anomalous dispersion of the defect layer, respectively, via control of the phase associated with the driving fields and probe detuning. The positive and negative Hartman effects are noticed for PIM and NIM, respectively, via control of the relative phase corresponding to the driving fields and probe detuning. The advantage of using four-level EIT system is that a much smaller absorption of the transmitted beam occurs as compared to three-level EIT system corresponding to the anomalous dispersion, leading to negative Hartman effect.

  15. SrFe1‑xMoxO2+δ : parasitic ferromagnetism in an infinite-layer iron oxide with defect structures induced by interlayer oxygen

    NASA Astrophysics Data System (ADS)

    Guo, Jianhui; Shi, Lei; Zhao, Jiyin; Wang, Yang; Yuan, Xueyou; Li, Yang; Wu, Liang

    2018-04-01

    The recent discovered compound SrFeO2 is an infinite-layer-structure iron oxide with unusual square-planar coordination of Fe2+ ions. In this study, SrFe1‑xMoxO2+δ (x < 0.12) is obtained by crystal transformation from SrFe1‑xMoxO3‑δ perovskite via low-temperature (≤380 °C) topotactic reduction. The parasitic ferromagnetism of the compound and its relationship to the defect structures are investigated. It is found that substitution of high-valent Mo6+ for Fe2+ results in excess oxygen anions O2‑ inserted at the interlayer sites for charge compensation, which further causes large atomic displacements along the c-axis. Due to the robust but flexible Fe-O-Fe framework, the samples are well crystallized within the ab-plane, but are significantly poorer crystallized along the c-axis. Defect structures including local lattice distortions and edge dislocations responsible for the lowered crystallinity are observed by high resolution transmission electron microscopy. Both the magnetic measurements and electron spin resonance spectra provide the evidence of a parasitic ferromagnetism (FM). The week FM interaction originated from the imperfect antiferromagnetic (AFM) ordering could be ascribed to the introduction of uncompensated magnetic moments due to substitution of Mo6+ (S = 0) for Fe2+ (S = 2) and the canted/frustrated spins resulted from defect structures.

  16. Structural defects and recombination behavior of excited carriers in Cu(In,Ga)Se2 solar cells

    NASA Astrophysics Data System (ADS)

    Yang, J.; Du, H. W.; Li, Y.; Gao, M.; Wan, Y. Z.; Xu, F.; Ma, Z. Q.

    2016-08-01

    The carriers' behavior in neutral region (NTR) and space charged region (SCR) of Cu(In,Ga)Se2 thin film based solar cells has been investigated by temperature dependent photoluminescence (PL-T), electroluminescence (EL-T) and current-voltage (IV-T) from 10 to 300 K. PL-T spectra show that three kinds of defects, namely VSe, InCu and (InCu+VCu), are localized within the band gap of NTR and SCR of CIGS layer, corresponding to the energy levels of EC-0.08, EC-0.20 and EC-0.25 eV, respectively. The InCu and (InCu+VCu) deep level defects are non-radiative recombination centers at room temperature. The IV-T and EL-T analysis reveals that the injection modes of electrons from ZnO conduction band into Cu(In,Ga)Se2 layer are tunneling, thermally-excited tunneling and thermionic emission under 10-40, 60-160, and 180-300 K, respectively. At 10-160 K, the electrons tunnel into (InCu+VCu) and Vse defect levels in band gap of SCR and the drifting is involved in the emission bands at 0.96 and 1.07 eV, which is the direct evidence for a tunneling assisted recombination. At 180-300 K, the electrons are directly injected into the Cu(In,Ga)Se2 conduction band, and the emission of 1.13 eV are ascribed to the transitions from the conduction band to the valence band.

  17. Automated reticle inspection data analysis for wafer fabs

    NASA Astrophysics Data System (ADS)

    Summers, Derek; Chen, Gong; Reese, Bryan; Hutchinson, Trent; Liesching, Marcus; Ying, Hai; Dover, Russell

    2009-04-01

    To minimize potential wafer yield loss due to mask defects, most wafer fabs implement some form of reticle inspection system to monitor photomask quality in high-volume wafer manufacturing environments. Traditionally, experienced operators review reticle defects found by an inspection tool and then manually classify each defect as 'pass, warn, or fail' based on its size and location. However, in the event reticle defects are suspected of causing repeating wafer defects on a completed wafer, potential defects on all associated reticles must be manually searched on a layer-by-layer basis in an effort to identify the reticle responsible for the wafer yield loss. This 'problem reticle' search process is a very tedious and time-consuming task and may cause extended manufacturing line-down situations. Often times, Process Engineers and other team members need to manually investigate several reticle inspection reports to determine if yield loss can be tied to a specific layer. Because of the very nature of this detailed work, calculation errors may occur resulting in an incorrect root cause analysis effort. These delays waste valuable resources that could be spent working on other more productive activities. This paper examines an automated software solution for converting KLA-Tencor reticle inspection defect maps into a format compatible with KLA-Tencor's Klarity Defect(R) data analysis database. The objective is to use the graphical charting capabilities of Klarity Defect to reveal a clearer understanding of defect trends for individual reticle layers or entire mask sets. Automated analysis features include reticle defect count trend analysis and potentially stacking reticle defect maps for signature analysis against wafer inspection defect data. Other possible benefits include optimizing reticle inspection sample plans in an effort to support "lean manufacturing" initiatives for wafer fabs.

  18. Automated reticle inspection data analysis for wafer fabs

    NASA Astrophysics Data System (ADS)

    Summers, Derek; Chen, Gong; Reese, Bryan; Hutchinson, Trent; Liesching, Marcus; Ying, Hai; Dover, Russell

    2009-03-01

    To minimize potential wafer yield loss due to mask defects, most wafer fabs implement some form of reticle inspection system to monitor photomask quality in high-volume wafer manufacturing environments. Traditionally, experienced operators review reticle defects found by an inspection tool and then manually classify each defect as 'pass, warn, or fail' based on its size and location. However, in the event reticle defects are suspected of causing repeating wafer defects on a completed wafer, potential defects on all associated reticles must be manually searched on a layer-by-layer basis in an effort to identify the reticle responsible for the wafer yield loss. This 'problem reticle' search process is a very tedious and time-consuming task and may cause extended manufacturing line-down situations. Often times, Process Engineers and other team members need to manually investigate several reticle inspection reports to determine if yield loss can be tied to a specific layer. Because of the very nature of this detailed work, calculation errors may occur resulting in an incorrect root cause analysis effort. These delays waste valuable resources that could be spent working on other more productive activities. This paper examines an automated software solution for converting KLA-Tencor reticle inspection defect maps into a format compatible with KLA-Tencor's Klarity DefectTM data analysis database. The objective is to use the graphical charting capabilities of Klarity Defect to reveal a clearer understanding of defect trends for individual reticle layers or entire mask sets. Automated analysis features include reticle defect count trend analysis and potentially stacking reticle defect maps for signature analysis against wafer inspection defect data. Other possible benefits include optimizing reticle inspection sample plans in an effort to support "lean manufacturing" initiatives for wafer fabs.

  19. Method for growing low defect, high purity crystalline layers utilizing lateral overgrowth of a patterned mask

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor); Daud, Taher (Inventor)

    1986-01-01

    A method for growing a high purity, low defect layer of semiconductor is described. This method involves depositing a patterned mask of a material impervious to impurities of the semiconductor on a surface of a blank. When a layer of semiconductor is grown on the mask, the semiconductor will first grow from the surface portions exposed by the openings in the mask and will bridge the connecting portions of the mask to form a continuous layer having improved purity, since only the portions overlying the openings are exposed to defects and impurities. The process can be iterated and the mask translated to further improve the quality of grown layers.

  20. Radiological Assessment of Bioengineered Bone in a Muscle Flap for the Reconstruction of Critical-Size Mandibular Defect

    PubMed Central

    Al-Fotawei, Randa; Ayoub, Ashraf F.; Heath, Neil; Naudi, Kurt B.; Tanner, K. Elizabeth; Dalby, Matthew J.; McMahon, Jeremy

    2014-01-01

    This study presents a comprehensive radiographic evaluation of bone regeneration within a pedicled muscle flap for the reconstruction of critical size mandibular defect. The surgical defect (20 mm×15 mm) was created in the mandible of ten experimental rabbits. The masseter muscle was adapted to fill the surgical defect, a combination of calcium sulphate/hydroxyapatite cement (CERAMENT™ |SPINE SUPPORT), BMP-7 and rabbit mesenchymal stromal cells (rMSCs) was injected inside the muscle tissue. Radiographic assessment was carried out on the day of surgery and at 4, 8, and 12 weeks postoperatively. At 12 weeks, the animals were sacrificed and cone beam computerized tomography (CBCT) scanning and micro-computed tomography (µ-CT) were carried out. Clinically, a clear layer of bone tissue was identified closely adherent to the border of the surgical defect. Sporadic radio-opaque areas within the surgical defect were detected radiographically. In comparison with the opposite non operated control side, the estimated quantitative scoring of the radio-opacity was 46.6% ±15, the mean volume of the radio-opaque areas was 63.4% ±20. Areas of a bone density higher than that of the mandibular bone (+35% ±25%) were detected at the borders of the surgical defect. The micro-CT analysis revealed thinner trabeculae of the regenerated bone with a more condensed trabecular pattern than the surrounding native bone. These findings suggest a rapid deposition rate of the mineralised tissue and an active remodelling process of the newly regenerated bone within the muscle flap. The novel surgical model of this study has potential clinical application; the assessment of bone regeneration using the presented radiolographic protocol is descriptive and comprehensive. The findings of this research confirm the remarkable potential of local muscle flaps as local bioreactors to induce bone formation for reconstruction of maxillofacial bony defects. PMID:25226170

  1. Defect-enhanced performance of a 3D graphene anode in a lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Guo, Hongchen; Long, Deng; Zheng, Zongmin; Chen, Xinyi; Ng, Alan M. C.; Lu, Miao

    2017-12-01

    Morphological defects were generated in an undoped 3D graphene structure via the involvement of a ZnO and Mg(OH)2 intermediate nanostructure layer placed between two layers of vapor-deposited graphene. Once the intermediate layer was etched, the 3D graphene lost support and shrank; during this process many morphological defects were formed. The electrochemical performance of the derived defective graphene utilized as the anode of a lithium (Li)-ion battery was significantly improved from ˜382 mAh g-1 to ˜2204 mAh g-1 at 0.5 A g-1 compared to normal 3D graphene. The derived defective graphene exhibited an initial capacity of 1009 mAh g-1 and retention of 83% at 4 A g-1 for 500 cycles, and ˜330 mAh g-1 at a high rate of 20 A g-1. Complicated defects such as wrinkles, pores, and particles formed during the etching of the intermediate layer, were considered to contribute to the improvement of the electrochemical performance.

  2. A new idea for broad band reflector and tunable multichannel filter of one dimensional symmetric photonic crystal with magnetized cold plasma defects

    NASA Astrophysics Data System (ADS)

    Kumar, Asish; Singh, Prabal P.; Thapa, Khem B.

    2018-05-01

    The optical properties of one-dimensional periodic structure composed by SiO2 and dielectric (air) layers with asymmetric and symmetric forms studied. The transmittance for symmetric periodic defective structure analyzed by introducing one, two, three layers of magnetized cold plasma (MCP) in one-dimensional periodic structure. We found better result for symmetric defect of three layer of the MCP compare to the other defective structures. On the basis of our calculated results, we proposed a new idea for broadband reflector at lower frequency range as well as the multichannel filter at higher frequency range.

  3. Effects of Stone-Wales and vacancy defects in atomic-scale friction on defective graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiao-Yu; Key Laboratory of Hubei Province for Water Jet Theory and New Technology, Wuhan University, Wuhan 430072; Wu, RunNi

    2014-05-05

    Graphite is an excellent solid lubricant for surface coating, but its performance is significantly weakened by the vacancy or Stone-Wales (SW) defect. This study uses molecular dynamics simulations to explore the frictional behavior of a diamond tip sliding over a graphite which contains a single defect or stacked defects. Our results suggest that the friction on defective graphite shows a strong dependence on defect location and type. The 5-7-7-5 structure of SW defect results in an effectively negative slope of friction. For defective graphite containing a defect in the surface, adding a single vacancy in the interior layer will decreasemore » the friction coefficients, while setting a SW defect in the interior layer may increase the friction coefficients. Our obtained results may provide useful information for understanding the atomic-scale friction properties of defective graphite.« less

  4. Automated reticle inspection data analysis for wafer fabs

    NASA Astrophysics Data System (ADS)

    Summers, Derek; Chen, Gong; Reese, Bryan; Hutchinson, Trent; Liesching, Marcus; Ying, Hai; Dover, Russell

    2008-10-01

    To minimize potential wafer yield loss due to mask defects, most wafer fabs implement some form of reticle inspection system to monitor photomask quality in high-volume wafer manufacturing environments. Traditionally, experienced operators review reticle defects found by an inspection tool and then manually classify each defect as 'pass, warn, or fail' based on its size and location. However, in the event reticle defects are suspected of causing repeating wafer defects on a completed wafer, potential defects on all associated reticles must be manually searched on a layer-by-layer basis in an effort to identify the reticle responsible for the wafer yield loss. This 'problem reticle' search process is a very tedious and time-consuming task and may cause extended manufacturing line-down situations. Often times, Process Engineers and other team members need to manually investigate several reticle inspection reports to determine if yield loss can be tied to a specific layer. Because of the very nature of this detailed work, calculation errors may occur resulting in an incorrect root cause analysis effort. These delays waste valuable resources that could be spent working on other more productive activities. This paper examines an automated software solution for converting KLA-Tencor reticle inspection defect maps into a format compatible with KLA-Tencor's Klarity DefecTM data analysis database. The objective is to use the graphical charting capabilities of Klarity Defect to reveal a clearer understanding of defect trends for individual reticle layers or entire mask sets. Automated analysis features include reticle defect count trend analysis and potentially stacking reticle defect maps for signature analysis against wafer inspection defect data. Other possible benefits include optimizing reticle inspection sample plans in an effort to support "lean manufacturing" initiatives for wafer fabs.

  5. Strain-Dependent Edge Structures in MoS2 Layers.

    PubMed

    Tinoco, Miguel; Maduro, Luigi; Masaki, Mukai; Okunishi, Eiji; Conesa-Boj, Sonia

    2017-11-08

    Edge structures are low-dimensional defects unavoidable in layered materials of the transition metal dichalcogenides (TMD) family. Among the various types of such structures, the armchair (AC) and zigzag (ZZ) edge types are the most common. It has been predicted that the presence of intrinsic strain localized along these edges structures can have direct implications for the customization of their electronic properties. However, pinning down the relation between local structure and electronic properties at these edges is challenging. Here, we quantify the local strain field that arises at the edges of MoS 2 flakes by combining aberration-corrected transmission electron microscopy (TEM) with the geometrical-phase analysis (GPA) method. We also provide further insight on the possible effects of such edge strain on the resulting electronic behavior by means of electron energy loss spectroscopy (EELS) measurements. Our results reveal that the two-dominant edge structures, ZZ and AC, induce the formation of different amounts of localized strain fields. We also show that by varying the free edge curvature from concave to convex, compressive strain turns into tensile strain. These results pave the way toward the customization of edge structures in MoS 2 , which can be used to engineer the properties of layered materials and thus contribute to the optimization of the next generation of atomic-scale electronic devices built upon them.

  6. Bilayered, non-cross-linked collagen matrix for regeneration of facial defects after skin cancer removal: a new perspective for biomaterial-based tissue reconstruction.

    PubMed

    Ghanaati, Shahram; Kovács, Adorján; Barbeck, Mike; Lorenz, Jonas; Teiler, Anna; Sadeghi, Nader; Kirkpatrick, Charles James; Sader, Robert

    2016-03-01

    Classically skin defects are covered by split thickness skin grafts or by means of local or regional skin flaps. In the presented case series for the first time a bilayered, non-crossed-linked collagen matrix has been used in an off-label fashion in order to reconstruct facial skin defects following different types of skin cancer resection. The material is of porcine origin and consists of a spongy and a compact layer. The ratio of the two layers is 1:3 in favour of the spongy layer. The aim of the study was to investigate the potential of this matrix for skin regeneration as an alternative to the standard techniques of skin grafts or flaps. Six patients between 39 and 83 years old were included in the study based on a therapeutic trial. The collagen matrix was used in seven defects involving the nose, eyelid, forehead- and posterior scalp regions, and ranging from 1,2 to 6 cm in diameter. Two different head and neck surgeons at two different institutions performed the operations. Each used a different technique in covering the wound following surgery, i.e. with and without a latex-based sheet under the pressure dressing. In three cases cylindrical biopsies were taken after 14 days. In all cases the biomaterial application was performed without any complication and no adverse effects were observed. Clinically, the collagen matrix contributed to a tension-free skin regeneration, independent of the wound dressing used. The newly regenerated skin showed strong similarity to the adjacent normal tissue both in quality and colour. Histological analysis indicated that the spongy layer replaced the defective connective tissue, by providing stepwise integration into the surrounding implantation bed, while the compact layer was infiltrated by mononuclear cells and contributed to its epithelialization by means of a "conductive"process from the surrounding epithelial cells. The clinical and histological data demonstrate that the collagen bilayered matrix used in this series contributes to a "Guided-Integrative-Regeneration-Process", which still needs to be further understood. The biomimetic nature of this material seems to contribute to physiological matrix remodelling, which probably involves other matricellular proteins essential for soft tissue regeneration. A deeper understanding of the mechanism, involved in the tissue integration of this material and its contribution to soft tissue regeneration based on the direct and indirect effect of matricellular proteins could open new therapeutic avenues for biomaterial-based soft tissue regeneration as an alternative to traditional flap-based plastic surgery.

  7. DSCAM Localization and Function at the Mouse Cone Synapse

    PubMed Central

    de Andrade, Gabriel Belem; Long, Samuel S.; Fleming, Harrison; Li, Wei; Fuerst, Peter G.

    2014-01-01

    The Down Syndrome Cell Adhesion Molecule (DSCAM) is required for regulation of cell number, soma spacing and cell type specific dendrite avoidance in many types of retinal ganglion and amacrine cells. In this study we assay the organization of cells making up the outer plexiform layer of the retina in the absence of Dscam. Some types of OFF bipolar cells, type 3b and type 4 bipolar cells, had defects in dendrite arborization in the Dscam mutant retina, while other cell types appeared similar to wild type. The cone synapses that these cells project their dendrites to were intact, as visualized by electron microscopy, and had a distribution and density that was not significantly different than wild type. The spacing of type 3b bipolar cell dendrites was further analyzed by Voronoi domain analysis, Density Recovery Profiling (DRP) analysis and Nearest Neighbor Analysis (NNA). Spacing was found to be significantly different when comparing wild type and mutant type 3b bipolar cell dendrites. Defects in arborization of these bipolar cells could not be attributed to the disorganization of inner plexiform layer cells that occurs in the Dscam mutant retina or an increase in cell number, as they arborized when Dscam was targeted in retinal ganglion cells only or in the bax null retina. Localization of DSCAM was assayed and the protein was localized near to cone synapses in mouse, macaque and ground squirrel retinas. DSCAM protein was detected in several types of bipolar cells, including type 3b and type 4 bipolar cells. PMID:24477985

  8. Asymmetric interaction of point defects and heterophase interfaces in ZrN/TaN multilayered nanofilms.

    PubMed

    Lao, Yuanxia; Hu, Shuanglin; Shi, Yunlong; Deng, Yu; Wang, Fei; Du, Hao; Zhang, Haibing; Wang, Yuan

    2017-01-05

    Materials with a high density of heterophase interfaces, which are capable of absorbing and annihilating radiation-induced point defects, can exhibit a superior radiation tolerance. In this paper, we investigated the interaction behaviors of point defects and heterophase interfaces by implanting helium atoms into the ZrN/TaN multilayered nanofilms. It was found that the point defect-interface interaction on the two sides of the ZrN/TaN interface was asymmetric, likely due to the difference in the vacancy formation energies of ZrN and TaN. The helium bubbles could migrate from the ZrN layers into the TaN layers through the heterophase interfaces, resulting in a better crystallinity of the ZrN layers and a complete amorphization of the TaN layers. The findings provided some clues to the fundamental behaviors of point defects near the heterophase interfaces, which make us re-examine the design rules of advanced radiation-tolerant materials.

  9. Asymmetric interaction of point defects and heterophase interfaces in ZrN/TaN multilayered nanofilms

    NASA Astrophysics Data System (ADS)

    Lao, Yuanxia; Hu, Shuanglin; Shi, Yunlong; Deng, Yu; Wang, Fei; Du, Hao; Zhang, Haibing; Wang, Yuan

    2017-01-01

    Materials with a high density of heterophase interfaces, which are capable of absorbing and annihilating radiation-induced point defects, can exhibit a superior radiation tolerance. In this paper, we investigated the interaction behaviors of point defects and heterophase interfaces by implanting helium atoms into the ZrN/TaN multilayered nanofilms. It was found that the point defect-interface interaction on the two sides of the ZrN/TaN interface was asymmetric, likely due to the difference in the vacancy formation energies of ZrN and TaN. The helium bubbles could migrate from the ZrN layers into the TaN layers through the heterophase interfaces, resulting in a better crystallinity of the ZrN layers and a complete amorphization of the TaN layers. The findings provided some clues to the fundamental behaviors of point defects near the heterophase interfaces, which make us re-examine the design rules of advanced radiation-tolerant materials.

  10. Asymmetric interaction of point defects and heterophase interfaces in ZrN/TaN multilayered nanofilms

    PubMed Central

    Lao, Yuanxia; Hu, Shuanglin; Shi, Yunlong; Deng, Yu; Wang, Fei; Du, Hao; Zhang, Haibing; Wang, Yuan

    2017-01-01

    Materials with a high density of heterophase interfaces, which are capable of absorbing and annihilating radiation-induced point defects, can exhibit a superior radiation tolerance. In this paper, we investigated the interaction behaviors of point defects and heterophase interfaces by implanting helium atoms into the ZrN/TaN multilayered nanofilms. It was found that the point defect-interface interaction on the two sides of the ZrN/TaN interface was asymmetric, likely due to the difference in the vacancy formation energies of ZrN and TaN. The helium bubbles could migrate from the ZrN layers into the TaN layers through the heterophase interfaces, resulting in a better crystallinity of the ZrN layers and a complete amorphization of the TaN layers. The findings provided some clues to the fundamental behaviors of point defects near the heterophase interfaces, which make us re-examine the design rules of advanced radiation-tolerant materials. PMID:28053307

  11. Crystal defects induced by chitin and chitinolytic enzymes in the prismatic layer of Pinctada fucata.

    PubMed

    Kintsu, Hiroyuki; Okumura, Taiga; Negishi, Lumi; Ifuku, Shinsuke; Kogure, Toshihiro; Sakuda, Shohei; Suzuki, Michio

    2017-07-22

    Biomineralization, in which organisms create biogenic hard tissues, with hardness or flexibility enhanced by organic-inorganic interaction is an interesting and attractive focus for application of biomimetic functional materials. Calcites in the prismatic layer of Pinctada fucata are tougher than abiotic calcites due to small crystal defects. However, the molecular mechanism of the defect formation remains unclear. Here, chitin and two chitinolytic enzymes, chitinase and chitobiase, were identified as organic matrices related to for the formation of small crystal defects in the prismatic layer. Experiments with a chitinase inhibitor in vivo showed chitinase is necessary to form the prismatic layer. Analysis of calcite crystals, which were synthesized in a chitin hydrogel treated with chitinolytic enzymes, by electron microscopy and X-ray diffraction showed that crystal defects became larger as chitin was more degraded. These results suggest that interactions between chitin and calcium carbonate increase as chitin is thinner. Copyright © 2017. Published by Elsevier Inc.

  12. Electrical study of DSA shrink process and CD rectification effect at sub-60nm using EUV test vehicle

    NASA Astrophysics Data System (ADS)

    Chi, Cheng; Liu, Chi-Chun; Meli, Luciana; Guo, Jing; Parnell, Doni; Mignot, Yann; Schmidt, Kristin; Sanchez, Martha; Farrell, Richard; Singh, Lovejeet; Furukawa, Tsuyoshi; Lai, Kafai; Xu, Yongan; Sanders, Daniel; Hetzer, David; Metz, Andrew; Burns, Sean; Felix, Nelson; Arnold, John; Corliss, Daniel

    2017-03-01

    In this study, the integrity and the benefits of the DSA shrink process were verified through a via-chain test structure, which was fabricated by either DSA or baseline litho/etch process for via layer formation while metal layer processes remain the same. The nearest distance between the vias in this test structure is below 60nm, therefore, the following process components were included: 1) lamella-forming BCP for forming self-aligned via (SAV), 2) EUV printed guiding pattern, and 3) PS-philic sidewall. The local CDU (LCDU) of minor axis was improved by 30% after DSA shrink process. We compared two DSA Via shrink processes and a DSA_Control process, in which guiding patterns (GP) were directly transferred to the bottom OPL without DSA shrink. The DSA_Control apparently resulted in larger CD, thus, showed much higher open current and shorted the dense via chains. The non-optimized DSA shrink process showed much broader current distribution than the improved DSA shrink process, which we attributed to distortion and dislocation of the vias and ineffective SAV. Furthermore, preliminary defectivity study of our latest DSA process showed that the primary defect mode is likely to be etch-related. The challenges, strategies applied to improve local CD uniformity and electrical current distribution, and potential adjustments were also discussed.

  13. Ab initio study of point defects near stacking faults in 3C-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Jianqi; Liu, Bin; Zhang, Yanwen

    Interactions between point defects and stacking faults in 3C-SiC are studied using an ab initio method based on density functional theory. The results show that the discontinuity of the stacking sequence considerably affects the configurations and behavior of intrinsic defects, especially in the case of silicon interstitials. The existence of an intrinsic stacking fault (missing a C-Si bilayer) shortens the distance between the tetrahedral-center site and its second-nearest-neighboring silicon layer, making the tetrahedral silicon interstitial unstable. Instead of a tetrahedral configuration with four C neighbors, a pyramid-like interstitial structure with a defect state within the band gap becomes a stablemore » configuration. In addition, orientation rotation occurs in the split interstitials that has diverse effects on the energy landscape of silicon and carbon split interstitials in the stacking fault region. Moreover, our analyses of ionic relaxation and electronic structure of vacancies show that the built-in strain field, owing to the existence of the stacking fault, makes the local environment around vacancies more complex than that in the bulk.« less

  14. Ab initio study of point defects near stacking faults in 3C-SiC

    DOE PAGES

    Xi, Jianqi; Liu, Bin; Zhang, Yanwen; ...

    2016-07-02

    Interactions between point defects and stacking faults in 3C-SiC are studied using an ab initio method based on density functional theory. The results show that the discontinuity of the stacking sequence considerably affects the configurations and behavior of intrinsic defects, especially in the case of silicon interstitials. The existence of an intrinsic stacking fault (missing a C-Si bilayer) shortens the distance between the tetrahedral-center site and its second-nearest-neighboring silicon layer, making the tetrahedral silicon interstitial unstable. Instead of a tetrahedral configuration with four C neighbors, a pyramid-like interstitial structure with a defect state within the band gap becomes a stablemore » configuration. In addition, orientation rotation occurs in the split interstitials that has diverse effects on the energy landscape of silicon and carbon split interstitials in the stacking fault region. Moreover, our analyses of ionic relaxation and electronic structure of vacancies show that the built-in strain field, owing to the existence of the stacking fault, makes the local environment around vacancies more complex than that in the bulk.« less

  15. Reconstruction of palatal defect using mucoperiosteal hinge flap and pushback palatoplasty.

    PubMed

    Lee, S I; Lee, H S; Hwang, K

    2001-11-01

    This article describes a simple, new surgical technique to provide a complete two-layer closure of palatal defect resulting from a surgical complication of trans palatal resection of skull base chordoma. The nasal layer was reconstructed with triangular shape oral mucoperiosteal turn over hinge flap based on anterior margin of palatal defect and rectangular shaped lateral nasal mucosal hinge flaps. The oral layer was reconstructed with conventional pushback V-Y advancement 2-flaps palatoplasty. Each layer of the flaps were secured with two key mattress suture for flap coaptation. This technique has some advantages: simple, short operation time, one-stage procedure, no need of osteotomy. It can close small- to medium-sized palatal defect of palate or wide cleft palate and can prevent common complication of oronasal fistula, which could be caused by tension.

  16. Raman spectra of Hg-based superconductors: Effect of oxygen defects

    NASA Astrophysics Data System (ADS)

    Zhou, Xingjiang; Cardona, M.; Chu, C. W.; Lin, Q. M.; Loureiro, S. M.; Marezio, M.

    1996-09-01

    Polarized micro-Raman scattering measurements have been performed on the five members of the HgBa2Can-1CunO2n+2+δ (n=1, 2, 3, 4, and 5) high-Tc superconductor family. A systematic evolution of the spectrum, which mainly involves oxygen-related phonons around 590, 570, 540, and 470 cm-1, with an increasing number of CuO2 layers, has been observed. Local laser annealing measurements clearly demonstrate that all these phonons are closely related to interstitial oxygen in the HgOδ planes. The origin of the spectrum evolution with the number of CuO2 layers lies in the variation of interstitial oxygen content.

  17. Filtering properties of Thue-Morse nano-photonic crystals containing high-temperature superconductor

    NASA Astrophysics Data System (ADS)

    Talebzadeh, Robabeh; Bavaghar, Mehrdad

    2018-05-01

    In this paper, we introduced new design of quasi-periodic layered structures by choosing order two of ternary Thue-Morse structure. We considered Superconductor-dielectric photonic crystal with mirror symmetric as (ABSSAB)N(BASSBA)N composed of two kinds of nano-scale dielectric layers (A and B) and high-temperature superconductor layers where N is the number of period. This structure is assumed to be the free space. By using the transfer matrix method and the two fluid model, we theoretically study the transmission spectrum of ternary Thue-Morse superconducting photonic crystals with mirror symmetry and introduce this structure as a narrow optical filter. We showed that transmission peak so-called defect mode appears itself inside the transmission spectrum of suggested structure as same as defective layered structure. Also, we analyzed the influence of various related parameters such as the operating temperature of superconductor layer on position of defect mode. The redshift of defect mode with increasing the operating temperature was observed.

  18. Nucleation and growth kinetics for intercalated islands during deposition on layered materials with isolated pointlike surface defects

    DOE PAGES

    Han, Yong; Lii-Rosales, A.; Zhou, Y.; ...

    2017-10-13

    Theory and stochastic lattice-gas modeling is developed for the formation of intercalated metal islands in the gallery between the top layer and the underlying layer at the surface of layered materials. Our model for this process involves deposition of atoms, some fraction of which then enter the gallery through well-separated pointlike defects in the top layer. Subsequently, these atoms diffuse within the subsurface gallery leading to nucleation and growth of intercalated islands nearby the defect point source. For the case of a single point defect, continuum diffusion equation analysis provides insight into the nucleation kinetics. However, complementary tailored lattice-gas modelingmore » produces a more comprehensive and quantitative characterization. We analyze the large spread in nucleation times and positions relative to the defect for the first nucleated island. We also consider the formation of subsequent islands and the evolution of island growth shapes. The shapes reflect in part our natural adoption of a hexagonal close-packed island structure. As a result, motivation and support for the model is provided by scanning tunneling microscopy observations of the formation of intercalated metal islands in highly-ordered pyrolytic graphite at higher temperatures.« less

  19. Investigation of defect modes in a defective photonic crystal with a semiconductor metamaterial defect

    NASA Astrophysics Data System (ADS)

    Wu, Meng-Ru; Wu, Chien-Jang; Chang, Shoou-Jinn

    2014-11-01

    In this work, we theoretically investigate the properties of defect modes in a defective photonic crystal containing a semiconductor metamaterial defect. We consider the structure, (LH)N/DP/(LH)N, where N and P are respectively the stack numbers, L is SiO2, H is InP, and defect layer D is a semiconductor metamaterial composed of Al-doped ZnO (AZO) and ZnO. It is found that, within the photonic band gap, the number of defect modes (transmission peaks) will decrease as the defect thickness increases, in sharp contrast to the case of using usual dielectric defect. The peak height and position can be changed by the variation in the thickness of defect layer. In the angle-dependent defect mode, its position is shown to be blue-shifted as the angle of incidence increases for both TE and TM waves. The analysis of defect mode provides useful information for the design of tunable transmission filter in semiconductor optoelectronics.

  20. Numerical study of metal oxide hetero-junction solar cells with defects and interface states

    NASA Astrophysics Data System (ADS)

    Zhu, Le; Shao, Guosheng; Luo, J. K.

    2013-05-01

    Further to our previous work on ideal metal oxide (MO) hetero-junction solar cells, a systematic simulation has been carried out to investigate the effects of defects and interface states on the cells. Two structures of the window/absorber (WA) and window/absorber/voltage-enhancer (WAV) were modelled with defect concentration, defect energy level, interface state (ISt) density and ISt energy level as parameters. The simulation showed that the defects in the window layer and the voltage-enhancer layer have very limited effects on the performance of the cells, but those in the absorption layer have profound effects on the cell performance. The interface states at the W/A interface have a limited effect on the performance even for a density up to 1013 cm-2, while those at the A/V interface cause the solar cell to deteriorate severely even at a low density of lower than 1 × 1011 cm-2. It also showed that the back surface field (BSF) induced by band gap off-set in the WAV structure loses its function when defects with a modest concentration exist in the absorption layer and does not improve the open voltage at all.

  1. Method of evaluating the integrity of the outer carbon layer of triso-coated reactor fuel particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caputo, A.J.; Costanzo, D.A.; Lackey, W.J.

    1980-10-07

    This invention relates to a method for determining defective final layers of carbon on triso-coated fuel particles and the like. Samples of the particles are subjected to a high temperature treatment with gaseous chlorine and thereafter radiographed. The chlorine penetrates through any defective carbon layer and reacts with the underlying silicon carbide resulting in the volatilization of the silicon as sicl4 leaving carbon as a porous layer. This porous carbon layer is easily detected by the radiography.

  2. Contact stresses modeling at the Panda-type fiber single-layer winding and evaluation of their impact on the fiber optic properties

    NASA Astrophysics Data System (ADS)

    Lesnikova, Yu I.; Smetannikov, O. Yu; Trufanov, A. N.; Trufanov, N. A.

    2017-02-01

    The impact of contact transverse forces on the birefringence of the single-mode polarization-maintaining Panda-type fiber is numerically modeled. It has been established that with a single-row power winding on a cylindrical mandrel, the fiber tension at winding is the principal factor that influences birefringence. When coiling the fiber based on the local defect microbending, the birefringence at the microbending point differs from that of the free fiber by 1.3%.

  3. Bombardment-induced segregation and redistribution

    NASA Astrophysics Data System (ADS)

    Lam, N. Q.; Wiedersich, H.

    During ion bombardment, a number of processes can alter the compositional distribution and microstructure in near-surface regions of alloys. The relative importance of each process depends principally on the target composition, temperature, and ion characteristics. In addition to displacement mixing leading to a randomization of atomic locations, and preferential loss of alloying elements by sputtering, which are dominant at relatively low temperatures, several thermally-activated processes, including radiation-enhanced diffusion, radiation-induced segregation and Gibbsian adsorption, also play important roles. At elevated temperatures, nonequilibrium point defects induced by ion impacts become mobile and tend to anneal out by recombination and diffusion to extended sinks, such as dislocations, grain boundaries and free surfaces. The high defect concentrations, far exceeding the thermodynamic equilibrium values, can enhance diffusion-controlled processes, while persistent defect fluxes, originating from the spatial non-uniformity in defect production and annihilation, give rise to local redistribution of alloy constituents because of radiation-induced segregation. Moreover, when the alloy is maintained at high temperature, Gibbsian adsorption, driven by the reduction in free energy of the system, occurs even without irradiation; it involves a compositional perturbation in a few atom layers near the alloy surface. The combination of these processes leads to the complex development of a compositionally-modified layer in the subsurface region. Considerable progress has been made recently in identifying and understanding the relative contributions from the individual processes under various irradiation conditions. In the present paper, selected examples of these different phenomena and their synergistic effects on the evolution of the near-surface compositions of alloys during sputtering and ion implantation at elevated temperatures are discussed.

  4. Defect characterization of proton irradiated GaAs pn-junction diodes with layers of InAs quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Shin-ichiro, E-mail: sato.shinichiro@jaea.go.jp; Optoelectronics and Radiation Effects Branch, U.S. Naval Research Laboratory, Washington, DC 20375; Schmieder, Kenneth J.

    2016-05-14

    In order to expand the technology of III-V semiconductor devices with quantum structures to both terrestrial and space use, radiation induced defects as well as native defects generated in the quantum structures should be clarified. Electrically active defects in GaAs p{sup +}n diodes with embedded ten layers of InAs quantum dots (QDs) are investigated using Deep Level Transient Fourier Spectroscopy. Both majority carrier (electron) and minority carrier (hole) traps are characterized. In the devices of this study, GaP layers are embedded in between the QD layers to offset the compressive stress introduced during growth of InAs QDs. Devices are irradiatedmore » with high energy protons for three different fluences at room temperature in order to characterize radiation induced defects. Seven majority electron traps and one minority hole trap are found after proton irradiation. It is shown that four electron traps induced by proton irradiation increase in proportion to the fluence, whereas the EL2 trap, which appears before irradiation, is not affected by irradiation. These defects correspond to electron traps previously identified in GaAs. In addition, a 0.53 eV electron trap and a 0.14 eV hole trap are found in the QD layers before proton irradiation. It is shown that these native traps are also unaffected by irradiation. The nature of the 0.14 eV hole trap is thought to be Ga-vacancies in the GaP strain balancing layers.« less

  5. Processing Optimization of Deformed Plain Woven Thermoplastic Composites

    NASA Astrophysics Data System (ADS)

    Smith, John R.; Vaidya, Uday K.

    2013-12-01

    This research addresses the processing optimization of post-manufactured, plain weave architecture composite panels consisted of four glass layers and thermoplastic polyurethane (TPU) when formed with only localized heating. Often times, during the production of deep drawn composite parts, a fabric preform experiences various defects, including non-isothermal heating and thickness variations. Minimizing these defects is of utmost importance for mass produceability in a practical manufacturing process. The broad objective of this research was to implement a design of experiments approach to minimize through-thickness composite panel variation during manufacturing by varying the heating time, the temperature of heated components and the clamping pressure. It was concluded that the heated tooling with least area contact was most influential, followed by the length of heating time and the amount of clamping pressure.

  6. Three-dimensional textures and defects of soft material layering revealed by thermal sublimation.

    PubMed

    Yoon, Dong Ki; Kim, Yun Ho; Kim, Dae Seok; Oh, Seong Dae; Smalyukh, Ivan I; Clark, Noel A; Jung, Hee-Tae

    2013-11-26

    Layering is found and exploited in a variety of soft material systems, ranging from complex macromolecular self-assemblies to block copolymer and small-molecule liquid crystals. Because the control of layer structure is required for applications and characterization, and because defects reveal key features of the symmetries of layered phases, a variety of techniques have been developed for the study of soft-layer structure and defects, including X-ray diffraction and visualization using optical transmission and fluorescence confocal polarizing microscopy, atomic force microscopy, and SEM and transmission electron microscopy, including freeze-fracture transmission electron microscopy. Here, it is shown that thermal sublimation can be usefully combined with such techniques to enable visualization of the 3D structure of soft materials. Sequential sublimation removes material in a stepwise fashion, leaving a remnant layer structure largely unchanged and viewable using SEM, as demonstrated here using a lamellar smectic liquid crystal.

  7. Corrosion investigation of fire-gilded bronze involving high surface resolution spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Masi, G.; Chiavari, C.; Avila, J.; Esvan, J.; Raffo, S.; Bignozzi, M. C.; Asensio, M. C.; Robbiola, L.; Martini, C.

    2016-03-01

    Gilded bronzes are often affected by severe corrosion, due to defects in the Au layer and Au/Cu alloy galvanic coupling, stimulated by large cathodic area of the gilded layer. Galvanic corrosion, triggered by gilding defects, leads to products growth at the Au/bronze interface, inducing blistering or break-up of the Au layer. In this context, fire-gilded bronze replicas prepared by ancient methods (use of spreadable Au-Hg paste) was specifically characterised by compiling complementary spectroscopic and imaging information before/after accelerated ageing with synthetic rain. Fire-gilded bronze samples were chemically imaged in cross-section at nano-metric scale (<200 nm) using high energy and lateral resolution synchrotron radiation photoemission (HR-SRPES) of core levels and valence band after conventional characterisation of the samples by Glow Discharge optical Emission Spectroscopy (GD-OES) and conventional X-ray photoelectron spectroscopy (XPS). We have found a net surface enrichment in Zn and Sn after fire-gilding and presence of metallic Hg, Pb and Cu within the Au layer. Moreover, the composition distribution of the elements together with their oxidation has been determined. It was also revealed that metallic phases including Hg and Pb remain in the gilding after corrosion. Moreover, selective dissolution of Zn and Cu occurs in the crater due to galvanic coupling, which locally induces relative Sn species enrichment (decuprification). The feasibility advantages and disadvantages of chemical imaging using HR-SRPES to study artworks have been investigated on representative replicas.

  8. Engineering and Localization of Quantum Emitters in Large Hexagonal Boron Nitride Layers.

    PubMed

    Choi, Sumin; Tran, Toan Trong; Elbadawi, Christopher; Lobo, Charlene; Wang, Xuewen; Juodkazis, Saulius; Seniutinas, Gediminas; Toth, Milos; Aharonovich, Igor

    2016-11-02

    Hexagonal boron nitride is a wide-band-gap van der Waals material that has recently emerged as a promising platform for quantum photonics experiments. In this work, we study the formation and localization of narrowband quantum emitters in large flakes (up to tens of micrometers wide) of hexagonal boron nitride. The emitters can be activated in as-grown hexagonal boron nitride by electron irradiation or high-temperature annealing, and the emitter formation probability can be increased by ion implantation or focused laser irradiation of the as-grown material. Interestingly, we show that the emitters are always localized at the edges of the flakes, unlike most luminescent point defects in three-dimensional materials. Our results constitute an important step on the roadmap of deploying hexagonal boron nitride in nanophotonics applications.

  9. Influence of cutting parameters on the depth of subsurface deformed layer in nano-cutting process of single crystal copper.

    PubMed

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Su, Hao; Wang, Zhiguo; Xie, Wenkun

    2015-12-01

    Large-scale molecular dynamics simulation is performed to study the nano-cutting process of single crystal copper realized by single-point diamond cutting tool in this paper. The centro-symmetry parameter is adopted to characterize the subsurface deformed layers and the distribution and evolution of the subsurface defect structures. Three-dimensional visualization and measurement technology are used to measure the depth of the subsurface deformed layers. The influence of cutting speed, cutting depth, cutting direction, and crystallographic orientation on the depth of subsurface deformed layers is systematically investigated. The results show that a lot of defect structures are formed in the subsurface of workpiece during nano-cutting process, for instance, stair-rod dislocations, stacking fault tetrahedron, atomic clusters, vacancy defects, point defects. In the process of nano-cutting, the depth of subsurface deformed layers increases with the cutting distance at the beginning, then decreases at stable cutting process, and basically remains unchanged when the cutting distance reaches up to 24 nm. The depth of subsurface deformed layers decreases with the increase in cutting speed between 50 and 300 m/s. The depth of subsurface deformed layer increases with cutting depth, proportionally, and basically remains unchanged when the cutting depth reaches over 6 nm.

  10. Silicon metal-semiconductor-metal photodetector

    DOEpatents

    Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.

    1997-01-01

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  11. Silicon metal-semiconductor-metal photodetector

    DOEpatents

    Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.

    1995-01-01

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  12. Method and apparatus for increasing the durability and yield of thin film photovoltaic devices

    DOEpatents

    Phillips, J.E.; Lasswell, P.G.

    1987-02-03

    Thin film photovoltaic cells having a pair of semiconductor layers between an opaque and a transparent electrical contact are manufactured in a method which includes the step of scanning one of the semiconductor layers to determine the location of any possible shorting defect. Upon the detection of such defect, the defect is eliminated to increase the durability and yield of the photovoltaic device. 10 figs.

  13. Method and apparatus for increasing the durability and yield of thin film photovoltaic devices

    DOEpatents

    Phillips, James E.; Lasswell, Patrick G.

    1987-01-01

    Thin film photovoltaic cells having a pair of semiconductor layers between an opaque and a transparent electrical contact are manufactured in a method which includes the step of scanning one of the semiconductor layers to determine the location of any possible shorting defect. Upon the detection of such defect, the defect is eliminated to increase the durability and yield of the photovoltaic device.

  14. Nicotinic Acid Receptor Abnormalities in Human Skin Cancer: Implications for a Role in Epidermal Differentiation

    PubMed Central

    Bermudez, Yira; Benavente, Claudia A.; Meyer, Ralph G.; Coyle, W. Russell; Jacobson, Myron K.; Jacobson, Elaine L.

    2011-01-01

    Background Chronic UV skin exposure leads to epidermal differentiation defects in humans that can be largely restored by pharmacological doses of nicotinic acid. Nicotinic acid has been identified as a ligand for the human G-protein-coupled receptors GPR109A and GPR109B that signal through Gi-mediated inhibition of adenylyl cyclase. We have examined the expression, cellular distribution, and functionality of GPR109A/B in human skin and skin derived epidermal cells. Results Nicotinic acid increases epidermal differentiation in photodamaged human skin as judged by the terminal differentiation markers caspase 14 and filaggrin. Both GPR109A and GPR109B genes are transcribed in human skin and in epidermal keratinocytes, but expression in dermal fibroblasts is below limits of detection. Receptor transcripts are greatly over-expressed in squamous cell cancers. Receptor protein in normal skin is prominent from the basal through granular layers of the epidermis, with cellular localization more dispersive in the basal layer but predominantly localized at the plasma membrane in more differentiated epidermal layers. In normal human primary and immortalized keratinocytes, nicotinic acid receptors show plasma membrane localization and functional Gi-mediated signaling. In contrast, in a squamous cell carcinoma derived cell line, receptor protein shows a more diffuse cellular localization and the receptors are nearly non-functional. Conclusions The results of these studies justify future genetic and pharmacological intervention studies to define possible specific role(s) of nicotinic acid receptors in human skin homeostasis. PMID:21655214

  15. Mitigation of substrate defects in reflective reticles using sequential coating and annealing

    DOEpatents

    Mirkanimi, Paul B.

    2002-01-01

    A buffer-layer to minimize the size of defects on a reticle substrate prior to deposition of a reflective coating on the substrate. The buffer-layer is formed by either a multilayer deposited on the substrate or by a plurality of sequentially deposited and annealed coatings deposited on the substrate. The plurality of sequentially deposited and annealed coating may comprise multilayer and single layer coatings. The multilayer deposited and annealed buffer layer coatings may be of the same or different material than the reflecting coating thereafter deposited on the buffer-layer.

  16. Method of evaluating the integrity of the outer carbon layer of triso-coated reactor fuel particles

    DOEpatents

    Caputo, Anthony J.; Costanzo, Dante A.; Lackey, Jr., Walter J.; Layton, Frank L.; Stinton, David P.

    1980-01-01

    This invention relates to a method for determining defective final layers of carbon on triso-coated fuel particles and the like. Samples of the particles are subjected to a high temperature treatment with gaseous chlorine and thereafter radiographed. The chlorine penetrates through any defective carbon layer and reacts with the underlying silicon carbide resulting in the volatilization of the silicon as SiCl.sub.4 leaving carbon as a porous layer. This porous carbon layer is easily detected by the radiography.

  17. Molecular beam epitaxy of graphene on ultra-smooth nickel: growth mode and substrate interactions

    NASA Astrophysics Data System (ADS)

    Wofford, J. M.; Oliveira, M. H., Jr.; Schumann, T.; Jenichen, B.; Ramsteiner, M.; Jahn, U.; Fölsch, S.; Lopes, J. M. J.; Riechert, H.

    2014-09-01

    Graphene is grown by molecular beam epitaxy using epitaxial Ni films on MgO(111) as substrates. Raman spectroscopy and scanning tunneling microscopy reveal the graphene films to have few crystalline defects. While the layers are ultra-smooth over large areas, we find that Ni surface features lead to local non-uniformly thick graphene inclusions. The influence of the Ni surface structure on the position and morphology of these inclusions strongly suggests that multilayer graphene on Ni forms at the interface of the first complete layer and metal substrate in a growth-from-below mechanism. The interplay between Ni surface features and graphene growth behavior may facilitate the production of films with spatially resolved multilayer inclusions through engineered substrate surface morphology.

  18. Diffusion and aggregation of subsurface radiation defects in lithium fluoride nanocrystals

    NASA Astrophysics Data System (ADS)

    Voitovich, A. P.; Kalinov, V. S.; Martynovich, E. F.; Stupak, A. P.; Runets, L. P.

    2015-09-01

    Lithium fluoride nanocrystals were irradiated by gamma rays at a temperature below the temperature corresponding to the mobility of anion vacancies. The kinetics of the aggregation of radiation-induced defects in subsurface layers of nanocrystals during annealing after irradiation was elucidated. The processes that could be used to determine the activation energy of the diffusion of anion vacancies were revealed. The value of this energy in subsurface layers was obtained. For subsurface layers, the concentrations ratio of vacancies and defects consisting of one vacancy and two electrons was found. The factors responsible for the differences in the values of the activation energies and concentration ratios in subsurface layers and in the bulk of the crystals were discussed.

  19. Gallium nitride based logpile photonic crystals.

    PubMed

    Subramania, Ganapathi; Li, Qiming; Lee, Yun-Ju; Figiel, Jeffrey J; Wang, George T; Fischer, Arthur J

    2011-11-09

    We demonstrate a nine-layer logpile three-dimensional photonic crystal (3DPC) composed of single crystalline gallium nitride (GaN) nanorods, ∼100 nm in size with lattice constants of 260, 280, and 300 nm with photonic band gap in the visible region. This unique GaN structure is created through a combined approach of a layer-by-layer template fabrication technique and selective metal organic chemical vapor deposition (MOCVD). These GaN 3DPC exhibit a stacking direction band gap characterized by strong optical reflectance between 380 and 500 nm. By introducing a "line-defect" cavity in the fifth (middle) layer of the 3DPC, a localized transmission mode with a quality factor of 25-30 is also observed within the photonic band gap. The realization of a group III nitride 3DPC with uniform features and a band gap at wavelengths in the visible region is an important step toward realizing complete control of the electromagnetic environment for group III nitride based optoelectronic devices.

  20. Pulse Phase Dynamic Thermal Tomography Investigation on the Defects of the Solid-Propellant Missile Engine Cladding Layer

    NASA Astrophysics Data System (ADS)

    Peng, Wei; Wang, Fei; Liu, Jun-yan; Xiao, Peng; Wang, Yang; Dai, Jing-min

    2018-04-01

    Pulse phase dynamic thermal tomography (PP-DTT) was introduced as a nondestructive inspection technique to detect the defects of the solid-propellant missile engine cladding layer. One-dimensional thermal wave mathematical model stimulated by pulse signal was developed and employed to investigate the thermal wave transmission characteristics. The pulse phase algorithm was used to extract the thermal wave characteristic of thermal radiation. Depth calibration curve was obtained by fuzzy c-means algorithm. Moreover, PP-DTT, a depth-resolved photothermal imaging modality, was employed to enable three-dimensional (3D) visualization of cladding layer defects. The comparison experiment between PP-DTT and classical dynamic thermal tomography was investigated. The results showed that PP-DTT can reconstruct the 3D topography of defects in a high quality.

  1. Enhanced Magnetization of Cobalt Defect Clusters Embedded in TiO2-δ Films.

    PubMed

    Cortie, David L; Khaydukov, Yury; Keller, Thomas; Sprouster, David J; Hughes, Jacob S; Sullivan, James P; Wang, Xiaolin L; Le Brun, Anton P; Bertinshaw, Joel; Callori, Sara J; Aughterson, Robert; James, Michael; Evans, Peter J; Triani, Gerry; Klose, Frank

    2017-03-15

    High magnetizations are desirable for spintronic devices that operate by manipulating electronic states using built-in magnetic fields. However, the magnetic moment in promising dilute magnetic oxide nanocomposites is very low, typically corresponding to only fractions of a Bohr magneton for each dopant atom. In this study, we report a large magnetization formed by ion implantation of Co into amorphous TiO 2-δ films, producing an inhomogeneous magnetic moment, with certain regions producing over 2.5 μ B per Co, depending on the local dopant concentration. Polarized neutron reflectometry was used to depth-profile the magnetization in the Co:TiO 2-δ nanocomposites, thus confirming the pivotal role of the cobalt dopant profile inside the titania layer. X-ray photoemission spectra demonstrate the dominant electronic state of the implanted species is Co 0 , with a minor fraction of Co 2+ . The detected magnetizations have seldom been reported before and lie near the upper limit set by Hund's rules for Co 0 , which is unusual because the transition metal's magnetic moment is usually reduced in a symmetric 3D crystal-field environment. Low-energy positron annihilation lifetime spectroscopy indicates that defect structures within the titania layer are strongly modified by the implanted Co. We propose that a clustering motif is promoted by the affinity of the positively charged implanted species to occupy microvoids native to the amorphous host. This provides a seed for subsequent doping and nucleation of nanoclusters within an unusual local environment.

  2. Effects of the unintentional background concentration, indium composition and defect density on the performance of InGaN p-i-n homojunction solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Shudong; Cheng, Liwen; Wang, Qiang

    2018-07-01

    We theoretically investigate the effects of the unintentional background concentration, indium composition and defect density of intrinsic layer (i-layer) on the photovoltaic performance of InGaN p-i-n homojunction solar cells by solving the Poisson and steady-state continuity equations. The built-in electric field and carrier generation rate depend on the position within the i-layer. The collection efficiency, short circuit current density, open circuit voltage, fill factor, and conversion efficiency are found to depend strongly on the background concentration, thickness, indium composition, and defect density of the i-layer. With increasing the background concentration, the maximum thickness of field-bearing i-layer decreases, and the width of depletion region may become even too small to cover the whole i-layer, resulting in a serious decrease of the carrier collection. Some oscillations as a function of indium composition are found in the short circuit current density and conversion efficiency at high indium composition and low defect density due to the interference between the absorbance and the generation rate of carriers. The defect density degrades seriously the overall photovoltaic performance, and its effect on the photovoltaic performance is roughly seven orders of magnitude higher than the previously reported values [Feng et al., J. Appl. Phys. 108 (2010) 093118]. As a result, the high crystalline quality InGaN with high indium composition is a key factor in the device performance of III-nitride based solar cells.

  3. Dielectric properties of thin C r2O3 films grown on elemental and oxide metallic substrates

    NASA Astrophysics Data System (ADS)

    Mahmood, Ather; Street, Michael; Echtenkamp, Will; Kwan, Chun Pui; Bird, Jonathan P.; Binek, Christian

    2018-04-01

    In an attempt to optimize leakage characteristics of α-C r2O3 thin films, its dielectric properties were investigated at local and macroscopic scale. The films were grown on Pd(111), Pt(111), and V2O3 (0001), supported on A l2O3 substrate. The local conductivity was measured by conductive atomic force microscopy mapping of C r2O3 surfaces, which revealed the nature of defects that formed conducting paths with the bottom Pd or Pt layer. A strong correlation was found between these electrical defects and the grain boundaries revealed in the corresponding topographic scans. In comparison, the C r2O3 film on V2O3 exhibited no leakage paths at similar tip bias value. Electrical resistance measurements through e-beam patterned top electrodes confirmed the resistivity mismatch between the films grown on different electrodes. The x-ray analysis attributes this difference to the twin free C r2O3 growth on V2O3 seeding.

  4. Diagnostic Value of Ganglion Cell-Inner Plexiform Layer Thickness in Glaucoma With Superior or Inferior Visual Hemifield Defects.

    PubMed

    Kim, Ho Soong; Yang, Heon; Lee, Tae Heon; Lee, Kyung Heon

    2016-06-01

    To determine the diagnostic value of the ganglion cell-inner plexiform layer (GCIPL) thickness in glaucomatous eyes with superior or inferior visual hemifield defects. Eighty-five patients with glaucoma (42 isolated superior hemifield defects and 43 isolated inferior hemifield defects) and 46 normal subjects were enrolled. All patients underwent Cirrus high-definition optical coherence tomography and standard automated perimetry. The area under the receiver operating characteristic curve (AUC) was calculated to determine the diagnostic ability of the GCIPL and peripapillary retinal nerve fiber layer (pRNFL). In the superior hemifield defect glaucoma group, the best parameters for discriminating normal eyes from glaucomatous eyes were the inferotemporal GCIPL thickness (0.942), inferior quadrant RNFL thickness (0.974), and 7 o'clock sector RNFL thickness (0.999). For diagnosing inferior hemifield defect glaucoma, the AUCs of all GCIPL parameters (0.331 to 0.702) were significantly lower than that of the superior quadrant RNFL thickness (0.866, P<0.05). The diagnostic ability of GCIPL parameters was similar to that of the pRNFL parameters in superior hemifield defect glaucoma. However, the diagnostic performance of the GCIPL parameters was significantly inferior to those of the pRNFL parameters in eyes with inferior hemifield defect glaucoma.

  5. Effect of substrate nitridation temperature on the persistent photoconductivity of unintentionally-doped GaN layer grown by PAMBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, Nisha, E-mail: prakasnisha@gmail.com; Barvat, Arun; Anand, Kritika

    2016-05-23

    The surface roughness and defect density of GaN epitaxial layers grown on c-plane sapphire substrate are investigated and found to be dependent on nitridation temperature. GaN epitaxial layers grown after nitridation of sapphire at 200°C have a higher defect density and higher surface roughness compared to the GaN layers grown at 646°C nitridation as confirmed by atomic force microscopy (AFM). The persistent photoconductivity (PPC) was observed in both samples and it was found to be decreasing with decreasing temperature in the range 150-300°C due to long carrier lifetime and high electron mobility at low temperature. The photoresponse of the GaNmore » films grown in this study exhibit improved PPC due to their better surface morphology at 646°C nitrided sample. The point defects or extended microstructure defects limits the photocarrier lifetime and electron mobility at 200°C nitrided sample.« less

  6. Topological interface states in the natural heterostructure (PbSe)5(Bi2Se3 )6 with BiPb defects

    NASA Astrophysics Data System (ADS)

    Momida, Hiroyoshi; Bihlmayer, Gustav; Blügel, Stefan; Segawa, Kouji; Ando, Yoichi; Oguchi, Tamio

    2018-01-01

    We study theoretically the electronic band structure of (PbSe) 5(Bi2Se3 )6, which consists of an ordinary insulator PbSe and a topological insulator Bi2Se3 . The first-principles calculations show that this material has a gapped Dirac-cone energy dispersion inside the bulk, which originates from the topological states of Bi2Se3 layers encapsulated by PbSe layers. Furthermore, we calculate the band structures of (BixPb1 -xSe )5(Bi2Se3 )6 with BiPb antisite defects included in the PbSe layers. The result shows that a high density of BiPb defects can exist in real materials, consistent with the experimentally estimated x of more than 30%. The BiPb defects strongly modify the band alignment between Bi2Se3 and PbSe layers, while the topological interface states of Bi2Se3 are kept as a gapped Dirac-cone-like dispersion.

  7. Oxygen vacancy defect engineering using atomic layer deposited HfAlOx in multi-layered gate stack

    NASA Astrophysics Data System (ADS)

    Bhuyian, M. N.; Sengupta, R.; Vurikiti, P.; Misra, D.

    2016-05-01

    This work evaluates the defects in high quality atomic layer deposited (ALD) HfAlOx with extremely low Al (<3% Al/(Al + Hf)) incorporation in the Hf based high-k dielectrics. The defect activation energy estimated by the high temperature current voltage measurement shows that the charged oxygen vacancies, V+/V2+, are the primary source of defects in these dielectrics. When Al is added in HfO2, the V+ type defects with a defect activation energy of Ea ˜ 0.2 eV modify to V2+ type to Ea ˜ 0.1 eV with reference to the Si conduction band. When devices were stressed in the gate injection mode for 1000 s, more V+ type defects are generated and Ea reverts back to ˜0.2 eV. Since Al has a less number of valence electrons than do Hf, the change in the co-ordination number due to Al incorporation seems to contribute to the defect level modifications. Additionally, the stress induced leakage current behavior observed at 20 °C and at 125 °C demonstrates that the addition of Al in HfO2 contributed to suppressed trap generation process. This further supports the defect engineering model as reduced flat-band voltage shifts were observed at 20 °C and at 125 °C.

  8. Coherently Coupled ZnO and VO2 Interface studied by Photoluminescence and electrical transport across a phase transition

    NASA Astrophysics Data System (ADS)

    Srivastava, Amar; Saha, S.; Annadi, A.; Zhao, Y. L.; Gopinadhan, K.; Wang, X.; Naomi, N.; Liu, Z. Q.; Dhar, S.; Herng, T. S.; Nina, Bao; Ariando, -; Ding, Jun; Venkatesan, T.

    2012-02-01

    In this work we report a study of a coherently coupled interface consisting of a ZnO layer grown on top of an oriented VO2 layer on sapphire by photoluminescence and electrical transport measurements across the VO2 metal insulator phase transition (MIT). The photoluminescence of the ZnO layer showed a broad hysteresis induced by the phase transition of VO2 while the width of the electrical hysteresis was narrow and unaffected by the over layer. The enhanced width of the PL hysteresis was due to the formation of defects during the MIT as evidenced by a broad hysteresis in the opposite direction to that of the band edge PL in the defect luminescense. Unlike VO2 the defects in ZnO did not fully recover across the phase transition. From the defect luminescence data, oxygen interstitials were found to be the predominant defects in ZnO mediated by the strain from the VO2 phase transition. Such coherently coupled interfaces could be of use in characterizing the stability of a variety of interfaces and also for novel device application.

  9. Mitigating leaks in membranes

    DOEpatents

    Karnik, Rohit N.; Bose, Suman; Boutilier, Michael S.H.; Hadjiconstantinou, Nicolas G.; Jain, Tarun Kumar; O'Hern, Sean C.; Laoui, Tahar; Atieh, Muataz A.; Jang, Doojoon

    2018-02-27

    Two-dimensional material based filters, their method of manufacture, and their use are disclosed. In one embodiment, a membrane may include an active layer including a plurality of defects and a deposited material associated with the plurality of defects may reduce flow therethrough. Additionally, a majority of the active layer may be free from the material. In another embodiment, a membrane may include a porous substrate and an atomic layer deposited material disposed on a surface of the porous substrate. The atomic layer deposited material may be less hydrophilic than the porous substrate and an atomically thin active layer may be disposed on the atomic layer deposited material.

  10. EUVL Mask Blank Repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, A; Mirkarimi, P; Stearns, D G

    2002-05-22

    EUV mask blanks are fabricated by depositing a reflective Mo/Si multilayer film onto super-polished substrates. Small defects in this thin film coating can significantly alter the reflected field and introduce defects in the printed image. Ideally one would want to produce defect-free mask blanks; however, this may be very difficult to achieve in practice. One practical way to increase the yield of mask blanks is to effectively repair multilayer defects, and to this effect they present two complementary defect repair strategies for use on multilayer-coated EUVL mask blanks. A defect is any area on the mask which causes unwanted variationsmore » in EUV dose in the aerial image obtained in a printing tool, and defect repair is correspondingly defined as any strategy that renders a defect unprintable during exposure. The term defect mitigation can be adopted to describe any strategy which renders a critical defect non-critical when printed, and in this regard a non-critical defect is one that does not adversely affect device function. Defects in the patterned absorber layer consist of regions where metal, typically chrome, is unintentionally added or removed from the pattern leading to errors in the reflected field. There currently exists a mature technology based on ion beam milling and ion beam assisted deposition for repairing defects in the absorber layer of transmission lithography masks, and it is reasonable to expect that this technology will be extended to the repair of absorber defects in EUVL masks. However, techniques designed for the repair of absorber layers can not be directly applied to the repair of defects in the mask blank, and in particular the multilayer film. In this paper they present for the first time a new technique for the repair of amplitude defects as well as recent results on the repair of phase defects.« less

  11. Probing Photoexcited Carriers in a Few-Layer MoS2 Laminate by Time-Resolved Optical Pump-Terahertz Probe Spectroscopy.

    PubMed

    Kar, Srabani; Su, Y; Nair, R R; Sood, A K

    2015-12-22

    We report the dynamics of photoinduced carriers in a free-standing MoS2 laminate consisting of a few layers (1-6 layers) using time-resolved optical pump-terahertz probe spectroscopy. Upon photoexcitation with the 800 nm pump pulse, the terahertz conductivity increases due to absorption by the photoinduced charge carriers. The relaxation of the non-equilibrium carriers shows fast as well as slow decay channels, analyzed using a rate equation model incorporating defect-assisted Auger scattering of photoexcited electrons, holes, and excitons. The fast relaxation time occurs due to the capture of electrons and holes by defects via Auger processes, resulting in nonradiative recombination. The slower relaxation arises since the excitons are bound to the defects, preventing the defect-assisted Auger recombination of the electrons and the holes. Our results provide a comprehensive understanding of the non-equilibrium carrier kinetics in a system of unscreened Coulomb interactions, where defect-assisted Auger processes dominate and should be applicable to other 2D systems.

  12. Characterization of few-layered graphene grown by carbon implantation

    NASA Astrophysics Data System (ADS)

    Lee, Kin Kiong; McCallum, Jeffrey C.; Jamieson, David N.

    2014-02-01

    Graphene is considered to be a very promising material for applications in nanotechnology. The properties of graphene are strongly dependent on defects that occur during growth and processing. These defects can be either detrimental or beneficial to device performance depending on defect type, location and device application. Here we present experimental results on formation of few-layered graphene by carbon ion implantation into nickel films and characteristics of graphene devices formed by graphene transfer and lithographic patterning. Micro-Raman spectroscopy was used to determine the number of graphene layers formed and identify defects arising from the device processing. The graphene films were cleaned by annealing in vacuum. Transport properties of cleaned graphene films were investigated by fabrication of back-gated field-effect transistors, which exhibited high hole and electron mobility of 1935 and 1905 cm2/Vs, respectively.

  13. Purse-string double-layer closure: a novel technique for repairing the uterine incision during cesarean section.

    PubMed

    Turan, Cem; Büyükbayrak, Esra Esim; Yilmaz, Aylin Onan; Karsidag, Yasemin Karageyim; Pirimoglu, Meltem

    2015-04-01

    To compare the classical double-layer uterine closure to a double-layer purse-string uterine closure (Turan technique) in cesarean section regarding short- and long-term results. Patients were randomized into either the double-layer purse-string uterine closure arm (study group, 84 patients) or the classical double-layer uterine closure arm (control group, 84 patients). For short-term comparison, a detailed transvaginal ultrasound examination was planned in all patients 6 weeks after the operation and a wedge-shaped defect in the uterine incision scar was accepted as uterine scar defect and recorded. For the long-term comparison, subsequent pregnancies of these patients were followed up for any complication. The number of patients with ultrasonographically visible uterine scar defect was 12 (23.5% of all scar defects) in the study group whereas it was 39 (76.5% of all scar defects) in the control group (P < 0.001, χ(2) = 15.42). Demographic data, operation time, hospitalization time, preoperative and postoperative hemoglobin values were not significantly different between the groups. During the 2-year of the follow-up period, five patients in the study group and six patients in the control group became pregnant again. No complication during their pregnancies and second cesarean operation were encountered. With the Turan technique, the uterine incision length becomes shorter, and the frequency of uterine scar defect is lower regarding short-term results. More data is needed for long-term results. ClinicalTrials.gov NCT01287611. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  14. Subminiature eddy current transducers for studying metal- dielectric junctions

    NASA Astrophysics Data System (ADS)

    Dmitriev, S.; Katasonov, A.; Malikov, V.; Sagalakov, A.; Davydchenko, M.; Shevtsova, L.; Ishkov, A.

    2016-11-01

    Based on an eddy current transducer (ECT), a probe has been designed to research metal-dielectric structures. The measurement procedure allowing one to detect defects in laminate composites with a high accuracy is described. The transducer was tested on the layered structure consisting of paper and aluminum layers with a thickness of 100 μm each in which the model defect was placed. The dependences of the ECT signal on the defect in this structure are given.

  15. Structural defects and recombination behavior of excited carriers in Cu(In,Ga)Se{sub 2} solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J.; Du, H. W.; Li, Y.

    2016-08-15

    The carriers’ behavior in neutral region (NTR) and space charged region (SCR) of Cu(In,Ga)Se{sub 2} thin film based solar cells has been investigated by temperature dependent photoluminescence (PL-T), electroluminescence (EL-T) and current-voltage (IV-T) from 10 to 300 K. PL-T spectra show that three kinds of defects, namely V{sub Se}, In{sub Cu} and (In{sub Cu}+V{sub Cu}), are localized within the band gap of NTR and SCR of CIGS layer, corresponding to the energy levels of E{sub C}-0.08, E{sub C}-0.20 and E{sub C}-0.25 eV, respectively. The In{sub Cu} and (In{sub Cu}+V{sub Cu}) deep level defects are non-radiative recombination centers at room temperature.more » The IV-T and EL-T analysis reveals that the injection modes of electrons from ZnO conduction band into Cu(In,Ga)Se{sub 2} layer are tunneling, thermally-excited tunneling and thermionic emission under 10-40, 60-160, and 180-300 K, respectively. At 10-160 K, the electrons tunnel into (In{sub Cu}+V{sub Cu}) and V{sub se} defect levels in band gap of SCR and the drifting is involved in the emission bands at 0.96 and 1.07 eV, which is the direct evidence for a tunneling assisted recombination. At 180-300 K, the electrons are directly injected into the Cu(In,Ga)Se{sub 2} conduction band, and the emission of 1.13 eV are ascribed to the transitions from the conduction band to the valence band.« less

  16. Pulse-height defect due to electron interaction in dead layers of Ge/Li/ gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Larsen, R. N.; Strauss, M. G.

    1969-01-01

    Study shows the pulse-height degradation of gamma ray spectra in germanium/lithium detectors to be due to electron interaction in the dead layers that exist in all semiconductor detectors. A pulse shape discrimination technique identifies and eliminates these defective pulses.

  17. Extended X-ray absorption fine structure investigation of Sn local environment in strained and relaxed epitaxial Ge{sub 1−x}Sn{sub x} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gencarelli, F., E-mail: federica.gencarelli@imec.be; Heyns, M.; Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, B-3001 Leuven

    2015-03-07

    We present an extended X-ray absorption fine structure investigation of the local environment of Sn atoms in strained and relaxed Ge{sub 1−x}Sn{sub x} layers with different compositions. We show that the preferred configuration for the incorporation of Sn atoms in these Ge{sub 1−x}Sn{sub x} layers is that of a α-Sn defect, with each Sn atom covalently bonded to four Ge atoms in a classic tetrahedral configuration. Sn interstitials, Sn-split vacancy complexes, or Sn dimers, if present at all, are not expected to involve more than 2.5% of the total Sn atoms. This finding, along with a relative increase of Snmore » atoms in the second atomic shell around a central Sn atom in Ge{sub 1−x}Sn{sub x} layers with increasing Sn concentrations, suggests that the investigated materials are homogeneous random substitutional alloys. Within the accuracy of the measurements, the degree of strain relaxation of the Ge{sub 1−x}Sn{sub x} layers does not have a significant impact on the local atomic surrounding of the Sn atoms. Finally, the calculated topological rigidity parameter a** = 0.69 ± 0.29 indicates that the strain due to alloying in Ge{sub 1−x}Sn{sub x} is accommodated via bond stretching and bond bending, with a slight predominance of the latter, in agreement with ab initio calculations reported in literature.« less

  18. Energy Dispersive X-ray Diffraction (EDXRD) of Li1.1V3O8 Electrochemical Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qing; Bruck, Andrea M.; Bock, David C.

    2017-01-01

    ABSTRACT In this study, we conducted the first energy dispersive x-ray diffraction (EDXRD) experiments on Li/Li 1.1V 3O 8coin cells discharged to different lithiation levels in order to investigate the phase transitions upon electrochemical reduction. The phase transformation from layered Li-poor α to Li-rich α to defect rock-salt β phase was confirmed with cells of different lithiation stages. No spatial localization of phase formation was observed throughout the cathodes under the conditions of this measurement.

  19. Energy Dispersive X-ray Diffraction (EDXRD) of Li1.1V3O8 Electrochemical Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qing; Bruck, Andrea M.; Bock, David C.

    ABSTRACT In this study, we conducted the first energy dispersive x-ray diffraction (EDXRD) experiments on Li/Li 1.1V 3O 8coin cells discharged to different lithiation levels in order to investigate the phase transitions upon electrochemical reduction. The phase transformation from layered Li-poor α to Li-rich α to defect rock-salt β phase was confirmed with cells of different lithiation stages. No spatial localization of phase formation was observed throughout the cathodes under the conditions of this measurement.

  20. Nanoscale structure in AgSbTe2 determined by diffuse elastic neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, Eliot D; Ma, Jie; Delaire, Olivier A

    2015-01-01

    Diffuse elastic neutron scattering measurements confirm that AgSbTe2 has a hierarchical structure, with defects on length scales from nanometers to microns. While scattering from mesoscale structure is consistent with previously-proposed structures in which Ag and Sb order on a NaCl lattice, more diffuse scattering from nanoscale structure suggests a structural rearrangement in which hexagonal layers form a combination of (ABC), (ABA), and (AAB) stacking sequences. The AgCrSe2 structure is the best-fitting model for the local atomic arrangements.

  1. Experimental investigation of defect-assisted and intrinsic water vapor permeation through ultrabarrier films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyungchul; Singh, Ankit Kumar; Wang, Cheng-Yin

    In the development of ultrabarrier films for packaging electronics, the effective water vapor transmission rate is a combination of permeation through pinhole defects and the intrinsic permeation through the actual barrier film. While it is possible to measure the effective permeation rate through barriers, it is important to develop a better understanding of the contribution from defects to the overall effective barrier performance. Here, we demonstrate a method to investigate independently defect-assisted permeation and intrinsic permeation rates by observing the degradation of a calcium layer encapsulated with a hybrid barrier film, that is, prepared using atomic layer deposition (ALD) andmore » plasma enhanced deposition (PECVD). The results are rationalized using an analytical diffusion model to calculate the permeation rate as a function of spatial position within the barrier. It was observed that a barrier film consisting of a PECVD SiN{sub x} layer combined with an ALD Al{sub 2}O{sub 3}/HfO{sub x} nanolaminate resulted in a defect-assisted water vapor transmission rate (WVTR) of 4.84 × 10{sup −5} g/m{sup 2} day and intrinsic WVTR of 1.41 × 10{sup −4} g/m{sup 2} day at 50 °C/85% RH. Due to the low defect density of the tested barrier film, the defect-assisted WVTR was found to be three times lower than the intrinsic WVTR, and an effective (or total) WVTR value was 1.89 × 10{sup −4} g/m{sup 2} day. Thus, improvements of the barrier performance should focus on reducing the number of defects while also improving the intrinsic barrier performance of the hybrid layer.« less

  2. Double-layered cell transfer technology for bone regeneration

    PubMed Central

    Akazawa, Keiko; Iwasaki, Kengo; Nagata, Mizuki; Yokoyama, Naoki; Ayame, Hirohito; Yamaki, Kazumasa; Tanaka, Yuichi; Honda, Izumi; Morioka, Chikako; Kimura, Tsuyoshi; Komaki, Motohiro; Kishida, Akio; Izumi, Yuichi; Morita, Ikuo

    2016-01-01

    For cell-based medicine, to mimic in vivo cellular localization, various tissue engineering approaches have been studied to obtain a desirable arrangement of cells on scaffold materials. We have developed a novel method of cell manipulation called “cell transfer technology”, enabling the transfer of cultured cells onto scaffold materials, and controlling cell topology. Here we show that using this technique, two different cell types can be transferred onto a scaffold surface as stable double layers or in patterned arrangements. Various combinations of adherent cells were transferred to a scaffold, amniotic membrane, in overlapping bilayers (double-layered cell transfer), and transferred cells showed stability upon deformations of the material including folding and trimming. Transplantation of mesenchymal stem cells from periodontal ligaments (PDLSC) and osteoblasts, using double-layered cell transfer significantly enhanced bone formation, when compared to single cell type transplantation. Our findings suggest that this double-layer cell transfer is useful to produce a cell transplantation material that can bear two cell layers. Moreover, the transplantation of an amniotic membrane with PDLSCs/osteoblasts by cell transfer technology has therapeutic potential for bone defects. We conclude that cell transfer technology provides a novel and unique cell transplantation method for bone regeneration. PMID:27624174

  3. Influence of ZnO seed layer precursor molar ratio on the density of interface defects in low temperature aqueous chemically synthesized ZnO nanorods/GaN light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Alnoor, Hatim; Pozina, Galia; Khranovskyy, Volodymyr; Liu, Xianjie; Iandolo, Donata; Willander, Magnus; Nur, Omer

    2016-04-01

    Low temperature aqueous chemical synthesis (LT-ACS) of zinc oxide (ZnO) nanorods (NRs) has been attracting considerable research interest due to its great potential in the development of light-emitting diodes (LEDs). The influence of the molar ratio of the zinc acetate (ZnAc): KOH as a ZnO seed layer precursor on the density of interface defects and hence the presence of non-radiative recombination centers in LT-ACS of ZnO NRs/GaN LEDs has been systematically investigated. The material quality of the as-prepared seed layer as quantitatively deduced by the X-ray photoelectron spectroscopy is found to be influenced by the molar ratio. It is revealed by spatially resolved cathodoluminescence that the seed layer molar ratio plays a significant role in the formation and the density of defects at the n-ZnO NRs/p-GaN heterostructure interface. Consequently, LED devices processed using ZnO NRs synthesized with molar ratio of 1:5 M exhibit stronger yellow emission (˜575 nm) compared to those based on 1:1 and 1:3 M ratios as measured by the electroluminescence. Furthermore, seed layer molar ratio shows a quantitative dependence of the non-radiative defect densities as deduced from light-output current characteristics analysis. These results have implications on the development of high-efficiency ZnO-based LEDs and may also be helpful in understanding the effects of the ZnO seed layer on defect-related non-radiative recombination.

  4. Recurrence case of rare scalp dermatofibrosarcoma protuberans: Two case reports of a wide radical excision, craniectomy bone involvement followed by cranioplasty and reconstruction

    PubMed Central

    Faried, Ahmad; Hadisaputra, Wargian; Arifin, Muhammad Z.

    2017-01-01

    Background: Dermatofibrosarcoma protuberans (DFSP) is a rare low-grade sarcoma of the fibroblast originating from the dermal layer of the skin, characterized by a locally aggressive growth and high rate of local recurrence. Case Description: Two patients underwent a wide radical excision of recurrent scalp DFSP which was reconstructed with translational skin flap and split-thickness skin graft. We described above cases several years ago with a local excision of the tumor; recently, they developed local recurrence of DFSP with calvarial involvement. We then performed a wide radical excision, with craniectomy of the cranial defect followed by cranioplasty using titanium mesh, continuing with reconstruction. Conclusion: A successful treatment and management depends on achieving local control and preventing cosmetic and functional deficit; all efforts should be made for complete excision. Postoperative follow-up recommended for highly suspicious cases and annual checkups should be performed up to 5 years after definitive therapy. PMID:28607816

  5. Defect specific luminescence dead layers in CdS and CdSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, R. A.

    CdS and CdSe are often used in optoelectronic devices whose effectiveness is may be dictated by defects in the near surface region. Luminescence is one of the main tools for studying such defects. The energy dependence of the x-ray excited optical luminescence (XEOL) spectra of these materials enables the extraction of the depth dependence of the defect distribution. Normal and time-gated XEOL spectra were obtained from these materials in the energy range 600 to 1500 eV. Here, we find that the results can best be understood in terms of a luminescence dead layer whose width depends on the position ofmore » the defect level in the band gap.« less

  6. Defect specific luminescence dead layers in CdS and CdSe

    DOE PAGES

    Rosenberg, R. A.

    2017-04-28

    CdS and CdSe are often used in optoelectronic devices whose effectiveness is may be dictated by defects in the near surface region. Luminescence is one of the main tools for studying such defects. The energy dependence of the x-ray excited optical luminescence (XEOL) spectra of these materials enables the extraction of the depth dependence of the defect distribution. Normal and time-gated XEOL spectra were obtained from these materials in the energy range 600 to 1500 eV. Here, we find that the results can best be understood in terms of a luminescence dead layer whose width depends on the position ofmore » the defect level in the band gap.« less

  7. Periodic multilayer magnetized cold plasma containing a doped semiconductor

    NASA Astrophysics Data System (ADS)

    Nayak, Chittaranjan; Saha, Ardhendu; Aghajamali, Alireza

    2018-07-01

    The present work is to numerically investigate the properties of the defect mode in a one-dimensional photonic crystal made of magnetized cold plasma, doped by semiconductor. The defect mode of such kind of multilayer structure is analyzed by applying the character matrix method to each individual layer. Numerical results illustrate that the defect mode frequency can be tuned by varying the external magnetic field, the electron density, and the thickness of the defect layer. Moreover, the behavior of the defect mode was found to be quite interesting when study the oblique incidence. It was found that for both right- and left-hand polarized transversal magnetic waves, the defect mode of the proposed defective structure disappears when the angle of incidence is larger than a particular oblique incidence. For the left-hand polarized transversal electric wave, however, an additional defect mode was noticed. The results lead to some new information concerning the designing of new types of tunable narrowband microwave filters.

  8. Elastic dependence of defect modes in one-dimensional photonic crystals with a cholesteric elastomer slab

    NASA Astrophysics Data System (ADS)

    Avendanño, Carlos G.; Martínez, Daniel

    2018-07-01

    We studied the transmission spectra in a one-dimensional dielectric multilayer photonic structure containing a cholesteric liquid crystal elastomer layer as a defect. For circularly polarized incident electromagnetic waves, we analyzed the optical defect modes induced in the band gap spectrum as a function of the incident angle and the axial strain applied along the same axis as the periodic medium. The physical parameters of the structure were chosen in such a way the photonic band gap of the cholesteric elastomer lies inside that of the multilayer. We found that, in addition to the defect modes associated with the thickness of the defect layer and the anisotropy of the elastic polymer, two new defect modes appear at both band edges of the cholesteric structure, whose amplitudes and spectral positions can be elastically tuned. Particularly, we showed that, at normal incidence, the defect modes shift toward the long-wavelength region with the strain; whereas, for constant elongation, such defects move toward larger frequencies with the incidence angle.

  9. Periodic multilayer magnetized cold plasma containing a doped semiconductor

    NASA Astrophysics Data System (ADS)

    Nayak, Chittaranjan; Saha, Ardhendu; Aghajamali, Alireza

    2018-02-01

    The present work is to numerically investigate the properties of the defect mode in a one-dimensional photonic crystal made of magnetized cold plasma, doped by semiconductor. The defect mode of such kind of multilayer structure is analyzed by applying the character matrix method to each individual layer. Numerical results illustrate that the defect mode frequency can be tuned by varying the external magnetic field, the electron density, and the thickness of the defect layer. Moreover, the behavior of the defect mode was found to be quite interesting when study the oblique incidence. It was found that for both right- and left-hand polarized transversal magnetic waves, the defect mode of the proposed defective structure disappears when the angle of incidence is larger than a particular oblique incidence. For the left-hand polarized transversal electric wave, however, an additional defect mode was noticed. The results lead to some new information concerning the designing of new types of tunable narrowband microwave filters.

  10. IR-LTS a powerful non-invasive tool to observe crystal defects in as-grown silicon, after device processing, and in heteroepitaxial layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kissinger, G.; Richter, H.; Vanhellemont, J.

    1996-12-01

    One of the main advantages of infrared light scattering tomography (IR-LST) is the wide range of defect densities that can be studied using this technique. As-grown defects of low density and very small size as well as oxygen precipitation related defects that appear in densities up to some 1010 cm{sup -3} can be observed. As-grown wafers with a {open_quotes}stacking fault ring{close_quotes} were investigated in order to correlate the defects observed by IR-LST with the results of Secco etching and alcaline cleaning solution (SC1) treatment revealing flow pattern defects (FPDs) and crystal originated particles (COPs), respectively. These wafers were studied aftermore » a wet oxidation at 1100{degrees}C for 100 min. In processed CZ silicon wafers it was possible to identify stacking faults and prismatic punching systems directly from the IR-LST image. Brewster angle illumination is a special mode to reveal defects in epitaxial layers in a non-destructive way. Misfit dislocations in the interface between a Ge{sub 0.92}Si{sub 0.08} layer and a silicon substrate were studied using this mode that allows to observe very low dislocation densities.« less

  11. Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation.

    PubMed

    Boutilier, Michael S H; Sun, Chengzhen; O'Hern, Sean C; Au, Harold; Hadjiconstantinou, Nicolas G; Karnik, Rohit

    2014-01-28

    Gas transport through intrinsic defects and tears is a critical yet poorly understood phenomenon in graphene membranes for gas separation. We report that independent stacking of graphene layers on a porous support exponentially decreases flow through defects. On the basis of experimental results, we develop a gas transport model that elucidates the separate contributions of tears and intrinsic defects on gas leakage through these membranes. The model shows that the pore size of the porous support and its permeance critically affect the separation behavior, and reveals the parameter space where gas separation can be achieved regardless of the presence of nonselective defects, even for single-layer membranes. The results provide a framework for understanding gas transport in graphene membranes and guide the design of practical, selectively permeable graphene membranes for gas separation.

  12. Towards precise defect control in layered oxide structures by using oxide molecular beam epitaxy

    PubMed Central

    Baiutti, Federico; Christiani, Georg

    2014-01-01

    Summary In this paper we present the atomic-layer-by-layer oxide molecular beam epitaxy (ALL-oxide MBE) which has been recently installed in the Max-Planck Institute for Solid State Research and we report on its present status, providing some examples that demonstrate its successful application in the synthesis of different layered oxides, with particular reference to superconducting La2CuO4 and insulator-to-metal La2− xSrxNiO4. We briefly review the ALL-oxide MBE technique and its unique capabilities in the deposition of atomically smooth single-crystal thin films of various complex oxides, artificial compounds and heterostructures, introducing our goal of pursuing a deep investigation of such systems with particular emphasis on structural defects, with the aim of tailoring their functional properties by precise defects control. PMID:24995148

  13. Electrodes mitigating effects of defects in organic electronic devices

    DOEpatents

    Heller, Christian Maria Anton [Albany, NY

    2008-05-06

    A compound electrode for organic electronic devices comprises a thin first layer of a first electrically conducting material and a second electrically conducting material disposed on the first layer. In one embodiment, the second electrically conducting material is formed into a plurality of elongated members. In another embodiment, the second material is formed into a second layer. The elongated members or the second layer has a thickness greater than that of the first layer. The second layer is separated from the first layer by a conducting material having conductivity less than at least the material of the first layer. The compound electrode is capable of mitigating adverse effects of defects, such as short circuits, in the construction of the organic electronic devices, and can be included in light-emitting or photovoltaic devices.

  14. Soliton-like defects in nematic liquid crystal thin layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuvyrov, A. N.; Krekhov, A. P.; Lebedev, Yu. A., E-mail: lebedev@anrb.ru

    The nonsingular soliton-like defects in plane nematic liquid crystal (NLC) layers and spherical NLC drops are experimentally detected and studied when the interaction of NLC molecules with a bounding surface is varied. The dynamics and the annihilation of nonsingular defects of opposite signs on a plane surface are investigated. Periodic transformations of the soliton-like defects in NLC drops in an electric field are detected. The theory of elasticity is used to show that the surface energy taken into account in the total free energy of NLC in the case of weak anchoring leads to the possibility of nonsingular solutions ofmore » a director equilibrium equation. The calculated pictures of director distribution in a plane NLC layer and in a spherical NLC drop characterized by weak surface anchoring agree well with the results of polarized light optical observations.« less

  15. Immersion lithography defectivity analysis at DUV inspection wavelength

    NASA Astrophysics Data System (ADS)

    Golan, E.; Meshulach, D.; Raccah, N.; Yeo, J. Ho.; Dassa, O.; Brandl, S.; Schwarz, C.; Pierson, B.; Montgomery, W.

    2007-03-01

    Significant effort has been directed in recent years towards the realization of immersion lithography at 193nm wavelength. Immersion lithography is likely a key enabling technology for the production of critical layers for 45nm and 32nm design rule (DR) devices. In spite of the significant progress in immersion lithography technology, there remain several key technology issues, with a critical issue of immersion lithography process induced defects. The benefits of the optical resolution and depth of focus, made possible by immersion lithography, are well understood. Yet, these benefits cannot come at the expense of increased defect counts and decreased production yield. Understanding the impact of the immersion lithography process parameters on wafer defects formation and defect counts, together with the ability to monitor, control and minimize the defect counts down to acceptable levels is imperative for successful introduction of immersion lithography for production of advanced DR's. In this report, we present experimental results of immersion lithography defectivity analysis focused on topcoat layer thickness parameters and resist bake temperatures. Wafers were exposed on the 1150i-α-immersion scanner and 1200B Scanner (ASML), defect inspection was performed using a DUV inspection tool (UVision TM, Applied Materials). Higher sensitivity was demonstrated at DUV through detection of small defects not detected at the visible wavelength, indicating on the potential high sensitivity benefits of DUV inspection for this layer. The analysis indicates that certain types of defects are associated with different immersion process parameters. This type of analysis at DUV wavelengths would enable the optimization of immersion lithography processes, thus enabling the qualification of immersion processes for volume production.

  16. Computational simulation of subatomic-resolution AFM and STM images for graphene/hexagonal boron nitride heterostructures with intercalated defects

    NASA Astrophysics Data System (ADS)

    Lee, Junsu; Kim, Minjung; Chelikowsky, James R.; Kim, Gunn

    2016-07-01

    Using ab initio density functional calculations, we predict subatomic-resolution atomic force microscopy (AFM) and scanning tunneling microscopy (STM) images of vertical heterostructures of graphene/hexagonal boron nitride (h-BN) with an intercalated metal atom (Li, K, Cr, Mn, Co, or Cu), and study the effects of the extrinsic metal defect on the interfacial coupling. We find that the structural deformation of the graphene/h-BN layer caused by the metal defect strongly affects the AFM images, whereas orbital hybridization between the metal defect and the graphene/h-BN layer characterizes the STM images.

  17. Density functional studies of the defect-induced electronic structure modifications in bilayer boronitrene

    NASA Astrophysics Data System (ADS)

    Ukpong, A. M.; Chetty, N.

    2012-05-01

    The van der Waals interaction-corrected density functional theory is used in this study to investigate the formation, energetic stability, and inter-layer cohesion in bilayer hexagonal boronitrene. The effect of inter-layer separation on the electronic structure is systematically investigated. The formation and energetic stability of intrinsic defects are also investigated at the equilibrium inter-layer separation. It is found that nonstoichiometric defects, and their complexes, that induce excess nitrogen or excess boron, in each case, are relatively more stable in the atmosphere that corresponds to the excess atomic species. The modifications of the electronic structure due to formation of complexes are also investigated. It is shown that van der Waals density functional theory gives an improved description of the cohesive properties but not the electronic structure in bilayer boronitrene compared to other functionals. We identify energetically favourable topological defects that retain the energy gap in the electronic structure, and discuss their implications for band gap engineering in low-n layer boronitrene insulators. The relative strengths and weaknesses of the functionals in predicting the properties of bilayer boronitrene are also discussed.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yong; Lii-Rosales, A.; Zhou, Y.

    Theory and stochastic lattice-gas modeling is developed for the formation of intercalated metal islands in the gallery between the top layer and the underlying layer at the surface of layered materials. Our model for this process involves deposition of atoms, some fraction of which then enter the gallery through well-separated pointlike defects in the top layer. Subsequently, these atoms diffuse within the subsurface gallery leading to nucleation and growth of intercalated islands nearby the defect point source. For the case of a single point defect, continuum diffusion equation analysis provides insight into the nucleation kinetics. However, complementary tailored lattice-gas modelingmore » produces a more comprehensive and quantitative characterization. We analyze the large spread in nucleation times and positions relative to the defect for the first nucleated island. We also consider the formation of subsequent islands and the evolution of island growth shapes. The shapes reflect in part our natural adoption of a hexagonal close-packed island structure. As a result, motivation and support for the model is provided by scanning tunneling microscopy observations of the formation of intercalated metal islands in highly-ordered pyrolytic graphite at higher temperatures.« less

  19. Charge transport model in solid-state avalanche amorphous selenium and defect suppression design

    NASA Astrophysics Data System (ADS)

    Scheuermann, James R.; Miranda, Yesenia; Liu, Hongyu; Zhao, Wei

    2016-01-01

    Avalanche amorphous selenium (a-Se) in a layer of High Gain Avalanche Rushing Photoconductor (HARP) is being investigated for its use in large area medical imagers. Avalanche multiplication of photogenerated charge requires electric fields greater than 70 V μm-1. For a-Se to withstand this high electric field, blocking layers are used to prevent the injection of charge carriers from the electrodes. Blocking layers must have a high injection barrier and deep trapping states to reduce the electric field at the interface. In the presence of a defect in the blocking layer, a distributed resistive layer (DRL) must be included into the structure to build up space charge and reduce the electric field in a-Se and the defect. A numerical charge transport model has been developed to optimize the properties of blocking layers used in various HARP structures. The model shows the incorporation of a DRL functionality into the p-layer can reduce dark current at a point defect by two orders of magnitude by reducing the field in a-Se to the avalanche threshold. Hole mobility in a DRL of ˜10-8 cm2 V-1 s-1 at 100 V μm-1 as demonstrated by the model can be achieved experimentally by varying the hole mobility of p-type organic or inorganic semiconductors through doping, e.g., using Poly(9-vinylcarbozole) doped with 1%-3% (by weight) of poly(3-hexylthiopene).

  20. A difference in using atomic layer deposition or physical vapour deposition TiN as electrode material in metal-insulator-metal and metal-insulator-silicon capacitors.

    PubMed

    Groenland, A W; Wolters, R A M; Kovalgin, A Y; Schmitz, J

    2011-09-01

    In this work, metal-insulator-metal (MIM) and metal-insulator-silicon (MIS) capacitors are studied using titanium nitride (TiN) as the electrode material. The effect of structural defects on the electrical properties on MIS and MIM capacitors is studied for various electrode configurations. In the MIM capacitors the bottom electrode is a patterned 100 nm TiN layer (called BE type 1), deposited via sputtering, while MIS capacitors have a flat bottom electrode (called BE type 2-silicon substrate). A high quality 50-100 nm thick SiO2 layer, made by inductively-coupled plasma CVD at 150 degrees C, is deposited as a dielectric on top of both types of bottom electrodes. BE type 1 (MIM) capacitors have a varying from low to high concentration of structural defects in the SiO2 layer. BE type 2 (MIS) capacitors have a low concentration of structural defects and are used as a reference. Two sets of each capacitor design are fabricated with the TiN top electrode deposited either via physical vapour deposition (PVD, i.e., sputtering) or atomic layer deposition (ALD). The MIM and MIS capacitors are electrically characterized in terms of the leakage current at an electric field of 0.1 MV/cm (I leak) and for different structural defect concentrations. It is shown that the structural defects only show up in the electrical characteristics of BE type 1 capacitors with an ALD TiN-based top electrode. This is due to the excellent step coverage of the ALD process. This work clearly demonstrates the sensitivity to process-induced structural defects, when ALD is used as a step in process integration of conductors on insulation materials.

  1. Capacitance-based damage detection sensing for aerospace structural composites

    NASA Astrophysics Data System (ADS)

    Bahrami, P.; Yamamoto, N.; Chen, Y.; Manohara, H.

    2014-04-01

    Damage detection technology needs improvement for aerospace engineering application because detection within complex composite structures is difficult yet critical to avoid catastrophic failure. Damage detection is challenging in aerospace structures because not all the damage detection technology can cover the various defect types (delamination, fiber fracture, matrix crack etc.), or conditions (visibility, crack length size, etc.). These defect states are expected to become even more complex with future introduction of novel composites including nano-/microparticle reinforcement. Currently, non-destructive evaluation (NDE) methods with X-ray, ultrasound, or eddy current have good resolutions (< 0.1 mm), but their detection capabilities is limited by defect locations and orientations and require massive inspection devices. System health monitoring (SHM) methods are often paired with NDE technologies to signal out sensed damage, but their data collection and analysis currently requires excessive wiring and complex signal analysis. Here, we present a capacitance sensor-based, structural defect detection technology with improved sensing capability. Thin dielectric polymer layer is integrated as part of the structure; the defect in the structure directly alters the sensing layer's capacitance, allowing full-coverage sensing capability independent of defect size, orientation or location. In this work, capacitance-based sensing capability was experimentally demonstrated with a 2D sensing layer consisting of a dielectric layer sandwiched by electrodes. These sensing layers were applied on substrate surfaces. Surface indentation damage (~1mm diameter) and its location were detected through measured capacitance changes: 1 to 250 % depending on the substrates. The damage detection sensors are light weight, and they can be conformably coated and can be part of the composite structure. Therefore it is suitable for aerospace structures such as cryogenic tanks and rocket fairings for example. The sensors can also be operating in space and harsh environment such as high temperature and vacuum.

  2. Epitaxial growth of ordered and disordered granular sphere packings

    NASA Astrophysics Data System (ADS)

    Panaitescu, Andreea; Kudrolli, Arshad

    2014-09-01

    We demonstrate that epitaxy can be used to obtain a wide range of ordered to disordered granular packings by simply changing the deposition flux. We show that a defect-free face-centered-cubic (fcc) monocrystal can be obtained by depositing athermal granular spheres randomly into a container with a templated surface in a gravitational field without direct manipulation. This packing corresponds to the maximum sphere packing fraction and is obtained when the substrate is templated corresponding to the (100) plane of a fcc crystal and the container side is an integer multiple of the sphere diameter. We find that the maximum sphere packing is obtained when the deposited grains come to rest, one at a time, without damaging the substrate. A transition to a disordered packing is observed when the flux is increased. Using micro x-ray computed tomography, we find that defects nucleate at the boundaries of the container in which the packing is grown as grains cooperatively come to rest above their local potential minimum. This leads to a transition from ordered to disordered loose packings that grow in the form of an inverted cone, with the apex located at the defect nucleation site. We capture the observed decrease in order using a minimal model in which a defect leads to growth of further defects in the neighboring sites in the layer above with a probability that increases with the deposition flux.

  3. Epitaxial growth of ordered and disordered granular sphere packings.

    PubMed

    Panaitescu, Andreea; Kudrolli, Arshad

    2014-09-01

    We demonstrate that epitaxy can be used to obtain a wide range of ordered to disordered granular packings by simply changing the deposition flux. We show that a defect-free face-centered-cubic (fcc) monocrystal can be obtained by depositing athermal granular spheres randomly into a container with a templated surface in a gravitational field without direct manipulation. This packing corresponds to the maximum sphere packing fraction and is obtained when the substrate is templated corresponding to the (100) plane of a fcc crystal and the container side is an integer multiple of the sphere diameter. We find that the maximum sphere packing is obtained when the deposited grains come to rest, one at a time, without damaging the substrate. A transition to a disordered packing is observed when the flux is increased. Using micro x-ray computed tomography, we find that defects nucleate at the boundaries of the container in which the packing is grown as grains cooperatively come to rest above their local potential minimum. This leads to a transition from ordered to disordered loose packings that grow in the form of an inverted cone, with the apex located at the defect nucleation site. We capture the observed decrease in order using a minimal model in which a defect leads to growth of further defects in the neighboring sites in the layer above with a probability that increases with the deposition flux.

  4. Non-unique turbulent boundary layer flows having a moderately large velocity defect: a rational extension of the classical asymptotic theory

    NASA Astrophysics Data System (ADS)

    Scheichl, B.; Kluwick, A.

    2013-11-01

    The classical analysis of turbulent boundary layers in the limit of large Reynolds number Re is characterised by an asymptotically small velocity defect with respect to the external irrotational flow. As an extension of the classical theory, it is shown in the present work that the defect may become moderately large and, in the most general case, independent of Re but still remain small compared to the external streamwise velocity for non-zero pressure gradient boundary layers. That wake-type flow turns out to be characterised by large values of the Rotta-Clauser parameter, serving as an appropriate measure for the defect and hence as a second perturbation parameter besides Re. Most important, it is demonstrated that also this case can be addressed by rigorous asymptotic analysis, which is essentially independent of the choice of a specific Reynolds stress closure. As a salient result of this procedure, transition from the classical small defect to a pronounced wake flow is found to be accompanied by quasi-equilibrium flow, described by a distinguished limit that involves the wall shear stress. This situation is associated with double-valued solutions of the boundary layer equations and an unconventional weak Re-dependence of the external bulk flow—a phenomenon seen to agree well with previous semi-empirical studies and early experimental observations. Numerical computations of the boundary layer flow for various values of Re reproduce these analytical findings with satisfactory agreement.

  5. Infrared Radiometric Scanning System for Flexible Package Seal Defects

    DTIC Science & Technology

    1973-12-01

    spotted. Pccfcarres tasted Two types of packages currently used for therm- ally processed foods were tested. Both had an outer layer of 0.5-mil...polyester and a middle layer of 0.35- mil aluminum foil. The inner, heat-seal layer was either 3-mil high-dtnsity polyethylene or 3-mil mod- ified...a variety ol causes—including urease . moisture, occluded food fibres or particles, threads, voids and wrinkles. Defects as small as 0.5 mg. of free

  6. Scanning laser polarimetry using variable corneal compensation in the detection of glaucoma with localized visual field defects.

    PubMed

    Kook, Michael S; Cho, Hyun-soo; Seong, Mincheol; Choi, Jaewan

    2005-11-01

    To evaluate the ability of scanning laser polarimetry parameters and a novel deviation map algorithm to discriminate between healthy and early glaucomatous eyes with localized visual field (VF) defects confined to one hemifield. Prospective case-control study. Seventy glaucomatous eyes with localized VF defects and 66 normal controls. A Humphrey field analyzer 24-2 full-threshold test and scanning laser polarimetry with variable corneal compensation were used. We assessed the sensitivity and specificity of scanning laser polarimetry parameters, sensitivity and cutoff values for scanning laser polarimetry deviation map algorithms at different specificity values (80%, 90%, and 95%) in the detection of glaucoma, and correlations between the algorithms of scanning laser polarimetry and of the pattern deviation derived from Humphrey field analyzer testing. There were significant differences between the glaucoma group and normal subjects in the mean parametric values of the temporal, superior, nasal, inferior, temporal (TSNIT) average, superior average, inferior average, and TSNIT standard deviation (SD) (P<0.05). The sensitivity and specificity of each scanning laser polarimetry variable was as follows: TSNIT, 44.3% (95% confidence interval [CI], 39.8%-49.8%) and 100% (95.4%-100%); superior average, 30% (25.5%-34.5%) and 97% (93.5%-100%); inferior average, 45.7% (42.2%-49.2%) and 100% (95.8%-100%); and TSNIT SD, 30% (25.9%-34.1%) and 97% (93.2%-100%), respectively (when abnormal was defined as P<0.05). Based on nerve fiber indicator cutoff values of > or =30 and > or =51 to indicate glaucoma, sensitivities were 54.3% (50.1%-58.5%) and 10% (6.4%-13.6%), and specificities were 97% (93.2%-100%) and 100% (95.8%-100%), respectively. The range of areas under the receiver operating characteristic curves using the scanning laser polarimetry deviation map algorithm was 0.790 to 0.879. Overall sensitivities combining each probability scale and severity score at 80%, 90%, and 95% specificities were 90.0% (95% CI, 86.4%-93.6%), 71.4% (67.4%-75.4%), and 60.0% (56.2%-63.8%), respectively. There was a statistically significant correlation between the scanning laser polarimetry severity score and the VF severity score (R2 = 0.360, P<0.001). Scanning laser polarimetry parameters may not be sufficiently sensitive to detect glaucomatous patients with localized VF damage. Our algorithm using the scanning laser polarimetry deviation map may enhance the understanding of scanning laser polarimetry printouts in terms of the locality, deviation size, and severity of localized retinal nerve fiber layer defects in eyes with localized VF loss.

  7. RBS/Channeling Studies of Swift Heavy Ion Irradiated GaN Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathish, N.; Dhamodaran, S.; Pathak, A. P.

    2009-03-10

    Epitaxial GaN layers grown by MOCVD on c-plane sapphire substrates were irradiated with 150 MeV Ag ions at a fluence of 5x10{sup 12} ions/cm{sup 2}. Samples used in this study are 2 {mu}m thick GaN layers, with and without a thin AlN cap-layer. Energy dependent RBS/Channeling measurements have been carried out on both irradiated and unirradiated samples for defects characterization. Observed results are compared and correlated with previous HRXRD, AFM and optical studies. The {chi}{sub min} values for unirradiated samples show very high value and the calculated defect densities are of the order of 10{sup 10} cm{sup -2} as expectedmore » in these samples. Effects of irradiation on these samples are different as initial samples had different defect densities. Epitaxial reconstruction of GaN buffer layer has been attributed to the observed changes, which are generally grown to reduce the strain between GaN and Sapphire.« less

  8. Defective TiO 2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells

    DOE PAGES

    Li, Yanbo; Cooper, Jason K.; Liu, Wenjun; ...

    2016-08-18

    Formation of planar heterojunction perovskite solar cells exhibiting both high efficiency and stability under continuous operation remains a challenge. Here, we show this can be achieved by using a defective TiO 2 thin film as the electron transport layer. TiO 2 layers with native defects are deposited by electron beam evaporation in an oxygen-deficient environment. Deep-level hole traps are introduced in the TiO 2 layers and contribute to a high photoconductive gain and reduced photocatalytic activity. The high photoconductivity of the TiO 2 electron transport layer leads to improved efficiency for the fabricated planar devices. A maximum power conversion efficiencymore » of 19.0% and an average PCE of 17.5% are achieved. In addition, the reduced photocatalytic activity of the TiO 2 layer leads to enhanced long-Term stability for the planar devices. Under continuous operation near the maximum power point, an efficiency of over 15.4% is demonstrated for 100 h.« less

  9. Three-layer reconstruction for large defects of the anterior skull base.

    PubMed

    Sinha, Uttam K; Johnson, Terence E; Crockett, Dennis; Vadapalli, Satish; Gruen, Peter

    2002-03-01

    To evaluate and discuss a three-layer rigid reconstruction technique for large anterior skull base defects. Prospective, nonrandomized, non-blinded. Tertiary teaching medical center. Twenty consecutive patients underwent craniofacial resection for a variety of pathology. All patients had large anterior cranial base defects involving the cribriform plate, fovea ethmoidalis, and medial portion of the roof of the orbit at least on one side. A few patients had more extensive defects involving both roof of the orbits, planum sphenoidale, and bones of the upper third of the face. The defects were reconstructed with a three-layer technique. A watertight seal was obtained with a pericranial flap separating the neurocranium from the viscerocranium. Rigid support was provided by bone grafts fixed to a titanium mesh, anchored laterally to the orbital roofs. All patients had a computed tomography scan of the skull on the first or second postoperative day. Patients were observed for immediate and long-term postoperative complications after such reconstruction. Postoperative computed tomography scans showed small pneumocephalus in all patients. It resolved spontaneously and did not produce neurologic deficits in any patient. There was no cerebrospinal fluid leak, hematoma, or infection. On long-term follow-up, exposures of bone graft or mesh, brain herniation, or transmission of brain pulsation to the eyes were not observed in any patient. Three-layer reconstruction using bone grafts, titanium mesh, and pericranial flap provides an alternative technique for repair of large anterior cranial base defects. It is safe and effective, and provides rigid protection to the brain.

  10. Molecular dynamic simulation study of plasma etching L10 FePt media in embedded mask patterning (EMP) process

    NASA Astrophysics Data System (ADS)

    Zhu, Jianxin; Quarterman, P.; Wang, Jian-Ping

    2017-05-01

    Plasma etching process of single-crystal L10-FePt media [H. Wang et al., Appl. Phys. Lett. 102(5) (2013)] is studied using molecular dynamic simulation. Embedded-Atom Method [M. S. Daw and M. I. Baskes, Phy. Rev. B 29, 6443 (1984); X. W. Zhou, R. A. Johnson and H. N. G. Wadley, Phy. Rev. B 69, 144113 (2004)] is used to calculate the interatomic potential within atoms in FePt alloy, and ZBL potential [J.F. Ziegler, J. P. Biersack and U. Littmark, "The Stopping and Range of Ions in Matter," Volume 1, Pergamon,1985] in comparison with conventional Lennard-Jones "12-6" potential is applied to interactions between etching gas ions and metal atoms. It is shown the post-etch structure defects can include amorphized surface layer and lattice interstitial point defects that caused by etchant ions passed through the surface layer. We show that the amorphized or damaged FePt lattice surface layer (or "magnetic dead-layer") thickness after etching increases with ion energy for Ar ion impacts, but significantly small for He ions at up to 250eV ion energy. However, we showed that He sputtering creates more interstitial defects at lower energy levels and defects are deeper below the surface compared to Ar sputtering. We also calculate the interstitial defect level and depth as dependence on ion energy for both Ar and He ions. Media magnetic property loss due to these defects is also discussed.

  11. The Use of Feature Parameters to Asses Barrier Properties of ALD coatings for Flexible PV Substrates

    NASA Astrophysics Data System (ADS)

    Blunt, Liam; Robbins, David; Fleming, Leigh; Elrawemi, Mohamed

    2014-03-01

    This paper reports on the recent work carried out as part of the EU funded NanoMend project. The project seeks to develop integrated process inspection, cleaning, repair and control systems for nano-scale thin films on large area substrates. In the present study flexible photovoltaic films have been the substrate of interest. Flexible PV films are the subject of significant development at present and the latest films have efficiencies at or beyond the level of Si based rigid PV modules. These flexible devices are fabricated on polymer film by the repeated deposition, and patterning, of thin layer materials using roll-to-roll processes, where the whole film is approximately 3um thick prior to encapsulation. Whilst flexible films offer significant advantages in terms of mass and the possibility of building integration (BIPV) they are at present susceptible to long term environmental degradation as a result of water vapor transmission through the barrier layers to the CIGS (Copper Indium Gallium Selenide CuInxGa(1-x)Se2) PV cells thus causing electrical shorts and efficiency drops. Environmental protection of the GIGS cell is provided by a thin (40nm) barrier coating of Al2O3. The highly conformal aluminium oxide barrier layer is produced by atomic layer deposition (ALD) where, the ultra-thin Al2O3 layer is deposited onto polymer thin films before these films encapsulate the PV cell. The surface of the starting polymer film must be of very high quality in order to avoid creating defects in the device layers. Since these defects reduce manufacturing yield, in order to prevent them, a further thin polymer coating (planarization layer) is generally applied to the polymer film prior to deposition. The presence of surface irregularities on the uncoated film can create defects within the nanometre-scale, aluminium oxide, barrier layer and these are measured and characterised. This paper begins by reporting the results of early stage measurements conducted to characterise the uncoated and coated polymer film surface topography using feature parameter analysis. The measurements are carried out using a Taylor Hobson Coherence Correlation Interferometer an optical microscope and SEM. Feature parameter analysis allows the efficient separation of small insignificant defects from large defects. The presence of both large and insignificant defects is then correlated with the water vapour transmission rate as measured on representative sets of films using at standard MOCON test. The paper finishes by drawing conclusions based on analysis of WVTR and defect size, where it is postulated that small numbers of large defects play a significant role in higher levels of WVTR.

  12. The Origin of Improved Electrical Double-Layer Capacitance by Inclusion of Topological Defects and Dopants in Graphene for Supercapacitors.

    PubMed

    Chen, Jiafeng; Han, Yulei; Kong, Xianghua; Deng, Xinzhou; Park, Hyo Ju; Guo, Yali; Jin, Song; Qi, Zhikai; Lee, Zonghoon; Qiao, Zhenhua; Ruoff, Rodney S; Ji, Hengxing

    2016-10-24

    Low-energy density has long been the major limitation to the application of supercapacitors. Introducing topological defects and dopants in carbon-based electrodes in a supercapacitor improves the performance by maximizing the gravimetric capacitance per mass of the electrode. However, the main mechanisms governing this capacitance improvement are still unclear. We fabricated planar electrodes from CVD-derived single-layer graphene with deliberately introduced topological defects and nitrogen dopants in controlled concentrations and of known configurations, to estimate the influence of these defects on the electrical double-layer (EDL) capacitance. Our experimental study and theoretical calculations show that the increase in EDL capacitance due to either the topological defects or the nitrogen dopants has the same origin, yet these two factors improve the EDL capacitance in different ways. Our work provides a better understanding of the correlation between the atomic-scale structure and the EDL capacitance and presents a new strategy for the development of experimental and theoretical models for understanding the EDL capacitance of carbon electrodes. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Enhanced Magnetization of Cobalt Defect Clusters Embedded in TiO 2-δ Films

    DOE PAGES

    Cortie, David L.; Khaydukov, Yury; Keller, Thomas; ...

    2017-02-23

    High magnetizations are desirable for spintronic devices that operate by manipulating electronic states using built-in magnetic fields. However, the magnetic moment in promising dilute magnetic oxide nanocomposites is very low, typically corresponding to only fractions of a Bohr magneton for each dopant atom. In this study, we report a large magnetization formed by ion implantation of Co into amorphous TiO 2-δ films, producing an inhomogeneous magnetic moment, with certain regions producing over 2.5 μ B per Co, depending on the local dopant concentration. Polarized neutron reflectometry was used to depth-profile the magnetization in the Co:TiO 2-δ nanocomposites, thus confirming themore » pivotal role of the cobalt dopant profile inside the titania layer. X-ray photoemission spectra demonstrate the dominant electronic state of the implanted species is Co 0, with a minor fraction of Co 2+. The detected magnetizations have seldom been reported before and lie near the upper limit set by Hund’s rules for Co 0, which is unusual because the transition metal’s magnetic moment is usually reduced in a symmetric 3D crystal-field environment. Low-energy positron annihilation lifetime spectroscopy indicates that defect structures within the titania layer are strongly modified by the implanted Co. We propose that a clustering motif is promoted by the affinity of the positively charged implanted species to occupy microvoids native to the amorphous host. This provides a seed for subsequent doping and nucleation of nanoclusters within an unusual local environment.« less

  14. A support vector machine approach for classification of welding defects from ultrasonic signals

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Ma, Hong-Wei; Zhang, Guang-Ming

    2014-07-01

    Defect classification is an important issue in ultrasonic non-destructive evaluation. A layered multi-class support vector machine (LMSVM) classification system, which combines multiple SVM classifiers through a layered architecture, is proposed in this paper. The proposed LMSVM classification system is applied to the classification of welding defects from ultrasonic test signals. The measured ultrasonic defect echo signals are first decomposed into wavelet coefficients by the wavelet packet transform. The energy of the wavelet coefficients at different frequency channels are used to construct the feature vectors. The bees algorithm (BA) is then used for feature selection and SVM parameter optimisation for the LMSVM classification system. The BA-based feature selection optimises the energy feature vectors. The optimised feature vectors are input to the LMSVM classification system for training and testing. Experimental results of classifying welding defects demonstrate that the proposed technique is highly robust, precise and reliable for ultrasonic defect classification.

  15. Optically inactive defects in monolayer and bilayer phosphorene: A first-principles study

    NASA Astrophysics Data System (ADS)

    Huang, Ling-yi; Zhang, Xu; Zhang, Mingliang; Lu, Gang

    2018-05-01

    Many-body excitonic effect is crucial in two-dimensional (2D) materials and can significantly impact their optoelectronic properties. Because defects are inevitable in 2D materials, understanding how they influence the optical and excitonic properties of the 2D materials is of significant scientific and technological importance. Here we focus on intrinsic point defects in monolayer and bilayer phosphorene and examine whether and how their optoelectronic properties may be modified by the defects. Based on large-scale first-principles calculations, we have systematically explored the optical and excitonic properties of phosphorene in the presence and absence of the point defects. We find that the optical properties of bilayer phosphorene depend on the stacking order of the layers. More importantly, we reveal that the dominant point defects in few-layer phosphorene are optically inactive, which renders phosphorene particularly attractive in optoelectronic applications.

  16. Analysis and modification of defective surface aggregates on PCDTBT:PCBM solar cell blends using combined Kelvin probe, conductive and bimodal atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noh, Hanaul; Diaz, Alfredo J.; Solares, Santiago D.

    Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, andmore » is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules.« less

  17. Electronic Properties, Screening, and Efficient Carrier Transport in NaSbS 2

    DOE PAGES

    Sun, Jifeng; Singh, David J.

    2017-02-13

    NaSbS 2 is a semiconductor that was recently shown to have remarkable efficacy as a solar absorber indicating efficient charge collection even in material containing defects. We report first-principles calculations of properties that show (1) an indirect gap only slightly smaller than the direct gap, which may impede the recombination of photoexcited carriers, (2) highly anisotropic electronic and optical properties reflecting a layered crystal structure, (3) a pushed-up valence-band maximum due to repulsion from the Sb 5s states, and (4) cross-gap hybridization between the S p—derived valence bands and the Sb 5p states. This latter feature leads to enhanced Bornmore » effective charges that can provide local screening and, therefore, defect tolerance. Finally, these features are discussed in relation to the performance of the compound as a semiconductor with efficient charge collection.« less

  18. Analysis and modification of defective surface aggregates on PCDTBT:PCBM solar cell blends using combined Kelvin probe, conductive and bimodal atomic force microscopy

    DOE PAGES

    Noh, Hanaul; Diaz, Alfredo J.; Solares, Santiago D.

    2017-03-08

    Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, andmore » is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules.« less

  19. Analysis and modification of defective surface aggregates on PCDTBT:PCBM solar cell blends using combined Kelvin probe, conductive and bimodal atomic force microscopy

    PubMed Central

    Noh, Hanaul; Diaz, Alfredo J

    2017-01-01

    Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, and is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules. PMID:28382247

  20. Influence of ZnO seed layer precursor molar ratio on the density of interface defects in low temperature aqueous chemically synthesized ZnO nanorods/GaN light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alnoor, Hatim, E-mail: hatim.alnoor@liu.se; Iandolo, Donata; Willander, Magnus

    Low temperature aqueous chemical synthesis (LT-ACS) of zinc oxide (ZnO) nanorods (NRs) has been attracting considerable research interest due to its great potential in the development of light-emitting diodes (LEDs). The influence of the molar ratio of the zinc acetate (ZnAc): KOH as a ZnO seed layer precursor on the density of interface defects and hence the presence of non-radiative recombination centers in LT-ACS of ZnO NRs/GaN LEDs has been systematically investigated. The material quality of the as-prepared seed layer as quantitatively deduced by the X-ray photoelectron spectroscopy is found to be influenced by the molar ratio. It is revealedmore » by spatially resolved cathodoluminescence that the seed layer molar ratio plays a significant role in the formation and the density of defects at the n-ZnO NRs/p-GaN heterostructure interface. Consequently, LED devices processed using ZnO NRs synthesized with molar ratio of 1:5 M exhibit stronger yellow emission (∼575 nm) compared to those based on 1:1 and 1:3 M ratios as measured by the electroluminescence. Furthermore, seed layer molar ratio shows a quantitative dependence of the non-radiative defect densities as deduced from light-output current characteristics analysis. These results have implications on the development of high-efficiency ZnO-based LEDs and may also be helpful in understanding the effects of the ZnO seed layer on defect-related non-radiative recombination.« less

  1. Surface photovoltage studies of p-type AlGaN layers after reactive-ion etching

    NASA Astrophysics Data System (ADS)

    McNamara, J. D.; Phumisithikul, K. L.; Baski, A. A.; Marini, J.; Shahedipour-Sandvik, F.; Das, S.; Reshchikov, M. A.

    2016-10-01

    The surface photovoltage (SPV) technique was used to study the surface and electrical properties of Mg-doped, p-type AlxGa1-xN (0.06 < x < 0.17) layers. SPV measurements reveal significant deviation from previous SPV studies on p-GaN:Mg thin films and from the predictions of a thermionic model for the SPV behavior. In particular, the SPV of the p-AlGaN:Mg layers exhibited slower-than-expected transients under ultraviolet illumination and delayed restoration to the initial dark value. The slow transients and delayed restorations can be attributed to a defective surface region which interferes with normal thermionic processes. The top 45 nm of the p-AlGaN:Mg layer was etched using a reactive-ion etch which caused the SPV behavior to be substantially different. From this study, it can be concluded that a defective, near-surface region is inhibiting the change in positive surface charge by allowing tunneling or hopping conductivity of holes from the bulk to the surface, or by the trapping of electrons traveling to the surface by a high concentration of defects in the near-surface region. Etching removes the defective layer and reveals a region of presumably higher quality, as evidenced by substantial changes in the SPV behavior.

  2. Suppression of planar defects in the molecular beam epitaxy of GaAs/ErAs/GaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Crook, Adam M.; Nair, Hari P.; Ferrer, Domingo A.; Bank, Seth R.

    2011-08-01

    We present a growth method that overcomes the mismatch in rotational symmetry of ErAs and conventional III-V semiconductors, allowing for epitaxially integrated semimetal/semiconductor heterostructures. Transmission electron microscopy and reflection high-energy electron diffraction reveal defect-free overgrowth of ErAs layers, consisting of >2× the total amount of ErAs that can be embedded with conventional layer-by-layer growth methods. We utilize epitaxial ErAs nanoparticles, overgrown with GaAs, as a seed to grow full films of ErAs. Growth proceeds by diffusion of erbium atoms through the GaAs spacer, which remains registered to the underlying substrate, preventing planar defect formation during subsequent GaAs growth. This growth method is promising for metal/semiconductor heterostructures that serve as embedded Ohmic contacts to epitaxial layers and epitaxially integrated active plasmonic devices.

  3. Tri-Layered Nanocomposite Hydrogel Scaffold for the Concurrent Regeneration of Cementum, Periodontal Ligament, and Alveolar Bone.

    PubMed

    Sowmya, S; Mony, Ullas; Jayachandran, P; Reshma, S; Kumar, R Arun; Arzate, H; Nair, Shantikumar V; Jayakumar, R

    2017-04-01

    A tri-layered scaffolding approach is adopted for the complete and concurrent regeneration of hard tissues-cementum and alveolar bone-and soft tissue-the periodontal ligament (PDL)-at a periodontal defect site. The porous tri-layered nanocomposite hydrogel scaffold is composed of chitin-poly(lactic-co-glycolic acid) (PLGA)/nanobioactive glass ceramic (nBGC)/cementum protein 1 as the cementum layer, chitin-PLGA/fibroblast growth factor 2 as the PDL layer, and chitin-PLGA/nBGC/platelet-rich plasma derived growth factors as the alveolar bone layer. The tri-layered nanocomposite hydrogel scaffold is cytocompatible and favored cementogenic, fibrogenic, and osteogenic differentiation of human dental follicle stem cells. In vivo, tri-layered nanocomposite hydrogel scaffold with/without growth factors is implanted into rabbit maxillary periodontal defects and compared with the controls at 1 and 3 months postoperatively. The tri-layered nanocomposite hydrogel scaffold with growth factors demonstrates complete defect closure and healing with new cancellous-like tissue formation on microcomputed tomography analysis. Histological and immunohistochemical analyses further confirm the formation of new cementum, fibrous PDL, and alveolar bone with well-defined bony trabeculae in comparison to the other three groups. In conclusion, the tri-layered nanocomposite hydrogel scaffold with growth factors can serve as an alternative regenerative approach to achieve simultaneous and complete periodontal regeneration. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Single-Walled Carbon Nanotube Dominated Micron-Wide Stripe Patterned-Based Ferroelectric Field-Effect Transistors with HfO2 Defect Control Layer

    NASA Astrophysics Data System (ADS)

    Tan, Qiuhong; Wang, Qianjin; Liu, Yingkai; Yan, Hailong; Cai, Wude; Yang, Zhikun

    2018-04-01

    Ferroelectric field-effect transistors (FeFETs) with single-walled carbon nanotube (SWCNT) dominated micron-wide stripe patterned as channel, (Bi,Nd)4Ti3O12 films as insulator, and HfO2 films as defect control layer were developed and fabricated. The prepared SWCNT-FeFETs possess excellent properties such as large channel conductance, high on/off current ratio, high channel carrier mobility, great fatigue endurance performance, and data retention. Despite its thin capacitance equivalent thickness, the gate insulator with HfO2 defect control layer shows a low leakage current density of 3.1 × 10-9 A/cm2 at a gate voltage of - 3 V.

  5. Single-Walled Carbon Nanotube Dominated Micron-Wide Stripe Patterned-Based Ferroelectric Field-Effect Transistors with HfO2 Defect Control Layer.

    PubMed

    Tan, Qiuhong; Wang, Qianjin; Liu, Yingkai; Yan, Hailong; Cai, Wude; Yang, Zhikun

    2018-04-27

    Ferroelectric field-effect transistors (FeFETs) with single-walled carbon nanotube (SWCNT) dominated micron-wide stripe patterned as channel, (Bi,Nd) 4 Ti 3 O 12 films as insulator, and HfO 2 films as defect control layer were developed and fabricated. The prepared SWCNT-FeFETs possess excellent properties such as large channel conductance, high on/off current ratio, high channel carrier mobility, great fatigue endurance performance, and data retention. Despite its thin capacitance equivalent thickness, the gate insulator with HfO 2 defect control layer shows a low leakage current density of 3.1 × 10 -9  A/cm 2 at a gate voltage of - 3 V.

  6. Origin of dislocation luminescence centers and their reorganization in p-type silicon crystal subjected to plastic deformation and high temperature annealing.

    PubMed

    Pavlyk, Bohdan; Kushlyk, Markiyan; Slobodzyan, Dmytro

    2017-12-01

    Changes of the defect structure of silicon p-type crystal surface layer under the influence of plastic deformation and high temperature annealing in oxygen atmosphere were investigated by deep-level capacitance-modulation spectroscopy (DLCMS) and IR spectroscopy of molecules and atom vibrational levels. Special role of dislocations in the surface layer of silicon during the formation of its energy spectrum and rebuilding the defective structure was established. It is shown that the concentration of linear defects (N ≥ 10 4  cm -2 ) enriches surface layer with electrically active complexes (dislocation-oxygen, dislocation-vacancy, and dislocation-interstitial atoms of silicon) which are an effective radiative recombination centers.

  7. Nondestructive Evaluation of One-Dimensional Periodic Structures by Transmission of Laser-Excited Wide-Band Acoustic Pulses

    NASA Astrophysics Data System (ADS)

    Karabutov, A. A.; Kozhushko, V. V.; Pelivanov, I. M.; Podymova, N. B.

    2001-03-01

    The propagation of ultrasound in a one-dimensional model and actual periodic structures (PSs) is studied experimentally by the method of optoacoustic spectroscopy based on the laser thermooptical excitation and wide-band piezodetection of short acoustic pulses. It is shown that the ultrasound transmission spectrum of a PS has stop and pass bands, and the greater the number of layers in the PSs, the deeper the stop bands. The case where the thickness, density, and ultrasound velocity of one or several layers in the PS are modified is studied in detail. In this case, a narrow local maximum of ultrasound transmission appears in the stop band, whose location depends considerably on the position of the "defective" layer in the PS. The experimental data obtained coincide well with the theoretical calculation. The nondestructive evaluation of actual PSs consisting of two epoxy-glued identical aluminum plates is carried out by the optoacoustic method. Such materials are widely used in aircraft industry. It is shown that the ultrasound transmission spectrum for these materials depends considerably on the thickness of the epoxy-glue layer.

  8. Localized topological states in Bragg multihelicoidal fibers with twist defects

    NASA Astrophysics Data System (ADS)

    Alexeyev, C. N.; Lapin, B. P.; Milione, G.; Yavorsky, M. A.

    2016-06-01

    We have studied the influence of a twist defect in multihelicoidal Bragg fibers on the emerging of localized defect modes. We have shown that if such a fiber is excited with a Gaussian beam this leads to the appearance of a defect-localized topological state, whose topological charge coincides with the order of rotational symmetry of the fiber's refractive index. We have shown that this effect has a pronounced crossover behavior. We have also formulated a principle of creating the systems that can nestle defect-localized topologically charged modes. According to this principle, such systems have to possess topological activity, that is, the ability to change the topological charge of the incoming field, and operate in the Bragg regime.

  9. Geometrical Characteristics of Cd-Rich Inclusion Defects in CdZnTe Materials

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Sheng, Fengfeng; Yang, Jianrong

    2017-08-01

    The geometrical characteristics of Cd-rich inclusion defects in CdZnTe crystals have been investigated by infrared transmission (IRT) microscopy and chemical etching methods, revealing that they are composed of a Cd-rich inclusion core zone with high dislocation density and defect extension belts. Based on the experimental results, the orientation and shape of these belts were determined, showing that their extension directions in three-dimensional (3-D) space are along <211> crystal orientation. To explain the observed IRT images of Cd-rich inclusion defects, a 3-D model with plate-shaped structure for dislocation extension belts is proposed. Greyscale IRT images of dislocation extension belts thus depend on their absorption layer thickness. Assuming that defects can be discerned by IRT microscopy only when their absorption layer thickness is greater than twice that of the plate-shaped dislocation extension belts, this 3-D defect model can rationalize the IRT images of Cd-rich inclusion defects.

  10. Synchrotron Bragg diffraction imaging characterization of synthetic diamond crystals for optical and electronic power device applications1 1

    PubMed Central

    Tran Thi, Thu Nhi; Morse, J.; Caliste, D.; Fernandez, B.; Eon, D.; Härtwig, J.; Mer-Calfati, C.; Tranchant, N.; Arnault, J. C.; Lafford, T. A.; Baruchel, J.

    2017-01-01

    Bragg diffraction imaging enables the quality of synthetic single-crystal diamond substrates and their overgrown, mostly doped, diamond layers to be characterized. This is very important for improving diamond-based devices produced for X-ray optics and power electronics applications. The usual first step for this characterization is white-beam X-ray diffraction topography, which is a simple and fast method to identify the extended defects (dislocations, growth sectors, boundaries, stacking faults, overall curvature etc.) within the crystal. This allows easy and quick comparison of the crystal quality of diamond plates available from various commercial suppliers. When needed, rocking curve imaging (RCI) is also employed, which is the quantitative counterpart of monochromatic Bragg diffraction imaging. RCI enables the local determination of both the effective misorientation, which results from lattice parameter variation and the local lattice tilt, and the local Bragg position. Maps derived from these parameters are used to measure the magnitude of the distortions associated with polishing damage and the depth of this damage within the volume of the crystal. For overgrown layers, these maps also reveal the distortion induced by the incorporation of impurities such as boron, or the lattice parameter variations associated with the presence of growth-incorporated nitrogen. These techniques are described, and their capabilities for studying the quality of diamond substrates and overgrown layers, and the surface damage caused by mechanical polishing, are illustrated by examples. PMID:28381981

  11. Oxygen vacancy defect engineering using atomic layer deposited HfAlO{sub x} in multi-layered gate stack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuyian, M. N., E-mail: mnb3@njit.edu; Misra, D.; Sengupta, R.

    2016-05-02

    This work evaluates the defects in high quality atomic layer deposited (ALD) HfAlO{sub x} with extremely low Al (<3% Al/(Al + Hf)) incorporation in the Hf based high-k dielectrics. The defect activation energy estimated by the high temperature current voltage measurement shows that the charged oxygen vacancies, V{sup +}/V{sup 2+}, are the primary source of defects in these dielectrics. When Al is added in HfO{sub 2}, the V{sup +} type defects with a defect activation energy of E{sub a} ∼ 0.2 eV modify to V{sup 2+} type to E{sub a} ∼ 0.1 eV with reference to the Si conduction band. When devices were stressedmore » in the gate injection mode for 1000 s, more V{sup +} type defects are generated and E{sub a} reverts back to ∼0.2 eV. Since Al has a less number of valence electrons than do Hf, the change in the co-ordination number due to Al incorporation seems to contribute to the defect level modifications. Additionally, the stress induced leakage current behavior observed at 20 °C and at 125 °C demonstrates that the addition of Al in HfO{sub 2} contributed to suppressed trap generation process. This further supports the defect engineering model as reduced flat-band voltage shifts were observed at 20 °C and at 125 °C.« less

  12. Safe and simple detection of sparse hydrogen by Pd-Au alloy/air based 1D photonic crystal sensor

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Biswas, T.; Chattopadhyay, R.; Ghosh, J.; Bysakh, S.; Bhadra, S. K.

    2016-11-01

    A simple integrated hydrogen sensor using Pd-Au alloy/air based one dimensional photonic crystal with an air defect layer is theoretically modeled. Structural parameters of the photonic crystal are delicately scaled to generate photonic band gap frequencies in a visible spectral regime. An optimized defect thickness permits a localized defect mode operating at a frequency within the photonic band gap region. Hydrogen absorption causes modification in the band gap characteristics due to variation of refractive index and lattice parameters of the alloy. As a result, the transmission peak appeared due to the resonant defect state gets shifted. This peak shifting is utilized to detect sparse amount of hydrogen present in the surrounding environment. A theoretical framework is built to calculate the refractive index profile of hydrogen loaded alloy using density functional theory and Bruggeman's effective medium approximation. The calculated refractive index variation of Pd3Au alloy film due to hydrogen loading is verified experimentally by measuring the reflectance characteristics. Lattice expansion properties of the alloy are studied through X-ray diffraction analyses. The proposed structure shows about 3 nm red shift of the transmission peak for a rise of 1% atomic hydrogen concentration in the alloy.

  13. The Influence of High-Power Ion Beams and High-Intensity Short-Pulse Implantation of Ions on the Properties of Ceramic Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Kabyshev, A. V.; Konusov, F. V.; Pavlov, S. K.; Remnev, G. E.

    2016-02-01

    The paper is focused on the study of the structural, electrical and optical characteristics of the ceramic silicon carbide before and after irradiation in the regimes of the high-power ion beams (HPIB) and high-intensity short-pulse implantation (HISPI) of carbon ions. The dominant mechanism of transport of charge carriers, their type and the energy spectrum of localized states (LS) of defects determining the properties of SiC were established. Electrical and optical characteristics of ceramic before and after irradiation are determined by the biographical and radiation defects whose band gap (BG) energy levels have a continuous energetic distribution. A dominant p-type activation component of conduction with participation of shallow acceptor levels 0.05-0.16 eV is complemented by hopping mechanism of conduction involving the defects LS with a density of 1.2T017-2.4T018 eV-Am-3 distributed near the Fermi level.The effect of radiation defects with deep levels in the BG on properties change dominates after HISPI. A new material with the changed electronic structure and properties is formed in the near surface layer of SiC after the impact of the HPIB.

  14. Homoepitaxial graphene tunnel barriers for spin transport

    NASA Astrophysics Data System (ADS)

    Friedman, Adam L.; van't Erve, Olaf M. J.; Robinson, Jeremy T.; Whitener, Keith E.; Jonker, Berend T.

    2016-05-01

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  15. Electrical Conductivity through a Single Atomic Step Measured with the Proximity-Induced Superconducting Pair Correlation

    DOE PAGES

    Kim, Howon; Lin, Shi -Zeng; Graf, Matthias J.; ...

    2016-09-08

    Local disordered nanostructures in an atomically thick metallic layer on a semiconducting substrate play significant and decisive roles in transport properties of two-dimensional (2D) conductive systems. We measured the electrical conductivity through a step of monoatomic height in a truly microscopic manner by using as a signal the superconducting pair correlation induced by the proximity effect. The transport property across a step of a one-monolayer Pb surface metallic phase, formed on a Si(111) substrate, was evaluated by inducing the pair correlation around the local defect and measuring its response, i.e., the reduced density of states at the Fermi energy usingmore » scanning tunneling microscopy. We found that the step resistance has a significant contribution to the total resistance on a nominally flat surface. Our study also revealed that steps in the 2D metallic layer terminate the propagation of the pair correlation. Furthermore, superconductivity is enhanced between the first surface step and the superconductor–normal-metal interface by reflectionless tunneling when the step is located within a coherence length.« less

  16. Substitutional impurity in single-layer graphene: The Koster–Slater and Anderson models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davydov, S. Yu., E-mail: sergei-davydov@mail.ru

    The Koster–Slater and Anderson models are used to consider substitutional impurities in free-standing single-layer graphene. The density of states of graphene is described using a model (the M model). For the nitrogen and boron impurities, the occupation numbers and the parameter η which defines the fraction of delocalized electrons of the impurity are determined. In this case, experimental data are used for both determination of the model parameters and comparison with the results of theoretical estimations. The general features of the Koster–Slater and Anderson models and the differences between the two models are discussed. Specifically, it is shown that themore » band contributions to the occupation numbers of a nitrogen atom in both models are comparable, whereas the local contributions are substantially different: the local contributions are decisive in the Koster–Slater model and negligible in the Anderson model. The asymptotic behavior of the wave functions of a defect is considered in the Koster–Slater model, and the electron states of impurity dimers are considered in the Anderson model.« less

  17. Electrical Conductivity through a Single Atomic Step Measured with the Proximity-Induced Superconducting Pair Correlation.

    PubMed

    Kim, Howon; Lin, Shi-Zeng; Graf, Matthias J; Miyata, Yoshinori; Nagai, Yuki; Kato, Takeo; Hasegawa, Yukio

    2016-09-09

    Local disordered nanostructures in an atomically thick metallic layer on a semiconducting substrate play significant and decisive roles in transport properties of two-dimensional (2D) conductive systems. We measured the electrical conductivity through a step of monoatomic height in a truly microscopic manner by using as a signal the superconducting pair correlation induced by the proximity effect. The transport property across a step of a one-monolayer Pb surface metallic phase, formed on a Si(111) substrate, was evaluated by inducing the pair correlation around the local defect and measuring its response, i.e., the reduced density of states at the Fermi energy using scanning tunneling microscopy. We found that the step resistance has a significant contribution to the total resistance on a nominally flat surface. Our study also revealed that steps in the 2D metallic layer terminate the propagation of the pair correlation. Superconductivity is enhanced between the first surface step and the superconductor-normal-metal interface by reflectionless tunneling when the step is located within a coherence length.

  18. Increasing reticle inspection efficiency and reducing wafer printchecks at 14nm using automated defect classification and simulation

    NASA Astrophysics Data System (ADS)

    Paracha, Shazad; Goodman, Eliot; Eynon, Benjamin G.; Noyes, Ben F.; Ha, Steven; Kim, Jong-Min; Lee, Dong-Seok; Lee, Dong-Heok; Cho, Sang-Soo; Ham, Young M.; Vacca, Anthony D.; Fiekowsky, Peter J.; Fiekowsky, Daniel I.

    2014-10-01

    IC fabs inspect critical masks on a regular basis to ensure high wafer yields. These requalification inspections are costly for many reasons including the capital equipment, system maintenance, and labor costs. In addition, masks typically remain in the "requal" phase for extended, non-productive periods of time. The overall "requal" cycle time in which reticles remain non-productive is challenging to control. Shipping schedules can slip when wafer lots are put on hold until the master critical layer reticle is returned to production. Unfortunately, substituting backup critical layer reticles can significantly reduce an otherwise tightly controlled process window adversely affecting wafer yields. One major requal cycle time component is the disposition process of mask inspections containing hundreds of defects. Not only is precious non-productive time extended by reviewing hundreds of potentially yield-limiting detections, each additional classification increases the risk of manual review techniques accidentally passing real yield limiting defects. Even assuming all defects of interest are flagged by operators, how can any person's judgment be confident regarding lithographic impact of such defects? The time reticles spend away from scanners combined with potential yield loss due to lithographic uncertainty presents significant cycle time loss and increased production costs An automatic defect analysis system (ADAS), which has been in fab production for numerous years, has been improved to handle the new challenges of 14nm node automate reticle defect classification by simulating each defect's printability under the intended illumination conditions. In this study, we have created programmed defects on a production 14nm node critical-layer reticle. These defects have been analyzed with lithographic simulation software and compared to the results of both AIMS optical simulation and to actual wafer prints.

  19. Microscale localization and isolation of light emitting imperfections in monocrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Gajdoš, Adam; Škvarenina, Lubomír.; Škarvada, Pavel; Macků, Robert

    2017-12-01

    An imperfections or defects may appear in fabricated monocrystalline solar cells. These microstructural imperfections could have impact on the parameters of whole solar cell. The research is divided into two parts, firstly, the detection and localization defects by using several techniques including current-voltage measurement, scanning probe microscopy (SPM), scanning electron microscope (SEM) and electroluminescence. Secondly, the defects isolation by a focused ion beam (FIB) milling and impact of a milling process on solar cells. The defect detection is realized by I-V measurement under reverse biased sample. For purpose of localization, advantage of the fact that defects or imperfections in silicon solar cells emit the visible and near infrared electroluminescence under reverse biased voltage is taken, and CCD camera measurement for macroscopic localization of these spots is applied. After rough macroscopic localization, microscopic localization by scanning probe microscopy combined with a photomultiplier (shadow mapping) is performed. Defect isolation is performed by a SEM equipped with the FIB instrument. FIB uses a beam of gallium ions which modifies crystal structure of a material and may affect parameters of solar cell. As a result, it is interesting that current in reverse biased sample with isolated defect is smaller approximately by 2 orders than current before isolation process.

  20. TEM characterization of planar defects in massively transformed TiAl alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X.D.; Wiezorek, J.M.K.; Fraser, H.L.

    1997-12-31

    The microstructure of a massively transformed Ti-49at.%Al alloy has been studied by conventional transmission electron microscopy (CTEM) and high resolution TEM (HREM). A high density of planar defects, namely complex anti-phase domain boundaries (CAPDB) and thermal micro-twins (TMT) have been observed. CTEM images and diffraction patterns showed that two anti-phase related {gamma}-matrix domains were generally separated by a thin layer of a 90{degree}-domain, for which the c-axis is rotated 90{degree} over a common cube axis with respect to those of the {gamma}-matrix domains. HREM confirmed the presence of two crystallographically different types of 90{degree}-domains being associated with the CAPDB. Furthermore,more » interactions between the CAPDB and TMT have been observed. Local faceting of the generally wavy, non-crystallographic CAPDB parallel to the {l_brace}111{r_brace}-twinning planes occurred due to interaction with the TMT. The relaxation of the CAPDB onto {l_brace}111{r_brace} required diffusion which is proposed to be enhanced locally in the presence of the dislocations associated with the formation of TMT during the massive transformation.« less

  1. First-principles study of alloying effects on fluorine incorporation in Al x Ga1-x N alloys

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Tan, Wei; Zhang, Jian; Chen, Feng-Xiang; Wei, Su-Huai

    2018-02-01

    Incorporation of fluorine (F) into the AlGaN layer is crucial to the fabrication of enhancement-mode (E-mode) AlGaN/GaN high electron mobility transistors (HEMTs). However, the understanding of properties of F doping in AlGaN alloys is rather limited. Using first-principles calculations and the special quasirandom structure (SQS) approach, we investigate the alloying effects on the doping properties of F-incorporated Al x Ga1-x N alloys. We find that substitutional F on N sites (FN) and interstitial F (Fi) are dominant defects for F in Al x Ga1-x N alloys. For these two types of defects, both the global composition x and the local motif surrounding the dopant play important roles. On contrary, the incorporation of substitutional F on Ga sites (FGa) or Al sites (FAl) are affected only by the composition x. We also find that there exists a large asymmetric bowing for the effective formation energies of FN and Fi. These results are explained in terms of local structural distortion and electronic effects. The mechanism discussed in this paper can also be used in understanding doping in other semiconductor alloys.

  2. Strain-Engineered Graphene Grown on Hexagonal Boron Nitride by Molecular Beam Epitaxy

    PubMed Central

    Summerfield, Alex; Davies, Andrew; Cheng, Tin S.; Korolkov, Vladimir V.; Cho, YongJin; Mellor, Christopher J.; Foxon, C. Thomas; Khlobystov, Andrei N.; Watanabe, Kenji; Taniguchi, Takashi; Eaves, Laurence; Novikov, Sergei V.; Beton, Peter H.

    2016-01-01

    Graphene grown by high temperature molecular beam epitaxy on hexagonal boron nitride (hBN) forms continuous domains with dimensions of order 20 μm, and exhibits moiré patterns with large periodicities, up to ~30 nm, indicating that the layers are highly strained. Topological defects in the moiré patterns are observed and attributed to the relaxation of graphene islands which nucleate at different sites and subsequently coalesce. In addition, cracks are formed leading to strain relaxation, highly anisotropic strain fields, and abrupt boundaries between regions with different moiré periods. These cracks can also be formed by modification of the layers with a local probe resulting in the contraction and physical displacement of graphene layers. The Raman spectra of regions with a large moiré period reveal split and shifted G and 2D peaks confirming the presence of strain. Our work demonstrates a new approach to the growth of epitaxial graphene and a means of generating and modifying strain in graphene. PMID:26928710

  3. Charge 2e/3 Superconductivity and Topological Degeneracies without Localized Zero Modes in Bilayer Fractional Quantum Hall States.

    PubMed

    Barkeshli, Maissam

    2016-08-26

    It has been recently shown that non-Abelian defects with localized parafermion zero modes can arise in conventional Abelian fractional quantum Hall (FQH) states. Here we propose an alternate route to creating, manipulating, and measuring topologically protected degeneracies in bilayer FQH states coupled to superconductors, without the creation of localized parafermion zero modes. We focus mainly on electron-hole bilayers, with a ±1/3 Laughlin FQH state in each layer, with boundaries that are proximity coupled to a superconductor. We show that the superconductor induces charge 2e/3 quasiparticle-pair condensation at each boundary of the FQH state, and that this leads to (i) topologically protected degeneracies that can be measured through charge sensing experiments and (ii) a fractional charge 2e/3 ac Josephson effect. We demonstrate that an analog of non-Abelian braiding is possible, despite the absence of a localized zero mode. We discuss several practical advantages of this proposal over previous work, and also several generalizations.

  4. Incorporation of composite defects from ultrasonic NDE into CAD and FE models

    NASA Astrophysics Data System (ADS)

    Bingol, Onur Rauf; Schiefelbein, Bryan; Grandin, Robert J.; Holland, Stephen D.; Krishnamurthy, Adarsh

    2017-02-01

    Fiber-reinforced composites are widely used in aerospace industry due to their combined properties of high strength and low weight. However, owing to their complex structure, it is difficult to assess the impact of manufacturing defects and service damage on their residual life. While, ultrasonic testing (UT) is the preferred NDE method to identify the presence of defects in composites, there are no reasonable ways to model the damage and evaluate the structural integrity of composites. We have developed an automated framework to incorporate flaws and known composite damage automatically into a finite element analysis (FEA) model of composites, ultimately aiding in accessing the residual life of composites and make informed decisions regarding repairs. The framework can be used to generate a layer-by-layer 3D structural CAD model of the composite laminates replicating their manufacturing process. Outlines of structural defects, such as delaminations, are automatically detected from UT of the laminate and are incorporated into the CAD model between the appropriate layers. In addition, the framework allows for direct structural analysis of the resulting 3D CAD models with defects by automatically applying the appropriate boundary conditions. In this paper, we show a working proof-of-concept for the composite model builder with capabilities of incorporating delaminations between laminate layers and automatically preparing the CAD model for structural analysis using a FEA software.

  5. Determination of Isthmocele Using a Foley Catheter During Laparoscopic Repair of Cesarean Scar Defect.

    PubMed

    Akdemir, Ali; Sahin, Cagdas; Ari, Sabahattin Anil; Ergenoglu, Mete; Ulukus, Murat; Karadadas, Nedim

    2018-01-01

    To demonstrate a new technique of isthmocele repair via laparoscopic surgery. Case report (Canadian Task Force classification III). The local Ethics Committee waived the requirement for approval. Isthmocele localized at a low uterine segment is a defect of a previous caesarean scar due to poor myometrial healing after surgery [1]. This pouch accumulates menstrual bleeding, which can cause various disturbances and irregularities, including abnormal uterine bleeding, infertility, pelvic pain, and scar pregnancy [2-6]. Given the absence of a clearly defined surgical method in the literature, choosing the proper approach to treating isthmocele can be arduous. Laparoscopy provides a minimally invasive procedure in women with previous caesarean scar defects. A 28-year-old woman, gravida 2 para 2, presented with a complaint of prolonged postmenstrual bleeding for 5 years. She had undergone 2 cesarean deliveries. Transvaginal ultrasonography revealed a hypoechogenic area with menstrual blood in the anterior lower uterine segment. Magnetic resonance imaging showed an isthmocele localized at the anterior left lateral side of the uterus, with an estimated volume of approximately 12 cm 3 . After patient preparation, laparoscopy was performed. To repair the defect, the uterovesical peritoneal fold was incised and the bladder was mobilized from the lower uterine segment. During this surgery, differentiating the isthmocele from the abdomen can be challenging. Here we used a Foley catheter to identify the isthmocele. To do this, after mobilizing the bladder from the lower uterine segment, we inserted a Foley catheter into the uterine cavity through the cervical canal. We then filled the balloon of the catheter at the lower uterine segment under laparoscopic view, which allowed clear identification of the isthmocele pouch. The uterine defect was then incised. The isthmocele cavity was accessed, the margins of the pouch were debrided, and the edges were surgically reapproximated with continuous nonlocking single layer 2-0 polydioxanone sutures. We believed that single-layer suturing could provide for proper healing without necrosis due to suturation. During the procedure, the vesicouterine space was dissected without difficulty. A urine bag was collected with clear urine, and there was no gas leakage; thus, we considered a safety test for the bladder superfluous. Based on concerns about the possible increased risk of adhesions, we did not cover peritoneum over the suture. The patients experienced no associated complications, and she reported complete resolution of prolonged postmenstrual bleeding at a 3-month follow-up. Even though the literature is cloudy in this area, a laparoscopic approach to repairing an isthmocele is a safe and minimally invasive procedure. Our approach described here involves inserting a Foley catheter in the uterine cavity through the cervical canal, then filling the balloon in the lower uterine segment under laparoscopic view to identify the isthmocele. Copyright © 2017 AAGL. Published by Elsevier Inc. All rights reserved.

  6. Noise and degradation of amorphous silicon devices

    NASA Astrophysics Data System (ADS)

    Bakker, J. P. R.

    2003-10-01

    Electrical noise measurements are reported on two devices of the disordered semiconductor hydrogenated amorphous silicon (a-Si:H). The material is applied in sandwich structures and in thin-film transistors (TFTs). In a sandwich configuration of an intrinsic layer and two thin doped layers, the observed 1/f resistance noise can be attributed to a distribution of energy levels in the system. Two candidates which eventually could explain the origin of the energy distribution are investigated: generation-recombination noise and long-range potential fluctuations. A simulation program was applied to fit the current-voltage characteristics and resolves the defect density, the energy position and width of the Gaussian distributions of deep defects. Generation-recombination (g-r) is calculated for a one-dimensional semiconductor device with traps, taking the transport of local fluctuations into account. Although the times characterizing capture and emission for deep defects are in the right (ms) range, the calculated noise intensity is five to six orders of magnitude below the measured noise level. Another noise source must cause the 1/f noise in a-Si:H. The alternative is provided by the theory of long-range potential fluctuations. The timescale of the fluctuations is again the capture or emission time for deep defects. When an electron is emitted or captured, the charge state of a deep defect fluctuates. As a result, the potential around that defect will fluctuate, being screened by the surrounding defects. Free electrons will instantaneously adjust to the local potential. The adjustment causes a resistance fluctuation, which is measured as a voltage fluctuation in presence of a constant current. The theory predicts the noise intensity accurately, without any adjustable parameters. Unlike the intensity, the spectral shape is fitted by adjustment of two parameters of the potential landscape. The complete temperature dependence of the noise spectra is consistently described by a Gaussian distribution of potential barriers, located 0.27 eV above the conduction band edge, with a halfwidth of 0.09 eV. A large number of experiments is explained by the theory of long-range potential fluctuations: the thickness dependence, the absence of an isotope effect and the analogous results for oppositely doped devices. From these experiments, it is concluded that a universal potential landscape exists in undoped a-Si:H. Further, the relation between degradation upon prolonged light-soaking and noise is studied. After degradation, the curvature of noise spectra is unaffected, while the intensity increases slightly. These observations are consistent with the theoretical predictions using the observed increase of the defect density. It seems that the potential landscape does not change significantly upon degradation. Noise measurements in the sub-threshold regime of a-Si:H TFTs turn out to yield diffusion noise. Diffusion of electrons through the one-dimensional channel is identified as the source of the noise. The drift mobility extracted from the combined noise and conduction data is below the value that characterizes the on-state. The number of free electrons as determined from combined noise and conduction measurements are in quantitative agreement with an alternative determination from conduction measurements only.

  7. Defect-driven flexochemical coupling in thin ferroelectric films

    NASA Astrophysics Data System (ADS)

    Eliseev, Eugene A.; Vorotiahin, Ivan S.; Fomichov, Yevhen M.; Glinchuk, Maya D.; Kalinin, Sergei V.; Genenko, Yuri A.; Morozovska, Anna N.

    2018-01-01

    Using the Landau-Ginzburg-Devonshire theory, we considered the impact of the flexoelectrochemical coupling on the size effects in polar properties and phase transitions of thin ferroelectric films with a layer of elastic defects. We investigated a typical case, when defects fill a thin layer below the top film surface with a constant concentration creating an additional gradient of elastic fields. The defective surface of the film is not covered with an electrode, but instead with an ultrathin layer of ambient screening charges, characterized by a surface screening length. Obtained results revealed an unexpectedly strong effect of the joint action of Vegard stresses and flexoelectric effect (shortly flexochemical coupling) on the ferroelectric transition temperature, distribution of the spontaneous polarization and elastic fields, domain wall structure and period in thin PbTi O3 films containing a layer of elastic defects. A nontrivial result is the persistence of ferroelectricity at film thicknesses below 4 nm, temperatures lower than 350 K, and relatively high surface screening length (˜0.1 nm ) . The origin of this phenomenon is the flexoelectric coupling leading to the rebuilding of the domain structure in the film (namely the cross-over from c-domain stripes to a-type closure domains) when its thickness decreases below 4 nm. The ferroelectricity persistence is facilitated by negative Vegard effect. For positive Vegard effect, thicker films exhibit the appearance of pronounced maxima on the thickness dependence of the transition temperature, whose position and height can be controlled by the defect type and concentration. The revealed features may have important implications for miniaturization of ferroelectric-based devices.

  8. WE-E-18A-01: Large Area Avalanche Amorphous Selenium Sensors for Low Dose X-Ray Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheuermann, J; Goldan, A; Zhao, W

    2014-06-15

    Purpose: A large area indirect flat panel imager (FPI) with avalanche gain is being developed to achieve x-ray quantum noise limited low dose imaging. It uses a thin optical sensing layer of amorphous selenium (a-Se), known as High-Gain Avalanche Rushing Photoconductor (HARP), to detect optical photons generated from a high resolution x-ray scintillator. We will report initial results in the fabrication of a solid-state HARP structure suitable for a large area FPI. Our objective is to establish the blocking layer structures and defect suppression mechanisms that provide stable and uniform avalanche gain. Methods: Samples were fabricated as follows: (1) ITOmore » signal electrode. (2) Electron blocking layer. (3) A 15 micron layer of intrinsic a-Se. (4) Transparent hole blocking layer. (5) Multiple semitransparent bias electrodes to investigate avalanche gain uniformity over a large area. The sample was exposed to 50ps optical excitation pulses through the bias electrode. Transient time of flight (TOF) and integrated charge was measured. A charge transport simulation was developed to investigate the effects of varying blocking layer charge carrier mobility on defect suppression, avalanche gain and temporal performance. Results: Avalanche gain of ∼200 was achieved experimentally with our multi-layer HARP samples. Simulations using the experimental sensor structure produced the same magnitude of gain as a function of electric field. The simulation predicted that the high dark current at a point defect can be reduced by two orders of magnitude by blocking layer optimization which can prevent irreversible damage while normal operation remained unaffected. Conclusion: We presented the first solid state HARP structure directly scalable to a large area FPI. We have shown reproducible and uniform avalanche gain of 200. By reducing mobility of the blocking layers we can suppress defects and maintain stable avalanche. Future work will optimize the blocking layers to prevent lag and ghosting.« less

  9. Influence of surface rectangular defect winding layer on burst pressure of CNG-II composite cylinder

    NASA Astrophysics Data System (ADS)

    You, H. X.; Peng, L.; Zhao, C.; Ma, K.; Zhang, S.

    2018-01-01

    To study the influence of composite materials’ surface defect on the burst pressure of CNG-II composite cylinder, the surface defect was simplified as a rectangular slot of certain size on the basis of actually investigating the shape of cylinder’s surface defect. A CNG-II composite cylinder with a rectangular slot defect (2mm in depth) was used for burst test, and the numerical simulation software ANSYS was used to calculate its burst pressure. Through comparison between the burst pressure in the test and the numerical analysis result, the correctness of the numerical analysis method was verified. On this basis, the numerical analysis method was conducted for composite cylinders with surface defect in other depth. The result showed that surface defect in the form of rectangular slot had no significant effect on the liner stress of composite cylinder. Instead, it had a great influence on the stress of fiber-wrapped layer. The burst pressure of the composite cylinder decreased as the defect depth increasing. The hoop stress at the bottom of the defect in the shape of rectangular slot exceeded the maximum of the composite materials’ tensile strength, which could result in the burst pressure of composite cylinders decreasing.

  10. Defects and annealing studies in 1-Me electron irradiated (AlGa)As-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.; Wang, W. L.; Loo, R. Y.; Rahilly, W. P.

    1982-01-01

    The deep-level defects and recombination mechanisms in the one-MeV electron irradiated (AlGa)As-GaAs solar cells under various irradiation and annealing conditions are discussed. Deep-level transient spectroscopy (DLTS) and capacitance-voltage (CV) techniques were used to determine the defect and recombination parameters such as energy levels and defect density, carrier capture cross sections and lifetimes for both electron and hole traps as well as hole diffusion lengths in these electron irradiated GaAs solar cells. GaAs solar cells used in this study were prepared by the infinite solution melt liquid phase epitaxial (LPE) technique at Hughes Research Lab., with (Al0.9Ga0.1)-As window layer, Be-diffused p-GaAs layer on Sn-doped n-GaAs or undoped n-GaAs active layer grown on n(+)-GaAs substrate. Mesa structure with area of 5.86x1000 sq cm was fabricated. Three different irradiation and annealing experiments were performed on these solar cells.

  11. [Eclipse retinopathy : A case series after the partial solar eclipse on 20 March 2015].

    PubMed

    Bachmeier, I; Helbig, H; Greslechner, R

    2017-01-01

    Solar retinopathy refers to damage to the central macula caused by exposure to intense solar radiation, most frequently observed after a solar eclipse. Description of the morphological changes in spectral domain optical coherence tomography (SD-OCT) and the clinical course in patients with acute solar retinopathy. The study included a retrospective analysis of 12 eyes from 7 patients with solar retinopathy after the partial solar eclipse on 20 March 2015. Best corrected visual acuity, fundus changes and SD-OCT findings were analyzed. Out of the 7 patients 5 underwent treatment with 1 mg prednisolone per kg body weight. The average age of the patients was 30.1±13.1 years. Best corrected visual acuity was 0.65 at initial presentation. In the acute stage all affected eyes showed a small yellowish lesion in the centre of the fovea in the fundoscopic examination. In SD-OCT the continuity of all layers in the foveola appeared disrupted. In the follow-up examination these changes were partially resolved. After 2 months SD-OCT revealed a small defect of the ellipsoid zone. In one patient the defect could not be shown due to slightly excentric imaging sections. Best corrected visual acuity increased to 0.97. The SD-OCT is an appropriate tool to determine the exact localization of the site of damage and for follow-up examination in solar retinopathy. In the acute phase it shows a disruption of the continuity of all layers in the foveola. Despite good recovery of visual acuity a small central defect of the ellipsoid zone remains in the long term.

  12. Detection of microstructural defects in chalcopyrite Cu(In,Ga)Se2 solar cells by spectrally-filtered electroluminescence

    NASA Astrophysics Data System (ADS)

    Skvarenina, L.; Gajdos, A.; Macku, R.; Skarvada, P.

    2017-12-01

    The aim of this research is to detect and localize microstructural defects by using an electrically excited light emission from a forward/reverse-bias stressed pn-junction in thin-film Cu(In; Ga)Se2 solar cells with metal wrap through architecture. A different origin of the local light emission from intrinsic/extrinsic imperfections in these chalcopyrite-based solar cells can be distinguished by a spectrally-filtered electroluminescence mapping. After a light emission mapping and localization of the defects in a macro scale is performed a micro scale exploration of the solar cell surface by a scanning electron microscope which follows the particular defects obtained by an electroluminescence. In particular, these macroscopic/microscopic examinations are performed independently, then the searching of the corresponding defects in the micro scale is rather difficult due to a diffused light emission obtained from the macro scale localization. Some of the defects accompanied by a highly intense light emission very often lead to a strong local overheating. Therefore, the lock-in infrared thermography is also performed along with an electroluminescence mapping.

  13. Thermographic process monitoring in powderbed based additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauss, Harald, E-mail: harald.krauss@iwb.tum.de; Zaeh, Michael F.; Zeugner, Thomas

    2015-03-31

    Selective Laser Melting is utilized to build metallic parts directly from CAD-Data by solidification of thin powder layers through application of a fast scanning laser beam. In this study layerwise monitoring of the temperature distribution is used to gather information about the process stability and the resulting part quality. The heat distribution varies with different kinds of parameters including scan vector length, laser power, layer thickness and inter-part distance in the job layout which in turn influence the resulting part quality. By integration of an off-axis mounted uncooled thermal detector the solidification as well as the layer deposition are monitoredmore » and evaluated. Errors in the generation of new powder layers usually result in a locally varying layer thickness that may cause poor part quality. For effect quantification, the locally applied layer thickness is determined by evaluating the heat-up of the newly deposited powder. During the solidification process space and time-resolved data is used to characterize the zone of elevated temperatures and to derive locally varying heat dissipation properties. Potential quality indicators are evaluated and correlated to the resulting part quality: Thermal diffusivity is derived from a simplified heat dissipation model and evaluated for every pixel and cool-down phase of a layer. This allows the quantification of expected material homogeneity properties. Maximum temperature and time above certain temperatures are measured in order to detect hot spots or delamination issues that may cause a process breakdown. Furthermore, a method for quantification of sputter activity is presented. Since high sputter activity indicates unstable melt dynamics this can be used to identify parameter drifts, improper atmospheric conditions or material binding errors. The resulting surface structure after solidification complicates temperature determination on the one hand but enables the detection of potential surface defects on the other hand. These issues and proper key figures for thermographic monitoring of the Selective Laser Melting process are discussed in the paper. Even though microbolometric temperature measurement is limited to repetition rates in the Hz-regime and sub megapixel resolution, current results show the feasibility of process surveillance by thermography for a limited section of the building platform in a commercial system.« less

  14. Thermographic process monitoring in powderbed based additive manufacturing

    NASA Astrophysics Data System (ADS)

    Krauss, Harald; Zeugner, Thomas; Zaeh, Michael F.

    2015-03-01

    Selective Laser Melting is utilized to build metallic parts directly from CAD-Data by solidification of thin powder layers through application of a fast scanning laser beam. In this study layerwise monitoring of the temperature distribution is used to gather information about the process stability and the resulting part quality. The heat distribution varies with different kinds of parameters including scan vector length, laser power, layer thickness and inter-part distance in the job layout which in turn influence the resulting part quality. By integration of an off-axis mounted uncooled thermal detector the solidification as well as the layer deposition are monitored and evaluated. Errors in the generation of new powder layers usually result in a locally varying layer thickness that may cause poor part quality. For effect quantification, the locally applied layer thickness is determined by evaluating the heat-up of the newly deposited powder. During the solidification process space and time-resolved data is used to characterize the zone of elevated temperatures and to derive locally varying heat dissipation properties. Potential quality indicators are evaluated and correlated to the resulting part quality: Thermal diffusivity is derived from a simplified heat dissipation model and evaluated for every pixel and cool-down phase of a layer. This allows the quantification of expected material homogeneity properties. Maximum temperature and time above certain temperatures are measured in order to detect hot spots or delamination issues that may cause a process breakdown. Furthermore, a method for quantification of sputter activity is presented. Since high sputter activity indicates unstable melt dynamics this can be used to identify parameter drifts, improper atmospheric conditions or material binding errors. The resulting surface structure after solidification complicates temperature determination on the one hand but enables the detection of potential surface defects on the other hand. These issues and proper key figures for thermographic monitoring of the Selective Laser Melting process are discussed in the paper. Even though microbolometric temperature measurement is limited to repetition rates in the Hz-regime and sub megapixel resolution, current results show the feasibility of process surveillance by thermography for a limited section of the building platform in a commercial system.

  15. Application of X-ray microcomputed tomography in the characterization of irradiated nuclear fuel and material specimens

    DOE PAGES

    Silva, Chinthaka M.; Snead, Lance Lewis; Hunn, John D.; ...

    2015-08-03

    X-ray microcomputed tomography (µCT) was applied in characterizing the internal structures of a number of irradiated materials, including carbon-carbon fibre composites, nuclear-grade graphite and tristructural isotropic-coated fuel particles. Local cracks in carbon-carbon fibre composites associated with their synthesis process were observed with µCT without any destructive sample preparation. Pore analysis of graphite samples was performed quantitatively, and qualitative analysis of pore distribution was accomplished. It was also shown that high-resolution µCT can be used to probe internal layer defects of tristructural isotropic-coated fuel particles to elucidate the resulting high release of radioisotopes. Layer defects of sizes ranging from 1 tomore » 5 µm and up could be isolated by to-mography. As an added advantage, µCT could also be used to identify regions with high densities of radioisotopes to deter-mine the proper plane and orientation of particle mounting for further analytical characterization, such as materialographic sectioning followed by optical and electron microscopy. Lastly, in fully ceramic matrix fuel forms, despite the highly absorbing matrix, characterization of tristructural isotropic-coated particles embedded in a silicon carbide matrix was accomplished usingµCT and related advanced image analysis techniques.« less

  16. Study on electrical defects level in single layer two-dimensional Ta2O5

    NASA Astrophysics Data System (ADS)

    Dahai, Li; Xiongfei, Song; Linfeng, Hu; Ziyi, Wang; Rongjun, Zhang; Liangyao, Chen; David, Wei Zhang; Peng, Zhou

    2016-04-01

    Two-dimensional atomic-layered material is a recent research focus, and single layer Ta2O5 used as gate dielectric in field-effect transistors is obtained via assemblies of Ta2O5 nanosheets. However, the electrical performance is seriously affected by electronic defects existing in Ta2O5. Therefore, spectroscopic ellipsometry is used to calculate the transition energies and corresponding probabilities for two different charged oxygen vacancies, whose existence is revealed by x-ray photoelectron spectroscopy analysis. Spectroscopic ellipsometry fitting also calculates the thickness of single layer Ta2O5, exhibiting good agreement with atomic force microscopy measurement. Nondestructive and noncontact spectroscopic ellipsometry is appropriate for detecting the electrical defects level of single layer Ta2O5. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174058 and 61376093), the Fund from Shanghai Municipal Science and Technology Commission (Grant No. 13QA1400400), the National Science and Technology Major Project, China (Grant No. 2011ZX02707), and the Innovation Program of Shanghai Municipal Education Commission (Grant No. 12ZZ010).

  17. Integral ceramic superstructure evaluation using time domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sinescu, Cosmin; Bradu, Adrian; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.

    2014-02-01

    Optical Coherence Tomography (OCT) is a non-invasive low coherence interferometry technique that includes several technologies (and the corresponding devices and components), such as illumination and detection, interferometry, scanning, adaptive optics, microscopy and endoscopy. From its large area of applications, we consider in this paper a critical aspect in dentistry - to be investigated with a Time Domain (TD) OCT system. The clinical situation of an edentulous mandible is considered; it can be solved by inserting 2 to 6 implants. On these implants a mesostructure will be manufactured and on it a superstructure is needed. This superstructure can be integral ceramic; in this case materials defects could be trapped inside the ceramic layers and those defects could lead to fractures of the entire superstructure. In this paper we demonstrate that a TD-OCT imaging system has the potential to properly evaluate the presence of the defects inside the ceramic layers and those defects can be fixed before inserting the prosthesis inside the oral cavity. Three integral ceramic superstructures were developed by using a CAD/CAM technology. After the milling, the ceramic layers were applied on the core. All the three samples were evaluated by a TD-OCT system working at 1300 nm. For two of the superstructures evaluated, no defects were found in the most stressed areas. The third superstructure presented four ceramic defects in the mentioned areas. Because of those defects the superstructure may fracture. The integral ceramic prosthesis was send back to the dental laboratory to fix the problems related to the material defects found. Thus, TD-OCT proved to be a valuable method for diagnosing the ceramic defects inside the integral ceramic superstructures in order to prevent fractures at this level.

  18. Polytype Stability and Microstructural Characterization of Silicon Carbide Epitaxial Films Grown on [ {11}overline{{2}} {0} ]- and [0001]-Oriented Silicon Carbide Substrates

    NASA Astrophysics Data System (ADS)

    Bishop, S. M.; Reynolds, C. L.; Liliental-Weber, Z.; Uprety, Y.; Zhu, J.; Wang, D.; Park, M.; Molstad, J. C.; Barnhardt, D. E.; Shrivastava, A.; Sudarshan, T. S.; Davis, R. F.

    2007-04-01

    The polytype and surface and defect microstructure of epitaxial layers grown on 4H( {11}overline{{2}} {0} ), 4H(0001) on-axis, 4H(0001) 8° off-axis, and 6H(0001) on-axis substrates have been investigated. High-resolution x-ray diffraction (XRD) revealed the epitaxial layers on 4H( {11}overline{{2}} {0} ) and 4H(0001) 8° off-axis to have the 4H-SiC (silicon carbide) polytype, while the 3C-SiC polytype was identified for epitaxial layers on 4H(0001) and 6H(0001) on-axis substrates. Cathodoluminescence (CL), Raman spectroscopy, and transmission electron microscopy (TEM) confirmed these results. The epitaxial surface of 4H( {11}overline{{2}} {0} ) films was specular with a roughness of 0.16-nm root-mean-square (RMS), in contrast to the surfaces of the other epitaxial layer-substrate orientations, which contained curvilinear boundaries, growth pits (˜3 × 104 cm-2), triangular defects >100 μm, and significant step bunching. Molten KOH etching revealed large defect densities within 4H( {11}overline{{2}} {0} ) films that decreased with film thickness to ˜106 cm-2 at 2.5 μm, while cross-sectional TEM studies showed areas free of defects and an indistinguishable film-substrate interface for 4H( {11}overline{{2}} {0} ) epitaxial layers.

  19. Behavior of Photocarriers in the Light-Induced Metastable State in the p-n Heterojunction of a Cu(In,Ga)Se2 Solar Cell with CBD-ZnS Buffer Layer.

    PubMed

    Lee, Woo-Jung; Yu, Hye-Jung; Wi, Jae-Hyung; Cho, Dae-Hyung; Han, Won Seok; Yoo, Jisu; Yi, Yeonjin; Song, Jung-Hoon; Chung, Yong-Duck

    2016-08-31

    We fabricated Cu(In,Ga)Se2 (CIGS) solar cells with a chemical bath deposition (CBD)-ZnS buffer layer grown with varying ammonia concentrations in aqueous solution. The solar cell performance was degraded with increasing ammonia concentration, due to actively dissolved Zn atoms during CBD-ZnS precipitation. These formed interfacial defect states, such as hydroxide species in the CBD-ZnS film, and interstitial and antisite Zn defects at the p-n heterojunction. After light/UV soaking, the CIGS solar cell performance drastically improved, with a rise in fill factor. With the Zn-based buffer layer, the light soaking treatment containing blue photons induced a metastable state and enhanced the CIGS solar cell performance. To interpret this effect, we suggest a band structure model of the p-n heterojunction to explain the flow of photocarriers under white light at the initial state, and then after light/UV soaking. The determining factor is a p+ defect layer, containing an amount of deep acceptor traps, located near the CIGS surface. The p+ defect layer easily captures photoexcited electrons, and then when it becomes quasi-neutral, attracts photoexcited holes. This alters the barrier height and controls the photocurrent at the p-n junction, and fill factor values, determining the solar cell performance.

  20. On correction of model of stabilization of distribution of concentration of radiation defects in a multilayer structure with account experiment data

    NASA Astrophysics Data System (ADS)

    Pankratov, E. L.

    2018-05-01

    We introduce a model of redistribution of point radiation defects, their interaction between themselves and redistribution of their simplest complexes (divacancies and diinterstitials) in a multilayer structure. The model gives a possibility to describe qualitatively nonmonotonicity of distributions of concentrations of radiation defects on interfaces between layers of the multilayer structure. The nonmonotonicity was recently found experimentally. To take into account the nonmonotonicity we modify recently used in literature model for analysis of distribution of concentration of radiation defects. To analyze the model we used an approach of solution of boundary problems, which could be used without crosslinking of solutions on interfaces between layers of the considered multilayer structures.

  1. Diffraction inspired unidirectional and bidirectional beam splitting in defect-containing photonic structures without interface corrugations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colak, Evrim; Serebryannikov, Andriy E., E-mail: andser@amu.edu.pl; Usik, P. V.

    2016-05-21

    It is shown that strong diffractions and related dual-beam splitting can be obtained at transmission through the nonsymmetric structures that represent two slabs of photonic crystal (PhC) separated by a single coupled-cavity type defect layer, while there are no grating-like corrugations at the interfaces. The basic operation regimes include unidirectional and bidirectional splitting that occur due to the dominant contribution of the first positive and first negative diffraction orders to the transmission, which is typically connected with different manifestations of the asymmetric transmission phenomenon. Being the main component of the resulting transmission mechanism, diffractions appear owing to the effect exertedmore » by the defect layer that works like an embedded diffractive element. Two mechanisms can co-exist in one structure, which differ, among others, in that whether dispersion allows coupling of zero order to a wave propagating in the regular, i.e., defect-free PhC segments or not. The possibility of strong diffractions and efficient splitting related to it strongly depend on the dispersion properties of the Floquet-Bloch modes of the PhC. Existence of one of the studied transmission scenarios is not affected by location of the defect layer.« less

  2. Reduction of structural defects in thick 4H-SiC epitaxial layers grown on 4° off-axis substrates

    NASA Astrophysics Data System (ADS)

    Yazdanfar, M.; Ivanov, I. G.; Pedersen, H.; Kordina, O.; Janzén, E.

    2013-06-01

    By carefully controlling the surface chemistry of the chemical vapor deposition process for silicon carbide (SiC), 100 μm thick epitaxial layers with excellent morphology were grown on 4° off-axis SiC substrates at growth rates exceeding 100 μm/h. In order to reduce the formation of step bunching and structural defects, mainly triangular defects, the effect of varying parameters such as growth temperature, C/Si ratio, Cl/Si ratio, Si/H2 ratio, and in situ pre-growth surface etching time are studied. It was found that an in-situ pre growth etch at growth temperature and pressure using 0.6% HCl in hydrogen for 12 min reduced the structural defects by etching preferentially on surface damages of the substrate surface. By then applying a slightly lower growth temperature of 1575 °C, a C/Si ratio of 0.8, and a Cl/Si ratio of 5, 100 μm thick, step-bunch free epitaxial layer with a minimum triangular defect density and excellent morphology could be grown, thus enabling SiC power device structures to be grown on 4° off axis SiC substrates.

  3. Average structure and local configuration of excess oxygen in UO(2+x).

    PubMed

    Wang, Jianwei; Ewing, Rodney C; Becker, Udo

    2014-03-19

    Determination of the local configuration of interacting defects in a crystalline, periodic solid is problematic because defects typically do not have a long-range periodicity. Uranium dioxide, the primary fuel for fission reactors, exists in hyperstoichiometric form, UO(2+x). Those excess oxygen atoms occur as interstitial defects, and these defects are not random but rather partially ordered. The widely-accepted model to date, the Willis cluster based on neutron diffraction, cannot be reconciled with the first-principles molecular dynamics simulations present here. We demonstrate that the Willis cluster is a fair representation of the numerical ratio of different interstitial O atoms; however, the model does not represent the actual local configuration. The simulations show that the average structure of UO(2+x) involves a combination of defect structures including split di-interstitial, di-interstitial, mono-interstitial, and the Willis cluster, and the latter is a transition state that provides for the fast diffusion of the defect cluster. The results provide new insights in differentiating the average structure from the local configuration of defects in a solid and the transport properties of UO(2+x).

  4. Effect of hydrogenation on the electrical and optical properties of CdZnTe substrates and HgCdTe epitaxial layers

    NASA Astrophysics Data System (ADS)

    Sitharaman, S.; Raman, R.; Durai, L.; Pal, Surendra; Gautam, Madhukar; Nagpal, Anjana; Kumar, Shiv; Chatterjee, S. N.; Gupta, S. C.

    2005-12-01

    In this paper, we report the experimental observations on the effect of plasma hydrogenation in passivating intrinsic point defects, shallow/deep levels and extended defects in low-resistivity undoped CdZnTe crystals. The optical absorption studies show transmittance improvement in the below gap absorption spectrum. Using variable temperature Hall measurement technique, the shallow defect level on which the penetrating hydrogen makes complex, has been identified. In 'compensated' n-type HgCdTe epitaxial layers, hydrogenation can improve the resistivity by two orders of magnitude.

  5. Investigation of Defect Distributions in SiO2/AlGaN/GaN High-Electron-Mobility Transistors by Using Capacitance-Voltage Measurement with Resonant Optical Excitation

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Soo; Lim, Seung-Young; Park, Yong-Keun; Jung, Gunwoo; Song, Jung-Hoon; Cha, Ho-Young; Han, Sang-Woo

    2018-06-01

    We investigated the distributions and the energy levels of defects in SiO2/AlGaN/GaN highelectron-mobility transistors (HEMTs) by using frequency-dependent ( F- D) capacitance-voltage ( C- V) measurements with resonant optical excitation. A Schottky barrier (SB) and a metal-oxidesemiconductor (MOS) HEMT were prepared to compare the effects of defects in their respective layers. We also investigated the effects of those layers on the threshold voltage ( V th ). A drastic voltage shift in the C- V curve at higher frequencies was caused by the large number of defect levels in the SiO2/GaN interface. A significant shift in V th with additional light illumination was observed due to a charging of the defect states in the SiO2/GaN interface. The voltage shifts were attributed to the detrapping of defect states at the SiO2/GaN interface.

  6. Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode

    PubMed Central

    Xie, Jin; Liao, Lei; Gong, Yongji; Li, Yanbin; Shi, Feifei; Pei, Allen; Sun, Jie; Zhang, Rufan; Kong, Biao; Subbaraman, Ram; Christensen, Jake; Cui, Yi

    2017-01-01

    Defects are important features in two-dimensional (2D) materials that have a strong influence on their chemical and physical properties. Through the enhanced chemical reactivity at defect sites (point defects, line defects, etc.), one can selectively functionalize 2D materials via chemical reactions and thereby tune their physical properties. We demonstrate the selective atomic layer deposition of LiF on defect sites of h-BN prepared by chemical vapor deposition. The LiF deposits primarily on the line and point defects of h-BN, thereby creating seams that hold the h-BN crystallites together. The chemically and mechanically stable hybrid LiF/h-BN film successfully suppresses lithium dendrite formation during both the initial electrochemical deposition onto a copper foil and the subsequent cycling. The protected lithium electrodes exhibit good cycling behavior with more than 300 cycles at relatively high coulombic efficiency (>95%) in an additive-free carbonate electrolyte. PMID:29202031

  7. Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Jin; Liao, Lei; Gong, Yongji

    Defects are important features in two-dimensional (2D) materials that have a strong influence on their chemical and physical properties. Through the enhanced chemical reactivity at defect sites (point defects, line defects, etc.), one can selectively functionalize 2D materials via chemical reactions and thereby tune their physical properties. We demonstrate the selective atomic layer deposition of LiF on defect sites of h-BN prepared by chemical vapor deposition. The LiF deposits primarily on the line and point defects of h-BN, thereby creating seams that hold the h-BN crystallites together. The chemically and mechanically stable hybrid LiF/h-BN film successfully suppresses lithium dendrite formationmore » during both the initial electrochemical deposition onto a copper foil and the subsequent cycling. In conclusion, the protected lithium electrodes exhibit good cycling behavior with more than 300 cycles at relatively high coulombic efficiency (>95%) in an additive-free carbonate electrolyte.« less

  8. Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode

    DOE PAGES

    Xie, Jin; Liao, Lei; Gong, Yongji; ...

    2017-11-29

    Defects are important features in two-dimensional (2D) materials that have a strong influence on their chemical and physical properties. Through the enhanced chemical reactivity at defect sites (point defects, line defects, etc.), one can selectively functionalize 2D materials via chemical reactions and thereby tune their physical properties. We demonstrate the selective atomic layer deposition of LiF on defect sites of h-BN prepared by chemical vapor deposition. The LiF deposits primarily on the line and point defects of h-BN, thereby creating seams that hold the h-BN crystallites together. The chemically and mechanically stable hybrid LiF/h-BN film successfully suppresses lithium dendrite formationmore » during both the initial electrochemical deposition onto a copper foil and the subsequent cycling. In conclusion, the protected lithium electrodes exhibit good cycling behavior with more than 300 cycles at relatively high coulombic efficiency (>95%) in an additive-free carbonate electrolyte.« less

  9. Electronic structure properties of deep defects in hBN

    NASA Astrophysics Data System (ADS)

    Dev, Pratibha; Prdm Collaboration

    In recent years, the search for room-temperature solid-state qubit (quantum bit) candidates has revived interest in the study of deep-defect centers in semiconductors. The charged NV-center in diamond is the best known amongst these defects. However, as a host material, diamond poses several challenges and so, increasingly, there is an interest in exploring deep defects in alternative semiconductors such as hBN. The layered structure of hBN makes it a scalable platform for quantum applications, as there is a greater potential for controlling the location of the deep defect in the 2D-matrix through careful experiments. Using density functional theory-based methods, we have studied the electronic and structural properties of several deep defects in hBN. Native defects within hBN layers are shown to have high spin ground states that should survive even at room temperature, making them interesting solid-state qubit candidates in a 2D matrix. Partnership for Reduced Dimensional Material (PRDM) is part of the NSF sponsored Partnerships for Research and Education in Materials (PREM).

  10. Defect physics vis-à-vis electrochemical performance in layered mixed-metal oxide cathode materials

    NASA Astrophysics Data System (ADS)

    Hoang, Khang; Johannes, Michelle

    Layered mixed-metal oxides with different compositions of (Ni,Co,Mn) [NCM] or (Ni,Co,Al) [NCA] have been used in commercial lithium-ion batteries. Yet their defect physics and chemistry is still not well understood, despite having important implications for the electrochemical performance. In this presentation, we report a hybrid density functional study of intrinsic point defects in the compositions LiNi1/3Co1/3Mn1/3O2 (NCM1/3) and LiNi1/3Co1/3Al1/3O2 (NCA1/3) which can also be regarded as model compounds for NCM and NCA. We will discuss defect landscapes in NCM1/3 and NCA1/3 under relevant synthesis conditions with a focus on the formation of metal antisite defects and its implications on the electrochemical properties and ultimately the design of NCM and NCA cathode materials.

  11. Effect of high current density to defect generation of blue LED and its characterization with transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Gunawan, R.; Sugiarti, E.; Isnaeni; Purawiardi, R. I.; Widodo, H.; Muslimin, A. N.; Yuliasari; Ronaldus, C. E.; Prastomo, N.; Hastuty, S.

    2018-03-01

    The optical, electrical and structural characteristics of InGaN-based blue light-emitting diodes (LEDs) were investigated to identify the degradation of LED before and after current injection. The sample was injected by high current of 200 A/cm2 for 5 and 20 minutes. It was observed that injection of current shifts light intensity and wavelength characteristics that indicated defect generation. Transmission Electron Microscopy (TEM) characterization was carried out in order to clarify the structure degradation caused by defect in active layer which consisted of 14 quantum well with thickness of about 5 nm and confined with barrier layer with thickness of about 12 nm. TEM results showed pre-existing defect in LED before injection with high current. Furthermore, discontinue and edge defect was found in dark spot region of LED after injection with high current.

  12. Magnetic resonance imaging of hyaline cartilage regeneration in neocartilage graft implantation.

    PubMed

    Tan, C F; Ng, K K; Ng, S H; Cheung, Y C

    2003-12-01

    The purpose of this study was to investigate the regenerative potential of hyaline cartilage in a neocartilage graft implant with the aid of MR cartilage imaging using a rabbit model. Surgical osteochondral defects were created in the femoral condyles of 30 mature New Zealand rabbits. The findings of neocartilage in autologous cartilage grafts packed into osteochondral defects were compared with control group of no implant to the osteochondral defect. The outcome of the implantations was correlated with histologic and MR cartilage imaging findings over a 3-month interval. Neocartilage grafts packed into osteochondral defects showed regeneration of hyaline cartilage at the outer layer of the implant using MR cartilage imaging. Fibrosis of fibrocartilage developed at the outer layer of the autologous cartilage graft together with an inflammatory reaction within the osteochondral defect. This animal study provides evidence of the regenerative ability of hyaline cartilage in neocartilage transplants to repair articular cartilage.

  13. Interfacial micropore defect formation in PEDOT:PSS-Si hybrid solar cells probed by TOF-SIMS 3D chemical imaging.

    PubMed

    Thomas, Joseph P; Zhao, Liyan; Abd-Ellah, Marwa; Heinig, Nina F; Leung, K T

    2013-07-16

    Conducting p-type polymer layers on n-type Si have been widely studied for the fabrication of cost-effective hybrid solar cells. In this work, time-of-flight secondary ion mass spectrometry (TOF-SIMS) is used to provide three-dimensional chemical imaging of the interface between poly(3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS) and SiOx/Si in a hybrid solar cell. To minimize structural damage to the polymer layer, an Ar cluster sputtering source is used for depth profiling. The present result shows the formation of micropore defects in the interface region of the PEDOT:PSS layer on the SiOx/Si substrate. This interfacial micropore defect formation becomes more prominent with increasing thickness of the native oxide layer, which is a key device parameter that greatly affects the hybrid solar cell performance. Three-dimensional chemical imaging coupled with Ar cluster ion sputtering has therefore been demonstrated as an emerging technique for probing the interface of this and other polymer-inorganic systems.

  14. Slow-muon study of quaternary solar-cell materials: Single layers and p -n junctions

    NASA Astrophysics Data System (ADS)

    Alberto, H. V.; Vilão, R. C.; Vieira, R. B. L.; Gil, J. M.; Weidinger, A.; Sousa, M. G.; Teixeira, J. P.; da Cunha, A. F.; Leitão, J. P.; Salomé, P. M. P.; Fernandes, P. A.; Törndahl, T.; Prokscha, T.; Suter, A.; Salman, Z.

    2018-02-01

    Thin films and p -n junctions for solar cells based on the absorber materials Cu (In ,G a ) Se2 and Cu2ZnSnS4 were investigated as a function of depth using implanted low energy muons. The most significant result is a clear decrease of the formation probability of the Mu+ state at the heterojunction interface as well as at the surface of the Cu (In ,G a ) Se2 film. This reduction is attributed to a reduced bonding reaction of the muon in the absorber defect layer at its surface. In addition, the activation energies for the conversion from a muon in an atomiclike configuration to a anion-bound position are determined from temperature-dependence measurements. It is concluded that the muon probe provides a measurement of the effective surface defect layer width, both at the heterojunctions and at the films. The CIGS surface defect layer is crucial for solar-cell electrical performance and additional information can be used for further optimizations of the surface.

  15. Atomic defects in monolayer titanium carbide (Ti 3C 2T x) MXene

    DOE PAGES

    Sang, Xiahan; Xie, Yu; Lin, Ming -Wei; ...

    2016-09-06

    Here, the 2D transition metal carbides or nitrides, or MXenes, are emerging as a group of materials showing great promise in lithium ion batteries and supercapacitors. Until now, characterization and properties of single-layer MXenes have been scarcely reported. Here, using scanning transmission electron microscopy, we determined the atomic structure of freestanding monolayer Ti 3C 2T x flakes prepared via the minimally intensive layer delamination method and characterized different point defects that are prevalent in the monolayer flakes. We determine that the Ti vacancy concentration can be controlled by the etchant concentration during preparation. Density function theory-based calculations confirm the defectmore » structures and predict that the defects can influence the surface morphology and termination groups, but do not strongly influence the metallic conductivity. Using devices fabricated from single- and few-layer Ti 3C 2T x MXene flakes, the effect of the number of layers in the flake on conductivity has been demonstrated.« less

  16. Directed Self-Assembly on Photo-Crosslinked Polystyrene Sub-Layers: Nanopattern Uniformity and Orientation

    PubMed Central

    Koh, Haeng-Deog; Kim, Mi-Jeong

    2016-01-01

    A photo-crosslinked polystyrene (PS) thin film is investigated as a potential guiding sub-layer for polystyrene-block-poly (methyl methacrylate) block copolymer (BCP) cylindrical nanopattern formation via topographic directed self-assembly (DSA). When compared to a non-crosslinked PS brush sub-layer, the photo-crosslinked PS sub-layer provided longer correlation lengths of the BCP nanostructure, resulting in a highly uniform DSA nanopattern with a low number of BCP dislocation defects. Depending on the thickness of the sub-layer used, parallel or orthogonal orientations of DSA nanopattern arrays were obtained that covered the entire surface of patterned Si substrates, including both trench and mesa regions. The design of DSA sub-layers and guide patterns, such as hardening the sub-layer by photo-crosslinking, nano-structuring on mesas, the relation between trench/mesa width, and BCP equilibrium period, were explored with a view to developing defect-reduced DSA lithography technology. PMID:28773768

  17. Defect-induced ferromagnetism in semiconductors: A controllable approach by particle irradiation

    NASA Astrophysics Data System (ADS)

    Zhou, Shengqiang

    2014-05-01

    Making semiconductors ferromagnetic has been a long dream. One approach is to dope semiconductors with transition metals (TM). TM ions act as local moments and they couple with free carriers to develop collective magnetism. However, there are no fundamental reasons against the possibility of local moment formation from localized sp states. Recently, ferromagnetism was observed in nonmagnetically doped, but defective semiconductors or insulators including ZnO and TiO2. This kind of observation challenges the conventional understanding of ferromagnetism. Often the defect-induced ferromagnetism has been observed in samples prepared under non-optimized condition, i.e. by accident or by mistake. Therefore, in this field theory goes much ahead of experimental investigation. To understand the mechanism of the defect-induced ferromagnetism, one needs a better controlled method to create defects in the crystalline materials. As a nonequilibrium and reproducible approach of inducing defects, ion irradiation provides such a possibility. Energetic ions displace atoms from their equilibrium lattice sites, thus creating mainly vacancies, interstitials or antisites. The amount and the distribution of defects can be controlled by the ion fluence and energy. By ion irradiation, we have generated defect-induced ferromagnetism in ZnO, TiO2 and SiC. In this short review, we also summarize some results by other groups using energetic ions to introduce defects, and thereby magnetism in various materials. Ion irradiation combined with proper characterizations of defects could allow us to clarify the local magnetic moments and the coupling mechanism in defective semiconductors. Otherwise we may have to build a new paradigm to understand the defect-induced ferromagnetism.

  18. Localization of multiple defects using the compact phased array (CPA) method

    NASA Astrophysics Data System (ADS)

    Senyurek, Volkan Y.; Baghalian, Amin; Tashakori, Shervin; McDaniel, Dwayne; Tansel, Ibrahim N.

    2018-01-01

    Array systems of transducers have found numerous applications in detection and localization of defects in structural health monitoring (SHM) of plate-like structures. Different types of array configurations and analysis algorithms have been used to improve the process of localization of defects. For accurate and reliable monitoring of large structures by array systems, a high number of actuator and sensor elements are often required. In this study, a compact phased array system consisting of only three piezoelectric elements is used in conjunction with an updated total focusing method (TFM) for localization of single and multiple defects in an aluminum plate. The accuracy of the localization process was greatly improved by including wave propagation information in TFM. Results indicated that the proposed CPA approach can locate single and multiple defects with high accuracy while decreasing the processing costs and the number of required transducers. This method can be utilized in critical applications such as aerospace structures where the use of a large number of transducers is not desirable.

  19. Viewing Integrated-Circuit Interconnections By SEM

    NASA Technical Reports Server (NTRS)

    Lawton, Russel A.; Gauldin, Robert E.; Ruiz, Ronald P.

    1990-01-01

    Back-scattering of energetic electrons reveals hidden metal layers. Experiment shows that with suitable operating adjustments, scanning electron microscopy (SEM) used to look for defects in aluminum interconnections in integrated circuits. Enables monitoring, in situ, of changes in defects caused by changes in temperature. Gives truer picture of defects, as etching can change stress field of metal-and-passivation pattern, causing changes in defects.

  20. Elementary defects in graphane

    NASA Astrophysics Data System (ADS)

    Podlivaev, A. I.; Openov, L. A.

    2017-07-01

    The main zero-dimensional defects in graphane, a completely hydrogenated single-layer graphene, having the chair-type conformation have been numerically simulated. The hydrogen and carbon-hydrogen vacancies, Stone-Wales defect, and "transmutation defect" resulting from the simultaneous hoppings of two hydrogen atoms between the neighboring carbon atoms have been considered. The energies of formations of these defects have been calculated and their effect on the electronic structure, phonon spectra, and Young modulus has been studied.

  1. TiN/Al2O3/ZnO gate stack engineering for top-gate thin film transistors by combination of post oxidation and annealing

    NASA Astrophysics Data System (ADS)

    Kato, Kimihiko; Matsui, Hiroaki; Tabata, Hitoshi; Takenaka, Mitsuru; Takagi, Shinichi

    2018-04-01

    Control of fabrication processes for a gate stack structure with a ZnO thin channel layer and an Al2O3 gate insulator has been examined for enhancing the performance of a top-gate ZnO thin film transistor (TFT). The Al2O3/ZnO interface and the ZnO layer are defective just after the Al2O3 layer formation by atomic layer deposition. Post treatments such as plasma oxidation, annealing after the Al2O3 deposition, and gate metal formation (PMA) are promising to improve the interfacial and channel layer qualities drastically. Post-plasma oxidation effectively reduces the interfacial defect density and eliminates Fermi level pinning at the Al2O3/ZnO interface, which is essential for improving the cut-off of the drain current of TFTs. A thermal effect of post-Al2O3 deposition annealing at 350 °C can improve the crystalline quality of the ZnO layer, enhancing the mobility. On the other hand, impacts of post-Al2O3 deposition annealing and PMA need to be optimized because the annealing can also accompany the increase in the shallow-level defect density and the resulting electron concentration, in addition to the reduction in the deep-level defect density. The development of the interfacial control technique has realized the excellent TFT performance with a large ON/OFF ratio, steep subthreshold characteristics, and high field-effect mobility.

  2. Confocal Adaptive Optics Imaging of Peripapillary Nerve Fiber Bundles: Implications for Glaucomatous Damage Seen on Circumpapillary OCT Scans.

    PubMed

    Hood, Donald C; Chen, Monica F; Lee, Dongwon; Epstein, Benjamin; Alhadeff, Paula; Rosen, Richard B; Ritch, Robert; Dubra, Alfredo; Chui, Toco Y P

    2015-04-01

    To improve our understanding of glaucomatous damage as seen on circumpapillary disc scans obtained with frequency-domain optical coherence tomography (fdOCT), fdOCT scans were compared to images of the peripapillary retinal nerve fiber (RNF) bundles obtained with an adaptive optics-scanning light ophthalmoscope (AO-SLO). The AO-SLO images and fdOCT scans were obtained on 6 eyes of 6 patients with deep arcuate defects (5 points ≤-15 db) on 10-2 visual fields. The AO-SLO images were montaged and aligned with the fdOCT images to compare the RNF bundles seen with AO-SLO to the RNF layer thickness measured with fdOCT. All 6 eyes had an abnormally thin (1% confidence limit) RNF layer (RNFL) on fdOCT and abnormal (hyporeflective) regions of RNF bundles on AO-SLO in corresponding regions. However, regions of abnormal, but equal, RNFL thickness on fdOCT scans varied in appearance on AO-SLO images. These regions could be largely devoid of RNF bundles (5 eyes), have abnormal-appearing bundles of lower contrast (6 eyes), or have isolated areas with a few relatively normal-appearing bundles (2 eyes). There also were local variations in reflectivity of the fdOCT RNFL that corresponded to the variations in AO-SLO RNF bundle appearance. Relatively similar 10-2 defects with similar fdOCT RNFL thickness profiles can have very different degrees of RNF bundle damage as seen on fdOCT and AO-SLO. While the results point to limitations of fdOCT RNFL thickness as typically analyzed, they also illustrate the potential for improving fdOCT by attending to variations in local intensity.

  3. How Does CIGS Performance Depend on Temperature at the Microscale?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuckelberger, Michael E.; Nietzold, Tara; West, Bradley M.

    Unveiling the correlation among electrical performance, elemental distribution, and defects at the microscale is crucial for the understanding and improvement of the overall solar cell performance. While this is true in general for solar cells with polycrystalline absorber layers, it is particularly critical for defect engineering of the complex quaternary CuIn xGa 1-xSe 2 (CIGS) material system. Studying these relationships under standard ambient conditions can provide important insights but does not provide input on the behavior of the cell under real operating conditions. In this contribution, we take a close look at the complex temperature dependence of defects and voltagemore » in CIGS at the microscale. We have developed correlative X-raymicroscopymethods and adapted them for temperature-dependent measurements of the locally generated voltage and elemental compositions at the microscale. We have applied these techniques to industrial CIGS solar cells covering temperatures from room temperature up to 100 degrees C. Finally, we find underperforming areas spanning multiple grains that do not correlate with the elemental distribution of major absorber constituents. However, we demonstrate that low-performing areas perform better at higher temperatures relative to the high-performing areas.« less

  4. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers

    DOE PAGES

    Vogel, Nicolas; Belisle, Rebecca A.; Hatton, Benjamin; ...

    2013-07-31

    A transparent coating that repels a wide variety of liquids, prevents staining, is capable of self-repair and is robust towards mechanical damage can have a broad technological impact, from solar cell coatings to self-cleaning optical devices. Here we employ colloidal templating to design transparent, nanoporous surface structures. A lubricant can be firmly locked into the structures and, owing to its fluidic nature, forms a defect-free, self-healing interface that eliminates the pinning of a second liquid applied to its surface, leading to efficient liquid repellency, prevention of adsorption of liquid-borne contaminants, and reduction of ice adhesion strength. We further show howmore » this method can be applied to locally pattern the repellent character of the substrate, thus opening opportunities to spatially confine any simple or complex fluids. The coating is highly defect-tolerant due to its interconnected, honeycomb wall structure, and repellency prevails after the application of strong shear forces and mechanical damage. The regularity of the coating allows us to understand and predict the stability or failure of repellency as a function of lubricant layer thickness and defect distribution based on a simple geometric model.« less

  5. How Does CIGS Performance Depend on Temperature at the Microscale?

    DOE PAGES

    Stuckelberger, Michael E.; Nietzold, Tara; West, Bradley M.; ...

    2017-11-03

    Unveiling the correlation among electrical performance, elemental distribution, and defects at the microscale is crucial for the understanding and improvement of the overall solar cell performance. While this is true in general for solar cells with polycrystalline absorber layers, it is particularly critical for defect engineering of the complex quaternary CuIn xGa 1-xSe 2 (CIGS) material system. Studying these relationships under standard ambient conditions can provide important insights but does not provide input on the behavior of the cell under real operating conditions. In this contribution, we take a close look at the complex temperature dependence of defects and voltagemore » in CIGS at the microscale. We have developed correlative X-raymicroscopymethods and adapted them for temperature-dependent measurements of the locally generated voltage and elemental compositions at the microscale. We have applied these techniques to industrial CIGS solar cells covering temperatures from room temperature up to 100 degrees C. Finally, we find underperforming areas spanning multiple grains that do not correlate with the elemental distribution of major absorber constituents. However, we demonstrate that low-performing areas perform better at higher temperatures relative to the high-performing areas.« less

  6. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.

    PubMed

    Shao, Huifeng; Ke, Xiurong; Liu, An; Sun, Miao; He, Yong; Yang, Xianyan; Fu, Jianzhong; Liu, Yanming; Zhang, Lei; Yang, Guojing; Xu, Sanzhong; Gou, Zhongru

    2017-04-12

    Three-dimensional (3D) printing bioactive ceramics have demonstrated alternative approaches to bone tissue repair, but an optimized materials system for improving the recruitment of host osteogenic cells into the bone defect and enhancing targeted repair of the thin-wall craniomaxillofacial defects remains elusive. Herein we systematically evaluated the role of side-wall pore architecture in the direct-ink-writing bioceramic scaffolds on mechanical properties and osteogenic capacity in rabbit calvarial defects. The pure calcium silicate (CSi) and dilute Mg-doped CSi (CSi-Mg6) scaffolds with different layer thickness and macropore sizes were prepared by varying the layer deposition mode from single-layer printing (SLP) to double-layer printing (DLP) and then by undergoing one-, or two-step sintering. It was found that the dilute Mg doping and/or two-step sintering schedule was especially beneficial for improving the compressive strength (∼25-104 MPa) and flexural strength (∼6-18 MPa) of the Ca-silicate scaffolds. The histological analysis for the calvarial bone specimens in vivo revealed that the SLP scaffolds had a high osteoconduction at the early stage (4 weeks) but the DLP scaffolds displayed a higher osteogenic capacity for a long time stage (8-12 weeks). Although the DLP CSi scaffolds displayed somewhat higher osteogenic capacity at 8 and 12 weeks, the DLP CSi-Mg6 scaffolds with excellent fracture resistance also showed appreciable new bone tissue ingrowth. These findings demonstrate that the side-wall pore architecture in 3D printed bioceramic scaffolds is required to optimize for bone repair in calvarial bone defects, and especially the Mg doping wollastontie is promising for 3D printing thin-wall porous scaffolds for craniomaxillofacial bone defect treatment.

  7. Noble Logic for Preventing Scratch on Roll-to-Roll Printed Layers in Noncontacting Transportation

    NASA Astrophysics Data System (ADS)

    Lee, Changwoo; Kang, Hyunkyoo; Kim, Hojoon; Shin, Keehyun

    2010-05-01

    The use of roll-to-roll (R2R) printed electronics is a relatively new method of mass producing flexible electronic devices while keeping production costs down. The geometrical qualities of a printed pattern, such as surface roughness and uniformity, could deteriorate. Moreover, the geometric qualities of a printed layer affect the functional qualities of a printed electronic device directly. Therefore, the functional qualities (conductivity and mobility) of a multilayer electronic device could deteriorate in the presence of a scratch defect on the printed layer. In general, a scratch on a printed pattern on a flexible substrate is induced by contact between the rolls and printed pattern in R2R printing systems. To prevent such contact, one of the best solutions is to use an air flotation unit. However, a scratch defect could be induced even though an air flotation process is used to minimize contact, because the flotation height of a moving web is affected by web tension. In this paper, we discuss an analytical model of an air-floated moving substrate. For the noncontacting transfer of a moving web without a scratch defect, a mathematical tension model has been developed by considering an induced strain due to aerodynamic forces and verified by numerical and experimental studies. Additionally, the correlation between the flotation height of an air-floated moving web and speed compensation used to control the tension are investigated. The analysis shows that tension fluctuations can cause the substrate to touch the air-flotation subsystem, which is installed to prevent contact, resulting in defects such as scratches on the printed layer. On the basis of the proposed model, a logic is developed to minimize scratch defects on R2R printed layers in noncontacting transportation. Through a guideline based on this logic, the scratched area density on R2R printed layers can be reduced by approximately 70%.

  8. Single-dose local administration of parathyroid hormone (1-34, PTH) with β-tricalcium phosphate/collagen (β-TCP/COL) enhances bone defect healing in ovariectomized rats.

    PubMed

    Tao, Zhou-Shan; Zhou, Wan-Shu; Wu, Xin-Jing; Wang, Lin; Yang, Min; Xie, Jia-Bing; Xu, Zhu-Jun; Ding, Guo-Zheng

    2018-02-01

    Parathyroid hormone (1-34, PTH) combined β-tricalcium phosphate (β-TCP) achieves stable bone regeneration without cell transplantation in previous studies. Recently, with the development of tissue engineering slow release technology, PTH used locally to promote bone defect healing become possible. This study by virtue of collagen with a combination of drugs and has a slow release properties, and investigated bone regeneration by β-TCP/collagen (β-TCP/COL) with the single local administration of PTH. After the creation of a rodent critical-sized femoral metaphyseal bone defect, β-TCP/COL was prepared by mixing sieved granules of β-TCP and atelocollagen for medical use, then β-TCP/COL with dripped PTH solution (1.0 µg) was implanted into the defect of OVX rats until death at 4 and 8 weeks. The defected area in distal femurs of rats was harvested for evaluation by histology, micro-CT, and biomechanics. The results of our study show that single-dose local administration of PTH combined local usage of β-TCP/COL can increase the healing of defects in OVX rats. Furthermore, treatments with single-dose local administration of PTH and β-TCP/COL showed a stronger effect on accelerating the local bone formation than β-TCP/COL used alone. The results from our study demonstrate that combination of single-dose local administration of PTH and β-TCP/COL had an additive effect on local bone formation in osteoporosis rats.

  9. Luminescence of defects in the structural transformation of layered tin dichalcogenides

    NASA Astrophysics Data System (ADS)

    Sutter, P.; Komsa, H.-P.; Krasheninnikov, A. V.; Huang, Y.; Sutter, E.

    2017-12-01

    Layered tin sulfide semiconductors are both of fundamental interest and attractive for energy conversion applications. Sn sulfides crystallize in several stable bulk phases with different Sn:S ratios (SnS2, Sn2S3, and SnS), which can transform into phases with a lower sulfur concentration by introduction of sulfur vacancies (VS). How this complex behavior affects the optoelectronic properties remains largely unknown but is of key importance for understanding light-matter interactions in this family of layered materials. Here, we use the capability to induce VS and drive a transformation between few-layer SnS2 and SnS by electron beam irradiation, combined with in-situ cathodoluminescence spectroscopy and ab-initio calculations to probe the role of defects in the luminescence of these materials. In addition to the characteristic band-edge emission of the endpoint structures, our results show emerging luminescence features accompanying the SnS2 to SnS transformation. Comparison with calculations indicates that the most prominent emission in SnS2 with sulfur vacancies is not due to luminescence from a defect level but involves recombination of excitons bound to neutral VS in SnS2. These findings provide insight into the intrinsic and defect-related optoelectronic properties of Sn chalcogenide semiconductors.

  10. Delamination Defect Detection Using Ultrasonic Guided Waves in Advanced Hybrid Structural Elements

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Qi, Kevin ``Xue''; Rose, Joseph L.; Weiland, Hasso

    2010-02-01

    Nondestructive testing for multilayered structures is challenging because of increased numbers of layers and plate thicknesses. In this paper, ultrasonic guided waves are applied to detect delamination defects inside a 23-layer Alcoa Advanced Hybrid Structural plate. A semi-analytical finite element (SAFE) method generates dispersion curves and wave structures in order to select appropriate wave structures to detect certain defects. One guided wave mode and frequency is chosen to achieve large in-plane displacements at regions of interest. The interactions of the selected mode with defects are simulated using finite element models. Experiments are conducted and compared with bulk wave measurements. It is shown that guided waves can detect deeply embedded damages inside thick multilayer fiber-metal laminates with suitable mode and frequency selection.

  11. Defect design of insulation systems for photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.

    1981-01-01

    A defect-design approach to sizing electrical insulation systems for terrestrial photovoltaic modules is presented. It consists of gathering voltage-breakdown statistics on various thicknesses of candidate insulation films where, for a designated voltage, module failure probabilities for enumerated thickness and number-of-layer film combinations are calculated. Cost analysis then selects the most economical insulation system. A manufacturing yield problem is solved to exemplify the technique. Results for unaged Mylar suggest using fewer layers of thicker films. Defect design incorporates effects of flaws in optimal insulation system selection, and obviates choosing a tolerable failure rate, since the optimization process accomplishes that. Exposure to weathering and voltage stress reduces the voltage-withstanding capability of module insulation films. Defect design, applied to aged polyester films, promises to yield reliable, cost-optimal insulation systems.

  12. Spatial distribution of defect luminescence in GaN nanowires.

    PubMed

    Li, Qiming; Wang, George T

    2010-05-12

    The spatial distribution of defect-related and band-edge luminescence from GaN nanowires grown by metal-organic chemical vapor deposition was studied by spatially resolved cathodoluminescence imaging and spectroscopy. A surface layer exhibiting strong yellow luminescence (YL) near 566 nm in the nanowires was revealed, compared to weak YL in the bulk. In contrast, other defect-related luminescence near 428 nm (blue luminescence) and 734 nm (red luminescence), in addition to band-edge luminescence (BEL) at 366 nm, were observed in the bulk of the nanowires but were largely absent at the surface. As the nanowire width approaches a critical dimension, the surface YL layer completely quenches the BEL. The surface YL is attributed to the diffusion and piling up of mobile point defects, likely isolated gallium vacancies, at the surface during growth.

  13. Local defect resonance (LDR): A route to highly efficient thermosonic and nonlinear ultrasonic NDT

    NASA Astrophysics Data System (ADS)

    Solodov, Igor

    2014-02-01

    The concept of LDR is based on the fact that inclusion of a defect leads to a local drop of rigidity for a certain mass of the material that should manifest in a particular characteristic frequency of the defect. A frequency match between the driving ultrasonic wave and this characteristic frequency provides an efficient energy pumping from the wave directly into the defect. For simulated and realistic defects in various materials the LDR-induced local resonance increase in the vibration amplitude averages up to ˜ (20-40 dB). Due to a strong resonance amplification of the local vibrations, the LDR-driven defects manifest a profound nonlinearity even at moderate ultrasonic excitation level. The nonlinearity combined with resonance results in efficient generation of the higher harmonics and is also used as a filter/amplifier in the frequency mixing mode of nonlinear NDT. The LDR high-Q thermal response enables to realize a frequency-selective imaging with an opportunity to distinguish between different defects by changing the driving frequency. The LDR-thermosonics requires much lower acoustic power to activate defects that makes it possible to avoid high-power ultrasonic instrumentation and proceed to a noncontact ultrasonic thermography by using air-coupled ultrasonic excitation.

  14. Strongly localized donor level in oxygen doped gallium nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetzel, C.; Suski, T.; Ager, J.W. III

    1996-08-01

    A classification in terms of localization of donor defects in GaN is performed by Raman spectroscopy under large hydrostatic pressure. We observe a significant decrease of free carrier concentration in highly O doped GaN epitaxial films at 22 GPa, indicating the presence of a strongly localized donor defect at large pressure. Monitoring the phonon plasmon coupled mode, we find similarities with results on highly n-type bulk crystals. We refine the model of localized defects in GaN and transfer it to the AlGaN system.

  15. Local electrical properties of n-AlInAs/i-GaInAs electron channel structures characterized by the probe-electron-beam-induced current technique.

    PubMed

    Watanabe, Kentaro; Nokuo, Takeshi; Chen, Jun; Sekiguchi, Takashi

    2014-04-01

    We developed a probe-electron-beam-induced current (probe-EBIC) technique to investigate the electrical properties of n-Al(0.48)In(0.52)As/i-Ga(0.30)In(0.70)As electron channel structures for a high-electron-mobility transistor, grown on a lattice-matched InP substrate and lattice-mismatched GaAs (001) and Si (001) substrates. EBIC imaging of planar surfaces at low magnifications revealed misfit dislocations originating from the AlInAs-graded buffer layer. The cross-sections of GaInAs channel structures on an InP substrate were studied by high-magnification EBIC imaging as well as cathodoluminescence (CL) spectroscopy. EBIC imaging showed that the structure is nearly defect-free and the carrier depletion zone extends from the channel toward the i-AlInAs buffer layer.

  16. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor

    PubMed Central

    Branny, Artur; Kumar, Santosh; Proux, Raphaël; Gerardot, Brian D

    2017-01-01

    An outstanding challenge in quantum photonics is scalability, which requires positioning of single quantum emitters in a deterministic fashion. Site positioning progress has been made in established platforms including defects in diamond and self-assembled quantum dots, albeit often with compromised coherence and optical quality. The emergence of single quantum emitters in layered transition metal dichalcogenide semiconductors offers new opportunities to construct a scalable quantum architecture. Here, using nanoscale strain engineering, we deterministically achieve a two-dimensional lattice of quantum emitters in an atomically thin semiconductor. We create point-like strain perturbations in mono- and bi-layer WSe2 which locally modify the band-gap, leading to efficient funnelling of excitons towards isolated strain-tuned quantum emitters that exhibit high-purity single photon emission. We achieve near unity emitter creation probability and a mean positioning accuracy of 120±32 nm, which may be improved with further optimization of the nanopillar dimensions. PMID:28530219

  17. Femtosecond laser patterning, synthesis, defect formation, and structural modification of atomic layered materials

    DOE PAGES

    Yoo, Jae-Hyuck; Kim, Eunpa; Hwang, David J.

    2016-12-06

    This article summarizes recent research on laser-based processing of twodimensional (2D) atomic layered materials, including graphene and transition metal dichalcogenides (TMDCs). Ultrafast lasers offer unique processing routes that take advantage of distinct interaction mechanisms with 2D materials to enable extremely localized energy deposition. Experiments have shown that ablative direct patterning of graphene by ultrafast lasers can achieve resolutions of tens of nanometers, as well as single-step pattern transfer. Ultrafast lasers also induce non-thermal excitation mechanisms that are useful for the thinning of TMDCs to tune the 2D material bandgap. Laser-assisted site-specific doping was recently demonstrated where ultrafast laser radiation undermore » ambient air environment could be used for the direct writing of high-quality graphene patterns on insulating substrates. This article concludes with an outlook towards developing further advanced laser processing with scalability, in situ monitoring strategies and potential applications.« less

  18. The effects of intragrain defects on the local photoresponse of polycrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Inoue, N.; Wilmsen, C. W.; Jones, K. A.

    1981-02-01

    Intragrain defects in Wacker cast and Monsanto zone-refined polycrystalline silicon materials were investigated using the electron-beam-induced current (EBIC) technique. The EBIC response maps were compared with etch pit, local diffusion length and local photoresponse measurements. It was determined that the Wacker polycrystalline silicon has a much lower density of defects than does the Monsanto polycrystalline silicon and that most of the defects in the Wacker material are not active recombination sites. A correlation was found between the recombination site density, as determined by EBIC, and the local diffusion length. It is shown that a large density of intragrain recombination sites greatly reduces the minority carrier diffusion length and thus can significantly reduce the photoresponse of solar cells.

  19. The effects of different doses of IGF-1 on cartilage and subchondral bone during the repair of full-thickness articular cartilage defects in rabbits.

    PubMed

    Zhang, Z; Li, L; Yang, W; Cao, Y; Shi, Y; Li, X; Zhang, Q

    2017-02-01

    To investigate the effects of different doses of insulin-like growth factor 1 (IGF-1) on the cartilage layer and subchondral bone (SB) during repair of full-thickness articular cartilage (AC) defects. IGF-1-loaded collagen membrane was implanted into full-thickness AC defects in rabbits. The effects of two different doses of IGF-1 on cartilage layer and SB adjacent to the defect, the cartilage structure, formation and integration, and the new SB formation were evaluated at the 1st, 4th and 8th week postoperation. Meanwhile, after 1 week treatment, the relative mRNA expressions in tissues adjacent to the defect, including cartilage and SB were determined by quantitative real-time RT-PCR (qRT-PCR), respectively. Different doses of IGF-1 induced different gene expression profiles in tissues adjacent to the defect and resulted in different repair outcomes. Particularly, at high dose IGF-1 aided cell survival, regulated the gene expressions in cartilage layer adjacent defect and altered ECM composition more effectively, improved the formation and integrity of neo-cartilage. While, at low dose IGF-1 regulated the gene expressions in SB more efficaciously and subsequently promoted the SB remodeling and reconstruction. Different doses of IGF-1 induced different responses of cartilage or SB during the repair of full-thickness AC defects. Particularly, high dose of IGF-1 was more beneficial to the neo-cartilage formation and integration, while low dose of it was more effective for the SB formation. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  20. A comprehensive analysis about thermal conductivity of multi-layer graphene with N-doping, -CH3 group, and single vacancy

    NASA Astrophysics Data System (ADS)

    Si, Chao; Li, Liang; Lu, Gui; Cao, Bing-Yang; Wang, Xiao-Dong; Fan, Zhen; Feng, Zhi-Hai

    2018-04-01

    Graphene has received great attention due to its fascinating thermal properties. The inevitable defects in graphene, such as single vacancy, doping, and functional group, greatly affect the thermal conductivity. The sole effect of these defects on the thermal conductivity has been widely studied, while the mechanisms of the coupling effects are still open. We studied the combined effect of defects with N-doping, the -CH3 group, and single vacancy on the thermal conductivity of multi-layer graphene at various temperatures using equilibrium molecular dynamics with the Green-Kubo theory. The Taguchi orthogonal algorithm is used to evaluate the sensitivity of N-doping, the -CH3 group, and single vacancy. Sole factor analysis shows that the effect of single vacancy on thermal conductivity is always the strongest at 300 K, 700 K, and 1500 K. However, for the graphene with three defects, the single vacancy defect only plays a significant role in the thermal conductivity modification at 300 K and 700 K, while the -CH3 group dominates the thermal conductivity reduction at 1500 K. The phonon dispersion is calculated using a spectral energy density approach to explain such a temperature dependence. The combined effect of the three defects further decreases the thermal conductivity compared to any sole defect at both 300 K and 700 K. The weaker single vacancy effect is due to the stronger Umklapp scattering at 1500 K, at which the combined effect seriously covers almost all the energy gaps in the phonon dispersion relation, significantly reducing the phonon lifetimes. Therefore, the temperature dependence only appears on the multi-layer graphene with combined defects.

  1. A new Fe-Mn-Si alloplastic biomaterial as bone grafting material: In vivo study

    NASA Astrophysics Data System (ADS)

    Fântânariu, Mircea; Trincă, Lucia Carmen; Solcan, Carmen; Trofin, Alina; Strungaru, Ştefan; Şindilar, Eusebiu Viorel; Plăvan, Gabriel; Stanciu, Sergiu

    2015-10-01

    Designing substrates having suitable mechanical properties and targeted degradation behavior is the key's development of bio-materials for medical application. In orthopedics, graft material may be used to fill bony defects or to promote bone formation in osseous defects created by trauma or surgical intervention. Incorporation of Si may increase the bioactivity of implant locally, both by enhancing interactions at the graft-host interface and by having a potential endocrine like effect on osteoblasts. A Fe-Mn-Si alloy was obtained as alloplastic graft materials for bone implants that need long recovery time period. The surface morphology of the resulted specimens was investigated using scanning electrons microscopy (VegaTescan LMH II, SE detector, 30 kV), X-ray diffractions (X'Pert equipment) or X-ray dispersive energy analyze (Bruker EDS equipment). This study objective was to evaluate in vivo the mechanisms of degradation and the effects of its implantation over the main metabolic organs. Biochemical, histological, plain X radiography and computed tomography investigations showed good compatibility of the subcutaneous implants in the rat organism. The implantation of the Fe-Mn-Si alloy, in critical size bone (tibiae) defect rat model, did not induced adverse biological reactions and provided temporary mechanical support to the affected bone area. The biodegradation products were hydroxides layers which adhered to the substrate surface. Fe-Mn-Si alloy assured the mechanical integrity in rat tibiae defects during bone regeneration.

  2. Investigation of intrinsic defect magnetic properties in wurtzite ZnO materials

    NASA Astrophysics Data System (ADS)

    Fedorov, A. S.; Visotin, M. A.; Kholtobina, A. S.; Kuzubov, A. A.; Mikhaleva, N. S.; Hsu, Hua Shu

    2017-10-01

    Theoretical and experimental investigations of the ferromagnetism induced by intrinsic defects inside wurtzite zinc oxide structures are performed using magnetic field-dependent circular dichroism (MCD-H), direct magnetization measurement (M-H) by superconducting quantum interference device (SQUID) as well as by generalized gradient density functional theory (GGA-DFT). To investigate localized magnetic moments of bulk material intrinsic defects - vacancies, interstitial atoms and Frenkel defects, various-size periodic supercells are calculated. It is shown that oxygen interstitial atoms (Oi) or zinc vacancies (Znv) generate magnetic moments of 1,98 и 1,26 μB respectively, however, the magnitudes are significantly reduced when the distance between defects increases. At the same time, the magnetic moments of oxygen Frenkel defects are large ( 1.5-1.8 μB) and do not depend on the distance between the defects. It is shown that the origin of the induced ferromagnetism in bulk ZnO is the extra spin density on the oxygen atoms nearest to the defect. Also dependence of the magnetization of ZnO (10 1 ̅ 0) and (0001) thin films on the positions of Oi and Znv in subsurface layers were investigated and it is shown that the magnetic moments of both defects are significantly different from the values inside bulk material. In order to check theoretical results regarding the defect induced ferromagnetism in ZnO, two thin films doped by carbon (C) and having Zn interstitials and oxygen vacancies were prepared and annealed in vacuum and air, respectively. According to the MCD-H and M-H measurements, the film, which was annealed in air, exhibits a ferromagnetic behavior, while the other does not. One can assume annealing of ZnO in vacuum should create oxygen vacancies or Zn interstitial atoms. At that annealing of the second C:ZnO film in air leads to essential magnetization, probably by annihilation of oxygen vacancies, formation of interstitial oxygen atoms or zinc vacancies. Thus, our experimental results confirm our theoretical conclusions that ZnO magnetization origin are Oi or Znv defects.

  3. Development of a defect stream function, law of the wall/wake method for compressible turbulent boundary layers. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wahls, Richard A.

    1990-01-01

    The method presented is designed to improve the accuracy and computational efficiency of existing numerical methods for the solution of flows with compressible turbulent boundary layers. A compressible defect stream function formulation of the governing equations assuming an arbitrary turbulence model is derived. This formulation is advantageous because it has a constrained zero-order approximation with respect to the wall shear stress and the tangential momentum equation has a first integral. Previous problems with this type of formulation near the wall are eliminated by using empirically based analytic expressions to define the flow near the wall. The van Driest law of the wall for velocity and the modified Crocco temperature-velocity relationship are used. The associated compressible law of the wake is determined and it extends the valid range of the analytical expressions beyond the logarithmic region of the boundary layer. The need for an inner-region eddy viscosity model is completely avoided. The near-wall analytic expressions are patched to numerically computed outer region solutions at a point determined during the computation. A new boundary condition on the normal derivative of the tangential velocity at the surface is presented; this condition replaces the no-slip condition and enables numerical integration to the surface with a relatively coarse grid using only an outer region turbulence model. The method was evaluated for incompressible and compressible equilibrium flows and was implemented into an existing Navier-Stokes code using the assumption of local equilibrium flow with respect to the patching. The method has proven to be accurate and efficient.

  4. Liquid phase exfoliated graphene for electronic applications

    NASA Astrophysics Data System (ADS)

    Sukumaran, Sheena S.; Jinesh, K. B.; Gopchandran, K. G.

    2017-09-01

    Graphene dispersions were prepared using the liquid phase exfoliation method with three different surfactants. One surfactant was used from each of the surfactant types, anionic, cationic, and non-ionic; those used, were sodium dodecylbenzene sulfonate (SDBS), cetyltrimethylammonium bromide (CTAB) and polyvinylpyrrolidone (PVP), respectively. Raman spectroscopy was used to investigate the number of layers and the nature of any defects present in the exfoliated graphene. The yield of graphene was found to be less with the non-ionic surfactant, PVP. The deconvolution of 2D peaks at ~2700 cm-1 indicated that graphene prepared using these surfactants resulted in sheets consisting of few-layer graphene. The ratio of intensity of the D and G bands in the Raman spectra showed that edge defect density is high for samples prepared with SDBS compared to the other two, and is attributed to the smaller size of the graphene sheets, as shown in the electron micrographs. In the case of the dispersion in PVP, it is found that the sizes of the graphene sheets are highly sensitive to the concentration of the surfactant used. Here, we have made an attempt to investigate the local density of states in the graphene sheets by measuring the tunnelling current-voltage characteristics. Graphene layers have shown consistent p-type behaviour when exfoliated with SDBS and n-type behaviour when exfoliated with CTAB, with a larger band gap for graphene exfoliated using CTAB. Hence, in addition to the known advantages of liquid phase exfoliation, we found that by selecting suitable surfactants, to a certain extent it is possible to tune the band gap and determine the type of majority carriers.

  5. Investigation of low leakage current radiation detectors on n-type 4H-SiC epitaxial layers

    NASA Astrophysics Data System (ADS)

    Nguyen, Khai V.; Chaudhuri, Sandeep K.; Mandal, Krishna C.

    2014-09-01

    The surface leakage current of high-resolution 4H-SiC epitaxial layer Schottky barrier detectors has been improved significantly after surface passivations of 4H-SiC epitaxial layers. Thin (nanometer range) layers of silicon dioxide (SiO2) and silicon nitride (Si3N4) were deposited on 4H-SiC epitaxial layers using plasma enhanced chemical vapor deposition (PECVD) on 20 μm thick n-type 4H-SiC epitaxial layers followed by the fabrication of large area (~12 mm2) Schottky barrier radiation detectors. The fabricated detectors have been characterized through current-voltage (I-V), capacitance-voltage (C-V), and alpha pulse height spectroscopy measurements; the results were compared with that of detectors fabricated without surface passivations. Improved energy resolution of ~ 0.4% for 5486 keV alpha particles was observed after passivation, and it was found that the performance of these detectors were limited by the presence of macroscopic and microscopic crystal defects affecting the charge transport properties adversely. Capacitance mode deep level transient studies (DLTS) revealed the presence of a titanium impurity related shallow level defects (Ec-0.19 eV), and two deep level defects identified as Z1/2 and Ci1 located at Ec-0.62 and ~ Ec-1.40 eV respectively.

  6. Interface roughness induced asymmetric magnetic property in sputter-deposited Co/CoO/Co exchange coupled trilayers

    NASA Astrophysics Data System (ADS)

    Wang, J.; Sannomiya, T.; Shi, J.; Nakamura, Y.

    2012-04-01

    The effect of interface roughness on magnetic properties of exchange coupled polycrystalline Co/CoO(tAF)/Co trilayers has been investigated by varying antiferromagnetic layer (CoO) thickness. It has been found that the upper CoO/Co interface becomes rougher with increasing CoO layer thickness, resulting in stronger exchange bias of the upper interface than the lower one. The interfacial exchange coupling is strengthened by the increase of defect-generated uncompensated antiferromagnetic spins; such spins form coupling with spins in the Co layer at the interface. As a result, the CoO layer thickness dependence of exchange bias is much enhanced for the upper Co layer. The transition from anisotropic magnetoresistance to isotropic magnetoresistance for the top Co layer has also been found. This could be attributed to the defects, probably partial thin oxide layers, between Co grains in the top Co layer that leads a switch from spin-orbit scattering related magnetoresistance to spin-dependent electron scattering dominated magnetoresistance.

  7. Semiconductor quantum dot super-emitters: spontaneous emission enhancement combined with suppression of defect environment using metal-oxide plasmonic metafilms

    NASA Astrophysics Data System (ADS)

    Sadeghi, Seyed M.; Wing, Waylin J.; Gutha, Rithvik R.; Sharp, Christina

    2018-01-01

    We demonstrate that a metal-oxide plasmonic metafilm consisting of a Si/Al oxide junction in the vicinity of a thin gold layer can quarantine excitons in colloidal semiconductor quantum dots against their defect environments. This process happens while the plasmon fields of the gold layer enhance spontaneous emission decay rates of the quantum dots. We study the emission dynamics of such quantum dots when the distance between the Si/Al oxide junction and the gold thin layer is varied. The results show that for distances less than a critical value the lifetime of the quantum dots can be elongated while they experience intense plasmon fields. This suggests that the metal-oxide metafilm can keep photo-excited electrons in the cores of the quantum dots, suppressing their migration to the surface defect sites. This leads to suppression of Auger recombination, offering quantum dot super-emitters with emission that is enhanced not only by the plasmon fields (Purcell effect), but also by strong suppression of the non-radiative decay caused by the defect sites.

  8. Synergistic effect of temperature and point defect on the mechanical properties of single layer and bi-layer graphene

    NASA Astrophysics Data System (ADS)

    Debroy, Sanghamitra; Pavan Kumar, V.; Vijaya Sekhar, K.; Acharyya, Swati Ghosh; Acharyya, Amit

    2017-10-01

    The present study reports a comprehensive molecular dynamics simulation of the effect of a) temperature (300-1073 K at intervals of every 100 K) and b) point defect on the mechanical behaviour of single (armchair and zigzag direction) and bilayer layer graphene (AA and AB stacking). Adaptive intermolecular reactive bond order (AIREBO) potential function was used to describe the many-body short-range interatomic interactions for the single layer graphene sheet. Moreover, Lennard Jones model was considered for bilayer graphene to incorporate the van der Waals interactions among the interlayers of graphene. The effect of temperature on the strain energy of single layer and bilayer graphene was studied in order to understand the difference in mechanical behaviour of the two systems. The strength of the pristine single layer graphene was found to be higher as compared to bilayer AA stacked graphene at all temperatures. It was observed at 1073 K and in the presence of vacancy defect the strength for single layer armchair sheet falls by 30% and for bilayer armchair sheet by 33% as compared to the pristine sheets at 300 K. The AB stacked graphene sheet was found to have a two-step rupture process. The strength of pristine AB sheet was found to decrease by 22% on increase of temperature from 300 K to 1073 K.

  9. Charged defects in two-dimensional semiconductors of arbitrary thickness and geometry: Formulation and application to few-layer black phosphorus

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Han, Dong; Li, Xian-Bin; Chen, Nian-Ke; West, Damien; Meunier, Vincent; Zhang, Shengbai; Sun, Hong-Bo

    2017-10-01

    Energy evaluation of charged defects is tremendously important in two-dimensional (2D) semiconductors for the industrialization of 2D electronic devices because of its close relation with the corresponding type of conductivity and its strength. Although the method to calculate the energy of charged defects in single-layer one-atom-thick systems of equilateral unit-cell geometry has recently been proposed, few-layer 2D semiconductors are more common in device applications. As it turns out, one may not apply the one-layer formalism to multilayer cases without jeopardizing accuracy. Here, we generalize the approach to 2D systems of arbitrary cell geometry and thickness and use few-layer black phosphorus to illustrate how defect properties, mainly group-VI substitutional impurities, are affected. Within the framework of density functional theory, we show that substitutional Te (T eP) is the best candidate for n -type doping, and as the thickness increases, the ionization energy is found to decrease monotonically from 0.67 eV (monolayer) to 0.47 eV (bilayer) and further to 0.33 eV (trilayer). Although these results show the ineffectiveness of the dielectric screening at the monolayer limit, they also show how it evolves with increasing thickness whereby setting a new direction for the design of 2D electronics. The proposed method here is generally suitable to all the 2D materials regardless of their thickness and geometry.

  10. The role of Ag buffer layer in Fe islands growth on Ge (111) surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Tsu-Yi, E-mail: phtifu@phy.ntnu.edu.tw; Wu, Jia-Yuan; Jhou, Ming-Kuan

    2015-05-07

    Sub-monolayer iron atoms were deposited at room temperature on Ge (111)-c(2 × 8) substrates with and without Ag buffer layers. The behavior of Fe islands growth was investigated by using scanning tunneling microscope (STM) after different annealing temperatures. STM images show that iron atoms will cause defects and holes on substrates at room temperature. As the annealing temperature rises, iron atoms pull out germanium to form various kinds of alloyed islands. However, the silver layer can protect the Ag/Ge(111)-(√3×√3) reconstruction from forming defects. The phase diagram shows that ring, dot, and triangular defects were only found on Ge (111)-c(2 × 8) substrates. The kindsmore » of islands found in Fe/Ge system are similar to Fe/Ag/Ge system. It indicates that Ge atoms were pulled out to form islands at high annealing temperatures whether there was a Ag layer or not. But a few differences in big pyramidal or strip islands show that the silver layer affects the development of islands by changing the surface symmetry and diffusion coefficient. The structure characters of various islands are also discussed.« less

  11. Deep level defects in dilute GaAsBi alloys grown under intense UV illumination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mooney, P. M.; Tarun, Marianne; Beaton, D. A.

    2016-07-21

    Dilute GaAs1-xBix alloys exhibiting narrow band edge photoluminescence (PL) were recently grown by molecular beam epitaxy (MBE) with the growth surface illuminated by intense UV radiation. To investigate whether the improved optical quality of these films results from a reduction in the concentration of deep level defects, p+/n and n+/p junction diodes were fabricated on both the illuminated and dark areas of several samples. Deep Level Transient Spectroscopy (DLTS) measurements show that the illuminated and dark areas of both the n- and p-type GaAs1-xBix epi-layers have similar concentrations of near mid-gap electron and hole traps, in the 1015 cm-3 range.more » Thus the improved PL spectra cannot be explained by a reduction in non-radiative recombination at deep level defects. We note that carrier freeze-out above 35 K is significantly reduced in the illuminated areas of the p-type GaAs1-xBix layers compared to the dark areas, allowing the first DLTS measurements of defect energy levels close to the valence band edge. These defect levels may account for differences in the PL spectra from the illuminated and dark areas of un-doped layers with a similar Bi fraction.« less

  12. Segregation and trapping of oxygen vacancies near the SrTiO 3Σ3 (112) [110] tilt grain boundary

    DOE PAGES

    Liu, Bin; Cooper, Valentino R.; Zhang, Yanwen; ...

    2015-03-21

    In nanocrystalline materials, structural discontinuities at grain boundaries (GBs) and the segregation of point defects to these GBs play a key role in defining the structural stability of a material, as well as its macroscopic electrical/mechanical properties. In this study, the segregation of oxygen vacancies near the Σ3 (1 1 2) [¯110] tilt GB in SrTiO 3 is explored using density functional theory. We find that oxygen vacancies segregate toward the GB, preferring to reside within the next nearest-neighbor layer. This oxygen vacancy segregation is found to be crucial for stabilizing this tilt GB. Furthermore, we find that the migrationmore » barriers of oxygen vacancies diffusing toward the first nearest-neighbor layer of the GB are low, while those away from this layer are very high. Furthermore, the segregation and trapping of the oxygen vacancies in the first nearest-neighbor layer of GBs are attributed to the large local distortions, which can now accommodate the preferred sixfold coordination of Ti. These results suggest that the electronic, transport, and capacitive properties of SrTiO 3 can be engineered through the control of GB structure and grain size or layer thickness.« less

  13. Assessment of local variability by high-throughput e-beam metrology for prediction of patterning defect probabilities

    NASA Astrophysics Data System (ADS)

    Wang, Fuming; Hunsche, Stefan; Anunciado, Roy; Corradi, Antonio; Tien, Hung Yu; Tang, Peng; Wei, Junwei; Wang, Yongjun; Fang, Wei; Wong, Patrick; van Oosten, Anton; van Ingen Schenau, Koen; Slachter, Bram

    2018-03-01

    We present an experimental study of pattern variability and defectivity, based on a large data set with more than 112 million SEM measurements from an HMI high-throughput e-beam tool. The test case is a 10nm node SRAM via array patterned with a DUV immersion LELE process, where we see a variation in mean size and litho sensitivities between different unique via patterns that leads to a seemingly qualitative differences in defectivity. The large available data volume enables further analysis to reliably distinguish global and local CDU variations, including a breakdown into local systematics and stochastics. A closer inspection of the tail end of the distributions and estimation of defect probabilities concludes that there is a common defect mechanism and defect threshold despite the observed differences of specific pattern characteristics. We expect that the analysis methodology can be applied for defect probability modeling as well as general process qualification in the future.

  14. Lattice distortion and electron charge redistribution induced by defects in graphene

    DOE PAGES

    Zhang, Wei; Lu, Wen -Cai; Zhang, Hong -Xing; ...

    2016-09-14

    Lattice distortion and electronic charge localization induced by vacancy and embedded-atom defects in graphene were studied by tight-binding (TB) calculations using the recently developed three-center TB potential model. We showed that the formation energies of the defects are strongly correlated with the number of dangling bonds and number of embedded atoms, as well as the magnitude of the graphene lattice distortion induced by the defects. Lastly, we also showed that the defects introduce localized electronic states in the graphene which would affect the electron transport properties of graphene.

  15. Defect classification in sparsity-based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Golato, Andrew; Ahmad, Fauzia; Santhanam, Sridhar; Amin, Moeness G.

    2017-05-01

    Guided waves have gained popularity in structural health monitoring (SHM) due to their ability to inspect large areas with little attenuation, while providing rich interactions with defects. For thin-walled structures, the propagating waves are Lamb waves, which are a complex but well understood type of guided waves. Recent works have cast the defect localization problem of Lamb wave based SHM within the sparse reconstruction framework. These methods make use of a linear model relating the measurements with the scene reflectivity under the assumption of point-like defects. However, most structural defects are not perfect points but tend to assume specific forms, such as surface cracks or internal cracks. Knowledge of the "type" of defects is useful in the assessment phase of SHM. In this paper, we present a dual purpose sparsity-based imaging scheme which, in addition to accurately localizing defects, properly classifies the defects present simultaneously. The proposed approach takes advantage of the bias exhibited by certain types of defects toward a specific Lamb wave mode. For example, some defects strongly interact with the anti-symmetric modes, while others strongly interact with the symmetric modes. We build model based dictionaries for the fundamental symmetric and anti-symmetric wave modes, which are then utilized in unison to properly localize and classify the defects present. Simulated data of surface and internal defects in a thin Aluminum plate are used to validate the proposed scheme.

  16. Characterization of Local Carrier Dynamics in AlN and AlGaN Films using High Spatial- and Time-resolution Cathodoluminescence Spectroscopy

    DTIC Science & Technology

    2012-10-12

    21/2012 Abstract: In order to assess the impacts of structural and point defects on the local carrier (exciton) recombination dynamics in...quantitatively understood as functions of structural / point defect and impurity concentrations (crystal imperfections). However, only few papers [5...NOTES 14. ABSTRACT In order to assess the impacts of structural and point defects on the local carrier (exciton) recombination dynamics in wide bandgap

  17. Solute segregation and deviation from bulk thermodynamics at nanoscale crystalline defects.

    PubMed

    Titus, Michael S; Rhein, Robert K; Wells, Peter B; Dodge, Philip C; Viswanathan, Gopal Babu; Mills, Michael J; Van der Ven, Anton; Pollock, Tresa M

    2016-12-01

    It has long been known that solute segregation at crystalline defects can have profound effects on material properties. Nevertheless, quantifying the extent of solute segregation at nanoscale defects has proven challenging due to experimental limitations. A combined experimental and first-principles approach has been used to study solute segregation at extended intermetallic phases ranging from 4 to 35 atomic layers in thickness. Chemical mapping by both atom probe tomography and high-resolution scanning transmission electron microscopy demonstrates a markedly different composition for the 4-atomic-layer-thick phase, where segregation has occurred, compared to the approximately 35-atomic-layer-thick bulk phase of the same crystal structure. First-principles predictions of bulk free energies in conjunction with direct atomistic simulations of the intermetallic structure and chemistry demonstrate the breakdown of bulk thermodynamics at nanometer dimensions and highlight the importance of symmetry breaking due to the proximity of interfaces in determining equilibrium properties.

  18. Self-organization processes and topological defects in nanolayers in a nematic liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuvyrov, A. N.; Girfanova, F. M.; Mal'tsev, I. S.

    Atomic force microscopy is used to study the self-organization processes that occur during the formation of topological defects in nanomolecular layers in a nematic liquid crystal with the homeotropic orientation of its molecules with respect to the substrate. In this case, a smectic monolayer with a thickness of one molecule length (about 2.2 nm) forms on the substrate, and a nanomolecular layer of a nematic liquid crystal forms above this monolayer. In such virtually two-dimensional layers, numerous different nanoclusters, namely, hut structures, pyramids, raft structures with symmetry C{sub nm} (where n = 2, 4, 5, 6, 7, ?, {infinity}), cones,more » and nanopools, form [1]. They have a regular shape close to the geometry of solid crystals. Modulated linear structures and topological point defects appear spontaneously in the nanopools and raft structures.« less

  19. Parametric study using modal analysis of a bi-material plate with defects

    NASA Astrophysics Data System (ADS)

    Esola, S.; Bartoli, I.; Horner, S. E.; Zheng, J. Q.; Kontsos, A.

    2015-03-01

    Global vibrational method feasibility as a non-destructive inspection tool for multi-layered composites is evaluated using a simulated parametric study approach. A finite element model of a composite consisting of two, isotropic layers of dissimilar materials and a third, thin isotropic layer of adhesive is constructed as the representative test subject. Next, artificial damage is inserted according to systematic variations of the defect morphology parameters. A free-vibrational modal analysis simulation is executed for pristine and damaged plate conditions. Finally, resultant mode shapes and natural frequencies are extracted, compared and analyzed for trends. Though other defect types may be explored, the focus of this research is on interfacial delamination and its effects on the global, free-vibrational behavior of a composite plate. This study is part of a multi-year research effort conducted for the U.S. Army Program Executive Office - Soldier.

  20. Nanoscale electrical and structural modification induced by rapid thermal oxidation of AlGaN/GaN heterostructures.

    PubMed

    Greco, Giuseppe; Fiorenza, Patrick; Giannazzo, Filippo; Alberti, Alessandra; Roccaforte, Fabrizio

    2014-01-17

    In this paper, the structural and electrical modifications induced, in the nanoscale, by a rapid thermal oxidation process on AlGaN/GaN heterostructures, are investigated. A local rapid oxidation (900 ° C in O2, 10 min) localized under the anode region of an AlGaN/GaN diode enabled a reduction of the leakage current with respect to a standard Schottky contact. The insulating properties of the near-surface oxidized layer were probed by a nanoscale electrical characterization using scanning probe microscopy techniques. The structural characterization indicated the formation of a thin uniform oxide layer on the surface, with preferential oxidation paths along V-shaped defects penetrating through the AlGaN/GaN interface. The oxidation process resulted in an expansion of the lattice parameters due to the incorporation of oxygen atoms, accompanied by an increase of the crystal mosaicity. As a consequence, a decrease of the sheet carrier density of the two-dimensional electron gas and a positive shift of the threshold voltage are observed. The results provide useful insights for a possible future integration of rapid oxidation processes during GaN device fabrication.

  1. Quantitative RNFL attenuation coefficient measurements by RPE-normalized OCT data

    NASA Astrophysics Data System (ADS)

    Vermeer, K. A.; van der Schoot, J.; Lemij, H. G.; de Boer, J. F.

    2012-03-01

    We demonstrate significantly different scattering coefficients of the retinal nerve fiber layer (RNFL) between normal and glaucoma subjects. In clinical care, SD-OCT is routinely used to assess the RNFL thickness for glaucoma management. In this way, the full OCT data set is conveniently reduced to an easy to interpret output, matching results from older (non- OCT) instruments. However, OCT provides more data, such as the signal strength itself, which is due to backscattering in the retinal layers. For quantitative analysis, this signal should be normalized to adjust for local differences in the intensity of the beam that reaches the retina. In this paper, we introduce a model that relates the OCT signal to the attenuation coefficient of the tissue. The average RNFL signal (within an A-line) was then normalized based on the observed RPE signal, resulting in normalized RNFL attenuation coefficient maps. These maps showed local defects matching those found in thickness data. The average (normalized) RNFL attenuation coefficient of a fixed band around the optic nerve head was significantly lower in glaucomatous eyes than in normal eyes (3.0mm-1 vs. 4.9mm-1, P<0.01, Mann-Whitney test).

  2. Direct imaging of defect formation in strained organic flexible electronics by Scanning Kelvin Probe Microscopy

    PubMed Central

    Cramer, Tobias; Travaglini, Lorenzo; Lai, Stefano; Patruno, Luca; de Miranda, Stefano; Bonfiglio, Annalisa; Cosseddu, Piero; Fraboni, Beatrice

    2016-01-01

    The development of new materials and devices for flexible electronics depends crucially on the understanding of how strain affects electronic material properties at the nano-scale. Scanning Kelvin-Probe Microscopy (SKPM) is a unique technique for nanoelectronic investigations as it combines non-invasive measurement of surface topography and surface electrical potential. Here we show that SKPM in non-contact mode is feasible on deformed flexible samples and allows to identify strain induced electronic defects. As an example we apply the technique to investigate the strain response of organic thin film transistors containing TIPS-pentacene patterned on polymer foils. Controlled surface strain is induced in the semiconducting layer by bending the transistor substrate. The amount of local strain is quantified by a mathematical model describing the bending mechanics. We find that the step-wise reduction of device performance at critical bending radii is caused by the formation of nano-cracks in the microcrystal morphology of the TIPS-pentacene film. The cracks are easily identified due to the abrupt variation in SKPM surface potential caused by a local increase in resistance. Importantly, the strong surface adhesion of microcrystals to the elastic dielectric allows to maintain a conductive path also after fracture thus providing the opportunity to attenuate strain effects. PMID:27910889

  3. Analysis and comparison of magnetic sheet insulation tests

    NASA Astrophysics Data System (ADS)

    Marion-Péra, M. C.; Kedous-Lebouc, A.; Cornut, B.; Brissonneau, P.

    1994-05-01

    Magnetic circuits of electrical machines are divided into coated sheets in order to limit eddy currents. The surface insulation resistance of magnetic sheets is difficult to evaluate because it depends on parameters like pressure and covers a wide range of values. Two methods of measuring insulation resistance are analyzed: the standardized 'Franklin device' and a tester developed by British Steel Electrical. Their main drawback is poor local repeatability. The Franklin method allows better quality control of industrial process because it measures only one insulating layer at a time. It also gives more accurate images of the distribution of possible defects. Nevertheless, both methods lead to similar classifications of insulation efficiency.

  4. Cerebrospinal fluid otorhinorrhea due to cochlear dysplasias.

    PubMed

    Syal, Rajan; Tyagi, Isha; Goyal, Amit

    2005-07-01

    Cochlear dysplasia associated with defect in stapes footplate can be a cause of cerebrospinal fluid leak. Repair of cerebrospinal fluid leak in these cases is usually done by packing the vestibule with muscle or fascia. This traditional method of repair has 30-60% failure rate. Cerebrospinal fluid leak in four such patients was successfully repaired using multiple layer packing of vestibule, reinforced by pedicle temporalis muscle graft. Intraoperatively continuous lumbar drain was done. Magnetic resonance imaging of inner ear using 3D FSE T2WI and 3D FIESTA sequences was found helpful noninvasive investigation to localize site and route of cerebrospinal fluid leak.

  5. An advanced plasmonic cermet solar absorber for high temperature solar energy conversion applications

    NASA Astrophysics Data System (ADS)

    Bilokur, M.; Gentle, A.; Arnold, M.; Cortie, M.; Smith, G.

    2017-08-01

    Cermet coatings based on nanoparticles of Au or Ag in a stable dielectric matrix provide a combination of spectral-selectivity and microstructural stability at elevated temperatures. The nanoparticles provide an absorption peak due to their localized surface plasmon resonance and the dielectric matrix provides red-shifting and intrinsic absorption from defects. The matrix and two separated cermet layers combined add mechanical support, greater thermal stability and extra absorptance. The coatings may be prepared by magnetron sputtering. They have solar absorptance ranging between 91% and 97% with low thermal emittance making them suitable for application in solar thermal conversion installations.

  6. Mechanical analysis of a heat-shock induced developmental defect

    NASA Astrophysics Data System (ADS)

    Crews, Sarah M.; McCleery, W. Tyler; Hutson, M. Shane

    2014-03-01

    Embryonic development in Drosophila is a complex process involving coordinated movements of mechanically interacting tissues. Perturbing this system with a transient heat shock can result in a number of developmental defects. In particular, a heat shock applied during the earliest morphogenetic movements of gastrulation can lead to apparent recovery, but then subsequent morphogenetic failure 5-6 hours later during germ band retraction. The process of germ band retraction requires an intact amnioserosa - a single layered extra-embryonic epithelial tissue - and heat shock at gastrulation can induce the later opening of holes in the amnioserosa. These holes are highly correlated with failures of germ band retraction. These holes could be caused by a combination of mechanical weakness in the amnioserosa or local increases in mechanical stress. Here, we assess the role of mechanical stress using confocal imaging to compare cell and tissue morphology in the amnioserosa of normal and heat-shocked embryos and laser hole drilling to map the stress field around the times and locations at which heat-shock induced holes open.

  7. Surface structure and structural point defects of liquid and amorphous aluminosilicate nanoparticles.

    PubMed

    Linh, Nguyen Ngoc; Hoang, Vo Van

    2008-07-02

    The surface structure of liquid and amorphous aluminosilicate nanoparticles of composition Al(2)O(3)·2SiO(2) has been investigated in a model of different sizes ranging from 2.0 to 5.0 nm with the Born-Mayer type pair potential under non-periodic boundary conditions. Models have been obtained by cooling from the melts at a constant density of 2.6 g cm(-3) via molecular dynamics (MD) simulation. The surface structure has been investigated via the coordination number, bond-angle distributions and structural point defects. Calculations show that surface effects on surface static and thermodynamic properties of models are significant according to the change in the number of Al atoms in the surface layers. Evolution of the local environment of oxygen in the surface shell of nanoparticles upon cooling from the melt toward the glassy state was also found and discussed. In addition, the nanosize dependence of the glass transition temperature was presented.

  8. Surface structure and structural point defects of liquid and amorphous aluminosilicate nanoparticles

    NASA Astrophysics Data System (ADS)

    Linh, Nguyen Ngoc; Van Hoang, Vo

    2008-07-01

    The surface structure of liquid and amorphous aluminosilicate nanoparticles of composition Al2O3·2SiO2 has been investigated in a model of different sizes ranging from 2.0 to 5.0 nm with the Born-Mayer type pair potential under non-periodic boundary conditions. Models have been obtained by cooling from the melts at a constant density of 2.6 g cm-3 via molecular dynamics (MD) simulation. The surface structure has been investigated via the coordination number, bond-angle distributions and structural point defects. Calculations show that surface effects on surface static and thermodynamic properties of models are significant according to the change in the number of Al atoms in the surface layers. Evolution of the local environment of oxygen in the surface shell of nanoparticles upon cooling from the melt toward the glassy state was also found and discussed. In addition, the nanosize dependence of the glass transition temperature was presented.

  9. Probabilistic distributions of pinhole defects in atomic layer deposited films on polymeric substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yersak, Alexander S., E-mail: alexander.yersak@colorado.edu; Lee, Yung-Cheng

    Pinhole defects in atomic layer deposition (ALD) coatings were measured in an area of 30 cm{sup 2} in an ALD reactor, and these defects were represented by a probabilistic cluster model instead of a single defect density value with number of defects over area. With the probabilistic cluster model, the pinhole defects were simulated over a manufacturing scale surface area of ∼1 m{sup 2}. Large-area pinhole defect simulations were used to develop an improved and enhanced design method for ALD-based devices. A flexible thermal ground plane (FTGP) device requiring ALD hermetic coatings was used as an example. Using a single defectmore » density value, it was determined that for an application with operation temperatures higher than 60 °C, the FTGP device would not be possible. The new probabilistic cluster model shows that up to 40.3% of the FTGP would be acceptable. With this new approach the manufacturing yield of ALD-enabled or other thin film based devices with different design configurations can be determined. It is important to guide process optimization and control and design for manufacturability.« less

  10. Invisible defects in complex crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longhi, Stefano, E-mail: stefano.longhi@fisi.polimi.it; Della Valle, Giuseppe

    2013-07-15

    We show that invisible localized defects, i.e. defects that cannot be detected by an outside observer, can be realized in a crystal with an engineered imaginary potential at the defect site. The invisible defects are synthesized by means of supersymmetric (Darboux) transformations of an ordinary crystal using band-edge wavefunctions to construct the superpotential. The complex crystal has an entire real-valued energy spectrum and Bragg scattering is not influenced by the defects. An example of complex crystal synthesis is presented for the Mathieu potential. -- Highlights: •We show the existence of invisible localized defects in complex crystals. •They turn out tomore » be fully invisible to Bloch waves belonging to any lattice band. •An example of invisible defect is presented for a PT-symmetric Mathieu crystal.« less

  11. Stability and Process of Destruction of Compressed Plate of Layered Composite Materials With Defects

    NASA Astrophysics Data System (ADS)

    Bokhoeva, L. A.; Rogov, V. E.; Chermoshentseva, A. S.; Lobanov, D. V.

    2016-08-01

    Interlayer defects in composite materials are a pressing problem, which affecting their performance characteristics. In this research, we considered the problem of the stability and of the fracture process of the compressed thin plate made of laminated composite materials with the interlayer defects. In this research we had got a critical equation for a plate with interlayer defect. The experiment showed the effect and the quantity of nano-dispersed additives on the mechanical properties of composite materials with interlayer defects.

  12. Effect of a spacer on localization of topological states in a Bragg multihelicoidal fiber with a twist defect

    NASA Astrophysics Data System (ADS)

    Alexeyev, C. N.; Lapin, B. P.; Yavorsky, M. A.

    2018-01-01

    We have studied the influence of a spacer introduced into a Bragg multihelicoidal fiber with a twist defect on the existence of defect-localized states. We have shown that in the presence of a Gaussian pump the energy of the electromagnetic field stored in topologically charged defect-localized modes essentially depends on the length of the spacer. We have demonstrated that by changing this length on the wavelength scale it is possible to strongly modulate such energy. This property can be used for generation and controlled emission of topologically charged light. We have also shown that if the value of an isotropic spacer’s refractive index deviates from the optimal value defined by the parameters of the multihelicoidal fiber parts the effect of localization disappears.

  13. Homoepitaxial graphene tunnel barriers for spin transport (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Friedman, Adam L.

    2015-09-01

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions (magnetic field, temperature, etc.) usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate homoepitaxial tunnel barrier devices in which graphene serves as both the tunnel barrier and the high mobility transport channel. Beginning with multilayer graphene, we fluorinate or hydrogenate the top layer to decouple it from the bottom layer, so that it serves as a single monolayer tunnel barrier for both charge and spin injection into the lower graphene transport channel. We demonstrate successful tunneling by measuring non-linear IV curves, and a weakly temperature dependent zero bias resistance. We perform lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the non-local Hanle effect to be commensurate with previous studies (~200 ps). However, we also demonstrate the highest spin polarization efficiencies (~45%) yet measured in graphene-based spin devices [1]. [1] A.L. Friedman, et al., Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport, Nat. Comm. 5, 3161 (2014).

  14. Local modulation of carrier density in graphene-ferroelectric field effect transistors through flexoelectric switching

    NASA Astrophysics Data System (ADS)

    Gura, Anna; Hsing, Hsiang C.; Yusuf, Mohammed; Du, Xu; Dawber, Mattew

    We use a ferroelectric (FE) material to harness the electric functionalities of graphene (Gr) by engineering Gr-FE Field Effect Transistors. In these devices, the underlying FE superlattice layer is used to control the charge state of the Gr channel. By using artificially layered FE superlattices and optimizing parameters during growth and Gr deposition, we have obtained ideal interfaces that result in hysteretic devices. However, our successful devices using PbTiO3/SrTiO3 as the FE layer display a shift of the gating and C-V curves towards positive gate voltages, making the polarization state unstable. We believe this is caused by ordered structural defects that arise during growth of the superlattice. To overcome this obstacle we have designed a hybrid superlattice system consisting of PbTiO3/SrTiO3/PbTiO3/SrRuO3 alternating layers. In these samples the C-V measurements are centered on 0V, providing retention of the polarization state without any applied compensation bias and enabling non-volatile polarization switching as a result of strain applied by an AFM Tip. We studied local changes in conductivity of the Gr and demonstrate the use this technique to design re-writable circuit elements on the graphene-FE hybrid devices. This work was funded by NSF DMR-1105202 and NSF DMR-1334867. Part of this research was carried out at the Center for Functional Nanomaterials at BNL, supported by DOE under Contract No. DE-AC02-98CH10886.

  15. Transitional analysis of organic thin color filter layers in displays during baking process using multi-speckle diffusing wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Baek Sung; Hyung, Kyung Hee; Oh, Gwi Jeong; Jung, Hyun Wook

    2018-02-01

    The color filter (CF) is one of the key components for improving the performance of TV displays such as liquid crystal display (LCD) and white organic light emitting diodes (WOLED). The profile defects like undercut during the fine fabrication processes for CF layers are inevitably generated through the UV exposure and development processes, however, these can be controlled through the baking process. In order to resolve the profile defects of CF layers, in this study, the real-time dynamic changes of CF layers are monitored during the baking process by changing components such as polymeric binder and acrylate. The motion of pigment particles in CF layers during baking is quantitatively interpreted using multi-speckle diffusing wave spectroscopy (MSDWS), in terms of the autocorrelation function and the characteristic time of α-relaxation.

  16. Waveguide-integrated vertical pin photodiodes of Ge fabricated on p+ and n+ Si-on-insulator layers

    NASA Astrophysics Data System (ADS)

    Ito, Kazuki; Hiraki, Tatsurou; Tsuchizawa, Tai; Ishikawa, Yasuhiko

    2017-04-01

    Vertical pin structures of Ge photodiodes (PDs) integrated with Si optical waveguides are fabricated by depositing Ge epitaxial layers on Si-on-insulator (SOI) layers, and the performances of n+-Ge/i-Ge/p+-SOI PDs are compared with those of p+-Ge/i-Ge/n+-SOI PDs. Both types of PDs show responsivities as high as 1.0 A/W at 1.55 µm, while the dark leakage current is different, which is consistent with previous reports on free-space PDs formed on bulk Si wafers. The dark current of the p+-Ge/i-Ge/n+-SOI PDs is higher by more than one order of magnitude. Taking into account the activation energies for dark current as well as the dependence on PD area, the dark current of the n+-Ge/i-Ge/p+-SOI PDs is dominated by the thermal generation of carriers via mid-gap defect levels in Ge, while for the p+-Ge/i-Ge/n+-SOI PDs, the dark current is ascribed to not only thermal generation but also other mechanisms such as locally formed conduction paths.

  17. Reduction in number of crystal defects in a p+Si diffusion layer by germanium and boron cryogenic implantation combined with sub-melt laser spike annealing

    NASA Astrophysics Data System (ADS)

    Murakoshi, Atsushi; Harada, Tsubasa; Miyano, Kiyotaka; Harakawa, Hideaki; Aoyama, Tomonori; Yamashita, Hirofumi; Kohyama, Yusuke

    2017-09-01

    To reduce the number of crystal defects in a p+Si diffusion layer by a low-thermal-budget annealing process, we have examined crystal recovery in the amorphous layer formed by the cryogenic implantation of germanium and boron combined with sub-melt laser spike annealing (LSA). The cryogenic implantation at -150 °C is very effective in suppressing vacancy clustering, which is advantageous for rapid crystal recovery during annealing. The crystallinity after LSA is shown to be very high and comparable to that after rapid thermal annealing (RTA) owing to the cryogenic implantation, although LSA is a low-thermal-budget annealing process that can suppress boron diffusion effectively. It is also shown that in the p+Si diffusion layer, there is high contact resistance due to the incomplete formation of a metal silicide contact, which originates from insufficient outdiffusion of surface contaminants such as fluorine. To widely utilize the marked reduction in the number of crystal defects, sufficient removal of surface contaminants will be required in the low-thermal-budget process.

  18. Facile synthesis and electrochemical properties of continuous porous spheres assembled from defect-rich, interlayer-expanded, and few-layered MoS2/C nanosheets for reversible lithium storage

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Lu, Huihui; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; He, Chunnian; Ma, Liying

    2018-05-01

    Hollow or continuous porous hierarchical MoS2/C structures with large Li-ion and electron transport kinetics, and high structural stability are urgent needs for their application in lithium ion batteries. In this regard, a novel continuous porous micro-sphere constructed from defect-rich, interlayer-expanded, and few-layered MoS2/C nanosheets is successfully synthesized through a facile one-pot hydrothermal method. The polyvinyl pyrrolidone surfactant serves as carbon source and supporter, while the CS2 works as soft template and sulfur source during hydrothermal process. The morphologies, structures, and electrochemical properties are systematically characterized. Importantly, it should be noted that the unique porous micro-spheres with merits of rich-defect, expanded-interlayer, few-layer (<5 layers), abundant pores and integrating carbon are favorable for lithium ion batteries application. When the uniform composites are used as lithium ion batteries anode materials, they deliver a high reversible capacity, excellent cycling performance (average capacity fading of 0.037% per cycle at 0.2 A g-1), and good rate capability.

  19. Use of titanium mesh for reconstruction of large anterior cranial base defects.

    PubMed

    Badie, B; Preston, J K; Hartig, G K

    2000-10-01

    The authors evaluated the role of titanium mesh used in combination with vascularized pericranium to provide rigid support during reconstruction of anterior skull base defects. Thirteen patients with large anterior skull base defects caused by tumor invasion or traumatic injury involving the cribriform plate, orbital roof, and planum sphenoidale were included in the study. The reconstruction technique involved placement of titanium mesh between two layers of continuous vascularized pericranium. Surgical glue and routine lumbar cerebrospinal fluid (CSF) drainage were not used in any patient. At a mean postoperative follow-up time of 22 months (range 8-39 months), none of the patients had developed infection or meningocele. Postoperative CSF rhinorrhea occurred in two patients with extensive dural defects, which resolved with temporary lumbar drainage. Use of titanium mesh and a two-layer vascularized pericranial graft is a safe, reproducible, and feasible method for reconstructing the anterior skull base. Patients with large dural defects may need temporary CSF diversion to avoid postoperative fistula formation.

  20. Fabrication of GaAs/Al0.3Ga0.7As multiple quantum well nanostructures on (100) si substrate using a 1-nm InAs relief layer.

    PubMed

    Oh, H J; Park, S J; Lim, J Y; Cho, N K; Song, J D; Lee, W; Lee, Y J; Myoung, J M; Choi, W J

    2014-04-01

    Nanometer scale thin InAs layer has been incorporated between Si (100) substrate and GaAs/Al0.3Ga0.7As multiple quantum well (MQW) nanostructure in order to reduce the defects generation during the growth of GaAs buffer layer on Si substrate. Observations based on atomic force microscopy (AFM) and transmission electron microscopy (TEM) suggest that initiation and propagation of defect at the Si/GaAs interface could be suppressed by incorporating thin (1 nm in thickness) InAs layer. Consequently, the microstructure and resulting optical properties improved as compared to the MQW structure formed directly on Si substrate without the InAs layer. It was also observed that there exists some limit to the desirable thickness of the InAs layer since the MQW structure having thicker InAs layer (4 nm-thick) showed deteriorated properties.

  1. Detection of defects in laser powder deposition (LPD) components by pulsed laser transient thermography

    NASA Astrophysics Data System (ADS)

    Santospirito, S. P.; Słyk, Kamil; Luo, Bin; Łopatka, Rafał; Gilmour, Oliver; Rudlin, John

    2013-05-01

    Detection of defects in Laser Powder Deposition (LPD) produced components has been achieved by laser thermography. An automatic in-process NDT defect detection software system has been developed for the analysis of laser thermography to automatically detect, reliably measure and then sentence defects in individual beads of LPD components. A deposition path profile definition has been introduced so all laser powder deposition beads can be modeled, and the inspection system has been developed to automatically generate an optimized inspection plan in which sampling images follow the deposition track, and automatically control and communicate with robot-arms, the source laser and cameras to implement image acquisition. Algorithms were developed so that the defect sizes can be correctly evaluated and these have been confirmed using test samples. Individual inspection images can also be stitched together for a single bead, a layer of beads or multiple layers of beads so that defects can be mapped through the additive process. A mathematical model was built up to analyze and evaluate the movement of heat throughout the inspection bead. Inspection processes were developed and positional and temporal gradient algorithms have been used to measure the flaw sizes. Defect analysis is then performed to determine if the defect(s) can be further classified (crack, lack of fusion, porosity) and the sentencing engine then compares the most significant defect or group of defects against the acceptance criteria - independent of human decisions. Testing on manufactured defects from the EC funded INTRAPID project has successful detected and correctly sentenced all samples.

  2. Asymmetry of radiation damage properties in Al-Ti nanolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Gerboth, Matthew D.; Yao, Bo

    2014-02-01

    Molecular dynamics (MD) simulations were employed with empirical potentials to study the effects of multilayer interfaces and interface spacing in Al-Ti nanolayers. Several model interfaces derived from stacking of close-packed layers or face-centered cubic \\{100\\} layers were investigated. The simulations reveal significant and important asymmetries in defect production withmore » $$\\sim$$60\\% of vacancies created in Al layers compared to Ti layers within the Al-Ti multilayer system. The asymmetry in the creation of interstitials is even more pronounced. The asymmetries cause an imbalance in the ratio of vacancies and interstitials in films of dissimilar materials leading to $>$$90\\% of the surviving interstitials located in the Al layers. While in the close-packed nanolayers the interstitials migrate to the atomic layers adjacent to the interface of the Al layers, in the \\{100\\} nanolayers the interstitials migrate to the center of the Al layers and away from the interfaces. The degree of asymmetry and defect ratio imbalance increases as the layer spacing decreases in the multilayer films. Underlying physical processes are discussed including the interfacial strain fields and the individual elemental layer stopping power in nanolayered systems. In addition, experimental work was performed on low-dose (10$$^{16}$ atoms/cm$^2$) helium (He) irradiation on Al/Ti nanolayers (5 nm per film), resulting in He bubble formation $$\\sim$$1 nm in diameter in the Ti film near the interface. The correlation between the preferential flux of displaced atoms from Ti films to Al films during the defect production that is revealed in the simulations and the morphology and location of He bubbles from the experiments is discussed.« less

  3. Wavelet analysis applied to thermographic data for the detection of sub-superficial flaws in mosaics

    NASA Astrophysics Data System (ADS)

    Sfarra, Stefano; Regi, Mauro

    2016-06-01

    Up to now, the sun-pulse recorded during the heating (day) and cooling (night) phases has not yet been analyzed by using the infrared thermography (IRT) method through the complex wavelet transform (CWT) technique. CWT can be used with the sun-pulse data in a similar way as the discrete Fourier transform (DFT). In addition, CWT preserves the time information of the signal both in the phasegrams and in the amplitudegrams. In this work, a mosaic sample containing artificial flaws positioned at different depths was inspected into the long wave IR spectrum. It is possible to observe that by comparing defective and defect-free areas, a difference in phase during the thermal diffusion appears. The signal reference, measured on the defect-free area, was subtracted from the other measurement points. The resulting signal thermal contrast, representing the difference of the temporal evolutions of the surface temperature above the defective and defect-free positions, was also plotted. Subsequently, the wavelet phase contrast was computed. The solar radiation influencing the sample was estimated bearing in mind the sun path in the sky, the mosaic orientation and the inclination with respect to its local geographical coordinates. Finally, the ambient parameters have been recorded by a control unit. Although the CWT technique did not provided a sound visualization of the shape of the flaws, it permitted to reflect on the heat release coming from the bituminous material behind the statumen layer. Indeed, it is not atypical to find inclined mosaics to be restored.

  4. Imaging as characterization techniques for thin-film cadmium telluride photovoltaics

    NASA Astrophysics Data System (ADS)

    Zaunbrecher, Katherine

    The goal of increasing the efficiency of solar cell devices is a universal one. Increased photovoltaic (PV) performance means an increase in competition with other energy technologies. One way to improve PV technologies is to develop rapid, accurate characterization tools for quality control. Imaging techniques developed over the past decade are beginning to fill that role. Electroluminescence (EL), photoluminescence (PL), and lock-in thermography are three types of imaging implemented in this study to provide a multifaceted approach to studying imaging as applied to thin-film CdTe solar cells. Images provide spatial information about cell operation, which in turn can be used to identify defects that limit performance. This study began with developing EL, PL, and dark lock-in thermography (DLIT) for CdTe. Once imaging data were acquired, luminescence and thermography signatures of non-uniformities that disrupt the generation and collection of carriers were identified and cataloged. Additional data acquisition and analysis were used to determine luminescence response to varying operating conditions. This includes acquiring spectral data, varying excitation conditions, and correlating luminescence to device performance. EL measurements show variations in a cell's local voltage, which include inhomogeneities in the transparent-conductive oxide (TCO) front contact, CdS window layer, and CdTe absorber layer. EL signatures include large gradients, local reduction of luminescence, and local increases in luminescence on the interior of the device as well as bright spots located on the cell edges. The voltage bias and spectral response were analyzed to determine the response of these non-uniformities and surrounding areas. PL images of CdTe have not shown the same level of detail and features compared to their EL counterparts. Many of the signatures arise from reflections and severe inhomogeneities, but the technique is limited by the external illumination source used to excite carriers. Measurements on unfinished CdS and CdTe films reveal changes in signal after post-deposition processing treatments. DLIT images contained heat signatures arising from defect-related current crowding. Forward- and reverse-bias measurements revealed hot spots related to shunt and weak-diode defects. Modeling and previous studies done on Cu(In,Ga)Se 2 thin-film solar cells aided in identifying the physical causes of these thermographic and luminescence signatures. Imaging data were also coupled with other characterization techniques to provide a more comprehensive examination of nonuniform features and their origins and effects on device performance. These techniques included light-beam-induced-current (LBIC) measurements, which provide spatial quantum efficiency maps of the cell at varying resolutions, as well as time-resolved photoluminescence and spectral PL mapping. Local drops in quantum efficiency seen in LBIC typically corresponded with reductions in EL signal while minority-carrier lifetime values acquired by time-resolved PL measurements correlate with PL intensity.

  5. Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures

    NASA Astrophysics Data System (ADS)

    Moon, Kiwon; Lee, Eui Su; Lee, Il-Min; Park, Dong Woo; Park, Kyung Hyun

    2018-01-01

    Time-domain and frequency-domain terahertz (THz) spectroscopy systems often use materials fabricated with exotic and expensive methods that intentionally introduce defects to meet short carrier lifetime requirements. In this study, we demonstrate the development of a nano-photomixer that meets response speed requirements without using defect-incorporated, low-temperature-grown (LTG) semiconductors. Instead, we utilized a thin InGaAs layer grown on a semi-insulating InP substrate by metal-organic chemical vapor deposition (MOCVD) combined with nano-electrodes to manipulate local ultrafast photo-carrier dynamics via a carefully designed field-enhancement and plasmon effect. The developed nano-structured photomixer can detect continuous-wave THz radiation up to a frequency of 2 THz with a peak carrier collection efficiency of 5%, which is approximately 10 times better than the reference efficiency of 0.4%. The better efficiency results from the high carrier mobility of the MOCVD-grown InGaAs thin layer with the coincidence of near-field and plasmon-field distributions in the nano-structure. Our result not only provides a generally applicable methodology for manipulating ultrafast carrier dynamics by means of nano-photonic techniques to break the trade-off relation between the carrier lifetime and mobility in typical LTG semiconductors but also contributes to mass-producible photo-conductive THz detectors to facilitate the widespread application of THz technology.

  6. Osteogenic effect of a gastric pentadecapeptide, BPC-157, on the healing of segmental bone defect in rabbits: a comparison with bone marrow and autologous cortical bone implantation.

    PubMed

    Sebecić, B; Nikolić, V; Sikirić, P; Seiwerth, S; Sosa, T; Patrlj, L; Grabarević, Z; Rucman, R; Petek, M; Konjevoda, P; Jadrijević, S; Perović, D; Slaj, M

    1999-03-01

    Gastrectomy often results in increased likelihood of osteoporosis, metabolic aberration, and risk of fracture, and there is a need for a gastric peptide with osteogenic activity. A novel stomach pentadecapeptide, BPC-157, improves wound and fracture healing in rats in addition to having an angiogenic effect. Therefore, in the present study, using a segmental osteoperiosteal bone defect (0.8 cm, in the middle of the left radius) that remained incompletely healed in all control rabbits for 6 weeks (assessed in 2 week intervals), pentadecapeptide BPC-157 was further studied (either percutaneously given locally [10 microg/kg body weight] into the bone defect, or applied intramuscularly [intermittently, at postoperative days 7, 9, 14, and 16 at 10 microg/kg body weight] or continuously [once per day, postoperative days 7-21 at 10 microg or 10 ng/kg body weight]). For comparison, rabbits percutaneously received locally autologous bone marrow (2 mL, postoperative day 7). As standard treatment, immediately after its formation, the bone defect was filled with an autologous cortical graft. Saline-treated (2 mL intramuscularly [i.m.] and 2 mL locally into the bone defect), injured animals were used as controls. Pentadecapeptide BPC-157 significantly improved the healing of segmental bone defects. For instance, upon radiographic assessment, the callus surface, microphotodensitometry, quantitative histomorphometry (10 microg/kg body weight i.m. for 14 days), or quantitative histomorphometry (10 ng/kg body weight i.m. for 14 days) the effect of pentadecapeptide BPC-157 was shown to correspond to improvement after local application of bone marrow or autologous cortical graft. Moreover, a comparison of the number of animals with unhealed defects (all controls) or healed defects (complete bony continuity across the defect site) showed that besides pentadecapeptide intramuscular application for 14 days (i.e., local application of bone marrow or autologous cortical graft), also following other pentadecapeptide BPC-157 regimens (local application, or intermittent intramuscular administration), the number of animals with healed defect was increased. Hopefully, in the light of the suggested stomach significance for bone homeostasis, the possible relevance of this pentadecapeptide BPC-157 effect (local or intramuscular effectiveness, lack of unwanted effects) could be a basis for methods of choice in the future management of healing impairment in humans, and requires further investigation.

  7. Bottom-up photonic crystal approach with top-down defect and heterostructure fine-tuning.

    PubMed

    Ding, Tao; Song, Kai; Clays, Koen; Tung, Chen-Ho

    2010-03-16

    We combine the most efficient (chemical) approach toward three-dimensional photonic crystals with the most convenient (physical) technique for creating non-close-packed crystalline structures. Self-assembly of colloidal particles in artificial opals is followed by a carefully tuned plasma etching treatment. By covering the resulting top layer of more open structure with original dense opal, embedded defect layers and heterostructures can be conveniently designed for advanced photonic band gap and band edge engineering.

  8. High Performance Crystalline Organic Transistors and Circuit

    DTIC Science & Technology

    2009-10-14

    this material into pentacene -based OFETs, low voltage operation is possible. 3 Figure 1: Device structure for a low voltage pentacene OFET...issues with the first SiO Z OPentacene Au Pentacene ZrO2 AuPd SiO2 4 film. Bilayer dielectrics exhibit lower defect-related leakage...effects, as pinholes or other defects in one layer may be isolated by the other layer. 350 Å of pentacene was thermally evaporated on the ZrO2 dielectric

  9. Evidence for Defect-Mediated Tunneling in Hexagonal Boron Nitride-Based Junctions.

    PubMed

    Chandni, U; Watanabe, K; Taniguchi, T; Eisenstein, J P

    2015-11-11

    We investigate electron tunneling through atomically thin layers of hexagonal boron nitride (hBN). Metal (Cr/Au) and semimetal (graphite) counter-electrodes are employed. While the direct tunneling resistance increases nearly exponentially with barrier thickness as expected, the thicker junctions also exhibit clear signatures of Coulomb blockade, including strong suppression of the tunnel current around zero bias and step-like features in the current at larger biases. The voltage separation of these steps suggests that single-electron charging of nanometer-scale defects in the hBN barrier layer are responsible for these signatures. We find that annealing the metal-hBN-metal junctions removes these defects and the Coulomb blockade signatures in the tunneling current.

  10. Ultrasonic measurements of surface defects on flexible circuits using high-frequency focused polymer transducers

    NASA Astrophysics Data System (ADS)

    Wagle, Sanat; Habib, Anowarul; Melandsø, Frank

    2017-07-01

    High-frequency transducers made from a layer-by-layer deposition method are investigated as transducers for ultrasonic imaging. Prototypes of adhesive-free transducers with four active elements were made on a high-performance poly(ether imide) substrate with precision milled spherical cavities used to produce focused ultrasonic beams. The transducer prototypes were characterized using a pulse-echo experimental setup in a water tank using a glass plate as a reflector. Then, transducer was used in a three-dimensional ultrasonic scanning tank, to produce high-resolution ultrasonic images of flexible electronic circuits with the aim to detect defects in the outermost cover layer.

  11. Relation between boundary slip mechanisms and waterlike fluid behavior.

    PubMed

    Ternes, Patricia; Salcedo, Evy; Barbosa, Marcia C

    2018-03-01

    The slip of a fluid layer in contact with a solid confining surface is investigated for different temperatures and densities using molecular dynamic simulations. We show that for an anomalous waterlike fluid the slip goes as follows: for low levels of shear, defect slip appears and is related to the particle exchange between the fluid layers; at high levels of shear, global slip occurs and is related to the homogeneous distribution of the fluid in the confining surfaces. The oscillations in the transition velocity from defect to global slip are shown to be associated with changes in the layering distribution in the anomalous fluid.

  12. Deep Retinal Layer Microvasculature Dropout detected by the Optical Coherence Tomography Angiography in Glaucoma

    PubMed Central

    Suh, Min Hee; Zangwill, Linda M.; Manalastas, Patricia Isabel C.; Belghith, Akram; Yarmohammadi, Adeleh; Medeiros, Felipe A.; Diniz-Filho, Alberto; Saunders, Luke J.; Weinreb, Robert N.

    2016-01-01

    Purpose To investigate factors associated with dropout of the deep retinal layer microvasculature within the β-zone parapapillary atrophy (βPPA) assessed by optical coherence tomography angiography (OCT-A) in glaucomatous eyes. Design Cross-sectional study. Participants Seventy-one eyes from 71 primary open angle glaucoma (POAG) patients with βPPA enrolled in the Diagnostic Innovations in Glaucoma Study. Methods βPPA deep layer microvasculature dropout was defined as a complete loss of the microvasculature located within deep retinal layer of the βPPA from OCT-A-derived optic nerve head vessel density maps by standardized qualitative assessment. Circumpapillary vessel density (cpVD) within the retinal nerve fiber layer (RNFL) was also calculated using OCT-A. Choroidal thickness and presence of the focal lamina cribrosa (LC) defect were determined using swept-source OCT. Main Outcome Measures Presence of the βPPA deep layer microvasculature dropout. Parameters including age, systolic and diastolic blood pressure, axial length, intraocular pressure, disc hemorrhage, cpVD, visual field (VF) mean deviation (MD), focal LC defect, βPPA area, and choroidal thickness were analyzed. Results βPPA deep layer microvasculature dropout was detected in 37 eyes (52.1%) of eyes with POAG. Eyes with dropouts had a higher prevalence of LC defect (70.3 vs. 32.4%), lower cpVD (52.7 vs. 58.8%), worse VF MD (-9.06 vs. -3.83dB), thinner total choroidal thickness (126.5 vs. 169.1/μm), longer axial length (24.7 vs. 24.0mm), larger βPPA (1.2 vs. 0.76mm2) and lower diastolic blood pressure (74.7 vs. 81.7mmHg) than those without dropouts (P< 0.05, respectively). In the multivariate logistic regression, higher prevalence of focal LC defect (odds ratio [OR], 6.27; P = 0.012), reduced cpVD (OR, 1.27; P = 0.002), worse VF MD (OR, 1.27; P = 0.001), thinner choroidal thickness (OR, 1.02; P = 0.014), and lower diastolic blood pressure (OR, 1.16; P = 0.003) were significantly associated with the dropout. Conclusions Certain systemic and ocular factors such as focal LC defect, more advanced disease status, reduced RNFL vessel density, thinner choroidal thickness, and lower diastolic blood pressure were factors associated with the βPPA deep layer microvasculature dropout in glaucomatous eyes. Longitudinal studies are required to elucidate the temporal relationship between βPPA deep layer dropout and these factors. PMID:27769587

  13. Deep Retinal Layer Microvasculature Dropout Detected by the Optical Coherence Tomography Angiography in Glaucoma.

    PubMed

    Suh, Min Hee; Zangwill, Linda M; Manalastas, Patricia Isabel C; Belghith, Akram; Yarmohammadi, Adeleh; Medeiros, Felipe A; Diniz-Filho, Alberto; Saunders, Luke J; Weinreb, Robert N

    2016-12-01

    To investigate factors associated with dropout of the parapapillary deep retinal layer microvasculature assessed by optical coherence tomography angiography (OCTA) in glaucomatous eyes. Cross-sectional study. Seventy-one eyes from 71 primary open-angle glaucoma (POAG) patients with β-zone parapapillary atrophy (βPPA) enrolled in the Diagnostic Innovations in Glaucoma Study. Parapapillary deep-layer microvasculature dropout was defined as a complete loss of the microvasculature located within the deep retinal layer of the βPPA from OCTA-derived optic nerve head vessel density maps by standardized qualitative assessment. Circumpapillary vessel density (cpVD) within the retinal nerve fiber layer (RNFL) also was calculated using OCTA. Choroidal thickness and presence of focal lamina cribrosa (LC) defects were determined using swept-source optical coherence tomography. Presence of parapapillary deep-layer microvasculature dropout. Parameters including age, systolic and diastolic blood pressure, axial length, intraocular pressure, disc hemorrhage, cpVD, visual field (VF) mean deviation (MD), focal LC defects βPPA area, and choroidal thickness were analyzed. Parapapillary deep-layer microvasculature dropout was detected in 37 POAG eyes (52.1%). Eyes with microvasculature dropout had a higher prevalence of LC defects (70.3% vs. 32.4%), lower cpVD (52.7% vs. 58.8%), worse VF MD (-9.06 dB vs. -3.83 dB), thinner total choroidal thickness (126.5 μm vs. 169.1 μm), longer axial length (24.7 mm vs. 24.0 mm), larger βPPA (1.2 mm 2 vs. 0.76 mm 2 ), and lower diastolic blood pressure (74.7 mmHg vs. 81.7 mmHg) than those without dropout (P < 0.05, respectively). In the multivariate logistic regression analysis, higher prevalence of focal LC defects (odds ratio [OR], 6.27; P = 0.012), reduced cpVD (OR, 1.27; P = 0.002), worse VF MD (OR, 1.27; P = 0.001), thinner choroidal thickness (OR, 1.02; P = 0.014), and lower diastolic blood pressure (OR, 1.16; P = 0.003) were associated significantly with the dropout. Systemic and ocular factors including focal LC defects more advanced glaucoma, reduced RNFL vessel density, thinner choroidal thickness, and lower diastolic blood pressure were factors associated with the parapapillary deep-layer microvasculature dropout in glaucomatous eyes. Longitudinal studies are required to elucidate the temporal relationship between parapapillary deep-layer microvasculature dropout and systemic and ocular factors. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  14. Strain-Compensated InGaAsP Superlattices for Defect Reduction of InP Grown on Exact-Oriented (001) Patterned Si Substrates by Metal Organic Chemical Vapor Deposition.

    PubMed

    Megalini, Ludovico; Šuran Brunelli, Simone Tommaso; Charles, William O; Taylor, Aidan; Isaac, Brandon; Bowers, John E; Klamkin, Jonathan

    2018-02-26

    We report on the use of InGaAsP strain-compensated superlattices (SC-SLs) as a technique to reduce the defect density of Indium Phosphide (InP) grown on silicon (InP-on-Si) by Metal Organic Chemical Vapor Deposition (MOCVD). Initially, a 2 μm thick gallium arsenide (GaAs) layer was grown with very high uniformity on exact oriented (001) 300 mm Si wafers; which had been patterned in 90 nm V-grooved trenches separated by silicon dioxide (SiO₂) stripes and oriented along the [110] direction. Undercut at the Si/SiO₂ interface was used to reduce the propagation of defects into the III-V layers. Following wafer dicing; 2.6 μm of indium phosphide (InP) was grown on such GaAs-on-Si templates. InGaAsP SC-SLs and thermal annealing were used to achieve a high-quality and smooth InP pseudo-substrate with a reduced defect density. Both the GaAs-on-Si and the subsequently grown InP layers were characterized using a variety of techniques including X-ray diffraction (XRD); atomic force microscopy (AFM); transmission electron microscopy (TEM); and electron channeling contrast imaging (ECCI); which indicate high-quality of the epitaxial films. The threading dislocation density and RMS surface roughness of the final InP layer were 5 × 10⁸/cm² and 1.2 nm; respectively and 7.8 × 10⁷/cm² and 10.8 nm for the GaAs-on-Si layer.

  15. Strain-Compensated InGaAsP Superlattices for Defect Reduction of InP Grown on Exact-Oriented (001) Patterned Si Substrates by Metal Organic Chemical Vapor Deposition

    PubMed Central

    Megalini, Ludovico; Šuran Brunelli, Simone Tommaso; Charles, William O.; Taylor, Aidan; Isaac, Brandon; Klamkin, Jonathan

    2018-01-01

    We report on the use of InGaAsP strain-compensated superlattices (SC-SLs) as a technique to reduce the defect density of Indium Phosphide (InP) grown on silicon (InP-on-Si) by Metal Organic Chemical Vapor Deposition (MOCVD). Initially, a 2 μm thick gallium arsenide (GaAs) layer was grown with very high uniformity on exact oriented (001) 300 mm Si wafers; which had been patterned in 90 nm V-grooved trenches separated by silicon dioxide (SiO2) stripes and oriented along the [110] direction. Undercut at the Si/SiO2 interface was used to reduce the propagation of defects into the III–V layers. Following wafer dicing; 2.6 μm of indium phosphide (InP) was grown on such GaAs-on-Si templates. InGaAsP SC-SLs and thermal annealing were used to achieve a high-quality and smooth InP pseudo-substrate with a reduced defect density. Both the GaAs-on-Si and the subsequently grown InP layers were characterized using a variety of techniques including X-ray diffraction (XRD); atomic force microscopy (AFM); transmission electron microscopy (TEM); and electron channeling contrast imaging (ECCI); which indicate high-quality of the epitaxial films. The threading dislocation density and RMS surface roughness of the final InP layer were 5 × 108/cm2 and 1.2 nm; respectively and 7.8 × 107/cm2 and 10.8 nm for the GaAs-on-Si layer. PMID:29495381

  16. Electron trapping in the photo-induced conductivity decay in GaAs/SnO2 heterostructure

    NASA Astrophysics Data System (ADS)

    de Freitas Bueno, Cristina; de Andrade Scalvi, Luis Vicente

    2018-06-01

    The decay of photo-induced conductivity is measured for GaAs/SnO2 heterostructure, after illumination with appropriate wavelength. The top oxide layer is deposited by sol-gel-dip-coating and doped with Eu3+, and the GaAs bottom layer is deposited by resistive evaporation. It shows quite unusual behavior since the decay rate gets slower as the temperature is raised. The trapping by intrabandgap defects in the SnO2 top layer is expected, but a GaAs/SnO2 interface arrest becomes also evident, mainly for temperatures below 100 K. Concerning the SnO2 layer, trapping by different defects is possible, due to the observed distinct capture time range. Besides Eu3+ centers and oxygen vacancies, this sort of heterostructure also leads to Eu3+ agglomerate areas in the SnO2 top layer surface, which may contribute for electron scattering. The electrical behavior reported here aims to contribute for the understanding of the electrical transport mechanisms which, combined with emission from Eu3+ ions from the top layer of the heterostructure, opens new possibilities for optoelectronic devices because samples in the form of films are desirable for circuit integration. The modeling of the photo-induced decay data yields the capture barrier in the range 620-660 meV, and contributes for the defect rules on the electrical properties of this heterostructure.

  17. Enhancement of spin polarization induced by Coulomb on-site repulsion between localized pz electrons in graphene embedded with line defects.

    PubMed

    Ren, Ji-Chang; Wang, Zhigang; Zhang, Rui-Qin; Ding, Zejun; Van Hove, Michel A

    2015-11-11

    It is well known that the effect of Coulomb on-site repulsion can significantly alter the physical properties of the systems that contain localized d and/or f electrons. However, little attention has been paid to the Coulomb on-site repulsion between localized p electrons. In this study, we demonstrated that Coulomb on-site repulsion between localized pz electrons also plays an important role in graphene embedded with line defects. It is shown that the magnetism of the system largely depends on the choice of the effective Coulomb on-site parameter Ueff. Ueff at the edges of the defect enhances the exchange splitting, which increases the magnetic moment and stabilizes a ferromagnetic state of the system. In contrast, Ueff at the center of the defect weakens the spin polarization of the system. The behavior of the magnetism is explained with the Stoner criterion and the charge accumulation at the edges of the defect. Based on the linear response approach, we estimate reasonable values of Ueff to be 2.55 eV (2.3 eV) at the center (edges) of the defects. More importantly, using a DFT+U+J method, we find that exchange interactions between localized p electrons also play an important role in the spin polarization of the system. These results imply that Coulomb on-site repulsion is necessary to describe the strong interaction between localized pz electrons of carbon related materials.

  18. Adjustment of localized alveolar ridge defects by soft tissue transplantation to improve mucogingival esthetics: a proposal for clinical classification and an evaluation of procedures.

    PubMed

    Studer, S; Naef, R; Schärer, P

    1997-12-01

    Esthetically correct treatment of a localized alveolar ridge defect is a frequent prosthetic challenge. Such defects can be overcome not only by a variety of prosthetic means, but also by several periodontal surgical techniques, notably soft tissue augmentations. Preoperative classification of the localized alveolar ridge defect can be greatly useful in evaluating the prognosis and technical difficulties involved. A semiquantitative classification, dependent on the severity of vertical and horizontal dimensional loss, is proposed to supplement the recognized qualitative classification of a ridge defect. Various methods of soft tissue augmentation are evaluated, based on initial volumetric measurements. The roll flap technique is proposed when the problem is related to ridge quality (single-tooth defect with little horizontal and vertical loss). Larger defects in which a volumetric problem must be solved are corrected through the subepithelial connective tissue technique. Additional mucogingival problems (eg, insufficient gingival width, high frenum, gingival scarring, or tattoo) should not be corrected simultaneously with augmentation procedures. In these cases, the onlay transplant technique is favored.

  19. Detection of defects in multi-layered aramid composites by ultrasonic IR thermography

    NASA Astrophysics Data System (ADS)

    Pracht, Monika; Swiderski, Waldemar

    2017-10-01

    In military applications, laminates reinforced with aramid, carbon, and glass fibers are used for the construction of protection products against light ballistics. Material layers can be very different by their physical properties. Therefore, such materials represent a difficult inspection task for many traditional techniques of non-destructive testing (NDT). Defects which can appear in this type of many-layered composite materials usually are inaccuracies in gluing composite layers and stratifications or delaminations occurring under hits of fragments and bullets. IR thermographic NDT is considered as a candidate technique to detect such defects. One of the active IR thermography methods used in nondestructive testing is vibrothermography. The term vibrothermography was created in the 1990s to determine the thermal test procedures designed to assess the hidden heterogeneity of structural materials based on surface temperature fields at cyclical mechanical loads. A similar procedure can be done with sound and ultrasonic stimulation of the material, because the cause of an increase in temperature is internal friction between the wall defect and the stimulation mechanical waves. If the cyclic loading does not exceed the flexibility of the material and the rate of change is not large, the heat loss due to thermal conductivity is small, and the test object returns to its original shape and temperature. The most commonly used method is ultrasonic stimulation, and the testing technique is ultrasonic infrared thermography. Ultrasonic IR thermography is based on two basic phenomena. First, the elastic properties of defects differ from the surroundings, and acoustic damping and heating are always larger in the damaged regions than in the undamaged or homogeneous areas. Second, the heat transfer in the sample is dependent on its thermal properties. In this paper, both modelling and experimental results which illustrate the advantages and limitations of ultrasonic IR thermography in inspecting multi-layered aramide composite materials will be presented.

  20. Worm melt fracture and fast die build-up at high shear rates in extrusion blow molding of large drums

    NASA Astrophysics Data System (ADS)

    Inn, Yong Woo; Sukhadia, Ashish M.

    2017-05-01

    In the extrusion blow molding process of high density polyethylene (HDPE) for making of large size drums, string-like defects, which are referred to as worm melt fracture in the industry, are often observed on the extrudate surface. Such string-like defects in various shapes and sizes are observed in capillary extrusion at very high shear rates after the slip-stick transition. The HDPE resin with broader molecular weight distribution (MWD) exhibits a greater degree of worm melt fracture while the narrow MWD PE resin, which has higher slip velocity and a uniform slip layer, shows a lesser degree of worm melt fracture. It is hypothesized that the worm melt fracture is related to fast die build-up and cohesive slip layer, a failure within the polymer melts at an internal surface. If the cohesive slip layer at an internal surface emerges out from the die, it can be attached on the surface of extrudate as string-like defects, the worm melt fracture. The resin having more small chains and lower plateau modulus can be easier to have such an internal failure and consequently exhibit more "worm" defects.

  1. Interface Energy Alignment of Atomic-Layer-Deposited VOx on Pentacene: an in Situ Photoelectron Spectroscopy Investigation.

    PubMed

    Zhao, Ran; Gao, Yuanhong; Guo, Zheng; Su, Yantao; Wang, Xinwei

    2017-01-18

    Ultrathin atomic-layer-deposited (ALD) vanadium oxide (VO x ) interlayer has recently been demonstrated for remarkably reducing the contact resistance in organic electronic devices (Adv. Funct. Mater. 2016, 26, 4456). Herein, we present an in situ photoelectron spectroscopy investigation (including X-ray and ultraviolet photoelectron spectroscopies) of ALD VO x grown on pentacene to understand the role of the ALD VO x interlayer for the improved contact resistance. The in situ photoelectron spectroscopy characterizations allow us to monitor the ALD growth process of VO x and trace the evolutions of the work function, pentacene HOMO level, and VO x defect states during the growth. The initial VO x growth is found to be partially delayed on pentacene in the first ∼20 ALD cycles. The underneath pentacene layer is largely intact after ALD. The ALD VO x is found to contain a high density of defect states starting from 0.67 eV below the Fermi level, and the energy level of these defect states is in excellent alignment with the HOMO level of pentacene, which therefore allows these VO x defect states to provide an efficient hole-injection pathway at the contact interface.

  2. Decreased Charge Transport Barrier and Recombination of Organic Solar Cells by Constructing Interfacial Nanojunction with Annealing-Free ZnO and Al Layers.

    PubMed

    Liu, Chunyu; Zhang, Dezhong; Li, Zhiqi; Zhang, Xinyuan; Guo, Wenbin; Zhang, Liu; Ruan, Shengping; Long, Yongbing

    2017-07-05

    To overcome drawbacks of the electron transport layer, such as complex surface defects and unmatched energy levels, we successfully employed a smart semiconductor-metal interfacial nanojunciton in organic solar cells by evaporating an ultrathin Al interlayer onto annealing-free ZnO electron transport layer, resulting in a high fill factor of 73.68% and power conversion efficiency of 9.81%. The construction of ZnO-Al nanojunction could effectively fill the surface defects of ZnO and reduce its work function because of the electron transfer from Al to ZnO by Fermi level equilibrium. The filling of surface defects decreased the interfacial carrier recombination in midgap trap states. The reduced surface work function of ZnO-Al remodulated the interfacial characteristics between ZnO and [6,6]-phenyl C71-butyric acid methyl ester (PC 71 BM), decreasing or even eliminating the interfacial barrier against the electron transport, which is beneficial to improve the electron extraction capacity. The filled surface defects and reduced interfacial barrier were realistically observed by photoluminescence measurements of ZnO film and the performance of electron injection devices, respectively. This work provides a simple and effective method to simultaneously solve the problems of surface defects and unmatched energy level for the annealing-free ZnO or other metal oxide semiconductors, paving a way for the future popularization in photovoltaic devices.

  3. Explore the Effects of Microstructural Defects on Voltage Fade of Li- and Mn-Rich Cathodes

    DOE PAGES

    Hu, E.; Lyu, Y.; Xin, H.; ...

    2016-09-26

    Li- and Mn-rich (LMR) cathode materials have been considered as promising candidates for energy storage applications due to high energy density. However, these materials suffer from a serious problem of voltage fade. Oxygen loss and the layer to spinel phase transition are two major contributors of such voltage fade. In this paper, using a combination of x-ray diffraction (XRD), pair distribution function (PDF), x-ray absorption (XAS) techniques and aberration-corrected scanning transmission electron microscopy (STEM), we studied the effects of micro structural defects, especially the grain boundaries on the oxygen loss and layered-to-spinel phase transition through prelithiation of a model compoundmore » Li2Ru0.5Mn0.5O3. It is found that the nano-sized micro structural defects, especially the large amount of grain boundaries created by the prelithiation can greatly accelerate the oxygen loss and voltage fade. Defects (such as nano-sized grain boundaries) and oxygen release form a positive feedback loop, promote each other during cycling, and accelerate the two major voltage fade contributors: the transition metal reduction and layered-to-spinel phase transition. These results clearly demonstrate the important relationships among the oxygen loss, microstructural defects and voltage fade. The importance of maintaining good crystallinity and protecting the surface of LMR material are also suggested.« less

  4. Non-Destructive Evaluation of Kissing Bonds using Local Defect Resonance (LDR) Spectroscopy: A Simulation Study

    NASA Astrophysics Data System (ADS)

    Delrue, S.; Tabatabaeipour, M.; Hettler, J.; Van Den Abeele, K.

    With the growing demand from industry to optimize and further develop existing Non-Destructive Testing & Evaluation (NDT&E) techniques or new methods to detect and characterize incipient damage with high sensitivity and increased quality, ample efforts have been devoted to better understand the typical behavior of kissing bonds, such as delaminations and cracks. Recently, it has been shown experimentally that the nonlinear ultrasonic response of kissing bonds could be enhanced by using Local Defect Resonance (LDR) spectroscopy. LDR spectroscopy is an efficient NDT technique that takes advantage of the characteristic fre- quencies of the defect (defect resonances) in order to provide maximum acoustic wave-defect interaction. In fact, for nonlinear methodologies, the ultrasonic excitation of the sample should occur at either multiples or integer ratios of the characteristic defect resonance frequencies, in order to obtain the highest signal-to-noise response in the nonlinear LDR spectroscopy. In this paper, the potential of using LDR spectroscopy for the detection, localization and characterization of kissing bonds is illustrated using a 3D simulation code for elastic wave propagation in materials containing closed but dynamically active cracks or delaminations. Using the model, we are able to define an appropriate method, based on the Scaling Subtraction Method (SSM), to determine the local defect resonance frequencies of a delamination in a composite plate and to illustrate an increase in defect nonlinearity due to LDR. The simulation results will help us to obtain a better understanding of the concept of LDR and to assist in the further design and testing of LDR spectroscopy for the detection, localization and characterization of kissing bonds.

  5. Control of ZnO Nanorod Defects to Enhance Carrier Transportation in p-Cu₂O/i-ZnO Nanorods/n-IGZO Heterojunction.

    PubMed

    Ke, Nguyen Huu; Trinh, Le Thi Tuyet; Mung, Nguyen Thi; Loan, Phan Thi Kieu; Tuan, Dao Anh; Truong, Nguyen Huu; Tran, Cao Vinh; Hung, Le Vu Tuan

    2017-01-01

    The p-Cu₂O/i-ZnO nanorods/n-IGZO heterojunctions were fabricated by electrochemical and sputtering method. ZnO nanorods were grown on conductive indium gallium zinc oxide (IGZO) thin film and then p-Cu₂O layer was deposited on ZnO nanorods to form the heterojunction. ZnO nanorods play an important role in carrier transport mechanisms and performance of the junction. The changing of defects in ZnO nanorods by annealing samples in air and vacuum have studied. The XRD, photoluminescence (PL) spectroscopy, and FTIR were used to study about structure, and defects in ZnO nanorods. The SEM, i–V characteristics methods were also used to define structure, electrical properties of the heterojunctions layers. The results show that the defects in ZnO nanorods affected remarkably on performance of heterojunctions of solar cells.

  6. Topological Anisotropy of Stone-Wales Waves in Graphenic Fragments

    PubMed Central

    Ori, Ottorino; Cataldo, Franco; Putz, Mihai V.

    2011-01-01

    Stone-Wales operators interchange four adjacent hexagons with two pentagon-heptagon 5|7 pairs that, graphically, may be iteratively propagated in the graphene layer, originating a new interesting structural defect called here Stone-Wales wave. By minimization, the Wiener index topological invariant evidences a marked anisotropy of the Stone-Wales defects that, topologically, are in fact preferably generated and propagated along the diagonal of the graphenic fragments, including carbon nanotubes and graphene nanoribbons. This peculiar edge-effect is shown in this paper having a predominant topological origin, leaving to future experimental investigations the task of verifying the occurrence in nature of wave-like defects similar to the ones proposed here. Graph-theoretical tools used in this paper for the generation and the propagation of the Stone-Wales defects waves are applicable to investigate isomeric modifications of chemical structures with various dimensionality like fullerenes, nanotubes, graphenic layers, schwarzites, zeolites. PMID:22174641

  7. ATR localizes to the photoreceptor connecting cilium and deficiency leads to severe photoreceptor degeneration in mice.

    PubMed

    Valdés-Sánchez, Lourdes; De la Cerda, Berta; Diaz-Corrales, Francisco J; Massalini, Simone; Chakarova, Christina F; Wright, Alan F; Bhattacharya, Shomi S

    2013-04-15

    Ataxia-telangiectasia and Rad3 (ATR), a sensor of DNA damage, is associated with the regulation and control of cell division. ATR deficit is known to cause Seckel syndrome, characterized by severe proportionate short stature and microcephaly. We used a mouse model for Seckel disease to study the effect of ATR deficit on retinal development and function and we have found a new role for ATR, which is critical for the postnatal development of the photoreceptor (PR) layer in mouse retina. The structural and functional characterization of the ATR(+/s) mouse retinas displayed a specific, severe and early degeneration of rod and cone cells resembling some characteristics of human retinal degenerations. A new localization of ATR in the cilia of PRs and the fact that mutant mice have shorter cilia suggests that the PR degeneration here described results from a ciliary defect.

  8. Architectural optimization of an epoxy-based hybrid sol-gel coating for the corrosion protection of a cast Elektron21 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Murillo-Gutiérrez, N. V.; Ansart, F.; Bonino, J.-P.; Kunst, S. R.; Malfatti, C. F.

    2014-08-01

    An epoxy-based hybrid sol-gel coating was prepared in various architectural configurations has been studied for the corrosion protection of a cast Elektron21 magnesium alloy. The creation of a single layer of this coating presents defects consisting of macro-pores and protuberances, which opens access for corrosive species to reach the metallic substrate. These defects are suspected to result from the high reactivity of the substrate, as well as to the irregular topography of the substrate disrupted by the microstructure of the own magnesium alloy. Hence, a sol-gel coating in bilayer architecture is proposed, where the first layer would “inert” the surface of the magnesium substrate, and the second layer would cover the defects of the first layer and also thickening the coating. The morphological characteristics of the sol-gel coatings were analyzed by scanning electron microscopy (SEM), and their corrosion behavior was evaluated by OCP (open circuit potential) monitoring and electrochemical impedance spectroscopy (EIS) in chloride media. It is shown that both the architectural arrangement and the individual thickness of the first and second layers have an important influence on the anticorrosion performances of the protective system, just as much as its global thickness.

  9. Study of corrosion-related defects of zirconium alloys with slow positron beam

    NASA Astrophysics Data System (ADS)

    Zhu, Zhejie; Yao, Meiyi; Shi, Jianjian; Yao, Chunlong; Lu, Eryang; Cao, Xingzhong; Wang, Baoyi; Wu, Yichu

    2018-09-01

    The corrosion behavior of Zr-4 and N5 alloy specimens corroded in 0.01 mol/L LiOH aqueous solution at 360 °C/18.6 MPa and in super heated steam at 400 °C/10.3 MPa for 1, 3 and 14 days were investigated by slow positron beam based Doppler broadening spectroscopy. Results showed that there was an evident interfacial layer with pre-existed vacancies and voids in uncorroded Zr-4 specimens, while in uncorroded N5 specimen, the interfacial defect layer can not be identified or a thin interfacial layer was only contained. When the specimens were corroded in super heated steam at 400 °C/10.3 MPa for a few days, the existence of the interface layer in the Zr-4 specimen would delay the diffusion rate of the oxygen atoms and decelerated the oxidation rate of the corrosion process. However, at very early stage of the corrosion, as Zr-4 and N5 specimens were corrded in 0.01 mol/L LiOH aqueous solution at 360 °C/18.6 MPa, the effect of Li+ accelerated the diffusion rate of the oxygen atoms, while the effect of the interface defect layer became a minor effect.

  10. High Performance Crystalline Organic Transistors and Circuit

    DTIC Science & Technology

    2011-08-02

    pentacene -based OFETs, low voltage operation is possible. 3 Figure 1: Device structure for a low voltage pentacene OFET using a ZrO2 gate...first SiO Z OPentacene Au Pentacene ZrO2 AuPd SiO2 4 film. Bilayer dielectrics exhibit lower defect-related leakage effects, as pinholes or...other defects in one layer may be isolated by the other layer. 350 Å of pentacene was thermally evaporated on the ZrO2 dielectric at a rate of 0.1 Å

  11. Light Scattering Studies of Defects in Nematic/Twist-Bend Liquid Crystals and Layer Fluctuations in Free-Standing Smectic Membranes

    NASA Astrophysics Data System (ADS)

    Pardaev, Shokir A.

    This research described in this dissertation comprises three experimental topics and includes the development of an appropriate theoretical framework to understand the various observations in each. In the first part, we present results from angle-resolved second-harmonic light scattering measurements on three different classes of thermotropic nematic liquid crystals: polar and non-polar rodlike compounds, and a bent-core compound. We analyze the data in terms of the "flexoelectric" polarization induced by distortions of the nematic director field around topological defects known as inversion walls, which are analogous to Neel walls in magnetic spin systems and which often exhibit a closed loop morphology in nematic systems. The second part of this dissertation explores the possible existence of a helical polarization field in the nematic twist-bend (NTB) phase of dimeric liquid crystals, utilizing a similar nonlinear light scattering approach. The NTB phase is characterized by a heliconical winding of the local molecular long axis (director) with a remarkably short, nanoscale pitch. According to theoretical conjecture, a helical electric polarization field accompanies this director modulation, but, due to the short pitch, presents a significant challenge for experimental detection. Our study focuses on topological defects, classified as parabolic focal conics, in two achiral, NTB-forming liquid crystals. These defects generate distortions of the polarization field on sufficiently long (micron) lengths to enable a confirmation of the existence of polar structure. We analyze our results with a coarse-grained free energy density that combines a Landau-deGennes expansion of the polarization field, the elastic energy of a nematic, and a bilinear coupling between the two. The last part of the dissertation focuses on the layer dynamics of thin, free-standing membranes of a smectic-A liquid crystal, with a particular consideration of the surface (interfacial) parameters that control these dynamics. We utilize photon correlation spectroscopy to probe the contributions of distinct under- and overdamped processes to the membrane motion. According to hydrodynamic theory, the frequency and damping rate of underdamped layer motion should scale with scattering vector in a manner controlled by the relative magnitude of a surface elastic constant, which is associated with gradients in surface tension, as well as by the average surface tension. In addition, the damping in very thin films is predicted to be quite sensitive to the presence of an atmosphere surrounding the film. A distinct, overdamped mode, observable in sufficiently thick films, is also predicted to couple to the layer motion. We present results on these dynamical modes and their dispersion and demonstrate their consistency with the hydrodynamic theory subject to appropriate surface boundary conditions.

  12. Stress fields and energy of disclination-type defects in zones of localized elastic distortions

    NASA Astrophysics Data System (ADS)

    Sukhanov, Ivan I.; Tyumentsev, Alexander N.; Ditenberg, Ivan A.

    2016-11-01

    This paper studies theoretically the elastically deformed state and analyzes deformation mechanisms in nanocrystals in the zones of localized elastic distortions and related disclination-type defects, such as dipole, quadrupole and multipole of partial disclinations. Significant differences in the energies of quadrupole and multipole configurations in comparison with nanodipole are revealed. The mechanism of deformation localization in the field of elastic distortions is proposed, which is a quasi-periodic sequence of formation and relaxation of various disclination ensembles with a periodic change in the energy of the defect.

  13. Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Chernov, Alexander A.

    2005-01-01

    Nucleation, growth and perfection of protein crystals will be overviewed along with crystal mechanical properties. The knowledge is based on experiments using optical and force crystals behave similar to inorganic crystals, though with a difference in orders of magnitude in growing parameters. For example, the low incorporation rate of large biomolecules requires up to 100 times larger supersaturation to grow protein, rather than inorganic crystals. Nucleation is often poorly reproducible, partly because of turbulence accompanying the mixing of precipitant with protein solution. Light scattering reveals fluctuations of molecular cluster size, its growth, surface energies and increased clustering as protein ages. Growth most often occurs layer-by-layer resulting in faceted crystals. New molecular layer on crystal face is terminated by a step where molecular incorporation occurs. Quantitative data on the incorporation rate will be discussed. Rounded crystals with molecularly disordered interfaces will be explained. Defects in crystals compromise the x-ray diffraction resolution crucially needed to find the 3D atomic structure of biomolecules. The defects are immobile so that birth defects stay forever. All lattice defects known for inorganics are revealed in protein crystals. Contribution of molecular conformations to lattice disorder is important, but not studied. This contribution may be enhanced by stress field from other defects. Homologous impurities (e.g., dimers, acetylated molecules) are trapped more willingly by a growing crystal than foreign protein impurities. The trapped impurities induce internal stress eliminated in crystals exceeding a critical size (part of mni for ferritin, lysozyme). Lesser impurities are trapped from stagnant, as compared to the flowing, solution. Freezing may induce much more defects unless quickly amorphysizing intracrystalline water.

  14. Positron annihilation studies of silicon-based materials

    NASA Astrophysics Data System (ADS)

    Petkov, Mihail Petkov

    Positron Annihilation Spectroscopy (PAS) is used as a defect-profiling tool in the characterization of Si-based materials. PAS, in conjunction with variable energy positron beams, is a non-destructive depth-profiling probe, ideally suited for studying thin films, multi-layered structures, and buried interfaces. Its sensitivity to open-volume defects covers a wide range of defect sizes and concentrations, and surpasses that of most other techniques. This dissertation presents PAS investigations of electrical, chemical and mechanical properties of a number of advanced materials for future use by the semiconductor industry. Among the subjects of this work are: hydrogenated amorphous silicon (a-Si:H) for use in solar cells and flat-panel displays; low dielectric constant materials (low-k) for interlayer dielectrics; and thin-gate transistors, focusing on the defects at the Si/SiO 2 interface, which limit the device reliability. Results from extensive research on various possibilities to enhance the PAS capability by increasing its efficiency are presented in the appendices. The recognition of different dangling bond defects for low defect densities is achieved in these first PAS studies of void-free a-Si:H. Direct evidence of the existence of dopant-defect complexes is obtained for the first time. This research lays the foundation for future studies of the role of the impurities in light- and thermal degradation of a-Si:H PAS was applied to the characterization of porous low-k dielectrics. The annihilation observables are correlated with the dielectric properties of the material and their preparation conditions. PAS is the only non-destructive local k-probe, and the only tool for measuring void densities and sizes. The method is also sensitive to the chemical environment of the voids, seen during oxidation, water absorption, and forming gas anneal. Industrial research, partially based on these results, is currently in progress at IBM. A decade-old controversy, involving different models of defect states at Si/SiO2 interfaces, has been resolved. The two-defect model was confirmed and previous results were reevaluated. Research in this area will promote the use of PAS as an on-line diagnostic tool in the manufacturing of integrated circuits.

  15. Oxidation of InP nanowires: a first principles molecular dynamics study.

    PubMed

    Berwanger, Mailing; Schoenhalz, Aline L; Dos Santos, Cláudia L; Piquini, Paulo

    2016-11-16

    InP nanowires are candidates for optoelectronic applications, and as protective capping layers of III-V core-shell nanowires. Their surfaces are oxidized under ambient conditions which affects the nanowire physical properties. The majority of theoretical studies of InP nanowires, however, do not take into account the oxide layer at their surfaces. In this work we use first principles molecular dynamics electronic structure calculations to study the first steps in the oxidation process of a non-saturated InP nanowire surface as well as the properties of an already oxidized surface of an InP nanowire. Our calculations show that the O 2 molecules dissociate through several mechanisms, resulting in incorporation of O atoms into the surface layers. The results confirm the experimental observation that the oxidized layers become amorphous but the non-oxidized core layers remain crystalline. Oxygen related bonds at the oxidized layers introduce defective levels at the band gap region, with greater contributions from defects involving In-O and P-O bonds.

  16. Method for localizing and isolating an errant process step

    DOEpatents

    Tobin, Jr., Kenneth W.; Karnowski, Thomas P.; Ferrell, Regina K.

    2003-01-01

    A method for localizing and isolating an errant process includes the steps of retrieving from a defect image database a selection of images each image having image content similar to image content extracted from a query image depicting a defect, each image in the selection having corresponding defect characterization data. A conditional probability distribution of the defect having occurred in a particular process step is derived from the defect characterization data. A process step as a highest probable source of the defect according to the derived conditional probability distribution is then identified. A method for process step defect identification includes the steps of characterizing anomalies in a product, the anomalies detected by an imaging system. A query image of a product defect is then acquired. A particular characterized anomaly is then correlated with the query image. An errant process step is then associated with the correlated image.

  17. Free energy landscape and localization of nanoparticles at block copolymer model defects.

    PubMed

    Kim, Yongjoo; Chen, Hsieh; Alexander-Katz, Alfredo

    2014-05-14

    Nanoparticle localization in block copolymer model defects is studied using self-consistent field theory simulations. In particular we study the nanoparticle free energy landscape for three different model defects: X, T, Y shape defects. Our results indicate that nanoparticles can be strongly bound to certain locations in these defects. The symmetry of the defects affects in a non-trivial fashion the "stiffness of the trap", with the X shape defect displaying the deepest energy well. The T and Y defects exhibit orientations along which the potential energy well is rather shallow. Furthermore, we find that the free energy well is tunable by the size of the nanoparticles. Our results help to explain recent experimental observations in block copolymer templated assembly of nanoparticles. Furthermore, they may open new avenues to assemble arbitrary heterogeneous patterns with precise nanoparticle positions by carefully controlling the morphology of a block copolymer system by using directed self-assembly techniques.

  18. Staebler-Wronski Effect Studied with Positrons

    NASA Astrophysics Data System (ADS)

    Gessmann, Thomas; Weber, Marc H.; Lynn, Kelvin G.; Crandall, Richard S.; Yang, Jeffrey; Guha, Subhendu

    2001-03-01

    Positrons implanted into condensed matter may localize in open volume defects. The energies of gamma-rays emitted after annihilation of positrons with electrons are Doppler-shifted corresponding to the electron momenta at the annihilation site. We used depth-dependent positron annihilation spectroscopy [1] to investigate layers of hydrogenated amorphous-silicon (a-Si:H) deposited by plasma-enhanced chemical-vapor deposition (PECVD). The positron data are interpreted in terms of a dimensionless S-parameter referred to crystalline silicon. The magnitude of S is a measure for the size and concentration of open volume defects acting as trapping sites for positrons. In samples subjected to different hydrogen dilutions during film growth the S-parameter indicates a transition from the amorphous to the microcrystalline structure for large hydrogen-to-disilane ratios. In layers (thickness 250 nm) grown on stainless steel substrates [2] we find that hydrogen dilution results in reduced S-values (1.0127+-0.0007) compared to non-hydrogen diluted samples (1.0316+-0.0007) at room temperature. The S parameters in both hydrogen diluted and non-hydrogen diluted are the lowest ever measured attesting to the dense nature of the material. Previous studies [2] showed superior solar cell characteristics of these layers when grown with hydrogen-to-disilane ratios near the onset of microcrystallinity. Following one-sun light exposure for 400 hr a further decrease in S is observed in both normal and hydrogen diluted samples suggesting a change in the defect associated with light soaking. Two hours annealing at 160 C in air restores the original S-parameter. This behavior was observed for the first time by positron annihilation spectroscopy and may be interpreted as evidence of large scale metastable changes associated with the Staebler-Wronski effect [3]. [1] P.J. Schultz and K.G. Lynn, Rev. Mod. Phys. 60, 701 (1988). [2] S. Guha, J. Yang, D. L. Williamson, Y. Lubianker, J. D. Cohen, A. H. Mahan Appl. Phys. Lett. 74, 1860 (1999). [3] D.L. Staebler and C.R. Wronski, Appl. Phys. Lett. 31, 292 (1977).

  19. Influence of anisotropy on percolation and jamming of linear k-mers on square lattice with defects

    NASA Astrophysics Data System (ADS)

    Tarasevich, Yu Yu; Laptev, V. V.; Burmistrov, A. S.; Shinyaeva, T. S.

    2015-09-01

    By means of the Monte Carlo simulation, we study the layers produced by the random sequential adsorption of the linear rigid objects (k-mers also known as rigid or stiff rods, sticks, needles) onto the square lattice with defects in the presence of an external field. The value of k varies from 2 to 32. The point defects randomly and uniformly placed on the substrate hinder adsorption of the elongated objects. The external field affects isotropic deposition of the particles, consequently the deposited layers are anisotropic. We study the influence of the defect concentration, the length of the objects, and the external field on the percolation threshold and the jamming concentration. Our main findings are (i) the critical defect concentration at which the percolation never occurs even at jammed state decreases for short k-mers (k < 16) and increases for long k-mers (k > 16) as anisotropy increases, (ii) the corresponding critical k-mer concentration decreases with anisotropy growth, (iii) the jamming concentration decreases drastically with growth of k-mer length for any anisotropy, (iv) for short k-mers, the percolation threshold is almost insensitive to the defect concentration for any anisotropy.

  20. MMP20 Overexpression Disrupts Molar Ameloblast Polarity and Migration.

    PubMed

    Shin, M; Chavez, M B; Ikeda, A; Foster, B L; Bartlett, J D

    2018-07-01

    Ameloblasts responsible for enamel formation express matrix metalloproteinase 20 (MMP20), an enzyme that cleaves enamel matrix proteins, including amelogenin (AMELX) and ameloblastin (AMBN). Previously, we showed that continuously erupting incisors from transgenic mice overexpressing active MMP20 had a massive cell infiltrate present within their enamel space, leading to enamel mineralization defects. However, effects of MMP20 overexpression on mouse molars were not analyzed, although these teeth more accurately represent human odontogenesis. Therefore, MMP20-overexpressing mice ( Mmp20 +/+ Tg + ) were assessed by multiscale analyses, combining several approaches from high-resolution micro-computed tomography to enamel organ immunoblots. During the secretory stage at postnatal day 6 (P6), Mmp20 +/+ Tg + mice had a discontinuous ameloblast layer and, unlike incisors, molar P12 maturation stage ameloblasts abnormally migrated away from the enamel layer into the stratum intermedium/stellate reticulum. TOPflash assays performed in vitro demonstrated that MMP20 expression promoted β-catenin nuclear localization and that MMP20 expression promoted invasion through Matrigel-coated filters. However, for both assays, significant differences were eliminated in the presence of the β-catenin inhibitor ICG-001. This suggests that MMP20 activity promotes cell migration via the Wnt pathway. In vivo, the unique molar migration of amelogenin-expressing ameloblasts was associated with abnormal deposition of ectopic calcified nodules surrounding the adherent enamel layer. Enamel content was assessed just prior to eruption at P15. Compared to wild-type, Mmp20 +/+ Tg + molars exhibited significant reductions in enamel thickness (70%), volume (60%), and mineral density (40%), and MMP20 overexpression resulted in premature cleavage of AMBN, which likely contributed to the severe defects in enamel mineralization. In addition, Mmp20 +/+ Tg + mouse molar enamel organs had increased levels of inactive p-cofilin, a protein that regulates cell polarity. These data demonstrate that increased MMP20 activity in molars causes premature degradation of ameloblastin and inactivation of cofilin, which may contribute to pathological Wnt-mediated cell migration away from the enamel layer.

  1. Fuel swelling and interaction layer formation in the SELENIUM Si and ZrN coated U(Mo) dispersion fuel plates irradiated at high power in BR2

    NASA Astrophysics Data System (ADS)

    Leenaers, A.; Van den Berghe, S.; Koonen, E.; Kuzminov, V.; Detavernier, C.

    2015-03-01

    In the framework of the SELENIUM project two full size flat fuel plates were produced with respectively Si and ZrN coated U(Mo) particles and irradiated in the BR2 reactor at SCK•CEN. Non-destructive analysis of the plates showed that the fuel swelling profiles of both SELENIUM plates were very similar to each other and none of the plates showed signs of pillowing or excessive swelling at the end of irradiation at the highest power position (local maximum 70% 235U). The microstructural analysis showed that the Si coated fuel has less interaction phase formation at low burn-up but at the highest burn-ups, defects start to develop on the IL-matrix interface. The ZrN coated fuel, shows a virtual absence of reaction between the U(Mo) and the Al, up to high fission densities after which the interaction layer formation starts and defects develop in the matrix near the U(Mo) particles. It was found and is confirmed by the SELENIUM (Surface Engineering of Low ENrIched Uranium-Molybdenum) experiment that there are two phenomena at play that need to be controlled: the formation of an interaction layer and swelling of the fuel. As the interaction layer formation occurs at the U(Mo)-matrix interface, applying a diffusion barrier (coating) at that interface should prevent the interaction between U(Mo) and the matrix. The U(Mo) swelling, observed to proceed at an accelerating rate with respect to fission density accumulation, is governed by linear solid state swelling and fission gas bubble swelling due to recrystallization of the fuel. The examination of the SELENIUM fuel plates clearly show that for the U(Mo) dispersion fuel to be qualified, the swelling rate at high burn-up needs to be reduced.

  2. Criteria for improved open-circuit voltage in a-Si :H(N)/c-Si(P) front heterojunction with intrinsic thin layer solar cells

    NASA Astrophysics Data System (ADS)

    Nath, Madhumita; Chatterjee, P.; Damon-Lacoste, J.; Roca i Cabarrocas, P.

    2008-02-01

    Hydrog enated amorphous/crystalline silicon "heterojunction with intrinsic thin layer (HIT)" solar cells have gained popularity after it was demonstrated by Sanyo that they can achieve stable conversion efficiencies, as high as crystalline silicon (c-Si) cells, but where the cost may be reduced with the help of amorphous silicon (a-Si:H) low temperature deposition technology. In this article, we study N-a-Si :H/P-c-Si front HIT structures, where light enters through the N-a-Si :H layer. The aim is to examine ways of improving the open-circuit voltage, using computer modeling in conjunction with experiments. We also assess under which conditions such improvements in Voc actually occur. Modeling indicates that for a density of states Nss⩾1013cm-2 on the surface of the P-c-Si wafer facing the emitter layer, Voc is entirely limited by this parameter and is lower than 0.5V. We also learn that it is possible to increase the Voc to ˜0.73V by reducing this defect density to ˜1010cm-2, by reducing the surface recombination speed of the electrons at the back P-c-Si/aluminum contact (SnL), and by improving the lifetime of the carriers (τ ) in the P-c-Si wafer to ˜5ms. Modeling further indicates that when τ ⩽0.1ms, the sensitivity of Voc to SnL vanishes, as very few back-diffusing electrons can reach the back contact. Improvements in Voc by decreasing both the defect density on the surface of the P-c-Si wafer facing the emitter layer and SnL have been achieved in practice by (a) improved passivation thanks to a thin intrinsic polymorphous silicon layer deposited on the c-Si wafer (instead of a-Si :H) and (b) using localized aluminum and back surface field layers to attain a lower SnL. Experimentally, a Voc of 0.675V has already been attained. Simulations indicate that the lifetime of carriers inside the P-c-Si wafer of these cells is ˜366μs and needs to be improved to achieve a higher Voc.

  3. Control of defect localization in crystalline wrinkling by curvature and topology

    NASA Astrophysics Data System (ADS)

    Lopez Jimenez, Francisco

    We investigate the influence of curvature and topology on crystalline wrinkling patterns in generic elastic bilayers. Our numerical analysis predicts that the total number of defects created by adiabatic compression exhibits universal quadratic scaling for spherical, ellipsoidal and toroidal surfaces over a wide range of system sizes. However, both the localization of individual defects and the orientation of defect chains depend strongly on the local Gaussian curvature and its gradients across a surface. Our results imply that curvature and topology can be utilized to pattern defects in elastic materials, thus promising improved control over hierarchical bending, buckling or folding processes. Generally, this study suggests that bilayer systems provide an inexpensive yet valuable experimental test-bed for exploring the effects of geometrically induced forces on assemblies of topological charges. Joint work with Norbert Stoop, Romain Lagrange, Jorn Dunkel and Pedro M. Reis.

  4. Rectifiability of Line Defects in Liquid Crystals with Variable Degree of Orientation

    NASA Astrophysics Data System (ADS)

    Alper, Onur

    2018-04-01

    In [2], H ardt, L in and the author proved that the defect set of minimizers of the modified Ericksen energy for nematic liquid crystals consists locally of a finite union of isolated points and Hölder continuous curves with finitely many crossings. In this article, we show that each Hölder continuous curve in the defect set is of finite length. Hence, locally, the defect set is rectifiable. For the most part, the proof closely follows the work of D e L ellis et al. (Rectifiability and upper minkowski bounds for singularities of harmonic q-valued maps, arXiv:1612.01813, 2016) on harmonic Q-valued maps. The blow-up analysis in A lper et al. (Calc Var Partial Differ Equ 56(5):128, 2017) allows us to simplify the covering arguments in [11] and locally estimate the length of line defects in a geometric fashion.

  5. Localization of carbon atoms and extended defects in silicon implanted separately with C+ and B+ ions and jointly with C+ and B+ ions

    NASA Astrophysics Data System (ADS)

    Jadan, M.; Chelyadinskii, A. R.; Odzhaev, V. B.

    2013-02-01

    The possibility to control the localization of implanted carbon in sites and interstices in silicon immediately during the implantation has been demonstrated. The formation of residual extended defects in silicon implanted separately with C+ and B+ ions and jointly with C+ and B+ ions has been shown. It has been found that the formation of residual defects can be suppressed due to annihilation of point defects at C atoms (the Watkins effect). The positive effect is attained if implanted carbon is localized over lattice sites, which is provided by its implantation with the effective current density of the scanning ion beam no lower than 1.0 μA cm-2.

  6. In situ observation of defect annihilation in Kr ion-irradiated bulk Fe/amorphous-Fe 2 Zr nanocomposite alloy

    DOE PAGES

    Yu, K. Y.; Fan, Z.; Chen, Y.; ...

    2014-08-26

    Enhanced irradiation tolerance in crystalline multilayers has received significant attention lately. However, little is known on the irradiation response of crystal/amorphous nanolayers. We report on in situ Kr ion irradiation studies of a bulk Fe 96Zr 4 nanocomposite alloy. Irradiation resulted in amorphization of Fe 2Zr and formed crystal/amorphous nanolayers. α-Fe layers exhibited drastically lower defect density and size than those in large α-Fe grains. In situ video revealed that mobile dislocation loops in α-Fe layers were confined by the crystal/amorphous interfaces and kept migrating to annihilate other defects. This study provides new insights on the design of irradiation-tolerant crystal/amorphousmore » nanocomposites.« less

  7. Producing air-stable monolayers of phosphorene and their defect engineering

    PubMed Central

    Pei, Jiajie; Gai, Xin; Yang, Jiong; Wang, Xibin; Yu, Zongfu; Choi, Duk-Yong; Luther-Davies, Barry; Lu, Yuerui

    2016-01-01

    It has been a long-standing challenge to produce air-stable few- or monolayer samples of phosphorene because thin phosphorene films degrade rapidly in ambient conditions. Here we demonstrate a new highly controllable method for fabricating high quality, air-stable phosphorene films with a designated number of layers ranging from a few down to monolayer. Our approach involves the use of oxygen plasma dry etching to thin down thick-exfoliated phosphorene flakes, layer by layer with atomic precision. Moreover, in a stabilized phosphorene monolayer, we were able to precisely engineer defects for the first time, which led to efficient emission of photons at new frequencies in the near infrared at room temperature. In addition, we demonstrate the use of an electrostatic gate to tune the photon emission from the defects in a monolayer phosphorene. This could lead to new electronic and optoelectronic devices, such as electrically tunable, broadband near infrared lighting devices operating at room temperature. PMID:26794866

  8. Defect dynamics in active nematics

    PubMed Central

    Giomi, Luca; Bowick, Mark J; Mishra, Prashant; Sknepnek, Rastko; Cristina Marchetti, M

    2014-01-01

    Topological defects are distinctive signatures of liquid crystals. They profoundly affect the viscoelastic behaviour of the fluid by constraining the orientational structure in a way that inevitably requires global changes not achievable with any set of local deformations. In active nematic liquid crystals, topological defects not only dictate the global structure of the director, but also act as local sources of motion, behaving as self-propelled particles. In this article, we present a detailed analytical and numerical study of the mechanics of topological defects in active nematic liquid crystals. PMID:25332389

  9. The two-dimensional hybrid surface plasma micro-cavity

    NASA Astrophysics Data System (ADS)

    Kai, Tong; Mei-yu, Wang; Fu-cheng, Wang; Jia, Guo

    2018-07-01

    A hybrid surface plasma micro-cavity structure with a defect cavity is formed based on the two-dimensional surface plasmon resonance photonic crystal waveguide structure. A cell defect is introduced in the centre of the photonic crystal layer to build the hybrid surface plasma micro-cavity structure. This work is numerical based on the finite-difference time-domain method. The photon energy is confined to the micro-cavity and the photon energy is strongest at the interface between the insulating layer and the metal layer. The micro-cavity structure has a very small mode volume of sub-wavelength scale in the 1550 nm communication band. The value of Q/V is up to 7132.08 λ/n-3.

  10. Coherently coupled ZnO and VO2 interface studied by photoluminescence and electrical transport across a phase transition

    NASA Astrophysics Data System (ADS)

    Srivastava, Amar; Herng, T. S.; Saha, Surajit; Nina, Bao; Annadi, A.; Naomi, N.; Liu, Z. Q.; Dhar, S.; Ariando; Ding, J.; Venkatesan, T.

    2012-06-01

    We have investigated the photoluminescence and electrical properties of a coherently coupled interface consisting of a ZnO layer grown on top of an oriented VO2 layer on sapphire across the phase transition of VO2. The band edge and defect luminescence of the ZnO overlayer exhibit hysteresis in opposite directions induced by the phase transition of VO2. Concomitantly the phase transition of VO2 was seen to induce defects in the ZnO layer. Such coherently coupled interfaces could be of use in characterizing the stability of a variety of interfaces in situ and also for novel device application.

  11. Influence of High-Power Pulsed IR Laser Radiation on the Electrophysical Properties of Cd x Hg1- x Те Heteroepitaxial Layers

    NASA Astrophysics Data System (ADS)

    Talipov, N. Kh.

    2013-05-01

    Results of investigations into the electrophysical properties of p- and n-type Cd x Hg1- x Te heteroepitaxial layers grown by molecular beam and liquid phase epitaxy methods after exposure to high-power pulsed IR radiation of solid-state Nd3+:YAG and chemical DF lasers at wavelengths of 1.06 and 3.8-4.2 μm, respectively, are presented. It is demonstrated that the main types of defects resulting from pulsed irradiation are mercury vacancies that play the role of acceptors in this material. The spatial distribution of generated mercury vacancies depends on the intensity and wavelength of laser radiation: the defects generated by pulses of the Nd3+:YAG laser are concentrated only near the surface, whereas DF-laser radiation creates defects in the entire volume of the heteroepitaxial structures. It is established that irradiation with the Nd3+:YAG laser of the p-Cd x Hg1- x Te heteroepitaxial layers implanted by boron ions leads to the activation of implanted boron atoms as a result of melting and recrystallization of the irradiated surface layer.

  12. Inspection of additive manufactured parts using laser ultrasonics

    NASA Astrophysics Data System (ADS)

    Lévesque, D.; Bescond, C.; Lord, M.; Cao, X.; Wanjara, P.; Monchalin, J.-P.

    2016-02-01

    Additive manufacturing is a novel technology of high importance for global sustainability of resources. As additive manufacturing involves typically layer-by-layer fusion of the feedstock (wire or powder), an important characteristic of the fabricated metallic structural parts, such as those used in aero-engines, is the performance, which is highly related to the presence of defects, such as cracks, lack of fusion or bonding between layers, and porosity. For this purpose, laser ultrasonics is very attractive due to its non-contact nature and is especially suited for the analysis of parts of complex geometries. In addition, the technique is well adapted to online implementation and real-time measurement during the manufacturing process. The inspection can be performed from either the top deposited layer or the underside of the substrate and the defects can be visualized using laser ultrasonics combined with the synthetic aperture focusing technique (SAFT). In this work, a variety of results obtained off-line on INCONEL® 718 and Ti-6Al-4V coupons that were manufactured using laser powder, laser wire, or electron beam wire deposition are reported and most defects detected were further confirmed by X-ray micro-computed tomography.

  13. Physical principles of neutron-gamma materials monitoring

    NASA Astrophysics Data System (ADS)

    Pekarskii, G. Sh.

    1986-03-01

    The physical principles of secondary radiation methods in nondestructive testing are discussed. Among the techniques considered are: neutron activation analysis (NAA); the induced-radiation method; and quasialbedo recording of secondary gamma-radiation. Emphasis is given to the neutron-gamma method which consists of exposing test material to a neutron flux and recording the secondary gamma-radiation by means of a spectrometer. The limitations of the method in detecting local inhomogeneous defects (filled pores cracks, and inclusions) in metal layers and multicomponents materials are described, and some advantages of the method over NAA are discussed. Formulas are derived for estimating the optimum density of the gamma-ray flux which is received by the detector.

  14. Physical principles of neutron-gamma materials monitoring

    NASA Astrophysics Data System (ADS)

    Pekarskii, G. Sh.

    1985-07-01

    The physical principles of secondary radiation methods in nondestructive testing are discussed. Among the techniques considered are: neutron activation analysis (NAA); the induced-radiation method; and quasialbedo recording of secondary gamma-radiation. Emphasis is given to the neutron-gamma method which consists of exposing test material to a neutron flux and recording the secondary gamma-radiation by means of a spectrometer. The limitations of the method in detecting local inhomogeneous defects (filled pores cracks, and inclusions) in metal layers and multicomponents materials are described, and some advantages of the method over NAA are discussed. Formulas are derived for estimating the optimum density of the gamma-ray flux which is received by the detector.

  15. Structural defects in bulk GaN

    NASA Astrophysics Data System (ADS)

    Liliental-Weber, Z.; dos Reis, R.; Mancuso, M.; Song, C. Y.; Grzegory, I.; Porowski, S.; Bockowski, M.

    2014-10-01

    Transmission Electron Microscopy (TEM) studies of undoped and Mg doped GaN layers grown on the HVPE substrates by High Nitrogen Pressure Solution (HNPS) with the multi-feed-seed (MFS) configuration are shown. The propagation of dislocations from the HVPE substrate to the layer is observed. Due to the interaction between these dislocations in the thick layers much lower density of these defects is observed in the upper part of the HNPS layers. Amorphous Ga precipitates with attached voids pointing toward the growth direction are observed in the undoped layer. This is similar to the presence of Ga precipitates in high-pressure platelets, however the shape of these precipitates is different. The Mg doped layers do not show Ga precipitates, but MgO rectangular precipitates are formed, decorating the dislocations. Results of TEM studies of HVPE layers grown on Ammonothermal substrates are also presented. These layers have superior crystal quality in comparison to the HNPS layers, as far as density of dislocation is concern. Occasionally some small inclusions can be found, but their chemical composition was not yet determined. It is expected that growth of the HNPS layers on these substrate will lead to large layer thickness obtained in a short time and with high crystal perfection needed in devices.

  16. Impurity distribution and microstructure of Ga-doped ZnO films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kvit, A. V.; Yankovich, A. B.; Avrutin, V.; Liu, H.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H.; Voyles, P. M.

    2012-12-01

    We report microstructural characterization of heavily Ga-doped ZnO (GZO) thin films on GaN and sapphire by aberration-corrected scanning transmission electron microscopy. Growth under oxygen-rich and metal-rich growth conditions leads to changes in the GZO polarity and different extended defects. For GZO layers on sapphire, the primary extended defects are voids, inversion domain boundaries, and low-angle grain boundaries. Ga doping of ZnO grown under metal-rich conditions causes a switch from pure oxygen polarity to mixed oxygen and zinc polarity in small domains. Electron energy loss spectroscopy and energy dispersive spectroscopy spectrum imaging show that Ga is homogeneous, but other residual impurities tend to accumulate at the GZO surface and at extended defects. GZO grown on GaN on c-plane sapphire has Zn polarity and no voids. There are misfit dislocations at the interfaces between GZO and an undoped ZnO buffer layer and at the buffer/GaN interface. Low-angle grain boundaries are the only threading microstructural defects. The potential effects of different extended defects and impurity distributions on free carrier scattering are discussed.

  17. Identification of internal defects of hardfacing coatings in regeneration of machine parts

    NASA Astrophysics Data System (ADS)

    Józwik, Jerzy; Dziedzic, Krzysztof; Pashechko, Mykhalo; Łukasiewicz, Andrzej

    2017-10-01

    The quality control of hardfacing is one of the areas where non-destructive testing is applied. To detect defects and inconsistencies in the industrial practice one uses the same methods as in the testing of welded joints. Computed Tomography is a type of X-ray spectroscopy. It is used as a diagnostic method that allows to obtain layered images of examined hardfacing. The paper presents the use of Computed Tomography for the evaluation of defects of hardfacing parts and errors. Padding welds were produced using GMA consumable electrode welding with CO2 active gas. The padding material used were cored wires FILTUB DUR 16, and ones produced from a Fe-Mn-C-Si-Cr-Mo-Ti-W alloy. The layers were padded on to different surfaces: C45, 165CrV12, 42CrMo4, S235JR steel. Typical defects occurring in the pads and the influence of the type of wire on the concentration of defects were characterized. The resulting pads were characterized by occurring inconsistencies taking the form of pores, intrusions and fractures.

  18. Nucleation and atomic layer reaction in nickel silicide for defect-engineered Si nanochannels.

    PubMed

    Tang, Wei; Picraux, S Tom; Huang, Jian Yu; Gusak, Andriy M; Tu, King-Ning; Dayeh, Shadi A

    2013-06-12

    At the nanoscale, defects can significantly impact phase transformation processes and change materials properties. The material nickel silicide has been the industry standard electrical contact of silicon microelectronics for decades and is a rich platform for scientific innovation at the conjunction of materials and electronics. Its formation in nanoscale silicon devices that employ high levels of strain, intentional, and unintentional twins or grain boundaries can be dramatically different from the commonly conceived bulk processes. Here, using in situ high-resolution transmission electron microscopy (HRTEM), we capture single events during heterogeneous nucleation and atomic layer reaction of nickel silicide at various crystalline boundaries in Si nanochannels for the first time. We show through systematic experiments and analytical modeling that unlike other typical face-centered cubic materials such as copper or silicon the twin defects in NiSi2 have high interfacial energies. We observe that these twin defects dramatically change the behavior of new phase nucleation and can have direct implications for ultrascaled devices that are prone to defects or may utilize them to improve device performance.

  19. Effect of Nonionic Surfactant Additive in PEDOT:PSS on PFO Emission Layer in Organic-Inorganic Hybrid Light-Emitting Diode.

    PubMed

    Cho, Seong Rae; Porte, Yoann; Kim, Yun Cheol; Myoung, Jae-Min

    2018-03-21

    Poly(9,9-dioctylfluorene) (PFO) has attracted significant interests owing to its versatility in electronic devices. However, changes in its optical properties caused by its various phases and the formation of oxidation defects limit the application of PFO in light-emitting diodes (LEDs). We investigated the effects of the addition of Triton X-100 (hereinafter shortened as TX) in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to induce interlayer diffusion between PEDOT:PSS and PFO to enhance the stability of the PFO phase and suppress its oxidation. Photoluminescence (PL) measurement on PFO/TX-mixed PEDOT:PSS layers revealed that, upon increasing the concentration of TX in the PEDOT:PSS layer, the β phase of PFO could be suppressed in favor of the glassy phase and the wide PL emission centered at 535 nm caused by ketone defects formed by oxidation was decreased considerably. LEDs were then fabricated using PFO as an emission layer, TX-mixed PEDOT:PSS as hole-transport layer, and zinc oxide (ZnO) nanorods as electron-transport layer. As the TX concentration reached 3 wt %, the devices exhibited dramatic increases in current densities, which were attributed to the enhanced hole injection due to TX addition, along with a shift in the dominant emission wavelength from a green electroluminescence (EL) emission centered at 518 nm to a blue EL emission centered at 448 nm. The addition of TX in PEDOT:PSS induced a better hole injection in the PFO layer, and through interlayer diffusion, stabilized the glassy phase of PFO and limited the formation of oxidation defects.

  20. Layer-dependent second-order Raman intensity of Mo S2 and WS e2 : Influence of intervalley scattering

    NASA Astrophysics Data System (ADS)

    Qian, Qingkai; Zhang, Zhaofu; Chen, Kevin J.

    2018-04-01

    Acoustic-phonon Raman scattering, as a defect-induced second-order Raman scattering process (with incident photon scattered by one acoustic phonon at the Brillouin-zone edge and the momentum conservation fulfilled by defect scattering), is used as a sensitive tool to study the defects of transition-metal dichalcogenides (TMDs). Moreover, second-order Raman scattering processes are closely related to the valley depolarization of single-layer TMDs in potential valleytronic applications. Here, the layer dependence of second-order Raman intensity of Mo S2 and WS e2 is studied. The electronic band structures of Mo S2 and WS e2 are modified by the layer thicknesses; hence, the resonance conditions for both first-order and second-order Raman scattering processes are tuned. In contrast to the first-order Raman scattering, second-order Raman scattering of Mo S2 and WS e2 involves additional intervalley scattering of electrons by phonons with large momenta. As a result, the electron states that contribute most to the second-order Raman intensity are different from that to first-order process. A weaker layer-tuned resonance enhancement of second-order Raman intensity is observed for both Mo S2 and WS e2 . Specifically, when the incident laser has photon energy close to the optical band gap and the Raman spectra are normalized by the first-order Raman peaks, single-layer Mo S2 or WS e2 has the strongest second-order Raman intensity. This layer-dependent second-order Raman intensity can be further utilized as an indicator to identify the layer number of Mo S2 and WS e2 .

  1. Homoepitaxial graphene tunnel barriers for spin transport

    NASA Astrophysics Data System (ADS)

    Friedman, Adam

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions (magnetic field, temperature, etc.) usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. We demonstrate successful tunneling, charge, and spin transport with a fluorinated graphene tunnel barrier on a graphene channel. We show that while spin transport stops short of room temperature, spin polarization efficiency values are the highest of any graphene spin devices. We also demonstrate that hydrogenation of graphene can also be used to create a tunnel barrier. We begin with a four-layer stack of graphene and hydrogenate the top few layers to decouple them from the graphene transport channel beneath. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the non-local Hanle effect to be commensurate with previous studies. The measured spin polarization efficiencies for hydrogenated graphene are higher than most oxide tunnel barriers on graphene, but not as high as with fluorinated graphene tunnel barriers. However, here we show that spin transport persists up to room temperature. Our results for the hydrogenated graphene tunnel barriers are compared with fluorinated tunnel barriers and we discuss the possibility that magnetic moments in the graphene tunnel barriers affect the spin transport of our devices.

  2. Development of Eddy Current Techniques for Detection of Deep Fatigue Cracks in Multi-Layer Airframe Components

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.

    2008-01-01

    Thick, multi-layer aluminum structure has been widely used in aircraft design in critical wing splice areas. The multi-layer structure generally consists of three or four aluminum layers with different geometry and varying thickness, which are held together with fasteners. The detection of cracks under fasteners with ultrasonic techniques in subsurface layers away from the skin is impeded primarily by interlayer bonds and faying sealant condition. Further, assessment of such sealant condition is extremely challenging in terms of complexity of structure, limited access, and inspection cost. Although Eddy current techniques can be applied on in-service aircraft from the exterior of the skin without knowing sealant condition, the current eddy current techniques are not able to detect defects with wanted sensitivity. In this work a series of low frequency eddy current probes have been designed, fabricated and tested for this application. A probe design incorporating a shielded magnetic field sensor concentrically located in the interior of a drive coil has been employed to enable a localized deep diffusion of the electromagnetic field into the part under test. Due to the required low frequency inspections, probes have been testing using a variety of magnetic field sensors (pickup coil, giant magneto-resistive, anisotropic magneto-resistive, and spin-dependent tunneling). The probe designs as well as capabilities based upon a target inspection for sub-layer cracking in an airframe wing spar joint is presented.

  3. Luminescence from defects in GaN

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Morkoç, H.

    2006-04-01

    We briefly review the luminescence properties of defects in GaN and focus on the most interesting defects. In particular, the blue luminescence band peaking at about 3 eV is assigned to different defects and even different types of transitions in undoped, Zn-, C-, and Mg-doped GaN. Another omnipresent luminescence band, the yellow luminescence band may have different origin in nearly dislocation-free freestanding GaN templates, undoped thin layers, and carbon-doped GaN. The Y4 and Y7 lines are caused by recombination at unidentified point defects captured by threading edge dislocations.

  4. Directed polymers on a disordered tree with a defect subtree

    NASA Astrophysics Data System (ADS)

    Madras, Neal; Yıldırım, Gökhan

    2018-04-01

    We study the question of how the competition between bulk disorder and a localized microscopic defect affects the macroscopic behavior of a system in the directed polymer context at the free energy level. We consider the directed polymer model on a disordered d-ary tree and represent the localized microscopic defect by modifying the disorder distribution at each vertex in a single path (branch), or in a subtree, of the tree. The polymer must choose between following the microscopic defect and finding the best branches through the bulk disorder. We describe three possible phases, called the fully pinned, partially pinned and depinned phases. When the microscopic defect is associated only with a single branch, we compute the free energy and the critical curve of the model, and show that the partially pinned phase does not occur. When the localized microscopic defect is associated with a non-disordered regular subtree of the disordered tree, the picture is more complicated. We prove that all three phases are non-empty below a critical temperature, and that the partially pinned phase disappears above the critical temperature.

  5. Templates Aid Removal Of Defects From Castings

    NASA Technical Reports Server (NTRS)

    Hendrickson, Robert G.

    1992-01-01

    Templates used to correlate defects in castings with local wall thicknesses. Placed on part to be inspected after coated with penetrant dye. Positions of colored spots (indicative of defects) noted. Ultrasonic inspector measures thickness of wall at unacceptable defects only - overall inspection not necessary.

  6. Localization of Narrowband Single Photon Emitters in Nanodiamonds.

    PubMed

    Bray, Kerem; Sandstrom, Russell; Elbadawi, Christopher; Fischer, Martin; Schreck, Matthias; Shimoni, Olga; Lobo, Charlene; Toth, Milos; Aharonovich, Igor

    2016-03-23

    Diamond nanocrystals that host room temperature narrowband single photon emitters are highly sought after for applications in nanophotonics and bioimaging. However, current understanding of the origin of these emitters is extremely limited. In this work, we demonstrate that the narrowband emitters are point defects localized at extended morphological defects in individual nanodiamonds. In particular, we show that nanocrystals with defects such as twin boundaries and secondary nucleation sites exhibit narrowband emission that is absent from pristine individual nanocrystals grown under the same conditions. Critically, we prove that the narrowband emission lines vanish when extended defects are removed deterministically using highly localized electron beam induced etching. Our results enhance the current understanding of single photon emitters in diamond and are directly relevant to fabrication of novel quantum optics devices and sensors.

  7. Tunability of temperature-dependent absorption in a graphene-based hybrid nanostructure cavity

    NASA Astrophysics Data System (ADS)

    Rashidi, Arezou; Namdar, Abdolrahman

    2018-04-01

    Enhanced absorption is obtained in a hybrid nanostructure composed of graphene and one-dimensional photonic crystal as a cavity in the visible wavelength range thanks to the localized electric field around the defect layers. The temperature-induced wavelength shift is revealed in the absorption spectra in which the peak wavelength is red-shifted by increasing the temperature. This temperature dependence comes from the thermal expansion and thermo-optical effects in the constituent layers of the structure. Moreover, the absorption peaks can be adjusted by varying the incident angle. The results show that absorption is sensitive to TE/TM polarization and its peak values for the TE mode are higher than the TM case. Also, the peak wavelength is blue-shifted by increasing the incident angle for both polarizations. Finally, the possibility of tuning the absorption using the electro-optical response of graphene sheets is discussed in detail. We believe our study may be beneficial for designing tunable graphene-based temperature-sensitive absorbers.

  8. Electron irradiation induced amorphous SiO2 formation at metal oxide/Si interface at room temperature; electron beam writing on interfaces.

    PubMed

    Gurbán, S; Petrik, P; Serényi, M; Sulyok, A; Menyhárd, M; Baradács, E; Parditka, B; Cserháti, C; Langer, G A; Erdélyi, Z

    2018-02-01

    Al 2 O 3 (5 nm)/Si (bulk) sample was subjected to irradiation of 5 keV electrons at room temperature, in a vacuum chamber (pressure 1 × 10 -9 mbar) and formation of amorphous SiO 2 around the interface was observed. The oxygen for the silicon dioxide growth was provided by the electron bombardment induced bond breaking in Al 2 O 3 and the subsequent production of neutral and/or charged oxygen. The amorphous SiO 2 rich layer has grown into the Al 2 O 3 layer showing that oxygen as well as silicon transport occurred during irradiation at room temperature. We propose that both transports are mediated by local electric field and charged and/or uncharged defects created by the electron irradiation. The direct modification of metal oxide/silicon interface by electron-beam irradiation is a promising method of accomplishing direct write electron-beam lithography at buried interfaces.

  9. Laser Structuring of Thin Layers for Flexible Electronics by a Shock Wave-induced Delamination Process

    NASA Astrophysics Data System (ADS)

    Lorenz, Pierre; Ehrhardt, Martin; Zimmer, Klaus

    The defect-free laser-assisted structuring of thin films on flexible substrates is a challenge for laser methods. However, solving this problem exhibits an outstanding potential for a pioneering development of flexible electronics. Thereby, the laser-assisted delamination method has a great application potential. At the delamination process: the localized removal of the layer is induced by a shock wave which is produced by a laser ablation process on the rear side of the substrate. In this study, the thin-film patterning process is investigated for different polymer substrates dependent on the material and laser parameters using a KrF excimer laser. The resultant structures were studied by optical microscopy and white light interferometry (WLI). The delamination process was tested at different samples (indium tin oxide (ITO) on polyethylene terephthalate (PET), epoxy-based negative photoresist (SU8) on polyimide (PI) and indium tin oxide/copper indium gallium selenide/molybdenum (ITO/CIGS/Mo) on PI.

  10. Localized versus itinerant states created by multiple oxygen vacancies in SrTiO3

    NASA Astrophysics Data System (ADS)

    Jeschke, Harald O.; Shen, Juan; Valentí, Roser

    2015-02-01

    Oxygen vacancies in strontium titanate surfaces (SrTiO3) have been linked to the presence of a two-dimensional electron gas with unique behavior. We perform a detailed density functional theory study of the lattice and electronic structure of SrTiO3 slabs with multiple oxygen vacancies, with a main focus on two vacancies near a titanium dioxide terminated SrTiO3 surface. We conclude based on total energies that the two vacancies preferably inhabit the first two layers, i.e. they cluster vertically, while in the direction parallel to the surface, the vacancies show a weak tendency towards equal spacing. Analysis of the nonmagnetic electronic structure indicates that oxygen defects in the surface TiO2 layer lead to population of Ti {{t}2g} states and thus itinerancy of the electrons donated by the oxygen vacancy. In contrast, electrons from subsurface oxygen vacancies populate Ti eg states and remain localized on the two Ti ions neighboring the vacancy. We find that both the formation of a bound oxygen-vacancy state composed of hybridized Ti 3eg and 4p states neighboring the oxygen vacancy as well as the elastic deformation after extracting oxygen contribute to the stabilization of the in-gap state.

  11. Atomic-scale investigation of point defects and hydrogen-solute atmospheres on the edge dislocation mobility in alpha iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, M. A.; Solanki, K. N., E-mail: kiran.solanki@asu.edu; Groh, S.

    2014-08-14

    In this study, we present atomistic mechanisms of 1/2 [111](11{sup ¯}0) edge dislocation interactions with point defects (hydrogen and vacancies) and hydrogen solute atmospheres in body centered cubic (bcc) iron. In metals such as iron, increases in hydrogen concentration can increase dislocation mobility and/or cleavage-type decohesion. Here, we first investigate the dislocation mobility in the presence of various point defects, i.e., change in the frictional stress as the edge dislocation interacts with (a) vacancy, (b) substitutional hydrogen, (c) one substitutional and one interstitial hydrogen, (d) interstitial hydrogen, (e) vacancy and interstitial hydrogen, and (f) two interstitial hydrogen. Second, we examinemore » the role of a hydrogen-solute atmosphere on the rate of local dislocation velocity. The edge dislocation simulation with a vacancy in the compression side of the dislocation and an interstitial hydrogen atom at the tension side exhibit the strongest mechanical response, suggesting a higher potential barrier and hence, the higher frictional stress (i.e., ∼83% higher than the pure iron Peierls stress). In the case of a dislocation interacting with a vacancy on the compressive side, the vacancy binds with the edge dislocation, resulting in an increase in the friction stress of about 28% when compared with the Peierls stress of an edge dislocation in pure iron. Furthermore, as the applied strain increases, the vacancy migrates through a dislocation transportation mechanism by attaining a velocity of the same order as the dislocation velocity. For the case of the edge dislocation interacting with interstitial hydrogen on the tension side, the hydrogen atom jumps through one layer perpendicular to the glide plane during the pinning-unpinning process. Finally, our simulation of dislocation interactions with hydrogen show first an increase in the local dislocation velocity followed by a pinning of the dislocation core in the atmosphere, resulting in resistance to dislocation motion as the dislocation moves though the hydrogen-solute atmospheres. With this systematic, atomistic study of the edge dislocation with various point defects, we show significant increase in obstacle strengths in addition to an increase in the local dislocation velocity during interaction with solute atmospheres. The results have implications for constitutive development and modeling of the hydrogen effect on dislocation mobility and deformation in metals.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrakchi, G.; Barbier, D.; Guillot, G.

    Electrical and deep level transient spectroscopy measurements on Schottky barriers were performed in order to characterize electrically active defects in n-type GaAs (Bridgman substrates or liquid-phase epitaxial layers) after pulsed electron beam annealing. Both surface damage and bulk defects were observed in the Bridgman substrates depending on the pulse energy density. No electron traps were detected in the liquid-phase epitaxial layers before and after annealing for an energy density of 0.4 J/cm/sup 2/. The existence of an interfacial insulating layer at the metal-semiconductor interface, associated with As out-diffusion during the pulsed electron irradiation, was revealed by the abnormally high valuesmore » of the Schottky barrier diffusion potential. Moreover, two new electron traps with activation energy of 0.35 and 0.43 eV, called EP1 and EP2, were introduced in the Bridgman substrates after pulsed electron beam annealing. The presence of these traps, related to the As evaporation, was tentatively attributed to the decrease of the EL2 electron trap signal after 0.4-J/cm/sup 2/ annealing. It is proposed that these new defects states are due to the decomposition of the As/sub Ga/-As/sub i/ complex recently considered as the most probable defect configuration for the dominant EL2 electron trap usually detected in as-grown GaAs substrates.« less

  13. Defect-mediated transport and electronic irradiation effect in individual domains of CVD-grown monolayer MoS 2

    DOE PAGES

    Durand, Corentin; Zhang, Xiaoguang; Fowlkes, Jason; ...

    2015-01-16

    We study the electrical transport properties of atomically thin individual crystalline grains of MoS 2 with four-probe scanning tunneling microscopy. The monolayer MoS 2 domains are synthesized by chemical vapor deposition on SiO 2/Si substrate. Temperature dependent measurements on conductance and mobility show that transport is dominated by an electron charge trapping and thermal release process with very low carrier density and mobility. The effects of electronic irradiation are examined by exposing the film to electron beam in the scanning electron microscope in an ultrahigh vacuum environment. The irradiation process is found to significantly affect the mobility and the carriermore » density of the material, with the conductance showing a peculiar time-dependent relaxation behavior. It is suggested that the presence of defects in active MoS 2 layer and dielectric layer create charge trapping sites, and a multiple trapping and thermal release process dictates the transport and mobility characteristics. The electron beam irradiation promotes the formation of defects and impact the electrical properties of MoS 2. Finally, our study reveals the important roles of defects and the electron beam irradiation effects in the electronic properties of atomic layers of MoS 2.« less

  14. New Growth Mode through Decorated Twin Boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bleikamp, Sebastian; Thoma, Arne; Polop, Celia

    2006-03-24

    Scanning tunneling microscopy and low energy electron diffraction were used to investigate the growth of partly twinned Ir thin films on Ir(111). A transition from the expected layer-by-layer to a defect dominated growth mode with a fixed lateral length scale and increasing roughness is observed. During growth, the majority of the film is stably transformed to twinned stacking. This transition is initiated by the energetic avoidance of the formation of intrinsic stacking faults compared to two independent twin faults. The atomistic details of the defect kinetics are outlined.

  15. New growth mode through decorated twin boundaries.

    PubMed

    Bleikamp, Sebastian; Thoma, Arne; Polop, Celia; Pirug, Gerhard; Linke, Udo; Michely, Thomas

    2006-03-24

    Scanning tunneling microscopy and low energy electron diffraction were used to investigate the growth of partly twinned Ir thin films on Ir(111). A transition from the expected layer-by-layer to a defect dominated growth mode with a fixed lateral length scale and increasing roughness is observed. During growth, the majority of the film is stably transformed to twinned stacking. This transition is initiated by the energetic avoidance of the formation of intrinsic stacking faults compared to two independent twin faults. The atomistic details of the defect kinetics are outlined.

  16. Modification of the crystal structure of gadolinium gallium garnet by helium ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostafiychuk, B. K.; Yaremiy, I. P., E-mail: yaremiy@rambler.ru; Yaremiy, S. I.

    2013-12-15

    The structure of gadolinium gallium garnet (GGG) single crystals before and after implantation by He{sup +} ions has been investigated using high-resolution X-ray diffraction methods and the generalized dynamic theory of X-ray scattering. The main types of growth defects in GGG single crystals and radiation-induced defects in the ion-implanted layer have been determined. It is established that the concentration of dislocation loops in the GGG surface layer modified by ion implantation increases and their radius decreases with an increase in the implantation dose.

  17. Photothermal coherence tomography for 3-D visualization and structural non-destructive imaging of a wood inlay

    NASA Astrophysics Data System (ADS)

    Tavakolian, Pantea; Sfarra, Stefano; Gargiulo, Gianfranco; Sivagurunathan, Koneshwaran; Mandelis, Andreas

    2018-06-01

    The aim of this research is to investigate the suitability of truncated correlation photothermal coherence tomography (TC-PCT) for the non-destructive imaging of a replica of a real inlay to identify subsurface features that often are invisible areas of vulnerability and damage. Defects of inlays involve glue-rich areas, glue-starved areas, termite attack, insect damage, and laminar splitting. These defects have the potential to result in extensive damage to the art design layers of inlays. Therefore, there is a need for an imaging technique to visualize and determine the location of defects within the sample. The recently introduced TC-PCT modality proved capable of providing 3-D images of specimens with high axial resolution, deep subsurface depth profiling capability, and high signal-to-noise ratio (SNR). Therefore, in this study the authors used TC-PCT to image a fabricated inlay sample with various natural and artificial defects in the middle and top layers. The inlay in question reproduces to scale a piece of art preserved in the "Mirror room" of the Castle Laffitte in France. It was built by a professional restorer following the ancient procedure named element by element. Planar TC-PCT images of the inlay were stacked coherently to provide 3-D visualization of areas with known defects in the sample. The experimental results demonstrated the identification of defects such as empty holes, a hole filled with stucco, subsurface delaminations and natural features such as a wood knot and wood grain in different layers of the sample. For this wooden sample that has a very low thermal diffusivity, a depth range of 2 mm was achieved.

  18. Characterization of V-shaped defects in 4H-SiC homoepitaxial layers

    DOE PAGES

    Zhang, Lihua; Su, Dong; Kisslinger, Kim; ...

    2014-12-04

    Synchrotron white beam x-ray topography images show that faint needle-like surface morphological features observed on the Si-face of 4H-SiC homoepitaxial layers using Nomarski optical microscopy are associated with V shaped stacking faults in the epilayer. KOH etching of the V shaped defect reveals small oval pits connected by a shallow line which corresponding to the surface intersections of two partial dislocations and the stacking fault connecting them. Transmission electron microscopy (TEM) specimens from regions containing the V shaped defects were prepared using focused ion beam milling, and stacking sequences of (85), (50) and (63) are observed at the faulted regionmore » with high resolution TEM. In order to study the formation mechanism of V shaped defect, low dislocation density 4H-SiC substrates were chosen for epitaxial growth, and the corresponding regions before and after epitaxy growth are compared in SWBXT images. It is found that no defects in the substrate are directly associated with the formation of the V shaped defect. Simulation results of the contrast from the two partial dislocations associated with V shaped defect in synchrotron monochromatic beam x-ray topography reveals the opposite sign nature of their Burgers vectors. Therefore, a mechanism of 2D nucleation during epitaxy growth is postulated for the formation of the V shaped defect, which requires elimination of non-sequential 1/4[0001] bilayers from the original structure to create the observed faulted stacking sequence.« less

  19. Characterization of V-shaped defects in 4H-SiC homoepitaxial layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lihua; Su, Dong; Kisslinger, Kim

    Synchrotron white beam x-ray topography images show that faint needle-like surface morphological features observed on the Si-face of 4H-SiC homoepitaxial layers using Nomarski optical microscopy are associated with V shaped stacking faults in the epilayer. KOH etching of the V shaped defect reveals small oval pits connected by a shallow line which corresponding to the surface intersections of two partial dislocations and the stacking fault connecting them. Transmission electron microscopy (TEM) specimens from regions containing the V shaped defects were prepared using focused ion beam milling, and stacking sequences of (85), (50) and (63) are observed at the faulted regionmore » with high resolution TEM. In order to study the formation mechanism of V shaped defect, low dislocation density 4H-SiC substrates were chosen for epitaxial growth, and the corresponding regions before and after epitaxy growth are compared in SWBXT images. It is found that no defects in the substrate are directly associated with the formation of the V shaped defect. Simulation results of the contrast from the two partial dislocations associated with V shaped defect in synchrotron monochromatic beam x-ray topography reveals the opposite sign nature of their Burgers vectors. Therefore, a mechanism of 2D nucleation during epitaxy growth is postulated for the formation of the V shaped defect, which requires elimination of non-sequential 1/4[0001] bilayers from the original structure to create the observed faulted stacking sequence.« less

  20. Measuring the proton selectivity of graphene membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Michael I.; Keyser, Ulrich F., E-mail: ufk20@cam.ac.uk; Braeuninger-Weimer, Philipp

    2015-11-23

    By systematically studying the proton selectivity of free-standing graphene membranes in aqueous solutions, we demonstrate that protons are transported by passing through defects. We study the current-voltage characteristics of single-layer graphene grown by chemical vapour deposition (CVD) when a concentration gradient of HCl exists across it. Our measurements can unambiguously determine that H{sup +} ions are responsible for the selective part of the ionic current. By comparing the observed reversal potentials with positive and negative controls, we demonstrate that the as-grown graphene is only weakly selective for protons. We use atomic layer deposition to block most of the defects inmore » our CVD graphene. Our results show that a reduction in defect size decreases the ionic current but increases proton selectivity.« less

  1. Atomic-scale identification of novel planar defect phases in heteroepitaxial YBa2Cu3O7-δ thin films

    NASA Astrophysics Data System (ADS)

    Gauquelin, Nicolas; Zhang, Hao; Zhu, Guozhen; Wei, John Y. T.; Botton, Gianluigi A.

    2018-05-01

    We have discovered two novel types of planar defects that appear in heteroepitaxial YBa2Cu3O7-δ (YBCO123) thin films, grown by pulsed-laser deposition (PLD) either with or without a La2/3Ca1/3MnO3 (LCMO) overlayer, using the combination of high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging and electron energy loss spectroscopy (EELS) mapping for unambiguous identification. These planar lattice defects are based on the intergrowth of either a BaO plane between two CuO chains or multiple Y-O layers between two CuO2 planes, resulting in non-stoichiometric layer sequences that could directly impact the high-Tc superconductivity.

  2. Kinetics of radiation-induced precipitation at the alloy surface

    NASA Astrophysics Data System (ADS)

    Lam, N. Q.; Nguyen, T.; Leaf, G. K.; Yip, S.

    1988-05-01

    Radiation-induced precipitation of a new phase at the surface of an alloy during irradiation at elevated temperatures was studied with the aid of a kinetic model of segregation. The preferential coupling of solute atoms with the defect fluxes gives rise to a strong solute enrichment at the surface, which, if surpassing the solute solubility limit, leads to the formation of a precipitate layer. The moving precipitate/matrix interface was accommodated by means of a mathematical scheme that transforms spatial coordinates into a reference frame in which the boundaries are immobile. Sample calculations were performed for precipitation of the γ'-Ni 3Si layer on Ni-Si alloys undergoing electron irradiation. The dependences of the precipitation kinetics on the defect-production rate, irradiation temperature, internal defect sink concentration and alloy composition were investigated systematically.

  3. 16-channel DWDM based on 1D defect mode nonlinear photonic crystal

    NASA Astrophysics Data System (ADS)

    Kalhan, Abhishek; Sharma, Sanjeev; Kumar, Arun

    2018-05-01

    We propose a sixteen-channel Dense Wavelength Division Multiplexer (DWDM), using the 1-D defect mode nonlinear photonic crystal which is a function of intensity as well as wavelength. Here, we consider an alternate layer of two semiconductor materials in which we found the bandgap of materials when defect layer is introduced then 16-channel dense wavelength division multiplexer is obtained within bandgap. From the theoretical analysis, we can achieve average quality factor of 7800.4, the uniform spectral line-width of 0.2 nm, crosstalk of -31.4 dB, central wavelength changes 0.07 nm/(1GW/cm2) and 100% transmission efficiency. Thus, Sixteen-channel DWDM has very high quality factor, low crosstalk, near 100% power transmission efficiency and small channel spacing (1.44 nm).

  4. Nanocarbon: Defect Architectures and Properties

    NASA Astrophysics Data System (ADS)

    Vuong, Amanda

    The allotropes of carbon make its solid phases amongst the most diverse of any element. It can occur naturally as graphite and diamond, which have very different properties that make them suitable for a wide range of technological and commercial purposes. Recent developments in synthetic carbon include Highly Oriented Pyrolytic Graphite (HOPG) and nano-carbons, such as fullerenes, nanotubes and graphene. The main industrial application of bulk graphite is as an electrode material in steel production, but in purified nuclear graphite form, it is also used as a moderator in Advanced Gas-cooled Reactors across the United Kingdom. Both graphene and graphite are damaged over time when subjected to bombardment by electrons, neutrons or ions, and these have a wide range of effects on their physical and electrical properties, depending on the radiation flux and temperature. This research focuses on intrinsic defects in graphene and dimensional change in nuclear graphite. The method used here is computational chemistry, which complements physical experiments. Techniques used comprise of density functional theory (DFT) and molecular dynamics (MD), which are discussed in chapter 2 and chapter 3, respectively. The succeeding chapters describe the results of simulations performed to model defects in graphene and graphite. Chapter 4 presents the results of ab initio DFT calculations performed to investigate vacancy complexes that are formed in AA stacked bilayer graphene. In AB stacking, carbon atoms surrounding the lattice vacancies can form interlayer structures with sp2 bonding that are lower in energy compared to in-plane reconstructions. From the investigation of AA stacking, sp2 interlayer bonding of adjacent multivacancy defects in registry creates a type of stable sp2 bonded wormhole between the layers. Also, a new class of mezzanine structure characterised by sp3 interlayer bonding, resembling a prismatic vacancy loop has also been identified. The mezzanine, which is a V6 hexavacancy variant, where six sp3 carbon atoms sit midway between two carbon layers and bond to both, is substantially more stable than any other vacancy aggregate in AA stacked layers. Chapter 5 presents the results of ab initio DFT calculations performed to investigate the wormhole and mezzanine defect that were identified in chapter 4 and the ramp defect discovered by Trevethan et al.. DFT calculations were performed on these defects in twisted bilayer graphene. From the investigation of vacancy complexes in twisted bilayer graphene, it is found that vacancy complexes are unstable in the twisted region and are more favourable in formation energy when the stacking arrangement is close to AA or AB stacking. It has also been discovered that the ramp defect is more stable in the twisted bilayer graphene compared to the mezzanine defect. Chapter 6 presents the results of ab initio DFT calculations performed to investigate a form of extending defect, prismatic edge dislocation. Suarez-Martinez et al.'s research suggest the armchair core is disconnected from any other layer, whilst the zigzag core is connected. In the investigation here, the curvature of the mezzanine defect allows it to swing between the armchair, zigzag and Klein in the AA stacking. For the AB stacking configuration, the armchair and zigzag core are connected from any other layer. Chapter 7 present results of MD simulations using the adaptive intermolecular reactive empirical bond order (AIREBO) potential to investigate the dimensional change of graphite due to the formation of vacancies present in a single crystal. It has been identified that there is an expansion along the c-axis, whilst a contraction along the a- and b- axes due to the coalescence of vacancy forming in-plane and between the layers. The results here are in good agreement with experimental studies of low temperature irradiation. The final chapter gives conclusions to this work.

  5. Graphene annealing: how clean can it be?

    PubMed

    Lin, Yung-Chang; Lu, Chun-Chieh; Yeh, Chao-Huei; Jin, Chuanhong; Suenaga, Kazu; Chiu, Po-Wen

    2012-01-11

    Surface contamination by polymer residues has long been a critical problem in probing graphene's intrinsic properties and in using graphene for unique applications in surface chemistry, biotechnology, and ultrahigh speed electronics. Poly(methyl methacrylate) (PMMA) is a macromolecule commonly used for graphene transfer and device processing, leaving a thin layer of residue to be empirically cleaned by annealing. Here we report on a systematic study of PMMA decomposition on graphene and of its impact on graphene's intrinsic properties using transmission electron microscopy (TEM) in combination with Raman spectroscopy. TEM images revealed that the physisorbed PMMA proceeds in two steps of weight loss in annealing and cannot be removed entirely at a graphene susceptible temperature before breaking. Raman analysis shows a remarkable blue-shift of the 2D mode after annealing, implying an anneal-induced band structure modulation in graphene with defects. Calculations using density functional theory show that local rehybridization of carbons from sp(2) to sp(3) on graphene defects may occur in the random scission of polymer chains and account for the blue-shift of the Raman 2D mode. © 2011 American Chemical Society

  6. Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides

    DOE PAGES

    Shukla, Alpesh Khushalchand; Ramasse, Quentin M.; Ophus, Colin; ...

    2015-10-29

    Although Li- and Mn-rich transition metal oxides have been extensively studied as high-capacity cathode materials for Li-ion batteries, the crystal structure of these materials in their pristine state is not yet fully understood. Here we apply complementary electron microscopy and spectroscopy techniques at multi-length scale on well-formed Li1.2(Ni0.13Mn0.54Co0.13)O2 crystals with two different morphologies as well as two commercially available materials with similar compositions, and unambiguously describe the structural make-up of these samples. Systematically observing the entire primary particles along multiple zone axes reveals that they are consistently made up of a single phase, save for rare localized defects and amore » thin surface layer on certain crystallographic facets. Finally and more specifically, we show the bulk of the oxides can be described as an aperiodic crystal consisting of randomly stacked domains that correspond to three variants of monoclinic structure, while the surface is composed of a Co- and/or Ni-rich spinel with antisite defects.« less

  7. Efficiency enhancement of blue light emitting diodes by eliminating V-defects from InGaN/GaN multiple quantum well structures through GaN capping layer control

    NASA Astrophysics Data System (ADS)

    Tsai, Sheng-Chieh; Li, Ming-Jui; Fang, Hsin-Chiao; Tu, Chia-Hao; Liu, Chuan-Pu

    2018-05-01

    A facile method for fabricating blue light-emitting diodes (B-LEDs) with small embedded quantum dots (QDs) and enhanced light emission is demonstrated by tuning the temperature of the growing GaN capping layer to eliminate V-defects. As the growth temperature increases from 770 °C to 840 °C, not only does the density of the V-defects reduce from 4.12 ∗ 108 #/cm2 nm to zero on a smooth surface, but the QDs also get smaller. Therefore, the growth mechanism of smaller QDs assisted by elimination of V-defects is discussed. Photoluminescence and electroluminescence results show that smaller embedded QDs can improve recombination efficiency, and thus achieve higher peak intensity with smaller peak broadening. Accordingly, the external quantum efficiency of the B-LEDs with smaller QDs is enhanced, leading to a 6.8% increase in light output power in lamp-form package LEDs.

  8. Deposition of defected graphene on (001) Si substrates by thermal decomposition of acetone

    NASA Astrophysics Data System (ADS)

    Milenov, T. I.; Avramova, I.; Valcheva, E.; Avdeev, G. V.; Rusev, S.; Kolev, S.; Balchev, I.; Petrov, I.; Pishinkov, D.; Popov, V. N.

    2017-11-01

    We present results on the deposition and characterization of defected graphene by the chemical vapor deposition (CVD) method. The source of carbon/carbon-containing radicals is thermally decomposed acetone (C2H6CO) in Ar main gas flow. The deposition takes place on (001) Si substrates at about 1150-1160 °C. We established by Raman spectroscopy the presence of single- to few- layered defected graphene deposited on two types of interlayers that possess different surface morphology and consisted of mixed sp2 and sp3 hybridized carbon. The study of interlayers by XPS, XRD, GIXRD and SEM identifies different phase composition: i) a diamond-like carbon dominated film consisting some residual SiC, SiO2 etc.; ii) a sp2- dominated film consisting small quantities of C60/C70 fullerenes and residual Si-O-, Cdbnd O etc. species. The polarized Raman studies confirm the presence of many single-layered defected graphene areas that are larger than few microns in size on the predominantly amorphous carbon interlayers.

  9. Surface acceptor states in MBE-grown CdTe layers

    NASA Astrophysics Data System (ADS)

    Wichrowska, Karolina; Wosinski, Tadeusz; Tkaczyk, Zbigniew; Kolkovsky, Valery; Karczewski, Grzegorz

    2018-04-01

    A deep-level hole trap associated with surface defect states has been revealed with deep-level transient spectroscopy investigations of metal-semiconductor junctions fabricated on nitrogen doped p-type CdTe layers grown by the molecular-beam epitaxy technique. The trap displayed the hole-emission activation energy of 0.33 eV and the logarithmic capture kinetics indicating its relation to extended defect states at the metal-semiconductor interface. Strong electric-field-induced enhancement of the thermal emission rate of holes from the trap has been attributed to the phonon-assisted tunneling effect from defect states involving very large lattice relaxation around the defect and metastability of its occupied state. Passivation with ammonium sulfide of the CdTe surface, prior to metallization, results in a significant decrease in the trap density. It also results in a distinct reduction in the width of the surface-acceptor-state-induced hysteresis loops in the capacitance vs. voltage characteristics of the metal-semiconductor junctions.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Sungho, E-mail: shochoi@krict.re.kr; Park, Byung-Yoon; Jung, Ha-Kyun

    Highlights: {yields} Systematic study of the fluorides doped solution-processed ZnO thin films via the luminescence and electrical behaviors. {yields} Defect-related visible emission bands are affected by annealing ambient and fluoride addition. {yields} Adding lithium fluoride followed by annealing in oxygen ambient leads to a controlled defect density with proper TFT performance. -- Abstract: To develop an efficient channel layer for thin film transistors (TFTs), understanding the defect-related luminescence and electrical property is crucial for solution-processed ZnO thin films. Film growth with the fluorides addition, especially using LiF, followed by the oxygen ambient post-annealing leads to decreased defect-related emission as wellmore » as enhanced switching property. The saturation mobility and current on/off ratio are 0.31 cm{sup 2} V{sup -1} s{sup -1} and 1.04 x 10{sup 3}. Consequently, we can visualize an optimized process condition and characterization method for solution-processed TFT based on the fluorine-doped ZnO film channel layer by considering the overall emission behavior.« less

  11. Theoretical analysis of optical properties of dielectric coatings dependence on substrate subsurface defects

    NASA Astrophysics Data System (ADS)

    Shen, Jian; Liu, Shouhua; Shen, Zicai; Shao, Jianda; Fan, Zhengxiu

    2006-03-01

    A model for refractive index of stratified dielectric substrate was put forward according to theories of inhomogeneous coatings. The substrate was divided into surface layer, subsurface layer and bulk layer along the normal direction of its surface. Both the surface layer (separated into N1 sublayers of uniform thickness) and subsurface layer (separated into N2 sublayers of uniform thickness), whose refractive indices have different statistical distributions, are equivalent to inhomogeneous coatings, respectively. And theoretical deduction was carried out by employing characteristic matrix method of optical coatings. An example of mathematical calculation for optical properties of dielectric coatings had been presented. The computing results indicate that substrate subsurface defects can bring about additional bulk scattering and change propagation characteristic in thin film and substrate. Therefore, reflectance, reflective phase shift and phase difference of an assembly of coatings and substrate deviate from ideal conditions. The model will provide some beneficial theory directions for improving optical properties of dielectric coatings via substrate surface modification.

  12. Isolated Mesoporous Microstructures Prepared by Stress Localization-Induced Crack Manipulation.

    PubMed

    Wooh, Sanghyuk; Lee, Soojin; Lee, Yunchan; Ryu, Ji Ho; Lee, Won Bo; Yoon, Hyunsik; Char, Kookheon

    2016-09-22

    Cracks observed in brittle materials are mostly regarded as defects or failures. However, they can be a valuable tool when implemented in a controlled way. Here, we introduce a strategy to control the crack propagation of mesoporous micropatterns (prisms and pyramids), which leads to the isolation of well-defined microstructures. Mesoporous micropatterns were fabricated by the soft imprinting technique with wet TiO 2 nanoparticle (NP) pastes, followed by sintering to remove organic components. Since the volume of the paste significantly shrinks during the sintering step, stress is localized at the edge of micropatterns, in good agreement with finite element method simulations, creating well-defined cracks and their propagation. It was demonstrated that the degree of stress localization is determined by the thickness of residual layers, NP size, and heating rate. After controlled crack propagation and delamination of microparticles from the substrates, mesoporous microwires and microparticles were successfully produced and functionalized from the isolated mesoporous prisms and pyramids. The method proposed in this study for controlled crack manipulation and delamination opens a door for straightforward and economical fabrication of well-defined mesoporous microparticles.

  13. Geometry and mechanics of two-dimensional defects in amorphous materials

    PubMed Central

    Moshe, Michael; Levin, Ido; Aharoni, Hillel; Kupferman, Raz; Sharon, Eran

    2015-01-01

    We study the geometry of defects in amorphous materials and their elastic interactions. Defects are defined and characterized by deviations of the material’s intrinsic metric from a Euclidian metric. This characterization makes possible the identification of localized defects in amorphous materials, the formulation of a corresponding elastic problem, and its solution in various cases of physical interest. We present a multipole expansion that covers a large family of localized 2D defects. The dipole term, which represents a dislocation, is studied analytically and experimentally. Quadrupoles and higher multipoles correspond to fundamental strain-carrying entities. The interactions between those entities, as well as their interaction with external stress fields, are fundamental to the inelastic behavior of solids. We develop analytical tools to study those interactions. The model, methods, and results presented in this work are all relevant to the study of systems that involve a distribution of localized sources of strain. Examples are plasticity in amorphous materials and mechanical interactions between cells on a flexible substrate. PMID:26261331

  14. Localized states in advanced dielectrics from the vantage of spin- and symmetry-polarized tunnelling across MgO.

    PubMed

    Schleicher, F; Halisdemir, U; Lacour, D; Gallart, M; Boukari, S; Schmerber, G; Davesne, V; Panissod, P; Halley, D; Majjad, H; Henry, Y; Leconte, B; Boulard, A; Spor, D; Beyer, N; Kieber, C; Sternitzky, E; Cregut, O; Ziegler, M; Montaigne, F; Beaurepaire, E; Gilliot, P; Hehn, M; Bowen, M

    2014-08-04

    Research on advanced materials such as multiferroic perovskites underscores promising applications, yet studies on these materials rarely address the impact of defects on the nominally expected materials property. Here, we revisit the comparatively simple oxide MgO as the model material system for spin-polarized solid-state tunnelling studies. We present a defect-mediated tunnelling potential landscape of localized states owing to explicitly identified defect species, against which we examine the bias and temperature dependence of magnetotransport. By mixing symmetry-resolved transport channels, a localized state may alter the effective barrier height for symmetry-resolved charge carriers, such that tunnelling magnetoresistance decreases most with increasing temperature when that state is addressed electrically. Thermal excitation promotes an occupancy switchover from the ground to the excited state of a defect, which impacts these magnetotransport characteristics. We thus resolve contradictions between experiment and theory in this otherwise canonical spintronics system, and propose a new perspective on defects in dielectrics.

  15. The Postauricular Helix-based Adipodermal-pedicle Turnover (PHAT) Flap: An Original Single-Stage Technique for Antihelix and Scapha Reconstruction.

    PubMed

    Beustes-Stefanelli, Matthieu; O'Toole, Greg; Schertenleib, Pierre

    2016-01-01

    In reconstructing anterior defects of the ear, postauricular flaps represent a popular option. The pedicle of such transauricular flaps can be superior, inferior, medial, or lateral. The postauricular helix-based adipodermal-pedicle turnover (PHAT) flap is an original single-stage transauricular technique for defects of the antihelix and scapha. Its skin paddle is on the posterior aspect of the ear. Its lateral de-epithelialized pedicle in front of the helix allows for it to easily reach peripheral anterior defects. In cases in which the underlying cartilage is involved, the extended PHAT (ePHAT) flap allows for restoring the contours of the ear without a cartilage graft. Between 2009 and 2011, a PHAT flap was used in 5 cases of defects of the antihelix or the scapha after tumor resection, 3 of which are in an extended version (ePHAT flap). There were no complications and a satisfactory aesthetic result was achieved in all cases. The PHAT flap is an original single-stage procedure for anterior auricular defects located on the antihelix or scapha. The single-layer PHAT flap is indicated in purely skin defect. The triple-layer ePHAT flap includes two subcutaneous extensions which increase its thickness and is indicated to restore the ear contours when cartilage has been removed.

  16. Smooth Interfacial Scavenging for Resistive Switching Oxide via the Formation of Highly Uniform Layers of Amorphous TaOx.

    PubMed

    Tsurumaki-Fukuchi, Atsushi; Nakagawa, Ryosuke; Arita, Masashi; Takahashi, Yasuo

    2018-02-14

    We demonstrate that the inclusion of a Ta interfacial layer is a remarkably effective strategy for forming interfacial oxygen defects at metal/oxide junctions. The insertion of an interfacial layer of a reactive metal, that is, a "scavenging" layer, has been recently proposed as a way to create a high concentration of oxygen defects at an interface in redox-based resistive switching devices, and growing interest has been given to the underlying mechanism. Through structural and chemical analyses of Pt/metal/SrTiO 3 /Pt structures, we reveal that the rate and amount of oxygen scavenging are not directly determined by the formation free energies in the oxidation reactions of the scavenging metal and unveil the important roles of oxygen diffusibility. Active oxygen scavenging and highly uniform oxidation via scavenging are revealed for a Ta interfacial layer with high oxygen diffusibility. In addition, the Ta scavenging layer is shown to exhibit a highly uniform structure and to form a very flat interface with SrTiO 3 , which are advantageous for the fabrication of a steep metal/oxide contact.

  17. Defect-induced mix experiment for NIF

    NASA Astrophysics Data System (ADS)

    Schmitt, M. J.; Bradley, P. A.; Cobble, J. A.; Hsu, S. C.; Krasheninnikova, N. S.; Kyrala, G. A.; Magelssen, G. R.; Murphy, T. J.; Obrey, K. A.; Tregillis, I. L.; Wysocki, F. J.; Finnegan, S. M.

    2013-11-01

    The Defect Induced Mix Experiment (DIME-II) will measure the implosion and mix characteristics of CH capsules filled with 5 atmospheres of DT by incorporating mid-Z dopant layers of Ge and Ga. This polar direct drive (PDD) experiment also will demonstrate the filling of a CH capsule at target chamber center using a fill tube. Diagnostics for these experiments include areal x-ray backlighting to obtain early time images of the implosion trajectory and a multiple-monochromatic imager (MMI) to collect spectrally-resolved images of the capsule dopant line emission near bangtime. The inclusion of two (or more) thin dopant layers at separate depths within the capsule shell facilitates spatial correlation of mix between the layers and the hot gas core on a single shot. The dopant layers are typically 2 μm thick and contain dopant concentrations of 1.5%. Three dimensional Hydra simulations have been performed to assess the effects of PDD asymmetry on capsule performance.

  18. Influence of the layer parameters on the performance of the CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Haddout, Assiya; Raidou, Abderrahim; Fahoume, Mounir

    2018-03-01

    Influence of the layer parameters on the performances of the CdTe solar cells is analyzed by SCAPS-1D. The ZnO: Al film shows a high efficiency than SnO2:F. Moreover, the thinner window layer and lower defect density of CdS films are the factor in the enhancement of the short-circuit current density. As well, to increase the open-circuit voltage, the responsible factors are low defect density of the absorbing layer CdTe and high metal work function. For the low cost of cell production, ultrathin film CdTe cells are used with a back surface field (BSF) between CdTe and back contact, such as PbTe. Further, the simulation results show that the conversion efficiency of 19.28% can be obtained for the cell with 1-μm-thick CdTe, 0.1-μm-thick PbTe and 30-nm-thick CdS.

  19. Au/n-InP Schottky diodes using an Al2O3 interfacial layer grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Kim, Hogyoung; Kim, Min Soo; Yoon, Seung Yu; Choi, Byung Joon

    2017-02-01

    We investigated the effect of an Al2O3 interfacial layer grown by atomic layer deposition on the electrical properties of Au Schottky contacts to n-type InP. Considering barrier inhomogeneity, modified Richardson plots yielded a Richardson constant of 8.4 and 7.5 Acm-2K-2, respectively, for the sample with and without the Al2O3 interlayer (theoretical value of 9.4 Acm-2K-2 for n-type InP). The dominant reverse current flow for the sample with an Al2O3 interlayer was found to be Poole-Frenkel emission. From capacitance-voltage measurements, it was observed that the capacitance for the sample without the Al2O3 interlayer was frequency dependent. Sputter-induced defects as well as structural defects were passivated effectively with an Al2O3 interlayer.

  20. Effect of inversion layer at iron pyrite surface on photovoltaic device

    NASA Astrophysics Data System (ADS)

    Uchiyama, Shunsuke; Ishikawa, Yasuaki; Uraoka, Yukiharu

    2018-03-01

    Iron pyrite has great potential as a thin-film solar cell material because it has high optical absorption, low cost, and is earth-abundant. However, previously reported iron pyrite solar cells showed poor photovoltaic characteristics. Here, we have numerically simulated its photovoltaic characteristics and band structures by utilizing a two-dimensional (2D) device simulator, ATLAS, to evaluate the effects of an inversion layer at the surface and a high density of deep donor defect states in the bulk. We found that previous device structures did not consider the inversion layer at the surface region of iron pyrite, which made it difficult to obtain the conversion efficiency. Therefore, we remodeled the device structure and suggested that removing the inversion layer and reducing the density of deep donor defect states would lead to a high conversion efficiency of iron pyrite solar cells.

  1. Defect structure in electrodeposited nanocrystalline Ni layers with different Mo concentrations

    NASA Astrophysics Data System (ADS)

    Kapoor, Garima; Péter, László; Fekete, Éva; Gubicza, Jenő

    2018-05-01

    The effect of molybdenum (Mo) alloying on the lattice defect structure in electrodeposited nanocrystalline nickel (Ni) films was studied. The electrodeposited layers were prepared on copper substrate at room temperature, with a constant current density and pH value. The chemical composition of these layers was determined by EDS. In addition, X-ray diffraction line profile analysis was carried out to study the microstructural parameters such as the crystallite size, the dislocation density and the stacking fault probability. It was found that the higher Mo content yielded more than one order of magnitude larger dislocation density while the crystallite size was only slightly smaller. In addition, the twin boundary formation activity during deposition increased with increasing Mo concentration. The results obtained on electrodeposited layers were compared with previous research carried out on bulk nanocrystalline Ni-Mo materials with similar compositions but processed by severe plastic deformation.

  2. Repair of articular cartilage and subchondral defects in rabbit knee joints with a polyvinyl alcohol/nano-hydroxyapatite/polyamide 66 biological composite material.

    PubMed

    Guo, Tao; Tian, Xiaobin; Li, Bo; Yang, Tianfu; Li, Yubao

    2017-11-15

    This study sought to prepare a new PVA/n-HA/PA66 composite to investigate the repair of articular cartilage and subchondral defects in rabbit knee joints. A 5 × 5 × 5 mm-sized defect was created in the patellofemoral joints of 72 healthy adult New Zealand rabbits. The rabbits were then randomly divided into three groups (n = 24): PVA/n-HA+PA66 group, polyvinyl alcohol (PVA) group, and control (untreated) group. Cylindrical PVA/n-HA+PA66, 5 × 5 mm, comprised an upper PVA layer and a lower n-HA+PA66 layer. Macroscopic and histological evaluations were performed at 4, 8, 12, and 24 weeks, postoperatively. Type II collagen was measured by immunohistochemical staining. The implant/cartilage and bone interfaces were observed by scanning electron microscopy. At 24 weeks postoperatively, the lower PVA/n-HA+PA66 layer became surrounded by cartilage, with no obvious degeneration. In the PVA group, an enlarged space was observed between the implant and the host tissue that had undergone degeneration. In the control group, the articular cartilage had become calcified. In the PVA/n-HA+PA66 group, positive type II collagen staining was observed between the composite and the surrounding cartilage and on the implant surface. In the PVA group, positive staining was slightly increased between the PVA and the surrounding cartilage, but reduced on the PVA surface. In the control group, reduced staining was observed throughout. Scanning electron microscopy showed increased bone tissue in the lower n-HA+PA66 layer that was in close approximation with the upper PVA layer of the composite. In the PVA group, the bone tissue around the material had receded, and in the control group, the defect was filled with bone tissue, while the superior aspect of the defect was filled with disordered, fibrous tissue. The diphase biological composite material PVA/n-HA+PA66 exhibits good histocompatibility and offers a satisfactory substitute for articular cartilage and subchondral bone.

  3. Alternating phase-shifting masks: phase determination and impact of quartz defects--theoretical and experimental results

    NASA Astrophysics Data System (ADS)

    Griesinger, Uwe A.; Dettmann, Wolfgang; Hennig, Mario; Heumann, Jan P.; Koehle, Roderick; Ludwig, Ralf; Verbeek, Martin; Zarrabian, Mardjan

    2002-07-01

    In optical lithography balancing the aerial image of an alternating phase shifting mask (alt. PSM) is a major challenge. For the exposure wavelengths (currently 248nm and 193nm) an optimum etching method is necessary to overcome imbalance effects. Defects play an important role in the imbalances of the aerial image. In this contribution defects will be discussed by using the methodology of global phase imbalance control also for local imbalances which are a result of quartz defects. The effective phase error can be determined with an AIMS-system by measuring the CD width between the images of deep- and shallow trenches at different focus settings. The AIMS results are analyzed in comparison to the simulated and lithographic print results of the alternating structures. For the analysis of local aerial image imbalances it is necessary to investigate the capability of detecting these phase defects with state of the art inspection systems. Alternating PSMs containing programmed defects were inspected with different algorithms to investigate the capture rate of special phase defects in dependence on the defect size. Besides inspection also repair of phase defects is an important task. In this contribution we show the effect of repair on the optical behavior of phase defects. Due to the limited accuracy of the repair tools the repaired area still shows a certain local phase error. This error can be caused either by residual quartz material or a substrate damage. The influence of such repair induced phase errors on the aerial image were investigated.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, B. W.; Williamson, R. L.; Stafford, D. S.

    One of the important roles of cladding in light water reactor fuel rods is to prevent the release of fission products. To that end, it is essential that the cladding maintain its integrity under a variety of thermal and mechanical loading conditions. Local geometric irregularities in fuel pellets caused by manufacturing defects known as missing pellet surfaces (MPS) can in some circumstances lead to elevated cladding stresses that are sufficiently high to cause cladding failure. Accurate modeling of these defects can help prevent these types of failures. The BISON nuclear fuel performance code developed at Idaho National Laboratory can bemore » used to simulate the global thermo-mechanical fuel rod behavior, as well as the local response of regions of interest, in either 2D or 3D. In either case, a full set of models to represent the thermal and mechanical properties of the fuel, cladding and plenum gas is employed. A procedure for coupling 2D full-length fuel rod models to detailed 3D models of the region of the rod containing a MPS defect is detailed in this paper. The global and local model each contain appropriate physics and behavior models for nuclear fuel. This procedure is demonstrated on a simulation of a boiling water reactor (BWR) fuel rod containing a pellet with an MPS defect, subjected to a variety of transient events, including a control blade withdrawal and a ramp to high power. The importance of modeling the local defect using a 3D model is highlighted by comparing 3D and 2D representations of the defective pellet region. Finally, parametric studies demonstrate the effects of the choice of gaseous swelling model and of the depth and geometry of the MPS defect on the response of the cladding adjacent to the defect.« less

  5. Reduction in interface defect density in p-BaSi2/n-Si heterojunction solar cells by a modified pretreatment of the Si substrate

    NASA Astrophysics Data System (ADS)

    Yamashita, Yudai; Yachi, Suguru; Takabe, Ryota; Sato, Takuma; Emha Bayu, Miftahullatif; Toko, Kaoru; Suemasu, Takashi

    2018-02-01

    We have investigated defects that occurred at the interface of p-BaSi2/n-Si heterojunction solar cells that were fabricated by molecular beam epitaxy. X-ray diffraction measurements indicated that BaSi2 (a-axis-oriented) was subjected to in-plane compressive strain, which relaxed when the thickness of the p-BaSi2 layer exceeded 50 nm. Additionally, transmission electron microscopy revealed defects in the Si layer near steps that were present on the Si(111) substrate. Deep level transient spectroscopy revealed two different electron traps in the n-Si layer that were located at 0.33 eV (E1) and 0.19 eV (E2) below the conduction band edge. The densities of E1 and E2 levels in the region close to the heterointerface were approximately 1014 cm-3. The density of these electron traps decreased below the limits of detection following Si pretreatment to remove the oxide layers from the n-Si substrate, which involved heating the substrate to 800 °C for 30 min under ultrahigh vacuum while depositing a layer of Si (1 nm). The remaining traps in the n-Si layer were hole traps located at 0.65 eV (H1) and 0.38 eV (H2) above the valence band edge. Their densities were as low as 1010 cm-3. Following pretreatment, the current versus voltage characteristics of the p-BaSi2/n-Si solar cells under AM1.5 illumination were reproducible with conversion efficiencies beyond 5% when using a p-BaSi2 layer thickness of 100 nm. The origin of the H2 level is discussed.

  6. Plasmonic detection of possible defects in multilayer nanohole array consisting of essential materials in simplified STT-RAM cell

    NASA Astrophysics Data System (ADS)

    Sadri-Moshkenani, Parinaz; Khan, Mohammad Wahiduzzaman; Zhao, Qiancheng; Krivorotov, Ilya; Nilsson, Mikael; Bagherzadeh, Nader; Boyraz, Ozdal

    2017-08-01

    Plasmonic nanostructures are highly used for sensing purposes since they support plasmonic modes which make them highly sensitive to the refractive index change of their surrounding medium. Therefore, they can also be used to detect changes in optical properties of ultrathin layer films in a multilayer plasmonic structure. Here, we investigate the changes in optical properties of ultrathin films of macro structures consisting of STT-RAM layers. Among the highest sensitive plasmonic structures, nanohole array has attracted many research interest because of its ease of fabrication, small footprint, and simplified optical alignment. Hence it is more suitable for defect detection in STT-RAM geometries. Moreover, the periodic nanohole pattern in the nanohole array structure makes it possible to couple the light to the surface plasmon polariton (SPP) mode supported by the structure. To assess the radiation damages and defects in STT-RAM cells we have designed a multilayer nanohole array based on the layers used in STT-RAM structure, consisting 4nm- Ta/1.5nm-CoFeB/2nm-MgO/1.5nm-CoFeB/4nm-Ta layers, all on a 300nm silver layer on top of a PEC boundary. The nanoholes go through all the layers and become closed by the PEC boundary on one side. The dimensions of the designed nanoholes are 313nm depth, 350nm diameter, and 700nm period. Here, we consider the normal incidence of light and investigate zeroth-order reflection coefficient to observe the resonance. Our simulation results show that a 10% change in refractive index of the 2nm-thick MgO layer leads to about 122GHz shift in SPP resonance in reflection pattern.

  7. Local and transient nanoscale strain mapping during in situ deformation

    DOE PAGES

    Gammer, C.; Kacher, J.; Czarnik, C.; ...

    2016-08-26

    The mobility of defects such as dislocations controls the mechanical properties of metals. This mobility is determined both by the characteristics of the defect and the material, as well as the local stress and strain applied to the defect. Therefore, the knowledge of the stress and strain during deformation at the scale of defects is important for understanding fundamental deformation mechanisms. In this paper, we demonstrate a method of measuring local stresses and strains during continuous in situ deformation with a resolution of a few nanometers using nanodiffraction strain mapping. Finally, our results demonstrate how large multidimensional data sets capturedmore » with high speed electron detectors can be analyzed in multiple ways after an in situ TEM experiment, opening the door for true multimodal analysis from a single electron scattering experiment.« less

  8. Detecting wood surface defects with fusion algorithm of visual saliency and local threshold segmentation

    NASA Astrophysics Data System (ADS)

    Wang, Xuejuan; Wu, Shuhang; Liu, Yunpeng

    2018-04-01

    This paper presents a new method for wood defect detection. It can solve the over-segmentation problem existing in local threshold segmentation methods. This method effectively takes advantages of visual saliency and local threshold segmentation. Firstly, defect areas are coarsely located by using spectral residual method to calculate global visual saliency of them. Then, the threshold segmentation of maximum inter-class variance method is adopted for positioning and segmenting the wood surface defects precisely around the coarse located areas. Lastly, we use mathematical morphology to process the binary images after segmentation, which reduces the noise and small false objects. Experiments on test images of insect hole, dead knot and sound knot show that the method we proposed obtains ideal segmentation results and is superior to the existing segmentation methods based on edge detection, OSTU and threshold segmentation.

  9. Loss of syd-1 from R7 Neurons Disrupts Two Distinct Phases of Presynaptic Development

    PubMed Central

    Holbrook, Scott; Finley, Jennifer K.; Lyons, Eric L.

    2012-01-01

    Genetic analyses in both worm and fly have identified the RhoGAP-like protein Syd-1 as a key positive regulator of presynaptic assembly. In worm, loss of syd-1 can be fully rescued by overexpressing wild-type Liprin-α, suggesting that the primary function of Syd-1 in this process is to recruit Liprin-α. We show that loss of syd-1 from Drosophila R7 photoreceptors causes two morphological defects that occur at distinct developmental time points. First, syd-1 mutant R7 axons often fail to form terminal boutons in their normal M6 target layer. Later, those mutant axons that do contact M6 often project thin extensions beyond it. We find that the earlier defect coincides with a failure to localize synaptic vesicles, suggesting that it reflects a failure in presynaptic assembly. We then analyze the relationship between syd-1 and Liprin-α in R7s. We find that loss of Liprin-α causes a stronger early R7 defect and provide a possible explanation for this disparity: we show that Liprin-α promotes Kinesin-3/Unc-104/Imac-mediated axon transport independently of Syd-1 and that Kinesin-3/Unc-104/Imac is required for normal R7 bouton formation. Unlike loss of syd-1, loss of Liprin-α does not cause late R7 extensions. We show that overexpressing Liprin-α partly rescues the early but not the late syd-1 mutant R7 defect. We therefore conclude that the two defects are caused by distinct molecular mechanisms. We find that Trio overexpression rescues both syd-1 defects and that trio and syd-1 have similar loss- and gain-of-function phenotypes, suggesting that the primary function of Syd-1 in R7s may be to promote Trio activity. PMID:23238725

  10. Microbiological profile and potential hazards associated with imported and local brands of tomato paste in Nigeria.

    PubMed

    Efiuvwevwere, B J; Atirike, O I

    1998-03-01

    Cans of three tomato paste brands (two of which are imported and one produced locally) showing defective or normal appearance were purchased from various retail outlets and analysed for microbial composition and pH values. Substantially higher total viable counts were observed in samples from defective cans but the lowest population was found in the local brand. Ratio of mesophilic to thermophilic micro-organisms increased in samples obtained from cans showing visible defects. Anaerobic spore counts were higher than the aerobic population in both normal and defective cans, but the counts varied with the brands. Four dominant bacterial genera (Bacillus, Clostridium, Lactobacillus and Leuconostoc) were isolated from the samples with the greater proportion being spore-formers. Percentage occurrence of Clostridium thermosaccharolyticum was appreciably higher in samples from defective cans while a preponderance of Lactobacillus occurred in samples from normal cans. Of the moulds isolated, Absidia and Aspergillus fumigatus showed a higher percentage in defective cans. pH values higher than the critical safe level of 4.6 were found in cans with visible defects and greater microbial diversity with higher microbial load was more often associated with these samples. Imported brands showed more undesirable microbial quality and pH values, making them potentially hazardous.

  11. [Comparative study of the effects of sterilized air and perfluoropropane gas tamponades on recovery after idiopathic full-thickness macular hole surgery].

    PubMed

    He, F; Zheng, L; Dong, F T

    2017-05-11

    Objective: To compare the effects of sterilized air and perfluoropropane (C(3)F(8)) tamponades on recovery after vitrectomy for the treatment of idiopathic full-thickness macular hole (IFTMH). Methods: Case control study. Seventy-three eyes of 69 consecutive cases underwent vitrectomy with air (53 eyes) or 10% C(3)F(8) gas (20 eyes) tamponade. Surgical outcomes were retrospectively analyzed between the two groups, including logarithm of the minimal angle of resolution (logMAR) and optical coherence tomography findings like the size of the macular hole and the photoreceptor layer defect. Results: Preoperatively, the mean best corrected visual acuity (BCVA) was (0.10±0.49), the mean hole diameter was (777.9±320.7) μm, and the mean diameter of the photoreceptor layer defect was (1 709.3±516.0) μm in the sterilized air group, while in the C(3)F(8) group, the mean BCVA was (0.07±0.50), the mean hole diameter was (853.9±355.0) μm, and the mean defect diameter was (1 480.5±429.9) μm. The primary closure rate was 90.6% in the sterilized air group and 95.0% in the C(3)F(8) group. One month after surgery, the mean BCVA was (0.17±0.41), and the mean diameter of the photoreceptor layer defect was (820.5±598.0) μm in the sterilized air group, while in the C(3)F(8) group, the mean BCVA was 0.12±0.49, and the mean defect diameter was (762.5±658.0) μm. There was no statistically significant difference in the closure rate (χ(2)=0.019), BCVA ( t =-1.689), hole diameter ( t =0.837) and diameter of the photoreceptor layer defect ( t =0.338) between the two groups( P >0.05). Conclusions: Vitrectomy with sterilized air tamponade is safe and effective for the treatment of IFTMH and even cases with relatively large diameters. (Chin J Ophthalmol, 2017, 53: 327 - 331) .

  12. Study of lattice defect vibration

    NASA Technical Reports Server (NTRS)

    Elliott, R. J.

    1969-01-01

    Report on the vibrations of defects in crystals relates how defects, well localized in a crystal but interacting strongly with the other atoms, change the properties of a perfect crystal. The methods used to solve defect problems relate the properties of an imperfect lattice to the properties of a perfect lattice.

  13. Si amorphization by focused ion beam milling: Point defect model with dynamic BCA simulation and experimental validation.

    PubMed

    Huang, J; Loeffler, M; Muehle, U; Moeller, W; Mulders, J J L; Kwakman, L F Tz; Van Dorp, W F; Zschech, E

    2018-01-01

    A Ga focused ion beam (FIB) is often used in transmission electron microscopy (TEM) analysis sample preparation. In case of a crystalline Si sample, an amorphous near-surface layer is formed by the FIB process. In order to optimize the FIB recipe by minimizing the amorphization, it is important to predict the amorphous layer thickness from simulation. Molecular Dynamics (MD) simulation has been used to describe the amorphization, however, it is limited by computational power for a realistic FIB process simulation. On the other hand, Binary Collision Approximation (BCA) simulation is able and has been used to simulate ion-solid interaction process at a realistic scale. In this study, a Point Defect Density approach is introduced to a dynamic BCA simulation, considering dynamic ion-solid interactions. We used this method to predict the c-Si amorphization caused by FIB milling on Si. To validate the method, dedicated TEM studies are performed. It shows that the amorphous layer thickness predicted by the numerical simulation is consistent with the experimental data. In summary, the thickness of the near-surface Si amorphization layer caused by FIB milling can be well predicted using the Point Defect Density approach within the dynamic BCA model. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Topological defect clustering and plastic deformation mechanisms in functionalized graphene

    NASA Astrophysics Data System (ADS)

    Nunes, Ricardo; Araujo, Joice; Chacham, Helio

    2011-03-01

    We present ab initio results suggesting that strain plays a central role in the clustering of topological defects in strained and functionalized graphene models. We apply strain onto the topological-defect graphene networks from our previous work, and obtain topological-defect clustering patterns which are in excellent agreement with recent observations in samples of reduced graphene oxide. In our models, the graphene layer, containing an initial concentration of isolated topological defects, is covered by hydrogen or hydroxyl groups. Our results also suggest a rich variety of plastic deformation mechanism in functionalized graphene systems. We acknowledge support from the Brazilian agencies: CNPq, Fapemig, and INCT-Materiais de Carbono.

  15. Vertical GaN power diodes with a bilayer edge termination

    DOE PAGES

    Dickerson, Jeramy R.; Allerman, Andrew A.; Bryant, Benjamin N.; ...

    2015-12-07

    Vertical GaN power diodes with a bilayer edge termination (ET) are demonstrated. The GaN p-n junction is formed on a low threading dislocation defect density (10 4 - 10 5 cm -2) GaN substrate, and has a 15-μm-thick n-type drift layer with a free carrier concentration of 5 × 10 15 cm -3. The ET structure is formed by N implantation into the p+-GaN epilayer just outside the p-type contact to create compensating defects. The implant defect profile may be approximated by a bilayer structure consisting of a fully compensated layer near the surface, followed by a 90% compensated (p)more » layer near the n-type drift region. These devices exhibit avalanche breakdown as high as 2.6 kV at room temperature. In addition simulations show that the ET created by implantation is an effective way to laterally distribute the electric field over a large area. This increases the voltage at which impact ionization occurs and leads to the observed higher breakdown voltages.« less

  16. Optimization of the defects and the nonradiative lifetime of GaAs/AlGaAs double heterostructures

    NASA Astrophysics Data System (ADS)

    Cevher, Z.; Folkes, P. A.; Hier, H. S.; VanMil, B. L.; Connelly, B. C.; Beck, W. A.; Ren, Y. H.

    2018-04-01

    We used Raman scattering and time-resolved photoluminescence spectroscopy to investigate the molecular-beam-epitaxy (MBE) growth parameters that optimize the structural defects and therefore the internal radiative quantum efficiency of MBE-grown GaAs/AlGaAs double heterostructures (DH). The DH structures were grown at two different temperatures and three different As/Ga flux ratios to determine the conditions for an optimized structure with the longest nonradiative minority carrier lifetime. Raman scattering measurements show an improvement in the lattice disorder in the AlGaAs and GaAs layers as the As/Ga flux ratio is reduced from 40 to 15 and as the growth temperature is increased from 550 to 595 °C. The optimized structure is obtained with the As/Ga flux ratio equal to 15 and the substrate temperature 595 °C. This is consistent with the fact that the optimized structure has the longest minority carrier lifetime. Moreover, our Raman studies reveal that incorporation of a distributed Bragg reflector layer between the substrate and DH structures significantly reduces the defect density in the subsequent epitaxial layers.

  17. Corrosion behavior of ceramic-coated ZIRLO™ exposed to supercritical water

    NASA Astrophysics Data System (ADS)

    Mandapaka, Kiran K.; Cahyadi, Rico S.; Yalisove, Steven; Kuang, Wenjun; Sickafus, K.; Patel, Maulik K.; Was, Gary S.

    2018-01-01

    The corrosion behavior of ceramic coated ZIRLO™ tubing was evaluated in a supercritical water (SCW) environment to determine its behavior in high temperature water. Two coating architectures were analyzed; a 4 bi-layer TiAlN/TiN coating with Ti bond coat, and a TiN monolithic coating with Ti bond layer on ZIRLO™ tubes using cathodic arc physical vapor deposition (CA-PVD) technique. Femtosecond laser ablation was used to introduce reproducible defects in some of the coated tubes. On exposure to deaerated supercritical water at 542 °C for 48 h, coated tubes exhibited significantly higher weight gain compared to uncoated ZIRLO™. Examination revealed formation of a uniform ZrO2 layer beneath the coating of a thickness similar to that on the uncoated tube inner surface. The defects generated during the coating process acted as preferential paths for diffusion of oxygen resulting in the oxidation of substrate ZIRLO™. However, there was no delamination of the coating. There were insignificant differences in the oxidation weight gain between laser ablated and non-ablated tubes and the laser induced defects did not spread beyond their original size.

  18. Room-temperature bonding of epitaxial layer to carbon-cluster ion-implanted silicon wafers for CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Koga, Yoshihiro; Kadono, Takeshi; Shigematsu, Satoshi; Hirose, Ryo; Onaka-Masada, Ayumi; Okuyama, Ryousuke; Okuda, Hidehiko; Kurita, Kazunari

    2018-06-01

    We propose a fabrication process for silicon wafers by combining carbon-cluster ion implantation and room-temperature bonding for advanced CMOS image sensors. These carbon-cluster ions are made of carbon and hydrogen, which can passivate process-induced defects. We demonstrated that this combination process can be used to form an epitaxial layer on a carbon-cluster ion-implanted Czochralski (CZ)-grown silicon substrate with a high dose of 1 × 1016 atoms/cm2. This implantation condition transforms the top-surface region of the CZ-grown silicon substrate into a thin amorphous layer. Thus, an epitaxial layer cannot be grown on this implanted CZ-grown silicon substrate. However, this combination process can be used to form an epitaxial layer on the amorphous layer of this implanted CZ-grown silicon substrate surface. This bonding wafer has strong gettering capability in both the wafer-bonding region and the carbon-cluster ion-implanted projection range. Furthermore, this wafer inhibits oxygen out-diffusion to the epitaxial layer from the CZ-grown silicon substrate after device fabrication. Therefore, we believe that this bonding wafer is effective in decreasing the dark current and white-spot defect density for advanced CMOS image sensors.

  19. He+ ion irradiation response of Fe–TiO2 multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderoglu, O.; Zhou, M. J.; Zhang, J.

    2013-04-01

    The accumulation of radiation-induced defect clusters and He bubble formation in He+ ion irradiated nanocrystalline TiO2 and Fe–TiO2 multilayer thin films were investigated using transmission electron microscopy (TEM). Prior to ion irradiation it was found that the crystallinity of TiO2 layers depends on the individual layer thickness: While all TiO2 layers are amorphous at 5 nm individual layer thickness, at 100 nm they are crystalline with a rutile polymorph. After He+ irradiation up to ~6 dpa at room temperature, amorphization of TiO2 layers was not observed in both nanocrystalline TiO2 single layers and Fe–TiO2 multilayers. The suppression of radiation-induced amorphizationmore » in TiO2 is interpreted in terms of a high density of defect sinks in these nano-composites in the form of Fe–TiO2 interphase boundaries and columnar grains within each layer with nano-scale intercolumnar porosity. In addition, a high concentration of He is believed to be trapped at these interfaces in the form of sub-nanometer-scale clusters retarding the formation of relatively larger He bubbles that can be resolved in TEM.« less

  20. Prediction of ppm level electrical failure by using physical variation analysis

    NASA Astrophysics Data System (ADS)

    Hou, Hsin-Ming; Kung, Ji-Fu; Hsu, Y.-B.; Yamazaki, Y.; Maruyama, Kotaro; Toyoshima, Yuya; Chen, Chu-en

    2016-03-01

    The quality of patterns printed on wafer may be attributed to factors such as process window control, pattern fidelity, overlay performance, and metrology. Each of these factors play an important role in making the process more effective by ensuring that certain design- and process-specific parameters are kept within acceptable variation. Since chip size and pattern density are increasing accordingly, in-line real time catching the in-chip weak patterns/defects per million opportunities (WP-DPMO) plays more and more significant role for product yield with high density memory. However, the current in-line inspection tools focus on single layer defect inspection, not effectively and efficiently to catch multi-layer weak patterns/defects even through voltage contrast and/or special test structure design [1]-[2]. In general, the multi-layer weak patterns/defects are escaped easily by using in-line inspection and cause ignorance of product dysfunction until off-line time-consuming final PFA/EFA will be used. To effectively and efficiently in-line real time monitor the potential multi-layer weak patterns, we quantify the bridge electrical metric between contact and gate electrodes into CD physical metric via big data from the larger field of view (FOV: 8k x 16k with 3 nm pixel equalizes to image main field size 34 um x 34 um @ 3 nm pixel) e-beam quality image contour compared to layout GDS database (D2DB) as shown in Fig. 1. Hadoop-based distributed parallel computing is implemented to improve the performance of big data architectures, Fig. 2. Therefore, the state of art in-line real time catching in-chip potential multi-layer weak patterns can be proven and achieved by following some studying cases [3]. Therefore, manufacturing sources of variations can be partitioned to systematic and random variations by applying statistical techniques based on the big data fundamental infrastructures. After big data handling, the in-chip CD and AA variations are distinguished by their spatial correlation distance. For local variations (LV) there is no correlation, whereas for global variations (GV) the correlation distance is very large [7]-[9]. This is the first time to certificate the validation of spatial distribution from the affordable bias contour big data fundamental infrastructures. And then apply statistical techniques to dig out the variation sources. The GV come from systematic issue, which could be compensated by adaptive LT condition or OPC correction. But LV comes from random issue, which being considered as intrinsic problem such as structure, material, tool capability… etc. In this paper studying, we can find out the advanced technology node SRAM contact CD local variation (LV) dominates in total variation, about 70%. It often plays significant in-line real time catching WP-DPMO role of the product yield loss, especially for wafer edge is the worst loss within wafer distribution and causes serious reliability concern. The major root cause of variations comes from the PR material induced burr defect (LV), the second one comes from GV enhanced wafer edge short opportunity, which being attributed to three factors, first one factor is wafer edge CD deliberated enlargement for yield improvement as shown in Fig. 10. Second factor is overlaps/AA shifts due to tool capability dealing with incoming wafer's war page issue and optical periphery layout dependent working pitch issue as shown in Fig. 9 (1)., the last factor comes from wafer edge burr enhanced by wafer edge larger Photo Resistance (PR) spin centrifugal force. After implementing KPIs such as GV related AA/CD indexes as shown in Fig. 9 (1) and 10, respectively, and LV related burr index as shown in Fig. 11., we can construct the parts per million (PPM) level short probability model via multi-variables regression, canonical correlation analysis and logistic transformation. The model provides prediction of PPM level electrical failure by using in-line real time physical variation analysis. However in order to achieve Total Quality Management (TQM), the adaptive Statistical Process Control (SPC) charts can be implemented to in-line real time catch PPM level product malfunction at manufacturing stage. Applying for early stage monitor likes incoming raw material, Photo Resistance (PR) … etc., the LV related burr KPI SPC charts could be a powerful quality inspection vehicle. To sum up the paper's contributions, the state of art in-line real time catching in-chip potential multi-layer physical weak patterns can be proven and achieved effectively and efficiently to associate with PPM level product dysfunction.

Top