Sample records for local diffusion coefficients

  1. Molecular dynamics simulation of solute diffusion in Lennard-Jones fluids

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Kimura, Y.; Hirota, N.

    We performed a molecular dynamics (MD) simulation for a system of 5 solute molecules in 495 solvent molecules interacting through the Lennard-Jones (LJ) 12-6 potential, in order to study solvent density effects on the diffusion coefficients in supercritical fluids. The effects of the size of the solute and the strength of the solute-solvent attractive interaction on the diffusion coefficient of the solute were examined. The diffusion coefficients of the solute molecules were calculated at T = 1.5 (in the LJ reduced unit), slightly above the critical temperature, from rho = 0.1 to rho = 0.95, where rho is the number density in the LJ reduced unit. The memory function in the generalized Langevin equation was calculated, in order to know the molecular origin of the friction on a solute. The memory function is separated into fast and slow components. The former arises from the solute-solvent repulsive interaction, and is interpreted as collisional Enskog-like friction. The interaction strength dependence of the collisional friction is larger in the low- and medium-density regions, which is consistent with the 'clustering' picture, i.e., the local density enhancement due to the solute-solvent attractive interaction. However, the slow component of the memory function suppresses the effect of the local density on the diffusion coefficients, and as a result the effect of the attractive interaction is smaller on the diffusion coefficients than on the local density. Nonetheless, the solvent density dependence of the effect of the attraction on the diffusion coefficient varies with the local density, and it is concluded that the local density is the principal factor that determines the interaction strength dependence of the diffusion coefficient in the low- and medium-density regions (p < 0.6).

  2. Measurement of gas diffusion coefficient in liquid-saturated porous media using magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Song, Yongchen; Hao, Min; Zhao, Yuechao; Zhang, Liang

    2014-12-01

    In this study, the dual-chamber pressure decay method and magnetic resonance imaging (MRI) were used to dynamically visualize the gas diffusion process in liquid-saturated porous media, and the relationship of concentration-distance for gas diffusing into liquid-saturated porous media at different times were obtained by MR images quantitative analysis. A non-iterative finite volume method was successfully applied to calculate the local gas diffusion coefficient in liquid-saturated porous media. The results agreed very well with the conventional pressure decay method, thus it demonstrates that the method was feasible of determining the local diffusion coefficient of gas in liquid-saturated porous media at different times during diffusion process.

  3. Measuring the Local Diffusion Coefficient with H.E.S.S. Observations of Very High-Energy Electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, Dan; Linden, Tim

    2017-11-20

    The HAWC Collaboration has recently reported the detection of bright and spatially extended multi-TeV gamma-ray emission from Geminga, Monogem, and a handful of other nearby, middle-aged pulsars. The angular profile of the emission observed from these pulsars is surprising, in that it implies that cosmic-ray diffusion is significantly inhibited within ~25 pc of these objects, compared to the expectations of standard Galactic diffusion models. This raises the important question of whether the diffusion coefficient in the local interstellar medium is also low, or whether it is instead better fit by the mean Galactic value. Here, we utilize recent observations ofmore » the cosmic-ray electron spectrum (extending up to ~20 TeV) by the H.E.S.S. Collaboration to show that the local diffusion coefficient cannot be as low as it is in the regions surrounding Geminga and Monogem. Instead, we conclude that cosmic rays efficiently diffuse through the bulk of the local interstellar medium. Among other implications, this further supports the conclusion that pulsars significantly contribute to the observed positron excess.« less

  4. Local texture descriptors for the assessment of differences in diffusion magnetic resonance imaging of the brain.

    PubMed

    Thomsen, Felix Sebastian Leo; Delrieux, Claudio Augusto; de Luis-García, Rodrigo

    2017-03-01

    Descriptors extracted from magnetic resonance imaging (MRI) of the brain can be employed to locate and characterize a wide range of pathologies. Scalar measures are typically derived within a single-voxel unit, but neighborhood-based texture measures can also be applied. In this work, we propose a new set of descriptors to compute local texture characteristics from scalar measures of diffusion tensor imaging (DTI), such as mean and radial diffusivity, and fractional anisotropy. We employ weighted rotational invariant local operators, namely standard deviation, inter-quartile range, coefficient of variation, quartile coefficient of variation and skewness. Sensitivity and specificity of those texture descriptors were analyzed with tract-based spatial statistics of the white matter on a diffusion MRI group study of elderly healthy controls, patients with mild cognitive impairment (MCI), and mild or moderate Alzheimer's disease (AD). In addition, robustness against noise has been assessed with a realistic diffusion-weighted imaging phantom and the contamination of the local neighborhood with gray matter has been measured. The new texture operators showed an increased ability for finding formerly undetected differences between groups compared to conventional DTI methods. In particular, the coefficient of variation, quartile coefficient of variation, standard deviation and inter-quartile range of the mean and radial diffusivity detected significant differences even between previously not significantly discernible groups, such as MCI versus moderate AD and mild versus moderate AD. The analysis provided evidence of low contamination of the local neighborhood with gray matter and high robustness against noise. The local operators applied here enhance the identification and localization of areas of the brain where cognitive impairment takes place and thus indicate them as promising extensions in diffusion MRI group studies.

  5. Determination of diffusion coefficient in disordered organic semiconductors

    NASA Astrophysics Data System (ADS)

    Rani, Varsha; Sharma, Akanksha; Ghosh, Subhasis

    2016-05-01

    Charge carrier transport in organic semiconductors is dominated by positional and energetic disorder in Gaussian density of states (GDOS) and is characterized by hopping through localized states. Due to the immobilization of charge carriers in these localized states, significant non-uniform carrier distribution exists, resulting diffusive transport. A simple, nevertheless powerful technique to determine diffusion coefficient D in disordered organic semiconductors has been presented. Diffusion coefficients of charge carriers in two technologically important organic molecular semiconductors, Pentacene and copper phthalocyanine (CuPc) have been measured from current-voltage (J-V) characteristics of Al/Pentacene/Au and Al/CuPc/Au based Schottky diodes. Ideality factor g and carrier mobility μ have been calculated from the exponential and space charge limited region respectively of J-V characteristics. Classical Einstein relation is not valid in organic semiconductors due to energetic disorders in DOS. Using generalized Einstein relation, diffusion coefficients have been obtained to be 1.31×10-6 and 1.73×10-7 cm2/s for Pentacene and CuPc respectively.

  6. Investigation of the Effect of the Tortuous Pore Structure on Water Diffusion through a Polymer Film Using Lattice Boltzmann Simulations.

    PubMed

    Gebäck, Tobias; Marucci, Mariagrazia; Boissier, Catherine; Arnehed, Johan; Heintz, Alexei

    2015-04-23

    Understanding how the pore structure influences the mass transport through a porous material is important in several applications, not the least in the design of polymer film coatings intended to control drug release. In this study, a polymer film made of ethyl cellulose and hydroxypropyl cellulose was investigated. The 3D structure of the films was first experimentally characterized using confocal laser scanning microscopy data and then mathematically reconstructed for the whole film thickness. Lattice Boltzmann simulations were performed to compute the effective diffusion coefficient of water in the film and the results were compared to experimental data. The local porosities and pore sizes were also analyzed to determine how the properties of the internal film structure affect the water effective diffusion coefficient. The results show that the top part of the film has lower porosity, lower pore size, and lower connectivity, which results in a much lower effective diffusion coefficient in this part, largely determining the diffusion rate through the entire film. Furthermore, the local effective diffusion coefficients were not proportional to the local film porosity, indicating that the results cannot be explained by a single tortuosity factor. In summary, the proposed methodology of combining microscopy data, mass transport simulations, and pore space analysis can give valuable insights on how the film structure affects the mass transport through the film.

  7. Anisotropic Brownian motion in ordered phases of DNA fragments.

    PubMed

    Dobrindt, J; Rodrigo Teixeira da Silva, E; Alves, C; Oliveira, C L P; Nallet, F; Andreoli de Oliveira, E; Navailles, L

    2012-01-01

    Using Fluorescence Recovery After Photobleaching, we investigate the Brownian motion of DNA rod-like fragments in two distinct anisotropic phases with a local nematic symmetry. The height of the measurement volume ensures the averaging of the anisotropy of the in-plane diffusive motion parallel or perpendicular to the local nematic director in aligned domains. Still, as shown in using a model specifically designed to handle such a situation and predicting a non-Gaussian shape for the bleached spot as fluorescence recovery proceeds, the two distinct diffusion coefficients of the DNA particles can be retrieved from data analysis. In the first system investigated (a ternary DNA-lipid lamellar complex), the magnitude and anisotropy of the diffusion coefficient of the DNA fragments confined by the lipid bilayers are obtained for the first time. In the second, binary DNA-solvent system, the magnitude of the diffusion coefficient is found to decrease markedly as DNA concentration is increased from isotropic to cholesteric phase. In addition, the diffusion coefficient anisotropy measured within cholesteric domains in the phase coexistence region increases with concentration, and eventually reaches a high value in the cholesteric phase.

  8. Self-diffusion Coefficient and Structure of Binary n-Alkane Mixtures at the Liquid-Vapor Interfaces.

    PubMed

    Chilukoti, Hari Krishna; Kikugawa, Gota; Ohara, Taku

    2015-10-15

    The self-diffusion coefficient and molecular-scale structure of several binary n-alkane liquid mixtures in the liquid-vapor interface regions have been examined using molecular dynamics simulations. It was observed that in hexane-tetracosane mixture hexane molecules are accumulated in the liquid-vapor interface region and the accumulation intensity decreases with increase in a molar fraction of hexane in the examined range. Molecular alignment and configuration in the interface region of the liquid mixture change with a molar fraction of hexane. The self-diffusion coefficient in the direction parallel to the interface of both tetracosane and hexane in their binary mixture increases in the interface region. It was found that the self-diffusion coefficient of both tetracosane and hexane in their binary mixture is considerably higher in the vapor side of the interface region as the molar fraction of hexane goes lower, which is mostly due to the increase in local free volume caused by the local structure of the liquid in the interface region.

  9. Recursion equations in predicting band width under gradient elution.

    PubMed

    Liang, Heng; Liu, Ying

    2004-06-18

    The evolution of solute zone under gradient elution is a typical problem of non-linear continuity equation since the local diffusion coefficient and local migration velocity of the mass cells of solute zones are the functions of position and time due to space- and time-variable mobile phase composition. In this paper, based on the mesoscopic approaches (Lagrangian description, the continuity theory and the local equilibrium assumption), the evolution of solute zones in space- and time-dependent fields is described by the iterative addition of local probability density of the mass cells of solute zones. Furthermore, on macroscopic levels, the recursion equations have been proposed to simulate zone migration and spreading in reversed-phase high-performance liquid chromatography (RP-HPLC) through directly relating local retention factor and local diffusion coefficient to local mobile phase concentration. This new approach differs entirely from the traditional theories on plate concept with Eulerian description, since band width recursion equation is actually the accumulation of local diffusion coefficients of solute zones to discrete-time slices. Recursion equations and literature equations were used in dealing with same experimental data in RP-HPLC, and the comparison results show that the recursion equations can accurately predict band width under gradient elution.

  10. Measurements of exciton diffusion by degenerate four-wave mixing in CdS1-xSex

    NASA Astrophysics Data System (ADS)

    Schwab, H.; Pantke, K.-H.; Hvam, J. M.; Klingshirn, C.

    1992-09-01

    We performed transient-grating experiments to study the diffusion of excitons in CdS1-xSex mixed crystals. The decay of the initially created exciton density grating is well described for t<=1 ns by a stretched-exponential function. For later times this decay changes over to a behavior that is well fitted by a simple exponential function. During resonant excitation of the localized states, we find the diffusion coefficient (D) to be considerably smaller than in the binary compounds CdSe and CdS. At 4.2 K, D is below our experimental resolution which is about 0.025 cm2/s. With increasing lattice temperature (Tlattice) the diffusion coefficient increases. It was therefore possible to prove, in a diffusion experiment, that at Tlattice<=5 K the excitons are localized, while the exciton-phonon interaction leads to a delocalization and thus to the onset of diffusion. It was possible to deduce the diffusion coefficient of the extended excitons as well as the energetic position of the mobility edge.

  11. Single-molecule diffusion and conformational dynamics by spatial integration of temporal fluctuations

    PubMed Central

    Serag, Maged F.; Abadi, Maram; Habuchi, Satoshi

    2014-01-01

    Single-molecule localization and tracking has been used to translate spatiotemporal information of individual molecules to map their diffusion behaviours. However, accurate analysis of diffusion behaviours and including other parameters, such as the conformation and size of molecules, remain as limitations to the method. Here, we report a method that addresses the limitations of existing single-molecular localization methods. The method is based on temporal tracking of the cumulative area occupied by molecules. These temporal fluctuations are tied to molecular size, rates of diffusion and conformational changes. By analysing fluorescent nanospheres and double-stranded DNA molecules of different lengths and topological forms, we demonstrate that our cumulative-area method surpasses the conventional single-molecule localization method in terms of the accuracy of determined diffusion coefficients. Furthermore, the cumulative-area method provides conformational relaxation times of structurally flexible chains along with diffusion coefficients, which together are relevant to work in a wide spectrum of scientific fields. PMID:25283876

  12. Transport diffusion in deformed carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Feng, Jiamei; Chen, Peirong; Zheng, Dongqin; Zhong, Weirong

    2018-03-01

    Using non-equilibrium molecular dynamics and Monte Carlo methods, we have studied the transport diffusion of gas in deformed carbon nanotubes. Perfect carbon nanotube and various deformed carbon nanotubes are modeled as transport channels. It is found that the transport diffusion coefficient of gas does not change in twisted carbon nanotubes, but changes in XY-distortion, Z-distortion and local defect carbon nanotubes comparing with that of the perfect carbon nanotube. Furthermore, the change of transport diffusion coefficient is found to be associated with the deformation factor. The relationship between transport diffusion coefficient and temperature is also discussed in this paper. Our results may contribute to understanding the mechanism of molecular transport in nano-channel.

  13. Analytic expressions for ULF wave radiation belt radial diffusion coefficients

    PubMed Central

    Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K

    2014-01-01

    We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440

  14. Diffusion of neutral and ionic species in charged membranes: boric acid, arsenite, and water.

    PubMed

    Goli, Esmaiel; Hiemstra, Tjisse; Van Riemsdijk, Willem H; Rahnemaie, Rasoul; Malakouti, Mohammad Jafar

    2010-10-15

    Dynamic ion speciation using DMT (Donnan membrane technique) requires insight into the physicochemical characteristics of diffusion in charged membranes (tortuosity, local diffusion coefficients) as well as ion accumulation. The latter can be precluded by studying the diffusion of neutral species, such as boric acid, B(OH)₃⁰(aq), arsenite, As(OH)₃⁰(aq), or water. In this study, the diffusion rate of B(OH)₃⁰ has been evaluated as a function of the concentration, pH, and ionic strength. The rate is linearly dependent on the concentration of solely the neutral species, without a significant contribution of negatively charged species such as B(OH)₄⁻, present at high pH. A striking finding is the very strong effect (factor of ~10) of the type of cation (K(+), Na(+), Ca(2+), Mg(2+), Al(3+), and H(+)) on the diffusion coefficient of B(OH)₃⁰ and also As(OH)₃⁰. The decrease of the diffusion coefficient can be rationalized as an enhancement of the mean viscosity of the confined solution in the membrane. The diffusion coefficients can be described by a semiempirical relationship, linking the mean viscosity of the confined solute of the membrane to the viscosity of the free solution. In proton-saturated membranes, as used in fuel cells, viscosity is relatively more enhanced; i.e., a stronger water network is formed. Extraordinarily, our B(OH)₃-calibrated model (in HNO₃) correctly predicts the reported diffusion coefficient of water (D(H₂O)), measured with ¹H NMR and quasi-elastic neutron scattering in H(+)-Nafion membranes. Upon drying these membranes, the local hydronium, H(H₂O)(n)(+), concentration and corresponding viscosity increase, resulting in a severe reduction of the diffusion coefficient (D(H₂O) ≈ 5-50 times), in agreement with the model. The present study has a second goal, i.e., development of the methodology for measuring the free concentration of neutral species in solution. Our data suggest that the free concentration can be measured with DMT in natural systems if one accounts for the variation in the cation composition of the membrane and corresponding viscosity/diffusion coefficient.

  15. Distributional behavior of diffusion coefficients obtained by single trajectories in annealed transit time model

    NASA Astrophysics Data System (ADS)

    Akimoto, Takuma; Yamamoto, Eiji

    2016-12-01

    Local diffusion coefficients in disordered systems such as spin glass systems and living cells are highly heterogeneous and may change over time. Such a time-dependent and spatially heterogeneous environment results in irreproducibility of single-particle-tracking measurements. Irreproducibility of time-averaged observables has been theoretically studied in the context of weak ergodicity breaking in stochastic processes. Here, we provide rigorous descriptions of equilibrium and non-equilibrium diffusion processes for the annealed transit time model, which is a heterogeneous diffusion model in living cells. We give analytical solutions for the mean square displacement (MSD) and the relative standard deviation of the time-averaged MSD for equilibrium and non-equilibrium situations. We find that the time-averaged MSD grows linearly with time and that the time-averaged diffusion coefficients are intrinsically random (irreproducible) even in the long-time measurements in non-equilibrium situations. Furthermore, the distribution of the time-averaged diffusion coefficients converges to a universal distribution in the sense that it does not depend on initial conditions. Our findings pave the way for a theoretical understanding of distributional behavior of the time-averaged diffusion coefficients in disordered systems.

  16. The Gini coefficient: a methodological pilot study to assess fetal brain development employing postmortem diffusion MRI.

    PubMed

    Viehweger, Adrian; Riffert, Till; Dhital, Bibek; Knösche, Thomas R; Anwander, Alfred; Stepan, Holger; Sorge, Ina; Hirsch, Wolfgang

    2014-10-01

    Diffusion-weighted imaging (DWI) is important in the assessment of fetal brain development. However, it is clinically challenging and time-consuming to prepare neuromorphological examinations to assess real brain age and to detect abnormalities. To demonstrate that the Gini coefficient can be a simple, intuitive parameter for modelling fetal brain development. Postmortem fetal specimens(n = 28) were evaluated by diffusion-weighted imaging (DWI) on a 3-T MRI scanner using 60 directions, 0.7-mm isotropic voxels and b-values of 0, 150, 1,600 s/mm(2). Constrained spherical deconvolution (CSD) was used as the local diffusion model. Fractional anisotropy (FA), apparent diffusion coefficient (ADC) and complexity (CX) maps were generated. CX was defined as a novel diffusion metric. On the basis of those three parameters, the Gini coefficient was calculated. Study of fetal brain development in postmortem specimens was feasible using DWI. The Gini coefficient could be calculated for the combination of the three diffusion parameters. This multidimensional Gini coefficient correlated well with age (Adjusted R(2) = 0.59) between the ages of 17 and 26 gestational weeks. We propose a new method that uses an economics concept, the Gini coefficient, to describe the whole brain with one simple and intuitive measure, which can be used to assess the brain's developmental state.

  17. Liquid Aluminum: Atomic diffusion and viscosity from ab initio molecular dynamics

    PubMed Central

    Jakse, Noel; Pasturel, Alain

    2013-01-01

    We present a study of dynamic properties of liquid aluminum using density-functional theory within the local-density (LDA) and generalized gradient (GGA) approximations. We determine the temperature dependence of the self-diffusion coefficient as well the viscosity using direct methods. Comparisons with experimental data favor the LDA approximation to compute dynamic properties of liquid aluminum. We show that the GGA approximation induce more important backscattering effects due to an enhancement of the icosahedral short range order (ISRO) that impact directly dynamic properties like the self-diffusion coefficient. All these results are then used to test the Stokes-Einstein relation and the universal scaling law relating the diffusion coefficient and the excess entropy of a liquid. PMID:24190311

  18. Effects of different cooling treatments on water diffusion, microcirculation, and water content within exercised muscles: evaluation by magnetic resonance T2-weighted and diffusion-weighted imaging.

    PubMed

    Yanagisawa, Osamu; Takahashi, Hideyuki; Fukubayashi, Toru

    2010-09-01

    In this study, we determined the effects of different cooling treatments on exercised muscles. Seven adults underwent four post-exercise treatments (20-min ice-bag application, 60-min gel-pack application at 10 degrees C and 17 degrees C, and non-cooling treatment) with at least 1 week between treatments. Magnetic resonance diffusion- and T2-weighted images were obtained to calculate the apparent diffusion coefficients (apparent diffusion coefficient 1, which reflects intramuscular water diffusion and microcirculation, and apparent diffusion coefficient 2, which is approximately equal to the true diffusion coefficient that excludes as much of the effect of intramuscular microcirculation as possible) and the T2 values (intramuscular water content level) of the ankle dorsiflexors, respectively, before and after ankle dorsiflexion exercise and after post-exercise treatment. The T2 values increased significantly after exercise and returned to pre-exercise values after each treatment; no significant differences were observed among the four post-exercise treatments. Both apparent diffusion coefficients also increased significantly after exercise and decreased significantly after the three cooling treatments; no significant difference was detected among the three cooling treatments. Local cooling suppresses both water diffusion and microcirculation within exercised muscles. Moreover, although the treatment time was longer, adequate cooling effects could be achieved using the gel-pack applications at relatively mild cooling temperatures.

  19. Coupled low-energy - ring current plasma diffusion in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Summers, D.; Siscoe, G. L.

    1985-01-01

    The outwardly diffusing Iogenic plasma and the simultaneously inwardly diffusing ring current plasma in the Jovian magnetosphere are described using a coupled diffusion model which incorporates the effects of the pressure gradient of the ring current into the cross-L diffusion coefficient. The coupled diffusion coefficient is derived by calculating the total energy available to drive the diffusion process. The condition is imposed that the diffusion coefficient takes on a local minimum value at some point in the region L = 7-8, at which point the gradient of the Io plasma density is specified as ramp value given by Siscoe et al. (1981). The hypothesis that the pressure gradient of the ring current causes the diminution of radial plasma transport is tested, and solution profiles for the Iogenic and ring current plasma densities are obtained which imply that the Io plasma ramp is caused by a high-density, low-energy component of the ring current hitherto unobserved directly.

  20. Microscale diffusion measurements and simulation of a scaffold with a permeable strut.

    PubMed

    Lee, Seung Youl; Lee, Byung Ryong; Lee, Jongwan; Kim, Seongjun; Kim, Jung Kyung; Jeong, Young Hun; Jin, Songwan

    2013-10-10

    Electrospun nanofibrous structures provide good performance to scaffolds in tissue engineering. We measured the local diffusion coefficients of 3-kDa FITC-dextran in line patterns of electrospun nanofibrous structures fabricated by the direct-write electrospinning (DWES) technique using the fluorescence recovery after photobleaching (FRAP) method. No significant differences were detected between DWES line patterns fabricated with polymer supplied at flow rates of 0.1 and 0.5 mL/h. The oxygen diffusion coefficients of samples were estimated to be ~92%-94% of the oxygen diffusion coefficient in water based on the measured diffusion coefficient of 3-kDa FITC-dextran. We also simulated cell growth and distribution within spatially patterned scaffolds with struts consisting of either oxygen-permeable or non-permeable material. The permeable strut scaffolds exhibited enhanced cell growth. Saturated depths at which cells could grow to confluence were 15% deeper for the permeable strut scaffolds than for the non-permeable strut scaffold.

  1. Transition density of one-dimensional diffusion with discontinuous drift

    NASA Technical Reports Server (NTRS)

    Zhang, Weijian

    1990-01-01

    The transition density of a one-dimensional diffusion process with a discontinuous drift coefficient is studied. A probabilistic representation of the transition density is given, illustrating the close connections between discontinuities of the drift and Brownian local times. In addition, some explicit results are obtained based on the trivariate density of Brownian motion, its occupation, and local times.

  2. Synchronization criteria for generalized reaction-diffusion neural networks via periodically intermittent control.

    PubMed

    Gan, Qintao; Lv, Tianshi; Fu, Zhenhua

    2016-04-01

    In this paper, the synchronization problem for a class of generalized neural networks with time-varying delays and reaction-diffusion terms is investigated concerning Neumann boundary conditions in terms of p-norm. The proposed generalized neural networks model includes reaction-diffusion local field neural networks and reaction-diffusion static neural networks as its special cases. By establishing a new inequality, some simple and useful conditions are obtained analytically to guarantee the global exponential synchronization of the addressed neural networks under the periodically intermittent control. According to the theoretical results, the influences of diffusion coefficients, diffusion space, and control rate on synchronization are analyzed. Finally, the feasibility and effectiveness of the proposed methods are shown by simulation examples, and by choosing different diffusion coefficients, diffusion spaces, and control rates, different controlled synchronization states can be obtained.

  3. Response of radiation belt simulations to different radial diffusion coefficients for relativistic and ultra-relativistic electrons

    NASA Astrophysics Data System (ADS)

    Drozdov, Alexander; Mann, Ian; Baker, Daniel N.; Subbotin, Dmitriy; Ozeke, Louis; Shprits, Yuri; Kellerman, Adam

    Two parameterizations of the resonant wave-particle interactions of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate the effect of changing a diffusion coefficient on the radiation belt simulation. The period of investigation includes geomagnetically quiet and active time. The simulations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. 1. Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 2. Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.

  4. Experimental investigation of turbulent diffusion of slightly buoyant droplets in locally isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Gopalan, Balaji; Malkiel, Edwin; Katz, Joseph

    2008-09-01

    High-speed inline digital holographic cinematography is used for studying turbulent diffusion of slightly buoyant 0.5-1.2 mm diameter diesel droplets and 50 μm diameter neutral density particles. Experiments are performed in a 50×50×70 mm3 sample volume in a controlled, nearly isotropic turbulence facility, which is characterized by two dimensional particle image velocimetry. An automated tracking program has been used for measuring velocity time history of more than 17 000 droplets and 15 000 particles. For most of the present conditions, rms values of horizontal droplet velocity exceed those of the fluid. The rms values of droplet vertical velocity are higher than those of the fluid only for the highest turbulence level. The turbulent diffusion coefficient is calculated by integration of the ensemble-averaged Lagrangian velocity autocovariance. Trends of the asymptotic droplet diffusion coefficient are examined by noting that it can be viewed as a product of a mean square velocity and a diffusion time scale. To compare the effects of turbulence and buoyancy, the turbulence intensity (ui') is scaled by the droplet quiescent rise velocity (Uq). The droplet diffusion coefficients in horizontal and vertical directions are lower than those of the fluid at low normalized turbulence intensity, but exceed it with increasing normalized turbulence intensity. For most of the present conditions the droplet horizontal diffusion coefficient is higher than the vertical diffusion coefficient, consistent with trends of the droplet velocity fluctuations and in contrast to the trends of the diffusion timescales. The droplet diffusion coefficients scaled by the product of turbulence intensity and an integral length scale are a monotonically increasing function of ui'/Uq.

  5. Distributed modeling of diffusive solute transport in peritoneal dialysis.

    PubMed

    Waniewski, Jacek

    2002-01-01

    The diffusive transport between blood and an ex-tissue medium (dialysis fluid) is evaluated using a mathematical model that takes into account the (quasicontinuous) distribution of capillaries within the tissue at various distances from the tissue surface, and includes diffusive-convective transport through the capillary wall and lymphatic absorption from the tissue. General formulas for solute penetration depth, lambda, and for the diffusive mass transport coefficient for the transport between blood and dialysis fluid, K(BD), are provided in terms of local transport coefficients for capillary wall, tissue, and lymphatic absorption. For pure diffusive transport between blood and dialysis fluid and thick tissue layers (i.e., if the solute penetration depth is much lower than the tissue thickness) these formulas yield previously known expressions. It is shown that apparent tissue layers, with widths lambdaTBL and lambdaT, respectively, may be defined according to the values of local transport parameters in such a way that K(BD) is equal to the solute clearance K(TBL) from the tissue by blood and lymph for a layer with width lambdaTBL or to the solute clearance K(T) from blood to dialysate by diffusion through the tissue layer with width lambdaT. For tissue layers with width much higher than the penetration depth: lambdaT approximately = lambdaTBL approximately = lambda. These characteristic width lengths depend on the transport parameters (and thus on the size) of solutes. Effective blood flow, which may be related to the exchange of the solute between blood and dialysate, is defined using an analogy to the extraction/absorption coefficients for blood-tissue exchange. Various approximations for the distributed model formula for diffusive mass transport coefficient (K(BD)) are possible. The appropriate range for their application is obtained from the general formula.

  6. Modeling cesium ion exchange on fixed-bed columns of crystalline silicotitanate granules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latheef, I.M.; Huckman, M.E.; Anthony, R.G.

    2000-05-01

    A mathematical model is presented to simulate Cs exchange in fixed-bed columns of a novel crystalline silicotitanate (CST) material, UOP IONSIV IE-911. A local equilibrium is assumed between the macropores and the solid crystals for the particle material balance. Axial dispersed flow and film mass-transfer resistance are incorporated into the column model. Cs equilibrium isotherms and diffusion coefficients were measured experimentally, and dispersion and film mass-transfer coefficients were estimated from correlations. Cs exchange column experiments were conducted in 5--5.7 M Na solutions and simulated using the proposed model. Best-fit diffusion coefficients from column simulations were compared with previously reported batchmore » values of Gu et al. and Huckman. Cs diffusion coefficients for the column were between 2.5 and 5.0 x 10{sup {minus}11} m{sup 2}/s for 5--5.7 M Na solutions. The effect of the isotherm shape on the Cs diffusion coefficient was investigated. The proposed model provides good fits to experimental data and may be utilized in designing commercial-scale units.« less

  7. METAL DIFFUSION IN SMOOTHED PARTICLE HYDRODYNAMICS SIMULATIONS OF DWARF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, David; Martel, Hugo; Kawata, Daisuke, E-mail: david-john.williamson.1@ulaval.ca

    2016-05-10

    We perform a series of smoothed particle hydrodynamics simulations of isolated dwarf galaxies to compare different metal mixing models. In particular, we examine the role of diffusion in the production of enriched outflows and in determining the metallicity distributions of gas and stars. We investigate different diffusion strengths by changing the pre-factor of the diffusion coefficient, by varying how the diffusion coefficient is calculated from the local velocity distribution, and by varying whether the speed of sound is included as a velocity term. Stronger diffusion produces a tighter [O/Fe]–[Fe/H] distribution in the gas and cuts off the gas metallicity distributionmore » function at lower metallicities. Diffusion suppresses the formation of low-metallicity stars, even with weak diffusion, and also strips metals from enriched outflows. This produces a remarkably tight correlation between “metal mass-loading” (mean metal outflow rate divided by mean metal production rate) and the strength of diffusion, even when the diffusion coefficient is calculated in different ways. The effectiveness of outflows at removing metals from dwarf galaxies and the metal distribution of the gas is thus dependent on the strength of diffusion. By contrast, we show that the metallicities of stars are not strongly dependent on the strength of diffusion, provided that some diffusion is present.« less

  8. NMR investigation of water diffusion in different biofilm structures.

    PubMed

    Herrling, Maria P; Weisbrodt, Jessica; Kirkland, Catherine M; Williamson, Nathan H; Lackner, Susanne; Codd, Sarah L; Seymour, Joseph D; Guthausen, Gisela; Horn, Harald

    2017-12-01

    Mass transfer in biofilms is determined by diffusion. Different mostly invasive approaches have been used to measure diffusion coefficients in biofilms, however, data on heterogeneous biomass under realistic conditions is still missing. To non-invasively elucidate fluid-structure interactions in complex multispecies biofilms pulsed field gradient-nuclear magnetic resonance (PFG-NMR) was applied to measure the water diffusion in five different types of biomass aggregates: one type of sludge flocs, two types of biofilm, and two types of granules. Data analysis is an important issue when measuring heterogeneous systems and is shown to significantly influence the interpretation and understanding of water diffusion. With respect to numerical reproducibility and physico-chemical interpretation, different data processing methods were explored: (bi)-exponential data analysis and the Γ distribution model. Furthermore, the diffusion coefficient distribution in relation to relaxation was studied by D-T 2 maps obtained by 2D inverse Laplace transform (2D ILT). The results show that the effective diffusion coefficients for all biofilm samples ranged from 0.36 to 0.96 relative to that of water. NMR diffusion was linked to biofilm structure (e.g., biomass density, organic and inorganic matter) as observed by magnetic resonance imaging and to traditional biofilm parameters: diffusion was most restricted in granules with compact structures, and fast diffusion was found in heterotrophic biofilms with fluffy structures. The effective diffusion coefficients in the biomass were found to be broadly distributed because of internal biomass heterogeneities, such as gas bubbles, precipitates, and locally changing biofilm densities. Thus, estimations based on biofilm bulk properties in multispecies systems can be overestimated and mean diffusion coefficients might not be sufficiently informative to describe mass transport in biofilms and the near bulk. © 2017 Wiley Periodicals, Inc.

  9. Imaging and quantification of trans-membrane protein diffusion in living bacteria.

    PubMed

    Oswald, Felix; L M Bank, Ernst; Bollen, Yves J M; Peterman, Erwin J G

    2014-07-07

    The cytoplasmic membrane forms the barrier between any cell's interior and the outside world. It contains many proteins that enable essential processes such as the transmission of signals, the uptake of nutrients, and cell division. In the case of prokaryotes, which do not contain intracellular membranes, the cytoplasmic membrane also contains proteins for respiration and protein folding. Mutual interactions and specific localization of these proteins depend on two-dimensional diffusion driven by thermal fluctuations. The experimental investigation of membrane-protein diffusion in bacteria is challenging due to their small size, only a few times larger than the resolution of an optical microscope. Here, we review fluorescence microscopy-based methods to study diffusion of membrane proteins in living bacteria. The main focus is on data-analysis tools to extract diffusion coefficients from single-particle tracking data obtained by single-molecule fluorescence microscopy. We introduce a novel approach, IPODD (inverse projection of displacement distributions), to obtain diffusion coefficients from the usually obtained 2-D projected diffusion trajectories of the highly 3-D curved bacterial membrane. This method provides, in contrast to traditional mean-squared-displacement methods, correct diffusion coefficients and allows unravelling of heterogeneously diffusing populations.

  10. Vertical mass transfer in open channel flow

    USGS Publications Warehouse

    Jobson, Harvey E.

    1968-01-01

    The vertical mass transfer coefficient and particle fall velocity were determined in an open channel shear flow. Three dispersants, dye, fine sand and medium sand, were used with each of three flow conditions. The dispersant was injected as a continuous line source across the channel and downstream concentration profiles were measured. From these profiles along with the measured velocity distribution both the vertical mass transfer coefficient and the local particle fall velocity were determined.The effects of secondary currents on the vertical mixing process were discussed. Data was taken and analyzed in such a way as to largely eliminate the effects of these currents on the measured values. A procedure was developed by which the local value of the fall velocity of sand sized particles could be determined in an open channel flow. The fall velocity of the particles in the turbulent flow was always greater than their fall velocity in quiescent water. Reynolds analogy between the transfer of momentum and marked fluid particles was further substantiated. The turbulent Schmidt number was shown to be approximately 1.03 for an open channel flow with a rough boundary. Eulerian turbulence measurements were not sufficient to predict the vertical transfer coefficient. Vertical mixing of sediment is due to three semi-independent processes. These processes are: secondary currents, diffusion due to tangential velocity fluctuations and diffusion due to the curvature of the fluid particle path lines. The diffusion coefficient due to tangential velocity fluctuations is approximately proportional to the transfer coefficient of marked fluid particles. The proportionality constant is less than or equal to 1.0 and decreases with increasing particle size. The diffusion coefficient due to the curvature of the fluid particle path lines is not related to the diffusion coefficient for marked fluid particles and increases with particle size, at least for sediment particles in the sand size range. The total sediment transfer coefficient is equal to the sum of the coefficient due to tangential velocity fluctuations and the coefficient due to the curvature of the fluid particle path lines. A numerical solution to the conservation of mass equation is given. The effects of the transfer coefficient, fall velocity and bed conditions on the predicted concentration profiles are illustrated.

  11. Network confinement and heterogeneity slows nanoparticle diffusion in polymer gels

    NASA Astrophysics Data System (ADS)

    Parrish, Emmabeth; Caporizzo, Matthew A.; Composto, Russell J.

    2017-05-01

    Nanoparticle (NP) diffusion was measured in polyacrylamide gels (PAGs) with a mesh size comparable to the NP size, 21 nm. The confinement ratio (CR), NP diameter/mesh size, increased from 0.4 to 3.8 by increasing crosslinker density and from 0.4 to 2.1 by adding acetone, which collapsed the PAGs. In all gels, NPs either became localized, moving less than 200 nm, diffused microns, or exhibited a combination of these behaviors, as measured by single particle tracking. Mean squared displacements (MSDs) of mobile NPs decreased as CR increased. In collapsed gels, the localized NP population increased and MSD of mobile NPs decreased compared to crosslinked PAGs. For all CRs, van Hove distributions exhibited non-Gaussian displacements, consistent with intermittent localization of NPs. The non-Gaussian parameter increased from a maximum of 1.5 for crosslinked PAG to 5 for collapsed PAG, consistent with greater network heterogeneity in these gels. Diffusion coefficients decreased exponentially as CR increased for crosslinked gels; however, in collapsed gels, the diffusion coefficients decreased more strongly, which was attributed to network heterogeneity. Collapsing the gel resulted in an increasingly tortuous pathway for NPs, slowing diffusion at a given CR. Understanding how gel structure affects NP mobility will allow the design and enhanced performance of gels that separate and release molecules in membranes and drug delivery platforms.

  12. Fluorescence recovery after photo-bleaching as a method to determine local diffusion coefficient in the stratum corneum.

    PubMed

    Anissimov, Yuri G; Zhao, Xin; Roberts, Michael S; Zvyagin, Andrei V

    2012-10-01

    Fluorescence recovery after photo-bleaching experiments were performed in human stratum corneum in vitro. Fluorescence multiphoton tomography was used, which allowed the dimensions of the photobleached volume to be at the micron scale and located fully within the lipid phase of the stratum corneum. Analysis of the fluorescence recovery data with simplified mathematical models yielded the diffusion coefficient of small molecular weight organic fluorescent dye Rhodamine B in the stratum corneum lipid phase of about (3-6) × 10(-9)cm(2) s(-1). It was concluded that the presented method can be used for detailed analysis of localised diffusion coefficients in the stratum corneum phases for various fluorescent probes. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Non-Markovian Effects in Turbulent Diffusion in Magnetized Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zagorodny, Anatoly; Weiland, Jan

    2009-10-08

    The derivation of the kinetic equations for inhomogeneous plasma in an external magnetic field is presented. The Fokker-Planck-type equations with the non-Markovian kinetic coefficients are proposed. In the time-local limit (small correlation times with respect to the distribution function relaxation time) the relations obtained recover the results known from the appropriate quasilinear theory and the Dupree-Weinstock theory of plasma turbulence. The equations proposed are used to describe zonal flow generation and to estimate the diffusion coefficient for saturated turbulence.

  14. Application of New Chorus Wave Model from Van Allen Probe Observations in Earth's Radiation Belt Modeling

    NASA Astrophysics Data System (ADS)

    Wang, D.; Shprits, Y.; Spasojevic, M.; Zhu, H.; Aseev, N.; Drozdov, A.; Kellerman, A. C.

    2017-12-01

    In situ satellite observations, theoretical studies and model simulations suggested that chorus waves play a significant role in the dynamic evolution of relativistic electrons in the Earth's radiation belts. In this study, we developed new wave frequency and amplitude models that depend on Magnetic Local Time (MLT)-, L-shell, latitude- and geomagnetic conditions indexed by Kp for upper-band and lower-band chorus waves using measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrument onboard the Van Allen Probes. Utilizing the quasi-linear full diffusion code, we calculated corresponding diffusion coefficients in each MLT sector (1 hour resolution) for upper-band and lower-band chorus waves according to the new developed wave models. Compared with former parameterizations of chorus waves, the new parameterizations result in differences in diffusion coefficients that depend on energy and pitch angle. Utilizing obtained diffusion coefficients, lifetime of energetic electrons is parameterized accordingly. In addition, to investigate effects of obtained diffusion coefficients in different MLT sectors and under different geomagnetic conditions, we performed simulations using four-dimensional Versatile Electron Radiation Belt simulations and validated results against observations.

  15. Dissipation of ionospheric irregularities by wave-particle and collisional interactions

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Pongratz, M. B.; Gray, S. P.; Thomsen, M. F.

    1982-01-01

    The nonlinear dissipation of plasma irregularities aligned parallel to an ambient magnetic field is studied numerically using a model which employs both wave-particle and collisional diffusion. A wave-particle diffusion coefficient derived from a local theory of the universal drift instability is used. This coefficient is effective in regions of nonzero plasma gradients and produces triangular-shaped irregularities with spectra which vary as f to the -4th, where f is the spatial frequency. Collisional diffusion acts rapidly on the vertices of the irregularities to reduce their amplitude. The simultaneous action of the two dissipative processes is more efficient than collisions acting alone. In this model, wave-particle diffusion mimics the forward cascade process of wave-wave coupling.

  16. A third-order computational method for numerical fluxes to guarantee nonnegative difference coefficients for advection-diffusion equations in a semi-conservative form

    NASA Astrophysics Data System (ADS)

    Sakai, K.; Watabe, D.; Minamidani, T.; Zhang, G. S.

    2012-10-01

    According to Godunov theorem for numerical calculations of advection equations, there exist no higher-order schemes with constant positive difference coefficients in a family of polynomial schemes with an accuracy exceeding the first-order. We propose a third-order computational scheme for numerical fluxes to guarantee the non-negative difference coefficients of resulting finite difference equations for advection-diffusion equations in a semi-conservative form, in which there exist two kinds of numerical fluxes at a cell surface and these two fluxes are not always coincident in non-uniform velocity fields. The present scheme is optimized so as to minimize truncation errors for the numerical fluxes while fulfilling the positivity condition of the difference coefficients which are variable depending on the local Courant number and diffusion number. The feature of the present optimized scheme consists in keeping the third-order accuracy anywhere without any numerical flux limiter. We extend the present method into multi-dimensional equations. Numerical experiments for advection-diffusion equations showed nonoscillatory solutions.

  17. Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guevara-Carrion, Gabriela; Janzen, Tatjana; Muñoz-Muñoz, Y. Mauricio

    Mutual diffusion coefficients of all 20 binary liquid mixtures that can be formed out of methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride without a miscibility gap are studied at ambient conditions of temperature and pressure in the entire composition range. The considered mixtures show a varying mixing behavior from almost ideal to strongly non-ideal. Predictive molecular dynamics simulations employing the Green-Kubo formalism are carried out. Radial distribution functions are analyzed to gain an understanding of the liquid structure influencing the diffusion processes. It is shown that cluster formation in mixtures containing one alcoholic component has a significant impactmore » on the diffusion process. The estimation of the thermodynamic factor from experimental vapor-liquid equilibrium data is investigated, considering three excess Gibbs energy models, i.e., Wilson, NRTL, and UNIQUAC. It is found that the Wilson model yields the thermodynamic factor that best suits the simulation results for the prediction of the Fick diffusion coefficient. Four semi-empirical methods for the prediction of the self-diffusion coefficients and nine predictive equations for the Fick diffusion coefficient are assessed and it is found that methods based on local composition models are more reliable. Finally, the shear viscosity and thermal conductivity are predicted and in most cases favorably compared with experimental literature values.« less

  18. Relationship between intracellular pH and proton mobility in rat and guinea-pig ventricular myocytes.

    PubMed

    Swietach, Pawel; Vaughan-Jones, Richard D

    2005-08-01

    Intracellular H+ ion mobility in eukaryotic cells is low because of intracellular buffering. We have investigated whether Hi+ mobility varies with pHi. A dual microperfusion apparatus was used to expose guinea-pig or rat myocytes to small localized doses (3-5 mm) of ammonium chloride (applied in Hepes-buffered solution). Intracellular pH (pHi) was monitored confocally using the fluorescent dye, carboxy-SNARF-1. Local ammonium exposure produced a stable, longitudinal pHi gradient. Its size was fed into a look-up table (LUT) to give an estimate of the apparent intracellular proton diffusion coefficient (D(app)H). LUTs were generated using a diffusion-reaction model of Hi+ mobility based on intracellular buffer diffusion. To examine the pHi sensitivity of D(app)H, whole-cell pHi was initially displaced using a whole-cell ammonium or acetate prepulse, before locally applying the low dose of ammonium. In both rat and guinea-pig, D(app)H decreased with pHi over the range 7.5-6.5. In separate pipette-loading experiments, the intracellular diffusion coefficient for carboxy-SNARF-1 (a mobile-buffer analogue) exhibited no significant pHi dependence. The pHi sensitivity of D(app)H is thus likely to be governed by the mobile fraction of intrinsic buffering capacity. These results reinforce the buffer hypothesis of Hi+ mobility. The pHi dependence of D(app)H was used to characterize the mobile and fixed buffer components, and to estimate D(mob) (the average diffusion coefficient for intracellular mobile buffer). One consequence of a decline in Hi+ mobility at low pHi is that it will predispose the myocardium to pHi nonuniformity. The physiological relevance of this is discussed.

  19. ULF Wave Analysis and Radial Diffusion Calculation Using a Global MHD Model for the 17 March 2015 Storm and Comparison with the 17 March 2013 Storm

    NASA Astrophysics Data System (ADS)

    Li, Z.; Hudson, M.; Paral, J.; Wiltberger, M. J.; Boyd, A. J.; Turner, D. L.

    2016-12-01

    The 17 March 2015 `St. Patrick's Day Storm' is the largest geomagnetic storm to date of Solar Cycle 24, with a Dst of -223 nT. The magnetopause moved inside geosynchronous orbit under high solar wind dynamic pressure and strong southward IMF Bz causing loss, however a subsequent drop in pressure allowed for rapid rebuilding of the radiation belts. Local heating has been modeled by other groups for this and the 17 March 2013 storm, only slightly weaker and showing a similar effect on electrons: first a rapid dropout due to inward motion of the magnetopause followed by rapid increase in flux above the pre-storm level and an even greater slow increase likely due to radial diffusion. The latter can be seen in temporal evolution of the electron phase space density measured by the Energetic Particle, Composition, and Thermal Plasma Suite (ECT) instrument on Van Allen Probes. Using the Lyon-Fedder-Mobarry global MHD model driven by upstream solar wind measurements with the Magneotsphere-Ionosphere Coupler (MIX), we have simulated both `St. Patrick's Day'events, analyzing LFM electric and magnetic fields to calculate radial diffusion coefficients. These coefficients have been implemented in a radial diffusion code using the measured electron phase space density profile following the local heating and as the outer boundary condition for subsequent temporally evolution over the next 12 days, beginning 18 March 2015. Agreement with electron phase space density at 1000 MeV/G measured by the MagEIS component of the ECT instrument on Van Allen Probes (30 keV - 4 MeV) was much improved using radial diffusion coefficients from the MHD simulations relative to coefficients parametrized by a global geomagnetic activity index.

  20. The effect of multiplicity of stellar encounters and the diffusion coefficients in a locally homogeneous three-dimensional stellar medium: Removing the classical divergence

    NASA Astrophysics Data System (ADS)

    Rastorguev, A. S.; Utkin, N. D.; Chumak, O. V.

    2017-08-01

    Agekyan's λ-factor that allows for the effect of multiplicity of stellar encounters with large impact parameters has been used for the first time to directly calculate the diffusion coefficients in the phase space of a stellar system. Simple estimates show that the cumulative effect, i.e., the total contribution of distant encounters to the change in the velocity of a test star, given the multiplicity of stellar encounters, is finite, and the logarithmic divergence inherent in the classical description of diffusion is removed, as was shown previously byKandrup using a different, more complex approach. In this case, the expressions for the diffusion coefficients, as in the classical description, contain the logarithm of the ratio of two independent quantities: the mean interparticle distance and the impact parameter of a close encounter. However, the physical meaning of this logarithmic factor changes radically: it reflects not the divergence but the presence of two characteristic length scales inherent in the stellar medium.

  1. Kubo formulas for dispersion in heterogeneous periodic nonequilibrium systems.

    PubMed

    Guérin, T; Dean, D S

    2015-12-01

    We consider the dispersion properties of tracer particles moving in nonequilibrium heterogeneous periodic media. The tracer motion is described by a Fokker-Planck equation with arbitrary spatially periodic (but constant in time) local diffusion tensors and drifts, eventually with the presence of obstacles. We derive a Kubo-like formula for the time-dependent effective diffusion tensor valid in any dimension. From this general formula, we derive expressions for the late time effective diffusion tensor and drift in these systems. In addition, we find an explicit formula for the late finite-time corrections to these transport coefficients. In one dimension, we give a closed analytical formula for the transport coefficients. The formulas derived here are very general and provide a straightforward method to compute the dispersion properties in arbitrary nonequilibrium periodic advection-diffusion systems.

  2. An Evaluation of Semiempirical Models for Partitioning Photosynthetically Active Radiation Into Diffuse and Direct Beam Components

    NASA Astrophysics Data System (ADS)

    Oliphant, Andrew J.; Stoy, Paul C.

    2018-03-01

    Photosynthesis is more efficient under diffuse than direct beam photosynthetically active radiation (PAR) per unit PAR, but diffuse PAR is infrequently measured at research sites. We examine four commonly used semiempirical models (Erbs et al., 1982, https://doi.org/10.1016/0038-092X(82)90302-4; Gu et al., 1999, https://doi.org/10.1029/1999JD901068; Roderick, 1999, https://doi.org/10.1016/S0168-1923(99)00028-3; Weiss & Norman, 1985, https://doi.org/10.1016/0168-1923(85)90020-6) that partition PAR into diffuse and direct beam components based on the negative relationship between atmospheric transparency and scattering of PAR. Radiation observations at 58 sites (140 site years) from the La Thuille FLUXNET data set were used for model validation and coefficient testing. All four models did a reasonable job of predicting the diffuse fraction of PAR (ϕ) at the 30 min timescale, with site median r2 values ranging between 0.85 and 0.87, model efficiency coefficients (MECs) between 0.62 and 0.69, and regression slopes within 10% of unity. Model residuals were not strongly correlated with astronomical or standard meteorological variables. We conclude that the Roderick (1999, https://doi.org/10.1016/S0168-1923(99)00028-3) and Gu et al. (1999, https://doi.org/10.1029/1999JD901068) models performed better overall than the two older models. Using the basic form of these models, the data set was used to find both individual site and universal model coefficients that optimized predictive accuracy. A new universal form of the model is presented in section 5 that increased site median MEC to 0.73. Site-specific model coefficients increased median MEC further to 0.78, indicating usefulness of local/regional training of coefficients to capture the local distributions of aerosols and cloud types.

  3. Effect of Oblique Electromagnetic Ion Cyclotron Waves on Relativistic Electron Scattering: CRRES Based Calculation

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.

    2007-01-01

    We consider the effect of oblique EMIC waves on relativistic electron scattering in the outer radiation belt using simultaneous observations of plasma and wave parameters from CRRES. The main findings can be s ummarized as follows: 1. In 1comparison with field-aligned waves, int ermediate and highly oblique distributions decrease the range of pitc h-angles subject to diffusion, and reduce the local scattering rate b y an order of magnitude at pitch-angles where the principle absolute value of n = 1 resonances operate. Oblique waves allow the absolute va lue of n > 1 resonances to operate, extending the range of local pitc h-angle diffusion down to the loss cone, and increasing the diffusion at lower pitch angles by orders of magnitude; 2. The local diffusion coefficients derived from CRRES data are qualitatively similar to the local results obtained for prescribed plasma/wave parameters. Conseq uently, it is likely that the bounce-averaged diffusion coefficients, if estimated from concurrent data, will exhibit the dependencies similar to those we found for model calculations; 3. In comparison with f ield-aligned waves, intermediate and highly oblique waves decrease th e bounce-averaged scattering rate near the edge of the equatorial lo ss cone by orders of magnitude if the electron energy does not excee d a threshold (approximately equal to 2 - 5 MeV) depending on specified plasma and/or wave parameters; 4. For greater electron energies_ ob lique waves operating the absolute value of n > 1 resonances are more effective and provide the same bounce_averaged diffusion rate near the loss cone as fiel_aligned waves do.

  4. [Assessment of motor and sensory pathways of the brain using diffusion-tensor tractography in children with cerebral palsy].

    PubMed

    Memedyarov, A M; Namazova-Baranova, L S; Ermolina, Y V; Anikin, A V; Maslova, O I; Karkashadze, M Z; Klochkova, O A

    2014-01-01

    Diffusion tensor tractography--a new method of magnetic resonance imaging, that allows to visualize the pathways of the brain and to study their structural-functional state. The authors investigated the changes in motor and sensory pathways of brain in children with cerebral palsy using routine magnetic resonance imaging and diffusion-tensor tractography. The main group consisted of 26 patients with various forms of cerebral palsy and the comparison group was 25 people with normal psychomotor development (aged 2 to 6 years) and MR-picture of the brain. Magnetic resonance imaging was performed on the scanner with the induction of a magnetic field of 1,5 Tesla. Coefficients of fractional anisotropy and average diffusion coefficient estimated in regions of the brain containing the motor and sensory pathways: precentral gyrus, posterior limb of the internal capsule, thalamus, posterior thalamic radiation and corpus callosum. Statistically significant differences (p < 0.05) values of fractional anisotropy and average diffusion coefficient in patients with cerebral palsy in relation to the comparison group. All investigated regions, the coefficients of fractional anisotropy in children with cerebral palsy were significantly lower, and the average diffusion coefficient, respectively, higher. These changes indicate a lower degree of ordering of the white matter tracts associated with damage and subsequent development of gliosis of varying severity in children with cerebral palsy. It is shown that microstructural damage localized in both motor and sensory tracts that plays a leading role in the development of the clinical picture of cerebral palsy.

  5. Mechanistic insights of Li+ diffusion within doped LiFePO4 from Muon Spectroscopy.

    PubMed

    Johnson, Ian D; Ashton, Thomas E; Blagovidova, Ekaterina; Smales, Glen J; Lübke, Mechthild; Baker, Peter J; Corr, Serena A; Darr, Jawwad A

    2018-03-07

    The Li + ion diffusion characteristics of V- and Nb-doped LiFePO 4 were examined with respect to undoped LiFePO 4 using muon spectroscopy (µSR) as a local probe. As little difference in diffusion coefficient between the pure and doped samples was observed, offering D Li values in the range 1.8-2.3 × 10 -10  cm 2 s -1 , this implied the improvement in electrochemical performance observed within doped LiFePO 4 was not a result of increased local Li + diffusion. This unexpected observation was made possible with the µSR technique, which can measure Li + self-diffusion within LiFePO 4 , and therefore negated the effect of the LiFePO 4 two-phase delithiation mechanism, which has previously prevented accurate Li + diffusion comparison between the doped and undoped materials. Therefore, the authors suggest that µSR is an excellent technique for analysing materials on a local scale to elucidate the effects of dopants on solid-state diffusion behaviour.

  6. Study of sorption-retarded U(VI) diffusion in Hanford silt/clay material.

    PubMed

    Bai, Jing; Liu, Chongxuan; Ball, William P

    2009-10-15

    A diffusion cell method was applied to measure the effective pore diffusion coefficient (Dp) for U(VI) under strictly controlled chemical conditions in a silt/clay sediment from the U.S. Department of Energy Hanford site, WA. "Inward-flux" diffusion studies were conducted in which [U(VI)] in both aqueous and solid phases was measured as a function of distance in the diffusion cell under conditions of constant concentration at the cell boundaries. A sequential extraction method was developed to measure sorbed contaminant U(VI) in the solid phase containing extractable background U(VI). The effect of sorption kinetics on U(VI) interparticle diffusion was evaluated by comparing sorption-retarded diffusion models with sorption described either as equilibrium or intraparticle diffusion-limited processes. Both experimental and modeling results indicated that (1) a single pore diffusion coefficient can simulate the diffusion of total aqueous U(VI), and (2) the local equilibrium assumption (LEA) is appropriate for modeling sorption-retarded diffusion under the given experimental conditions. Dp of 1.6-1.7 x 10(-6) cm2/s was estimated in aqueous solution at pH 8.0 and saturated with respect to calcite, as relevant to some subsurface regions of the Hanford site.

  7. Influence of a depletion interaction on dynamical heterogeneity in a dense quasi-two-dimensional colloid liquid.

    PubMed

    Ho, Hau My; Cui, Bianxiao; Repel, Stephen; Lin, Binhua; Rice, Stuart A

    2004-11-01

    We report the results of digital video microscopy studies of the large particle displacements in a quasi-two-dimensional binary mixture of large (L) and small (S) colloid particles with diameter ratio sigma(L)/sigma(S)=4.65, as a function of the large and small colloid particle densities. As in the case of the one-component quasi-two-dimensional colloid system, the binary mixtures exhibit structural and dynamical heterogeneity. The distribution of large particle displacements over the time scale examined provides evidence for (at least) two different mechanisms of motion, one associated with particles in locally ordered regions and the other associated with particles in locally disordered regions. When rhoL*=Npisigma(L) (2)/4A< or =0.35, the addition of small colloid particles leads to a monotonic decrease in the large particle diffusion coefficient with increasing small particle volume fraction. When rhoL* > or =0.35 the addition of small colloid particles to a dense system of large colloid particles at first leads to an increase in the large particle diffusion coefficient, which is then followed by the expected decrease of the large particle diffusion coefficient with increasing small colloid particle volume fraction. The mode coupling theory of the ideal glass transition in three-dimensional systems makes a qualitative prediction that agrees with the initial increase in the large particle diffusion coefficient with increasing small particle density. Nevertheless, because the structural and dynamical heterogeneities of the quasi-two-dimensional colloid liquid occur within the field of equilibrium states, and the fluctuations generate locally ordered domains rather than just disordered regions of higher and lower density, it is suggested that mode coupling theory does not account for all classes of relevant fluctuations in a quasi-two-dimensional liquid. (c) 2004 American Institute of Physics.

  8. Diffusion of D-glucose measured in the cytosol of a single astrocyte.

    PubMed

    Kreft, Marko; Lukšič, Miha; Zorec, Tomaž M; Prebil, Mateja; Zorec, Robert

    2013-04-01

    Astrocytes interact with neurons and endothelial cells and may mediate exchange of metabolites between capillaries and nerve terminals. In the present study, we investigated intracellular glucose diffusion in purified astrocytes after local glucose uptake. We used a fluorescence resonance energy transfer (FRET)-based nano sensor to monitor the time dependence of the intracellular glucose concentration at specific positions within the cell. We observed a delay in onset and kinetics in regions away from the glucose uptake compared with the region where we locally super-fused astrocytes with the D-glucose-rich solution. We propose a mathematical model of glucose diffusion in astrocytes. The analysis showed that after gradual uptake of glucose, the locally increased intracellular glucose concentration is rapidly spread throughout the cytosol with an apparent diffusion coefficient (D app) of (2.38 ± 0.41) × 10(-10) m(2) s(-1) (at 22-24 °C). Considering that the diffusion coefficient of D-glucose in water is D = 6.7 × 10(-10) m(2) s(-1) (at 24 °C), D app determined in astrocytes indicates that the cytosolic tortuosity, which hinders glucose molecules, is approximately three times higher than in aqueous solution. We conclude that the value of D app for glucose measured in purified rat astrocytes is consistent with the view that cytosolic diffusion may allow glucose and glucose metabolites to traverse from the endothelial cells at the blood-brain barrier to neurons and neighboring astrocytes.

  9. The 4D hyperspherical diffusion wavelet: A new method for the detection of localized anatomical variation.

    PubMed

    Hosseinbor, Ameer Pasha; Kim, Won Hwa; Adluru, Nagesh; Acharya, Amit; Vorperian, Houri K; Chung, Moo K

    2014-01-01

    Recently, the HyperSPHARM algorithm was proposed to parameterize multiple disjoint objects in a holistic manner using the 4D hyperspherical harmonics. The HyperSPHARM coefficients are global; they cannot be used to directly infer localized variations in signal. In this paper, we present a unified wavelet framework that links Hyper-SPHARM to the diffusion wavelet transform. Specifically, we will show that the HyperSPHARM basis forms a subset of a wavelet-based multiscale representation of surface-based signals. This wavelet, termed the hyperspherical diffusion wavelet, is a consequence of the equivalence of isotropic heat diffusion smoothing and the diffusion wavelet transform on the hypersphere. Our framework allows for the statistical inference of highly localized anatomical changes, which we demonstrate in the first-ever developmental study on the hyoid bone investigating gender and age effects. We also show that the hyperspherical wavelet successfully picks up group-wise differences that are barely detectable using SPHARM.

  10. The 4D Hyperspherical Diffusion Wavelet: A New Method for the Detection of Localized Anatomical Variation

    PubMed Central

    Hosseinbor, A. Pasha; Kim, Won Hwa; Adluru, Nagesh; Acharya, Amit; Vorperian, Houri K.; Chung, Moo K.

    2014-01-01

    Recently, the HyperSPHARM algorithm was proposed to parameterize multiple disjoint objects in a holistic manner using the 4D hyperspherical harmonics. The HyperSPHARM coefficients are global; they cannot be used to directly infer localized variations in signal. In this paper, we present a unified wavelet framework that links HyperSPHARM to the diffusion wavelet transform. Specifically, we will show that the HyperSPHARM basis forms a subset of a wavelet-based multiscale representation of surface-based signals. This wavelet, termed the hyperspherical diffusion wavelet, is a consequence of the equivalence of isotropic heat diffusion smoothing and the diffusion wavelet transform on the hypersphere. Our framework allows for the statistical inference of highly localized anatomical changes, which we demonstrate in the firstever developmental study on the hyoid bone investigating gender and age effects. We also show that the hyperspherical wavelet successfully picks up group-wise differences that are barely detectable using SPHARM. PMID:25320783

  11. Modelling the reworking effects of bioturbation on the incorporation of radionuclides into the sediment column: implications for the fate of particle-reactive radionuclides in Irish Sea sediments.

    PubMed

    Cournane, S; León Vintró, L; Mitchell, P I

    2010-11-01

    A microcosm laboratory experiment was conducted to determine the impact of biological reworking by the ragworm Nereis diversicolor on the redistribution of particle-bound radionuclides deposited at the sediment-water interface. Over the course of the 40-day experiment, as much as 35% of a (137)Cs-labelled particulate tracer deposited on the sediment surface was redistributed to depths of up to 11 cm by the polychaete. Three different reworking models were employed to model the profiles and quantify the biodiffusion and biotransport coefficients: a gallery-diffuser model, a continuous sub-surface egestion model and a biodiffusion model. Although the biodiffusion coefficients obtained for each model were quite similar, the continuous sub-surface egestion model provided the best fit to the data. The average biodiffusion coefficient, at 1.8 +/- 0.9 cm(2) y(-1), is in good agreement with the values quoted by other workers on the bioturbation effects of this polychaete species. The corresponding value for the biotransport coefficient was found to be 0.9 +/- 0.4 cm y(-1). The effects of non-local mixing were incorporated in a model to describe the temporal evolution of measured (99)Tc and (60)Co radionuclide sediment profiles in the eastern Irish Sea, influenced by radioactive waste discharged from the Sellafield reprocessing plant. Reworking conditions in the sediment column were simulated by considering an upper mixed layer, an exponentially decreasing diffusion coefficient, and appropriate biotransport coefficients to account for non-local mixing. The diffusion coefficients calculated from the (99)Tc and (60)Co cores were in the range 2-14 cm(2) y(-1), which are consistent with the values found by other workers in the same marine area, while the biotransport coefficients were similar to those obtained for a variety of macrobenthic organisms in controlled laboratories and field studies.

  12. Position-dependent radiative transfer as a tool for studying Anderson localization: Delay time, time-reversal and coherent backscattering

    NASA Astrophysics Data System (ADS)

    van Tiggelen, B. A.; Skipetrov, S. E.; Page, J. H.

    2017-05-01

    Previous work has established that the localized regime of wave transport in open media is characterized by a position-dependent diffusion coefficient. In this work we study how the concept of position-dependent diffusion affects the delay time, the transverse confinement, the coherent backscattering, and the time reversal of waves. Definitions of energy transport velocity of localized waves are proposed. We start with a phenomenological model of radiative transfer and then present a novel perturbational approach based on the self-consistent theory of localization. The latter allows us to obtain results relevant for realistic experiments in disordered quasi-1D wave guides and 3D slabs.

  13. CFD simulation of simultaneous monotonic cooling and surface heat transfer coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihálka, Peter, E-mail: usarmipe@savba.sk; Matiašovský, Peter, E-mail: usarmat@savba.sk

    The monotonic heating regime method for determination of thermal diffusivity is based on the analysis of an unsteady-state (stabilised) thermal process characterised by an independence of the space-time temperature distribution on initial conditions. At the first kind of the monotonic regime a sample of simple geometry is heated / cooled at constant ambient temperature. The determination of thermal diffusivity requires the determination rate of a temperature change and simultaneous determination of the first eigenvalue. According to a characteristic equation the first eigenvalue is a function of the Biot number defined by a surface heat transfer coefficient and thermal conductivity ofmore » an analysed material. Knowing the surface heat transfer coefficient and the first eigenvalue the thermal conductivity can be determined. The surface heat transport coefficient during the monotonic regime can be determined by the continuous measurement of long-wave radiation heat flow and the photoelectric measurement of the air refractive index gradient in a boundary layer. CFD simulation of the cooling process was carried out to analyse local convective and radiative heat transfer coefficients more in detail. Influence of ambient air flow was analysed. The obtained eigenvalues and corresponding surface heat transfer coefficient values enable to determine thermal conductivity of the analysed specimen together with its thermal diffusivity during a monotonic heating regime.« less

  14. Li diffusion and the effect of local structure on Li mobility in Li2O-SiO2 glasses.

    PubMed

    Bauer, Ute; Welsch, Anna-Maria; Behrens, Harald; Rahn, Johanna; Schmidt, Harald; Horn, Ingo

    2013-12-05

    Aimed to improve the understanding of lithium migration mechanisms in ion conductors, this study focuses on Li dynamics in binary Li silicate glasses. Isotope exchange experiments and conductivity measurements were carried out to determine self-diffusion coefficients and activation energies for Li migration in Li2Si3O7 and Li2Si6O13 glasses. Samples of identical composition but different isotope content were combined for diffusion experiments in couples or triples. Diffusion profiles developed between 511 and 664 K were analyzed by femtosecond laser ablation combined with multiple collector inductively coupled plasma mass spectrometry (fs LA-MC-ICP-MS) and secondary ion mass spectrometry (SIMS). Analyses of diffusion profiles and comparison of diffusion data reveal that the isotope effect of lithium diffusion in silicate glasses is rather small, consistent with classical diffusion behavior. Ionic conductivity of glasses was measured between 312 and 675 K. The experimentally obtained self-diffusion coefficient, D(IE), and ionic diffusion coefficient, D(σ), derived from specific DC conductivity provided information about correlation effects during Li diffusion. The D(IE)/D(σ) is higher for the trisilicate (0.27 ± 0.05) than that for the hexasilicate (0.17 ± 0.02), implying that increasing silica content reduces the efficiency of Li jumps in terms of long-range movement. This trend can be rationalized by structural concepts based on nuclear magnetic resonance (NMR) and Raman spectroscopy as well as molecular dynamic simulations, that is, lithium is percolating in low-dimensional, alkali-rich regions separated by a silica-rich matrix.

  15. An algorithm for localization of optical disturbances in turbid media using time-resolved diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Potlov, A. Yu.; Frolov, S. V.; Proskurin, S. G.

    2018-04-01

    Optical structure disturbances localization algorithm for time-resolved diffuse optical tomography of biological objects is described. The key features of the presented algorithm are: the initial approximation for the spatial distribution of the optical characteristics based on the Homogeneity Index and the assumption that all the absorbing and scattering inhomogeneities in an investigated object are spherical and have the same absorption and scattering coefficients. The described algorithm can be used in the brain structures diagnosis, in traumatology and optical mammography.

  16. Simulation of stochastic diffusion via first exit times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lötstedt, Per, E-mail: perl@it.uu.se; Meinecke, Lina, E-mail: lina.meinecke@it.uu.se

    2015-11-01

    In molecular biology it is of interest to simulate diffusion stochastically. In the mesoscopic model we partition a biological cell into unstructured subvolumes. In each subvolume the number of molecules is recorded at each time step and molecules can jump between neighboring subvolumes to model diffusion. The jump rates can be computed by discretizing the diffusion equation on that unstructured mesh. If the mesh is of poor quality, due to a complicated cell geometry, standard discretization methods can generate negative jump coefficients, which no longer allows the interpretation as the probability to jump between the subvolumes. We propose a methodmore » based on the mean first exit time of a molecule from a subvolume, which guarantees positive jump coefficients. Two approaches to exit times, a global and a local one, are presented and tested in simulations on meshes of different quality in two and three dimensions.« less

  17. Simulation of stochastic diffusion via first exit times

    PubMed Central

    Lötstedt, Per; Meinecke, Lina

    2015-01-01

    In molecular biology it is of interest to simulate diffusion stochastically. In the mesoscopic model we partition a biological cell into unstructured subvolumes. In each subvolume the number of molecules is recorded at each time step and molecules can jump between neighboring subvolumes to model diffusion. The jump rates can be computed by discretizing the diffusion equation on that unstructured mesh. If the mesh is of poor quality, due to a complicated cell geometry, standard discretization methods can generate negative jump coefficients, which no longer allows the interpretation as the probability to jump between the subvolumes. We propose a method based on the mean first exit time of a molecule from a subvolume, which guarantees positive jump coefficients. Two approaches to exit times, a global and a local one, are presented and tested in simulations on meshes of different quality in two and three dimensions. PMID:26600600

  18. Multiscale Modeling of Diffusion in a Crowded Environment.

    PubMed

    Meinecke, Lina

    2017-11-01

    We present a multiscale approach to model diffusion in a crowded environment and its effect on the reaction rates. Diffusion in biological systems is often modeled by a discrete space jump process in order to capture the inherent noise of biological systems, which becomes important in the low copy number regime. To model diffusion in the crowded cell environment efficiently, we compute the jump rates in this mesoscopic model from local first exit times, which account for the microscopic positions of the crowding molecules, while the diffusing molecules jump on a coarser Cartesian grid. We then extract a macroscopic description from the resulting jump rates, where the excluded volume effect is modeled by a diffusion equation with space-dependent diffusion coefficient. The crowding molecules can be of arbitrary shape and size, and numerical experiments demonstrate that those factors together with the size of the diffusing molecule play a crucial role on the magnitude of the decrease in diffusive motion. When correcting the reaction rates for the altered diffusion we can show that molecular crowding either enhances or inhibits chemical reactions depending on local fluctuations of the obstacle density.

  19. Trends in Effective Diffusion Coefficients for Ion-exchange Strengthening of Soda Lime Silicate Glasses

    NASA Astrophysics Data System (ADS)

    Karlsson, Stefan; Wondraczek, Lothar; Ali, Sharafat; Jonson, Bo

    2017-04-01

    Monovalent cations enable efficient ion exchange processes due to their high mobility in silicate glasses. Numerous properties can be modified in this way, e.g., mechanical, optical, electrical or chemical performance. In particular, alkali cation exchange has received significant attention, primarily with respect to introducing compressive stress into the surface region of a glass, which increases mechanical durability. However, most of the present applications rely on specifically tailored matrix compositions in which the cation mobility is enhanced. This largely excludes the major area of soda lime silicates (SLS) such as are commodity in almost all large-scale applications of glasses. Basic understanding of the relations between structural parameters and the effective diffusion coefficients may help to improve ion-exchanged SLS glass products, on the one hand in terms of obtainable strength and on the other in terms of cost. In the present paper, we discuss the trends in the effective diffusion coefficients when exchanging Na+ for various monovalent cations (K+, Cu+, Ag+, Rb+ and Cs+) by drawing relations to physico-chemical properties. Correlations of effective diffusion coefficients were found for the bond dissociation energy and the electronic cation polarizability, indicating that localization and rupture of bonds are of importance for the ion exchange rate.

  20. Effect of concentration dependence of the diffusion coefficient on homogenization kinetics in multiphase binary alloy systems

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Unnam, J.

    1978-01-01

    Diffusion calculations were performed to establish the conditions under which concentration dependence of the diffusion coefficient was important in single, two, and three phase binary alloy systems. Finite-difference solutions were obtained for each type of system using diffusion coefficient variations typical of those observed in real alloy systems. Solutions were also obtained using average diffusion coefficients determined by taking a logarithmic average of each diffusion coefficient variation considered. The constant diffusion coefficient solutions were used as reference in assessing diffusion coefficient variation effects. Calculations were performed for planar, cylindrical, and spherical geometries in order to compare the effect of diffusion coefficient variations with the effect of interface geometries. In most of the cases considered, the diffusion coefficient of the major-alloy phase was the key parameter that controlled the kinetics of interdiffusion.

  1. Diffusion properties of conventional and calcium-sensitive MRI contrast agents in the rat cerebral cortex.

    PubMed

    Hagberg, Gisela E; Mamedov, Ilgar; Power, Anthony; Beyerlein, Michael; Merkle, Hellmut; Kiselev, Valerij G; Dhingra, Kirti; Kubìček, Vojtĕch; Angelovski, Goran; Logothetis, Nikos K

    2014-01-01

    Calcium-sensitive MRI contrast agents can only yield quantitative results if the agent concentration in the tissue is known. The agent concentration could be determined by diffusion modeling, if relevant parameters were available. We have established an MRI-based method capable of determining diffusion properties of conventional and calcium-sensitive agents. Simulations and experiments demonstrate that the method is applicable both for conventional contrast agents with a fixed relaxivity value and for calcium-sensitive contrast agents. The full pharmacokinetic time-course of gadolinium concentration estimates was observed by MRI before, during and after intracerebral administration of the agent, and the effective diffusion coefficient D* was determined by voxel-wise fitting of the solution to the diffusion equation. The method yielded whole brain coverage with a high spatial and temporal sampling. The use of two types of MRI sequences for sampling of the diffusion time courses was investigated: Look-Locker-based quantitative T(1) mapping, and T(1) -weighted MRI. The observation times of the proposed MRI method is long (up to 20 h) and consequently the diffusion distances covered are also long (2-4 mm). Despite this difference, the D* values in vivo were in agreement with previous findings using optical measurement techniques, based on observation times of a few minutes. The effective diffusion coefficient determined for the calcium-sensitive contrast agents may be used to determine local tissue concentrations and to design infusion protocols that maintain the agent concentration at a steady state, thereby enabling quantitative sensing of the local calcium concentration. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Energetic and dynamic analysis of transport of Na + and K + through a cyclic peptide nanotube in water and in lipid bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yeonho; Lee, Ji Hye; Hwang, Hoon

    Potential of mean force (PMF) profiles and position-dependent diffusion coefficients of Na + and K + are calculated to elucidate the translocation of ions through a cyclic peptide nanotube, composed of 8 × cyclo[-(D-Leu-Trp) 4-] rings, in water and in hydrated DMPC bilayers. The PMF profiles and PMF decomposition analysis for the monovalent cations show that favorable interactions of the cations with the CPN as well as the lipid bilayer and dehydration free energy penalties are two major competing factors which determine the free energy surface for ion transport through CPNs both in water and lipid bilayers, and that themore » selectivity of CPNs to cations mainly arises from favorable interaction energies of cations with CPNs and lipid bilayers that are more dominant than the dehydration penalties. Calculations of the position-dependent diffusion coefficients and dynamic friction kernels of the cations indicate that the dehydration process along with the molecular rearrangements occurring outside the channel and the coupling of the ion motions with the chain-structured water movements inside the channel lead to decrease of the diffusion coefficients far away from the channel entrance and also reduced coefficients inside the channel. Here the PMF and diffusivity profiles for Na + and K + reveal that the energetics of ion transport through the CPN are governed by global interactions of ions with all the components in the system while the diffusivity of ions through the channel is mostly determined by local interactions of ions with the confined water molecules inside the channel. Comparison of Na + and K + ion distributions based on overdamped Brownian dynamics simulations based on the PMF and diffusivity profiles with the corresponding results from molecular dynamics shows good agreement, indicating accuracy of the Bayesian inference method for determining diffusion coefficients in this application. In addition this work shows that position-dependent diffusion coefficients of ions are required to explain the dynamics and conductance of ions through the CPN properly.« less

  3. Energetic and dynamic analysis of transport of Na + and K + through a cyclic peptide nanotube in water and in lipid bilayers

    DOE PAGES

    Song, Yeonho; Lee, Ji Hye; Hwang, Hoon; ...

    2016-11-04

    Potential of mean force (PMF) profiles and position-dependent diffusion coefficients of Na + and K + are calculated to elucidate the translocation of ions through a cyclic peptide nanotube, composed of 8 × cyclo[-(D-Leu-Trp) 4-] rings, in water and in hydrated DMPC bilayers. The PMF profiles and PMF decomposition analysis for the monovalent cations show that favorable interactions of the cations with the CPN as well as the lipid bilayer and dehydration free energy penalties are two major competing factors which determine the free energy surface for ion transport through CPNs both in water and lipid bilayers, and that themore » selectivity of CPNs to cations mainly arises from favorable interaction energies of cations with CPNs and lipid bilayers that are more dominant than the dehydration penalties. Calculations of the position-dependent diffusion coefficients and dynamic friction kernels of the cations indicate that the dehydration process along with the molecular rearrangements occurring outside the channel and the coupling of the ion motions with the chain-structured water movements inside the channel lead to decrease of the diffusion coefficients far away from the channel entrance and also reduced coefficients inside the channel. Here the PMF and diffusivity profiles for Na + and K + reveal that the energetics of ion transport through the CPN are governed by global interactions of ions with all the components in the system while the diffusivity of ions through the channel is mostly determined by local interactions of ions with the confined water molecules inside the channel. Comparison of Na + and K + ion distributions based on overdamped Brownian dynamics simulations based on the PMF and diffusivity profiles with the corresponding results from molecular dynamics shows good agreement, indicating accuracy of the Bayesian inference method for determining diffusion coefficients in this application. In addition this work shows that position-dependent diffusion coefficients of ions are required to explain the dynamics and conductance of ions through the CPN properly.« less

  4. Diffusion of water-soluble sorptive drugs in HEMA/MAA hydrogels.

    PubMed

    Liu, D E; Dursch, T J; Taylor, N O; Chan, S Y; Bregante, D T; Radke, C J

    2016-10-10

    We measure and, for the first time, theoretically predict four prototypical aqueous-drug diffusion coefficients in five soft-contact-lens material hydrogels where solute-specific adsorption is pronounced. Two-photon fluorescence confocal microscopy and UV/Vis-absorption spectrophotometry assess transient solute concentration profiles and concentration histories, respectively. Diffusion coefficients are obtained for acetazolamide, riboflavin, sodium fluorescein, and theophylline in 2-hydroxyethyl methacrylate/methacrylic acid (HEMA/MAA) copolymer hydrogels as functions of composition, equilibrium water content (30-90%), and aqueous pH (2 and 7.4). At pH2, MAA chains are nonionic, whereas at pH7.4, MAA chains are anionic (pKa≈5.2). All studied prototypical drugs specifically interact with HEMA and nonionic MAA (at pH2) moieties. Conversely, none of the prototypical drugs adsorb specifically to anionic MAA (at pH7.4) chains. As expected, diffusivities of adsorbing solutes are significantly diminished by specific interactions with hydrogel strands. Despite similar solute size, relative diffusion coefficients in the hydrogels span several orders of magnitude because of varying degrees of solute interactions with hydrogel-polymer chains. To provide a theoretical framework for the new diffusion data, we apply an effective-medium model extended for solute-specific interactions with hydrogel copolymer strands. Sorptive-diffusion kinetics is successfully described by local equilibrium and Henry's law. All necessary parameters are determined independently. Predicted diffusivities are in good agreement with experiment. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Hydrogen diffusion in liquid aluminum from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2014-05-01

    Ab initio molecular dynamics simulations are used to describe the diffusion of hydrogen in liquid aluminum at different temperatures. Quasi-instantaneous jumps separating periods of localized vibrations around a mean position are found to characterize the hydrogen motion at the microscopic scale. The hydrogen motion is furthermore analyzed using the van Hove function. We highlight a non-Fickian behavior for the hydrogen diffusion due to a large spatial distribution of hydrogen jumps. We show that a generalized continuous time random walk (CTRW) model describes the experimental diffusion coefficients in a satisfactory manner. Finally, the impact of impurities and alloying elements on hydrogen diffusion in aluminum is discussed.

  6. A new sequence for single-shot diffusion-weighted NMR spectroscopy by the trace of the diffusion tensor.

    PubMed

    Valette, Julien; Giraudeau, Céline; Marchadour, Charlotte; Djemai, Boucif; Geffroy, Françoise; Ghaly, Mohamed Ahmed; Le Bihan, Denis; Hantraye, Philippe; Lebon, Vincent; Lethimonnier, Franck

    2012-12-01

    Diffusion-weighted spectroscopy is a unique tool for exploring the intracellular microenvironment in vivo. In living systems, diffusion may be anisotropic, when biological membranes exhibit particular orientation patterns. In this work, a volume selective diffusion-weighted sequence is proposed, allowing single-shot measurement of the trace of the diffusion tensor, which does not depend on tissue anisotropy. With this sequence, the minimal echo time is only three times the diffusion time. In addition, cross-terms between diffusion gradients and other gradients are cancelled out. An adiabatic version, similar to localization by adiabatic selective refocusing sequence, is then derived, providing partial immunity against cross-terms. Proof of concept is performed ex vivo on chicken skeletal muscle by varying tissue orientation and intra-voxel shim. In vivo performance of the sequence is finally illustrated in a U87 glioblastoma mouse model, allowing the measurement of the trace apparent diffusion coefficient for six metabolites, including J-modulated metabolites. Although measurement performed along three separate orthogonal directions would bring similar accuracy on trace apparent diffusion coefficient under ideal conditions, the method described here should be useful for probing intimate properties of the cells with minimal experimental bias. Copyright © 2012 Wiley Periodicals, Inc.

  7. Modeling radiation belt electron dynamics during GEM challenge intervals with the DREAM3D diffusion model

    NASA Astrophysics Data System (ADS)

    Tu, Weichao; Cunningham, G. S.; Chen, Y.; Henderson, M. G.; Camporeale, E.; Reeves, G. D.

    2013-10-01

    a response to the Geospace Environment Modeling (GEM) "Global Radiation Belt Modeling Challenge," a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 1990 and 1 February to 31 July 1991. The 3D diffusion model, developed as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project, includes radial, pitch angle, and momentum diffusion and mixed pitch angle-momentum diffusion, which are driven by dynamic wave databases from the statistical CRRES wave data, including plasmaspheric hiss, lower-band, and upper-band chorus. By comparing the DREAM3D model outputs to the CRRES electron phase space density (PSD) data, we find that, with a data-driven boundary condition at Lmax = 5.5, the electron enhancements can generally be explained by radial diffusion, though additional local heating from chorus waves is required. Because the PSD reductions are included in the boundary condition at Lmax = 5.5, our model captures the fast electron dropouts over a large L range, producing better model performance compared to previous published results. Plasmaspheric hiss produces electron losses inside the plasmasphere, but the model still sometimes overestimates the PSD there. Test simulations using reduced radial diffusion coefficients or increased pitch angle diffusion coefficients inside the plasmasphere suggest that better wave models and more realistic radial diffusion coefficients, both inside and outside the plasmasphere, are needed to improve the model performance. Statistically, the results show that, with the data-driven outer boundary condition, including radial diffusion and plasmaspheric hiss is sufficient to model the electrons during geomagnetically quiet times, but to best capture the radiation belt variations during active times, pitch angle and momentum diffusion from chorus waves are required.

  8. Dynamics in Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Clarke, Nigel

    2015-03-01

    Since nanoparticles are increasingly being added to polymers to impart mechanical and functional properties, we are exploring how nanoparticles impact polymer dynamics with a focus on the diffusion coefficients. In high molecular weight polymer melts, chain diffusion is well described by the reptation model. Motion proceeds as a snake-like diffusion of the chain as a whole, along the contour of a tube that mimics the role of physical entanglements, or topological constraints, with other chains. In polymer nanocomposites there are additional constraints due to the dispersed nanoparticles in the polymer matrix. Chain motion can be altered by nanoparticle size, shape , aspect ratio, surface area, loading and the nature of the interactions between the nanoparticles and the polymer matrix. We have observed a minimum in the diffusion coefficient as a function of nanoparticle concentration when the nanoparticles are rod-like and a collapse of the diffusion coefficient onto a master curve when the nanoparticles are spherical. We are simulating the dynamics using molecular and dissipative particle simulations in order to provide physical insight into the local structure and dynamics, and have also carried out highly coarse grained Monte Carlo simulations of entangled polymers to explore how reptation is affected by the presence of larger scale obstacles. We acknowledge support from the NSF/EPSRC Materials World Network Program.

  9. Transport of water and ions in partially water-saturated porous media. Part 2. Filtration effects

    NASA Astrophysics Data System (ADS)

    Revil, A.

    2017-05-01

    A new set of constitutive equations describing the transport of the ions and water through charged porous media and considering the effect of ion filtration is applied to the problem of reverse osmosis and diffusion of a salt. Starting with the constitutive equations derived in Paper 1, I first determine specific formula for the osmotic coefficient and effective diffusion coefficient of a binary symmetric 1:1 salt (such as KCl or NaCl) as a function of a dimensionless number Θ corresponding to the ratio between the cation exchange capacity (CEC) and the salinity. The modeling is first carried with the Donnan model used to describe the concentrations of the charge carriers in the pore water phase. Then a new model is developed in the thin double layer approximation to determine these concentrations. These models provide explicit relationships between the concentration of the ionic species in the pore space and those in a neutral reservoir in local equilibrium with the pore space and the CEC. The case of reverse osmosis and diffusion coefficient are analyzed in details for the case of saturated and partially saturated porous materials. Comparisons are done with experimental data from the literature obtained on bentonite. The model predicts correctly the influence of salinity (including membrane behavior at high salinities), porosity, cation type (K+ versus Na+), and water saturation on the osmotic coefficient. It also correctly predicts the dependence of the diffusion coefficient of the salt with the salinity.

  10. Brownian ratchets: How stronger thermal noise can reduce diffusion

    NASA Astrophysics Data System (ADS)

    Spiechowicz, Jakub; Kostur, Marcin; Łuczka, Jerzy

    2017-02-01

    We study diffusion properties of an inertial Brownian motor moving on a ratchet substrate, i.e., a periodic structure with broken reflection symmetry. The motor is driven by an unbiased time-periodic symmetric force that takes the system out of thermal equilibrium. For selected parameter sets, the system is in a non-chaotic regime in which we can identify a non-monotonic dependence of the diffusion coefficient on temperature: for low temperature, it initially increases as the temperature grows, passes through its local maximum, next starts to diminish reaching its local minimum, and finally it monotonically increases in accordance with the Einstein linear relation. Particularly interesting is the temperature interval in which diffusion is suppressed by the thermal noise, and we explain this effect in terms of transition rates of a three-state stochastic model.

  11. Brownian ratchets: How stronger thermal noise can reduce diffusion.

    PubMed

    Spiechowicz, Jakub; Kostur, Marcin; Łuczka, Jerzy

    2017-02-01

    We study diffusion properties of an inertial Brownian motor moving on a ratchet substrate, i.e., a periodic structure with broken reflection symmetry. The motor is driven by an unbiased time-periodic symmetric force that takes the system out of thermal equilibrium. For selected parameter sets, the system is in a non-chaotic regime in which we can identify a non-monotonic dependence of the diffusion coefficient on temperature: for low temperature, it initially increases as the temperature grows, passes through its local maximum, next starts to diminish reaching its local minimum, and finally it monotonically increases in accordance with the Einstein linear relation. Particularly interesting is the temperature interval in which diffusion is suppressed by the thermal noise, and we explain this effect in terms of transition rates of a three-state stochastic model.

  12. Three-dimensional stochastic modeling of radiation belts in adiabatic invariant coordinates

    NASA Astrophysics Data System (ADS)

    Zheng, Liheng; Chan, Anthony A.; Albert, Jay M.; Elkington, Scot R.; Koller, Josef; Horne, Richard B.; Glauert, Sarah A.; Meredith, Nigel P.

    2014-09-01

    A 3-D model for solving the radiation belt diffusion equation in adiabatic invariant coordinates has been developed and tested. The model, named Radbelt Electron Model, obtains a probabilistic solution by solving a set of Itô stochastic differential equations that are mathematically equivalent to the diffusion equation. This method is capable of solving diffusion equations with a full 3-D diffusion tensor, including the radial-local cross diffusion components. The correct form of the boundary condition at equatorial pitch angle α0=90° is also derived. The model is applied to a simulation of the October 2002 storm event. At α0 near 90°, our results are quantitatively consistent with GPS observations of phase space density (PSD) increases, suggesting dominance of radial diffusion; at smaller α0, the observed PSD increases are overestimated by the model, possibly due to the α0-independent radial diffusion coefficients, or to insufficient electron loss in the model, or both. Statistical analysis of the stochastic processes provides further insights into the diffusion processes, showing distinctive electron source distributions with and without local acceleration.

  13. Forced convective heat transfer in curved diffusers

    NASA Technical Reports Server (NTRS)

    Rojas, J.; Whitelaw, J. H.; Yianneskis, M.

    1987-01-01

    Measurements of the velocity characteristics of the flows in two curved diffusers of rectangular cross section with C and S-shaped centerlines are presented and related to measurements of wall heat transfer coefficients along the heated flat walls of the ducts. The velocity results were obtained by laser-Doppler anemometry in a water tunnel and the heat transfer results by liquid crystal thermography in a wind tunnel. The thermographic technique allowed the rapid and inexpensive measurement of wall heat transfer coefficients along flat walls of arbitrary boundary shapes with an accuracy of about 5 percent. The results show that an increase in secondary flow velocities near the heated wall causes an increase in the local wall heat transfer coefficient, and quantify the variation for maximum secondary-flow velocities in a range from 1.5 to 17 percent of the bulk flow velocity.

  14. Thermal motion of a nonlinear localized pattern in a quasi-one-dimensional system.

    PubMed

    Dessup, Tommy; Coste, Christophe; Saint Jean, Michel

    2016-07-01

    We study the dynamics of localized nonlinear patterns in a quasi-one-dimensional many-particle system near a subcritical pitchfork bifurcation. The normal form at the bifurcation is given and we show that these patterns can be described as solitary-wave envelopes. They are stable in a large temperature range and can diffuse along the chain of interacting particles. During their displacements the particles are continually redistributed on the envelope. This change of particle location induces a small modulation of the potential energy of the system, with an amplitude that depends on the transverse confinement. At high temperature, this modulation is irrelevant and the thermal motion of the localized patterns displays all the characteristics of a free quasiparticle diffusion with a diffusion coefficient that may be deduced from the normal form. At low temperature, significant physical effects are induced by the modulated potential. In particular, the localized pattern may be trapped at very low temperature. We also exhibit a series of confinement values for which the modulation amplitudes vanishes. For these peculiar confinements, the mean-square displacement of the localized patterns also evidences free-diffusion behavior at low temperature.

  15. A fully-neoclassical finite-orbit-width version of the CQL3D Fokker–Planck code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrov, Yu V.; Harvey, R. W.

    The time-dependent bounce-averaged CQL3D flux-conservative finite-difference Fokker–Planck equation (FPE) solver has been upgraded to include finite-orbit-width (FOW) capabilities which are necessary for an accurate description of neoclassical transport, losses to the walls, and transfer of particles, momentum, and heat to the scrape-off layer. The FOW modifications are implemented in the formulation of the neutral beam source, collision operator, RF quasilinear diffusion operator, and in synthetic particle diagnostics. The collisional neoclassical radial transport appears naturally in the FOW version due to the orbit-averaging of local collision coefficients coupled with transformation coefficients from local (R, Z) coordinates along each guiding-center orbit tomore » the corresponding midplane computational coordinates, where the FPE is solved. In a similar way, the local quasilinear RF diffusion terms give rise to additional radial transport of orbits. We note that the neoclassical results are obtained for ‘full’ orbits, not dependent on a common small orbit-width approximation. Results of validation tests for the FOW version are also presented.« less

  16. A fully-neoclassical finite-orbit-width version of the CQL3D Fokker–Planck code

    DOE PAGES

    Petrov, Yu V.; Harvey, R. W.

    2016-09-08

    The time-dependent bounce-averaged CQL3D flux-conservative finite-difference Fokker–Planck equation (FPE) solver has been upgraded to include finite-orbit-width (FOW) capabilities which are necessary for an accurate description of neoclassical transport, losses to the walls, and transfer of particles, momentum, and heat to the scrape-off layer. The FOW modifications are implemented in the formulation of the neutral beam source, collision operator, RF quasilinear diffusion operator, and in synthetic particle diagnostics. The collisional neoclassical radial transport appears naturally in the FOW version due to the orbit-averaging of local collision coefficients coupled with transformation coefficients from local (R, Z) coordinates along each guiding-center orbit tomore » the corresponding midplane computational coordinates, where the FPE is solved. In a similar way, the local quasilinear RF diffusion terms give rise to additional radial transport of orbits. We note that the neoclassical results are obtained for ‘full’ orbits, not dependent on a common small orbit-width approximation. Results of validation tests for the FOW version are also presented.« less

  17. Value of diffusion-weighted MRI and apparent diffusion coefficient measurements for predicting the response of locally advanced rectal cancer to neoadjuvant chemoradiotherapy.

    PubMed

    Iannicelli, Elsa; Di Pietropaolo, Marco; Pilozzi, Emanuela; Osti, Mattia Falchetto; Valentino, Maria; Masoni, Luigi; Ferri, Mario

    2016-10-01

    The aim of our study was to assess the performance value of magnetic resonance imaging (MRI) in the restaging of locally advanced rectal cancer after neoadjuvant chemoradiotherapy (CRT) and in the identification of good vs. poor responders to neoadjuvant therapy. A total of 34 patients with locally advanced rectal cancer underwent MRI prior to and after CRT. T stage and tumor regression grade (TRG) on post-CRT MRI was compared with the pathological staging ypT and TRG. Tumor volume and the apparent diffusion coefficient (ADC) were measured using diffusion-weighted imaging (DWI) before and after neoadjuvant CRT; the percentage of tumor volume reduction and the change of ADC (ΔADC) was also calculated. ADC parameters and the percentage of tumor volume reduction were correlated to histopathological results. The diagnostic performance of ADC and volume reduction to assess tumor response was evaluated by calculating the area under the ROC curve and the optimal cut-off values. A significant correlation between the T stage and the TRG defined in DW-MRI after CRT and the ypT and the TRG observed on the surgical specimens was found (p = 0.001; p < 0.001). The mean post-CRT ADC and ΔADC in responder patients was significantly higher compared to non-responder ones (p = 0.001; p = 0.01). Furthermore, the mean post-CRT ADC values were significantly higher in tumors with T-downstage (p = 0.01). DW-MRI may have a significant role in the restaging and in the evaluation of post-CRT response of locally advanced rectal cancer. Quantitative analysis of DWI through ADC map may result in a promising noninvasive tool to evaluate the response to therapy.

  18. Correlation of human papillomavirus status with apparent diffusion coefficient of diffusion-weighted MRI in head and neck squamous cell carcinomas.

    PubMed

    Driessen, Juliette P; van Bemmel, Alexander J M; van Kempen, Pauline M W; Janssen, Luuk M; Terhaard, Chris H J; Pameijer, Frank A; Willems, Stefan M; Stegeman, Inge; Grolman, Wilko; Philippens, Marielle E P

    2016-04-01

    Identification of prognostic patient characteristics in head and neck squamous cell carcinoma (HNSCC) is of great importance. Human papillomavirus (HPV)-positive HNSCCs have favorable response to (chemo)radiotherapy. Apparent diffusion coefficient, derived from diffusion-weighted MRI, has also shown to predict treatment response. The purpose of this study was to evaluate the correlation between HPV status and apparent diffusion coefficient. Seventy-three patients with histologically proven HNSCC were retrospectively analyzed. Mean pretreatment apparent diffusion coefficient was calculated by delineation of total tumor volume on diffusion-weighted MRI. HPV status was analyzed and correlated to apparent diffusion coefficient. Six HNSCCs were HPV-positive. HPV-positive HNSCC showed significantly lower apparent diffusion coefficient compared to HPV-negative. This correlation was independent of other patient characteristics. In HNSCC, positive HPV status correlates with low mean apparent diffusion coefficient. The favorable prognostic value of low pretreatment apparent diffusion coefficient might be partially attributed to patients with a positive HPV status. © 2015 Wiley Periodicals, Inc. Head Neck 38: E613-E618, 2016. © 2015 Wiley Periodicals, Inc.

  19. Grading of Gliomas by Using Monoexponential, Biexponential, and Stretched Exponential Diffusion-weighted MR Imaging and Diffusion Kurtosis MR Imaging

    PubMed Central

    Bai, Yan; Lin, Yusong; Tian, Jie; Shi, Dapeng; Cheng, Jingliang; Haacke, E. Mark; Hong, Xiaohua; Ma, Bo; Zhou, Jinyuan

    2016-01-01

    Purpose To quantitatively compare the potential of various diffusion parameters obtained from monoexponential, biexponential, and stretched exponential diffusion-weighted imaging models and diffusion kurtosis imaging in the grading of gliomas. Materials and Methods This study was approved by the local ethics committee, and written informed consent was obtained from all subjects. Both diffusion-weighted imaging and diffusion kurtosis imaging were performed in 69 patients with pathologically proven gliomas by using a 3-T magnetic resonance (MR) imaging unit. An isotropic apparent diffusion coefficient (ADC), true ADC, pseudo-ADC, and perfusion fraction were calculated from diffusion-weighted images by using a biexponential model. A water molecular diffusion heterogeneity index and distributed diffusion coefficient were calculated from diffusion-weighted images by using a stretched exponential model. Mean diffusivity, fractional anisotropy, and mean kurtosis were calculated from diffusion kurtosis images. All values were compared between high-grade and low-grade gliomas by using a Mann-Whitney U test. Receiver operating characteristic and Spearman rank correlation analysis were used for statistical evaluations. Results ADC, true ADC, perfusion fraction, water molecular diffusion heterogeneity index, distributed diffusion coefficient, and mean diffusivity values were significantly lower in high-grade gliomas than in low-grade gliomas (U = 109, 56, 129, 6, 206, and 229, respectively; P < .05). Pseudo-ADC and mean kurtosis values were significantly higher in high-grade gliomas than in low-grade gliomas (U = 98 and 8, respectively; P < .05). Both water molecular diffusion heterogeneity index (area under the receiver operating characteristic curve [AUC] = 0.993) and mean kurtosis (AUC = 0.991) had significantly greater AUC values than ADC (AUC = 0.866), mean diffusivity (AUC = 0.722), and fractional anisotropy (AUC = 0.500) in the differentiation of low-grade and high-grade gliomas (P < .05). Conclusion Water molecular diffusion heterogeneity index and mean kurtosis values may provide additional information and improve the grading of gliomas compared with conventional diffusion parameters. © RSNA, 2015 Online supplemental material is available for this article. PMID:26230975

  20. A Tomographic Method for the Reconstruction of Local Probability Density Functions

    NASA Technical Reports Server (NTRS)

    Sivathanu, Y. R.; Gore, J. P.

    1993-01-01

    A method of obtaining the probability density function (PDF) of local properties from path integrated measurements is described. The approach uses a discrete probability function (DPF) method to infer the PDF of the local extinction coefficient from measurements of the PDFs of the path integrated transmittance. The local PDFs obtained using the method are compared with those obtained from direct intrusive measurements in propylene/air and ethylene/air diffusion flames. The results of this comparison are good.

  1. Investigation of the dynamics of aqueous proline solutions using neutron scattering and molecular dynamics simulations.

    PubMed

    Malo de Molina, Paula; Alvarez, Fernando; Frick, Bernhard; Wildes, Andrew; Arbe, Arantxa; Colmenero, Juan

    2017-10-18

    We applied quasielastic neutron scattering (QENS) techniques to samples with two different contrasts (deuterated solute/hydrogenated solvent and the opposite label) to selectively study the component dynamics of proline/water solutions. Results on diluted and concentrated solutions (31 and 6 water molecules/proline molecule, respectively) were analyzed in terms of the susceptibility and considering a recently proposed model for water dynamics [Arbe et al., Phys. Rev. Lett., 2016, 117, 185501] which includes vibrations and the convolution of localized motions and diffusion. We found that proline molecules not only reduce the average diffusion coefficient of water but also extend the time/frequency range of the crossover region ('cage') between the vibrations and purely diffusive behavior. For the high proline concentration we also found experimental evidence of water heterogeneous dynamics and a distribution of diffusion coefficients. Complementary molecular dynamics simulations show that water molecules start to perform rotational diffusion when they escape the cage regime but before the purely diffusive behavior is established. The rotational diffusion regime is also retarded by the presence of proline molecules. On the other hand, a strong coupling between proline and water diffusive dynamics which persists with decreasing temperature is directly observed using QENS. Not only are the temperature dependences of the diffusion coefficients of both components the same, but their absolute values also approach each other with increasing proline concentration. We compared our results with those reported using other techniques, in particular using dielectric spectroscopy (DS). A simple approach based on molecular hydrodynamics and a molecular treatment of DS allows rationalizing the a priori puzzling inconsistency between QENS and dielectric results regarding the dynamic coupling of the two components. The interpretation proposed is based on general grounds and therefore should be applicable to other biomolecular solutions.

  2. Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the March 17 2013 storm

    DOE PAGES

    Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; ...

    2015-04-01

    Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field.more » By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.« less

  3. Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the March 17 2013 storm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca

    Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field.more » By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.« less

  4. Comparison of GEOS-5 AGCM planetary boundary layer depths computed with various definitions

    NASA Astrophysics Data System (ADS)

    McGrath-Spangler, E. L.; Molod, A.

    2014-07-01

    Accurate models of planetary boundary layer (PBL) processes are important for forecasting weather and climate. The present study compares seven methods of calculating PBL depth in the GEOS-5 atmospheric general circulation model (AGCM) over land. These methods depend on the eddy diffusion coefficients, bulk and local Richardson numbers, and the turbulent kinetic energy. The computed PBL depths are aggregated to the Köppen-Geiger climate classes, and some limited comparisons are made using radiosonde profiles. Most methods produce similar midday PBL depths, although in the warm, moist climate classes the bulk Richardson number method gives midday results that are lower than those given by the eddy diffusion coefficient methods. Additional analysis revealed that methods sensitive to turbulence driven by radiative cooling produce greater PBL depths, this effect being most significant during the evening transition. Nocturnal PBLs based on Richardson number methods are generally shallower than eddy diffusion coefficient based estimates. The bulk Richardson number estimate is recommended as the PBL height to inform the choice of the turbulent length scale, based on the similarity to other methods during the day, and the improved nighttime behavior.

  5. Comparison of GEOS-5 AGCM Planetary Boundary Layer Depths Computed with Various Definitions

    NASA Technical Reports Server (NTRS)

    Mcgrath-Spangler, E. L.; Molod, A.

    2014-01-01

    Accurate models of planetary boundary layer (PBL) processes are important for forecasting weather and climate. The present study compares seven methods of calculating PBL depth in the GEOS-5 atmospheric general circulation model (AGCM) over land. These methods depend on the eddy diffusion coefficients, bulk and local Richardson numbers, and the turbulent kinetic energy. The computed PBL depths are aggregated to the Koppen climate classes, and some limited comparisons are made using radiosonde profiles. Most methods produce similar midday PBL depths, although in the warm, moist climate classes, the bulk Richardson number method gives midday results that are lower than those given by the eddy diffusion coefficient methods. Additional analysis revealed that methods sensitive to turbulence driven by radiative cooling produce greater PBL depths, this effect being most significant during the evening transition. Nocturnal PBLs based on Richardson number are generally shallower than eddy diffusion coefficient based estimates. The bulk Richardson number estimate is recommended as the PBL height to inform the choice of the turbulent length scale, based on the similarity to other methods during the day, and the improved nighttime behavior.

  6. Comparison of GEOS-5 AGCM planetary boundary layer depths computed with various definitions

    NASA Astrophysics Data System (ADS)

    McGrath-Spangler, E. L.; Molod, A.

    2014-03-01

    Accurate models of planetary boundary layer (PBL) processes are important for forecasting weather and climate. The present study compares seven methods of calculating PBL depth in the GEOS-5 atmospheric general circulation model (AGCM) over land. These methods depend on the eddy diffusion coefficients, bulk and local Richardson numbers, and the turbulent kinetic energy. The computed PBL depths are aggregated to the Köppen climate classes, and some limited comparisons are made using radiosonde profiles. Most methods produce similar midday PBL depths, although in the warm, moist climate classes, the bulk Richardson number method gives midday results that are lower than those given by the eddy diffusion coefficient methods. Additional analysis revealed that methods sensitive to turbulence driven by radiative cooling produce greater PBL depths, this effect being most significant during the evening transition. Nocturnal PBLs based on Richardson number are generally shallower than eddy diffusion coefficient based estimates. The bulk Richardson number estimate is recommended as the PBL height to inform the choice of the turbulent length scale, based on the similarity to other methods during the day, and the improved nighttime behavior.

  7. Diffusion coefficients in organic-water solutions and comparison with Stokes-Einstein predictions

    NASA Astrophysics Data System (ADS)

    Evoy, E.; Kamal, S.; Bertram, A. K.

    2017-12-01

    Diffusion coefficients of organic species in particles containing secondary organic material (SOM) are necessary for predicting the growth and reactivity of these particles in the atmosphere. Previously, the Stokes-Einstein equation combined with viscosity measurements have been used to predict these diffusion coefficients. However, the accuracy of the Stokes-Einstein equation for predicting diffusion coefficients in SOM-water particles has not been quantified. To test the Stokes-Einstein equation, diffusion coefficients of fluorescent organic probe molecules were measured in citric acid-water and sorbitol-water solutions. These solutions were used as proxies for SOM-water particles found in the atmosphere. Measurements were performed as a function of water activity, ranging from 0.26-0.86, and as a function of viscosity ranging from 10-3 to 103 Pa s. Diffusion coefficients were measured using fluorescence recovery after photobleaching. The measured diffusion coefficients were compared with predictions made using the Stokes-Einstein equation combined with literature viscosity data. Within the uncertainties of the measurements, the measured diffusion coefficients agreed with the predicted diffusion coefficients, in all cases.

  8. ANALYTIC FORMS OF THE PERPENDICULAR DIFFUSION COEFFICIENT IN NRMHD TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalchi, A., E-mail: andreasm4@yahoo.com

    2015-02-01

    In the past different analytic limits for the perpendicular diffusion coefficient of energetic particles interacting with magnetic turbulence were discussed. These different limits or cases correspond to different transport modes describing how the particles are diffusing across the large-scale magnetic field. In the current paper we describe a new transport regime by considering the model of noisy reduced magnetohydrodynamic turbulence. We derive different analytic forms of the perpendicular diffusion coefficient, and while we do this, we focus on the aforementioned new transport mode. We show that for this turbulence model a small perpendicular diffusion coefficient can be obtained so thatmore » the latter diffusion coefficient is more than hundred times smaller than the parallel diffusion coefficient. This result is relevant to explain observations in the solar system where such small perpendicular diffusion coefficients have been reported.« less

  9. Beyond the standard two-film theory: Computational fluid dynamics simulations for carbon dioxide capture in a wetted wall column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao; Xu, Zhijie; Lai, Canhai

    The standard two-film theory (STFT) is a diffusion-based mechanism that can be used to describe gas mass transfer across liquid film. Fundamental assumptions of the STFT impose serious limitations on its ability to predict mass transfer coefficients. To better understand gas absorption across liquid film in practical situations, a multiphase computational fluid dynamics (CFD) model fully equipped with mass transport and chemistry capabilities has been developed for solvent-based carbon dioxide (CO 2) capture to predict the CO 2 mass transfer coefficient in a wetted wall column. The hydrodynamics is modeled using a volume of fluid method, and the diffusive andmore » reactive mass transfer between the two phases is modeled by adopting a one-fluid formulation. We demonstrate that the proposed CFD model can naturally account for the influence of many important factors on the overall mass transfer that cannot be quantitatively explained by the STFT, such as the local variation in fluid velocities and properties, flow instabilities, and complex geometries. The CFD model also can predict the local mass transfer coefficient variation along the column height, which the STFT typically does not consider.« less

  10. Beyond the standard two-film theory: Computational fluid dynamics simulations for carbon dioxide capture in a wetted wall column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao; Xu, Zhijie; Lai, Canhai

    The standard two-film theory (STFT) is a diffusion-based mechanism that can be used to describe gas mass transfer across liquid film. Fundamental assumptions of the STFT impose serious limitations on its ability to predict mass transfer coefficients. To better understand gas absorption across liquid film in practical situations, a multiphase computational fluid dynamics (CFD) model fully equipped with mass transport and chemistry capabilities has been developed for solvent-based carbon dioxide (CO2) capture to predict the CO2 mass transfer coefficient in a wetted wall column. The hydrodynamics is modeled using a volume of fluid method, and the diffusive and reactive massmore » transfer between the two phases is modeled by adopting a one-fluid formulation. We demonstrate that the proposed CFD model can naturally account for the influence of many important factors on the overall mass transfer that cannot be quantitatively explained by the STFT, such as the local variation in fluid velocities and properties, flow instabilities, and complex geometries. The CFD model also can predict the local mass transfer coefficient variation along the column height, which the STFT typically does not consider.« less

  11. Beyond the standard two-film theory: Computational fluid dynamics simulations for carbon dioxide capture in a wetted wall column

    DOE PAGES

    Wang, Chao; Xu, Zhijie; Lai, Canhai; ...

    2018-03-27

    The standard two-film theory (STFT) is a diffusion-based mechanism that can be used to describe gas mass transfer across liquid film. Fundamental assumptions of the STFT impose serious limitations on its ability to predict mass transfer coefficients. To better understand gas absorption across liquid film in practical situations, a multiphase computational fluid dynamics (CFD) model fully equipped with mass transport and chemistry capabilities has been developed for solvent-based carbon dioxide (CO 2) capture to predict the CO 2 mass transfer coefficient in a wetted wall column. The hydrodynamics is modeled using a volume of fluid method, and the diffusive andmore » reactive mass transfer between the two phases is modeled by adopting a one-fluid formulation. We demonstrate that the proposed CFD model can naturally account for the influence of many important factors on the overall mass transfer that cannot be quantitatively explained by the STFT, such as the local variation in fluid velocities and properties, flow instabilities, and complex geometries. The CFD model also can predict the local mass transfer coefficient variation along the column height, which the STFT typically does not consider.« less

  12. Admissible Diffusion Wavelets and Their Applications in Space-Frequency Processing.

    PubMed

    Hou, Tingbo; Qin, Hong

    2013-01-01

    As signal processing tools, diffusion wavelets and biorthogonal diffusion wavelets have been propelled by recent research in mathematics. They employ diffusion as a smoothing and scaling process to empower multiscale analysis. However, their applications in graphics and visualization are overshadowed by nonadmissible wavelets and their expensive computation. In this paper, our motivation is to broaden the application scope to space-frequency processing of shape geometry and scalar fields. We propose the admissible diffusion wavelets (ADW) on meshed surfaces and point clouds. The ADW are constructed in a bottom-up manner that starts from a local operator in a high frequency, and dilates by its dyadic powers to low frequencies. By relieving the orthogonality and enforcing normalization, the wavelets are locally supported and admissible, hence facilitating data analysis and geometry processing. We define the novel rapid reconstruction, which recovers the signal from multiple bands of high frequencies and a low-frequency base in full resolution. It enables operations localized in both space and frequency by manipulating wavelet coefficients through space-frequency filters. This paper aims to build a common theoretic foundation for a host of applications, including saliency visualization, multiscale feature extraction, spectral geometry processing, etc.

  13. Electrostatic coupling between DNA and its counterions modulates the observed translational diffusion coefficients.

    PubMed

    Stellwagen, Earle; Stellwagen, Nancy C

    2015-09-01

    Free solution capillary electrophoresis (CE) is a useful technique for measuring the translational diffusion coefficients of charged analytes. The measurements are relatively fast if the polarity of the electric field is reversed to drive the analyte back and forth past the detection window during each run. We have tested the validity of the resulting diffusion coefficients using double-stranded DNA molecules ranging in size from 20 to 960 base pairs as the model system. The diffusion coefficients of small DNAs are equal to values in the literature measured by other techniques. However, the diffusion coefficients of DNA molecules larger than ∼30 base pairs are anomalously high and deviate increasingly from the literature values with increasing DNA molar mass. The anomalously high diffusion coefficients are due to electrostatic coupling between the DNA and its counterions. As a result, the measured diffusion coefficients vary with the diffusion coefficient of the counterion, as well as with cation concentration and electric field strength. These effects can be reduced or eliminated by measuring apparent diffusion coefficients of the DNA at several different electric field strengths and extrapolating the results to zero electric field.

  14. Measurement of diffusion coefficient of propylene glycol in skin tissue

    NASA Astrophysics Data System (ADS)

    Genin, Vadim D.; Bashkatov, Alexey N.; Genina, Elina A.; Tuchin, Valery V.

    2015-03-01

    Optical clearing of the rat skin under the action of propylene glycol was studied ex vivo. It was found that collimated transmittance of skin samples increased, whereas weight and thickness of the samples decreased during propylene glycol penetration in skin tissue. A mechanism of the optical clearing under the action of propylene glycol is discussed. Diffusion coefficient of propylene glycol in skin tissue ex vivo has been estimated as (1.35±0.95)×10-7 cm2/s with the taking into account of kinetics of both weight and thickness of skin samples. The presented results can be useful for enhancement of many methods of laser therapy and optical diagnostics of skin diseases and localization of subcutaneous neoplasms.

  15. Selection of intracellular calcium patterns in a model with clustered Ca2+ release channels

    NASA Astrophysics Data System (ADS)

    Shuai, J. W.; Jung, P.

    2003-03-01

    A two-dimensional model is proposed for intracellular Ca2+ waves, which incorporates both the discrete nature of Ca2+ release sites in the endoplasmic reticulum membrane and the stochastic dynamics of the clustered inositol 1,4,5-triphosphate (IP3) receptors. Depending on the Ca2+ diffusion coefficient and concentration of IP3, various spontaneous Ca2+ patterns, such as calcium puffs, local waves, abortive waves, global oscillation, and tide waves, can be observed. We further investigate the speed of the global waves as a function of the IP3 concentration and the Ca2+ diffusion coefficient and under what conditions the spatially averaged Ca2+ response can be described by a simple set of ordinary differential equations.

  16. Network Confinement and Heterogeneity Slows Nanoparticle Diffusion in Polymer Gels

    NASA Astrophysics Data System (ADS)

    Parrish, Emmabeth; Caporizzo, Matthew; Composto, Russell

    Nanoparticle (NP) diffusion was measured in polyacrylamide gels (PAG) with a mesh size comparable to NP size, 20nm. The confinement ratio (CR), NP diameter/mesh, increased from 0.4 to 3.8 by increasing crosslinker density and 0.4 to 2 by adding acetone, which collapsed PAG. In all gels, NPs either became localized (<200nm) or diffused microns, as measured by single particle tracking. Mean squared displacements (MSD) of mobile NPs decreased as CR increased. In collapsed gels, the localized NP population increased and MSD of mobile NPs decreased compared to crosslinked PAG. For all CRs, van Hove distributions exhibited non-Gaussian displacements consistent with intermittent localization of NPs. The non-Gaussian parameter increased from a maximum of 1.5 for crosslinked PAG to 5 for collapsed PAG, consistent with greater network heterogeneity. Diffusion coefficients, D, decreased exponentially as CR increased for crosslinked gels, but in collapsed gels D decreased more strongly, suggesting CR alone was insufficient to capture diffusion. Collapsing the gel resulted in an increasingly tortuous pathway for NPs, slowing diffusion at a given CR. Understanding how gel structure affects NP mobility will allow the design of gels with improved ability to separate and release molecules. ACS/PRF 54028-ND7, NSF/MWN DMR-1210379.

  17. The role of intra-NAPL diffusion on mass transfer from MGP residuals

    NASA Astrophysics Data System (ADS)

    Shafieiyoun, Saeid; Thomson, Neil R.

    2018-06-01

    An experimental and computational study was performed to investigate the role of multi-component intra-NAPL diffusion on NAPL-water mass transfer. Molecular weight and the NAPL component concentrations were determined to be the most important parameters affecting intra-NAPL diffusion coefficients. Four NAPLs with different viscosities but the same quantified mass were simulated. For a spherical NAPL body, a combination of NAPL properties and interphase mass transfer rate can result in internal diffusion limitations. When the main intra-NAPL diffusion coefficients are in the range of self-diffusion coefficients (10-5 to 10-6 cm2/s), dissolution is not limited by internal diffusion except for high mass transfer rate coefficients (>180 cm/day). For a complex and relatively high viscous NAPL (>50 g/(cm s)), smaller intra-NAPL diffusion coefficients (<10-8) are expected and even low mass transfer rate coefficients ( 6 cm/day) can result in diffusion-limited dissolution.

  18. Modeling the rate-controlled sorption of hexavalent chromium

    USGS Publications Warehouse

    Grove, D.B.; Stollenwerk, K.G.

    1985-01-01

    Sorption of chromium VI on the iron-oxide- and hydroxide-coated surface of alluvial material was numerically simulated with rate-controlled reactions. Reaction kinetics and diffusional processes, in the form of film, pore, and particle diffusion, were simulated and compared with experimental results. The use of empirically calculated rate coefficients for diffusion through the reacting surface was found to simulate experimental data; pore or particle diffusion is believed to be a possible rate-controlling mechanism. The use of rate equations to predict conservative transport and rate- and local-equilibrium-controlled reactions was shown to be feasible.

  19. Anomalous plasma diffusion and the magnetopause boundary layer

    NASA Technical Reports Server (NTRS)

    Treumann, Rudolf A.; Labelle, James; Haerendel, Gerhard; Pottelette, Raymond

    1992-01-01

    An overview of the current state of anomalous diffusion research at the magnetopause and its role in the formation of the magnetopause boundary layer is presented. Plasma wave measurements in the boundary layer indicate that most of the relevant unstable wave modes contribute negligibly to the diffusion process at the magnetopause under magnetically undisturbed northward IMF conditions. The most promising instability is the lower hybrid drift instability, which may yield diffusion coefficients of the right order if the highest measured wave intensities are assumed. It is concluded that global stationary diffusion due to wave-particle interactions does not take place at the magnetopause. Microscopic wave-particle interaction and anomalous diffusion may contribute to locally break the MD frozen-in conditions and help in transporting large amounts of magnetosheath plasma across the magnetospheric boundary.

  20. High-energy phosphate transfer in human muscle: diffusion of phosphocreatine.

    PubMed

    Gabr, Refaat E; El-Sharkawy, Abdel-Monem M; Schär, Michael; Weiss, Robert G; Bottomley, Paul A

    2011-07-01

    The creatine kinase (CK) reaction is central to muscle energetics, buffering ATP levels during periods of intense activity via consumption of phosphocreatine (PCr). PCr is believed to serve as a spatial shuttle of high-energy phosphate between sites of energy production in the mitochondria and sites of energy utilization in the myofibrils via diffusion. Knowledge of the diffusion coefficient of PCr (D(PCr)) is thus critical for modeling and understanding energy transport in the myocyte, but D(PCr) has not been measured in humans. Using localized phosphorus magnetic resonance spectroscopy, we measured D(PCr) in the calf muscle of 11 adults as a function of direction and diffusion time. The results show that the diffusion of PCr is anisotropic, with significantly higher diffusion along the muscle fibers, and that the diffusion of PCr is restricted to a ∼28-μm pathlength assuming a cylindrical model, with an unbounded diffusion coefficient of ∼0.69 × 10(-3) mm(2)/s. This distance is comparable in size to the myofiber radius. On the basis of prior measures of CK reaction kinetics in human muscle, the expected diffusion distance of PCr during its half-life in the CK reaction is ∼66 μm. This distance is much greater than the average distances between mitochondria and myofibrils. Thus these first measurements of PCr diffusion in human muscle in vivo support the view that PCr diffusion is not a factor limiting high-energy phosphate transport between the mitochondria and the myofibrils in healthy resting myocytes.

  1. High-energy phosphate transfer in human muscle: diffusion of phosphocreatine

    PubMed Central

    Gabr, Refaat E.; El-Sharkawy, AbdEl-Monem M.; Schär, Michael; Weiss, Robert G.

    2011-01-01

    The creatine kinase (CK) reaction is central to muscle energetics, buffering ATP levels during periods of intense activity via consumption of phosphocreatine (PCr). PCr is believed to serve as a spatial shuttle of high-energy phosphate between sites of energy production in the mitochondria and sites of energy utilization in the myofibrils via diffusion. Knowledge of the diffusion coefficient of PCr (DPCr) is thus critical for modeling and understanding energy transport in the myocyte, but DPCr has not been measured in humans. Using localized phosphorus magnetic resonance spectroscopy, we measured DPCr in the calf muscle of 11 adults as a function of direction and diffusion time. The results show that the diffusion of PCr is anisotropic, with significantly higher diffusion along the muscle fibers, and that the diffusion of PCr is restricted to a ∼28-μm pathlength assuming a cylindrical model, with an unbounded diffusion coefficient of ∼0.69 × 10−3 mm2/s. This distance is comparable in size to the myofiber radius. On the basis of prior measures of CK reaction kinetics in human muscle, the expected diffusion distance of PCr during its half-life in the CK reaction is ∼66 μm. This distance is much greater than the average distances between mitochondria and myofibrils. Thus these first measurements of PCr diffusion in human muscle in vivo support the view that PCr diffusion is not a factor limiting high-energy phosphate transport between the mitochondria and the myofibrils in healthy resting myocytes. PMID:21368292

  2. Effective diffusion coefficient including the Marangoni effect

    NASA Astrophysics Data System (ADS)

    Kitahata, Hiroyuki; Yoshinaga, Natsuhiko

    2018-04-01

    Surface-active molecules supplied from a particle fixed at the water surface create a spatial gradient of the molecule concentration, resulting in Marangoni convection. Convective flow transports the molecules far from the particle, enhancing diffusion. We analytically derive the effective diffusion coefficient associated with the Marangoni convection rolls. The resulting estimated effective diffusion coefficient is consistent with our numerical results and the apparent diffusion coefficient measured in experiments.

  3. Diffusion and Binding of Mismatch Repair Protein, MSH2, in Breast Cancer Cells at Different Stages of Neoplastic Transformation

    PubMed Central

    Sigley, Justin; Jarzen, John; Scarpinato, Karin; Guthold, Martin; Pu, Tracey; Nelli, Daniel; Low, Josiah

    2017-01-01

    The interior of cells is a highly complex medium, containing numerous organelles, a matrix of different fibers and a viscous, aqueous fluid of proteins and small molecules. The interior of cells is also a highly dynamic medium, in which many components move, either by active transport or passive diffusion. The mobility and localization of proteins inside cells can provide important insights into protein function and also general cellular properties, such as viscosity. Neoplastic transformation affects numerous cellular properties, and our goal was to investigate the diffusional and binding behavior of the important mismatch repair (MMR) protein MSH2 in live human cells at various stages of neoplastic transformation. Toward this end, noncancerous, immortal, tumorigenic, and metastatic mammary epithelial cells were transfected with EGFP and EGFP-tagged MSH2. MSH2 forms two MMR proteins (MutSα and MutSβ) and we assume MSH2 is in the complex MutSα, though our results are similar in either case. Unlike the MutS complexes that bind to nuclear DNA, EGFP diffuses freely. EGFP and MutSα-EGFP diffusion coefficients were determined in the cytoplasm and nucleus of each cell type using fluorescence recovery after photobleaching. Diffusion coefficients were 14–24 μm2/s for EGFP and 3–7 μm2/s for MutSα-EGFP. EGFP diffusion increased in going from noncancerous to immortal cells, indicating a decrease in viscosity, with smaller changes in subsequent stages. MutSα produces an effective diffusion coefficient that, coupled with the free EGFP diffusion measurements, can be used to extract a pure diffusion coefficient and a pseudo-equilibrium constant K*. The MutSα nuclear K* increased sixfold in the first stage of cancer and then decreased in the more advanced stages. The ratio of nuclear to cytoplasmic K*for MutSα increased almost two orders of magnitude in going from noncancerous to immortal cells, suggesting that this quantity may be a sensitive metric for recognizing the onset of cancer. PMID:28125613

  4. Modeling and experiments for the time-dependent diffusion coefficient during methane desorption from coal

    NASA Astrophysics Data System (ADS)

    Cheng-Wu, Li; Hong-Lai, Xue; Cheng, Guan; Wen-biao, Liu

    2018-04-01

    Statistical analysis shows that in the coal matrix, the diffusion coefficient for methane is time-varying, and its integral satisfies the formula μt κ /(1 + β κ ). Therefore, a so-called dynamic diffusion coefficient model (DDC model) is developed. To verify the suitability and accuracy of the DDC model, a series of gas diffusion experiments were conducted using coal particles of different sizes. The results show that the experimental data can be accurately described by the DDC and bidisperse models, but the fit to the DDC model is slightly better. For all coal samples, as time increases, the effective diffusion coefficient first shows a sudden drop, followed by a gradual decrease before stabilizing at longer times. The effective diffusion coefficient has a negative relationship with the size of the coal particle. Finally, the relationship between the constants of the DDC model and the effective diffusion coefficient is discussed. The constant α (μ/R 2 ) denotes the effective coefficient at the initial time, and the constants κ and β control the attenuation characteristic of the effective diffusion coefficient.

  5. Trace element diffusion and kinetic fractionation in wet rhyolitic melt

    NASA Astrophysics Data System (ADS)

    Holycross, Megan E.; Watson, E. Bruce

    2018-07-01

    Piston-cylinder experiments were run to determine the chemical diffusivities of 21 trace elements (Sc, V, Y, Zr, Nb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Hf, Th and U) in hydrous rhyolitic melts at 1 GPa pressure and temperatures from 850 to 1250 °C. Diffusion couple glasses were doped with trace elements in low concentrations to characterize the diffusivities of all cations in a single experiment. Laser ablation ICP-MS was used to evaluate the trace element concentration gradients that developed in the silicate glasses. All calculated diffusion coefficients correspond to the temperature dependence D = D0exp(-Ea/RT). Rhyolite liquids contained either ∼4.1 wt% or ∼6.2 wt% dissolved H2O; separate Arrhenius relationships are produced for each melt composition. Trace element diffusivities in the melt with 6.2 wt% H2O are roughly two times higher than those in the less hydrous melt. Calculated trace element diffusion coefficients cover nearly two orders of magnitude at a given temperature. The high field strength elements are the slowest diffusers, followed by the transition metals and heavy rare earth elements. The light rare earth elements have the fastest diffusion rates in hydrous rhyolitic melt. The measured diffusion coefficients range down to values sufficiently low to preclude diffusive homogenization over geochemically realistic time scales in some cases. The substantial differences in the diffusivities of individual cations may result in fractionated trace element signatures in rhyolite melt pockets. A simple model is used to explore the potential for kinetic fractionation of REE during growth of an apatite crystal in a diffusive boundary layer locally saturated in P2O5. The faster-diffusing light REE are more efficiently transported away from the crystal interface than the slower-moving heavy REE. Diffusion effects will enrich the melt boundary layer in slow-moving HREE relative to the faster LREE. The kinetic fractionation of REE in the melt growth medium will result in a precipitated apatite crystal with a disequilibrium trace element composition.

  6. Continuous Diffusion Model for Concentration Dependence of Nitroxide EPR Parameters in Normal and Supercooled Water.

    PubMed

    Merunka, Dalibor; Peric, Miroslav

    2017-05-25

    Electron paramagnetic resonance (EPR) spectra of radicals in solution depend on their relative motion, which modulates the Heisenberg spin exchange and dipole-dipole interactions between them. To gain information on radical diffusion from EPR spectra demands both reliable spectral fitting to find the concentration coefficients of EPR parameters and valid expressions between the concentration and diffusion coefficients. Here, we measured EPR spectra of the 14 N- and 15 N-labeled perdeuterated TEMPONE radicals in normal and supercooled water at various concentrations. By fitting the EPR spectra to the functions based on the modified Bloch equations, we obtained the concentration coefficients for the spin dephasing, coherence transfer, and hyperfine splitting parameters. Assuming the continuous diffusion model for radical motion, the diffusion coefficients of radicals were calculated from the concentration coefficients using the standard relations and the relations derived from the kinetic equations for the spin evolution of a radical pair. The latter relations give better agreement between the diffusion coefficients calculated from different concentration coefficients. The diffusion coefficients are similar for both radicals, which supports the presented method. They decrease with lowering temperature slower than is predicted by the Stokes-Einstein relation and slower than the rotational diffusion coefficients, which is similar to the diffusion of water molecules in supercooled water.

  7. Anisotropic diffusion of fluorescently labeled ATP in rat cardiomyocytes determined by raster image correlation spectroscopy

    PubMed Central

    Vendelin, Marko; Birkedal, Rikke

    2008-01-01

    A series of experimental data points to the existence of profound diffusion restrictions of ADP/ATP in rat cardiomyocytes. This assumption is required to explain the measurements of kinetics of respiration, sarcoplasmic reticulum loading with calcium, and kinetics of ATP-sensitive potassium channels. To be able to analyze and estimate the role of intracellular diffusion restrictions on bioenergetics, the intracellular diffusion coefficients of metabolites have to be determined. The aim of this work was to develop a practical method for determining diffusion coefficients in anisotropic medium and to estimate the overall diffusion coefficients of fluorescently labeled ATP in rat cardiomyocytes. For that, we have extended raster image correlation spectroscopy (RICS) protocols to be able to discriminate the anisotropy in the diffusion coefficient tensor. Using this extended protocol, we estimated diffusion coefficients of ATP labeled with the fluorescent conjugate Alexa Fluor 647 (Alexa-ATP). In the analysis, we assumed that the diffusion tensor can be described by two values: diffusion coefficient along the myofibril and that across it. The average diffusion coefficients found for Alexa-ATP were as follows: 83 ± 14 μm2/s in the longitudinal and 52 ± 16 μm2/s in the transverse directions (n = 8, mean ± SD). Those values are ∼2 (longitudinal) and ∼3.5 (transverse) times smaller than the diffusion coefficient value estimated for the surrounding solution. Such uneven reduction of average diffusion coefficient leads to anisotropic diffusion in rat cardiomyocytes. Although the source for such anisotropy is uncertain, we speculate that it may be induced by the ordered pattern of intracellular structures in rat cardiomyocytes. PMID:18815224

  8. Fluid self-diffusion in Scots pine sapwood tracheid cells.

    PubMed

    Johannessen, Espen H; Hansen, Eddy W; Rosenholm, Jarl B

    2006-02-09

    The self-diffusion coefficients of water and toluene in Scots pine sapwood was measured using low field pulsed field gradient nuclear magnetic resonance (PFG-NMR). Wood chips of 8 mm diameter were saturated with the respective liquids, and liquid self-diffusion was then traced in one dimension orthogonal to the tracheid cell walls in the wood's radial direction. The experimental echo attenuation curves were exponential, and characteristic self-diffusion coefficients were produced for diffusion times spanning from very short times to times on the order of magnitude of seconds. Observed self-diffusion coefficients were decaying asymptotically as a function of diffusion time, an effect which was ascribed to the cell walls' restriction on confined liquid diffusion. The observed self-diffusion behavior in Scots pine sapwood was compared to self-diffusion coefficients obtained from simulations of diffusion in a square. Principles of molecular displacements in confined geometries were used for elucidating the wood's cellular structure from the observed diffusion coefficients. The results were compared with a mathematical model for diffusion between parallel planes.

  9. On the Chemical Mixing Induced by Internal Gravity Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T. M.; McElwaine, J. N.

    Detailed modeling of stellar evolution requires a better understanding of the (magneto)hydrodynamic processes that mix chemical elements and transport angular momentum. Understanding these processes is crucial if we are to accurately interpret observations of chemical abundance anomalies, surface rotation measurements, and asteroseismic data. Here, we use two-dimensional hydrodynamic simulations of the generation and propagation of internal gravity waves in an intermediate-mass star to measure the chemical mixing induced by these waves. We show that such mixing can generally be treated as a diffusive process. We then show that the local diffusion coefficient does not depend on the local fluid velocity,more » but rather on the wave amplitude. We then use these findings to provide a simple parameterization for this diffusion, which can be incorporated into stellar evolution codes and tested against observations.« less

  10. Cross diffusion effect on MHD mixed convection flow of nonlinear radiative heat and mass transfer of Casson fluid over a vertical plate

    NASA Astrophysics Data System (ADS)

    Ganesh Kumar, K.; Archana, M.; Gireesha, B. J.; Krishanamurthy, M. R.; Rudraswamy, N. G.

    2018-03-01

    A study on magnetohydrodynamic mixed convection flow of Casson fluid over a vertical plate has been modelled in the presence of Cross diffusion effect and nonlinear thermal radiation. The governing partial differential equations are remodelled into ordinary differential equations by using similarity transformation. The accompanied differential equations are resolved numerically by using Runge-Kutta-Fehlberg forth-fifth order along with shooting method (RKF45 Method). The results of various physical parameters on velocity and temperature profiles are given diagrammatically. The numerical values of the local skin friction coefficient, local Nusselt number and local Sherwood number also are shown in a tabular form. It is found that, effect of Dufour and Soret parameter increases the temperature and concentration component correspondingly.

  11. On time-dependent diffusion coefficients arising from stochastic processes with memory

    NASA Astrophysics Data System (ADS)

    Carpio-Bernido, M. Victoria; Barredo, Wilson I.; Bernido, Christopher C.

    2017-08-01

    Time-dependent diffusion coefficients arise from anomalous diffusion encountered in many physical systems such as protein transport in cells. We compare these coefficients with those arising from analysis of stochastic processes with memory that go beyond fractional Brownian motion. Facilitated by the Hida white noise functional integral approach, diffusion propagators or probability density functions (pdf) are obtained and shown to be solutions of modified diffusion equations with time-dependent diffusion coefficients. This should be useful in the study of complex transport processes.

  12. In Situ Effective Diffusion Coefficient Profiles in Live Biofilms Using Pulsed-Field Gradient Nuclear Magnetic Resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renslow, Ryan S.; Majors, Paul D.; McLean, Jeffrey S.

    2010-08-15

    Diffusive mass transfer in biofilms is characterized by the effective diffusion coefficient. It is well-documented that the effective diffusion coefficient can vary by location in a biofilm. The current literature is dominated by effective diffusion coefficient measurements for distinct cell clusters and stratified biofilms showing this spatial variation. Regardless of whether distinct cell clusters or surface-averaging methods are used, position-dependent measurements of the effective diffusion coefficient are currently: 1) invasive to the biofilm, 2) performed under unnatural conditions, 3) lethal to cells, and/or 4) spatially restricted to only certain regions of the biofilm. Invasive measurements can lead to inaccurate resultsmore » and prohibit further (time dependent) measurements which are important for the mathematical modeling of biofilms. In this study our goals were to: 1) measure the effective diffusion coefficient for water in live biofilms, 2) monitor how the effective diffusion coefficient changes over time under growth conditions, and 3) correlate the effective diffusion coefficient with depth in the biofilm. We measured in situ two-dimensional effective diffusion coefficient maps within Shewanella oneidensis MR-1biofilms using pulsed-field gradient nuclear magnetic resonance methods, and used them to calculate surface-averaged relative effective diffusion coefficient (Drs) profiles. We found that 1) Drs decreased from the top of the biofilm to the bottom, 2) Drs profiles differed for biofilms of different ages, 3) Drs profiles changed over time and generally decreased with time, 4) all the biofilms showed very similar Drs profiles near the top of the biofilm, and 5) the Drs profile near the bottom of the biofilm was different for each biofilm. Practically, our results demonstrate that advanced biofilm models should use a variable effective diffusivity which changes with time and location in the biofilm.« less

  13. Estimating the Diffusion Coefficients of Sugars Using Diffusion Experiments in Agar-Gel and Computer Simulations.

    PubMed

    Miyamoto, Shuichi; Atsuyama, Kenji; Ekino, Keisuke; Shin, Takashi

    2018-01-01

    The isolation of useful microbes is one of the traditional approaches for the lead generation in drug discovery. As an effective technique for microbe isolation, we recently developed a multidimensional diffusion-based gradient culture system of microbes. In order to enhance the utility of the system, it is favorable to have diffusion coefficients of nutrients such as sugars in the culture medium beforehand. We have, therefore, built a simple and convenient experimental system that uses agar-gel to observe diffusion. Next, we performed computer simulations-based on random-walk concepts-of the experimental diffusion system and derived correlation formulas that relate observable diffusion data to diffusion coefficients. Finally, we applied these correlation formulas to our experimentally-determined diffusion data to estimate the diffusion coefficients of sugars. Our values for these coefficients agree reasonably well with values published in the literature. The effectiveness of our simple technique, which has elucidated the diffusion coefficients of some molecules which are rarely reported (e.g., galactose, trehalose, and glycerol) is demonstrated by the strong correspondence between the literature values and those obtained in our experiments.

  14. Permeation across hydrated DPPC lipid bilayers: simulation of the titrable amphiphilic drug valproic acid.

    PubMed

    Ulander, Johan; Haymet, A D J

    2003-12-01

    Valproic acid is a short branched fatty acid used as an anticonvulsant drug whose therapeutic action has been proposed to arise from membrane-disordering properties. Static and kinetic properties of valproic acid interacting with fully hydrated dipalmitoyl phosphatidylcholine lipid bilayers are studied using molecular-dynamics simulations. We calculate spatially resolved free energy profiles and local diffusion coefficients using the distance between the bilayer and valproic acid respective centers-of-mass along the bilayer normal as reaction coordinate. To investigate the pH dependence, we calculate profiles for the neutral valproic acid as well as its water-soluble anionic conjugate base valproate. The local diffusion constants for valproate/valproic acid along the bilayer normal are found to be approximately 10(-6) to 10(-5) cm2 s(-1). Assuming protonation of valproic acid upon association with--or insertion into--the lipid bilayer, we calculate the permeation coefficient to be approximately 2.0 10(-3) cm s(-1), consistent with recent experimental estimates of fast fatty acid transport. The ability of the lipid bilayer to sustain local defects such as water intrusions stresses the importance of going beyond mean field and taking into account correlation effects in theoretical descriptions of bilayer translocation processes.

  15. On the nature of the NAA diffusion attenuated MR signal in the central nervous system.

    PubMed

    Kroenke, Christopher D; Ackerman, Joseph J H; Yablonskiy, Dmitriy A

    2004-11-01

    In the brain, on a macroscopic scale, diffusion of the intraneuronal constituent N-acetyl-L-aspartate (NAA) appears to be isotropic. In contrast, on a microscopic scale, NAA diffusion is likely highly anisotropic, with displacements perpendicular to neuronal fibers being markedly hindered, and parallel displacements less so. In this report we first substantiate that local anisotropy influences NAA diffusion in vivo by observing differing diffusivities parallel and perpendicular to human corpus callosum axonal fibers. We then extend our measurements to large voxels within rat brains. As expected, the macroscopic apparent diffusion coefficient (ADC) of NAA is practically isotropic due to averaging of the numerous and diverse fiber orientations. We demonstrate that the substantially non-monoexponential diffusion-mediated MR signal decay vs. b value can be quantitatively explained by a theoretical model of NAA confined to an ensemble of differently oriented neuronal fibers. On the microscopic scale, NAA diffusion is found to be strongly anisotropic, with displacements occurring almost exclusively parallel to the local fiber axis. This parallel diffusivity, ADCparallel, is 0.36 +/- 0.01 microm2/ms, and ADCperpendicular is essentially zero. From ADCparallel the apparent viscosity of the neuron cytoplasm is estimated to be twice as large as that of a temperature-matched dilute aqueous solution. (c) 2004 Wiley-Liss, Inc.

  16. Transport Mechanism of Guest Methane in Water-Filled Nanopores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bui, Tai; Phan, Anh; Cole, David R.

    We computed the transport of methane through 1 nm wide slit-shaped pores carved out of selected solid substrates using classical molecular dynamics simulations. The transport mechanism was elucidated via the implementation of the well-tempered metadynamics algorithm, which allowed for the quantification and visualization of the free energy landscape sampled by the guest molecule. Models for silica, magnesium oxide, alumina, muscovite, and calcite were used as solid substrates. Slit-shaped pores of width 1 nm were carved out of these materials and filled with liquid water. Methane was then inserted at low concentration. The results show that the diffusion of methane throughmore » the hydrated pores is strongly dependent on the solid substrate. While methane molecules diffuse isotropically along the directions parallel to the pore surfaces in most of the pores considered, anisotropic diffusion was observed in the hydrated calcite pore. The differences observed in the various pores are due to local molecular properties of confined water, including molecular structure and solvation free energy. The transport mechanism and the diffusion coefficients are dependent on the free energy barriers encountered by one methane molecule as it migrates from one preferential adsorption site to a neighboring one. It was found that the heterogeneous water distribution in different hydration layers and the low free energy pathways in the plane parallel to the pore surfaces yield the anisotropic diffusion of methane molecules in the hydrated calcite pore. Our observations contribute to an ongoing debate on the relation between local free energy profiles and diffusion coefficients and could have important practical consequences in various applications, ranging from the design of selective membranes for gas separations to the sustainable deployment of shale gas.« less

  17. Transport Mechanism of Guest Methane in Water-Filled Nanopores

    DOE PAGES

    Bui, Tai; Phan, Anh; Cole, David R.; ...

    2017-05-11

    We computed the transport of methane through 1 nm wide slit-shaped pores carved out of selected solid substrates using classical molecular dynamics simulations. The transport mechanism was elucidated via the implementation of the well-tempered metadynamics algorithm, which allowed for the quantification and visualization of the free energy landscape sampled by the guest molecule. Models for silica, magnesium oxide, alumina, muscovite, and calcite were used as solid substrates. Slit-shaped pores of width 1 nm were carved out of these materials and filled with liquid water. Methane was then inserted at low concentration. The results show that the diffusion of methane throughmore » the hydrated pores is strongly dependent on the solid substrate. While methane molecules diffuse isotropically along the directions parallel to the pore surfaces in most of the pores considered, anisotropic diffusion was observed in the hydrated calcite pore. The differences observed in the various pores are due to local molecular properties of confined water, including molecular structure and solvation free energy. The transport mechanism and the diffusion coefficients are dependent on the free energy barriers encountered by one methane molecule as it migrates from one preferential adsorption site to a neighboring one. It was found that the heterogeneous water distribution in different hydration layers and the low free energy pathways in the plane parallel to the pore surfaces yield the anisotropic diffusion of methane molecules in the hydrated calcite pore. Our observations contribute to an ongoing debate on the relation between local free energy profiles and diffusion coefficients and could have important practical consequences in various applications, ranging from the design of selective membranes for gas separations to the sustainable deployment of shale gas.« less

  18. Study of diffusion coefficient of anhydrous trehalose glasses by using PFG-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Joung; Takekawa, Reiji; Kawamura, Junichi; Tokuyama, Michio

    2013-02-01

    We investigated the temperature dependent long time self-diffusion coefficient of the anhydrous trehalose supercooled liquids by using pulsed field gradient nuclear magnetic resonance (PFG-NMR) spectroscopy. At the same temperature ranges, the diffusion coefficient convoluted from the α-relaxation time as Einstein-Smoluchowski relaxation, measured by using the dielectric loss spectroscopy are well overlapped with diffusion coefficients within experimental error. The temperature dependent diffusion coefficients obtained from different methods are normalized by fictive temperature and well satisfied the single master curve, proposed by Tokuyama.

  19. A new scaling for the rotational diffusion of molecular probes in polymer solutions.

    PubMed

    Qing, Jing; Chen, Anpu; Zhao, Nanrong

    2017-12-13

    In the present work, we propose a new scaling form for the rotational diffusion coefficient of molecular probes in semi-dilute polymer solutions, based on a theoretical study. The mean-field theory for depletion effect and semi-empirical scaling equation for the macroscopic viscosity of polymer solutions are properly incorporated to specify the space-dependent concentration and viscosity profiles in the vicinity of the probe surface. Following the scheme of classical fluid mechanics, we numerically evaluate the shear torque exerted on the probes, which then allows us to further calculate the rotational diffusion coefficient D r . Particular attention is given to the scaling behavior of the retardation factor R rot ≡ D/D r with D being the diffusion coefficient in pure solvent. We find that R rot has little relevance to the macroscopic viscosity of the polymer solution, while it can be well featured by the characteristic length scale r h /δ, i.e. the ratio between the hydrodynamic radius of the probe r h and the depletion thickness δ. Correspondingly, we obtain a novel scaling form for the rotational retardation factor, following R rot = exp[a(r h /δ) b ] with rather robust parameters of a ≃ 0.51 and b ≃ 0.56. We apply the theory to an extensive calculation for various probes in specific polymer solutions of poly(ethylene glycol) (PEG) and dextran. Our theoretical results show good agreements with the experimental data, and clearly demonstrate the validity of the new scaling form. In addition, the difference of the scaling behavior between translational and rotational diffusions is clarified, from which we conclude that the depletion effect plays a more significant role on the local rotational diffusion rather than the long-range translation diffusion.

  20. Refined BCF-type boundary conditions for mesoscale surface step dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Renjie; Ackerman, David M.; Evans, James W.

    Deposition on a vicinal surface with alternating rough and smooth steps is described by a solid-on-solid model with anisotropic interactions. Kinetic Monte Carlo (KMC) simulations of the model reveal step pairing in the absence of any additional step attachment barriers. We explore the description of this behavior within an analytic Burton-Cabrera-Frank (BCF)-type step dynamics treatment. Without attachment barriers, conventional kinetic coefficients for the rough and smooth steps are identical, as are the predicted step velocities for a vicinal surface with equal terrace widths. However, we determine refined kinetic coefficients from a two-dimensional discrete deposition-diffusion equation formalism which accounts for stepmore » structure. These coefficients are generally higher for rough steps than for smooth steps, reflecting a higher propensity for capture of diffusing terrace adatoms due to a higher kink density. Such refined coefficients also depend on the local environment of the step and can even become negative (corresponding to net detachment despite an excess adatom density) for a smooth step in close proximity to a rough step. Incorporation of these refined kinetic coefficients into a BCF-type step dynamics treatment recovers quantitatively the mesoscale step-pairing behavior observed in the KMC simulations.« less

  1. Refined BCF-type boundary conditions for mesoscale surface step dynamics

    DOE PAGES

    Zhao, Renjie; Ackerman, David M.; Evans, James W.

    2015-06-24

    Deposition on a vicinal surface with alternating rough and smooth steps is described by a solid-on-solid model with anisotropic interactions. Kinetic Monte Carlo (KMC) simulations of the model reveal step pairing in the absence of any additional step attachment barriers. We explore the description of this behavior within an analytic Burton-Cabrera-Frank (BCF)-type step dynamics treatment. Without attachment barriers, conventional kinetic coefficients for the rough and smooth steps are identical, as are the predicted step velocities for a vicinal surface with equal terrace widths. However, we determine refined kinetic coefficients from a two-dimensional discrete deposition-diffusion equation formalism which accounts for stepmore » structure. These coefficients are generally higher for rough steps than for smooth steps, reflecting a higher propensity for capture of diffusing terrace adatoms due to a higher kink density. Such refined coefficients also depend on the local environment of the step and can even become negative (corresponding to net detachment despite an excess adatom density) for a smooth step in close proximity to a rough step. Incorporation of these refined kinetic coefficients into a BCF-type step dynamics treatment recovers quantitatively the mesoscale step-pairing behavior observed in the KMC simulations.« less

  2. Diffusion-weighted magnetic resonance imaging reveals the effects of different cooling temperatures on the diffusion of water molecules and perfusion within human skeletal muscle.

    PubMed

    Yanagisawa, O; Fukubayashi, T

    2010-11-01

    To evaluate the effect of local cooling on the diffusion of water molecules and perfusion within muscle at different cooling temperatures. Magnetic resonance diffusion-weighted (DW) images of the leg (seven males) were obtained before and after 30 min cooling (0, 10, and 20°C), and after a 30 min recovery period. Two types of apparent diffusion coefficient (ADC; ADC1, reflecting both water diffusion and perfusion within muscle, and ADC2, approximating the true water diffusion coefficient) of the ankle dorsiflexors were calculated from DW images. T2-weighted images were also obtained to calculate T2 values of the ankle dorsiflexors. The skin temperature was measured before, during, and after cooling. Both ADC values significantly decreased after cooling under all cooling conditions; the rate of decrease depended on the cooling temperature used (ADC1: -36% at 0°C, -27.8% at 10°C, and -22.6% at 20°C; ADC2: -26% at 0°C, -21.1% at 10°C, and -14.6% at 20°C). These significant decreases were maintained during the recovery period. Conversely, the T2 value showed no significant changes. Under all cooling conditions, skin temperature significantly decreased during cooling; the rate of decrease depended on the cooling temperature used (-74.8% at 0°C, -51.1% at 10°C, and -26.8% at 20°C). Decreased skin temperatures were not restored to pre-cooling values during the recovery period under any cooling conditions. Local cooling decreased the water diffusion and perfusion within muscle with decreased skin temperature; the rates of decrease depended on the cooling temperature used. These decreases were maintained for 30 min after cooling. Copyright © 2010 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  3. One-month apparent diffusion coefficient correlates with response to radiofrequency ablation of hepatocellular carcinoma.

    PubMed

    Barat, Maxime; Fohlen, Audrey; Cassinotto, Christophe; Jannot, Anne Sophie; Dautry, Raphael; Pelage, Jean-Pierre; Boudiaf, Mourad; Pocard, Marc; Eveno, Clarisse; Taouli, Bachir; Soyer, Philippe; Dohan, Anthony

    2017-06-01

    To assess whether apparent diffusion coefficient (ADC) values at 1 and 3 months after radiofrequency ablation (RFA) may be associated with a favorable response to therapy for hepatocellular carcinoma (HCC) and liver metastases. Fifty-nine patients with HCC (n = 35) or liver metastases (n = 24) who underwent 1.5T diffusion-weighted magnetic resonance imaging (DWMRI) at 1 and 3 months post-RFA were included. ADC values of patients with local tumor recurrence were compared to those without local recurrence. A subgroup analysis was performed for HCC and metastases. Thirty-eight HCC and 27 metastases were evaluated. The ADC value of HCC at 1 month after RFA was lower in recurrent tumors (0.957 ± 0.229 [SD] × 10 -3 mm 2 ) compared to tumors with complete response (1.414 ± 0.322 [SD] × 10 -3 mm 2 /s, P = 0.006). At multivariate analysis, ADC at 1 month was the single independent variable associated with recurrence for HCC (area under the receiver operating characteristic curve = 0.860). No significant association was observed for liver metastases (P = 0.089). A low ADC value at 1 month after RFA is associated with an early local recurrence of HCC. This study does not confirm that such association exists for hepatic metastases. 3 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;45:1648-1658. © 2016 International Society for Magnetic Resonance in Medicine.

  4. Diffusion-mediated dephasing in the dipole field around a single spherical magnetic object.

    PubMed

    Buschle, Lukas R; Kurz, Felix T; Kampf, Thomas; Triphan, Simon M F; Schlemmer, Heinz-Peter; Ziener, Christian Herbert

    2015-11-01

    In this work, the time evolution of the free induction decay caused by the local dipole field of a spherical magnetic perturber is analyzed. The complicated treatment of the diffusion process is replaced by the strong-collision-approximation that allows a determination of the free induction decay in dependence of the underlying microscopic tissue parameters such as diffusion coefficient, sphere radius and susceptibility difference. The interplay between susceptibility- and diffusion-mediated effects yields several dephasing regimes of which, so far, only the classical regimes of motional narrowing and static dephasing for dominant and negligible diffusion, respectively, were extensively examined. Due to the asymmetric form of the dipole field for spherical objects, the free induction decay exhibits a complex component in contradiction to the cylindrical case, where the symmetric local dipole field only causes a purely real induction decay. Knowledge of the shape of the corresponding frequency distribution is necessary for the evaluation of more sophisticated pulse sequences and a detailed understanding of the off-resonance distribution allows improved quantification of transverse relaxation. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Diffusion of Sites versus Polymers in Polyelectrolyte Complexes and Multilayers.

    PubMed

    Fares, Hadi M; Schlenoff, Joseph B

    2017-10-18

    It has long been assumed that the spontaneous formation of materials such as complexes and multilayers from charged polymers depends on (inter)diffusion of these polyelectrolytes. Here, we separately examine the mass transport of polymer molecules and extrinsic sites-charged polyelectrolyte repeat units balanced by counterions-within thin films of polyelectrolyte complex, PEC, using sensitive isotopic labeling techniques. The apparent diffusion coefficients of these sites within PEC films of poly(diallyldimethylammonium), PDADMA, and poly(styrenesulfonate), PSS, are at least 2 orders of magnitude faster than the diffusion of polyelectrolytes themselves. This is because site diffusion requires only local rearrangements of polyelectrolyte repeat units, placing far fewer kinetic limitations on the assembly of polyelectrolyte complexes in all of their forms. Site diffusion strongly depends on the salt concentration (ionic strength) of the environment, and diffusion of PDADMA sites is faster than that of PSS sites, accounting for the asymmetric nature of multilayer growth. Site diffusion is responsible for multilayer growth in the linear and into the exponential regimes, which explains how PDADMA can mysteriously "pass through" layers of PSS. Using quantitative relationships between site diffusion coefficient and salt concentration, conditions were identified that allowed the diffusion length to always exceed the film thickness, leading to full exponential growth over 3 orders of magnitude thickness. Both site and polymer diffusion were independent of molecular weight, suggesting that ion pairing density is a limiting factor. Polyelectrolyte complexes are examples of a broader class of dynamic bulk polymeric materials that (self-) assemble via the transport of cross-links or defects rather than actual molecules.

  6. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of thesemore » methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.« less

  7. Diffusion of tricarboxylic acid cycle enzymes in the mitochondrial matrix in vivo. Evidence for restricted mobility of a multienzyme complex.

    PubMed

    Haggie, Peter M; Verkman, A S

    2002-10-25

    It has been proposed that enzymes in many metabolic pathways, including the tricarboxylic acid cycle in the mitochondrial matrix, are physically associated to facilitate substrate channeling and overcome diffusive barriers. We have used fluorescence recovery after photobleaching to measure the diffusional mobilities of chimeras consisting of green fluorescent protein (GFP) fused to the C terminus of four tricarboxylic acid cycle enzymes: malate dehydrogenase, citrate synthase, isocitrate dehydrogenase, and succinyl-CoA synthetase. The GFP-enzyme chimeras were localized selectively in the mitochondrial matrix in transfected Chinese hamster ovary (CHO) and COS7 cells. Laser photobleaching using a 0.7-microm diameter spot demonstrated restricted diffusion of the GFP-enzyme chimeras. Interestingly, all four chimeras had similar diffusional characteristics, approximately 45% of each chimera was mobile and had a diffusion coefficient of 4 x 10(-8) cm(2)/s. In contrast, unconjugated GFP in the mitochondrial matrix (targeted using COX8 leader sequence) diffused freely (nearly 100% mobility) with a greater diffusion coefficient of 20 x 10(-8) cm(2)/s. The mobility of the GFP-enzyme chimeras was insensitive to substrate source, ATP depletion, or inhibition of the adenine nucleotide translocase. These results indicate similar mobility characteristics of unrelated tricarboxylic acid cycle enzymes having different sizes and physical properties, providing biophysical evidence for a diffusible multienzyme complex in the mitochondrial matrix.

  8. Diffusion coefficient of the protein in various crystallization solutions: The key to growing high-quality crystals in space

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroaki; Takahashi, Sachiko; Yamanaka, Mari; Yoshizaki, Izumi; Sato, Masaru; Sano, Satoshi; Motohara, Moritoshi; Kobayashi, Tomoyuki; Yoshitomi, Susumu; Tanaka, Tetsuo; Fukuyama, Seijiro

    2006-09-01

    The diffusion coefficients of lysozyme and alpha-amylase were measured in the various polyethylene glycol (PEG) solutions. Obtained diffusion coefficients were studied with the viscosity coefficient of the solution. It was found that the diffusion process of the protein was suppressed with a factor of vγ, where ν is a relative viscosity coefficient of the PEG solution. The value of γ is -0.64 at PEG1500 for both proteins. The value increased to -0.48 at PEG8000 for lysozyme, while decreased to -0.72 for alpha-amylase. The equation of an approximate diffusion coefficient at certain PEG molecular weight and concentration was roughly obtained.

  9. Estimation of biomedical optical properties by simultaneous use of diffuse reflectometry and photothermal radiometry: investigation of light propagation models

    NASA Astrophysics Data System (ADS)

    Fonseca, E. S. R.; de Jesus, M. E. P.

    2007-07-01

    The estimation of optical properties of highly turbid and opaque biological tissue is a difficult task since conventional purely optical methods rapidly loose sensitivity as the mean photon path length decreases. Photothermal methods, such as pulsed or frequency domain photothermal radiometry (FD-PTR), on the other hand, show remarkable sensitivity in experimental conditions that produce very feeble optical signals. Photothermal Radiometry is primarily sensitive to absorption coefficient yielding considerably higher estimation errors on scattering coefficients. Conversely, purely optical methods such as Local Diffuse Reflectance (LDR) depend mainly on the scattering coefficient and yield much better estimates of this parameter. Therefore, at moderate transport albedos, the combination of photothermal and reflectance methods can improve considerably the sensitivity of detection of tissue optical properties. The authors have recently proposed a novel method that combines FD-PTR with LDR, aimed at improving sensitivity on the determination of both optical properties. Signal analysis was performed by global fitting the experimental data to forward models based on Monte-Carlo simulations. Although this approach is accurate, the associated computational burden often limits its use as a forward model. Therefore, the application of analytical models based on the diffusion approximation offers a faster alternative. In this work, we propose the calculation of the diffuse reflectance and the fluence rate profiles under the δ-P I approximation. This approach is known to approximate fluence rate expressions better close to collimated sources and boundaries than the standard diffusion approximation (SDA). We extend this study to the calculation of the diffuse reflectance profiles. The ability of the δ-P I based model to provide good estimates of the absorption, scattering and anisotropy coefficients is tested against Monte-Carlo simulations over a wide range of scattering to absorption ratios. Experimental validation of the proposed method is accomplished by a set of measurements on solid absorbing and scattering phantoms.

  10. Correlation between tissue metabolism and cellularity assessed by standardized uptake value and apparent diffusion coefficient in peritoneal metastasis.

    PubMed

    Yu, Xue; Lee, Elaine Yuen Phin; Lai, Vincent; Chan, Queenie

    2014-07-01

    To evaluate the correlation between standardized uptake value (SUV) (tissue metabolism) and apparent diffusion coefficient (ADC) (water diffusivity) in peritoneal metastases. Patients with peritoneal dissemination detected on (18)F-fluorodeoxyglucose positron emission tomography combined with computed tomography (FDG-PET/CT) were prospectively recruited for MRI examinations with informed consent and the study was approved by the local Institutional Review Board. FDG-PET/CT, diffusion-weighted imaging (DWI), MRI, and DWI/MRI images were independently reviewed by two radiologists based on visual analysis. SUVmax/SUVmean and ADCmin/ADCmean were obtained manually by drawing ROIs over the peritoneal metastases on FDG-PET/CT and DWI, respectively. Diagnostic characteristics of each technique were evaluated. Pearson's coefficient and McNemar and Kappa tests were used for statistical analysis. Eight patients were recruited for this prospective study and 34 peritoneal metastases were evaluated. ADCmean was significantly and negatively correlated with SUVmax (r = -0.528, P = 0.001) and SUVmean (r = -0.548, P = 0.001). ADCmin had similar correlation with SUVmax (r = -0.508, P = 0.002) and SUVmean (r = -0.513, P = 0.002). DWI/MRI had high diagnostic performance (accuracy = 98%) comparable to FDG-PET/CT, in peritoneal metastasis detection. Kappa values were excellent for all techniques. There was a significant inverse correlation between SUV and ADC. © 2013 Wiley Periodicals, Inc.

  11. Anomalous versus Slowed-Down Brownian Diffusion in the Ligand-Binding Equilibrium

    PubMed Central

    Soula, Hédi; Caré, Bertrand; Beslon, Guillaume; Berry, Hugues

    2013-01-01

    Measurements of protein motion in living cells and membranes consistently report transient anomalous diffusion (subdiffusion) that converges back to a Brownian motion with reduced diffusion coefficient at long times after the anomalous diffusion regime. Therefore, slowed-down Brownian motion could be considered the macroscopic limit of transient anomalous diffusion. On the other hand, membranes are also heterogeneous media in which Brownian motion may be locally slowed down due to variations in lipid composition. Here, we investigate whether both situations lead to a similar behavior for the reversible ligand-binding reaction in two dimensions. We compare the (long-time) equilibrium properties obtained with transient anomalous diffusion due to obstacle hindrance or power-law-distributed residence times (continuous-time random walks) to those obtained with space-dependent slowed-down Brownian motion. Using theoretical arguments and Monte Carlo simulations, we show that these three scenarios have distinctive effects on the apparent affinity of the reaction. Whereas continuous-time random walks decrease the apparent affinity of the reaction, locally slowed-down Brownian motion and local hindrance by obstacles both improve it. However, only in the case of slowed-down Brownian motion is the affinity maximal when the slowdown is restricted to a subregion of the available space. Hence, even at long times (equilibrium), these processes are different and exhibit irreconcilable behaviors when the area fraction of reduced mobility changes. PMID:24209851

  12. Extracting surface diffusion coefficients from batch adsorption measurement data: application of the classic Langmuir kinetics model.

    PubMed

    Chu, Khim Hoong

    2017-11-09

    Surface diffusion coefficients may be estimated by fitting solutions of a diffusion model to batch kinetic data. For non-linear systems, a numerical solution of the diffusion model's governing equations is generally required. We report here the application of the classic Langmuir kinetics model to extract surface diffusion coefficients from batch kinetic data. The use of the Langmuir kinetics model in lieu of the conventional surface diffusion model allows derivation of an analytical expression. The parameter estimation procedure requires determining the Langmuir rate coefficient from which the pertinent surface diffusion coefficient is calculated. Surface diffusion coefficients within the 10 -9 to 10 -6  cm 2 /s range obtained by fitting the Langmuir kinetics model to experimental kinetic data taken from the literature are found to be consistent with the corresponding values obtained from the traditional surface diffusion model. The virtue of this simplified parameter estimation method is that it reduces the computational complexity as the analytical expression involves only an algebraic equation in closed form which is easily evaluated by spreadsheet computation.

  13. Hindered cytoplasmic diffusion of inositol trisphosphate restricts its cellular range of action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickinson, G. D.; Ellefsen, K. L.; Dawson, S. P.

    The range of action of intracellular messengers is determined by their rates of diffusion and degradation. Previous measurements in oocyte cytoplasmic extracts indicated that the Ca 2+-liberating second messenger inositol trisphosphate (IP 3) diffuses with a coefficient (~280 μm 2 s -1) similar to that in water, corresponding to a range of action of ~25 μm. Consequently, IP 3 is generally considered a “global” cellular messenger. We also reexamined this issue by measuring local IP 3-evoked Ca 2+ puffs to monitor IP 3 diffusing from spot photorelease in neuroblastoma cells. Fitting these data by numerical simulations yielded a diffusion coefficientmore » (≤10 μm 2 s -1) about 30-fold slower than that previously reported. Here, we propose that diffusion of IP 3 in mammalian cells is hindered by binding to immobile, functionally inactive receptors that were diluted in oocyte extracts. The predicted range of action of IP 3 (<5 μm) is thus smaller than the size of typical mammalian cells, indicating that IP 3 should better be considered as a local rather than a global cellular messenger.« less

  14. Hindered cytoplasmic diffusion of inositol trisphosphate restricts its cellular range of action

    DOE PAGES

    Dickinson, G. D.; Ellefsen, K. L.; Dawson, S. P.; ...

    2016-11-08

    The range of action of intracellular messengers is determined by their rates of diffusion and degradation. Previous measurements in oocyte cytoplasmic extracts indicated that the Ca 2+-liberating second messenger inositol trisphosphate (IP 3) diffuses with a coefficient (~280 μm 2 s -1) similar to that in water, corresponding to a range of action of ~25 μm. Consequently, IP 3 is generally considered a “global” cellular messenger. We also reexamined this issue by measuring local IP 3-evoked Ca 2+ puffs to monitor IP 3 diffusing from spot photorelease in neuroblastoma cells. Fitting these data by numerical simulations yielded a diffusion coefficientmore » (≤10 μm 2 s -1) about 30-fold slower than that previously reported. Here, we propose that diffusion of IP 3 in mammalian cells is hindered by binding to immobile, functionally inactive receptors that were diluted in oocyte extracts. The predicted range of action of IP 3 (<5 μm) is thus smaller than the size of typical mammalian cells, indicating that IP 3 should better be considered as a local rather than a global cellular messenger.« less

  15. Temperature effects on diffusion coefficient for 6-gingerol and 6-shogaol in subcritical water extraction

    NASA Astrophysics Data System (ADS)

    Ilia Anisa, Nor; Azian, Noor; Sharizan, Mohd; Iwai, Yoshio

    2014-04-01

    6-gingerol and 6-shogaol are the main constituents as anti-inflammatory or bioactive compounds from zingiber officinale Roscoe. These bioactive compounds have been proven for inflammatory disease, antioxidatives and anticancer. The effect of temperature on diffusion coefficient for 6-gingerol and 6-shogaol were studied in subcritical water extraction. The diffusion coefficient was determined by Fick's second law. By neglecting external mass transfer and solid particle in spherical form, a linear portion of Ln (1-(Ct/Co)) versus time was plotted in determining the diffusion coefficient. 6-gingerol obtained the higher yield at 130°C with diffusion coefficient of 8.582x10-11 m2/s whilst for 6-shogaol, the higher yield and diffusion coefficient at 170°C and 19.417 × 10-11 m2/s.

  16. Detection of intracellular lactate with localized diffusion { 1H- 13C}-spectroscopy in rat glioma in vivo

    NASA Astrophysics Data System (ADS)

    Pfeuffer, Josef; Lin, Joseph C.; DelaBarre, Lance; Ugurbil, Kamil; Garwood, Michael

    2005-11-01

    The aim of this study was to compare the diffusion characteristic of lactate and alanine in a brain tumor model to that of normal brain metabolites known to be mainly intracellular such as N-acetylaspartate or creatine. The diffusion of 13C-labeled metabolites was measured in vivo with localized NMR spectroscopy at 9.4 T (400 MHz) using a previously described localization and editing pulse sequence known as ACED-STEAM ('adiabatic carbon editing and decoupling'). 13C-labeled glucose was administered and the apparent diffusion coefficients of the glycolytic products, { 1H- 13C}-lactate and { 1H- 13C}-alanine, were determined in rat intracerebral 9L glioma. To obtain insights into { 1H- 13C}-lactate compartmentation (intra- versus extracellular), the pulse sequence used very large diffusion weighting (50 ms/μm 2). Multi-exponential diffusion attenuation of the lactate metabolite signals was observed. The persistence of a lactate signal at very large diffusion weighting provided direct experimental evidence of significant intracellular lactate concentration. To investigate the spatial distribution of lactate and other metabolites, 1H spectroscopic images were also acquired. Lactate and choline-containing compounds were consistently elevated in tumor tissue, but not in necrotic regions and surrounding normal-appearing brain. Overall, these findings suggest that lactate is mainly associated with tumor tissue and that within the time-frame of these experiments at least some of the glycolytic product ([ 13C] lactate) originates from an intracellular compartment.

  17. Intrinsic electric fields and proton diffusion in immobilized protein membranes. Effects of electrolytes and buffers.

    PubMed Central

    Zabusky, N J; Deem, G S

    1979-01-01

    We present a theory for proton diffusion through an immobilized protein membrane perfused with an electrolyte and a buffer. Using a Nernst-Planck equation for each species and assuming local charge neutrality, we obtain two coupled nonlinear diffusion equations with new diffusion coefficients dependent on the concentration of all species, the diffusion constants or mobilities of the buffers and salts, the pH-derivative of the titration curves of the mobile buffer and the immobilized protein, and the derivative with respect to ionic strength of the protein titration curve. Transient time scales are locally pH-dependent because of protonation-deprotonation reactions with the fixed protein and are ionic strength-dependent because salts provide charge carriers to shield internal electric fields. Intrinsic electric fields arise proportional to the gradient of an "effective" charge concentration. The field may reverse locally if buffer concentrations are large (greater to or equal to 0.1 M) and if the diffusivity of the electrolyte species is sufficiently small. The "ideal" electrolyte case (where each species has the same diffusivity) reduces to a simple form. We apply these theoretical considerations to membranes composed of papain and bovine serum albumin (BSA) and show that intrinsic electric fields greatly enhance the mobility of protons when the ionic strength of the salts is smaller than 0.1 M. These results are consistent with experiments where pH changes are observed to depend strongly on buffer, salt, and proton concentrations in baths adjacent to the membranes. PMID:233570

  18. Derivation of diffusion coefficient of a Brownian particle in tilted periodic potential from the coordinate moments

    NASA Astrophysics Data System (ADS)

    Zhang, Yunxin

    2009-07-01

    In this research, diffusion of an overdamped Brownian particle in the tilted periodic potential is investigated. Using the one-dimensional hopping model, the formulations of the mean velocity V and effective diffusion coefficient D of the Brownian particle have been obtained [B. Derrida, J. Stat. Phys. 31 (1983) 433]. Based on the relation between the effective diffusion coefficient and the moments of the mean first passage time, the formulation of effective diffusion coefficient D of the Brownian particle also has been obtained [P. Reimann, et al., Phys. Rev. E 65 (2002) 031104]. In this research, we'll give another analytical expression of the effective diffusion coefficient D from the moments of the particle's coordinate.

  19. Ion Diffusion Within Water Films in Unsaturated Porous Media.

    PubMed

    Tokunaga, Tetsu K; Finsterle, Stefan; Kim, Yongman; Wan, Jiamin; Lanzirotti, Antonio; Newville, Matthew

    2017-04-18

    Diffusion is important in controlling local solute transport and reactions in unsaturated soils and geologic formations. Although it is commonly assumed that thinning of water films controls solute diffusion at low water contents, transport under these conditions is not well understood. We conducted experiments in quartz sands at low volumetric water contents (θ) to quantify ion diffusion within adsorbed films. At the lowest water contents, we employed fixed relative humidities to control water films at nm thicknesses. Diffusion profiles for Rb + and Br - in unsaturated sand packs were measured with a synchrotron X-ray microprobe, and inverse modeling was used to determine effective diffusion coefficients, D e, as low as ∼9 × 10 -15 m 2 s -1 at θ = 1.0 × 10 -4 m 3 m -3 , where the film thickness = 0.9 nm. Given that the diffusion coefficients (D o ) of Rb + and Br - in bulk water (30 °C) are both ∼2.4 × 10 -9 m 2 s -1 , we found the impedance factor f = D e /(θD o ) is equal to 0.03 ± 0.02 at this very low saturation, in agreement with the predicted influence of interface tortuosity (τ a ) for diffusion along grain surfaces. Thus, reduced cross-sectional area (θ) and tortuosity largely accounted for the more than 5 orders of magnitude decrease in D e relative to D o as desaturation progressed down to nanoscale films.

  20. Effective gaseous diffusion coefficients of select ultra-fine, super-fine and medium grain nuclear graphite

    DOE PAGES

    Kane, Joshua J.; Matthews, Austin C.; Orme, Christopher J.; ...

    2018-05-05

    Understanding “Where?” and “How much?” oxidation has occurred in a nuclear graphite component is critical to predicting any deleterious effects to physical, mechanical, and thermal properties. A key factor in answering these questions is characterizing the effective mass transport rates of gas species in nuclear graphites. Effective gas diffusion coefficients were determined for twenty-six graphite specimens spanning six modern grades of nuclear graphite. A correlation was established for the majority of grades examined allowing a reasonable estimate of the effective diffusion coefficient to be determined purely from an estimate of total porosity. The importance of Knudsen diffusion to the measuredmore » diffusion coefficients is also shown for modern grades. Furthermore, Knudsen diffusion has not historically been considered to contribute to measured diffusion coefficients of nuclear graphite.« less

  1. Effective gaseous diffusion coefficients of select ultra-fine, super-fine and medium grain nuclear graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, Joshua J.; Matthews, Austin C.; Orme, Christopher J.

    Understanding “Where?” and “How much?” oxidation has occurred in a nuclear graphite component is critical to predicting any deleterious effects to physical, mechanical, and thermal properties. A key factor in answering these questions is characterizing the effective mass transport rates of gas species in nuclear graphites. Effective gas diffusion coefficients were determined for twenty-six graphite specimens spanning six modern grades of nuclear graphite. A correlation was established for the majority of grades examined allowing a reasonable estimate of the effective diffusion coefficient to be determined purely from an estimate of total porosity. The importance of Knudsen diffusion to the measuredmore » diffusion coefficients is also shown for modern grades. Furthermore, Knudsen diffusion has not historically been considered to contribute to measured diffusion coefficients of nuclear graphite.« less

  2. Determination of diffusion coefficients of biocides on their passage through organic resin-based renders.

    PubMed

    Styszko, Katarzyna; Kupiec, Krzysztof

    2016-10-01

    In this study the diffusion coefficients of isoproturon, diuron and cybutryn in acrylate and silicone resin-based renders were determined. The diffusion coefficients were determined using measuring concentrations of biocides in the liquid phase after being in contact with renders for specific time intervals. The mathematical solution of the transient diffusion equation for an infinite plate contacted on one side with a limited volume of water was used to calculate the diffusion coefficient. The diffusion coefficients through the acrylate render were 8.10·10(-9) m(2) s(-1) for isoproturon, 1.96·10(-9) m(2) s(-1) for diuron and 1.53·10(-9) m(2) s(-1) for cybutryn. The results for the silicone render were lower by one order of magnitude. The compounds with a high diffusion coefficient for one polymer had likewise high values for the other polymer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Simultaneous Rapid Determination of the Solubility and Diffusion Coefficients of a Poorly Water-Soluble Drug Based on a Novel UV Imaging System.

    PubMed

    Lu, Yan; Li, Mingzhong

    2016-01-01

    The solubility and diffusion coefficient are two of the most important physicochemical properties of a drug compound. In practice, both have been measured separately, which is time consuming. This work utilizes a novel technique of UV imaging to determine the solubility and diffusion coefficients of poorly water-soluble drugs simultaneously. A 2-step optimal method is proposed to determine the solubility and diffusion coefficients of a poorly water-soluble pharmaceutical substance based on the Fick's second law of diffusion and UV imaging measurements. Experimental results demonstrate that the proposed method can be used to determine the solubility and diffusion coefficients of a drug with reasonable accuracy, indicating that UV imaging may provide a new opportunity to accurately measure the solubility and diffusion coefficients of a poorly water-soluble drug simultaneously and rapidly. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Influence of crystal orientation and ion bombardment on the nitrogen diffusivity in single-crystalline austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinavicius, A.; Abrasonis, G.; Moeller, W.

    2011-10-01

    The nitrogen diffusivity in single-crystalline AISI 316L austenitic stainless steel (ASS) during ion nitriding has been investigated at different crystal orientations ((001), (110), (111)) under variations of ion flux (0.3-0.7 mA cm{sup -2}), ion energy (0.5-1.2 keV), and temperature (370-430 deg. C). The nitrogen depth profiles obtained from nuclear reaction analysis are in excellent agreement with fits using the model of diffusion under the influence of traps, from which diffusion coefficients were extracted. At fixed ion energy and flux, the diffusivity varies by a factor up to 2.5 at different crystal orientations. At (100) orientation, it increases linearly with increasingmore » ion flux or energy. The findings are discussed on the basis of atomistic mechanisms of interstitial diffusion, potential lattice distortions, local decomposition, and ion-induced lattice vibrational excitations.« less

  5. Diffusion coefficients of organic molecules in sucrose-water solutions and comparison with Stokes-Einstein predictions

    NASA Astrophysics Data System (ADS)

    Chenyakin, Yuri; Ullmann, Dagny A.; Evoy, Erin; Renbaum-Wolff, Lindsay; Kamal, Saeid; Bertram, Allan K.

    2017-02-01

    The diffusion coefficients of organic species in secondary organic aerosol (SOA) particles are needed to predict the growth and reactivity of these particles in the atmosphere. Previously, viscosity measurements, along with the Stokes-Einstein relation, have been used to estimate the diffusion rates of organics within SOA particles or proxies of SOA particles. To test the Stokes-Einstein relation, we have measured the diffusion coefficients of three fluorescent organic dyes (fluorescein, rhodamine 6G and calcein) within sucrose-water solutions with varying water activity. Sucrose-water solutions were used as a proxy for SOA material found in the atmosphere. Diffusion coefficients were measured using fluorescence recovery after photobleaching. For the three dyes studied, the diffusion coefficients vary by 4-5 orders of magnitude as the water activity varied from 0.38 to 0.80, illustrating the sensitivity of the diffusion coefficients to the water content in the matrix. At the lowest water activity studied (0.38), the average diffusion coefficients were 1.9 × 10-13, 1.5 × 10-14 and 7.7 × 10-14 cm2 s-1 for fluorescein, rhodamine 6G and calcein, respectively. The measured diffusion coefficients were compared with predictions made using literature viscosities and the Stokes-Einstein relation. We found that at water activity ≥ 0.6 (which corresponds to a viscosity of ≤ 360 Pa s and Tg/T ≤ 0.81), predicted diffusion rates agreed with measured diffusion rates within the experimental uncertainty (Tg represents the glass transition temperature and T is the temperature of the measurements). When the water activity was 0.38 (which corresponds to a viscosity of 3.3 × 106 Pa s and a Tg/T of 0.94), the Stokes-Einstein relation underpredicted the diffusion coefficients of fluorescein, rhodamine 6G and calcein by a factor of 118 (minimum of 10 and maximum of 977), a factor of 17 (minimum of 3 and maximum of 104) and a factor of 70 (minimum of 8 and maximum of 494), respectively. This disagreement is significantly smaller than the disagreement observed when comparing measured and predicted diffusion coefficients of water in sucrose-water mixtures.

  6. Theory and simulation of the time-dependent rate coefficients of diffusion-influenced reactions.

    PubMed Central

    Zhou, H X; Szabo, A

    1996-01-01

    A general formalism is developed for calculating the time-dependent rate coefficient k(t) of an irreversible diffusion-influenced reaction. This formalism allows one to treat most factors that affect k(t), including rotational Brownian motion and conformational gating of reactant molecules and orientation constraint for product formation. At long times k(t) is shown to have the asymptotic expansion k(infinity)[1 + k(infinity) (pie Dt)-1/2 /4 pie D + ...], where D is the relative translational diffusion constant. An approximate analytical method for calculating k(t) is presented. This is based on the approximation that the probability density of the reactant pair in the reactive region keeps the equilibrium distribution but with a decreasing amplitude. The rate coefficient then is determined by the Green function in the absence of chemical reaction. Within the framework of this approximation, two general relations are obtained. The first relation allows the rate coefficient for an arbitrary amplitude of the reactivity to be found if the rate coefficient for one amplitude of the reactivity is known. The second relation allows the rate coefficient in the presence of conformational gating to be found from that in the absence of conformational gating. The ratio k(t)/k(0) is shown to be the survival probability of the reactant pair at time t starting from an initial distribution that is localized in the reactive region. This relation forms the basis of the calculation of k(t) through Brownian dynamics simulations. Two simulation procedures involving the propagation of nonreactive trajectories initiated only from the reactive region are described and illustrated on a model system. Both analytical and simulation results demonstrate the accuracy of the equilibrium-distribution approximation method. PMID:8913584

  7. Mutual influence of molecular diffusion in gas and surface phases

    NASA Astrophysics Data System (ADS)

    Hori, Takuma; Kamino, Takafumi; Yoshimoto, Yuta; Takagi, Shu; Kinefuchi, Ikuya

    2018-01-01

    We develop molecular transport simulation methods that simultaneously deal with gas- and surface-phase diffusions to determine the effect of surface diffusion on the overall diffusion coefficients. The phenomenon of surface diffusion is incorporated into the test particle method and the mean square displacement method, which are typically employed only for gas-phase transport. It is found that for a simple cylindrical pore, the diffusion coefficients in the presence of surface diffusion calculated by these two methods show good agreement. We also confirm that both methods reproduce the analytical solution. Then, the diffusion coefficients for ink-bottle-shaped pores are calculated using the developed method. Our results show that surface diffusion assists molecular transport in the gas phase. Moreover, the surface tortuosity factor, which is known to be uniquely determined by physical structure, is influenced by the presence of gas-phase diffusion. This mutual influence of gas-phase diffusion and surface diffusion indicates that their simultaneous calculation is necessary for an accurate evaluation of the diffusion coefficients.

  8. Molecular modeling of diffusion coefficient and ionic conductivity of CO2 in aqueous ionic solutions.

    PubMed

    Garcia-Ratés, Miquel; de Hemptinne, Jean-Charles; Bonet Avalos, Josep; Nieto-Draghi, Carlos

    2012-03-08

    Mass diffusion coefficients of CO(2)/brine mixtures under thermodynamic conditions of deep saline aquifers have been investigated by molecular simulation. The objective of this work is to provide estimates of the diffusion coefficient of CO(2) in salty water to compensate the lack of experimental data on this property. We analyzed the influence of temperature, CO(2) concentration,and salinity on the diffusion coefficient, the rotational diffusion, as well as the electrical conductivity. We observe an increase of the mass diffusion coefficient with the temperature, but no clear dependence is identified with the salinity or with the CO(2) mole fraction, if the system is overall dilute. In this case, we notice an important dispersion on the values of the diffusion coefficient which impairs any conclusive statement about the effect of the gas concentration on the mobility of CO(2) molecules. Rotational relaxation times for water and CO(2) increase by decreasing temperature or increasing the salt concentration. We propose a correlation for the self-diffusion coefficient of CO(2) in terms of the rotational relaxation time which can ultimately be used to estimate the mutual diffusion coefficient of CO(2) in brine. The electrical conductivity of the CO(2)-brine mixtures was also calculated under different thermodynamic conditions. Electrical conductivity tends to increase with the temperature and salt concentration. However, we do not observe any influence of this property with the CO(2) concentration at the studied regimes. Our results give a first evaluation of the variation of the CO(2)-brine mass diffusion coefficient, rotational relaxation times, and electrical conductivity under the thermodynamic conditions typically encountered in deep saline aquifers.

  9. Carbon diffusion in molten uranium: an ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Garrett, Kerry E.; Abrecht, David G.; Kessler, Sean H.; Henson, Neil J.; Devanathan, Ram; Schwantes, Jon M.; Reilly, Dallas D.

    2018-04-01

    In this work we used ab initio molecular dynamics within the framework of density functional theory and the projector-augmented wave method to study carbon diffusion in liquid uranium at temperatures above 1600 K. The electronic interactions of carbon and uranium were described using the local density approximation (LDA). The self-diffusion of uranium based on this approach is compared with literature computational and experimental results for liquid uranium. The temperature dependence of carbon and uranium diffusion in the melt was evaluated by fitting the resulting diffusion coefficients to an Arrhenius relationship. We found that the LDA calculated activation energy for carbon was nearly twice that of uranium: 0.55 ± 0.03 eV for carbon compared to 0.32 ± 0.04 eV for uranium. Structural analysis of the liquid uranium-carbon system is also discussed.

  10. Pitch-angle diffusion of electrons through growing and propagating along a magnetic field electromagnetic wave in Earth's radiation belts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, C.-R., E-mail: crchoi@kaist.ac.kr; Dokgo, K.; Min, K.-W.

    The diffusion of electrons via a linearly polarized, growing electromagnetic (EM) wave propagating along a uniform magnetic field is investigated. The diffusion of electrons that interact with the growing EM wave is investigated through the autocorrelation function of the parallel electron acceleration in several tens of electron gyration timescales, which is a relatively short time compared with the bounce time of electrons between two mirror points in Earth's radiation belts. Furthermore, the pitch-angle diffusion coefficient is derived for the resonant and non-resonant electrons, and the effect of the wave growth on the electron diffusion is discussed. The results can bemore » applied to other problems related to local acceleration or the heating of electrons in space plasmas, such as in the radiation belts.« less

  11. Spin Diffusion Coefficient of A1-PHASE of Superfluid 3He at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Afzali, R.; Pashaee, F.

    The spin diffusion coefficient tensor of the A1-phase of superfluid 3He at low temperatures and melting pressure is calculated using the Boltzmann equation approach and Pfitzner procedure. Then considering Bogoliubov-normal interaction, we show that the total spin diffusion is proportional to 1/T2, the spin diffusion coefficient of superfluid component D\\uparrowxzxz is proportional to T-2, and the spin diffusion coefficient of super-fluid component D\\uparrowxxxx (=D\\uarrowxyxy) is independent of temperature. Furthermore, it is seen that superfluid components play an important role in spin diffusion of the A1-phase.

  12. Melting Heat in Radiative Flow of Carbon Nanotubes with Homogeneous-Heterogeneous Reactions

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Muhammad, Khursheed; Muhammad, Taseer; Alsaedi, Ahmed

    2018-04-01

    The present article provides mathematical modeling for melting heat and thermal radiation in stagnation-point flow of carbon nanotubes towards a nonlinear stretchable surface of variable thickness. The process of homogeneous-heterogeneous reactions is considered. Diffusion coefficients are considered equal for both reactant and autocatalyst. Water and gasoline oil are taken as base fluids. The conversion of partial differential system to ordinary differential system is done by suitable transformations. Optimal homotopy technique is employed for the solutions development of velocity, temperature, concentration, skin friction and local Nusselt number. Graphical results for various values of pertinent parameters are displayed and discussed. Our results indicate that the skin friction coefficient and local Nusselt number are enhanced for larger values of nanoparticles volume fraction.

  13. Evaluation of multidimensional transport through a field-scale compacted soil liner

    USGS Publications Warehouse

    Willingham, T.W.; Werth, C.J.; Valocchi, A.J.; Krapac, I.G.; Toupiol, C.; Stark, T.D.; Daniel, D.E.

    2004-01-01

    A field-scale compacted soil liner was constructed at the University of Illinois at Urbana-Champaign by the U.S. Environmental Protection Agency (USEPA) and Illinois State Geological Survey in 1988 to investigate chemical transport rates through low permeability compacted clay liners (CCLs). Four tracers (bromide and three benzoic acid tracers) were each added to one of four large ring infiltrometers (LRIs) while tritium was added to the pond water (excluding the infiltrometers). Results from the long-term transport of Br- from the localized source zone of LRI are presented in this paper. Core samples were taken radially outward from the center of the Br- LRI and concentration depth profiles were obtained. Transport properties were evaluated using an axially symmetric transport model. Results indicate that (1) transport was diffusion controlled; (2) transport due to advection was negligible and well within the regulatory limits of ksat???1 ?? 10-7 cm/s; (3) diffusion rates in the horizontal and vertical directions were the same; and (4) small positioning errors due to compression during soil sampling did not affect the best fit advection and diffusion values. The best-fit diffusion coefficient for bromide was equal to the molecular diffusion coefficient multiplied by a tortuosity factor of 0.27, which is within 8% of the tortuosity factor (0.25) found in a related study where tritium transport through the same liner was evaluated. This suggests that the governing mechanisms for the transport of tritium and bromide through the CCL were similar. These results are significant because they address transport through a composite liner from a localized source zone which occurs when defects or punctures in the geomembrane of a composite system are present. ?? ASCE.

  14. An extended model of vesicle fusion at the plasma membrane to estimate protein lateral diffusion from TIRF microscopy images.

    PubMed

    Basset, Antoine; Bouthemy, Patrick; Boulanger, Jérôme; Waharte, François; Salamero, Jean; Kervrann, Charles

    2017-07-24

    Characterizing membrane dynamics is a key issue to understand cell exchanges with the extra-cellular medium. Total internal reflection fluorescence microscopy (TIRFM) is well suited to focus on the late steps of exocytosis at the plasma membrane. However, it is still a challenging task to quantify (lateral) diffusion and estimate local dynamics of proteins. A new model was introduced to represent the behavior of cargo transmembrane proteins during the vesicle fusion to the plasma membrane at the end of the exocytosis process. Two biophysical parameters, the diffusion coefficient and the release rate parameter, are automatically estimated from TIRFM image sequences, to account for both the lateral diffusion of molecules at the membrane and the continuous release of the proteins from the vesicle to the plasma membrane. Quantitative evaluation on 300 realistic computer-generated image sequences demonstrated the efficiency and accuracy of the method. The application of our method on 16 real TIRFM image sequences additionally revealed differences in the dynamic behavior of Transferrin Receptor (TfR) and Langerin proteins. An automated method has been designed to simultaneously estimate the diffusion coefficient and the release rate for each individual vesicle fusion event at the plasma membrane in TIRFM image sequences. It can be exploited for further deciphering cell membrane dynamics.

  15. Rapid in vivo apparent diffusion coefficient mapping of hyperpolarized (13) C metabolites.

    PubMed

    Koelsch, Bertram L; Reed, Galen D; Keshari, Kayvan R; Chaumeil, Myriam M; Bok, Robert; Ronen, Sabrina M; Vigneron, Daniel B; Kurhanewicz, John; Larson, Peder E Z

    2015-09-01

    Hyperpolarized (13) C magnetic resonance allows for the study of real-time metabolism in vivo, including significant hyperpolarized (13) C lactate production in many tumors. Other studies have shown that aggressive and highly metastatic tumors rapidly transport lactate out of cells. Thus, the ability to not only measure the production of hyperpolarized (13) C lactate but also understand its compartmentalization using diffusion-weighted MR will provide unique information for improved tumor characterization. We used a bipolar, pulsed-gradient, double spin echo imaging sequence to rapidly generate diffusion-weighted images of hyperpolarized (13) C metabolites. Our methodology included a simultaneously acquired B1 map to improve apparent diffusion coefficient (ADC) accuracy and a diffusion-compensated variable flip angle scheme to improve ADC precision. We validated this sequence and methodology in hyperpolarized (13) C phantoms. Next, we generated ADC maps of several hyperpolarized (13) C metabolites in a normal rat, rat brain tumor, and prostate cancer mouse model using both preclinical and clinical trial-ready hardware. ADC maps of hyperpolarized (13) C metabolites provide information about the localization of these molecules in the tissue microenvironment. The methodology presented here allows for further studies to investigate ADC changes due to disease state that may provide unique information about cancer aggressiveness and metastatic potential. © 2014 Wiley Periodicals, Inc.

  16. Interest of diffusion-weighted echo-planar MR imaging and apparent diffusion coefficient mapping in gynecological malignancies: a review.

    PubMed

    Levy, Antonin; Medjhoul, Aïcha; Caramella, Caroline; Zareski, Elise; Berges, Oscar; Chargari, Cyrus; Boulet, Bérénice; Bidault, François; Dromain, Clarisse; Balleyguier, Corinne

    2011-05-01

    Magnetic resonance imaging (MRI) remains the standard modality for the local staging of gynecological malignancies but it has several limitations, particularly for lymph node staging or evaluating peritoneal carcinomatosis. Consequently, there has been a growing interest in functional imaging modalities. Based on molecular diffusion, diffusion-weighted imaging (DWI) is a unique, noninvasive modality that provides excellent tissue contrast and was shown to improve the radiological diagnosis of malignant tumors. Using quantitative apparent diffusion coefficient (ADC) measurement of DWI provides a new tool for better distinguishing malignant tissues from benign tumors. The aim of the present review is to report on the results of DWI for the assessment of patients with gynecological malignancies. An analysis of the literature suggests that DWI studies would improve the diagnosis of cervical and endometrial tumors. It may also improve the assessment of tumor extension in patients with peritoneal carcinomatosis from gynecological malignancies. However, since the signal intensity of some cancers can range from high intensity to low intensity, a degree of uncertainty was demonstrated due to the proximity of the normal uterine myometrium and ovaries. Interestingly, there is also evidence that ADC might improve the follow-up and monitoring of patients who receive anticancer therapies, including chemotherapy or radiation therapy. Copyright © 2011 Wiley-Liss, Inc.

  17. Static and Dynamic Effects of Lateral Carrier Diffusion in Semiconductor Lasers

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Electron and hole diffusions in the plane of semiconductor quantum wells play an important part in the static and dynamic operations of semiconductor lasers. It is well known that the value of diffusion coefficients affects the threshold pumping current of a semiconductor laser. At the same time, the strength of carrier diffusion process is expected to affect the modulation bandwidth of an AC-modulated laser. It is important not only to investigate the combined DC and AC effects due to carrier diffusion, but also to separate the AC effects from that of the combined effects in order to provide design insights for high speed modulation. In this presentation, we apply a hydrodynamic model developed by the present authors recently from the semiconductor Bloch equations. The model allows microscopic calculation of the lateral carrier diffusion coefficient, which is a nonlinear function of the carrier density and plasma temperature. We first studied combined AC and DC effects of lateral carrier diffusion by studying the bandwidth dependence on diffusion coefficient at a given DC current under small signal modulation. The results show an increase of modulation bandwidth with decrease in the diffusion coefficient. We simultaneously studied the effects of nonlinearity in the diffusion coefficient. To clearly identify how much of the bandwidth increase is a result of decrease in the threshold pumping current for smaller diffusion coefficient, thus an effective increase of DC pumping, we study the bandwidth dependence on diffusion coefficient at a given relative pumping. A detailed comparison of the two cases will be presented.

  18. Diffusion and mobility of atomic particles in a liquid

    NASA Astrophysics Data System (ADS)

    Smirnov, B. M.; Son, E. E.; Tereshonok, D. V.

    2017-11-01

    The diffusion coefficient of a test atom or molecule in a liquid is determined for the mechanism where the displacement of the test molecule results from the vibrations and motion of liquid molecules surrounding the test molecule and of the test particle itself. This leads to a random change in the coordinate of the test molecule, which eventually results in the diffusion motion of the test particle in space. Two models parameters of interaction of a particle and a liquid are used to find the activation energy of the diffusion process under consideration: the gas-kinetic cross section for scattering of test molecules in the parent gas and the Wigner-Seitz radius for test molecules. In the context of this approach, we have calculated the diffusion coefficient of atoms and molecules in water, where based on experimental data, we have constructed the dependence of the activation energy for the diffusion of test molecules in water on the interaction parameter and the temperature dependence for diffusion coefficient of atoms or molecules in water within the models considered. The statistically averaged difference of the activation energies for the diffusion coefficients of different test molecules in water that we have calculated based on each of the presented models does not exceed 10% of the diffusion coefficient itself. We have considered the diffusion of clusters in water and present the dependence of the diffusion coefficient on the cluster size. The accuracy of the presented formulas for the diffusion coefficient of atomic particles in water is estimated to be 50%.

  19. Thermodynamic properties and transport coefficients of two-temperature helium thermal plasmas

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoxue; Murphy, Anthony B.; Li, Xingwen

    2017-03-01

    Helium thermal plasmas are in widespread use in arc welding and many other industrial applications. Simulation of these processes relies on accurate plasma property data, such as plasma composition, thermodynamic properties and transport coefficients. Departures from LTE (local thermodynamic equilibrium) generally occur in some regions of helium plasmas. In this paper, properties are calculated allowing for different values of the electron temperature, T e, and heavy-species temperature, T h, at atmospheric pressure from 300 K to 30 000 K. The plasma composition is first calculated using the mass action law, and the two-temperature thermodynamic properties are then derived. The viscosity, diffusion coefficients, electrical conductivity and thermal conductivity of the two-temperature helium thermal plasma are obtained using a recently-developed method that retains coupling between electrons and heavy species by including the electron-heavy-species collision term in the heavy-species Boltzmann equation. It is shown that the viscosity and the diffusion coefficients strongly depend on non-equilibrium ratio θ (θ ={{T}\\text{e}}/{{T}\\text{h}} ), through the plasma composition and the collision integrals. The electrical conductivity, which depends on the electron number density and ordinary diffusion coefficients, and the thermal conductivity have similar dependencies. The choice of definition of the Debye length is shown to affect the electrical conductivity significantly for θ  >  1. By comparing with literature data, it is shown that the coupling between electrons and heavy species has a significant influence on the electrical conductivity, but not on the viscosity. Plasma properties are tabulated in the supplementary data.

  20. Unsaturated soil moisture drying and wetting diffusion coefficient measurements in the laboratory.

    DOT National Transportation Integrated Search

    2009-09-01

    ABSTRACTTransient moisture flow in an unsaturated soil in response to suction changes is controlled by the unsaturated moisture diffusion coefficient. The moisture diffusion coefficient can be determined by measuring suction profiles over time. The l...

  1. A novel approach to interpretation of the time-dependent self-diffusion coefficient as a probe of porous media geometry.

    PubMed

    Loskutov, V V; Sevriugin, V A

    2013-05-01

    This article presents a new approximation describing fluid diffusion in porous media. Time dependence of the self-diffusion coefficient D(t) in the permeable porous medium is studied based on the assumption that diffusant molecules move randomly. An analytical expression for time dependence of the self-diffusion coefficient was obtained in the following form: D(t)=(D0-D∞)exp(-D0t/λ)+D∞, where D0 is the self-diffusion coefficient of bulk fluid, D∞ is the asymptotic value of the self-diffusion coefficient in the limit of long time values (t→∞), λ is the characteristic parameter of this porous medium with dimensionality of length. Applicability of the solution obtained to the analysis of experimental data is shown. The possibility of passing to short-time and long-time regimes is discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Single-image diffusion coefficient measurements of proteins in free solution.

    PubMed

    Zareh, Shannon Kian; DeSantis, Michael C; Kessler, Jonathan M; Li, Je-Luen; Wang, Y M

    2012-04-04

    Diffusion coefficient measurements are important for many biological and material investigations, such as studies of particle dynamics and kinetics, and size determinations. Among current measurement methods, single particle tracking (SPT) offers the unique ability to simultaneously obtain location and diffusion information about a molecule while using only femtomoles of sample. However, the temporal resolution of SPT is limited to seconds for single-color-labeled samples. By directly imaging three-dimensional diffusing fluorescent proteins and studying the widths of their intensity profiles, we were able to determine the proteins' diffusion coefficients using single protein images of submillisecond exposure times. This simple method improves the temporal resolution of diffusion coefficient measurements to submilliseconds, and can be readily applied to a range of particle sizes in SPT investigations and applications in which diffusion coefficient measurements are needed, such as reaction kinetics and particle size determinations. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Dynamic decoupling and local atomic order of a model multicomponent metallic glass-former.

    PubMed

    Kim, Jeongmin; Sung, Bong June

    2015-06-17

    The dynamics of multicomponent metallic alloys is spatially heterogeneous near glass transition. The diffusion coefficient of one component of the metallic alloys may also decouple from those of other components, i.e., the diffusion coefficient of each component depends differently on the viscosity of metallic alloys. In this work we investigate the dynamic heterogeneity and decoupling of a model system for multicomponent Pd43Cu27Ni10P20 melts by using a hard sphere model that considers the size disparity of alloys but does not take chemical effects into account. We also study how such dynamic behaviors would relate to the local atomic structure of metallic alloys. We find, from molecular dynamics simulations, that the smallest component P of multicomponent Pd43Cu27Ni10P20 melts becomes dynamically heterogeneous at a translational relaxation time scale and that the largest major component Pd forms a slow subsystem, which has been considered mainly responsible for the stabilization of amorphous state of alloys. The heterogeneous dynamics of P atoms accounts for the breakdown of Stokes-Einstein relation and also leads to the dynamic decoupling of P and Pd atoms. The dynamically heterogeneous P atoms decrease the lifetime of the local short-range atomic orders of both icosahedral and close-packed structures by orders of magnitude.

  4. Diffusion coefficients in systems with inclusion compounds. 1. alpha. -Cyclodextrin-L-phenylalanine-water at 25 degree C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paduano, L.; Sartorio, R.; Vitagliano, V.

    Diffusion coefficients in the ternary system {alpha}-cyclodextrin (at one concentration)-L-phenylalanine (at four concentrations)-water have been measured by using the Gouy interferometric technique. The effect of the inclusion equilibrium on the cross-term diffusion coefficients was observed. The measured diffusion coefficients in the ternary systems were used to calculate values of the binding constants. These values are in good agreement with the value obtained from calorimetric studies.

  5. Response of radiation belt simulations to different radial diffusion coefficients

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Shprits, Y.; Subbotin, D.; Kellerman, A. C.

    2013-12-01

    Resonant interactions between Ultra Low Frequency (ULF) waves and relativistic electrons may violate the third adiabatic invariant of motion, which produces radial diffusion in the electron radiation belts. This process plays an important role in the formation and structure of the outer electron radiation belt and is important for electron acceleration and losses in that region. Two parameterizations of the resonant wave-particle interaction of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate their relative effect on the radiation belt simulation. The period of investigation includes quiet time and storm time geomagnetic activity and is compared to data based on satellite observations. Our calculations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. We show that the results of the 3D diffusion simulations depend on the assumed parametrization of waves. The differences between the simulations and potential missing physical mechanisms are discussed. References Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.

  6. Banded Structures in Electron Pitch Angle Diffusion Coefficients from Resonant Wave Particle Interactions

    NASA Technical Reports Server (NTRS)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-01-01

    Electron pitch angle (D (alpha)) and momentum (D(pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies 10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = +/-1, +/-2,...+/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D alpha and Dpp coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The Dpp diffusion coefficient for ECH waves is one to two orders smaller than D alpha coefficients. For chorus waves, Dpp coefficients are about an order of magnitude smaller than D alpha coefficients for the case n does not = 0. In case of Landau resonance, the values of Dpp coefficient are generally larger than the values of D alpha coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10 deg and Landau resonance. Further, in ECH waves, the banded structures appear for electron energies (is) greater than1 keV, and for whistler mode chorus waves, structures appear for energies greater than 2 keV at L = 4.6 and above 200 eV for L = 6.8. The results obtained in the present work will be helpful in the study of diffusion curves and will have important consequences for diffuse aurora and pancake distributions.

  7. Banded Structures in Electron Pitch Angle Diffusion Coefficients from Resonant Wave-Particle Interactions

    NASA Technical Reports Server (NTRS)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-01-01

    Electron pitch angle (D(sub (alpha alpha))) and momentum (D(sub pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L=4.6 and 6.8 for electron energies less than or equal to 10 keV. Landau (n=0) resonance and cyclotron harmonic resonances n= +/- 1, +/-2, ... +/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n=+1 and n=+2. A major contribution to momentum diffusion coefficients appears from n=+2. However, the banded structures in D(sub alpha alpha) and D(sub pp) coefficients appear only in the profile of diffusion coefficients for n=+2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D(sub pp) diffusion coefficient for ECH waves is one to two orders smaller than D(sub alpha alpha) coefficients. For chorus waves, D(sub pp) coefficients are about an order of magnitude smaller than D(sub alpha alpha) coefficients for the case n does not equal 0. In case of Landau resonance, the values of D(sub pp) coefficient are generally larger than the values of D(sub alpha alpha) coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances n= +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10 deg and Landau resonance. Further, in ECH waves, the banded structures appear for electron energies 1 greater than or equal to keV, and for whistler mode chorus waves, structures appear for energies greater than 2 keV at L=4.6 and above 200 eV for L=6.8. The results obtained in the present work will be helpful in the study of diffusion curves and will have important consequences for diffuse aurora and pancake distributions.

  8. Ensemble Grouping Strategies for Embedded Stochastic Collocation Methods Applied to Anisotropic Diffusion Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Elia, M.; Edwards, H. C.; Hu, J.

    Previous work has demonstrated that propagating groups of samples, called ensembles, together through forward simulations can dramatically reduce the aggregate cost of sampling-based uncertainty propagation methods [E. Phipps, M. D'Elia, H. C. Edwards, M. Hoemmen, J. Hu, and S. Rajamanickam, SIAM J. Sci. Comput., 39 (2017), pp. C162--C193]. However, critical to the success of this approach when applied to challenging problems of scientific interest is the grouping of samples into ensembles to minimize the total computational work. For example, the total number of linear solver iterations for ensemble systems may be strongly influenced by which samples form the ensemble whenmore » applying iterative linear solvers to parameterized and stochastic linear systems. In this paper we explore sample grouping strategies for local adaptive stochastic collocation methods applied to PDEs with uncertain input data, in particular canonical anisotropic diffusion problems where the diffusion coefficient is modeled by truncated Karhunen--Loève expansions. Finally, we demonstrate that a measure of the total anisotropy of the diffusion coefficient is a good surrogate for the number of linear solver iterations for each sample and therefore provides a simple and effective metric for grouping samples.« less

  9. Ensemble Grouping Strategies for Embedded Stochastic Collocation Methods Applied to Anisotropic Diffusion Problems

    DOE PAGES

    D'Elia, M.; Edwards, H. C.; Hu, J.; ...

    2018-01-18

    Previous work has demonstrated that propagating groups of samples, called ensembles, together through forward simulations can dramatically reduce the aggregate cost of sampling-based uncertainty propagation methods [E. Phipps, M. D'Elia, H. C. Edwards, M. Hoemmen, J. Hu, and S. Rajamanickam, SIAM J. Sci. Comput., 39 (2017), pp. C162--C193]. However, critical to the success of this approach when applied to challenging problems of scientific interest is the grouping of samples into ensembles to minimize the total computational work. For example, the total number of linear solver iterations for ensemble systems may be strongly influenced by which samples form the ensemble whenmore » applying iterative linear solvers to parameterized and stochastic linear systems. In this paper we explore sample grouping strategies for local adaptive stochastic collocation methods applied to PDEs with uncertain input data, in particular canonical anisotropic diffusion problems where the diffusion coefficient is modeled by truncated Karhunen--Loève expansions. Finally, we demonstrate that a measure of the total anisotropy of the diffusion coefficient is a good surrogate for the number of linear solver iterations for each sample and therefore provides a simple and effective metric for grouping samples.« less

  10. Bulk diffusion in a kinetically constrained lattice gas

    NASA Astrophysics Data System (ADS)

    Arita, Chikashi; Krapivsky, P. L.; Mallick, Kirone

    2018-03-01

    In the hydrodynamic regime, the evolution of a stochastic lattice gas with symmetric hopping rules is described by a diffusion equation with density-dependent diffusion coefficient encapsulating all microscopic details of the dynamics. This diffusion coefficient is, in principle, determined by a Green-Kubo formula. In practice, even when the equilibrium properties of a lattice gas are analytically known, the diffusion coefficient cannot be computed except when a lattice gas additionally satisfies the gradient condition. We develop a procedure to systematically obtain analytical approximations for the diffusion coefficient for non-gradient lattice gases with known equilibrium. The method relies on a variational formula found by Varadhan and Spohn which is a version of the Green-Kubo formula particularly suitable for diffusive lattice gases. Restricting the variational formula to finite-dimensional sub-spaces allows one to perform the minimization and gives upper bounds for the diffusion coefficient. We apply this approach to a kinetically constrained non-gradient lattice gas in two dimensions, viz. to the Kob-Andersen model on the square lattice.

  11. Population dynamics in non-homogeneous environments

    NASA Astrophysics Data System (ADS)

    Alards, Kim M. J.; Tesser, Francesca; Toschi, Federico

    2014-11-01

    For organisms living in aquatic ecosystems the presence of fluid transport can have a strong influence on the dynamics of populations and on evolution of species. In particular, displacements due to self-propulsion, summed up with turbulent dispersion at larger scales, strongly influence the local densities and thus population and genetic dynamics. Real marine environments are furthermore characterized by a high degree of non-homogeneities. In the case of population fronts propagating in ``fast'' turbulence, with respect to the population duplication time, the flow effect can be studied by replacing the microscopic diffusivity with an effective turbulent diffusivity. In the opposite case of ``slow'' turbulence the advection by the flow has to be considered locally. Here we employ numerical simulations to study the influence of non-homogeneities in the diffusion coefficient of reacting individuals of different species expanding in a 2 dimensional space. Moreover, to explore the influence of advection, we consider a population expanding in the presence of simple velocity fields like cellular flows. The output is analyzed in terms of front roughness, front shape, propagation speed and, concerning the genetics, by means of heterozygosity and local and global extinction probabilities.

  12. Measurement of effective air diffusion coefficients for trichloroethene in undisturbed soil cores.

    PubMed

    Bartelt-Hunt, Shannon L; Smith, James A

    2002-06-01

    In this study, we measure effective diffusion coefficients for trichloroethene in undisturbed soil samples taken from Picatinny Arsenal, New Jersey. The measured effective diffusion coefficients ranged from 0.0053 to 0.0609 cm2/s over a range of air-filled porosity of 0.23-0.49. The experimental data were compared to several previously published relations that predict diffusion coefficients as a function of air-filled porosity and porosity. A multiple linear regression analysis was developed to determine if a modification of the exponents in Millington's [Science 130 (1959) 100] relation would better fit the experimental data. The literature relations appeared to generally underpredict the effective diffusion coefficient for the soil cores studied in this work. Inclusion of a particle-size distribution parameter, d10, did not significantly improve the fit of the linear regression equation. The effective diffusion coefficient and porosity data were used to recalculate estimates of diffusive flux through the subsurface made in a previous study performed at the field site. It was determined that the method of calculation used in the previous study resulted in an underprediction of diffusive flux from the subsurface. We conclude that although Millington's [Science 130 (1959) 100] relation works well to predict effective diffusion coefficients in homogeneous soils with relatively uniform particle-size distributions, it may be inaccurate for many natural soils with heterogeneous structure and/or non-uniform particle-size distributions.

  13. ULF wave analysis and radial diffusion calculation using a global MHD model for the 17 March 2013 and 2015 storms

    NASA Astrophysics Data System (ADS)

    Li, Zhao; Hudson, Mary; Patel, Maulik; Wiltberger, Michael; Boyd, Alex; Turner, Drew

    2017-07-01

    The 17 March 2015 St. Patrick's Day Storm is the largest geomagnetic storm to date of Solar Cycle 24, with a Dst of -223 nT. The magnetopause moved inside geosynchronous orbit under high solar wind dynamic pressure and strong southward interplanetary magnetic field Bz causing loss; however, a subsequent drop in pressure allowed for rapid rebuilding of the radiation belts. The 17 March 2013 storm also shows similar effects on outer zone electrons: first, a rapid dropout due to inward motion of the magnetopause followed by rapid increase in flux above the prestorm level early in the recovery phase and a slow increase over the next 12 days. These phases can be seen in temporal evolution of the electron phase space density measured by the Energetic Particle, Composition, and Thermal Plasma Suite (ECT) instruments on Van Allen Probes. Using the Lyon-Fedder-Mobarry global MHD model driven by upstream solar wind measurements, we simulated both St. Patrick's Day 2013 and 2015 events, analyzing Lyon-Fedder-Mobarry electric and magnetic fields to calculate radial diffusion coefficients. These coefficients have been implemented in a radial diffusion code, using the measured electron phase space density following the local heating as the initial radial profile and outer boundary condition for subsequent temporal evolution over the next 12 days, beginning 18 March. Agreement with electron phase space density at 1000 MeV/G measured by the MagEIS component of the ECT instrument suite on Van Allen Probes was much improved using radial diffusion coefficients from the MHD simulations relative to coefficients parameterized by a global geomagnetic activity index.

  14. Bio-Optical Properties of the Arabian Sea as Determined by In Situ and Sea WiFS Data

    NASA Technical Reports Server (NTRS)

    Trees, Charles C.

    1997-01-01

    The overall objective of this work was to characterize optical and fluorescence properties in the euphotic zone during two British Ocean Flux Study (BOFS) Arabian Sea cruises. This was later expanded in 1995 to include three U.S. JGOFS Arabian Sea Cruises. The region was to be divided into one or more "bio-optical provinces," within each of which a single set of regression models was to be developed to relate the vertical distribution of irradiance attenuation and normalized fluorescence (SF and NF) to remote sensing reflectance and diffuse attenuation coefficient. The working hypothesis was that over relatively large spatial and temporal scales, the vertical profiles of bio-optical properties were predictable. The specific technical objectives were: (1) To characterize the vertical distribution of the inherent and apparent optical properties by measuring downwelling and upwelling irradiances, upwelling radiances, scalar irradiance of PAR, and beam transmissions at each station - from these data, spectral diffuse attenuation coefficients, irradiance reflectances, remote sensing reflectances, surface-leaving radiances and beam attenuation coefficients were determined; (2) To characterize the spectral absorption of total particulate, detrital, and dissolved organic material at each station from discrete water samples; (3) To describe the vertical distribution of photoadaptive properties in the water column by measuring profiles of stimulated (SF) and natural (NF) fluorescence and examining relationships between SF and NF as a function of diffuse optical depth, pigment biomass and primary productivity; and (4) To establish locally derived, in-water algorithms relating remote sensing reflectance spectra to diffuse attenuation coefficients, phytoplankton pigment concentrations and primary productivity, through intercomparisons with in situ measurements, for application to SeaWiFS data.

  15. Determination of the diffusion coefficient of hydrogen ion in hydrogels.

    PubMed

    Schuszter, Gábor; Gehér-Herczegh, Tünde; Szűcs, Árpád; Tóth, Ágota; Horváth, Dezső

    2017-05-17

    The role of diffusion in chemical pattern formation has been widely studied due to the great diversity of patterns emerging in reaction-diffusion systems, particularly in H + -autocatalytic reactions where hydrogels are applied to avoid convection. A custom-made conductometric cell is designed to measure the effective diffusion coefficient of a pair of strong electrolytes containing sodium ions or hydrogen ions with a common anion. This together with the individual diffusion coefficient for sodium ions, obtained from PFGSE-NMR spectroscopy, allows the determination of the diffusion coefficient of hydrogen ions in hydrogels. Numerical calculations are also performed to study the behavior of a diffusion-migration model describing ionic diffusion in our system. The method we present for one particular case may be extended for various hydrogels and diffusing ions (such as hydroxide) which are relevant e.g. for the development of pH-regulated self-healing mechanisms and hydrogels used for drug delivery.

  16. Extensive database of liquid phase diffusion coefficients of some frequently used test molecules in reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography.

    PubMed

    Song, Huiying; Vanderheyden, Yoachim; Adams, Erwin; Desmet, Gert; Cabooter, Deirdre

    2016-07-15

    Diffusion plays an important role in all aspects of band broadening in chromatography. An accurate knowledge of molecular diffusion coefficients in different mobile phases is therefore crucial in fundamental column performance studies. Correlations available in literature, such as the Wilke-Chang equation, can provide good approximations of molecular diffusion under reversed-phase conditions. However, these correlations have been demonstrated to be less accurate for mobile phases containing a large percentage of acetonitrile, as is the case in hydrophilic interaction liquid chromatography. A database of experimentally measured molecular diffusion coefficients of some 45 polar and apolar compounds that are frequently used as test molecules under hydrophilic interaction liquid chromatography and reversed-phase conditions is therefore presented. Special attention is given to diffusion coefficients of polar compounds obtained in large percentages of acetonitrile (>90%). The effect of the buffer concentration (5-10mM ammonium acetate) on the obtained diffusion coefficients is investigated and is demonstrated to mainly influence the molecular diffusion of charged molecules. Diffusion coefficients are measured using the Taylor-Aris method and hence deduced from the peak broadening of a solute when flowing through a long open tube. The validity of the set-up employed for the measurement of the diffusion coefficients is demonstrated by ruling out the occurrence of longitudinal diffusion, secondary flow interactions and extra-column effects, while it is also shown that radial equilibration in the 15m long capillary is effective. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Simulating Donnan equilibria based on the Nernst-Planck equation

    NASA Astrophysics Data System (ADS)

    Gimmi, Thomas; Alt-Epping, Peter

    2018-07-01

    Understanding ion transport through clays and clay membranes is important for many geochemical and environmental applications. Ion transport is affected by electrostatic forces exerted by charged clay surfaces. Anions are partly excluded from pore water near these surfaces, whereas cations are enriched. Such effects can be modeled by the Donnan approach. Here we introduce a new, comparatively simple way to represent Donnan equilibria in transport simulations. We include charged surfaces as immobile ions in the balance equation and calculate coupled transport of all components, including the immobile charges, with the Nernst-Planck equation. This results in an additional diffusion potential that influences ion transport, leading to Donnan ion distributions while maintaining local charge balance. The validity of our new approach was demonstrated by comparing Nernst-Planck simulations using the reactive transport code Flotran with analytical solutions available for simple Donnan systems. Attention has to be paid to the numerical evaluation of the electrochemical migration term in the Nernst-Planck equation to obtain correct results for asymmetric electrolytes. Sensitivity simulations demonstrate the influence of various Donnan model parameters on simulated anion accessible porosities. It is furthermore shown that the salt diffusion coefficient in a Donnan pore depends on local concentrations, in contrast to the aqueous salt diffusion coefficient. Our approach can be easily implemented into other transport codes. It is versatile and facilitates, for instance, assessing the implications of different activity models for the Donnan porosity.

  18. Impurity confinement and transport in high confinement regimes without edge localized modes on DIII-D [Impurity confinement and transport in high confinement regimes without ELMs on DIII-D

    DOE PAGES

    Grierson, Brian A.; Burrell, Keith H.; Nazikian, Raffi M.; ...

    2015-04-17

    Here, impurity transport in the DIII-D tokamak is investigated in stationary high confinement (H-mode) regimes without edge localized modes (ELMs). In plasmas maintained by resonant magnetic perturbation (RMP) ELM-suppression and QH-mode the confinement time of fluorine (Z=9) is equivalent to that in ELMing discharges with 40 Hz ELMs. For selected discharges with impurity injection the impurity particle confinement time compared to the energy confinement time is in the range of τ p/τ e ≈ 2 $-$ 3. In QH-mode operation the impurity confinement time is shown to be smaller for intense, coherent magnetic and density fluctuations of the edge harmonicmore » oscillation than weaker fluctuations. Transport coefficients are derived from the time evolution of the impurity density profile and compared to neoclassical and turbulent transport models NEO and TGLF. Neoclassical transport of fluorine is found to be small compared to the experimental values. In the ELMing and RMP ELM-suppressed plasma the impurity transport is affected by the presence of tearing modes. For radii larger than the mode radius the TGLF diffusion coefficient is smaller than the experimental value by a factor of 2-3, while the convective velocity is within error estimates. Low levels of diffusion are observed for radii smaller than the tearing mode radius. In the QH-mode plasma investigated, the TGLF diffusion coefficient higher inside of ρ = 0.4 and lower outside of 0.4 than the experiment, and the TGLF convective velocity is more negative by a factor of approximately 1.7.« less

  19. Non-Markovian renormalization of kinetic coefficients for drift-type turbulence in magnetized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zagorodny, A.; Weiland, J.

    2009-05-15

    The problem of derivation of the kinetic equations for inhomogeneous plasma in an external magnetic field is considered. The Fokker-Planck-type equations with the non-Markovian kinetic coefficients are proposed. In the time-local limit (small correlation times with respect to the distribution function relaxation time) the relations obtained recover the results known from the appropriate quasilinear theory and the Dupree-Weinstock theory of plasma turbulence. Kinetic calculations of the dielectric response function are also performed with regard to the influence of turbulent fields on particle motion. The equations proposed are used to describe zonal flow generation and to estimate the diffusion coefficient formore » saturated turbulence.« less

  20. Anomalous versus slowed-down Brownian diffusion in the ligand-binding equilibrium.

    PubMed

    Soula, Hédi; Caré, Bertrand; Beslon, Guillaume; Berry, Hugues

    2013-11-05

    Measurements of protein motion in living cells and membranes consistently report transient anomalous diffusion (subdiffusion) that converges back to a Brownian motion with reduced diffusion coefficient at long times after the anomalous diffusion regime. Therefore, slowed-down Brownian motion could be considered the macroscopic limit of transient anomalous diffusion. On the other hand, membranes are also heterogeneous media in which Brownian motion may be locally slowed down due to variations in lipid composition. Here, we investigate whether both situations lead to a similar behavior for the reversible ligand-binding reaction in two dimensions. We compare the (long-time) equilibrium properties obtained with transient anomalous diffusion due to obstacle hindrance or power-law-distributed residence times (continuous-time random walks) to those obtained with space-dependent slowed-down Brownian motion. Using theoretical arguments and Monte Carlo simulations, we show that these three scenarios have distinctive effects on the apparent affinity of the reaction. Whereas continuous-time random walks decrease the apparent affinity of the reaction, locally slowed-down Brownian motion and local hindrance by obstacles both improve it. However, only in the case of slowed-down Brownian motion is the affinity maximal when the slowdown is restricted to a subregion of the available space. Hence, even at long times (equilibrium), these processes are different and exhibit irreconcilable behaviors when the area fraction of reduced mobility changes. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Method of producing microporous joints in metal bodies

    DOEpatents

    Danko, Joseph C.

    1982-01-01

    Tungsten is placed in contact with either molybdenum, tantalum, niobium, vanadium, rhenium, or other metal of atoms having a different diffusion coefficient than tungsten. The metals are heated so that the atoms having the higher diffusion coefficient migrate to the metal having the lower diffusion rate, leaving voids in the higher diffusion coefficient metal. Heating is continued until the voids are interconnected.

  2. First-principles multiple-barrier diffusion theory. The case study of interstitial diffusion in CdTe

    DOE PAGES

    Yang, Ji -Hui; Park, Ji -Sang; Kang, Joongoo; ...

    2015-02-17

    The diffusion of particles in solid-state materials generally involves several sequential thermal-activation processes. However, presently, diffusion coefficient theory only deals with a single barrier, i.e., it lacks an accurate description to deal with multiple-barrier diffusion. Here, we develop a general diffusion coefficient theory for multiple-barrier diffusion. Using our diffusion theory and first-principles calculated hopping rates for each barrier, we calculate the diffusion coefficients of Cd, Cu, Te, and Cl interstitials in CdTe for their full multiple-barrier diffusion pathways. As a result, we found that the calculated diffusivity agrees well with the experimental measurement, thus justifying our theory, which is generalmore » for many other systems.« less

  3. Gas-film coefficients for streams

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1983-01-01

    Equations for predicting the gas-film coefficient for the volatilization of organic solutes from streams are developed. The film coefficient is a function of windspeed and water temperature. The dependence of the coefficient on windspeed is determined from published information on the evaporation of water from a canal. The dependence of the coefficient on temperature is determined from laboratory studies on the evaporation of water. Procedures for adjusting the coefficients for different organic solutes are based on the molecular diffusion coefficient and the molecular weight. The molecular weight procedure is easiest to use because of the availability of molecular weights. However, the theoretical basis of the procedure is questionable. The diffusion coefficient procedure is supported by considerable data. Questions, however, remain regarding the exact dependence of the film coefficint on the diffusion coefficient. It is suggested that the diffusion coefficient procedure with a 0.68-power dependence be used when precise estimate of the gas-film coefficient are needed and that the molecular weight procedure be used when only approximate estimates are needed.

  4. The diffusion of a Ga atom on GaAs(001)β2(2 × 4): Local superbasin kinetic Monte Carlo

    NASA Astrophysics Data System (ADS)

    Lin, Yangzheng; Fichthorn, Kristen A.

    2017-10-01

    We use first-principles density-functional theory to characterize the binding sites and diffusion mechanisms for a Ga adatom on the GaAs(001)β 2(2 × 4) surface. Diffusion in this system is a complex process involving eleven unique binding sites and sixteen different hops between neighboring binding sites. Among the binding sites, we can identify four different superbasins such that the motion between binding sites within a superbasin is much faster than hops exiting the superbasin. To describe diffusion, we use a recently developed local superbasin kinetic Monte Carlo (LSKMC) method, which accelerates a conventional kinetic Monte Carlo (KMC) simulation by describing the superbasins as absorbing Markov chains. We find that LSKMC is up to 4300 times faster than KMC for the conditions probed in this study. We characterize the distribution of exit times from the superbasins and find that these are sometimes, but not always, exponential and we characterize the conditions under which the superbasin exit-time distribution should be exponential. We demonstrate that LSKMC simulations assuming an exponential superbasin exit-time distribution yield the same diffusion coefficients as conventional KMC.

  5. Determination of the effect of lipophilicity on the in vitro permeability and tissue reservoir characteristics of topically applied solutes in human skin layers.

    PubMed

    Cross, Sheree E; Magnusson, Beatrice M; Winckle, Gareth; Anissimov, Yuri; Roberts, Michael S

    2003-05-01

    In order to establish the relationship between solute lipophilicity and skin penetration (including flux and concentration behavior), we examined the in vitro penetration and membrane concentration of a series of homologous alcohols (C2-C10) applied topically in aqueous solutions to human epidermal, full-thickness, and dermal membranes. The partitioning/distribution of each alcohol between the donor solution, stratum corneum, viable epidermis, dermis, and receptor phase compartments was determined during the penetration process and separately to isolated samples of each tissue type. Maximum flux and permeability coefficients are compared for each membrane and estimates of alcohol diffusivity are made based on flux/concentration data and also the related tissue resistance (the reciprocal of permeability coefficient) for each membrane type. The permeability coefficient increased with increasing lipophilicity to alcohol C8 (octanol) with no further increase for C10 (decanol). Log vehicle:stratum corneum partition coefficients were related to logP, and the concentration of alcohols in each of the tissue layers appeared to increase with lipophilicity. No difference was measured in the diffusivity of smaller more polar alcohols in the three membranes; however, the larger more lipophilic solutes showed slower diffusivity values. The study showed that the dermis may be a much more lipophilic environment than originally believed and that distribution of smaller nonionized solutes into local tissues below a site of topical application may be estimated based on knowledge of their lipophilicity alone.

  6. Modeling of photon migration in the human lung using a finite volume solver

    NASA Astrophysics Data System (ADS)

    Sikorski, Zbigniew; Furmanczyk, Michal; Przekwas, Andrzej J.

    2006-02-01

    The application of the frequency domain and steady-state diffusive optical spectroscopy (DOS) and steady-state near infrared spectroscopy (NIRS) to diagnosis of the human lung injury challenges many elements of these techniques. These include the DOS/NIRS instrument performance and accurate models of light transport in heterogeneous thorax tissue. The thorax tissue not only consists of different media (e.g. chest wall with ribs, lungs) but its optical properties also vary with time due to respiration and changes in thorax geometry with contusion (e.g. pneumothorax or hemothorax). This paper presents a finite volume solver developed to model photon migration in the diffusion approximation in heterogeneous complex 3D tissues. The code applies boundary conditions that account for Fresnel reflections. We propose an effective diffusion coefficient for the void volumes (pneumothorax) based on the assumption of the Lambertian diffusion of photons entering the pleural cavity and accounting for the local pleural cavity thickness. The code has been validated using the MCML Monte Carlo code as a benchmark. The code environment enables a semi-automatic preparation of 3D computational geometry from medical images and its rapid automatic meshing. We present the application of the code to analysis/optimization of the hybrid DOS/NIRS/ultrasound technique in which ultrasound provides data on the localization of thorax tissue boundaries. The code effectiveness (3D complex case computation takes 1 second) enables its use to quantitatively relate detected light signal to absorption and reduced scattering coefficients that are indicators of the pulmonary physiologic state (hemoglobin concentration and oxygenation).

  7. Dynamics of a poly(ethylene oxide) tracer in a poly(methyl methacrylate) matrix: remarkable decoupling of local and global motions.

    PubMed

    Haley, Jeffrey C; Lodge, Timothy P

    2005-06-15

    The tracer diffusion coefficient of unentangled poly(ethylene oxide) (PEO, M=1000 gmol) in a matrix of poly(methyl methacrylate) (PMMA, M=10 000 gmol) has been measured over a temperature range from 125 to 220 degrees C with forced Rayleigh scattering. The dynamic viscosities of blends of two different high molecular weight PEO tracers (M=440 000 and 900 000 gmol) in the same PMMA matrix were also measured at temperatures ranging from 160 to 220 degrees C; failure of time-temperature superposition was observed for these systems. The monomeric friction factors for the PEO tracers were extracted from the diffusion coefficients and the rheological relaxation times using the Rouse model. The friction factors determined by diffusion and rheology were in good agreement, even though the molecular weights of the tracers differed by about three orders of magnitude. The PEO monomeric friction factors were compared with literature data for PEO segmental relaxation times measured directly with NMR. The monomeric friction factors of the PEO tracer in the PMMA matrix were found to be from two to six orders of magnitude greater than anticipated based on direct measurements of segmental dynamics. Additionally, the PEO tracer terminal dynamics are a much stronger function of temperature than the corresponding PEO segmental dynamics. These results indicate that the fastest PEO Rouse mode, inferred from diffusion and rheology, is completely separated from the bond reorientation of PEO detected by NMR. This result is unlike other blend systems in which global and local motions have been compared.

  8. An Ab Initio and Kinetic Monte Carlo Simulation Study of Lithium Ion Diffusion on Graphene

    PubMed Central

    Zhong, Kehua; Yang, Yanmin; Xu, Guigui; Zhang, Jian-Min; Huang, Zhigao

    2017-01-01

    The Li+ diffusion coefficients in Li+-adsorbed graphene systems were determined by combining first-principle calculations based on density functional theory with Kinetic Monte Carlo simulations. The calculated results indicate that the interactions between Li ions have a very important influence on lithium diffusion. Based on energy barriers directly obtained from first-principle calculations for single-Li+ and two-Li+ adsorbed systems, a new equation predicting energy barriers with more than two Li ions was deduced. Furthermore, it is found that the temperature dependence of Li+ diffusion coefficients fits well to the Arrhenius equation, rather than meeting the equation from electrochemical impedance spectroscopy applied to estimate experimental diffusion coefficients. Moreover, the calculated results also reveal that Li+ concentration dependence of diffusion coefficients roughly fits to the equation from electrochemical impedance spectroscopy in a low concentration region; however, it seriously deviates from the equation in a high concentration region. So, the equation from electrochemical impedance spectroscopy technique could not be simply used to estimate the Li+ diffusion coefficient for all Li+-adsorbed graphene systems with various Li+ concentrations. Our work suggests that interactions between Li ions, and among Li ion and host atoms will influence the Li+ diffusion, which determines that the Li+ intercalation dependence of Li+ diffusion coefficient should be changed and complex. PMID:28773122

  9. On the Ageing of High Energy Lithium-Ion Batteries—Comprehensive Electrochemical Diffusivity Studies of Harvested Nickel Manganese Cobalt Electrodes

    PubMed Central

    Jaguemont, Joris; Van Den Bossche, Peter; Omar, Noshin; Van Mierlo, Joeri

    2018-01-01

    This paper examines the impact of the characterisation technique considered for the determination of the Li+ solid state diffusion coefficient in uncycled as in cycled Nickel Manganese Cobalt oxide (NMC) electrodes. As major characterisation techniques, Cyclic Voltammetry (CV), Galvanostatic Intermittent Titration Technique (GITT) and Electrochemical Impedance Spectroscopy (EIS) were systematically investigated. Li+ diffusion coefficients during the lithiation process of the uncycled and cycled electrodes determined by CV at 3.71 V are shown to be equal to 3.48×10−10 cm2·s−1 and 1.56×10−10 cm2·s−1 , respectively. The dependency of the Li+ diffusion with the lithium content in the electrodes is further studied in this paper with GITT and EIS. Diffusion coefficients calculated by GITT and EIS characterisations are shown to be in the range between 1.76×10−15 cm2·s−1 and 4.06×10−12 cm2·s−1, while demonstrating the same decreasing trend with the lithiation process of the electrodes. For both electrode types, diffusion coefficients calculated by CV show greater values compared to those determined by GITT and EIS. With ageing, CV and EIS techniques lead to diffusion coefficients in the electrodes at 3.71 V that are decreasing, in contrast to GITT for which results indicate increasing diffusion coefficient. After long-term cycling, ratios of the diffusion coefficients determined by GITT compared to CV become more significant with an increase about 1 order of magnitude, while no significant variation is seen between the diffusion coefficients calculated from EIS in comparison to CV. PMID:29360787

  10. On the Ageing of High Energy Lithium-Ion Batteries-Comprehensive Electrochemical Diffusivity Studies of Harvested Nickel Manganese Cobalt Electrodes.

    PubMed

    Capron, Odile; Gopalakrishnan, Rahul; Jaguemont, Joris; Van Den Bossche, Peter; Omar, Noshin; Van Mierlo, Joeri

    2018-01-23

    This paper examines the impact of the characterisation technique considered for the determination of the L i + solid state diffusion coefficient in uncycled as in cycled Nickel Manganese Cobalt oxide (NMC) electrodes. As major characterisation techniques, Cyclic Voltammetry (CV), Galvanostatic Intermittent Titration Technique (GITT) and Electrochemical Impedance Spectroscopy (EIS) were systematically investigated. L i + diffusion coefficients during the lithiation process of the uncycled and cycled electrodes determined by CV at 3.71 V are shown to be equal to 3 . 48 × 10 - 10 cm 2 ·s - 1 and 1 . 56 × 10 - 10 cm 2 ·s - 1 , respectively. The dependency of the L i + diffusion with the lithium content in the electrodes is further studied in this paper with GITT and EIS. Diffusion coefficients calculated by GITT and EIS characterisations are shown to be in the range between 1 . 76 × 10 - 15 cm 2 ·s - 1 and 4 . 06 × 10 - 12 cm 2 ·s - 1 , while demonstrating the same decreasing trend with the lithiation process of the electrodes. For both electrode types, diffusion coefficients calculated by CV show greater values compared to those determined by GITT and EIS. With ageing, CV and EIS techniques lead to diffusion coefficients in the electrodes at 3.71 V that are decreasing, in contrast to GITT for which results indicate increasing diffusion coefficient. After long-term cycling, ratios of the diffusion coefficients determined by GITT compared to CV become more significant with an increase about 1 order of magnitude, while no significant variation is seen between the diffusion coefficients calculated from EIS in comparison to CV.

  11. Diffusion, Dispersion, and Uncertainty in Anisotropic Fractal Porous Media

    NASA Astrophysics Data System (ADS)

    Monnig, N. D.; Benson, D. A.

    2007-12-01

    Motivated by field measurements of aquifer hydraulic conductivity (K), recent techniques were developed to construct anisotropic fractal random fields, in which the scaling, or self-similarity parameter, varies with direction and is defined by a matrix. Ensemble numerical results are analyzed for solute transport through these 2-D "operator-scaling" fractional Brownian motion (fBm) ln(K) fields. Contrary to some analytic stochastic theories for monofractal K fields, the plume growth rates never exceed Mercado's (1967) purely stratified aquifer growth rate of plume apparent dispersivity proportional to mean distance. Apparent super-stratified growth must be the result of other demonstrable factors, such as initial plume size. The addition of large local dispersion and diffusion does not significantly change the effective longitudinal dispersivity of the plumes. In the presence of significant local dispersion or diffusion, the concentration coefficient of variation CV={σc}/{\\langle c \\rangle} remains large at the leading edge of the plumes. This indicates that even with considerable mixing due to dispersion or diffusion, there is still substantial uncertainty in the leading edge of a plume moving in fractal porous media.

  12. Diffusion and solubility coefficients determined by permeation and immersion experiments for organic solvents in HDPE geomembrane.

    PubMed

    Chao, Keh-Ping; Wang, Ping; Wang, Ya-Ting

    2007-04-02

    The chemical resistance of eight organic solvents in high density polyethylene (HDPE) geomembrane has been investigated using the ASTM F739 permeation method and the immersion test at different temperatures. The diffusion of the experimental organic solvents in HDPE geomembrane was non-Fickian kinetic, and the solubility coefficients can be consistent with the solubility parameter theory. The diffusion coefficients and solubility coefficients determined by the ASTM F739 method were significantly correlated to the immersion tests (p<0.001). The steady state permeation rates also showed a good agreement between ASTM F739 and immersion experiments (r(2)=0.973, p<0.001). Using a one-dimensional diffusion equation based on Fick's second law, the diffusion and solubility coefficients obtained by immersion test resulted in over estimates of the ASTM F739 permeation results. The modeling results indicated that the diffusion and solubility coefficients should be obtained using ASTM F739 method which closely simulates the practical application of HDPE as barriers in the field.

  13. Radon diffusion coefficients in 360 waterproof materials of different chemical composition.

    PubMed

    Jiránek, M; Kotrbatá, M

    2011-05-01

    This paper summarises the results of radon diffusion coefficient measurements in 360 common waterproof materials available throughout Europe. The materials were grouped into 26 categories according to their chemical composition. It was found that the diffusion coefficients of materials used for protecting houses against radon vary within eight orders from 10(-15) to 10(-8) m(2) s(-1). The lowest values were obtained for bitumen membranes with an Al carrier film and for ethylene vinyl acetate membranes. The highest radon diffusion coefficient values were discovered for sodium bentonite membranes, rubber membranes made of ethylene propylene diene monomer and polymer cement coatings. The radon diffusion coefficients for waterproofings widely used for protecting houses, i.e. flexible polyvinyl chloride, high-, low-density polyethylene, polypropylene and bitumen membranes, vary in the range from 3 × 10(-12) to 3 × 10(-11) m(2) s(-1). Tests were performed which confirmed that the radon diffusion coefficient is also an effective tool for verifying the air-tightness of joints.

  14. Electronic speckle pattern interferometry: a tool for determining diffusion and partition coefficients for proteins in gels.

    PubMed

    Karlsson, David; Zacchi, Guido; Axelsson, Anders

    2002-01-01

    The aim of this study was to demonstrate electronic speckle pattern interferometry (ESPI) as a powerful tool in determining diffusion coefficients and partition coefficients for proteins in gels. ESPI employs a CCD camera instead of a holographic plate as in conventional holographic interferometry. This gives the advantage of being able to choose the reference state freely. If a hologram at the reference state is taken and compared to a hologram during the diffusion process, an interferometric picture can be generated that describes the refraction index gradients and thus the concentration gradients in the gel as well as in the liquid. MATLAB is then used to fit Fick's law to the experimental data to obtain the diffusion coefficients in gel and liquid. The partition coefficient is obtained from the same experiment from the flux condition at the interface between gel and liquid. This makes the comparison between the different diffusants more reliable than when the measurements are performed in separate experiments. The diffusion and partitioning coefficients of lysozyme, BSA, and IgG in 4% agarose gel at pH 5.6 and in 0.1 M NaCl have been determined. In the gel the diffusion coefficients were 11.2 +/- 1.6, 4.8 +/- 0.6, and 3.0 +/- 0.3 m(2)/s for lysozyme, BSA, and IgG, respectively. The partition coefficients were determined to be 0.65 +/- 0.04, 0.44 +/- 0.06, and 0.51 +/- 0.04 for lysozyme, BSA, and IgG, respectively. The current study shows that ESPI is easy to use and gives diffusion coefficients and partition coefficients for proteins with sufficient accuracy from the same experiment.

  15. Diffusion of rhodamine B and bovine serum albumin in fibrin gels seeded with primary endothelial cells.

    PubMed

    Shkilnyy, Andriy; Proulx, Pierre; Sharp, Jamie; Lepage, Martin; Vermette, Patrick

    2012-05-01

    Scaffolds with adequate mass transport properties are needed in many tissue engineering applications. Fibrin is considered a good biological material to fabricate such scaffolds. However, very little is known about mass transport in fibrin. Therefore, a method based on the analysis of fluorescence intensity for measuring the apparent diffusion coefficient of rhodamine B and fluorescein-labelled bovine serum albumin (FITC-BSA) is described. The experiments are performed in fibrin gels with and without human umbilical vein endothelial cells (HUVEC). The apparent diffusion coefficients of rhodamine B and FITC-BSA in fibrin (fibrinogen concentration of 4 mg/mL) with different cell densities are reported. A LIVE/DEAD(®) assay is performed to confirm the viability of HUVEC seeded at high densities. Diffusion coefficients for rhodamine B remain more or less constant up to 5×10(5) cells/mL and correlate well with literature values measured by other methods in water systems. This indicates that the presence of HUVEC in the fibrin gels (up to 5×10(5) cells/mL) has almost no effect on the diffusion coefficients. Higher cell densities (>5×10(5) cells/mL) result in a decrease of the diffusion coefficients. Diffusion coefficients of rhodamine B and FITC-BSA obtained by this method agree with diffusion coefficients in water predicted by the Stokes-Einstein equation. The experimental design used in this study can be applied to measure diffusion coefficients in different types of gels seeded or not with living cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Real-space analysis of diffusion behavior and activation energy of individual monatomic ions in a liquid.

    PubMed

    Miyata, Tomohiro; Uesugi, Fumihiko; Mizoguchi, Teruyasu

    2017-12-01

    Investigation of the local dynamic behavior of atoms and molecules in liquids is crucial for revealing the origin of macroscopic liquid properties. Therefore, direct imaging of single atoms to understand their motions in liquids is desirable. Ionic liquids have been studied for various applications, in which they are used as electrolytes or solvents. However, atomic-scale diffusion and relaxation processes in ionic liquids have never been observed experimentally. We directly observe the motion of individual monatomic ions in an ionic liquid using scanning transmission electron microscopy (STEM) and reveal that the ions diffuse by a cage-jump mechanism. Moreover, we estimate the diffusion coefficient and activation energy for the diffusive jumps from the STEM images, which connect the atomic-scale dynamics to macroscopic liquid properties. Our method is the only available means to observe the motion, reactions, and energy barriers of atoms/molecules in liquids.

  17. Carbon diffusion in molten uranium: an ab initio molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, Kerry E.; Abrecht, David G.; Kessler, Sean H.

    In this work we used ab initio molecular dynamics (AIMD) within the framework of density functional theory (DFT) and the projector-augmented wave (PAW) method to study carbon diffusion in liquid uranium at temperatures above 1600 K. The electronic interactions of carbon and uranium were described using the local density approximation (LDA). The self-diffusion of uranium based on this approach is compared with literature computational and experimental results for liquid uranium. The temperature dependence of carbon and uranium diffusion in the melt was evaluated by fitting the resulting diffusion coefficients to an Arrhenius relationship. We found that the LDA calculated activationmore » energy for carbon was nearly twice that of uranium: 0.55±0.03 eV for carbon compared to 0.32±0.04 eV for uranium. Structural analysis of the liquid uranium-carbon system is also discussed.« less

  18. Ion radial diffusion in an electrostatic impulse model for stormtime ring current formation

    NASA Technical Reports Server (NTRS)

    Chen, Margaret W.; Schulz, Michael; Lyons, Larry R.; Gorney, David J.

    1992-01-01

    Two refinements to the quasi-linear theory of ion radial diffusion are proposed and examined analytically with simulations of particle trajectories. The resonance-broadening correction by Dungey (1965) is applied to the quasi-linear diffusion theory by Faelthammar (1965) for an individual model storm. Quasi-linear theory is then applied to the mean diffusion coefficients resulting from simulations of particle trajectories in 20 model storms. The correction for drift-resonance broadening results in quasi-linear diffusion coefficients with discrepancies from the corresponding simulated values that are reduced by a factor of about 3. Further reductions in the discrepancies are noted following the averaging of the quasi-linear diffusion coefficients, the simulated coefficients, and the resonance-broadened coefficients for the 20 storms. Quasi-linear theory provides good descriptions of particle transport for a single storm but performs even better in conjunction with the present ensemble-averaging.

  19. Perpendicular Diffusion Coefficient of Comic Rays: The Presence of Weak Adiabatic Focusing

    NASA Astrophysics Data System (ADS)

    Wang, J. F.; Qin, G.; Ma, Q. M.; Song, T.; Yuan, S. B.

    2017-08-01

    The influence of adiabatic focusing on particle diffusion is an important topic in astrophysics and plasma physics. In the past, several authors have explored the influence of along-field adiabatic focusing on the parallel diffusion of charged energetic particles. In this paper, using the unified nonlinear transport theory developed by Shalchi and the method of He and Schlickeiser, we derive a new nonlinear perpendicular diffusion coefficient for a non-uniform background magnetic field. This formula demonstrates that the particle perpendicular diffusion coefficient is modified by along-field adiabatic focusing. For isotropic pitch-angle scattering and the weak adiabatic focusing limit, the derived perpendicular diffusion coefficient is independent of the sign of adiabatic focusing characteristic length. For the two-component model, we simplify the perpendicular diffusion coefficient up to the second order of the power series of the adiabatic focusing characteristic quantity. We find that the first-order modifying factor is equal to zero and that the sign of the second order is determined by the energy of the particles.

  20. Thermodynamic properties and diffusion of water + methane binary mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvab, I.; Sadus, Richard J., E-mail: rsadus@swin.edu.au

    2014-03-14

    Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298–650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methanemore » concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions.« less

  1. Determination of Diffusion Coefficients in Cement-Based Materials: An Inverse Problem for the Nernst-Planck and Poisson Models

    NASA Astrophysics Data System (ADS)

    Szyszkiewicz-Warzecha, Krzysztof; Jasielec, Jerzy J.; Fausek, Janusz; Filipek, Robert

    2016-08-01

    Transport properties of ions have significant impact on the possibility of rebars corrosion thus the knowledge of a diffusion coefficient is important for reinforced concrete durability. Numerous tests for the determination of diffusion coefficients have been proposed but analysis of some of these tests show that they are too simplistic or even not valid. Hence, more rigorous models to calculate the coefficients should be employed. Here we propose the Nernst-Planck and Poisson equations, which take into account the concentration and electric potential field. Based on this model a special inverse method is presented for determination of a chloride diffusion coefficient. It requires the measurement of concentration profiles or flux on the boundary and solution of the NPP model to define the goal function. Finding the global minimum is equivalent to the determination of diffusion coefficients. Typical examples of the application of the presented method are given.

  2. Kinetics of dodecanoic acid adsorption from caustic solution by activated carbon.

    PubMed

    Pendleton, Phillip; Wu, Sophie Hua

    2003-10-15

    This study examines the influences of adsorbent porosity and surface chemistry and of carbon dosage on dodecanoic acid adsorption kinetics from aqueous and 2 M NaOH solutions as batch adsorption processes. Both adsorbents are steam-activated carbons prepared from either coconut or coal precursors. Prior to use the adsorbents were washed in deionized water or 2 M NaOH. Mass transfer coefficients and effective overall diffusion coefficients indicate a minor contribution from adsorbent porosity. In contrast, high surface oxygen content impedes transport to and into the adsorbent structure. Carbon dosage shows a proportional increase in transport coefficients with increasing mass; these coefficients are constant when normalized per unit mass. Neither water nor NaOH treatment of the adsorbents has a significant influence on dodecanoic acid adsorption kinetics. Molecular and Knudsen diffusion coefficients are defined to demonstrate that the overall effective diffusion coefficient values and the diffusion process are controlled by surface diffusion.

  3. A feasibility study for measuring stratospheric turbulence using metrac positioning system

    NASA Technical Reports Server (NTRS)

    Gage, K. S.; Jasperson, W. H.

    1975-01-01

    The feasibility of obtaining measurements of Lagrangian turbulence at stratospheric altitudes is demonstrated by using the METRAC System to track constant-level balloons. The basis for current estimates of diffusion coefficients are reviewed and it is pointed out that insufficient data is available upon which to base reliable estimates of vertical diffusion coefficients. It is concluded that diffusion coefficients could be directly obtained from Lagrangian turbulence measurements. The METRAC balloon tracking system is shown to possess the necessary precision in order to resolve the response of constant-level balloons to turbulence at stratospheric altitudes. A small sample of data recorded from a tropospheric tetroon flight tracked by the METRAC System is analyzed to obtain estimates of small-scale three-dimensional diffusion coefficients. It is recommended that this technique be employed to establish a climatology of diffusion coefficients and to ascertain the variation of these coefficients with altitude, season, and latitude.

  4. Experimental investigation on the caries characteristic of dental tissues by photothermal radiometry scanning imaging

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Liu, Jun-yan; Wang, Xiao-chun; Wang, Yang

    2018-03-01

    In this paper, a one-dimensional (1D) thermal-wave model coupled diffuse-photon-density-wave for three-layer dental tissues using modulated laser stimulation was employed to illustrate the relationship between dental caries characteristic (i.e. caries layer thickness, optical absorption coefficient and optical scattering coefficient) and photothermal radiometry (PTR) signal. Experimental investigation of artificial caries was carried out using PTR scanning imaging. The PTR amplitude and phase delay were increased with dental demineralized treatment. The local caries characteristic parameters were obtained by the best-fitting method based on the 1D thermal-wave model. The PTR scanning imaging measurements illustrated that the optical absorption coefficient and scattering coefficient of caries region were much higher than those of the healthy enamel area. The demineralization thickness of caries region was measured by PTR scanning imaging and its average value shows in good agreement with the digital microscope. Experimental results show that PTR scanning imaging has the merits of high contrast for local inhomogeneity of dental caries; furthermore, this method is an allowance to provide a flexibility for non-contact quantitative evaluation of dental caries.

  5. Multilevel Deficiency of White Matter Connectivity Networks in Alzheimer's Disease: A Diffusion MRI Study with DTI and HARDI Models.

    PubMed

    Wang, Tao; Shi, Feng; Jin, Yan; Yap, Pew-Thian; Wee, Chong-Yaw; Zhang, Jianye; Yang, Cece; Li, Xia; Xiao, Shifu; Shen, Dinggang

    2016-01-01

    Alzheimer's disease (AD) is the most common form of dementia in elderly people. It is an irreversible and progressive brain disease. In this paper, we utilized diffusion-weighted imaging (DWI) to detect abnormal topological organization of white matter (WM) structural networks. We compared the differences between WM connectivity characteristics at global, regional, and local levels in 26 patients with probable AD and 16 normal control (NC) elderly subjects, using connectivity networks constructed with the diffusion tensor imaging (DTI) model and the high angular resolution diffusion imaging (HARDI) model, respectively. At the global level, we found that the WM structural networks of both AD and NC groups had a small-world topology; however, the AD group showed a significant decrease in both global and local efficiency, but an increase in clustering coefficient and the average shortest path length. We further found that the AD patients had significantly decreased nodal efficiency at the regional level, as well as weaker connections in multiple local cortical and subcortical regions, such as precuneus, temporal lobe, hippocampus, and thalamus. The HARDI model was found to be more advantageous than the DTI model, as it was more sensitive to the deficiencies in AD at all of the three levels.

  6. Effective Stochastic Model for Reactive Transport

    NASA Astrophysics Data System (ADS)

    Tartakovsky, A. M.; Zheng, B.; Barajas-Solano, D. A.

    2017-12-01

    We propose an effective stochastic advection-diffusion-reaction (SADR) model. Unlike traditional advection-dispersion-reaction models, the SADR model describes mechanical and diffusive mixing as two separate processes. In the SADR model, the mechanical mixing is driven by random advective velocity with the variance given by the coefficient of mechanical dispersion. The diffusive mixing is modeled as a fickian diffusion with the effective diffusion coefficient. Both coefficients are given in terms of Peclet number (Pe) and the coefficient of molecular diffusion. We use the experimental results of to demonstrate that for transport and bimolecular reactions in porous media the SADR model is significantly more accurate than the traditional dispersion model, which overestimates the mass of the reaction product by as much as 25%.

  7. Predicting Salt Permeability Coefficients in Highly Swollen, Highly Charged Ion Exchange Membranes.

    PubMed

    Kamcev, Jovan; Paul, Donald R; Manning, Gerald S; Freeman, Benny D

    2017-02-01

    This study presents a framework for predicting salt permeability coefficients in ion exchange membranes in contact with an aqueous salt solution. The model, based on the solution-diffusion mechanism, was tested using experimental salt permeability data for a series of commercial ion exchange membranes. Equilibrium salt partition coefficients were calculated using a thermodynamic framework (i.e., Donnan theory), incorporating Manning's counterion condensation theory to calculate ion activity coefficients in the membrane phase and the Pitzer model to calculate ion activity coefficients in the solution phase. The model predicted NaCl partition coefficients in a cation exchange membrane and two anion exchange membranes, as well as MgCl 2 partition coefficients in a cation exchange membrane, remarkably well at higher external salt concentrations (>0.1 M) and reasonably well at lower external salt concentrations (<0.1 M) with no adjustable parameters. Membrane ion diffusion coefficients were calculated using a combination of the Mackie and Meares model, which assumes ion diffusion in water-swollen polymers is affected by a tortuosity factor, and a model developed by Manning to account for electrostatic effects. Agreement between experimental and predicted salt diffusion coefficients was good with no adjustable parameters. Calculated salt partition and diffusion coefficients were combined within the framework of the solution-diffusion model to predict salt permeability coefficients. Agreement between model and experimental data was remarkably good. Additionally, a simplified version of the model was used to elucidate connections between membrane structure (e.g., fixed charge group concentration) and salt transport properties.

  8. Protein diffusiophoresis and salt osmotic diffusion in aqueous solutions.

    PubMed

    Annunziata, Onofrio; Buzatu, Daniela; Albright, John G

    2012-10-25

    Diffusion of a solute can be induced by the concentration gradient of another solute in solution. This transport mechanism is known as cross-diffusion. We have investigated cross-diffusion in a ternary protein-salt-water system. Specifically, we measured the two cross-diffusion coefficients for the lysozyme-NaCl-water system at 25 °C and pH 4.5 as a function of protein and salt concentrations by Rayleigh interferometry. One cross-diffusion coefficient characterizes salt osmotic diffusion induced by a protein concentration gradient, and is related to protein-salt thermodynamic interactions as described by the theories of Donnan membrane equilibrium and protein preferential hydration. The other cross-diffusion coefficient characterizes protein diffusiophoresis induced by a salt concentration gradient, and is described as the difference between a preferential-interaction coefficient and a transport parameter. We first relate our experimental results to the protein net charge and the thermodynamic excess of water near the protein surface. We then extract the Stefan-Maxwell diffusion coefficient describing protein-salt interactions in water. We find that the value of this coefficient is negative, contrary to the friction interpretation of Stefan-Maxwell equations. This result is explained by considering protein hydration. Finally, protein diffusiophoresis is quantitatively examined by considering electrophoretic and hydration effects on protein migration and utilized to accurately estimate lysozyme electrophoretic mobility. To our knowledge, this is the first time that protein diffusiophoresis has been experimentally characterized and a protein-salt Stefan-Maxwell diffusion coefficient reported. This work represents a significant contribution for understanding and modeling the effect of concentration gradients in protein-salt aqueous systems relevant to diffusion-based mass-transfer technologies and transport in living systems.

  9. Apparent diffusion coefficient evaluation for secondary changes in the cerebellum of rats after middle cerebral artery occlusion

    PubMed Central

    Yang, Yunjun; Gao, Lingyun; Fu, Jun; Zhang, Jun; Li, Yuxin; Yin, Bo; Chen, Weijian; Geng, Daoying

    2013-01-01

    Supratentorial cerebral infarction can cause functional inhibition of remote regions such as the cerebellum, which may be relevant to diaschisis. This phenomenon is often analyzed using positron emission tomography and single photon emission CT. However, these methods are expensive and radioactive. Thus, the present study quantified the changes of infarction core and remote regions after unilateral middle cerebral artery occlusion using apparent diffusion coefficient values. Diffusion-weighted imaging showed that the area of infarction core gradually increased to involve the cerebral cortex with increasing infarction time. Diffusion weighted imaging signals were initially increased and then stabilized by 24 hours. With increasing infarction time, the apparent diffusion coefficient value in the infarction core and remote bilateral cerebellum both gradually decreased, and then slightly increased 3–24 hours after infarction. Apparent diffusion coefficient values at remote regions (cerebellum) varied along with the change of supratentorial infarction core, suggesting that the phenomenon of diaschisis existed at the remote regions. Thus, apparent diffusion coefficient values and diffusion weighted imaging can be used to detect early diaschisis. PMID:25206615

  10. Molecular Dynamics Simulation of the Cage Effect in a Wide Packing Fraction Range

    NASA Astrophysics Data System (ADS)

    Pestryaev, E. M.

    2018-07-01

    The self-diffusion coefficient and particle residence time in the first coordination shell of its neighbours were investigated by molecular dynamics simulation with the packing fraction of the model system ranging from 0.1 to 0.8. The residence time distribution spans several orders of magnitude and broadens with the system packing fraction. The distribution exhibits a maximum localized in the short residence time region. The average residence time correlates with the conventionally-used intermolecular correlation time governed by the mutual particle translational diffusion. It was shown that the use of the coordination number as an argument for all searched parameters is the obvious representation of the cage effect onset. The agreement of the self-diffusion coefficient with one of the recent theories is excellent in most of the density range, including the start of the glass transition, with the largest divergence only observed for the rare gas state. The same conclusion is true for the simulated and theoretical values of the caging number, which is nearly five, defining the start of the system liquefaction.

  11. A data-drive analysis for heavy quark diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Xu, Yingru; Nahrgang, Marlene; Cao, Shanshan; Bernhard, Jonah E.; Bass, Steffen A.

    2018-02-01

    We apply a Bayesian model-to-data analysis on an improved Langevin framework to estimate the temperature and momentum dependence of the heavy quark diffusion coefficient in the quark-gluon plasma (QGP). The spatial diffusion coefficient is found to have a minimum around 1-3 near Tc in the zero momentum limit, and has a non-trivial momentum dependence. With the estimated diffusion coefficient, our improved Langevin model is able to simultaneously describe the D-meson RAA and v2 in three different systems at RHIC and the LHC.

  12. Diffusion in the system K2O-SrO-SiO2. II - Cation self-diffusion coefficients.

    NASA Technical Reports Server (NTRS)

    Varshneya, A. K.; Cooper, A. R.

    1972-01-01

    The self-diffusion coefficients were measured by introducing a slab of glass previously irradiated in a reactor between two slabs of unirradiated glass. By heating the specimens, etching them sequentially and determining the radioactivity, self-diffusion coefficients for K and Sr were measured. It is pointed out that the results obtained in the investigations appear to support the proposal that the network of the base glass predominantly controls the activation energy for the diffusion of ions.

  13. Modeling Analysis for NASA GRC Vacuum Facility 5 Upgrade

    NASA Technical Reports Server (NTRS)

    Yim, J. T.; Herman, D. A.; Burt, J. M.

    2013-01-01

    A model of the VF5 test facility at NASA Glenn Research Center was developed using the direct simulation Monte Carlo Hypersonic Aerothermodynamics Particle (HAP) code. The model results were compared to several cold flow and thruster hot fire cases. The main uncertainty in the model is the determination of the effective sticking coefficient -- which sets the pumping effectiveness of the cryopanels and oil diffusion pumps including baffle transmission. An effective sticking coefficient of 0.25 was found to provide generally good agreement with the experimental chamber pressure data. The model, which assumes a cold diffuse inflow, also fared satisfactorily in predicting the pressure distribution during thruster operation. The model was used to assess other chamber configurations to improve the local effective pumping speed near the thruster. A new configuration of the existing cryopumps is found to show more than 2x improvement over the current baseline configuration.

  14. Estimation of Knudsen diffusion coefficients from tracer experiments conducted with a binary gas system and a porous medium.

    PubMed

    Hibi, Yoshihiko; Kashihara, Ayumi

    2018-03-01

    A previous study has reported that Knudsen diffusion coefficients obtained by tracer experiments conducted with a binary gas system and a porous medium are consistently smaller than those obtained by permeability experiments conducted with a single-gas system and a porous medium. To date, however, that study is the only one in which tracer experiments have been conducted with a binary gas system. Therefore, to confirm this difference in Knudsen diffusion coefficients, we used a method we had developed previously to conduct tracer experiments with a binary carbon dioxide-nitrogen gas system and five porous media with permeability coefficients ranging from 10 -13 to 10 -11  m 2 . The results showed that the Knudsen diffusion coefficient of N 2 (D N2 ) (cm 2 /s) was related to the effective permeability coefficient k e (m 2 ) as D N2  = 7.39 × 10 7 k e 0.767 . Thus, the Knudsen diffusion coefficients of N 2 obtained by our tracer experiments were consistently 1/27 of those obtained by permeability experiments conducted with many porous media and air by other researchers. By using an inversion simulation to fit the advection-diffusion equation to the distribution of concentrations at observation points calculated by mathematically solving the equation, we confirmed that the method used to obtain the Knudsen diffusion coefficient in this study yielded accurate values. Moreover, because the Knudsen diffusion coefficient did not differ when columns with two different lengths, 900 and 1500 mm, were used, this column property did not influence the flow of gas in the column. The equation of the dusty gas model already includes obstruction factors for Knudsen diffusion and molecular diffusion, which relate to medium heterogeneity and tortuosity and depend only on the structure of the porous medium. Furthermore, there is no need to take account of any additional correction factor for molecular diffusion except the obstruction factor because molecular diffusion is only treated in a multicomponent gas system. Thus, molecular diffusion considers only the obstruction factor related to tortuosity. Therefore, we introduced a correction factor for a multicomponent gas system into the DGM equation, multiplying the Knudsen diffusion coefficient, which includes the obstruction factor related to tortuosity, by this correction factor. From the present experimental results, the value of this correction factor was 1/27, and it depended only on the structure of the gas system in the porous medium. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Estimation of Knudsen diffusion coefficients from tracer experiments conducted with a binary gas system and a porous medium

    NASA Astrophysics Data System (ADS)

    Hibi, Yoshihiko; Kashihara, Ayumi

    2018-03-01

    A previous study has reported that Knudsen diffusion coefficients obtained by tracer experiments conducted with a binary gas system and a porous medium are consistently smaller than those obtained by permeability experiments conducted with a single-gas system and a porous medium. To date, however, that study is the only one in which tracer experiments have been conducted with a binary gas system. Therefore, to confirm this difference in Knudsen diffusion coefficients, we used a method we had developed previously to conduct tracer experiments with a binary carbon dioxide-nitrogen gas system and five porous media with permeability coefficients ranging from 10-13 to 10-11 m2. The results showed that the Knudsen diffusion coefficient of N2 (DN2) (cm2/s) was related to the effective permeability coefficient ke (m2) as DN2 = 7.39 × 107ke0.767. Thus, the Knudsen diffusion coefficients of N2 obtained by our tracer experiments were consistently 1/27 of those obtained by permeability experiments conducted with many porous media and air by other researchers. By using an inversion simulation to fit the advection-diffusion equation to the distribution of concentrations at observation points calculated by mathematically solving the equation, we confirmed that the method used to obtain the Knudsen diffusion coefficient in this study yielded accurate values. Moreover, because the Knudsen diffusion coefficient did not differ when columns with two different lengths, 900 and 1500 mm, were used, this column property did not influence the flow of gas in the column. The equation of the dusty gas model already includes obstruction factors for Knudsen diffusion and molecular diffusion, which relate to medium heterogeneity and tortuosity and depend only on the structure of the porous medium. Furthermore, there is no need to take account of any additional correction factor for molecular diffusion except the obstruction factor because molecular diffusion is only treated in a multicomponent gas system. Thus, molecular diffusion considers only the obstruction factor related to tortuosity. Therefore, we introduced a correction factor for a multicomponent gas system into the DGM equation, multiplying the Knudsen diffusion coefficient, which includes the obstruction factor related to tortuosity, by this correction factor. From the present experimental results, the value of this correction factor was 1/27, and it depended only on the structure of the gas system in the porous medium.

  16. Gene interference regulates aquaporin-4 expression in swollen tissue of rats with cerebral ischemic edema: Correlation with variation in apparent diffusion coefficient.

    PubMed

    Hu, Hui; Lu, Hong; He, Zhanping; Han, Xiangjun; Chen, Jing; Tu, Rong

    2012-07-25

    To investigate the effects of mRNA interference on aquaporin-4 expression in swollen tissue of rats with ischemic cerebral edema, and diagnose the significance of diffusion-weighted MRI, we injected 5 μL shRNA- aquaporin-4 (control group) or siRNA- aquaporin-4 solution (1:800) (RNA interference group) into the rat right basal ganglia immediately before occlusion of the middle cerebral artery. At 0.25 hours after occlusion of the middle cerebral artery, diffusion-weighted MRI displayed a high signal; within 2 hours, the relative apparent diffusion coefficient decreased markedly, aquaporin-4 expression increased rapidly, and intracellular edema was obviously aggravated; at 4 and 6 hours, the relative apparent diffusion coefficient slowly returned to control levels, aquaporin-4 expression slightly increased, and angioedema was observed. In the RNA interference group, during 0.25-6 hours after injection of siRNA- aquaporin-4 solution, the relative apparent diffusion coefficient slightly fluctuated and aquaporin-4 expression was upregulated; during 0.5-4 hours, the relative apparent diffusion coefficient was significantly higher, while aquaporin-4 expression was significantly lower when compared with the control group, and intracellular edema was markedly reduced; at 0.25 and 6 hours, the relative apparent diffusion coefficient and aquaporin-4 expression were similar when compared with the control group; obvious angioedema remained at 6 hours. Pearson's correlation test results showed that aquaporin-4 expression was negatively correlated with the apparent diffusion coefficient (r = -0.806, P < 0.01). These findings suggest that upregulated aquaporin-4 expression is likely to be the main molecular mechanism of intracellular edema and may be the molecular basis for decreased relative apparent diffusion coefficient. Aquaporin-4 gene interference can effectively inhibit the upregulation of aquaporin-4 expression during the stage of intracellular edema with time-effectiveness. Moreover, diffusion-weighted MRI can accurately detect intracellular edema.

  17. Combined inverse-forward artificial neural networks for fast and accurate estimation of the diffusion coefficients of cartilage based on multi-physics models.

    PubMed

    Arbabi, Vahid; Pouran, Behdad; Weinans, Harrie; Zadpoor, Amir A

    2016-09-06

    Analytical and numerical methods have been used to extract essential engineering parameters such as elastic modulus, Poisson׳s ratio, permeability and diffusion coefficient from experimental data in various types of biological tissues. The major limitation associated with analytical techniques is that they are often only applicable to problems with simplified assumptions. Numerical multi-physics methods, on the other hand, enable minimizing the simplified assumptions but require substantial computational expertise, which is not always available. In this paper, we propose a novel approach that combines inverse and forward artificial neural networks (ANNs) which enables fast and accurate estimation of the diffusion coefficient of cartilage without any need for computational modeling. In this approach, an inverse ANN is trained using our multi-zone biphasic-solute finite-bath computational model of diffusion in cartilage to estimate the diffusion coefficient of the various zones of cartilage given the concentration-time curves. Robust estimation of the diffusion coefficients, however, requires introducing certain levels of stochastic variations during the training process. Determining the required level of stochastic variation is performed by coupling the inverse ANN with a forward ANN that receives the diffusion coefficient as input and returns the concentration-time curve as output. Combined together, forward-inverse ANNs enable computationally inexperienced users to obtain accurate and fast estimation of the diffusion coefficients of cartilage zones. The diffusion coefficients estimated using the proposed approach are compared with those determined using direct scanning of the parameter space as the optimization approach. It has been shown that both approaches yield comparable results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Extrusion versus diffusion: mechanisms for recovery from sodium loads in mouse CA1 pyramidal neurons.

    PubMed

    Mondragão, Miguel A; Schmidt, Hartmut; Kleinhans, Christian; Langer, Julia; Kafitz, Karl W; Rose, Christine R

    2016-10-01

    Neuronal activity causes local or global sodium signalling in neurons, depending on the pattern of synaptic activity. Recovery from global sodium loads critically relies on Na(+) /K(+) -ATPase and an intact energy metabolism in both somata and dendrites. For recovery from local sodium loads in dendrites, Na(+) /K(+) -ATPase activity is not required per se. Instead, recovery is predominately mediated by lateral diffusion, exhibiting rates that are 10-fold higher than for global sodium signals. Recovery from local dendritic sodium increases is still efficient during short periods of energy deprivation, indicating that fast diffusion of sodium to non-stimulated regions strongly reduces local energy requirements. Excitatory activity is accompanied by sodium influx into neurones as a result of the opening of voltage- and ligand-activated channels. Recovery from resulting sodium transients has mainly been attributed to Na(+) /K(+) -ATPase (NKA). Because sodium ions are highly mobile, diffusion could provide an additional pathway. We tested this in hippocampal neurones using whole-cell patch-clamp recordings and sodium imaging. Somatic sodium transients induced by local glutamate application recovered at a maximum rate of 8 mm min(-1) (∼0.03 mm min(-1 ) μm(-2) ). Somatic sodium extrusion was accelerated at higher temperature and blocked by ouabain, emphasizing its dependence on NKA. Moreover, it was slowed down during inhibition of glycolysis by sodium fluoride (NaF). Local glutamate application to dendrites revealed a 10-fold higher apparent dendritic sodium extrusion rate compared to somata. Recovery was almost unaltered by increased temperature, ouabain or NaF. We found that sodium diffused along primary dendrites with a diffusion coefficient of ∼330 μm²/s. During global glutamate application, impeding substantial net diffusion, apparent dendritic extrusion rates were reduced to somatic rates and also affected by NaF. Numerical simulations confirmed the essential role of NKA for the recovery of somatic, but not dendritic sodium loads. Our data show that sodium export upon global sodium increases is largely mediated by NKA and depends on an intact energy metabolism. For recovery from local dendritic sodium increases, diffusion dominates over extrusion, operating efficiently even during short periods of energy deprivation. Although sodium will eventually be extruded by the NKA, its diffusion-based fast dissemination to non-stimulated regions might reduce local energy requirements. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  19. Effect of diffuser vane shape on the performance of a centrifugal compressor stage

    NASA Astrophysics Data System (ADS)

    Reddy, T. Ch Siva; Ramana Murty, G. V.; Prasad, M. V. S. S. S. M.

    2014-04-01

    The present paper reports the results of experimental investigations on the effect of diffuser vane shape on the performance of a centrifugal compressor stage. These studies were conducted on the chosen stage having a backward curved impeller of 500 mm tip diameter and 24.5 mm width and its design flow coefficient is ϕd=0.0535. Three different low solidity diffuser vane shapes namely uncambered aerofoil, constant thickness flat plate and circular arc cambered constant thickness plate were chosen as the variants for diffuser vane shape and all the three shapes have the same thickness to chord ratio (t/c=0.1). Flow coefficient, polytropic efficiency, total head coefficient, power coefficient and static pressure recovery coefficient were chosen as the parameters for evaluating the effect of diffuser vane shape on the stage performance. The results show that there is reasonable improvement in stage efficiency and total head coefficient with the use of the chosen diffuser vane shapes as compared to conventional vaneless diffuser. It is also noticed that the aero foil shaped LSD has shown better performance when compared to flat plate and circular arc profiles. The aerofoil vane shape of the diffuser blade is seen to be tolerant over a considerable range of incidence.

  20. Application of the compensated Arrhenius formalism to self-diffusion: implications for ionic conductivity and dielectric relaxation.

    PubMed

    Petrowsky, Matt; Frech, Roger

    2010-07-08

    Self-diffusion coefficients are measured from -5 to 80 degrees C in a series of linear alcohols using pulsed field gradient NMR. The temperature dependence of these data is studied using a compensated Arrhenius formalism that assumes an Arrhenius-like expression for the diffusion coefficient; however, this expression includes a dielectric constant dependence in the exponential prefactor. Scaling temperature-dependent diffusion coefficients to isothermal diffusion coefficients so that the exponential prefactors cancel results in calculated energies of activation E(a). The exponential prefactor is determined by dividing the temperature-dependent diffusion coefficients by the Boltzmann term exp(-E(a)/RT). Plotting the prefactors versus the dielectric constant places the data on a single master curve. This procedure is identical to that previously used to study the temperature dependence of ionic conductivities and dielectric relaxation rate constants. The energies of activation determined from self-diffusion coefficients in the series of alcohols are strikingly similar to those calculated for the same series of alcohols from both dielectric relaxation rate constants and ionic conductivities of dilute electrolytes. The experimental results are described in terms of an activated transport mechanism that is mediated by relaxation of the solution molecules. This microscopic picture of transport is postulated to be common to diffusion, dielectric relaxation, and ionic transport.

  1. Calculation method for steady-state pollutant concentration in mixing zones considering variable lateral diffusion coefficient.

    PubMed

    Wu, Wen; Wu, Zhouhu; Song, Zhiwen

    2017-07-01

    Prediction of the pollutant mixing zone (PMZ) near the discharge outfall in Huangshaxi shows large error when using the methods based on the constant lateral diffusion assumption. The discrepancy is due to the lack of consideration of the diffusion coefficient variation. The variable lateral diffusion coefficient is proposed to be a function of the longitudinal distance from the outfall. Analytical solution of the two-dimensional advection-diffusion equation of a pollutant is derived and discussed. Formulas to characterize the geometry of the PMZ are derived based on this solution, and a standard curve describing the boundary of the PMZ is obtained by proper choices of the normalization scales. The change of PMZ topology due to the variable diffusion coefficient is then discussed using these formulas. The criterion of assuming the lateral diffusion coefficient to be constant without large error in PMZ geometry is found. It is also demonstrated how to use these analytical formulas in the inverse problems including estimating the lateral diffusion coefficient in rivers by convenient measurements, and determining the maximum allowable discharge load based on the limitations of the geometrical scales of the PMZ. Finally, applications of the obtained formulas to onsite PMZ measurements in Huangshaxi present excellent agreement.

  2. Stochastic particle acceleration at shocks in the presence of braided magnetic fields.

    NASA Astrophysics Data System (ADS)

    Kirk, J. G.; Duffy, P.; Gallant, Y. A.

    1996-10-01

    The theory of diffusive acceleration of energetic particles at shock fronts assumes charged particles undergo spatial diffusion in a uniform magnetic field. If, however, the magnetic field is not uniform, but has a stochastic or braided structure, the transport of charged particles across the average direction of the field is more complicated. Assuming quasi-linear behaviour of the field lines, the particles undergo sub-diffusion on short time scales. We derive the propagator for such motion, which differs from the Gaussian form relevant for diffusion, and apply it to a configuration with a plane shock front whose normal is perpendicular to the average field direction. Expressions are given for the acceleration time as a function of the diffusion coefficient of the wandering magnetic field lines and the spatial diffusion coefficient of the charged particles parallel to the local field. In addition we calculate the spatial dependence of the particle density in both the upstream and downstream plasmas. In contrast to the diffusive case, the density of particles at the shock front is lower than it is far downstream. This is a consequence of the partial trapping of particles by structures in the magnetic field. As a result, the spectrum of accelerated particles is a power-law in momentum which is steeper than in the diffusive case. For a phase-space density f{prop.to}p^-s^, we find s=s_diff_[1+1/(2ρ_c_)], where ρ_c_ is the compression ratio of the shock front and s_diff_ is the standard result of diffusive acceleration: s_diff_=3ρ_c_/(ρ_c_-1). A strong shock in a monatomic ideal gas yields a spectrum of s=4.5. In the case of electrons, this corresponds to a radio synchrotron spectral index of α=0.75.

  3. Evolution of Edge Pedestal Profiles Between ELMs

    NASA Astrophysics Data System (ADS)

    Floyd, J. P.; Stacey, W. M.; Groebner, R. J.

    2012-10-01

    The measured edge profile evolution in DIII-D discharges is analyzed in terms of the implied thermal diffusivities, ion diffusion coefficients and pinch velocities, using the momentum-balance methodology of Ref. [1], extended to take into account ion orbit loss and X-point loss. The evolution of the density, temperature, rotation and radial electric field profiles in the edge pedestal between edge localized modes (ELMs) provides information of these diffusive and non-diffusive transport processes in the pedestal of H-mode plasmas. This methodology is incorporated in the GTEDGE code developed for DIII-D data interpretation. Using a smaller integration time for the charge exchange recombination measurements than in Ref. [1] allows a more detailed examination of the time evolution of the ion temperature and rotation profiles. 6pt [1] W.M. Stacey and R.J. Groebner, Nucl. Fusion 51, 063024 (2011).

  4. Mixed conduction and chemical diffusion in a Pb(Zr0.53,Ti0.47)O3 buried capacitor structure

    NASA Astrophysics Data System (ADS)

    Donnelly, Niall J.; Randall, Clive A.

    2010-02-01

    Impedance spectroscopy is performed on a buried capacitor structure composed of a PZT-0.75% Nb ceramic with platinum electrodes. The ionic and electronic conductivities (σion,σelec) are extracted from the impedance spectra using an equivalent circuit based on the premise of mixed conduction. In the temperature range 500-700 °C, a change in local pO2 mainly affects σelec, suggesting that the samples are ionically compensated, i.e., [VO••]=[VPb″]. The chemical diffusion coefficient, D˜, is obtained by a conductivity relaxation technique assuming two-dimensional diffusion geometry. In comparison to BaTiO3, or SrTiO3, the chemical diffusivity is found to be relatively high, D˜=2.0×10-4 cm2 s-1 (700 °C, in air).

  5. Diffusion in different models of active Brownian motion

    NASA Astrophysics Data System (ADS)

    Lindner, B.; Nicola, E. M.

    2008-04-01

    Active Brownian particles (ABP) have served as phenomenological models of self-propelled motion in biology. We study the effective diffusion coefficient of two one-dimensional ABP models (simplified depot model and Rayleigh-Helmholtz model) differing in their nonlinear friction functions. Depending on the choice of the friction function the diffusion coefficient does or does not attain a minimum as a function of noise intensity. We furthermore discuss the case of an additional bias breaking the left-right symmetry of the system. We show that this bias induces a drift and that it generally reduces the diffusion coefficient. For a finite range of values of the bias, both models can exhibit a maximum in the diffusion coefficient vs. noise intensity.

  6. MEASUREMENT OF EFFECTIVE AIR DIFFUSION COEFFICIENTS FOR TRICHLOROETHENE IN UNDISTURBED SOIL CORES. (R826162)

    EPA Science Inventory

    Abstract

    In this study, we measure effective diffusion coefficients for trichloroethene in undisturbed soil samples taken from Picatinny Arsenal, New Jersey. The measured effective diffusion coefficients ranged from 0.0053 to 0.0609 cm2/s over a range of air...

  7. Thermodiffusion, molecular diffusion and Soret coefficient of binary and ternary mixtures of n-hexane, n-dodecane and toluene.

    PubMed

    Alonso de Mezquia, David; Wang, Zilin; Lapeira, Estela; Klein, Michael; Wiegand, Simone; Mounir Bou-Ali, M

    2014-11-01

    In this study, the thermodiffusion, molecular diffusion, and Soret coefficients of 12 binary mixtures composed of toluene, n-hexane and n-dodecane in the whole range of concentrations at atmospheric pressure and temperatures of 298.15 K and 308.15 K have been determined. The experimental measurements have been carried out using the Thermogravitational Column, the Sliding Symmetric Tubes and the Thermal Diffusion Forced Rayleigh Scattering techniques. The results obtained using the different techniques show a maximum deviation of 9% for the thermodiffusion coefficient, 8% for the molecular diffusion coefficient and 2% for the Soret coefficient. For the first time we report a decrease of the thermodiffusion coefficient with increasing ratio of the thermal expansion coefficient and viscosity for a binary mixture of an organic ring compound with a short n-alkane. This observation is discussed in terms of interactions between the different components. Additionally, the thermogravitational technique has been used to measure the thermodiffusion coefficients of four ternary mixtures consisting of toluene, n-hexane and n-dodecane at 298.15 K. In order to complete the study, the values obtained for the molecular diffusion coefficient in binary mixtures, and the thermodiffusion coefficient of binary and ternary mixtures have been compared with recently derived correlations.

  8. Brownian Motion of Asymmetric Boomerang Colloidal Particles

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Ayan; Konya, Andrew; Wang, Feng; Selinger, Jonathan; Sun, Kai; Wei, Qi-Huo

    2014-03-01

    We used video microscopy and single particle tracking to study the diffusion and local behaviors of asymmetric boomerang particles in a quasi-two dimensional geometry. The motion is biased towards the center of hydrodynamic stress (CoH) and the mean square displacements of the particles are linear at short and long times with different diffusion coefficients and in the crossover regime it is sub-diffusive. Our model based on Langevin theory shows that these behaviors arise from the non-coincidence of the CoH with the center of the body. Since asymmetric boomerangs represent a class of rigid bodies of more generals shape, therefore our findings are generic and true for any non-skewed particle in two dimensions. Both experimental and theoretical results will be discussed.

  9. Mass transport in polyelectrolyte solutions

    NASA Astrophysics Data System (ADS)

    Schipper, F. J. M.; Leyte, J. C.

    1999-02-01

    The self-diffusion coefficients of the three components of a salt-free heavy-water solution of polymethacrylic acid, completely neutralized with tetra-methylammonium hydroxide, were measured over a broad concentration range. Three concentration regions were observed for the self-diffusion of both the polyions and the counterions. At polyion concentrations below 0.01 mol monomer kg-1, the dilute concentration regime for the polymer, the polyion self-diffusion coefficient approaches the self-diffusion coefficient of a freely diffusing rod upon dilution. At polyelectrolyte concentrations above 0.1 mol monomer kg-1, the self-diffusion coefficients of the solvent, the counterions and the polymer decreased with concentration, suggesting that this decrease is due to a topological constraint on the motions of the components. In the intermediate-concentration region, the self-diffusion coefficients of the polyions and the counterions are independent of the concentration. The polyion dynamic behaviour is, in the intermediate- and high-concentration regions, reasonably well described by that of a hard sphere, with a radius of 3.7 nm. A correct prediction for the solvent dynamics is given by the obstruction effect of this hard sphere on the solvent. The relative counterion self-diffusion coefficient is predicted almost quantitatively over the entire concentration range with the Poisson-Boltzmann-Smoluchowski model for the spherical cell, provided that the sphere radius and the number of charges are chosen appropriately (approximately the number of charges in a persistence length). Using this model, the dependence of the counterion self-diffusion coefficient on the ionic strength, polyion concentration and counterion radius is calculated quantitatively over a large concentration range.

  10. Influence of diffuse reflectance measurement accuracy on the scattering coefficient in determination of optical properties with integrating sphere optics (a secondary publication).

    PubMed

    Horibe, Takuro; Ishii, Katsunori; Fukutomi, Daichi; Awazu, Kunio

    2015-12-30

    An estimation error of the scattering coefficient of hemoglobin in the high absorption wavelength range has been observed in optical property calculations of blood-rich tissues. In this study, the relationship between the accuracy of diffuse reflectance measurement in the integrating sphere and calculated scattering coefficient was evaluated with a system to calculate optical properties combined with an integrating sphere setup and the inverse Monte Carlo simulation. Diffuse reflectance was measured with the integrating sphere using a small incident port diameter and optical properties were calculated. As a result, the estimation error of the scattering coefficient was improved by accurate measurement of diffuse reflectance. In the high absorption wavelength range, the accuracy of diffuse reflectance measurement has an effect on the calculated scattering coefficient.

  11. Comparison of Experimental Methods for Estimating Matrix Diffusion Coefficients for Contaminant Transport Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Telfeyan, Katherine Christina; Ware, Stuart Douglas; Reimus, Paul William

    Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%,more » and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.« less

  12. Comparison of experimental methods for estimating matrix diffusion coefficients for contaminant transport modeling

    NASA Astrophysics Data System (ADS)

    Telfeyan, Katherine; Ware, S. Doug; Reimus, Paul W.; Birdsell, Kay H.

    2018-02-01

    Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.

  13. Determination of pollutant diffusion coefficients in naturally formed biofilms using a single tube extractive membrane bioreactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S.F.; Splendiani, A.; Freitas dos Santos, L.M.

    A novel technique has been used to determine the effective diffusion coefficients for 1,1,2-trichloroethane (TCE), a nonreacting tracer, in biofilms growing on the external surface of a silicone rubber membrane tube during degradation of 1,2-dichloroethane (DCE) by Xanthobacter autotrophicus GJ10 and monochlorobenzene (MCB) by Pseudomonas JS150. Experiments were carried out in a single tube extractive membrane bioreactor (STEMB), whose configuration makes it possible to measure the transmembrane flux of substrates. A video imaging technique (VIT) was employed for in situ biofilm thickness measurement and recording. Diffusion coefficients of TCE in the biofilms and TCE mass transfer coefficients in the liquidmore » films adjacent to the biofilms were determined simultaneously using a resistances-in-series diffusion model. It was found that the flux and overall mass transfer coefficient of TCE decrease with increasing biofilm thickness, showing the importance of biofilm diffusion on the mass transfer process. Similar fluxes were observed for the nonreacting tracer (TCE) and the reactive substrates (MCB or DCE), suggesting that membrane-attached biofilm systems can be rate controlled primarily by substrate diffusion. The TCE diffusion coefficient in the JS150 biofilm appeared to be dependent on biofilm thickness, decreasing markedly for biofilm thicknesses of >1 mm. The values of the TCE diffusion coefficients in the JS150 biofilms <1-mm thick are approximately twice those in water and fall to around 30% of the water value for biofilms >1-mm thick.« less

  14. Diffusion and plasticity at high temperature

    NASA Astrophysics Data System (ADS)

    Philibert, J.

    1991-06-01

    High temperature plastic deformation requires atomic migration whatever the mechanism of deformation. The constitutive equations contain a diffusion coefficient and the deformation rate follows an Arrhenius law. This paper will only discuss the case of viscous creep in order to elucidate the nature of the diffusion processes and the expression of the diffusion coefficient involved in alloys or compounds. La déformation plastique à haute température met en jeu des migrations atomiques, quel que soit le mécanisme de déformation. Les lois de comportement contiennent donc un coefficient de diffusion et la vitesse de déformation obéit à une loi d'Arrhenius. Dans cet article, qui ne conceme qu'un seul type de déformation, lefluage visqueux, on s'efforce de préciser la nature des processus de diffusion et du coefficient de diffusion mis en jeu dans le cas des alliages et des composés.

  15. Theoretical and Experimental Investigation of the Translational Diffusion of Proteins in the Vicinity of Temperature-Induced Unfolding Transition.

    PubMed

    Molchanov, Stanislav; Faizullin, Dzhigangir A; Nesmelova, Irina V

    2016-10-06

    Translational diffusion is the most fundamental form of transport in chemical and biological systems. The diffusion coefficient is highly sensitive to changes in the size of the diffusing species; hence, it provides important information on the variety of macromolecular processes, such as self-assembly or folding-unfolding. Here, we investigate the behavior of the diffusion coefficient of a macromolecule in the vicinity of heat-induced transition from folded to unfolded state. We derive the equation that describes the diffusion coefficient of the macromolecule in the vicinity of the transition and use it to fit the experimental data from pulsed-field-gradient nuclear magnetic resonance (PFG NMR) experiments acquired for two globular proteins, lysozyme and RNase A, undergoing temperature-induced unfolding. A very good qualitative agreement between the theoretically derived diffusion coefficient and experimental data is observed.

  16. Diffusion of 99-technetium in compacted bentonite under aerobic and anaerobic conditions

    NASA Astrophysics Data System (ADS)

    Večerník, P.; Jedináková-Křížová, V.

    2006-01-01

    The main aim of this study was to investigate diffusion of technetium 99Tc under different conditions. Because technetium represents one of the most dangerous fission products due to its very long halftime and high mobility in aerobic conditions diffusion experiments of technetium (as 99TcO 4 - anion) in Czech bentonite from Rokle locality have been carried out. For performance and evaluation of experiments the through-diffusion method was chosen and apparent (Da) and effective (De) diffusion coefficients were evaluated. The effects of particle mesh-size, dry bulk density and aerobic or anaerobic conditions on diffusion were studied. In the presence of oxygen, technetium occurs in oxidation state VII, as an anion, soluble and mobile in the environment. However, under reducing conditions it occurs in a lower oxidation states, mainly as insoluble oxides or hydroxides. Aerobic experiments were carried out under laboratory conditions and anaerobic experiments were performed in a nitrogen atmosphere in a glove box, to simulate the real underground conditions.

  17. Ultrafast lithium diffusion in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Kühne, Matthias; Paolucci, Federico; Popovic, Jelena; Ostrovsky, Pavel M.; Maier, Joachim; Smet, Jurgen H.

    2017-09-01

    Solids that simultaneously conduct electrons and ions are key elements for the mass transfer and storage required in battery electrodes. Single-phase materials with a high electronic and high ionic conductivity at room temperature are hard to come by, and therefore multiphase systems with separate ion and electron channels have been put forward instead. Here we report on bilayer graphene as a single-phase mixed conductor that demonstrates Li diffusion faster than in graphite and even surpassing the diffusion of sodium chloride in liquid water. To measure Li diffusion, we have developed an on-chip electrochemical cell architecture in which the redox reaction that forces Li intercalation is localized only at a protrusion of the device so that the graphene bilayer remains unperturbed from the electrolyte during operation. We performed time-dependent Hall measurements across spatially displaced Hall probes to monitor the in-plane Li diffusion kinetics within the graphene bilayer and measured a diffusion coefficient as high as 7 × 10-5 cm2 s-1.

  18. Banded structures in electron pitch angle diffusion coefficients from resonant wave-particle interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, A. K., E-mail: aktrip2001@yahoo.co.in; Singhal, R. P., E-mail: rpsiitbhu@yahoo.com; Khazanov, G. V., E-mail: George.V.Khazanov@nasa.gov

    2016-04-15

    Electron pitch angle (D{sub αα}) and momentum (D{sub pp}) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies ≤10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = ±1, ±2, … ±5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (α) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusionmore » coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D{sub αα} and D{sub pp} coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D{sub pp} diffusion coefficient for ECH waves is one to two orders smaller than D{sub αα} coefficients. For chorus waves, D{sub pp} coefficients are about an order of magnitude smaller than D{sub αα} coefficients for the case n ≠ 0. In case of Landau resonance, the values of D{sub pp} coefficient are generally larger than the values of D{sub αα} coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89° and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10° and Landau resonance. Further, in ECH waves, the banded structures appear for electron energies ≥1 keV, and for whistler mode chorus waves, structures appear for energies >2 keV at L = 4.6 and above 200 eV for L = 6.8. The results obtained in the present work will be helpful in the study of diffusion curves and will have important consequences for diffuse aurora and pancake distributions.« less

  19. Three FORTRAN programs for finite-difference solutions to binary diffusion in one and two phases with composition-and time-dependent diffusion coefficients

    USGS Publications Warehouse

    Sanford, R.F.

    1982-01-01

    Geological examples of binary diffusion are numerous. They are potential indicators of the duration and rates of geological processes. Analytical solutions to the diffusion equations generally do not allow for variable diffusion coefficients, changing boundary conditions, and impingement of diffusion fields. The three programs presented here are based on Crank-Nicholson finite-difference approximations, which can take into account these complicating factors. Program 1 describes the diffusion of a component into an initially homogeneous phase that has a constant surface composition. Specifically it is written for Fe-Mg exchange in olivine at oxygen fugacities appropriate for the lunar crust, but other components, phases, or fugacities may be substituted by changing the values of the diffusion coefficient. Program 2 simulates the growth of exsolution lamellae. Program 3 describes the growth of reaction rims. These two programs are written for pseudobinary Ca-(Mg, Fe) exchange in pyroxenes. In all three programs, the diffusion coefficients and boundary conditions can be varied systematically with time. To enable users to employ widely different numerical values for diffusion coefficients and diffusion distance, the grid spacing in the space dimension and the increment by which the grid spacing in the time dimension is increased at each time step are input constants that can be varied each time the programs are run to yield a solution of the desired accuracy. ?? 1982.

  20. Self diffusion of interacting membrane proteins.

    PubMed Central

    Abney, J R; Scalettar, B A; Owicki, J C

    1989-01-01

    A two-dimensional version of the generalized Smoluchowski equation is used to analyze the time (or distance) dependent self diffusion of interacting membrane proteins in concentrated membrane systems. This equation provides a well established starting point for descriptions of the diffusion of particles that interact through both direct and hydrodynamic forces; in this initial work only the effects of direct interactions are explicitly considered. Data describing diffusion in the presence of hard-core repulsions, soft repulsions, and soft repulsions with weak attractions are presented. The effect that interactions have on the self-diffusion coefficient of a real protein molecule from mouse liver gap junctions is also calculated. The results indicate that self diffusion is always inhibited by direct interactions; this observation is interpreted in terms of the caging that will exist at finite protein concentration. It is also noted that, over small distance scales, the diffusion coefficient is determined entirely by the very strong Brownian forces; therefore, as a function of displacement the self-diffusion coefficient decays (rapidly) from its value at infinite dilution to its steady-state interaction-averaged value. The steady-state self-diffusion coefficient describes motion over distance scales that range from approximately 10 nm to cellular dimensions and is the quantity measured in fluorescence recovery after photobleaching experiments. The short-ranged behavior of the diffusion coefficient is important on the interparticle-distance scale and may therefore influence the rate at which nearest-neighbor collisional processes take place. The hard-disk theoretical results presented here are in excellent agreement with lattice Monte-Carlo results obtained by other workers. The concentration dependence of experimentally measured diffusion coefficients of antibody-hapten complexes bound to the membrane surface is consistent with that predicted by the theory. The variation in experimental diffusion coefficients of integral membrane proteins is greater than that predicted by the theory, and may also reflect protein-induced perturbations in membrane viscosity. PMID:2720077

  1. Determination of malignancy and characterization of hepatic tumor type with diffusion-weighted magnetic resonance imaging: comparison of apparent diffusion coefficient and intravoxel incoherent motion-derived measurements.

    PubMed

    Doblas, Sabrina; Wagner, Mathilde; Leitao, Helena S; Daire, Jean-Luc; Sinkus, Ralph; Vilgrain, Valérie; Van Beers, Bernard E

    2013-10-01

    The objective of this study was to compare the value of the apparent diffusion coefficient (ADC) determined with 3 b values and the intravoxel incoherent motion (IVIM)-derived parameters in the determination of malignancy and characterization of hepatic tumor type. Seventy-six patients with 86 solid hepatic lesions, including 8 hemangiomas, 20 lesions of focal nodular hyperplasia, 9 adenomas, 30 hepatocellular carcinomas, 13 metastases, and 6 cholangiocarcinomas, were assessed in this prospective study. Diffusion-weighted images were acquired with 11 b values to measure the ADCs (with b = 0, 150, and 500 s/mm) and the IVIM-derived parameters, namely, the pure diffusion coefficient and the perfusion-related diffusion fraction and coefficient. The diffusion parameters were compared between benign and malignant tumors and between tumor types, and their diagnostic value in identifying tumor malignancy was assessed. The apparent and pure diffusion coefficients were significantly higher in benign than in malignant tumors (benign: 2.32 [0.87] × 10 mm/s and 1.42 [0.37] × 10 mm/s vs malignant: 1.64 [0.51] × 10 mm/s and 1.14 [0.28] × 10 mm/s, respectively; P < 0.0001 and P = 0.0005), whereas the perfusion-related diffusion parameters did not differ significantly between the 2 groups. The apparent and pure diffusion coefficients provided similar accuracy in assessing tumor malignancy (areas under the receiver operating characteristic curve of 0.770 and 0.723, respectively). In the multigroup analysis, the ADC was found to be significantly higher in hemangiomas than in hepatocellular carcinomas, metastases, and cholangiocarcinomas. In the same manner, it was higher in lesions of focal nodular hyperplasia than in metastases and cholangiocarcinomas. However, the pure diffusion coefficient was significantly higher only in hemangiomas versus hepatocellular and cholangiocellular carcinomas. Compared with the ADC, the diffusion parameters derived from the IVIM model did not improve the determination of malignancy and characterization of hepatic tumor type.

  2. Maxwell-Stefan diffusion coefficient estimation for ternary systems: an ideal ternary alcohol system.

    PubMed

    Allie-Ebrahim, Tariq; Zhu, Qingyu; Bräuer, Pierre; Moggridge, Geoff D; D'Agostino, Carmine

    2017-06-21

    The Maxwell-Stefan model is a popular diffusion model originally developed to model diffusion of gases, which can be considered thermodynamically ideal mixtures, although its application has been extended to model diffusion in non-ideal liquid mixtures as well. A drawback of the model is that it requires the Maxwell-Stefan diffusion coefficients, which are not based on measurable quantities but they have to be estimated. As a result, numerous estimation methods, such as the Darken model, have been proposed to estimate these diffusion coefficients. However, the Darken model was derived, and is only well defined, for binary systems. This model has been extended to ternary systems according to two proposed forms, one by R. Krishna and J. M. van Baten, Ind. Eng. Chem. Res., 2005, 44, 6939-6947 and the other by X. Liu, T. J. H. Vlugt and A. Bardow, Ind. Eng. Chem. Res., 2011, 50, 10350-10358. In this paper, the two forms have been analysed against the ideal ternary system of methanol/butan-1-ol/propan-1-ol and using experimental values of self-diffusion coefficients. In particular, using pulsed gradient stimulated echo nuclear magnetic resonance (PGSTE-NMR) we have measured the self-diffusion coefficients in various methanol/butan-1-ol/propan-1-ol mixtures. The experimental values of self-diffusion coefficients were then used as the input data required for the Darken model. The predictions of the two proposed multicomponent forms of this model were then compared to experimental values of mutual diffusion coefficients for the ideal alcohol ternary system. This experimental-based approach showed that the Liu's model gives better predictions compared to that of Krishna and van Baten, although it was only accurate to within 26%. Nonetheless, the multicomponent Darken model in conjunction with self-diffusion measurements from PGSTE-NMR represents an attractive method for a rapid estimation of mutual diffusion in multicomponent systems, especially when compared to exhaustive MD simulations.

  3. Experimental study of mass diffusion coefficients of hydrogen in dimethyl phosphate and n-heptane

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Zhu, L. K.; Zhang, Y. P.; Liu, J.; Guo, J. S.

    2017-11-01

    In this study, a laser holographic interferometer experimental system was developed for studying the gas-liquid mass diffusion coefficient. Then the experimental system’s uncertainty was analyzed to be at most ±0.2% therefore, this system was reliable. The mass diffusion coefficient of hydrogen in dimethyl phosphate and n-heptane was measured at atmospheric pressure in the temperature range of 273.15-338.15 K. Then, the experimental data were used to fit the correlations of the mass diffusion coefficient of hydrogen in dimethyl phosphate and n-heptane with temperature.

  4. Chromatographic determination of the diffusion coefficients of light hydrocarbons in polymers

    NASA Astrophysics Data System (ADS)

    Yakubenko, E. E.; Korolev, A. A.; Chapala, P. P.; Bermeshev, M. V.; Kanat'eva, A. Yu.; Kurganov, A. A.

    2017-01-01

    Gas-chromatographic determination of the diffusion coefficients that allows for the compressibility of the mobile phase has been suggested. The diffusion coefficients were determined for light hydrocarbons C1-C4 in four polymers with a high free volume, which are candidates for use as gas-separating membranes. The diffusion coefficients calculated from chromatographic data were shown to be one or two orders of magnitude smaller than the values obtained by the membrane method. This may be due to the presence of an additional flow through the membrane caused by the pressure gradient across the membrane in membrane methods.

  5. Anomalous Diffusion of Water in Lamellar Membranes Formed by Pluronic Polymers

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Ohl, Michael; Han, Youngkyu; Smith, Gregory; Do, Changwoo; Biology; Soft-Matter Division, Oak Ridge National Laboratory Team; Julich CenterNeutron Science Team

    Water diffusion is playing an important role in polymer systems. We calculated the water diffusion coefficient at different layers along z-direction which is perpendicular to the lamellar membrane formed by Pluronic block copolymers (L62: (EO6-PO34-EO6)) with the molecular dynamics simulation trajectories. Water molecules at bulk layers are following the normal diffusion, while that at hydration layers formed by polyethylene oxide (PEO) and hydrophobic layers formed by polypropylene oxide (PPO) are following anomalous diffusion. We find that although the subdiffusive regimes at PEO layers and PPO layers are the same, which is the fractional Brownian motion, however, the dynamics are different, i.e. diffusion at the PEO layers is much faster than that at the PPO layers, and meanwhile it exhibits a normal diffusive approximation within a short time period which is governed by the localized free self-diffusion, but becomes subdiffusive after t >8 ps, which is governed by the viscoelastic medium. The Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; and Zhe Zhang gratefully acknowledges financial support from Julich Center for Neutron Science.

  6. Analysis of Molecular Movement Reveals Latticelike Obstructions to Diffusion in Heart Muscle Cells

    PubMed Central

    Illaste, Ardo; Laasmaa, Martin; Peterson, Pearu; Vendelin, Marko

    2012-01-01

    Intracellular diffusion in muscle cells is known to be restricted. Although characteristics and localization of these restrictions is yet to be elucidated, it has been established that ischemia-reperfusion injury reduces the overall diffusion restriction. Here we apply an extended version of raster image correlation spectroscopy to determine directional anisotropy and coefficients of diffusion in rat cardiomyocytes. Our experimental results indicate that diffusion of a smaller molecule (1127 MW fluorescently labeled ATTO633-ATP) is restricted more than that of a larger one (10,000 MW Alexa647-dextran), when comparing diffusion in cardiomyocytes to that in solution. We attempt to provide a resolution to this counterintuitive result by applying a quantitative stochastic model of diffusion. Modeling results suggest the presence of periodic intracellular barriers situated ∼1 μm apart having very low permeabilities and a small effect of molecular crowding in volumes between the barriers. Such intracellular structuring could restrict diffusion of molecules of energy metabolism, reactive oxygen species, and apoptotic signals, enacting a significant role in normally functioning cardiomyocytes as well as in pathological conditions of the heart. PMID:22385844

  7. Slow-Down in Diffusion in Crowded Protein Solutions Correlates with Transient Cluster Formation.

    PubMed

    Nawrocki, Grzegorz; Wang, Po-Hung; Yu, Isseki; Sugita, Yuji; Feig, Michael

    2017-12-14

    For a long time, the effect of a crowded cellular environment on protein dynamics has been largely ignored. Recent experiments indicate that proteins diffuse more slowly in a living cell than in a diluted solution, and further studies suggest that the diffusion depends on the local surroundings. Here, detailed insight into how diffusion depends on protein-protein contacts is presented based on extensive all-atom molecular dynamics simulations of concentrated villin headpiece solutions. After force field adjustments in the form of increased protein-water interactions to reproduce experimental data, translational and rotational diffusion was analyzed in detail. Although internal protein dynamics remained largely unaltered, rotational diffusion was found to slow down more significantly than translational diffusion as the protein concentration increased. The decrease in diffusion is interpreted in terms of a transient formation of protein clusters. These clusters persist on sub-microsecond time scales and follow distributions that increasingly shift toward larger cluster size with increasing protein concentrations. Weighting diffusion coefficients estimated for different clusters extracted from the simulations with the distribution of clusters largely reproduces the overall observed diffusion rates, suggesting that transient cluster formation is a primary cause for a slow-down in diffusion upon crowding with other proteins.

  8. Modeling Transport of Cesium in Grimsel Granodiorite With Micrometer Scale Heterogeneities and Dynamic Update of Kd

    NASA Astrophysics Data System (ADS)

    Voutilainen, Mikko; Kekäläinen, Pekka; Siitari-Kauppi, Marja; Sardini, Paul; Muuri, Eveliina; Timonen, Jussi; Martin, Andrew

    2017-11-01

    Transport and retardation of cesium in Grimsel granodiorite taking into account heterogeneity of mineral and pore structure was studied using rock samples overcored from an in situ diffusion test at the Grimsel Test Site. The field test was part of the Long-Term Diffusion (LTD) project designed to characterize retardation properties (diffusion and distribution coefficients) under in situ conditions. Results of the LTD experiment for cesium showed that in-diffusion profiles and spatial concentration distributions were strongly influenced by the heterogeneous pore structure and mineral distribution. In order to study the effect of heterogeneity on the in-diffusion profile and spatial concentration distribution, a Time Domain Random Walk (TDRW) method was applied along with a feature for modeling chemical sorption in geological materials. A heterogeneous mineral structure of Grimsel granodiorite was constructed using X-ray microcomputed tomography (X-μCT) and the map was linked to previous results for mineral specific porosities and distribution coefficients (Kd) that were determined using C-14-PMMA autoradiography and batch sorption experiments, respectively. After this the heterogeneous structure contains information on local porosity and Kd in 3-D. It was found that the heterogeneity of the mineral structure on the micrometer scale affects significantly the diffusion and sorption of cesium in Grimsel granodiorite at the centimeter scale. Furthermore, the modeled in-diffusion profiles and spatial concentration distributions show similar shape and pattern to those from the LTD experiment. It was concluded that the use of detailed structure characterization and quantitative data on heterogeneity can significantly improve the interpretation and evaluation of transport experiments.

  9. Field-scale effective matrix diffusion coefficient for fractured rock: results from literature survey.

    PubMed

    Zhou, Quanlin; Liu, Hui-Hai; Molz, Fred J; Zhang, Yingqi; Bodvarsson, Gudmundur S

    2007-08-15

    Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D(m)(e), a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D(m)(e) values were calculated, either directly using data reported in the literature, or by reanalyzing the corresponding field tracer tests. The reanalysis was conducted for the selected tracer tests using analytic or semi-analytic solutions for tracer transport in linear, radial, or interwell flow fields. Surveyed data show that the scale factor of the effective matrix diffusion coefficient (defined as the ratio of D(m)(e) to the lab-scale matrix diffusion coefficient, D(m), of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate, on average trend toward systematic increase in the scale factor with observation scale. This trend suggests that the effective matrix diffusion coefficient is likely to be statistically scale-dependent. The scale-factor value ranges from 0.5 to 884 for observation scales from 5 to 2000 m. At a given scale, the scale factor varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different geologic sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation.

  10. Molecular dynamics simulation of real-fluid mutual diffusion coefficients with the Lennard-Jones potential model

    NASA Astrophysics Data System (ADS)

    Stoker, J. M.; Rowley, R. L.

    1989-09-01

    Mutual diffusion coefficients for selected alkanes in carbon tetrachloride were calculated using molecular dynamics and Lennard-Jones (LJ) potentials. Use of effective spherical LJ parameters is desirable when possible for two reasons: (i) computer time is saved due to the simplicity of the model and (ii) the number of parameters in the model is kept to a minimum. Results of this study indicate that mutual diffusivity is particularly sensitive to the molecular size cross parameter, σ12, and that the commonly used Lorentz-Berthelot rules are inadequate for mixtures in which the component structures differ significantly. Good agreement between simulated and experimental mutual diffusivities is obtained with a combining rule for σ12 which better represents these asymmetric mixtures using pure component LJ parameters obtained from self-diffusion coefficient data. The effect of alkane chain length on the mutual diffusion coefficient is correctly predicted. While the effects of alkane branching upon the diffusion coefficient are comparable in size to the uncertainty of these calculations, the qualitative trend due to branching is also correctly predicted by the MD results.

  11. Time of Flight Electrochemistry: Diffusion Coefficient Measurements Using Interdigitated Array (IDA) Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fei; Kolesov, Grigory; Parkinson, Bruce A.

    2014-09-26

    A simple and straightforward method for measuring diffusion coefficients using interdigitated array (IDA) electrodes is reported. The method does not require that the exact electrode area be known but depends only the size of the gap between the IDA electrode pairs. Electroactive molecules produced at the generator electrode of the IDA by a voltage step or scan can diffuse to the collector electrode and the time delay before the current for the reverse electrochemical reaction is detected at the collector is used to calculate the diffusion coefficient. The measurement of the diffusion rate of Ru(NH3)6+2 in aqueous solution has beenmore » used as an example measuring diffusion coefficients using this method. Additionally, a digital simulation of the electrochemical response of the IDA electrodes was used to simulate the entire current/voltage/time behavior of the system and verify the experimentally measured diffusion coefficients. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the Department of Energy, Office of Science, Office of Basic Energy Sciences.« less

  12. Serial diffusion-weighted imaging in subacute sclerosing panencephalitis.

    PubMed

    Kanemura, Hideaki; Aihara, Masao

    2008-06-01

    Subacute sclerosing panencephalitis may be associated with clinical features of frontal lobe dysfunction. We previously reported that frontal lobe volume falls significantly as clinical stage progresses, using three-dimensional magnetic resonance imaging-based brain volumetry. The hypothesis that frontal volume increases correlate with clinical improvement, however, was not tested in our previous study. Therefore, we reevaluated our patient with subacute sclerosing panencephalitis, to determine whether apparent diffusion coefficient maps can characterize the clinical course of subacute sclerosing panencephalitis. We studied an 8-year-old boy with subacute sclerosing panencephalitis, using serial diffusion-weighted imaging magnetic resonance imaging, and measured the regional apparent diffusion coefficient. The regional apparent diffusion coefficient of the frontal lobe decreased significantly with clinical progression, whereas it increased to within normal range during clinical improvements. The apparent diffusion coefficient of the other regions did not change. These results suggest that the clinical signs of patients with subacute sclerosing panencephalitis are attributable to frontal lobe dysfunction, and that apparent diffusion coefficient measurements may be useful in predicting the clinical course of subacute sclerosing panencephalitis.

  13. Quantitative differentiation of breast lesions at 3T diffusion-weighted imaging (DWI) using the ratio of distributed diffusion coefficient (DDC).

    PubMed

    Ertas, Gokhan; Onaygil, Can; Akin, Yasin; Kaya, Handan; Aribal, Erkin

    2016-12-01

    To investigate the accuracy of diffusion coefficients and diffusion coefficient ratios of breast lesions and of glandular breast tissue from mono- and stretched-exponential models for quantitative diagnosis in diffusion-weighted magnetic resonance imaging (MRI). We analyzed pathologically confirmed 170 lesions (85 benign and 85 malignant) imaged using a 3.0T MR scanner. Small regions of interest (ROIs) focusing on the highest signal intensity for lesions and also for glandular tissue of contralateral breast were obtained. Apparent diffusion coefficient (ADC) and distributed diffusion coefficient (DDC) were estimated by performing nonlinear fittings using mono- and stretched-exponential models, respectively. Coefficient ratios were calculated by dividing the lesion coefficient by the glandular tissue coefficient. A stretched exponential model provides significantly better fits then the monoexponential model (P < 0.001): 65% of the better fits for glandular tissue and 71% of the better fits for lesion. High correlation was found in diffusion coefficients (0.99-0.81 and coefficient ratios (0.94) between the models. The highest diagnostic accuracy was found by the DDC ratio (area under the curve [AUC] = 0.93) when compared with lesion DDC, ADC ratio, and lesion ADC (AUC = 0.91, 0.90, 0.90) but with no statistically significant difference (P > 0.05). At optimal thresholds, the DDC ratio achieves 93% sensitivity, 80% specificity, and 87% overall diagnostic accuracy, while ADC ratio leads to 89% sensitivity, 78% specificity, and 83% overall diagnostic accuracy. The stretched exponential model fits better with signal intensity measurements from both lesion and glandular tissue ROIs. Although the DDC ratio estimated by using the model shows a higher diagnostic accuracy than the ADC ratio, lesion DDC, and ADC, it is not statistically significant. J. Magn. Reson. Imaging 2016;44:1633-1641. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Diffusion coefficients of nitric oxide in water: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Pokharel, Sunil; Pantha, Nurapati; Adhikari, N. P.

    2016-09-01

    Self-diffusion coefficients along with the mutual diffusion coefficients of nitric oxide (NO) and SPC/E water (H2O) as solute and solvent of the mixture, have been studied within the framework of classical molecular dynamics level of calculations using GROMACS package. The radial distribution function (RDF) of the constituent compounds are calculated to study solute-solute, solute-solvent and solvent-solvent molecular interactions as a function of temperature. A dilute solution of five NO molecules (mole fraction 0.018) and 280 H2O molecules (mole fraction 0.982) has been taken as the sample. The self-diffusion coefficient of the solvent is calculated by using mean square displacement (MSD) where as that for solute (NO) is calculated by using MSD and velocity auto-correlation function (VACF). The results are then compared with the available experimental values. The results from the present work for water come in good agreement, very precise at low temperatures, with the experimental values. The diffusion coefficients of NO, on the other hands, agree well with the available theoretical studies, and also with experiment at low temperatures (up to 310 K). The results at the higher temperatures (up to 333 K), however, deviate significantly with the experimental observations. Also, the mutual diffusion coefficients of NO in water have been calculated by using Darken’s relation. The temperature dependence of the calculated diffusion coefficients follow the Arrhenius behavior.

  15. Effective diffusion coefficients of DNAPL waste components in saturated low permeability soil materials

    NASA Astrophysics Data System (ADS)

    Ayral-Cinar, Derya; Demond, Avery H.

    2017-12-01

    Diffusion is regarded as the dominant transport mechanism into and out of low permeable subsurface lenses and layers in the subsurface. But, some reports of mass storage in such zones are higher than what might be attributable to diffusion, based on estimated diffusion coefficients. Despite the importance of diffusion to efforts to estimate the quantity of residual contamination in the subsurface, relatively few studies present measured diffusion coefficients of organic solutes in saturated low permeability soils. This study reports the diffusion coefficients of a trichloroethylene (TCE), and an anionic surfactant, Aerosol OT (AOT), in water-saturated silt and a silt-montmorillonite (25:75) mixture, obtained using steady-state experiments. The relative diffusivity ranged from 0.11 to 0.17 for all three compounds for the silt and the silt-clay mixture that was allowed to expand. In the case in which the swelling was constrained, the relative diffusivity was about 0.07. In addition, the relative diffusivity of 13C-labeled TCE through a water saturated silt-clay mixture that had contacted a field dense non-aqueous phase liquid (DNAPL) for 18 months was measured and equaled 0.001. These experimental results were compared with the estimates generated using common correlations, and it was found that, in all cases, the measured diffusion coefficients were significantly lower than the estimated. Thus, the discrepancy between mass accumulations observed in the field and the mass storage that can attributable to diffusion may be greater than previously believed.

  16. The tracer diffusion coefficient of soft nanoparticles in a linear polymer matrix

    DOE PAGES

    Imel, Adam E.; Rostom, Sahar; Holley, Wade; ...

    2017-03-09

    The diffusion properties of nanoparticles in polymer nanocomposites are largely unknown and are often difficult to determine experimentally. To address this shortcoming, we have developed a novel method to determine the tracer diffusion coefficient of soft polystyrene nanoparticles in a linear polystyrene matrix. Monitoring the interdiffusion of soft nanoparticles into a linear polystyrene matrix provides the mutual diffusion coefficient of this system, from which the tracer diffusion coefficient of the soft nanoparticle can be determined using the slow mode theory. Utilizing this protocol, the role of nanoparticle molecular weight and rigidity on its tracer diffusion coefficient is provided. These resultsmore » demonstrate that the diffusive behavior of these soft nanoparticles differ from that of star polymers, which is surprising since our recent studies suggest that the nanoparticle interacts with a linear polymer similarly to that of a star polymer. It appears that these deformable nanoparticles mostly closely mimic the diffusive behavior of fractal macromolecular architectures or microgels, where the transport of the nanoparticle relies on the cooperative motion of neighboring linear chains. Finally, the less cross-linked, and thus more deformable, nanoparticles diffuse faster than the more highly crosslinked nanoparticles, presumably because the increased deformability allows the nanoparticle to distort and fit into available space.« less

  17. Localized high-resolution DTI of the human midbrain using single-shot EPI, parallel imaging, and outer-volume suppression at 7 T

    PubMed Central

    Wargo, Christopher J.; Gore, John C.

    2013-01-01

    Localized high-resolution diffusion tensor images (DTI) from the midbrain were obtained using reduced field-of-view (rFOV) methods combined with SENSE parallel imaging and single-shot echo planar (EPI) acquisitions at 7 T. This combination aimed to diminish sensitivities of DTI to motion, susceptibility variations, and EPI artifacts at ultra-high field. Outer-volume suppression (OVS) was applied in DTI acquisitions at 2- and 1-mm2 resolutions, b=1000 s/mm2, and six diffusion directions, resulting in scans of 7- and 14-min durations. Mean apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured in various fiber tract locations at the two resolutions and compared. Geometric distortion and signal-to-noise ratio (SNR) were additionally measured and compared for reduced-FOV and full-FOV DTI scans. Up to an eight-fold data reduction was achieved using DTI-OVS with SENSE at 1 mm2, and geometric distortion was halved. The localization of fiber tracts was improved, enabling targeted FA and ADC measurements. Significant differences in diffusion properties were observed between resolutions for a number of regions suggesting that FA values are impacted by partial volume effects even at a 2-mm2 resolution. The combined SENSE DTI-OVS approach allows large reductions in DTI data acquisition and provides improved quality for high-resolution diffusion studies of the human brain. PMID:23541390

  18. Simultaneous characterization of lateral lipid and prothrombin diffusion coefficients by z-scan fluorescence correlation spectroscopy.

    PubMed

    Stefl, Martin; Kułakowska, Anna; Hof, Martin

    2009-08-05

    A new (to our knowledge) robust approach for the determination of lateral diffusion coefficients of weakly bound proteins is applied for the phosphatidylserine specific membrane interaction of bovine prothrombin. It is shown that z-scan fluorescence correlation spectroscopy in combination with pulsed interleaved dual excitation allows simultaneous monitoring of the lateral diffusion of labeled protein and phospholipids. Moreover, from the dependencies of the particle numbers on the axial sample positions at different protein concentrations phosphatidylserine-dependent equilibrium dissociation constants are derived confirming literature values. Increasing the amount of membrane-bound prothrombin retards the lateral protein and lipid diffusion, indicating coupling of both processes. The lateral diffusion coefficients of labeled lipids are considerably larger than the simultaneously determined lateral diffusion coefficients of prothrombin, which contradicts findings reported for the isolated N-terminus of prothrombin.

  19. Transport of neutral solute across articular cartilage: the role of zonal diffusivities.

    PubMed

    Arbabi, V; Pouran, B; Weinans, H; Zadpoor, A A

    2015-07-01

    Transport of solutes through diffusion is an important metabolic mechanism for the avascular cartilage tissue. Three types of interconnected physical phenomena, namely mechanical, electrical, and chemical, are all involved in the physics of transport in cartilage. In this study, we use a carefully designed experimental-computational setup to separate the effects of mechanical and chemical factors from those of electrical charges. Axial diffusion of a neutral solute Iodixanol into cartilage was monitored using calibrated microcomputed tomography micro-CT images for up to 48 hr. A biphasic-solute computational model was fitted to the experimental data to determine the diffusion coefficients of cartilage. Cartilage was modeled either using one single diffusion coefficient (single-zone model) or using three diffusion coefficients corresponding to superficial, middle, and deep cartilage zones (multizone model). It was observed that the single-zone model cannot capture the entire concentration-time curve and under-predicts the near-equilibrium concentration values, whereas the multizone model could very well match the experimental data. The diffusion coefficient of the superficial zone was found to be at least one order of magnitude larger than that of the middle zone. Since neutral solutes were used, glycosaminoglycan (GAG) content cannot be the primary reason behind such large differences between the diffusion coefficients of the different cartilage zones. It is therefore concluded that other features of the different cartilage zones such as water content and the organization (orientation) of collagen fibers may be enough to cause large differences in diffusion coefficients through the cartilage thickness.

  20. Unifying diffusion and seepage for nonlinear gas transport in multiscale porous media

    NASA Astrophysics Data System (ADS)

    Song, Hongqing; Wang, Yuhe; Wang, Jiulong; Li, Zhengyi

    2016-09-01

    We unify the diffusion and seepage process for nonlinear gas transport in multiscale porous media via a proposed new general transport equation. A coherent theoretical derivation indicates the wall-molecule and molecule-molecule collisions drive the Knudsen and collective diffusive fluxes, and constitute the system pressure across the porous media. A new terminology, nominal diffusion coefficient can summarize Knudsen and collective diffusion coefficients. Physical and numerical experiments show the support of the new formulation and provide approaches to obtain the diffusion coefficient and permeability simultaneously. This work has important implication for natural gas extraction and greenhouse gases sequestration in geological formations.

  1. Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Boverman, Gregory; Fang, Qianqian; Carp, Stefan A.; Miller, Eric L.; Brooks, Dana H.; Selb, Juliette; Moore, Richard H.; Kopans, Daniel B.; Boas, David A.

    2007-07-01

    We develop algorithms for imaging the time-varying optical absorption within the breast given diffuse optical tomographic data collected over a time span that is long compared to the dynamics of the medium. Multispectral measurements allow for the determination of the time-varying total hemoglobin concentration and of oxygen saturation. To facilitate the image reconstruction, we decompose the hemodynamics in time into a linear combination of spatio-temporal basis functions, the coefficients of which are estimated using all of the data simultaneously, making use of a Newton-based nonlinear optimization algorithm. The solution of the extremely large least-squares problem which arises in computing the Newton update is obtained iteratively using the LSQR algorithm. A Laplacian spatial regularization operator is applied, and, in addition, we make use of temporal regularization which tends to encourage similarity between the images of the spatio-temporal coefficients. Results are shown for an extensive simulation, in which we are able to image and quantify localized changes in both total hemoglobin concentration and oxygen saturation. Finally, a breast compression study has been performed for a normal breast cancer screening subject, using an instrument which allows for highly accurate co-registration of multispectral diffuse optical measurements with an x-ray tomosynthesis image of the breast. We are able to quantify the global return of blood to the breast following compression, and, in addition, localized changes are observed which correspond to the glandular region of the breast.

  2. Numerical study of centrifugal compressor stage vaneless diffusers

    NASA Astrophysics Data System (ADS)

    Galerkin, Y.; Soldatova, K.; Solovieva, O.

    2015-08-01

    The authors analyzed CFD calculations of flow in vaneless diffusers with relative width in range from 0.014 to 0.100 at inlet flow angles in range from 100 to 450 with different inlet velocity coefficients, Reynolds numbers and surface roughness. The aim is to simulate calculated performances by simple algebraic equations. The friction coefficient that represents head losses as friction losses is proposed for simulation. The friction coefficient and loss coefficient are directly connected by simple equation. The advantage is that friction coefficient changes comparatively little in range of studied parameters. Simple equations for this coefficient are proposed by the authors. The simulation accuracy is sufficient for practical calculations. To create the complete algebraic model of the vaneless diffuser the authors plan to widen this method of modeling to diffusers with different relative length and for wider range of Reynolds numbers.

  3. Determination of partition and diffusion coefficients of formaldehyde in selected building materials and impact of relative humidity.

    PubMed

    Xu, Jing; Zhang, Jianshun S; Liu, Xiaoyu; Gao, Zhi

    2012-06-01

    The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50%, and 70% RH). The "green" materials contained recycled materials and were friendly to environment. A dynamic dual-chamber test method was used. Results showed that a higher relative humidity led to a larger effective diffusion coefficient for two kinds of wallboards and carpet. The carpet was also found to be very permeable resulting in an effective diffusion coefficient at the same order of magnitude with the formaldehyde diffusion coefficient in air. The partition coefficient (K(ma)) of formaldehyde in conventional wallboard was 1.52 times larger at 50% RH than at 20% RH, whereas it decreased slightly from 50% to 70% RH, presumably due to the combined effects of water solubility of formaldehyde and micro-pore blocking by condensed moisture at the high RH level. The partition coefficient of formaldehyde increased slightly with the increase of relative humidity in "green" wallboard and "green" carpet. At the same relative humidity level, the "green" wallboard had larger partition coefficient and effective diffusion coefficient than the conventional wallboard, presumably due to the micro-pore structure differences between the two materials. The data generated could be used to assess the sorption effects of formaldehyde on building materials and to evaluate its impact on the formaldehyde concentration in buildings.

  4. Determination of diffusion coefficients of various livestock antibiotics in water at infinite dilution

    NASA Astrophysics Data System (ADS)

    Soriano, Allan N.; Adamos, Kristoni G.; Bonifacio, Pauline B.; Adornado, Adonis P.; Bungay, Vergel C.; Vairavan, Rajendaran

    2017-11-01

    The fate of antibiotics entering the environment raised concerns on the possible effect of antimicrobial resistance bacteria. Prediction of the fate and transport of these particles are needed to be determined, significantly the diffusion coefficient of antibiotic in water at infinite dilution. A systematic determination of diffusion coefficient of antibiotic in water at infinite dilution of five different kinds of livestock antibiotics namely: Amtyl, Ciprotyl, Doxylak Forte, Trisullak, and Vetracin Gold in the 293.15 to 313.15 K temperature range are reported through the use of the method involving the electrolytic conductivity measurements. A continuous stirred tank reactor is utilized to measure the electrolytic conductivities of the considered systems. These conductivities are correlated by using the Nernst-Haskell equation to determine the infinite dilution diffusion coefficient. Determined diffusion coefficients are based on the assumption that in dilute solution, these antibiotics behave as strong electrolyte from which H+ cation dissociate from the antibiotic's anion.

  5. Determination of molecular diffusion coefficient in n-alkane binary mixtures: empirical correlations.

    PubMed

    De Mezquia, D Alonso; Bou-Ali, M Mounir; Larrañaga, M; Madariaga, J A; Santamaría, C

    2012-03-08

    In this work we have measured the molecular diffusion coefficient of the n-alkane binary series nC(i)-nC(6), nC(i)-nC(10), and nC(i)-nC(12) at 298 K and 1 atm and a mass fraction of 0.5 by using the so-called sliding symmetric tubes technique. The results show that the diffusion coefficient at this concentration is proportional to the inverse viscosity of the mixture. In addition, we have also measured the diffusion coefficient of the systems nC(12)-nC(6), nC(12)-nC(7), and nC(12)-nC(8) as a function of concentration. From the data obtained, it is shown that the diffusion coefficient of the n-alkane binary mixtures at any concentration can be calculated from the molecular weight of the components and the dynamic viscosity of the corresponding mixture at 50% mass fraction.

  6. Measurement of the ferric diffusion coefficient in agarose and gelatine gels by utilization of the evolution of a radiation induced edge as reflected in relaxation rate images.

    PubMed

    Pedersen, T V; Olsen, D R; Skretting, A

    1997-08-01

    A method has been developed to determine the diffusion coefficients of ferric ions in ferrous sulphate doped gels. A radiation induced edge was created in the gel, and two spin-echo sequences were used to acquire a pair of images of the gel at different points of time. For each of these image pairs, a longitudinal relaxation rate image was derived. From profiles through these images, the standard deviations of the Gaussian functions that characterize diffusion were determined. These data provided the basis for the determination of the ferric diffusion coefficients by two different methods. Simulations indicate that the use of single spin-echo images in this procedure may in some cases lead to a significant underestimation of the diffusion coefficient. The technique was applied to different agarose and gelatine gels that were prepared, irradiated and imaged simultaneously. The results indicate that the diffusion coefficient is lower in a gelatine gel than in an agarose gel. Addition of xylenol orange to a gelatine gel lowers the diffusion coefficient from 1.45 to 0.81 mm2 h-1, at the cost of significantly lower Rl sensitivity. The addition of benzoic acid to the latter gel did not increase the Rl sensitivity.

  7. Ensemble and single particle fluorimetric techniques in concerted action to study the diffusion and aggregation of the glycine receptor α3 isoforms in the cell plasma membrane.

    PubMed

    Notelaers, Kristof; Smisdom, Nick; Rocha, Susana; Janssen, Daniel; Meier, Jochen C; Rigo, Jean-Michel; Hofkens, Johan; Ameloot, Marcel

    2012-12-01

    The spatio-temporal membrane behavior of glycine receptors (GlyRs) is known to be of influence on receptor homeostasis and functionality. In this work, an elaborate fluorimetric strategy was applied to study the GlyR α3K and L isoforms. Previously established differential clustering, desensitization and synaptic localization of these isoforms imply that membrane behavior is crucial in determining GlyR α3 physiology. Therefore diffusion and aggregation of homomeric α3 isoform-containing GlyRs were studied in HEK 293 cells. A unique combination of multiple diffraction-limited ensemble average methods and subdiffraction single particle techniques was used in order to achieve an integrated view of receptor properties. Static measurements of aggregation were performed with image correlation spectroscopy (ICS) and, single particle based, direct stochastic optical reconstruction microscopy (dSTORM). Receptor diffusion was measured by means of raster image correlation spectroscopy (RICS), temporal image correlation spectroscopy (TICS), fluorescence recovery after photobleaching (FRAP) and single particle tracking (SPT). The results show a significant difference in diffusion coefficient and cluster size between the isoforms. This reveals a positive correlation between desensitization and diffusion and disproves the notion that receptor aggregation is a universal mechanism for accelerated desensitization. The difference in diffusion coefficient between the clustering GlyR α3L and the non-clustering GlyR α3K cannot be explained by normal diffusion. SPT measurements indicate that the α3L receptors undergo transient trapping and directed motion, while the GlyR α3K displays mild hindered diffusion. These findings are suggestive of differential molecular interaction of the isoforms after incorporation in the membrane. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. CO2 diffusion in champagne wines: a molecular dynamics study.

    PubMed

    Perret, Alexandre; Bonhommeau, David A; Liger-Belair, Gérard; Cours, Thibaud; Alijah, Alexander

    2014-02-20

    Although diffusion is considered as the main physical process responsible for the nucleation and growth of carbon dioxide bubbles in sparkling beverages, the role of each type of molecule in the diffusion process remains unclear. In the present study, we have used the TIP5P and SPC/E water models to perform force field molecular dynamics simulations of CO2 molecules in water and in a water/ethanol mixture respecting Champagne wine proportions. CO2 diffusion coefficients were computed by applying the generalized Fick's law for the determination of multicomponent diffusion coefficients, a law that simplifies to the standard Fick's law in the case of champagnes. The CO2 diffusion coefficients obtained in pure water and water/ethanol mixtures composed of TIP5P water molecules were always found to exceed the coefficients obtained in mixtures composed of SPC/E water molecules, a trend that was attributed to a larger propensity of SPC/E water molecules to form hydrogen bonds. Despite the fact that the SPC/E model is more accurate than the TIP5P model to compute water self-diffusion and CO2 diffusion in pure water, the diffusion coefficients of CO2 molecules in the water/ethanol mixture are in much better agreement with the experimental values of 1.4 - 1.5 × 10(-9) m(2)/s obtained for Champagne wines when the TIP5P model is employed. This difference was deemed to rely on the larger propensity of SPC/E water molecules to maintain the hydrogen-bonded network between water molecules and form new hydrogen bonds with ethanol, although statistical issues cannot be completely excluded. The remarkable agreement between the theoretical CO2 diffusion coefficients obtained within the TIP5P water/ethanol mixture and the experimental data specific to Champagne wines makes us infer that the diffusion coefficient in these emblematic hydroalcoholic sparkling beverages is expected to remain roughly constant whathever their proportions in sugars, glycerol, or peptides.

  9. Extrusion versus diffusion: mechanisms for recovery from sodium loads in mouse CA1 pyramidal neurons

    PubMed Central

    Mondragão, Miguel A.; Schmidt, Hartmut; Kleinhans, Christian; Langer, Julia; Kafitz, Karl W.

    2016-01-01

    Key points Neuronal activity causes local or global sodium signalling in neurons, depending on the pattern of synaptic activity.Recovery from global sodium loads critically relies on Na+/K+‐ATPase and an intact energy metabolism in both somata and dendrites.For recovery from local sodium loads in dendrites, Na+/K+‐ATPase activity is not required per se. Instead, recovery is predominately mediated by lateral diffusion, exhibiting rates that are 10‐fold higher than for global sodium signals.Recovery from local dendritic sodium increases is still efficient during short periods of energy deprivation, indicating that fast diffusion of sodium to non‐stimulated regions strongly reduces local energy requirements. Abstract Excitatory activity is accompanied by sodium influx into neurones as a result of the opening of voltage‐ and ligand‐activated channels. Recovery from resulting sodium transients has mainly been attributed to Na+/K+‐ATPase (NKA). Because sodium ions are highly mobile, diffusion could provide an additional pathway. We tested this in hippocampal neurones using whole‐cell patch‐clamp recordings and sodium imaging. Somatic sodium transients induced by local glutamate application recovered at a maximum rate of 8 mm min−1 (∼0.03 mm min−1 μm−2). Somatic sodium extrusion was accelerated at higher temperature and blocked by ouabain, emphasizing its dependence on NKA. Moreover, it was slowed down during inhibition of glycolysis by sodium fluoride (NaF). Local glutamate application to dendrites revealed a 10‐fold higher apparent dendritic sodium extrusion rate compared to somata. Recovery was almost unaltered by increased temperature, ouabain or NaF. We found that sodium diffused along primary dendrites with a diffusion coefficient of ∼330 μm²/s. During global glutamate application, impeding substantial net diffusion, apparent dendritic extrusion rates were reduced to somatic rates and also affected by NaF. Numerical simulations confirmed the essential role of NKA for the recovery of somatic, but not dendritic sodium loads. Our data show that sodium export upon global sodium increases is largely mediated by NKA and depends on an intact energy metabolism. For recovery from local dendritic sodium increases, diffusion dominates over extrusion, operating efficiently even during short periods of energy deprivation. Although sodium will eventually be extruded by the NKA, its diffusion‐based fast dissemination to non‐stimulated regions might reduce local energy requirements. PMID:27080107

  10. Comparison of experimental methods for estimating matrix diffusion coefficients for contaminant transport modeling

    DOE PAGES

    Telfeyan, Katherine Christina; Ware, Stuart Doug; Reimus, Paul William; ...

    2018-01-31

    Here, diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged frommore » 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.« less

  11. Comparison of experimental methods for estimating matrix diffusion coefficients for contaminant transport modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Telfeyan, Katherine Christina; Ware, Stuart Doug; Reimus, Paul William

    Here, diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged frommore » 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.« less

  12. Multispecies diffusion models: A study of uranyl species diffusion

    NASA Astrophysics Data System (ADS)

    Liu, Chongxuan; Shang, Jianying; Zachara, John M.

    2011-12-01

    Rigorous numerical description of multispecies diffusion requires coupling of species, charge, and aqueous and surface complexation reactions that collectively affect diffusive fluxes. The applicability of a fully coupled diffusion model is, however, often constrained by the availability of species self-diffusion coefficients, as well as by computational complication in imposing charge conservation. In this study, several diffusion models with variable complexity in charge and species coupling were formulated and compared to describe reactive multispecies diffusion in groundwater. Diffusion of uranyl [U(VI)] species was used as an example in demonstrating the effectiveness of the models in describing multispecies diffusion. Numerical simulations found that a diffusion model with a single, common diffusion coefficient for all species was sufficient to describe multispecies U(VI) diffusion under a steady state condition of major chemical composition, but not under transient chemical conditions. Simulations revealed that for multispecies U(VI) diffusion under transient chemical conditions, a fully coupled diffusion model could be well approximated by a component-based diffusion model when the diffusion coefficient for each chemical component was properly selected. The component-based diffusion model considers the difference in diffusion coefficients between chemical components, but not between the species within each chemical component. This treatment significantly enhanced computational efficiency at the expense of minor charge conservation. The charge balance in the component-based diffusion model can be enforced, if necessary, by adding a secondary migration term resulting from model simplification. The effect of ion activity coefficient gradients on multispecies diffusion is also discussed. The diffusion models were applied to describe U(VI) diffusive mass transfer in intragranular domains in two sediments collected from U.S. Department of Energy's Hanford 300A, where intragranular diffusion is a rate-limiting process controlling U(VI) adsorption and desorption. The grain-scale reactive diffusion model was able to describe U(VI) adsorption/desorption kinetics that had been previously described using a semiempirical, multirate model. Compared with the multirate model, the diffusion models have the advantage to provide spatiotemporal speciation evolution within the diffusion domains.

  13. Estimation of diffusion coefficients from voltammetric signals by support vector and gaussian process regression

    PubMed Central

    2014-01-01

    Background Support vector regression (SVR) and Gaussian process regression (GPR) were used for the analysis of electroanalytical experimental data to estimate diffusion coefficients. Results For simulated cyclic voltammograms based on the EC, Eqr, and EqrC mechanisms these regression algorithms in combination with nonlinear kernel/covariance functions yielded diffusion coefficients with higher accuracy as compared to the standard approach of calculating diffusion coefficients relying on the Nicholson-Shain equation. The level of accuracy achieved by SVR and GPR is virtually independent of the rate constants governing the respective reaction steps. Further, the reduction of high-dimensional voltammetric signals by manual selection of typical voltammetric peak features decreased the performance of both regression algorithms compared to a reduction by downsampling or principal component analysis. After training on simulated data sets, diffusion coefficients were estimated by the regression algorithms for experimental data comprising voltammetric signals for three organometallic complexes. Conclusions Estimated diffusion coefficients closely matched the values determined by the parameter fitting method, but reduced the required computational time considerably for one of the reaction mechanisms. The automated processing of voltammograms according to the regression algorithms yields better results than the conventional analysis of peak-related data. PMID:24987463

  14. The influence of screening of the polyion electrostatic potential on the counterion dynamics in polyelectrolyte solutions

    NASA Astrophysics Data System (ADS)

    Schipper, F. J. M.; Hollander, J. G.; Leyte, J. C.

    1998-10-01

    The self-diffusion coefficient of tetra-methylammonium counterion in solutions of polymethacrylic acid in 0953-8984/10/41/004/img1 has been measured over a broad polyion concentration range at a constant degree of neutralization and at different ratios of added monovalent or bivalent salt to polyions. A maximum counterion self-diffusion coefficient was observed as a function of polyion concentration. The value of the self-diffusion coefficient at the maximum did not depend on the valency of the added salt. The maximum was found at lower polymer concentrations and with a higher value, when the ratio of added salt to polyions was increased, as predicted by the Poisson-Boltzmann-Smoluchowski equation in the cylindrical cell model for polyelectrolytes. At higher polyion concentrations a maximum counterion self-diffusion coefficient against the ratio of added salt and polyions was observed, which has not been reported before. Upon increasing this ratio the electrostatic potential of the polyelectrolyte gets screened, leading to an increase of the counterion self-diffusion coefficient. Concentration effects of the added salt on the other hand ultimately lead to a decrease of the counterion self-diffusion coefficient, which explains the occurrence of a maximum.

  15. Using Directional Diffusion Coefficients for Nonlinear Diffusion Acceleration of the First Order SN Equations in Near-Void Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunert, Sebastian; Hammer, Hans; Lou, Jijie

    2016-11-01

    The common definition of the diffusion coeffcient as the inverse of three times the transport cross section is not compat- ible with voids. Morel introduced a non-local tensor diffusion coeffcient that remains finite in voids[1]. It can be obtained by solving an auxiliary transport problem without scattering or fission. Larsen and Trahan successfully applied this diffusion coeffcient for enhancing the accuracy of diffusion solutions of very high temperature reactor (VHTR) problems that feature large, optically thin channels in the z-direction [2]. It is demonstrated that a significant reduction of error can be achieved in particular in the optically thin region.more » Along the same line of thought, non-local diffusion tensors are applied modeling the TREAT reactor confirming the findings of Larsen and Trahan [3]. Previous work of the authors have introduced a flexible Nonlinear-Diffusion Acceleration (NDA) method for the first order S N equations discretized with the discontinuous finite element method (DFEM), [4], [5], [6]. This NDA method uses a scalar diffusion coeffcient in the low-order system that is obtained as the flux weighted average of the inverse transport cross section. Hence, it su?ers from very large and potentially unbounded diffusion coeffcients in the low order problem. However, it was noted that the choice of the diffusion coeffcient does not influence consistency of the method at convergence and hence the di?usion coeffcient is essentially a free parameter. The choice of the di?usion coeffcient does, however, affect the convergence behavior of the nonlinear di?usion iterations. Within this work we use Morel’s non-local di?usion coef- ficient in the aforementioned NDA formulation in lieu of the flux weighted inverse of three times the transport cross section. The goal of this paper is to demonstrate that significant en- hancement of the spectral properties of NDA can be achieved in near void regions. For testing the spectral properties of the NDA with non-local diffusion coeffcients, the periodical horizontal interface problem is used [7]. This problem consists of alternating stripes of optically thin and thick materials both of which feature scattering ratios close to unity.« less

  16. Multilevel Preconditioners for Reaction-Diffusion Problems with Discontinuous Coefficients

    DOE PAGES

    Kolev, Tzanio V.; Xu, Jinchao; Zhu, Yunrong

    2015-08-23

    In this study, we extend some of the multilevel convergence results obtained by Xu and Zhu, to the case of second order linear reaction-diffusion equations. Specifically, we consider the multilevel preconditioners for solving the linear systems arising from the linear finite element approximation of the problem, where both diffusion and reaction coefficients are piecewise-constant functions. We discuss in detail the influence of both the discontinuous reaction and diffusion coefficients to the performance of the classical BPX and multigrid V-cycle preconditioner.

  17. Note: On the relation between Lifson-Jackson and Derrida formulas for effective diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Kalnin, Juris R.; Berezhkovskii, Alexander M.

    2013-11-01

    The Lifson-Jackson formula provides the effective free diffusion coefficient for a particle diffusing in an arbitrary one-dimensional periodic potential. Its counterpart, when the underlying dynamics is described in terms of an unbiased nearest-neighbor Markovian random walk on a one-dimensional periodic lattice is given by the formula obtained by Derrida. It is shown that the latter formula can be considered as a discretized version of the Lifson-Jackson formula with correctly chosen position-dependent diffusion coefficient.

  18. Consequences of using nonlinear particle trajectories to compute spatial diffusion coefficients. [for cosmic ray propagation in interstellar and interplanetary space

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.

    1977-01-01

    In a study of cosmic ray propagation in interstellar and interplanetary space, a perturbed orbit resonant scattering theory for pitch angle diffusion in a slab model of magnetostatic turbulence is slightly generalized and used to compute the diffusion coefficient for spatial propagation parallel to the mean magnetic field. This diffusion coefficient has been useful for describing the solar modulation of the galactic cosmic rays, and for explaining the diffusive phase in solar flares in which the initial anisotropy of the particle distribution decays to isotropy.

  19. Translational diffusion coefficients of volatile compounds in various aqueous solutions at low and subzero temperatures.

    PubMed

    Covarrubias-Cervantes, Marco; Champion, Dominique; Debeaufort, Frédéric; Voilley, Andrée

    2005-08-24

    Translational diffusion coefficients (D(12)) of volatile compounds were measured in model media with the profile concentration method. The influence of sample temperature (from 25 to -10 degrees C) was studied on translational diffusion in sucrose or maltodextrin solutions at various concentrations. Results show that diffusivity of volatile compounds in sucrose solutions is controlled by temperature, molecule size, and the viscosity of the liquid phase as expected with the Stokes-Einstein equation; moreover, physicochemical interactions between volatile compounds and the medium are determinant for diffusion estimation. At negative temperature, the winding path induced by an ice crystal content of >70% lowered volatile compound diffusion. On the contrary, no influence on translational diffusion coefficients was observed for lower ice content.

  20. Experimental Method Development for Estimating Solid-phase Diffusion Coefficients and Material/Air Partition Coefficients of SVOCs

    EPA Science Inventory

    The solid-phase diffusion coefficient (Dm) and material-air partition coefficient (Kma) are key parameters for characterizing the sources and transport of semivolatile organic compounds (SVOCs) in the indoor environment. In this work, a new experimental method was developed to es...

  1. Separation Dynamics of Controlled Internal Flow in an Adverse Pressure Gradient

    NASA Astrophysics Data System (ADS)

    Peterson, C. J.; Vukasinovic, B.; Glezer, A.

    2017-11-01

    The effects of fluidic actuation on the dynamic evolution of aggressive internal flow separation is investigated at speeds up to M = 0.4 within a constant-width diffuser branching off of a primary flow duct. It is shown that a spanwise array of fluidic actuators upstream of the separation actively controls the flow constriction (and losses) within the diffuser and consequently the local pressure gradient at its entrance. The effectiveness of the actuation, as may be measured by the increased flow rate that is diverted through the diffuser, scales with its flow rate coefficient. In the presence of actuation (0.7% mass fraction), the mass flow rate in the primary duct increases by 10% while the fraction of the diverted mass flow rate in the diffuser increases by more than 45%. The flow dynamics near separation in the absence and presence of actuation are characterized using high speed particle image velocimetry and analyzed using proper orthogonal and spectral decompositions. In particular, the spectral contents of the incipient boundary layer separation are compared in the absence and presence of actuation with emphasis on the changes in local dynamics near separation as the characteristic cross stream scale of the boundary layer increases with separation delay.

  2. Diffusion of cations in chromia layers grown on iron-base alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobnig, R.E.; Hennesen, K.; Grabke, H.J.

    Diffusion of the cations Cr, Fe, Mn, and Ni in Cr{sub 2}O{sub 3} has been investigated at 1,173 K. The diffusion measurements were performed on chromia layers grown on the model alloys Fe-20Cr and Fe-20Cr-12Ni in order to consider effects of small amounts of dissolved alien cations in Cr{sub 2}O{sub 3}. The samples were diffusion annealed in H{sub 2}-H{sub 2}O at an oxygen partial pressure close to the Cr{sub 2}O{sub 3}/Cr equilibrium. For all tracers the lattice-diffusion coefficients are 3-5 orders of magnitude smaller than the grain-boundary diffusion coefficients. The lattice diffusivity of Mn is about two orders of magnitudemore » greater than the other lattice-diffusion coefficients, especially in Cr{sub 2}O{sub 3} grown on Fe-20Cr-12Ni. The values of the diffusion coefficients for Cr, Fe, and Ni are in the same range. Diffusion of the tracers in Cr{sub 2}O{sub 3} grown on different alloys did not show significant differences with the exception of Mn.« less

  3. Many-body Effects in a Laterally Inhomogeneous Semiconductor Quantum Well

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Li, Jian-Zhong; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Many body effects on conduction and diffusion of electrons and holes in a semiconductor quantum well are studied using a microscopic theory. The roles played by the screened Hartree-Fock (SHE) terms and the scattering terms are examined. It is found that the electron and hole conductivities depend only on the scattering terms, while the two-component electron-hole diffusion coefficients depend on both the SHE part and the scattering part. We show that, in the limit of the ambipolax diffusion approximation, however, the diffusion coefficients for carrier density and temperature are independent of electron-hole scattering. In particular, we found that the SHE terms lead to a reduction of density-diffusion coefficients and an increase in temperature-diffusion coefficients. Such a reduction or increase is explained in terms of a density-and temperature dependent energy landscape created by the bandgap renormalization.

  4. Determination of the zincate diffusion coefficient and its application to alkaline battery problems

    NASA Technical Reports Server (NTRS)

    May, C. E.; Kautz, Harold E.

    1978-01-01

    The diffusion coefficient for the zincate ion at 24 C was found to be 9.9 X 10 to the minus 7th power squared cm per sec + or - 30 percent in 45 percent potassium hydroxide and 1.4 x 10 to the minus 7 squared cm per sec + or - 25 percent in 40 percent sodium hydroxide. Comparison of these values with literature values at different potassium hydroxide concentrations show that the Stokes-Einstein equation is obeyed. The diffusion coefficient is characteristic of the zincate ion (not the cation) and independent of its concentration. Calculations with the measured value of the diffusion coefficient show that the zinc concentration in an alkaline zincate half cell becomes uniform throughout in tens of hours by diffusion alone. Diffusion equations are derived which are applicable to finite size chambers. Details and discussion of the experimental method are also given.

  5. Coiled to diffuse: Brownian motion of a helical bacterium.

    PubMed

    Butenko, Alexander V; Mogilko, Emma; Amitai, Lee; Pokroy, Boaz; Sloutskin, Eli

    2012-09-11

    We employ real-time three-dimensional confocal microscopy to follow the Brownian motion of a fixed helically shaped Leptospira interrogans (LI) bacterium. We extract from our measurements the translational and the rotational diffusion coefficients of this bacterium. A simple theoretical model is suggested, perfectly reproducing the experimental diffusion coefficients, with no tunable parameters. An older theoretical model, where edge effects are neglected, dramatically underestimates the observed rates of translation. Interestingly, the coiling of LI increases its rotational diffusion coefficient by a factor of 5, compared to a (hypothetical) rectified bacterium of the same contour length. Moreover, the translational diffusion coefficients would have decreased by a factor of ~1.5, if LI were rectified. This suggests that the spiral shape of the spirochaete bacteria, in addition to being employed for their active twisting motion, may also increase the ability of these bacteria to explore the surrounding fluid by passive Brownian diffusion.

  6. Determination of the zincate diffusion coefficient and its application to alkaline battery problems

    NASA Technical Reports Server (NTRS)

    May, C. E.; Kautz, H. E.

    1978-01-01

    The diffusion coefficient for the zincate ion at 24 C was found to be 9.9 x 10 to the -7th power sq cm/sec + or - 30% in 45% potassium hydroxide and 1.4 x 10 to the -7th power sq cm/sec + or - 25% in 40% sodium hydroxide. Comparison of these values with literature values at different potassium hydroxide concentrations show that the Stokes-Einstein equation is obeyed. The diffusion coefficient is characteristic of the zincate ion (not the cation) and independent of its concentration. Calculations with the measured value of the diffusion coefficient show that the zinc concentration in an alkaline zincate half-cell becomes uniform throughout in tens of hours by diffusion alone. Diffusion equations are derived which are applicable to finite-size chambers. Details and discussion of the experimental method are also given.

  7. The effect of recombination and attachment on meteor radar diffusion coefficient profiles

    NASA Astrophysics Data System (ADS)

    Lee, C. S.; Younger, J. P.; Reid, I. M.; Kim, Y. H.; Kim, J.-H.

    2013-04-01

    Estimates of the ambipolar diffusion coefficient producedusing meteor radar echo decay times display an increasing trend below 80-85 km, which is inconsistent with a diffusion-only theory of the evolution of meteor trails. Data from the 33 MHz meteor radar at King Sejong Station, Antarctica, have been compared with observations from the Aura Earth Observing System Microwave Limb Sounder satellite instrument. It has been found that the height at which the diffusion coefficient gradient reverses follows the height of a constant neutral atmospheric density surface. Numerical simulations of meteor trail diffusion including dissociative recombination with atmospheric ions and three-body attachment of free electrons to neutral molecules indicate that three-body attachment is responsible for the distortion of meteor radar diffusion coefficient profiles at heights below 90 km, including the gradient reversal below 80-85 km. Further investigation has revealed that meteor trails with low initial electron line density produce decay times more consistent with a diffusion-only model of meteor trail evolution.

  8. Negative Correlation between the Diffusion Coefficient and Transcriptional Activity of the Glucocorticoid Receptor.

    PubMed

    Mikuni, Shintaro; Yamamoto, Johtaro; Horio, Takashi; Kinjo, Masataka

    2017-08-25

    The glucocorticoid receptor (GR) is a transcription factor, which interacts with DNA and other cofactors to regulate gene transcription. Binding to other partners in the cell nucleus alters the diffusion properties of GR. Raster image correlation spectroscopy (RICS) was applied to quantitatively characterize the diffusion properties of EGFP labeled human GR (EGFP-hGR) and its mutants in the cell nucleus. RICS is an image correlation technique that evaluates the spatial distribution of the diffusion coefficient as a diffusion map. Interestingly, we observed that the averaged diffusion coefficient of EGFP-hGR strongly and negatively correlated with its transcriptional activities in comparison to that of EGFP-hGR wild type and mutants with various transcriptional activities. This result suggests that the decreasing of the diffusion coefficient of hGR was reflected in the high-affinity binding to DNA. Moreover, the hyper-phosphorylation of hGR can enhance the transcriptional activity by reduction of the interaction between the hGR and the nuclear corepressors.

  9. Rumor Diffusion in an Interests-Based Dynamic Social Network

    PubMed Central

    Mao, Xinjun; Guessoum, Zahia; Zhou, Huiping

    2013-01-01

    To research rumor diffusion in social friend network, based on interests, a dynamic friend network is proposed, which has the characteristics of clustering and community, and a diffusion model is also proposed. With this friend network and rumor diffusion model, based on the zombie-city model, some simulation experiments to analyze the characteristics of rumor diffusion in social friend networks have been conducted. The results show some interesting observations: (1) positive information may evolve to become a rumor through the diffusion process that people may modify the information by word of mouth; (2) with the same average degree, a random social network has a smaller clustering coefficient and is more beneficial for rumor diffusion than the dynamic friend network; (3) a rumor is spread more widely in a social network with a smaller global clustering coefficient than in a social network with a larger global clustering coefficient; and (4) a network with a smaller clustering coefficient has a larger efficiency. PMID:24453911

  10. Rumor diffusion in an interests-based dynamic social network.

    PubMed

    Tang, Mingsheng; Mao, Xinjun; Guessoum, Zahia; Zhou, Huiping

    2013-01-01

    To research rumor diffusion in social friend network, based on interests, a dynamic friend network is proposed, which has the characteristics of clustering and community, and a diffusion model is also proposed. With this friend network and rumor diffusion model, based on the zombie-city model, some simulation experiments to analyze the characteristics of rumor diffusion in social friend networks have been conducted. The results show some interesting observations: (1) positive information may evolve to become a rumor through the diffusion process that people may modify the information by word of mouth; (2) with the same average degree, a random social network has a smaller clustering coefficient and is more beneficial for rumor diffusion than the dynamic friend network; (3) a rumor is spread more widely in a social network with a smaller global clustering coefficient than in a social network with a larger global clustering coefficient; and (4) a network with a smaller clustering coefficient has a larger efficiency.

  11. Venus' superrotation, mixing length theory and eddy diffusion - A parametric study

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.; Schatten, K. H.; Stevens-Rayburn, D. R.; Chan, K. L.

    1988-01-01

    The concept of the Hadley mechanism is adopted to describe the axisymmetric circulation of the Venus atmosphere. It is shown that, for the atmosphere of a slowly rotating planet such as Venus, a form of the nonliner 'closure' (self-consistent solution) of the fluid dynamics system which constrains the magnitude of the eddy diffusion coefficients can be postulated. A nonlinear one-layer spectral model of the zonally symmetric circulation was then used to establish the relationship between the heat source, the meridional circulation, and the eddy diffusion coefficients, yielding large zonal velocities. Computer experiments indicated that proportional changes in the heat source and eddy diffusion coefficients do not significantly change the zonal velocities. It was also found that, for large eddy diffusion coefficients, the meridional velocity is virtually constant; below a threshold in the diffusion rate, the meridional velocity decreases; and, for large eddy diffusion and small heating rates, the zonal velocities decrease with decreasing planetary rotation rates.

  12. Arbitrary-order corrections for finite-time drift and diffusion coefficients

    NASA Astrophysics Data System (ADS)

    Anteneodo, C.; Riera, R.

    2009-09-01

    We address a standard class of diffusion processes with linear drift and quadratic diffusion coefficients. These contributions to dynamic equations can be directly drawn from data time series. However, real data are constrained to finite sampling rates and therefore it is crucial to establish a suitable mathematical description of the required finite-time corrections. Based on Itô-Taylor expansions, we present the exact corrections to the finite-time drift and diffusion coefficients. These results allow to reconstruct the real hidden coefficients from the empirical estimates. We also derive higher-order finite-time expressions for the third and fourth conditional moments that furnish extra theoretical checks for this class of diffusion models. The analytical predictions are compared with the numerical outcomes of representative artificial time series.

  13. Diffusion coefficient and shear viscosity of rigid water models.

    PubMed

    Tazi, Sami; Boţan, Alexandru; Salanne, Mathieu; Marry, Virginie; Turq, Pierre; Rotenberg, Benjamin

    2012-07-18

    We report the diffusion coefficient and viscosity of popular rigid water models: two non-polarizable ones (SPC/E with three sites, and TIP4P/2005 with four sites) and a polarizable one (Dang-Chang, four sites). We exploit the dependence of the diffusion coefficient on the system size (Yeh and Hummer 2004 J. Phys. Chem. B 108 15873) to obtain the size-independent value. This also provides an estimate of the viscosity of all water models, which we compare to the Green-Kubo result. In all cases, a good agreement is found. The TIP4P/2005 model is in better agreement with the experimental data for both diffusion and viscosity. The SPC/E and Dang-Chang models overestimate the diffusion coefficient and underestimate the viscosity.

  14. Effective diffusion coefficients of DNAPL waste components in saturated low permeability soil materials.

    PubMed

    Ayral-Cinar, Derya; Demond, Avery H

    2017-12-01

    Diffusion is regarded as the dominant transport mechanism into and out of low permeable subsurface lenses and layers in the subsurface. But, some reports of mass storage in such zones are higher than what might be attributable to diffusion, based on estimated diffusion coefficients. Despite the importance of diffusion to efforts to estimate the quantity of residual contamination in the subsurface, relatively few studies present measured diffusion coefficients of organic solutes in saturated low permeability soils. This study reports the diffusion coefficients of a trichloroethylene (TCE), and an anionic surfactant, Aerosol OT (AOT), in water-saturated silt and a silt-montmorillonite (25:75) mixture, obtained using steady-state experiments. The relative diffusivity ranged from 0.11 to 0.17 for all three compounds for the silt and the silt-clay mixture that was allowed to expand. In the case in which the swelling was constrained, the relative diffusivity was about 0.07. In addition, the relative diffusivity of 13 C-labeled TCE through a water saturated silt-clay mixture that had contacted a field dense non-aqueous phase liquid (DNAPL) for 18months was measured and equaled 0.001. These experimental results were compared with the estimates generated using common correlations, and it was found that, in all cases, the measured diffusion coefficients were significantly lower than the estimated. Thus, the discrepancy between mass accumulations observed in the field and the mass storage that can attributable to diffusion may be greater than previously believed. Copyright © 2017. Published by Elsevier B.V.

  15. Spectral Properties of Limit-Periodic Schrödinger Operators (PhD Thesis)

    NASA Astrophysics Data System (ADS)

    Gideonse, Hendrik David, XIX

    The Acoustic Ramp is a wedge-shaped, number-theoretical quadratic-residue-type acoustic diffuser. Since the late 1970's, several methodologies for the testing and analysis of diffusers have been developed including, the ISO Scattering Coefficient and the AES Diffusion Coefficient. These coefficients are the source of some controversy today and this paper makes the attempt to investigate the benefits and weaknesses of these tools by using them to research and test the Acoustic Ramp. Several issues are exposed in using the coefficients, the most important of which being the validity of the comparison of the diffuser's behavior to that of a like sized flat panel. Further issues comprise of an intuitive disconnect between the perceived merits of polar plots and the numerical value of coefficients derived from the plots.

  16. Measurement of diffusion coefficients important in modeling the absorption rate of carbon dioxide into aqueous N-methyldiethanolamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowley, R.L.; Adams, M.E.; Marshall, T.L.

    1997-03-01

    Natural gas processors use amine treating processes to remove the acid gases H{sub 2}S and CO{sub 2} from gas streams. Absorption rates of gaseous CO{sub 2} into aqueous N-methyldiethanolamine (MDEA) solutions were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. The absorption rate was found to be insensitive to the diffusion coefficient of CO{sub 2} in solution but very sensitive to the diffusion rate of bicarbonate and protonated MDEA ions. Evidence also suggested that chemical reaction equilibrium is rapid relative to diffusion. A numerical model was developed on the basis of these observations. The modelmore » was used to regress diffusion coefficients of bicarbonate and protonated amine, which must be equivalent by electroneutrality arguments, from measured absorption rates. Complete modeling of the absorption process also required data for the diffusion coefficient of MDEA in water. These were measured using a Taylor dispersion apparatus. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate and protonated MDEA were obtained at 298.2 K and 318.2 K in solutions containing 20, 35, and 50 mass % MDEA in water.« less

  17. Comments on the Diffusive Behavior of Two Upwind Schemes

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Kleb, William L.

    1998-01-01

    The diffusive characteristics of two upwind schemes, multi-dimensional fluctuation splitting and locally one-dimensional finite volume, are compared for scalar advection-diffusion problems. Algorithms for the two schemes are developed for node-based data representation on median-dual meshes associated with unstructured triangulations in two spatial dimensions. Four model equations are considered: linear advection, non-linear advection, diffusion, and advection-diffusion. Modular coding is employed to isolate the effects of the two approaches for upwind flux evaluation, allowing for head-to-head accuracy and efficiency comparisons. Both the stability of compressive limiters and the amount of artificial diffusion generated by the schemes is found to be grid-orientation dependent, with the fluctuation splitting scheme producing less artificial diffusion than the finite volume scheme. Convergence rates are compared for the combined advection-diffusion problem, with a speedup of 2.5 seen for fluctuation splitting versus finite volume when solved on the same mesh. However, accurate solutions to problems with small diffusion coefficients can be achieved on coarser meshes using fluctuation splitting rather than finite volume, so that when comparing convergence rates to reach a given accuracy, fluctuation splitting shows a speedup of 29 over finite volume.

  18. Influences of Exciton Diffusion and Exciton-Exciton Annihilation on Photon Emission Statistics of Carbon Nanotubes.

    PubMed

    Ma, Xuedan; Roslyak, Oleskiy; Duque, Juan G; Pang, Xiaoying; Doorn, Stephen K; Piryatinski, Andrei; Dunlap, David H; Htoon, Han

    2015-07-03

    Pump-dependent photoluminescence imaging and second-order photon correlation studies have been performed on individual single-walled carbon nanotubes (SWCNTs) at room temperature. These studies enable the extraction of both the exciton diffusion constant and the Auger recombination coefficient. A linear correlation between these parameters is attributed to the effect of environmental disorder in setting the exciton mean free path and capture-limited Auger recombination at this length scale. A suppression of photon antibunching is attributed to the creation of multiple spatially nonoverlapping excitons in SWCNTs, whose diffusion length is shorter than the laser spot size. We conclude that complete antibunching at room temperature requires an enhancement of the exciton-exciton annihilation rate that may become realizable in SWCNTs allowing for strong exciton localization.

  19. Interdiffusion, Intrinsic Diffusion, Atomic Mobility, and Vacancy Wind Effect in γ(bcc) Uranium-Molybdenum Alloy

    NASA Astrophysics Data System (ADS)

    Huang, Ke; Keiser, Dennis D.; Sohn, Yongho

    2013-02-01

    U-Mo alloys are being developed as low enrichment uranium fuels under the Reduced Enrichment for Research and Test Reactor (RERTR) Program. In order to understand the fundamental diffusion behavior of this system, solid-to-solid pure U vs Mo diffusion couples were assembled and annealed at 923 K, 973 K, 1073 K, 1173 K, and 1273 K (650 °C, 700 °C, 800 °C, 900 °C, and 1000 °C) for various times. The interdiffusion microstructures and concentration profiles were examined via scanning electron microscopy and electron probe microanalysis, respectively. As the Mo concentration increased from 2 to 26 at. pct, the interdiffusion coefficient decreased, while the activation energy increased. A Kirkendall marker plane was clearly identified in each diffusion couple and utilized to determine intrinsic diffusion coefficients. Uranium intrinsically diffused 5-10 times faster than Mo. Molar excess Gibbs free energy of U-Mo alloy was applied to calculate the thermodynamic factor using ideal, regular, and subregular solution models. Based on the intrinsic diffusion coefficients and thermodynamic factors, Manning's formalism was used to calculate the tracer diffusion coefficients, atomic mobilities, and vacancy wind parameters of U and Mo at the marker composition. The tracer diffusion coefficients and atomic mobilities of U were about five times larger than those of Mo, and the vacancy wind effect increased the intrinsic flux of U by approximately 30 pct.

  20. Gene interference regulates aquaporin-4 expression in swollen tissue of rats with cerebral ischemic edema

    PubMed Central

    Hu, Hui; Lu, Hong; He, Zhanping; Han, Xiangjun; Chen, Jing; Tu, Rong

    2012-01-01

    To investigate the effects of mRNA interference on aquaporin-4 expression in swollen tissue of rats with ischemic cerebral edema, and diagnose the significance of diffusion-weighted MRI, we injected 5 μL shRNA- aquaporin-4 (control group) or siRNA- aquaporin-4 solution (1:800) (RNA interference group) into the rat right basal ganglia immediately before occlusion of the middle cerebral artery. At 0.25 hours after occlusion of the middle cerebral artery, diffusion-weighted MRI displayed a high signal; within 2 hours, the relative apparent diffusion coefficient decreased markedly, aquaporin-4 expression increased rapidly, and intracellular edema was obviously aggravated; at 4 and 6 hours, the relative apparent diffusion coefficient slowly returned to control levels, aquaporin-4 expression slightly increased, and angioedema was observed. In the RNA interference group, during 0.25–6 hours after injection of siRNA- aquaporin-4 solution, the relative apparent diffusion coefficient slightly fluctuated and aquaporin-4 expression was upregulated; during 0.5–4 hours, the relative apparent diffusion coefficient was significantly higher, while aquaporin-4 expression was significantly lower when compared with the control group, and intracellular edema was markedly reduced; at 0.25 and 6 hours, the relative apparent diffusion coefficient and aquaporin-4 expression were similar when compared with the control group; obvious angioedema remained at 6 hours. Pearson's correlation test results showed that aquaporin-4 expression was negatively correlated with the apparent diffusion coefficient (r = −0.806, P < 0.01). These findings suggest that upregulated aquaporin-4 expression is likely to be the main molecular mechanism of intracellular edema and may be the molecular basis for decreased relative apparent diffusion coefficient. Aquaporin-4 gene interference can effectively inhibit the upregulation of aquaporin-4 expression during the stage of intracellular edema with time-effectiveness. Moreover, diffusion-weighted MRI can accurately detect intracellular edema. PMID:25657707

  1. Perpendicular Diffusion Coefficient of Comic Rays: The Presence of Weak Adiabatic Focusing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J. F.; Ma, Q. M.; Song, T.

    The influence of adiabatic focusing on particle diffusion is an important topic in astrophysics and plasma physics. In the past, several authors have explored the influence of along-field adiabatic focusing on the parallel diffusion of charged energetic particles. In this paper, using the unified nonlinear transport theory developed by Shalchi and the method of He and Schlickeiser, we derive a new nonlinear perpendicular diffusion coefficient for a non-uniform background magnetic field. This formula demonstrates that the particle perpendicular diffusion coefficient is modified by along-field adiabatic focusing. For isotropic pitch-angle scattering and the weak adiabatic focusing limit, the derived perpendicular diffusionmore » coefficient is independent of the sign of adiabatic focusing characteristic length. For the two-component model, we simplify the perpendicular diffusion coefficient up to the second order of the power series of the adiabatic focusing characteristic quantity. We find that the first-order modifying factor is equal to zero and that the sign of the second order is determined by the energy of the particles.« less

  2. Coupled Protein Diffusion and Folding in the Cell

    PubMed Central

    Guo, Minghao; Gelman, Hannah; Gruebele, Martin

    2014-01-01

    When a protein unfolds in the cell, its diffusion coefficient is affected by its increased hydrodynamic radius and by interactions of exposed hydrophobic residues with the cytoplasmic matrix, including chaperones. We characterize protein diffusion by photobleaching whole cells at a single point, and imaging the concentration change of fluorescent-labeled protein throughout the cell as a function of time. As a folded reference protein we use green fluorescent protein. The resulting region-dependent anomalous diffusion is well characterized by 2-D or 3-D diffusion equations coupled to a clustering algorithm that accounts for position-dependent diffusion. Then we study diffusion of a destabilized mutant of the enzyme phosphoglycerate kinase (PGK) and of its stable control inside the cell. Unlike the green fluorescent protein control's diffusion coefficient, PGK's diffusion coefficient is a non-monotonic function of temperature, signaling ‘sticking’ of the protein in the cytosol as it begins to unfold. The temperature-dependent increase and subsequent decrease of the PGK diffusion coefficient in the cytosol is greater than a simple size-scaling model suggests. Chaperone binding of the unfolding protein inside the cell is one plausible candidate for even slower diffusion of PGK, and we test the plausibility of this hypothesis experimentally, although we do not rule out other candidates. PMID:25436502

  3. Coupled protein diffusion and folding in the cell.

    PubMed

    Guo, Minghao; Gelman, Hannah; Gruebele, Martin

    2014-01-01

    When a protein unfolds in the cell, its diffusion coefficient is affected by its increased hydrodynamic radius and by interactions of exposed hydrophobic residues with the cytoplasmic matrix, including chaperones. We characterize protein diffusion by photobleaching whole cells at a single point, and imaging the concentration change of fluorescent-labeled protein throughout the cell as a function of time. As a folded reference protein we use green fluorescent protein. The resulting region-dependent anomalous diffusion is well characterized by 2-D or 3-D diffusion equations coupled to a clustering algorithm that accounts for position-dependent diffusion. Then we study diffusion of a destabilized mutant of the enzyme phosphoglycerate kinase (PGK) and of its stable control inside the cell. Unlike the green fluorescent protein control's diffusion coefficient, PGK's diffusion coefficient is a non-monotonic function of temperature, signaling 'sticking' of the protein in the cytosol as it begins to unfold. The temperature-dependent increase and subsequent decrease of the PGK diffusion coefficient in the cytosol is greater than a simple size-scaling model suggests. Chaperone binding of the unfolding protein inside the cell is one plausible candidate for even slower diffusion of PGK, and we test the plausibility of this hypothesis experimentally, although we do not rule out other candidates.

  4. Determination of the diffusion coefficient and phase-transfer rate parameter in LaNi{sub 5} and MmNi{sub 3.6}Co{sub 0.8}Mn{sub 0.4}Al{sub 0.3} using microelectrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundqvist, A.; Lindbergh, G.

    1998-11-01

    A potential-step method for determining the diffusion coefficient and phase-transfer parameter in metal hydrides by using microelectrodes was investigated. It was shown that a large potential step is not enough to ensure a completely diffusion-limited mass transfer if a surface-phase transfer reaction takes place at a finite rate. It was shown, using a kinetic expression for the surface phase-transfer reaction, that the slope of the logarithm of the current vs. time curve will be constant both in the case of the mass-transfer limited by diffusion or by diffusion and a surface-phase transfer. The diffusion coefficient and phase-transfer rate parameter weremore » accurately determined for MmNi{sub 3.6}Co{sub 0.8}Mn{sub 0.4}Al{sub 0.3} using a fit to the whole transient. The diffusion coefficient was found to be (1.3 {+-} 0.3) {times} 10{sup {minus}13} m{sup 2}/s. The fit was good and showed that a pure diffusion model was not enough to explain the observed transient. The diffusion coefficient and phase-transfer rate parameter were also estimated for pure LaNi{sub 5}. A fit of the whole curve showed that neither a pure diffusion model nor a model including phase transfer could explain the whole transient.« less

  5. Determination of diffusion coefficients of carbon dioxide in water between 268 and 473 K in a high-pressure capillary optical cell with in situ Raman spectroscopic measurements

    USGS Publications Warehouse

    Lu, Wanjun; Guo, Huirong; Chou, I.-Ming; Burruss, R.C.; Li, Lanlan

    2013-01-01

    Accurate values of diffusion coefficients for carbon dioxide in water and brine at reservoir conditions are essential to our understanding of transport behavior of carbon dioxide in subsurface pore space. However, the experimental data are limited to conditions at low temperatures and pressures. In this study, diffusive transfer of carbon dioxide in water at pressures up to 45 MPa and temperatures from 268 to 473 K was observed within an optical capillary cell via time-dependent Raman spectroscopy. Diffusion coefficients were estimated by the least-squares method for the measured variations in carbon dioxide concentration in the cell at various sample positions and time. At the constant pressure of 20 MPa, the measured diffusion coefficients of carbon dioxide in water increase with increasing temperature from 268 to 473 K. The relationship between diffusion coefficient of carbon dioxide in water [D(CO2) in m2/s] and temperature (T in K) was derived with Speedy–Angell power-law approach as: D(CO2)=D0[T/Ts-1]m where D0 = 13.942 × 10−9 m2/s, Ts = 227.0 K, and m = 1.7094. At constant temperature, diffusion coefficients of carbon dioxide in water decrease with pressure increase. However, this pressure effect is rather small (within a few percent).

  6. Entropy-scaling laws for diffusion coefficients in liquid metals under high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Qi-Long, E-mail: qlcao@mail.ustc.edu.cn; Shao, Ju-Xiang; Wang, Fan-Hou, E-mail: eatonch@gmail.com

    2015-04-07

    Molecular dynamic simulations on the liquid copper and tungsten are used to investigate the empirical entropy-scaling laws D{sup *}=A exp(BS{sub ex}), proposed independently by Rosenfeld and Dzugutov for diffusion coefficient, under high pressure conditions. We show that the scaling laws hold rather well for them under high pressure conditions. Furthermore, both the original diffusion coefficients and the reduced diffusion coefficients exhibit an Arrhenius relationship D{sub M}=D{sub M}{sup 0} exp(−E{sub M}/K{sub B}T), (M=un,R,D) and the activation energy E{sub M} increases with increasing pressure, the diffusion pre-exponential factors (D{sub R}{sup 0} and D{sub D}{sup 0}) are nearly independent of the pressure and element. Themore » pair correlation entropy, S{sub 2}, depends linearly on the reciprocal temperature S{sub 2}=−E{sub S}/T, and the activation energy, E{sub S}, increases with increasing pressure. In particular, the ratios of the activation energies (E{sub un}, E{sub R}, and E{sub D}) obtained from diffusion coefficients to the activation energy, E{sub S}, obtained from the entropy keep constants in the whole pressure range. Therefore, the entropy-scaling laws for the diffusion coefficients and the Arrhenius law are linked via the temperature dependence of entropy.« less

  7. Solute diffusion in liquid metals

    NASA Technical Reports Server (NTRS)

    Bhat, B. N.

    1973-01-01

    A gas model of diffusion in liquid metals is presented. In this model, ions of liquid metals are assumed to behave like the molecules in a dense gas. Diffusion coefficient of solute is discussed with reference to its mass, ionic size, and pair potential. The model is applied to the case of solute diffusion in liquid silver. An attempt was made to predict diffusion coefficients of solutes with reasonable accuracy.

  8. Effects of sorption competition on caesium diffusion through compacted argillaceous rock

    NASA Astrophysics Data System (ADS)

    Jakob, Andreas; Pfingsten, Wilfried; Van Loon, Luc

    2009-05-01

    We carried out a small-scale laboratory diffusion experiment on a disk-like sample of Opalinus clay from the Mont Terri underground laboratory (Switzerland) using 134Cs as tracer. A through-diffusion phase was followed by an out-diffusion phase where the tracer taken up by the sample was released again. Since the tracer concentration at both boundaries was monitored, careful mass-balance considerations were feasible. A first analysis of the experimental data was done in the frame of a single-species model accounting only for transport and non-linear sorption of caesium. The model could match the data of the through-diffusion phase, however only, when strongly reducing the sorption data based on batch sorption experiments. Yet, such a procedure was in strong contradiction with sorption measurements performed on dispersed and compacted systems. In addition, predictions concerning tracer out-diffusion and mass-balance considerations clearly revealed the shortcomings of this type of model. In a second attempt we applied a multi-species transport model where now the whole water chemistry and a sorption model for caesium were considered. First, the value for the diffusion coefficient was fixed to the best-fit value of the single-species model. But again, the sorption site densities had to be reduced strongly albeit the reduction factor was smaller. Only when fixing the sorption site densities to those values of the sorption model and letting the effective diffusion coefficient D e free for the adjustment, could through-diffusion data be reasonably well fitted and out-diffusion as well as mass-balances be predicted in a satisfying manner. The main results are: (1) The best-fit could be achieved with a value for D e of 1.8 × 10 -10 m 2 s -1 which is rather high but corroborated by results of a molecular modelling study. (2) If caesium arrives in the Opalinus clay sample potassium and sodium (calcium etc.) ions are released and caesium ions are sorbed. The released cations diffuse to lower concentration regions according to their individual concentration gradients. Since locally the cation concentration for potassium, (sodium and calcium) is increased, sorption of these cations is also locally enhanced, affecting in return the sorption behaviour of migrating caesium. Consequently, the sorption process of caesium in such diffusion experiments cannot be addressed by a non-linear isotherm formalism any longer. (3) A reasonable analysis of such single tracer diffusion experiments therefore requires the combined description of transport (diffusion) and sorption of many cations and the whole complex water chemistry of the system. Thus, single-species models can only be applied with care in the considered concentration ranges.

  9. Matrix diffusion coefficients in volcanic rocks at the Nevada test site: influence of matrix porosity, matrix permeability, and fracture coating minerals.

    PubMed

    Reimus, Paul W; Callahan, Timothy J; Ware, S Doug; Haga, Marc J; Counce, Dale A

    2007-08-15

    Diffusion cell experiments were conducted to measure nonsorbing solute matrix diffusion coefficients in forty-seven different volcanic rock matrix samples from eight different locations (with multiple depth intervals represented at several locations) at the Nevada Test Site. The solutes used in the experiments included bromide, iodide, pentafluorobenzoate (PFBA), and tritiated water ((3)HHO). The porosity and saturated permeability of most of the diffusion cell samples were measured to evaluate the correlation of these two variables with tracer matrix diffusion coefficients divided by the free-water diffusion coefficient (D(m)/D*). To investigate the influence of fracture coating minerals on matrix diffusion, ten of the diffusion cells represented paired samples from the same depth interval in which one sample contained a fracture surface with mineral coatings and the other sample consisted of only pure matrix. The log of (D(m)/D*) was found to be positively correlated with both the matrix porosity and the log of matrix permeability. A multiple linear regression analysis indicated that both parameters contributed significantly to the regression at the 95% confidence level. However, the log of the matrix diffusion coefficient was more highly-correlated with the log of matrix permeability than with matrix porosity, which suggests that matrix diffusion coefficients, like matrix permeabilities, have a greater dependence on the interconnectedness of matrix porosity than on the matrix porosity itself. The regression equation for the volcanic rocks was found to provide satisfactory predictions of log(D(m)/D*) for other types of rocks with similar ranges of matrix porosity and permeability as the volcanic rocks, but it did a poorer job predicting log(D(m)/D*) for rocks with lower porosities and/or permeabilities. The presence of mineral coatings on fracture walls did not appear to have a significant effect on matrix diffusion in the ten paired diffusion cell experiments.

  10. Matrix diffusion coefficients in volcanic rocks at the Nevada test site: Influence of matrix porosity, matrix permeability, and fracture coating minerals

    NASA Astrophysics Data System (ADS)

    Reimus, Paul W.; Callahan, Timothy J.; Ware, S. Doug; Haga, Marc J.; Counce, Dale A.

    2007-08-01

    Diffusion cell experiments were conducted to measure nonsorbing solute matrix diffusion coefficients in forty-seven different volcanic rock matrix samples from eight different locations (with multiple depth intervals represented at several locations) at the Nevada Test Site. The solutes used in the experiments included bromide, iodide, pentafluorobenzoate (PFBA), and tritiated water ( 3HHO). The porosity and saturated permeability of most of the diffusion cell samples were measured to evaluate the correlation of these two variables with tracer matrix diffusion coefficients divided by the free-water diffusion coefficient ( Dm/ D*). To investigate the influence of fracture coating minerals on matrix diffusion, ten of the diffusion cells represented paired samples from the same depth interval in which one sample contained a fracture surface with mineral coatings and the other sample consisted of only pure matrix. The log of ( Dm/ D*) was found to be positively correlated with both the matrix porosity and the log of matrix permeability. A multiple linear regression analysis indicated that both parameters contributed significantly to the regression at the 95% confidence level. However, the log of the matrix diffusion coefficient was more highly-correlated with the log of matrix permeability than with matrix porosity, which suggests that matrix diffusion coefficients, like matrix permeabilities, have a greater dependence on the interconnectedness of matrix porosity than on the matrix porosity itself. The regression equation for the volcanic rocks was found to provide satisfactory predictions of log( Dm/ D*) for other types of rocks with similar ranges of matrix porosity and permeability as the volcanic rocks, but it did a poorer job predicting log( Dm/ D*) for rocks with lower porosities and/or permeabilities. The presence of mineral coatings on fracture walls did not appear to have a significant effect on matrix diffusion in the ten paired diffusion cell experiments.

  11. Dual control of flow field heterogeneity and immobile porosity on non-Fickian transport in Berea sandstone

    NASA Astrophysics Data System (ADS)

    Gjetvaj, Filip; Russian, Anna; Gouze, Philippe; Dentz, Marco

    2015-10-01

    Both flow field heterogeneity and mass transfer between mobile and immobile domains have been studied separately for explaining observed anomalous transport. Here we investigate non-Fickian transport using high-resolution 3-D X-ray microtomographic images of Berea sandstone containing microporous cement with pore size below the setup resolution. Transport is computed for a set of representative elementary volumes and results from advection and diffusion in the resolved macroporosity (mobile domain) and diffusion in the microporous phase (immobile domain) where the effective diffusion coefficient is calculated from the measured local porosity using a phenomenological model that includes a porosity threshold (ϕθ) below which diffusion is null and the exponent n that characterizes tortuosity-porosity power-law relationship. We show that both flow field heterogeneity and microporosity trigger anomalous transport. Breakthrough curve (BTC) tailing is positively correlated to microporosity volume and mobile-immobile interface area. The sensitivity analysis showed that the BTC tailing increases with the value of ϕθ, due to the increase of the diffusion path tortuosity until the volume of the microporosity becomes negligible. Furthermore, increasing the value of n leads to an increase in the standard deviation of the distribution of effective diffusion coefficients, which in turn results in an increase of the BTC tailing. Finally, we propose a continuous time random walk upscaled model where the transition time is the sum of independently distributed random variables characterized by specific distributions. It allows modeling a 1-D equivalent macroscopic transport honoring both the control of the flow field heterogeneity and the multirate mass transfer between mobile and immobile domains.

  12. Photon diffusion coefficient in scattering and absorbing media.

    PubMed

    Pierrat, Romain; Greffet, Jean-Jacques; Carminati, Rémi

    2006-05-01

    We present a unified derivation of the photon diffusion coefficient for both steady-state and time-dependent transport in disordered absorbing media. The derivation is based on a modal analysis of the time-dependent radiative transfer equation. This approach confirms that the dynamic diffusion coefficient is given by the random-walk result D = cl(*)/3, where l(*) is the transport mean free path and c is the energy velocity, independent of the level of absorption. It also shows that the diffusion coefficient for steady-state transport, often used in biomedical optics, depends on absorption, in agreement with recent theoretical and experimental works. These two results resolve a recurrent controversy in light propagation and imaging in scattering media.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarman, Sten, E-mail: sarman@ownit.nu; Wang, Yong-Lei; Laaksonen, Aatto

    The self-diffusion coefficients of nematic phases of various model systems consisting of regular convex calamitic and discotic ellipsoids and non-convex bodies such as bent-core molecules and soft ellipsoid strings have been obtained as functions of the shear rate in a shear flow. Then the self-diffusion coefficient is a second rank tensor with three different diagonal components and two off-diagonal components. These coefficients were found to be determined by a combination of two mechanisms, which previously have been found to govern the self-diffusion of shearing isotropic liquids, namely, (i) shear alignment enhancing the diffusion in the direction parallel to the streamlinesmore » and hindering the diffusion in the perpendicular directions and (ii) the distortion of the shell structure in the liquid whereby a molecule more readily can escape from a surrounding shell of nearest neighbors, so that the mobility increases in every direction. Thus, the diffusion parallel to the streamlines always increases with the shear rate since these mechanisms cooperate in this direction. In the perpendicular directions, these mechanisms counteract each other so that the behaviour becomes less regular. In the case of the nematic phases of the calamitic and discotic ellipsoids and of the bent core molecules, mechanism (ii) prevails so that the diffusion coefficients increase. However, the diffusion coefficients of the soft ellipsoid strings decrease in the direction of the velocity gradient because the broadsides of these molecules are oriented perpendicularly to this direction due the shear alignment (i). The cross coupling coefficient relating a gradient of tracer particles in the direction of the velocity gradient and their flow in the direction of the streamlines is negative and rather large, whereas the other coupling coefficient relating a gradient in the direction of the streamlines and a flow in the direction of the velocity gradient is very small.« less

  14. [Lateral diffusion of saturated phosphatidylcholines in cholesterol-containing bilayers].

    PubMed

    Filippov, A V; Rudakova, M A; Oradd, G; Lindblom, J

    2007-01-01

    Lateral diffusion in oriented bilayers of saturated cholesterol-containing phosphatidylcholines, dipalmitoylphosphatidylcholine and dimyrilstoylphosphatidylcholine upon their limiting hydration has been studied by NMR with impulse gradient of magnetic field. For both systems, similar dependences of the coefficient of lateral diffusion on temperature and cholesterol concentration were observed, which agree with the phase diagram showing the presence of regions of ordered and unordered liquid-crystalline phases and a two-phase region. Under similar conditions, the coefficient of lateral diffusion for dipalmytoylphosphatidylcholine has lower values, which is in qualitative agreement with its greater molecular mass. A comparison of data for dipalmytoylphosphatidylcholine with the results obtained earlier for dipalmytoylsphyngomyelin/cholesterol under the same conditions shows, despite a similarity in phase diagrams, greater (two- to threefold) differences in the values of the coefficient of lateral diffusion and a different mode of dependence of the coefficient on cholesterol concentration. A comparison of data for dimyrilstoylphosphatidylcholine with the results obtained previously shows that the values of the coefficient of lateral diffusion and the mode of its dependence on cholesterol concentration coincide in the region of higher concentrations (more than 15 mole %) and differ in the region of lower concentrations (below 15 mole %). The discrepancies may be explained by different contents of water in the systems during the measurements. At a limiting hydration (more than 35%) of water, the coefficient of lateral diffusion decreases with increasing cholesterol concentration. If the content of water is about 25% (as a result of equilibrium hydration from vapors), the coefficient of lateral diffusion of phosphatidylcholine is probably independent of cholesterol concentration. This results from a denser packing of molecules in the bilayer at a lower water concentration, an effect that competes with the ordering effect of cholesterol.

  15. Study of heat and mass transfer of water evaporation in a gypsum board subjected to natural convection

    NASA Astrophysics Data System (ADS)

    Zannouni, K.; El Abrach, H.; Dhahri, H.; Mhimid, A.

    2017-06-01

    The present paper reports a numerical study to investigate the drying of rectangular gypsum sample based on a diffusive model. Both vertical and low sides of the porous media are treated as adiabatic and impermeable surfaces plate. The upper face of the plate represents the permeable interface. The energy equation model is based on the local thermal equilibrium assumption between the fluid and the solid phases. The lattice Boltzmann method (LBM) is used for solving the governing differential equations system. The obtained numerical results concerning the moisture content and the temperature within a gypsum sample were discussed. A comprehensive analysis of the influence of the mass transfer coefficient, the convective heat transfer coefficient, the external temperature, the relative humidity and the diffusion coefficient on macroscopic fields are also investigated. They all presented results in this paper and obtained in the stable regime correspond to time superior than 4000 s. Therefore the numerical error is inferior to 2%. The experimental data and the descriptive information of the approach indicate an excellent agreement between the results of our developed numerical code based on the LBM and the published ones.

  16. Fundamental properties of local anesthetics: half-maximal blocking concentrations for tonic block of Na+ and K+ channels in peripheral nerve.

    PubMed

    Bräu, M E; Vogel, W; Hempelmann, G

    1998-10-01

    Local anesthetics suppress excitability by interfering with ion channel function. Ensheathment of peripheral nerve fibers, however, impedes diffusion of drugs to the ion channels and may influence the evaluation of local anesthetic potencies. Investigating ion channels in excised membrane patches avoids these diffusion barriers. We investigated the effect of local anesthetics with voltage-dependent Na+ and K+ channels in enzymatically dissociated sciatic nerve fibers of Xenopus laevis using the patch clamp method. The outside-out configuration was chosen to apply drugs to the external face of the membrane. Local anesthetics reversibly blocked the transient Na+ inward current, as well as the steady-state K+ outward current. Half-maximal tonic inhibiting concentrations (IC50), as obtained from concentration-effect curves for Na+ current block were: tetracaine 0.7 microM, etidocaine 18 microM, bupivacaine 27 microM, procaine 60 microM, mepivacaine 149 microM, and lidocaine 204 microM. The values for voltage-dependent K+ current block were: bupivacaine 92 microM, etidocaine 176 microM, tetracaine 946 microM, lidocaine 1118 microM, mepivacaine 2305 microM, and procaine 6302 microM. Correlation of potencies with octanol:buffer partition coefficients (logP0) revealed that ester-bound local anesthetics were more potent in blocking Na+ channels than amide drugs. Within these groups, lipophilicity governed local anesthetic potency. We conclude that local anesthetic action on peripheral nerve ion channels is mediated via lipophilic drug-channel interactions. Half-maximal blocking concentrations of commonly used local anesthetics for Na+ and K+ channel block were determined on small membrane patches of peripheral nerve fibers. Because drugs can directly diffuse to the ion channel in this model, these data result from direct interactions of the drugs with ion channels.

  17. A novel multiple headspace extraction gas chromatographic method for measuring the diffusion coefficient of methanol in water and in olive oil.

    PubMed

    Zhang, Chun-Yun; Chai, Xin-Sheng

    2015-03-13

    A novel method for the determination of the diffusion coefficient (D) of methanol in water and olive oil has been developed. Based on multiple headspace extraction gas chromatography (MHE-GC), the methanol released from the liquid sample of interest in a closed sample vial was determined in a stepwise fashion. A theoretical model was derived to establish the relationship between the diffusion coefficient and the GC signals from MHE-GC measurements. The results showed that the present method has an excellent precision (RSD<1%) in the linear fitting procedure and good accuracy for the diffusion coefficients of methanol in both water and olive oil, when compared with data reported in the literature. The present method is simple and practical and can be a valuable tool for the determination of the diffusion coefficient of volatile analyte(s) into food simulants from food and beverage packaging material, both in research studies and in actual applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Prediction of stream volatilization coefficients

    USGS Publications Warehouse

    Rathbun, Ronald E.

    1990-01-01

    Equations are developed for predicting the liquid-film and gas-film reference-substance parameters for quantifying volatilization of organic solutes from streams. Molecular weight and molecular-diffusion coefficients of the solute are used as correlating parameters. Equations for predicting molecular-diffusion coefficients of organic solutes in water and air are developed, with molecular weight and molal volume as parameters. Mean absolute errors of prediction for diffusion coefficients in water are 9.97% for the molecular-weight equation, 6.45% for the molal-volume equation. The mean absolute error for the diffusion coefficient in air is 5.79% for the molal-volume equation. Molecular weight is not a satisfactory correlating parameter for diffusion in air because two equations are necessary to describe the values in the data set. The best predictive equation for the liquid-film reference-substance parameter has a mean absolute error of 5.74%, with molal volume as the correlating parameter. The best equation for the gas-film parameter has a mean absolute error of 7.80%, with molecular weight as the correlating parameter.

  19. Dissipative particle dynamics study of velocity autocorrelation function and self-diffusion coefficient in terms of interaction potential strength

    NASA Astrophysics Data System (ADS)

    Zohravi, Elnaz; Shirani, Ebrahim; Pishevar, Ahmadreza; Karimpour, Hossein

    2018-07-01

    This research focuses on numerically investigating the self-diffusion coefficient and velocity autocorrelation function (VACF) of a dissipative particle dynamics (DPD) fluid as a function of the conservative interaction strength. Analytic solutions to VACF and self-diffusion coefficients in DPD were obtained by many researchers in some restricted cases including ideal gases, without the account of conservative force. As departure from the ideal gas conditions are accentuated with increasing the relative proportion of conservative force, it is anticipated that the VACF should gradually deviate from its normally expected exponentially decay. This trend is confirmed through numerical simulations and an expression in terms of the conservative force parameter, density and temperature is proposed for the self-diffusion coefficient. As it concerned the VACF, the equivalent Langevin equation describing Brownian motion of particles with a harmonic potential is adapted to the problem and reveals an exponentially decaying oscillatory pattern influenced by the conservative force parameter, dissipative parameter and temperature. Although the proposed model for obtaining the self-diffusion coefficient with consideration of the conservative force could not be verified due to computational complexities, nonetheless the Arrhenius dependency of the self-diffusion coefficient to temperature and pressure permits to certify our model over a definite range of DPD parameters.

  20. Interdiffusion and stress development in single-crystalline Pd/Ag bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noah, Martin A., E-mail: m.noah@is.mpg.de; Flötotto, David; Wang, Zumin

    Interdiffusion and stress evolution in single-crystalline Pd/single-crystalline Ag thin films were investigated by Auger electron spectroscopy sputter-depth profiling and in-situ X-ray diffraction, respectively. The concentration-dependent chemical diffusion coefficient, as well as the impurity diffusion coefficient of Ag in Pd could be determined in the low temperature range of 356 °C–455 °C. As a consequence of the similarity of the strong concentration-dependences of the intrinsic diffusion coefficients, the chemical diffusion coefficient varies only over three orders of magnitude over the whole composition range, despite the large difference of six orders of magnitude of the self-diffusion coefficients of Ag in Ag and Pd inmore » Pd. It is shown that the Darken-Manning treatment should be adopted for interpretation of the experimental data; the Nernst-Planck treatment yielded physically unreasonable results. Apart from the development of compressive thermal stress, the development of stress in both sublayers separately could be ascribed to compositional stress (tensile in the Ag sublayer and compressive in the Pd sublayer) and dominant relaxation processes, especially in the Ag sublayer. The effect of these internal stresses on the values determined for the diffusion coefficients is shown to be negligible.« less

  1. Diffusion heterogeneity tensor MRI (?-Dti): mathematics and initial applications in spinal cord regeneration after trauma - biomed 2009.

    PubMed

    Ellington, Benjamin M; Schmit, Brian D; Gourab, Krishnaj; Sieber-Blum, Maya; Hu, Yao F; Schmainda, Kathleen M

    2009-01-01

    Diffusion weighted magnetic resonance imaging (DWI) is a powerful tool for evaluation of microstructural anomalies in numerous central nervous system pathologies. Diffusion tensor imaging (DTI) allows for the magnitude and direction of water self diffusion to be estimated by sampling the apparent diffusion coefficient (ADC) in various directions. Clinical DWI and DTI performed at a single level of diffusion weighting, however, does not allow for multiple diffusion compartments to be elicited. Furthermore, assumptions made regarding the precise number of diffusion compartments intrinsic to the tissue of interest have resulted in a lack of consensus between investigations. To overcome these challenges, a stretched-exponential model of diffusion was applied to examine the diffusion coefficient and "heterogeneity index" within highly compartmentalized brain tumors. The purpose of the current study is to expand on the stretched-exponential model of diffusion to include directionality of both diffusion heterogeneity and apparent diffusion coefficient. This study develops the mathematics of this new technique along with an initial application in quantifying spinal cord regeneration following acute injection of epidermal neural crest stem cell (EPI-NCSC) grafts.

  2. Determination of diffusion coefficients and diffusion characteristics for chlorferon and diethylthiophosphate in Ca-alginate gel beads.

    PubMed

    Ha, Jiyeon; Engler, Cady R; Lee, Seung Jae

    2008-07-01

    Diffusion characteristics of chlorferon and diethylthiophosphate (DETP) in Ca-alginate gel beads were studied to assist in designing and operating bioreactor systems. Diffusion coefficients for chlorferon and DETP in Ca-alginate gel beads determined at conditions suitable for biodegradation studies were 2.70 x 10(-11) m(2)/s and 4.28 x 10(-11) m(2)/s, respectively. Diffusivities of chlorferon and DETP were influenced by several factors, including viscosity of the bulk solution, agitation speed, and the concentrations of diffusing substrate and immobilized cells. Diffusion coefficients increased with increasing agitation speed, probably due to poor mixing at low speed and some attrition of beads at high speeds. Diffusion coefficients also increased with decreasing substrate concentration. Increased cell concentration in the gel beads caused lower diffusivity. Theoretical models to predict diffusivities as a function of cell weight fraction overestimated the effective diffusivities for both chlorferon and DETP, but linear relations between effective diffusivity and cell weight fraction were derived from experimental data. Calcium-alginate gel beads with radii of 1.65-1.70 mm used in this study were not subject to diffusional limitations: external mass transfer resistances were negligible based on Biot number calculations and effectiveness factors indicated that internal mass transfer resistance was negligible. Therefore, the degradation rates of chlorferon and DETP inside Ca-alginate gel beads were reaction-limited. (c) 2007 Wiley Periodicals, Inc.

  3. Diffusion coefficients of water in biobased hydrogel polymer matrices by nuclear magnetic resonance imaging

    USDA-ARS?s Scientific Manuscript database

    The diffusion coefficient of water in biobased hydrogels were measured utilizing a simple NMR method. This method tracks the migration of deuterium oxide through imaging data that is fit to a diffusion equation. The results show that a 5 wt% soybean oil based hydrogel gives aqueous diffusion of 1.37...

  4. Portable vapor diffusion coefficient meter

    DOEpatents

    Ho, Clifford K [Albuquerque, NM

    2007-06-12

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  5. Communication: Coordinate-dependent diffusivity from single molecule trajectories

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Makarov, Dmitrii E.

    2017-11-01

    Single-molecule observations of biomolecular folding are commonly interpreted using the model of one-dimensional diffusion along a reaction coordinate, with a coordinate-independent diffusion coefficient. Recent analysis, however, suggests that more general models are required to account for single-molecule measurements performed with high temporal resolution. Here, we consider one such generalization: a model where the diffusion coefficient can be an arbitrary function of the reaction coordinate. Assuming Brownian dynamics along this coordinate, we derive an exact expression for the coordinate-dependent diffusivity in terms of the splitting probability within an arbitrarily chosen interval and the mean transition path time between the interval boundaries. This formula can be used to estimate the effective diffusion coefficient along a reaction coordinate directly from single-molecule trajectories.

  6. Diffusion of organic pollutants within a biofilm in porous media

    NASA Astrophysics Data System (ADS)

    Fan, Chihhao; Kao, Chen-Fei; Liu, You-Hsi

    2017-04-01

    The occurrence of aquatic pollution is an inevitable environmental impact resulting from human civilization and societal advancement. Either from the natural or anthropogenic sources, the aqueous contaminants enter the natural environment and aggravate its quality. To assure the aquatic environment quality, the attached-growth biological degradation is often applied to removing organic contaminants by introducing contaminated water into a porous media which is covered by microorganism. Additionally, many natural aquatic systems also form such similar mechanism to increase their self-purification capability. To better understand this transport phenomenon and degradation mechanism in the biofilm for future application, the mathematic characterization of organic contaminant diffusion within the biofilm requires further exploration. The present study aimed to formulate a mathematic representation to quantify the diffusion of the organic contaminant in the biofilm. The BOD was selected as the target contaminant. A series of experiments were conducted to quantify the BOD diffusion in the biofilm under the conditions of influent BOD variation from 50 to 300 mg/L, COD:N:P ratios of 100:5:1 and 100:15:3, with or without auxiliary aeration. For diffusion coefficient calculation, the boundary condition of zero diffusion at the interface between microbial phase and contact media was assumed. With the principle of conservation of mass, the removed contaminants equal those that diffuse into the biofilm, and eq 1 results, and the diffusion coefficient (i.e., eq 2) can be solved through calculus with equations from table of integral. ∂2Sf- Df ∂z2 = Rf (1) --(QSin--QSout)2Y--- Df = 2μmaxxf(Sb + Ks ln-Ks-) Sb+Ks (2) Using the obtained experimental data, the diffusion coefficient was calculated to be 2.02*10-6 m2/d with influent COD of 50 mg/L at COD:N:P ratio of 100:5:1 with aeration, and this coefficient increased to 6.02*10-6 m2/d as the influent concentration increased to 300 mg/L. Meanwhile, the diffusion coefficient decreased to 2.61*10-7 m2/d as the retention time increased to 3 hours. Generally, the variation in diffusion coefficients between different COD:N:P ratios exhibits similar pattern with a slight decrease for the ratio of 100:15:3. The difference in diffusion coefficients between 1 and 2 hours was apparently greater than that between 2 and 3 hours, implying the diffusion was a critical factor for contaminant removal for the treatment condition with retention time of 1 hour or less, because higher retention time leads to better microbial degradation due to sufficient contact time for biological reactions. For 1 hour retention time, the increase in diffusion coefficient becomes limited as the influent COD concentration was equal to or above 150 mg/L. These obtained diffusion coefficients were applied to estimating the treatment efficiency for real domestic sewage. The result was found that the estimated effluent BOD concentrations were quite comparable to that obtained through experimental measurements.

  7. Challenging Cosmic Ray Propagation with Antiprotons: Evidence for a "Fresh" Nuclei Component?

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.; Strong, Andrew W.; Mashnik, Stepan G.; Ormes, Jonathan F.

    2002-01-01

    Recent measurements of the cosmic ray (CR) antiproton flux have been shown to challenge existing CR propagation models. It was shown that the reacceleration models designed to match secondary to primary nuclei ratio (e.g., Boron/Carbon) produce too few antiprotons, while the traditional non-reacceleration models can reproduce the antiproton flux but fall short of explaining the low-energy decrease in the secondary to primary nuclei ratio. Matching both the secondary to primary nuclei ratio and antiproton flux requires artificial breaks in the diffusion coefficient and the primary injection spectrum suggesting the need for other approaches. In the present paper we discuss one possibility to overcome these difficulties. Using the measured antiproton flux to fix the diffusion coefficient, we show that the spectra of primary nuclei as measured in the heliosphere may contain a fresh local unprocessed component at low energies, thus decreasing the measured secondary to primary nuclei ratio. A model reproducing antiprotons, B/C ratio, and abundances up to Ni is presented.

  8. Photoacoustic Tomography

    NASA Astrophysics Data System (ADS)

    Wang, Lihong V.

    Photoacoustic tomography (PAT) refers to imaging that is based on the photoacoustic effect. Although the photoacoustic effect as a physical phenomenon was first reported on by Alexander Graham Bell in 1880 [1], PAT as an imaging technology was developed only after the advent of ultrasonic transducers, computers, and lasers [2-31]. A review on biomedical photoacoustics is available [32]. The motivation for PAT is to combine optical-absorption contrast with ultrasonic spatial resolution for deep imaging in the optical quasi-diffusive or diffusive regime. In PAT, the tissue is irradiated by usually a short-pulsed laser beam to achieve a thermal and acoustic impulse response (Fig. 19.1). Locally absorbed light is converted into heat, which is further converted to a pressure rise via thermo-elastic expansion. The initial pressure rise - determined by the local optical absorption coefficient (μ â ), fluence (ψ) and other thermal and mechanical properties - propagates as an ultrasonic wave, which is referred to as a photoacoustic wave.

  9. Enhancement of Local Piezoresponse in Polymer Ferroelectrics via Nanoscale Control of Microstructure

    DOE PAGES

    Choi, Yoon-Young; Sharma, Pankaj; Phatak, Charudatta; ...

    2015-02-01

    Polymer ferroelectrics are flexible and lightweight electromechanical materials that are widely studied due to their potential application as sensors, actuators, and energy harvesters. However, one of the biggest challenges is their low piezoelectric coefficient. Here, we report a mechanical annealing effect based on local pressure induced by a nanoscale tip that enhances the local piezoresponse. This process can control the nanoscale material properties over a microscale area at room temperature. We attribute this improvement to the formation and growth of beta-phase extended chain crystals via sliding diffusion and crystal alignment along the scan axis under high mechanical stress. We believemore » that this technique can be useful for local enhancement of piezoresponse in ferroelectric polymer thin films.« less

  10. Analysis of molecular movement reveals latticelike obstructions to diffusion in heart muscle cells.

    PubMed

    Illaste, Ardo; Laasmaa, Martin; Peterson, Pearu; Vendelin, Marko

    2012-02-22

    Intracellular diffusion in muscle cells is known to be restricted. Although characteristics and localization of these restrictions is yet to be elucidated, it has been established that ischemia-reperfusion injury reduces the overall diffusion restriction. Here we apply an extended version of raster image correlation spectroscopy to determine directional anisotropy and coefficients of diffusion in rat cardiomyocytes. Our experimental results indicate that diffusion of a smaller molecule (1127 MW fluorescently labeled ATTO633-ATP) is restricted more than that of a larger one (10,000 MW Alexa647-dextran), when comparing diffusion in cardiomyocytes to that in solution. We attempt to provide a resolution to this counterintuitive result by applying a quantitative stochastic model of diffusion. Modeling results suggest the presence of periodic intracellular barriers situated ∼1 μm apart having very low permeabilities and a small effect of molecular crowding in volumes between the barriers. Such intracellular structuring could restrict diffusion of molecules of energy metabolism, reactive oxygen species, and apoptotic signals, enacting a significant role in normally functioning cardiomyocytes as well as in pathological conditions of the heart. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Scale-Dependent Fracture-Matrix Interactions And Their Impact on Radionuclide Transport - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detwiler, Russell

    Matrix diffusion and adsorption within a rock matrix are widely regarded as important mechanisms for retarding the transport of radionuclides and other solutes in fractured rock (e.g., Neretnieks, 1980; Tang et al., 1981; Maloszewski and Zuber, 1985; Novakowski and Lapcevic, 1994; Jardine et al., 1999; Zhou and Xie, 2003; Reimus et al., 2003a,b). When remediation options are being evaluated for old sources of contamination, where a large fraction of contaminants reside within the rock matrix, slow diffusion out of the matrix greatly increases the difficulty and timeframe of remediation. Estimating the rates of solute exchange between fractures and the adjacentmore » rock matrix is a critical factor in quantifying immobilization and/or remobilization of DOE-relevant contaminants within the subsurface. In principle, the most rigorous approach to modeling solute transport with fracture-matrix interaction would be based on local-scale coupled advection-diffusion/dispersion equations for the rock matrix and in discrete fractures that comprise the fracture network (Discrete Fracture Network and Matrix approach, hereinafter referred to as DFNM approach), fully resolving aperture variability in fractures and matrix property heterogeneity. However, such approaches are computationally demanding, and thus, many predictive models rely upon simplified models. These models typically idealize fracture rock masses as a single fracture or system of parallel fractures interacting with slabs of porous matrix or as a mobile-immobile or multi-rate mass transfer system. These idealizations provide tractable approaches for interpreting tracer tests and predicting contaminant mobility, but rely upon a fitted effective matrix diffusivity or mass-transfer coefficients. However, because these fitted parameters are based upon simplified conceptual models, their effectiveness at predicting long-term transport processes remains uncertain. Evidence of scale dependence of effective matrix diffusion coefficients obtained from tracer tests highlights this point and suggests that the underlying mechanisms and relationship between rock and fracture properties are not fully understood in large complex fracture networks. In this project, we developed a high-resolution DFN model of solute transport in fracture networks to explore and quantify the mechanisms that control transport in complex fracture networks and how these may give rise to observed scale-dependent matrix diffusion coefficients. Results demonstrate that small scale heterogeneity in the flow field caused by local aperture variability within individual fractures can lead to long-tailed breakthrough curves indicative of matrix diffusion, even in the absence of interactions with the fracture matrix. Furthermore, the temporal and spatial scale dependence of these processes highlights the inability of short-term tracer tests to estimate transport parameters that will control long-term fate and transport of contaminants in fractured aquifers.« less

  12. Kinetic modeling of ultrasound-assisted extraction of phenolic compounds from grape marc: influence of acoustic energy density and temperature.

    PubMed

    Tao, Yang; Zhang, Zhihang; Sun, Da-Wen

    2014-07-01

    The effects of acoustic energy density (6.8-47.4 W/L) and temperature (20-50 °C) on the extraction yields of total phenolics and tartaric esters during ultrasound-assisted extraction from grape marc were investigated in this study. The ultrasound treatment was performed in a 25-kHz ultrasound bath system and the 50% aqueous ethanol was used as the solvent. The initial extraction rate and final extraction yield increased with the increase of acoustic energy density and temperature. The two site kinetic model was used to simulate the kinetics of extraction process and the diffusion model based on the Fick's second law was employed to determine the effective diffusion coefficient of phenolics in grape marc. Both models gave satisfactory quality of data fit. The diffusion process was divided into one fast stage and one slow stage and the diffusion coefficients in both stages were calculated. Within the current experimental range, the diffusion coefficients of total phenolics and tartaric esters for both diffusion stages increased with acoustic energy density. Meanwhile, the rise of temperature also resulted in the increase of diffusion coefficients of phenolics except the diffusion coefficient of total phenolics in the fast stage, the value of which being the highest at 40 °C. Moreover, an empirical equation was suggested to correlate the effective diffusion coefficient of phenolics in grape marc with acoustic energy density and temperature. In addition, the performance comparison of ultrasound-assisted extraction and convention methods demonstrates that ultrasound is an effective and promising technology to extract bioactive substances from grape marc. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Breast Cancer: Diffusion Kurtosis MR Imaging-Diagnostic Accuracy and Correlation with Clinical-Pathologic Factors.

    PubMed

    Sun, Kun; Chen, Xiaosong; Chai, Weimin; Fei, Xiaochun; Fu, Caixia; Yan, Xu; Zhan, Ying; Chen, Kemin; Shen, Kunwei; Yan, Fuhua

    2015-10-01

    To assess diagnostic accuracy with diffusion kurtosis imaging (DKI) in patients with breast lesions and to evaluate the potential association between DKI-derived parameters and breast cancer clinical-pathologic factors. Institutional review board approval and written informed consent were obtained. Data from 97 patients (mean age ± standard deviation, 45.7 years ± 13.1; range, 19-70 years) with 98 lesions (57 malignant and 41 benign) who were treated between January 2014 and April 2014 were retrospectively analyzed. DKI (with b values of 0-2800 sec/mm(2)) and conventional diffusion-weighted imaging data were acquired. Kurtosis and diffusion coefficients from DKI and apparent diffusion coefficients from diffusion-weighted imaging were measured by two radiologists. Student t test, Wilcoxon signed-rank test, Jonckheere-Terpstra test, receiver operating characteristic curves, and Spearman correlation were used for statistical analysis. Kurtosis coefficients were significantly higher in the malignant lesions than in the benign lesions (1.05 ± 0.22 vs 0.65 ± 0.11, respectively; P < .0001). Diffusivity and apparent diffusion coefficients in the malignant lesions were significantly lower than those in the benign lesions (1.13 ± 0.27 vs 1.97 ± 0.33 and 1.02 ± 0.18 vs 1.48 ± 0.33, respectively; P < .0001). Significantly higher specificity for differentiation of malignant from benign lesions was shown with the use of kurtosis and diffusivity coefficients than with the use of apparent diffusion coefficients (83% [34 of 41] and 83% [34 of 41] vs 76% [31 of 41], respectively; P < .0001) with equal sensitivity (95% [54 of 57]). In patients with invasive breast cancer, kurtosis was positively correlated with tumor histologic grade (r = 0.75) and expression of the Ki-67 protein (r = 0.55). Diffusivity was negatively correlated with tumor histologic grades (r = -0.44) and Ki-67 expression (r = -0.46). DKI showed higher specificity than did conventional diffusion-weighted imaging for assessment of benign and malignant breast lesions. Patients with grade 3 breast cancer or tumors with high expression of Ki-67 were associated with higher kurtosis and lower diffusivity coefficients; however, this association must be confirmed in prospective studies. (©) RSNA, 2015 Online supplemental material is available for this article.

  14. Measurement of distributions of temperature and wavelength-dependent emissivity of a laminar diffusion flame using hyper-spectral imaging technique

    NASA Astrophysics Data System (ADS)

    Liu, Huawei; Zheng, Shu; Zhou, Huaichun; Qi, Chaobo

    2016-02-01

    A generalized method to estimate a two-dimensional (2D) distribution of temperature and wavelength-dependent emissivity in a sooty flame with spectroscopic radiation intensities is proposed in this paper. The method adopts a Newton-type iterative method to solve the unknown coefficients in the polynomial relationship between the emissivity and the wavelength, as well as the unknown temperature. Polynomial functions with increasing order are examined, and final results are determined as the result converges. Numerical simulation on a fictitious flame with wavelength-dependent absorption coefficients shows a good performance with relative errors less than 0.5% in the average temperature. What’s more, a hyper-spectral imaging device is introduced to measure an ethylene/air laminar diffusion flame with the proposed method. The proper order for the polynomial function is selected to be 2, because every one order increase in the polynomial function will only bring in a temperature variation smaller than 20 K. For the ethylene laminar diffusion flame with 194 ml min-1 C2H4 and 284 L min-1 air studied in this paper, the 2D distribution of average temperature estimated along the line of sight is similar to, but smoother than that of the local temperature given in references, and the 2D distribution of emissivity shows a cumulative effect of the absorption coefficient along the line of sight. It also shows that emissivity of the flame decreases as the wavelength increases. The emissivity under wavelength 400 nm is about 2.5 times as much as that under wavelength 1000 nm for a typical line-of-sight in the flame, with the same trend for the absorption coefficient of soot varied with the wavelength.

  15. Cool-Flame Burning and Oscillations of Envelope Diffusion Flames in Microgravity

    NASA Astrophysics Data System (ADS)

    Takahashi, Fumiaki; Katta, Viswanath R.; Hicks, Michael C.

    2018-05-01

    The two-stage combustion, local extinction, and flame-edge oscillations have been observed in single-droplet combustion tests conducted on the International Space Station. To understand such dynamic behavior of initially enveloped diffusion flames in microgravity, two-dimensional (axisymmetric) computation is performed for a gaseous n-heptane flame using a time-dependent code with a detailed reaction mechanism (127 species and 1130 reactions), diffusive transport, and a simple radiation model (for CO2, H2O, CO, CH4, and soot). The calculated combustion characteristics vary profoundly with a slight movement of air surrounding a fuel source. In a near-quiescent environment (≤ 2 mm/s), with a sufficiently large fuel injection velocity (1 cm/s), extinction of a growing spherical diffusion flame due to radiative heat losses is predicted at the flame temperature at ≈ 1200 K. The radiative extinction is typically followed by a transition to the "cool flame" burning regime (due to the negative temperature coefficient in the low-temperature chemistry) with a reaction zone (at ≈ 700 K) in close proximity to the fuel source. By contrast, if there is a slight relative velocity (≈ 3 mm/s) between the fuel source and the air, a local extinction of the envelope diffusion flame is predicted downstream at ≈ 1200 K, followed by periodic flame-edge oscillations. At higher relative velocities (4 to 10 mm/s), the locally extinguished flame becomes steady state. The present 2D computational approach can help in understanding further the non-premixed "cool flame" structure and flame-flow interactions in microgravity environments.

  16. Research and Development of Methods for Estimating Physicochemical Properties of Organic Compounds of Environmental Concern

    DTIC Science & Technology

    1979-02-01

    coefficient (at equilibrium) when hysteresis is apparent. 6. Coefficient n in Freundlich equation for 1/n soil or sediment adsorption isotherms ýX - KC . 7...Biodegradation Chemical structures cal clasaes (e.g., Diffusion Correlations phenols). General Diffusion coefficients Equations terms for organic...OF THE FATE AND TRANSPORT OF ORGANIC CHEMICALS Adsorption coefficients: K, n* from Freundlich equation + Desorption coefficients: K’*, n’* from

  17. Self-diffusion in the non-Newtonian regime of shearing liquid crystal model systems based on the Gay-Berne potential

    NASA Astrophysics Data System (ADS)

    Sarman, Sten; Wang, Yong-Lei; Laaksonen, Aatto

    2016-02-01

    The self-diffusion coefficients of nematic phases of various model systems consisting of regular convex calamitic and discotic ellipsoids and non-convex bodies such as bent-core molecules and soft ellipsoid strings have been obtained as functions of the shear rate in a shear flow. Then the self-diffusion coefficient is a second rank tensor with three different diagonal components and two off-diagonal components. These coefficients were found to be determined by a combination of two mechanisms, which previously have been found to govern the self-diffusion of shearing isotropic liquids, namely, (i) shear alignment enhancing the diffusion in the direction parallel to the streamlines and hindering the diffusion in the perpendicular directions and (ii) the distortion of the shell structure in the liquid whereby a molecule more readily can escape from a surrounding shell of nearest neighbors, so that the mobility increases in every direction. Thus, the diffusion parallel to the streamlines always increases with the shear rate since these mechanisms cooperate in this direction. In the perpendicular directions, these mechanisms counteract each other so that the behaviour becomes less regular. In the case of the nematic phases of the calamitic and discotic ellipsoids and of the bent core molecules, mechanism (ii) prevails so that the diffusion coefficients increase. However, the diffusion coefficients of the soft ellipsoid strings decrease in the direction of the velocity gradient because the broadsides of these molecules are oriented perpendicularly to this direction due the shear alignment (i). The cross coupling coefficient relating a gradient of tracer particles in the direction of the velocity gradient and their flow in the direction of the streamlines is negative and rather large, whereas the other coupling coefficient relating a gradient in the direction of the streamlines and a flow in the direction of the velocity gradient is very small.

  18. A comment on the position dependent diffusion coefficient representation of structural heterogeneity

    NASA Astrophysics Data System (ADS)

    Wolfson, Molly; Liepold, Christopher; Lin, Binhua; Rice, Stuart A.

    2018-05-01

    Experimental studies of the variation of the mean square displacement (MSD) of a particle in a confined colloid suspension that exhibits density variations on the scale length of the particle diameter are not in agreement with the prediction that the spatial variation in MSD should mimic the spatial variation in density. The predicted behavior is derived from the expectation that the MSD of a particle depends on the system density and the assumption that the force acting on a particle is a point function of position. The experimental data are obtained from studies of the MSDs of particles in narrow ribbon channels and between narrowly spaced parallel plates and from new data, reported herein, of the radial and azimuthal MSDs of a colloid particle in a dense colloid suspension confined to a small circular cavity. In each of these geometries, a dense colloid suspension exhibits pronounced density oscillations with spacing of a particle diameter. We remove the discrepancy between prediction and experiment using the Fisher-Methfessel interpretation of how local equilibrium in an inhomogeneous system is maintained to argue that the force acting on a particle is delocalized over a volume with radius equal to a particle diameter. Our interpretation has relevance to the relationship between the scale of inhomogeneity and the utility of translation of the particle MSD into a position dependent diffusion coefficient and to the use of a spatially dependent diffusion coefficient to describe mass transport in a heterogeneous system.

  19. Experimental Determination of Impurity and Interdiffusion Coefficients in Seven Ti and Zr Binary Systems Using Diffusion Multiples

    NASA Astrophysics Data System (ADS)

    Chen, Zhangqi; Liu, Zi-Kui; Zhao, Ji-Cheng

    2018-05-01

    Diffusion coefficients of seven binary systems (Ti-Mo, Ti-Nb, Ti-Ta, Ti-Zr, Zr-Mo, Zr-Nb, and Zr-Ta) at 1200 °C, 1000 °C, and 800 °C were experimentally determined using three Ti-Mo-Nb-Ta-Zr diffusion multiples. Electron probe microanalysis (EPMA) was performed to collect concentration profiles at the binary diffusion regions. Forward simulation analysis (FSA) was then applied to extract both impurity and interdiffusion coefficients in Ti-rich and Zr-rich part of the bcc phase. Excellent agreements between our results and most of the literature data validate the high-throughput approach combining FSA with diffusion multiples to obtain a large amount of systematic diffusion data, which will help establish the diffusion (mobility) databases for the design and development of biomedical and structural Ti alloys.

  20. Diffusion modulation of DNA by toehold exchange

    NASA Astrophysics Data System (ADS)

    Rodjanapanyakul, Thanapop; Takabatake, Fumi; Abe, Keita; Kawamata, Ibuki; Nomura, Shinichiro M.; Murata, Satoshi

    2018-05-01

    We propose a method to control the diffusion speed of DNA molecules with a target sequence in a polymer solution. The interaction between solute DNA and diffusion-suppressing DNA that has been anchored to a polymer matrix is modulated by the concentration of the third DNA molecule called the competitor by a mechanism called toehold exchange. Experimental results show that the sequence-specific modulation of the diffusion coefficient is successfully achieved. The diffusion coefficient can be modulated up to sixfold by changing the concentration of the competitor. The specificity of the modulation is also verified under the coexistence of a set of DNA with noninteracting base sequences. With this mechanism, we are able to control the diffusion coefficient of individual DNA species by the concentration of another DNA species. This methodology introduces a programmability to a DNA-based reaction-diffusion system.

  1. Experimental Determination of Impurity and Interdiffusion Coefficients in Seven Ti and Zr Binary Systems Using Diffusion Multiples

    NASA Astrophysics Data System (ADS)

    Chen, Zhangqi; Liu, Zi-Kui; Zhao, Ji-Cheng

    2018-07-01

    Diffusion coefficients of seven binary systems (Ti-Mo, Ti-Nb, Ti-Ta, Ti-Zr, Zr-Mo, Zr-Nb, and Zr-Ta) at 1200 °C, 1000 °C, and 800 °C were experimentally determined using three Ti-Mo-Nb-Ta-Zr diffusion multiples. Electron probe microanalysis (EPMA) was performed to collect concentration profiles at the binary diffusion regions. Forward simulation analysis (FSA) was then applied to extract both impurity and interdiffusion coefficients in Ti-rich and Zr-rich part of the bcc phase. Excellent agreements between our results and most of the literature data validate the high-throughput approach combining FSA with diffusion multiples to obtain a large amount of systematic diffusion data, which will help establish the diffusion (mobility) databases for the design and development of biomedical and structural Ti alloys.

  2. Stefan-Maxwell Relations and Heat Flux with Anisotropic Transport Coefficients for Ionized Gases in a Magnetic Field with Application to the Problem of Ambipolar Diffusion

    NASA Astrophysics Data System (ADS)

    Kolesnichenko, A. V.; Marov, M. Ya.

    2018-01-01

    The defining relations for the thermodynamic diffusion and heat fluxes in a multicomponent, partially ionized gas mixture in an external electromagnetic field have been obtained by the methods of the kinetic theory. Generalized Stefan-Maxwell relations and algebraic equations for anisotropic transport coefficients (the multicomponent diffusion, thermal diffusion, electric and thermoelectric conductivity coefficients as well as the thermal diffusion ratios) associated with diffusion-thermal processes have been derived. The defining second-order equations are derived by the Chapman-Enskog procedure using Sonine polynomial expansions. The modified Stefan-Maxwell relations are used for the description of ambipolar diffusion in the Earth's ionospheric plasma (in the F region) composed of electrons, ions of many species, and neutral particles in a strong electromagnetic field.

  3. Determination of diffusion coefficients of hydrogen and deuterium in Zr-2.5%Nb pressure tube material using hot vacuum extraction-quadrupole mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shrivastava, Komal Chandra; Kulkarni, A. S.; Ramanjaneyulu, P. S.; Sunil, Saurav; Saxena, M. K.; Singh, R. N.; Tomar, B. S.; Ramakumar, K. L.

    2015-06-01

    The diffusion coefficients of hydrogen and deuterium in Zr-2.5%Nb alloy were measured in the temperature range 523 to 673 K, employing hot vacuum extraction-quadrupole mass spectrometry (HVE-QMS). One end of the Zr-2.5%Nb alloy specimens was charged electrolytically with the desired hydrogen isotope. After annealing at different temperatures for a predetermined time, the specimens were cut into thin slices, which were analyzed for their H2/D2 content using the HVE-QMS technique. The depth profile data were fitted into the equation representing the solution of Fick's second law of diffusion. The activation energy of hydrogen/deuterium diffusion was obtained from the Arrhenius relation between the diffusion coefficient and temperature. The temperature dependent diffusion coefficient can be represented as DH = 1.41 × 10-7 exp(-36,000/RT) and DD = 6.16 × 10-8 exp(-35,262/RT) for hydrogen and deuterium, respectively.

  4. Dynamics of the DNA repair proteins WRN and BLM in the nucleoplasm and nucleoli.

    PubMed

    Bendtsen, Kristian Moss; Jensen, Martin Borch; May, Alfred; Rasmussen, Lene Juel; Trusina, Ala; Bohr, Vilhelm A; Jensen, Mogens H

    2014-11-01

    We have investigated the mobility of two EGFP-tagged DNA repair proteins, WRN and BLM. In particular, we focused on the dynamics in two locations, the nucleoli and the nucleoplasm. We found that both WRN and BLM use a "DNA-scanning" mechanism, with rapid binding-unbinding to DNA resulting in effective diffusion. In the nucleoplasm WRN and BLM have effective diffusion coefficients of 1.62 and 1.34 μm(2)/s, respectively. Likewise, the dynamics in the nucleoli are also best described by effective diffusion, but with diffusion coefficients a factor of ten lower than in the nucleoplasm. From this large reduction in diffusion coefficient we were able to classify WRN and BLM as DNA damage scanners. In addition to WRN and BLM we also classified other DNA damage proteins and found they all fall into one of two categories. Either they are scanners, similar to WRN and BLM, with very low diffusion coefficients, suggesting a scanning mechanism, or they are almost freely diffusing, suggesting that they interact with DNA only after initiation of a DNA damage response.

  5. Connecting the molecular scale to the continuum scale for diffusion processes in smectite-rich porous media.

    PubMed

    Bourg, Ian C; Sposito, Garrison

    2010-03-15

    In this paper, we address the manner in which the continuum-scale diffusive properties of smectite-rich porous media arise from their molecular- and pore-scale features. Our starting point is a successful model of the continuum-scale apparent diffusion coefficient for water tracers and cations, which decomposes it as a sum of pore-scale terms describing diffusion in macropore and interlayer "compartments." We then apply molecular dynamics (MD) simulations to determine molecular-scale diffusion coefficients D(interlayer) of water tracers and representative cations (Na(+), Cs(+), Sr(2+)) in Na-smectite interlayers. We find that a remarkably simple expression relates D(interlayer) to the pore-scale parameter δ(nanopore) ≤ 1, a constrictivity factor that accounts for the lower mobility in interlayers as compared to macropores: δ(nanopore) = D(interlayer)/D(0), where D(0) is the diffusion coefficient in bulk liquid water. Using this scaling expression, we can accurately predict the apparent diffusion coefficients of tracers H(2)0, Na(+), Sr(2+), and Cs(+) in compacted Na-smectite-rich materials.

  6. New method and installation for rapid determination of radon diffusion coefficient in various materials.

    PubMed

    Tsapalov, Andrey; Gulabyants, Loren; Livshits, Mihail; Kovler, Konstantin

    2014-04-01

    The mathematical apparatus and the experimental installation for the rapid determination of radon diffusion coefficient in various materials are developed. The single test lasts not longer than 18 h and allows testing numerous materials, such as gaseous and liquid media, as well as soil, concrete and radon-proof membranes, in which diffusion coefficient of radon may vary in an extremely wide range, from 1·10(-12) to 5·10(-5) m(2)/s. The uncertainty of radon diffusion coefficient estimation depends on the permeability of the sample and varies from about 5% (for the most permeable materials) to 40% (for less permeable materials, such as radon-proof membranes). Copyright © 2014. Published by Elsevier Ltd.

  7. Prediction and validation of diffusion coefficients in a model drug delivery system using microsecond atomistic molecular dynamics simulation and vapour sorption analysis.

    PubMed

    Forrey, Christopher; Saylor, David M; Silverstein, Joshua S; Douglas, Jack F; Davis, Eric M; Elabd, Yossef A

    2014-10-14

    Diffusion of small to medium sized molecules in polymeric medical device materials underlies a broad range of public health concerns related to unintended leaching from or uptake into implantable medical devices. However, obtaining accurate diffusion coefficients for such systems at physiological temperature represents a formidable challenge, both experimentally and computationally. While molecular dynamics simulation has been used to accurately predict the diffusion coefficients, D, of a handful of gases in various polymers, this success has not been extended to molecules larger than gases, e.g., condensable vapours, liquids, and drugs. We present atomistic molecular dynamics simulation predictions of diffusion in a model drug eluting system that represent a dramatic improvement in accuracy compared to previous simulation predictions for comparable systems. We find that, for simulations of insufficient duration, sub-diffusive dynamics can lead to dramatic over-prediction of D. We present useful metrics for monitoring the extent of sub-diffusive dynamics and explore how these metrics correlate to error in D. We also identify a relationship between diffusion and fast dynamics in our system, which may serve as a means to more rapidly predict diffusion in slowly diffusing systems. Our work provides important precedent and essential insights for utilizing atomistic molecular dynamics simulations to predict diffusion coefficients of small to medium sized molecules in condensed soft matter systems.

  8. Measurement of the Diffusion Coefficient of Water in RP-3 and RP-5 Jet Fuels Using Digital Holography Interferometry

    NASA Astrophysics Data System (ADS)

    Li, Chaoyue; Feng, Shiyu; Shao, Lei; Pan, Jun; Liu, Weihua

    2018-04-01

    The diffusion coefficient of water in jet fuel was measured employing double-exposure digital holographic interferometry to clarify the diffusion process and make the aircraft fuel system safe. The experimental method and apparatus are introduced in detail, and the digital image processing program is coded in MATLAB according to the theory of the Fourier transform. At temperatures ranging from 278.15 K to 333.15 K in intervals of 5 K, the diffusion coefficient of water in RP-3 and RP-5 jet fuels ranges from 2.6967 × 10 -10 m2·s-1 to 8.7332 × 10 -10 m2·s-1 and from 2.3517 × 10 -10 m2·s-1 to 8.0099 × 10-10 m2·s-1, respectively. The relationship between the measured diffusion coefficient and temperature can be well fitted by the Arrhenius law. The diffusion coefficient of water in RP-3 jet fuel is higher than that of water in RP-5 jet fuel at the same temperature. Furthermore, the viscosities of the two jet fuels were measured and found to be expressible in the form of the Arrhenius equation. The relationship among the diffusion coefficient, viscosity and temperature is analyzed according to the classic prediction model, namely the Stokes-Einstein correlation, and this correlation is further revised via experimental data to obtain a more accurate predication result.

  9. Effect of the computational domain size and shape on the self-diffusion coefficient in a Lennard-Jones liquid.

    PubMed

    Kikugawa, Gota; Ando, Shotaro; Suzuki, Jo; Naruke, Yoichi; Nakano, Takeo; Ohara, Taku

    2015-01-14

    In the present study, molecular dynamics (MD) simulations on the monatomic Lennard-Jones liquid in a periodic boundary system were performed in order to elucidate the effect of the computational domain size and shape on the self-diffusion coefficient measured by the system. So far, the system size dependence in cubic computational domains has been intensively investigated and these studies showed that the diffusion coefficient depends linearly on the inverse of the system size, which is theoretically predicted based on the hydrodynamic interaction. We examined the system size effect not only in the cubic cell systems but also in rectangular cell systems which were created by changing one side length of the cubic cell with the system density kept constant. As a result, the diffusion coefficient in the direction perpendicular to the long side of the rectangular cell significantly increases more or less linearly with the side length. On the other hand, the diffusion coefficient in the direction along the long side is almost constant or slightly decreases. Consequently, anisotropy of the diffusion coefficient emerges in a rectangular cell with periodic boundary conditions even in a bulk liquid simulation. This unexpected result is of critical importance because rectangular fluid systems confined in nanospace, which are present in realistic nanoscale technologies, have been widely studied in recent MD simulations. In order to elucidate the underlying mechanism for this serious system shape effect on the diffusion property, the correlation structures of particle velocities were examined.

  10. Molecular-dynamics simulation of mutual diffusion in nonideal liquid mixtures

    NASA Astrophysics Data System (ADS)

    Rowley, R. L.; Stoker, J. M.; Giles, N. F.

    1991-05-01

    The mutual-diffusion coefficients, D 12, of n-hexane, n-heptane, and n-octane in chloroform were modeled using equilibrium molecular-dynamics (MD) simulations of simple Lennard-Jones (LJ) fluids. Pure-component LJ parameters were obtained by comparison of simulations to experimental self-diffusion coefficients. While values of “effective” LJ parameters are not expected to simulate accurately diverse thermophysical properties over a wide range of conditions, it was recently shown that effective parameters obtained from pure self-diffusion coefficients can accurately model mutual diffusion in ideal, liquid mixtures. In this work, similar simulations are used to model diffusion in nonideal mixtures. The same combining rules used in the previous study for the cross-interaction parameters were found to be adequate to represent the composition dependence of D 12. The effect of alkane chain length on D 12 is also correctly predicted by the simulations. A commonly used assumption in empirical correlations of D 12, that its kinetic portion is a simple, compositional average of the intradiffusion coefficients, is inconsistent with the simulation results. In fact, the value of the kinetic portion of D 12 was often outside the range of values bracketed by the two intradiffusion coefficients for the nonideal system modeled here.

  11. Communication: A method to compute the transport coefficient of pure fluids diffusing through planar interfaces from equilibrium molecular dynamics simulations.

    PubMed

    Vermorel, Romain; Oulebsir, Fouad; Galliero, Guillaume

    2017-09-14

    The computation of diffusion coefficients in molecular systems ranks among the most useful applications of equilibrium molecular dynamics simulations. However, when dealing with the problem of fluid diffusion through vanishingly thin interfaces, classical techniques are not applicable. This is because the volume of space in which molecules diffuse is ill-defined. In such conditions, non-equilibrium techniques allow for the computation of transport coefficients per unit interface width, but their weak point lies in their inability to isolate the contribution of the different physical mechanisms prone to impact the flux of permeating molecules. In this work, we propose a simple and accurate method to compute the diffusional transport coefficient of a pure fluid through a planar interface from equilibrium molecular dynamics simulations, in the form of a diffusion coefficient per unit interface width. In order to demonstrate its validity and accuracy, we apply our method to the case study of a dilute gas diffusing through a smoothly repulsive single-layer porous solid. We believe this complementary technique can benefit to the interpretation of the results obtained on single-layer membranes by means of complex non-equilibrium methods.

  12. Fluorescence correlation spectroscopy experiments to quantify free diffusion coefficients in reaction-diffusion systems: The case of Ca2 + and its dyes

    NASA Astrophysics Data System (ADS)

    Sigaut, Lorena; Villarruel, Cecilia; Ponce, María Laura; Ponce Dawson, Silvina

    2017-06-01

    Many cell signaling pathways involve the diffusion of messengers that bind and unbind to and from intracellular components. Quantifying their net transport rate under different conditions then requires having separate estimates of their free diffusion coefficient and binding or unbinding rates. In this paper, we show how performing sets of fluorescence correlation spectroscopy (FCS) experiments under different conditions, it is possible to quantify free diffusion coefficients and on and off rates of reaction-diffusion systems. We develop the theory and present a practical implementation for the case of the universal second messenger, calcium (Ca2 +) and single-wavelength dyes that increase their fluorescence upon Ca2 + binding. We validate the approach with experiments performed in aqueous solutions containing Ca2 + and Fluo4 dextran (both in its high and low affinity versions). Performing FCS experiments with tetramethylrhodamine-dextran in Xenopus laevis oocytes, we infer the corresponding free diffusion coefficients in the cytosol of these cells. Our approach can be extended to other physiologically relevant reaction-diffusion systems to quantify biophysical parameters that determine the dynamics of various variables of interest.

  13. Knowledge diffusion in the collaboration hypernetwork

    NASA Astrophysics Data System (ADS)

    Yang, Guang-Yong; Hu, Zhao-Long; Liu, Jian-Guo

    2015-02-01

    As knowledge constitutes a primary productive force, it is important to understand the performance of knowledge diffusion. In this paper, we present a knowledge diffusion model based on the local-world non-uniform hypernetwork, which introduces the preferential diffusion mechanism and the knowledge absorptive capability αj, where αj is correlated with the hyperdegree dH(j) of node j. At each time step, we randomly select a node i as the sender; a receiver node is selected from the set of nodes that the sender i has published with previously, with probability proportional to the number of papers they have published together. Applying the average knowledge stock V bar(t) , the variance σ2(t) and the variance coefficient c(t) of knowledge stock to measure the growth and diffusion of knowledge and the adequacy of knowledge diffusion, we have made 3 groups of comparative experiments to investigate how different network structures, hypernetwork sizes and knowledge evolution mechanisms affect the knowledge diffusion, respectively. As the diffusion mechanisms based on the hypernetwork combine with the hyperdegree of node, the hypernetwork is more suitable for investigating the performance of knowledge diffusion. Therefore, the proposed model could be helpful for deeply understanding the process of the knowledge diffusion in the collaboration hypernetwork.

  14. Comparison between the intra-particle diffusivity in the hydrophilic interaction chromatography and reversed phase liquid chromatography modes. Impact on the column efficiency.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2013-07-05

    The effective diffusion coefficients of five low molecular weigh compounds (naphthalene, uracil, uridine, adenosine, and cytosine) were measured at room temperature in a 4.6mm×100mm column packed with 3.5μm XBridge HILIC particles. The mobile phase was an acetonitrile-water mixture (92.5/7.5, v/v) containing 10mM ammonium acetate and 0.02% acetic acid. Using a physically reliable model of effective diffusion in binary composite media (Torquato's model), accurate estimates of the intra-particle diffusivities in the HILIC particles were obtained as a function of the retention of these analytes. The HILIC diffusion coefficients were compared to those previously obtained for endcapped RPLC-C18 particles (5.0μm Gemini-C18). The experimental results confirm that adsorption sites are not localized in RPLC whereas they are so in the HILIC mode. In contrast to RPLC columns, HILIC columns provide longitudinal diffusion B/u terms that increase very little with increasing retention factors. This confirms the absence of surface diffusion in HILIC. The impact of intra-particle diffusivity on the column efficiency was projected in HILIC and RPLC on the basis of the measured intra-particle diffusivities and on the well established theory of band broadening in particulate columns. Accordingly, RPLC columns generate short-range eddy dispersion and solid-liquid mass transfer resistance Cu terms that increase less than do HILIC column with increasing retention factors. The HETP contribution caused by the trans-column structure heterogeneity is smaller in the HILIC than in the RPLC modes because the transverse excursion length is smaller in HILIC. Even though the overall column efficiencies are comparable in HILIC and RPLC, this study shows that the individual mass transfer phenomena are inherently different in the HILIC and the RPLC retention modes. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. The surface diffusion coefficient for an arbitrarily curved fluid-fluid interface. (I). General expression

    NASA Astrophysics Data System (ADS)

    M. C. Sagis, Leonard

    2001-03-01

    In this paper, we develop a theory for the calculation of the surface diffusion coefficient for an arbitrarily curved fluid-fluid interface. The theory is valid for systems in hydrodynamic equilibrium, with zero mass-averaged velocities in the bulk and interfacial regions. We restrict our attention to systems with isotropic bulk phases, and an interfacial region that is isotropic in the plane parallel to the dividing surface. The dividing surface is assumed to be a simple interface, without memory effects or yield stresses. We derive an expression for the surface diffusion coefficient in terms of two parameters of the interfacial region: the coefficient for plane-parallel diffusion D (AB)aa(ξ) , and the driving force d(B)I||(ξ) . This driving force is the parallel component of the driving force for diffusion in the interfacial region. We derive an expression for this driving force using the entropy balance.

  16. Correlation Between the Field Line and Particle Diffusion Coefficients in the Stochastic Fields of a Tokamak

    NASA Astrophysics Data System (ADS)

    Calvin, Mark; Punjabi, Alkesh

    1996-11-01

    We use the method of quasi-magnetic surfaces to calculate the correlation between the field line and particle diffusion coefficients. The magnetic topology of a tokamak is perturbed by a spectrum of neighboring resonant resistive modes. The Hamiltonian equations of motion for the field line are integrated numerically. Poincare plots of the quasi-magnetic surfaces are generated initially and after the field line has traversed a considerable distance. From the areas of the quasi-magnetic surfaces and the field line distance, we estimate the field line diffusion coefficient. We start plasma particles on the initial quasi-surface, and calculate the particle diffusion coefficient from our Monte Carlo method (Punjabi A., Boozer A., Lam M., Kim H. and Burke K., J. Plasma Phys.), 44, 405 (1990). We then estimate the correlation between the particle and field diffusion as the strength of the resistive modes is varied.

  17. Computation of thermodynamic and transport properties to predict thermophoretic effects in an argon-krypton mixture

    NASA Astrophysics Data System (ADS)

    Miller, Nicholas A. T.; Daivis, Peter J.; Snook, Ian K.; Todd, B. D.

    2013-10-01

    Thermophoresis is the movement of molecules caused by a temperature gradient. Here we report the results of a study of thermophoresis using non-equilibrium molecular dynamics simulations of a confined argon-krypton fluid subject to two different temperatures at thermostated walls. The resulting temperature profile between the walls is used along with the Soret coefficient to predict the concentration profile that develops across the channel. We obtain the Soret coefficient by calculating the mutual diffusion and thermal diffusion coefficients. We report an appropriate method for calculating the transport coefficients for binary systems, using the Green-Kubo integrals and radial distribution functions obtained from equilibrium molecular dynamics simulations of the bulk fluid. Our method has the unique advantage of separating the mutual diffusion and thermal diffusion coefficients, and calculating the sign and magnitude of their individual contributions to thermophoresis in binary mixtures.

  18. Molecular Diffusion Coefficients: Experimental Determination and Demonstration.

    ERIC Educational Resources Information Center

    Fate, Gwendolyn; Lynn, David G.

    1990-01-01

    Presented are laboratory methods which allow the demonstration and determination of the diffusion coefficients of compounds ranging in size from water to small proteins. Included are the procedures involving the use of a spectrometer, UV cell, triterated agar, and oxygen diffusion. Results including quantification are described. (CW)

  19. Including scattering within the room acoustics diffusion model: An analytical approach.

    PubMed

    Foy, Cédric; Picaut, Judicaël; Valeau, Vincent

    2016-10-01

    Over the last 20 years, a statistical acoustic model has been developed to predict the reverberant sound field in buildings. This model is based on the assumption that the propagation of the reverberant sound field follows a transport process and, as an approximation, a diffusion process that can be easily solved numerically. This model, initially designed and validated for rooms with purely diffuse reflections, is extended in the present study to mixed reflections, with a proportion of specular and diffuse reflections defined by a scattering coefficient. The proposed mathematical developments lead to an analytical expression of the diffusion constant that is a function of the scattering coefficient, but also on the absorption coefficient of the walls. The results obtained with this extended diffusion model are then compared with the classical diffusion model, as well as with a sound particles tracing approach considering mixed wall reflections. The comparison shows a good agreement for long rooms with uniform low absorption (α = 0.01) and uniform scattering. For a larger absorption (α = 0.1), the agreement is moderate, due to the fact that the proposed expression of the diffusion coefficient does not vary spatially. In addition, the proposed model is for now limited to uniform diffusion and should be extended in the future to more general cases.

  20. Diffusion tensor imaging of the sural nerve in normal controls☆

    PubMed Central

    Kim, Boklye; Srinivasan, Ashok; Sabb, Brian; Feldman, Eva L; Pop-Busui, Rodica

    2016-01-01

    Objective To develop a diffusion tensor imaging (DTI) protocol for assessing the sural nerve in healthy subjects. Methods Sural nerves in 25 controls were imaged using DTI at 3 T with 6, 15, and 32 gradient directions. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were computed from nerve regions of interest co-registered with T2-weighted images. Results Coronal images with 0.5(RL)×2.0(FH)×0.5(AP) mm3 resolution successfully localized the sural nerve. FA maps showed less variability with 32 directions (0.559±0.071) compared to 15(0.590±0.080) and 6(0.659±0.109). Conclusions Our DTI protocol was effective in imaging sural nerves in controls to establish normative FA/ADC, with potential to be used non-invasively in diseased nerves of patients. PMID:24908367

  1. A quantitative property-property relationship for the internal diffusion coefficients of organic compounds in solid materials.

    PubMed

    Huang, L; Fantke, P; Ernstoff, A; Jolliet, O

    2017-11-01

    Indoor releases of organic chemicals encapsulated in solid materials are major contributors to human exposures and are directly related to the internal diffusion coefficient in solid materials. Existing correlations to estimate the diffusion coefficient are only valid for a limited number of chemical-material combinations. This paper develops and evaluates a quantitative property-property relationship (QPPR) to predict diffusion coefficients for a wide range of organic chemicals and materials. We first compiled a training dataset of 1103 measured diffusion coefficients for 158 chemicals in 32 consolidated material types. Following a detailed analysis of the temperature influence, we developed a multiple linear regression model to predict diffusion coefficients as a function of chemical molecular weight (MW), temperature, and material type (adjusted R 2 of .93). The internal validations showed the model to be robust, stable and not a result of chance correlation. The external validation against two separate prediction datasets demonstrated the model has good predicting ability within its applicability domain (Rext2>.8), namely MW between 30 and 1178 g/mol and temperature between 4 and 180°C. By covering a much wider range of organic chemicals and materials, this QPPR facilitates high-throughput estimates of human exposures for chemicals encapsulated in solid materials. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Interpretation of diffusion coefficients in nanostructured materials from random walk numerical simulation.

    PubMed

    Anta, Juan A; Mora-Seró, Iván; Dittrich, Thomas; Bisquert, Juan

    2008-08-14

    We make use of the numerical simulation random walk (RWNS) method to compute the "jump" diffusion coefficient of electrons in nanostructured materials via mean-square displacement. First, a summary of analytical results is given that relates the diffusion coefficient obtained from RWNS to those in the multiple-trapping (MT) and hopping models. Simulations are performed in a three-dimensional lattice of trap sites with energies distributed according to an exponential distribution and with a step-function distribution centered at the Fermi level. It is observed that once the stationary state is reached, the ensemble of particles follow Fermi-Dirac statistics with a well-defined Fermi level. In this stationary situation the diffusion coefficient obeys the theoretical predictions so that RWNS effectively reproduces the MT model. Mobilities can be also computed when an electrical bias is applied and they are observed to comply with the Einstein relation when compared with steady-state diffusion coefficients. The evolution of the system towards the stationary situation is also studied. When the diffusion coefficients are monitored along simulation time a transition from anomalous to trap-limited transport is observed. The nature of this transition is discussed in terms of the evolution of electron distribution and the Fermi level. All these results will facilitate the use of RW simulation and related methods to interpret steady-state as well as transient experimental techniques.

  3. Computer Aided Design of Integrated Circuit Fabrication Processes for VLSI Devices

    DTIC Science & Technology

    1980-01-01

    diffusion coefficient and surface conc,,tration of the chlorine as well as any field present; X is related to the ratio ol the diffusion coefficient to...with polysilicon gat(. .ed contacts, the interaction of oxidation, segregation and diffusion in all regions of the simulation space is a critical

  4. Structure and composition of Pluto's atmosphere from the New Horizons solar ultraviolet occultation

    NASA Astrophysics Data System (ADS)

    Young, Leslie A.; Kammer, Joshua A.; Steffl, Andrew J.; Gladstone, G. Randall; Summers, Michael E.; Strobel, Darrell F.; Hinson, David P.; Stern, S. Alan; Weaver, Harold A.; Olkin, Catherine B.; Ennico, Kimberly; McComas, David J.; Cheng, Andrew F.; Gao, Peter; Lavvas, Panayotis; Linscott, Ivan R.; Wong, Michael L.; Yung, Yuk L.; Cunningham, Nathanial; Davis, Michael; Parker, Joel Wm.; Schindhelm, Eric; Siegmund, Oswald H. W.; Stone, John; Retherford, Kurt; Versteeg, Maarten

    2018-01-01

    The Alice instrument on NASA's New Horizons spacecraft observed an ultraviolet solar occultation by Pluto's atmosphere on 2015 July 14. The transmission vs. altitude was sensitive to the presence of N2, CH4, C2H2, C2H4, C2H6, and haze. We derived line-of-sight abundances and local number densities for the 5 molecular species, and line-of-sight optical depth and extinction coefficients for the haze. We found the following major conclusions: (1) We confirmed temperatures in Pluto's upper atmosphere that were colder than expected before the New Horizons flyby, with upper atmospheric temperatures near 65-68 K. The inferred enhanced Jeans escape rates were (3-7) × 1022 N2 s-1 and (4-8) × 1025 CH4 s-1 at the exobase (at a radius of ∼ 2900 km, or an altitude of ∼1710 km). (2) We measured CH4 abundances from 80 to 1200 km above the surface. A joint analysis of the Alice CH4 and Alice and REX N2 measurements implied a very stable lower atmosphere with a small eddy diffusion coefficient, most likely between 550 and 4000 cm2 s-1. Such a small eddy diffusion coefficient placed the homopause within 12 km of the surface, giving Pluto a small planetary boundary layer. The inferred CH4 surface mixing ratio was ∼ 0.28-0.35%. (3) The abundance profiles of the ;C2Hx hydrocarbons; (C2H2, C2H4, C2H6) were not simply exponential with altitude. We detected local maxima in line-of-sight abundance near 410 km altitude for C2H4, near 320 km for C2H2, and an inflection point or the suggestion of a local maximum at 260 km for C2H6. We also detected local minima near 200 km altitude for C2H4, near 170 km for C2H2, and an inflection point or minimum near 170-200 km for C2H6. These compared favorably with models for hydrocarbon production near 300-400 km and haze condensation near 200 km, especially for C2H2 and C2H4 (Wong et al., 2017). (4) We found haze that had an extinction coefficient approximately proportional to N2 density.

  5. Microscopic Interpretation and Generalization of the Bloch-Torrey Equation for Diffusion Magnetic Resonance

    PubMed Central

    Seroussi, Inbar; Grebenkov, Denis S.; Pasternak, Ofer; Sochen, Nir

    2017-01-01

    In order to bridge microscopic molecular motion with macroscopic diffusion MR signal in complex structures, we propose a general stochastic model for molecular motion in a magnetic field. The Fokker-Planck equation of this model governs the probability density function describing the diffusion-magnetization propagator. From the propagator we derive a generalized version of the Bloch-Torrey equation and the relation to the random phase approach. This derivation does not require assumptions such as a spatially constant diffusion coefficient, or ad-hoc selection of a propagator. In particular, the boundary conditions that implicitly incorporate the microstructure into the diffusion MR signal can now be included explicitly through a spatially varying diffusion coefficient. While our generalization is reduced to the conventional Bloch-Torrey equation for piecewise constant diffusion coefficients, it also predicts scenarios in which an additional term to the equation is required to fully describe the MR signal. PMID:28242566

  6. Secondary Ion Mass Spectrometry for Mg Tracer Diffusion: Issues and Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuggle, Jay; Giordani, Andrew; Kulkarni, Nagraj S

    2014-01-01

    A Secondary Ion Mass Spectrometry (SIMS) method has been developed to measure stable Mg isotope tracer diffusion. This SIMS method was then used to calculate Mg self- diffusivities and the data was verified against historical data measured using radio tracers. The SIMS method has been validated as a reliable alternative to the radio-tracer technique for the measurement of Mg self-diffusion coefficients and can be used as a routine method for determining diffusion coefficients.

  7. Electrophoretic and Electrolytic Deposition of Ceramic Particles on Porous Substrates

    DTIC Science & Technology

    1990-08-30

    hydrodynamic drag force exerted on the particle due to the electroosmotic flow of the solvent inside the pore, the electrophoretic force exerted on the...8217 - electrophoretic velocity UN - electroosmotic velocity b - pore mean radius D - diffusion coefficient k - local deposition rate Large Peclet numbers and small...experimentally as the charge is acquired spontaneously on mixing the particles with the solvent and it may be reversed upon addition ot ionic compounds. The

  8. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering

    NASA Astrophysics Data System (ADS)

    Bremmer, Rolf H.; van Gemert, Martin J. C.; Faber, Dirk J.; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2013-08-01

    Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20 m at reduced scattering coefficients of 1 and 11.5 mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys. 19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as blood stains and cloth at crime scenes.

  9. Location - Dependent Coronary Artery Diffusive and Convective Mass Transport Properties of a Lipophilic Drug Surrogate Measured Using Nonlinear Microscopy

    PubMed Central

    Keyes, Joseph T.; Simon, Bruce R.; Vande Geest, Jonathan P.

    2013-01-01

    Purpose Arterial wall mass transport properties dictate local distribution of biomolecules or locally delivered dugs. Knowing how these properties vary between coronary artery locations could provide insight into how therapy efficacy is altered between arterial locations. Methods We introduced an indocarbocyanine drug surrogate to the lumens of left anterior descending and right coronary (LADC; RC) arteries from pigs with or without a pressure gradient. Interstitial fluorescent intensity was measured on live samples with multiphoton microscopy. We also measured binding to porcine coronary SMCs in monoculture. Results Diffusive transport constants peaked in the middle sections of the LADC and RC arteries by 2.09 and 2.04 times, respectively, compared to the proximal and distal segments. There was no statistical difference between the average diffusivity value between LADC and RC arteries. The convection coefficients had an upward trend down each artery, with the RC being higher than the LADC by 3.89 times. Conclusions This study demonstrates that the convective and diffusive transport of lipophilic molecules changes between the LADC and the RC arteries as well as along their length. These results may have important implications in optimizing drug delivery for the treatment of coronary artery disease. PMID:23224981

  10. Investigating Whistler Mode Wave Diffusion Coefficients at Mars

    NASA Astrophysics Data System (ADS)

    Shane, A. D.; Liemohn, M. W.; Xu, S.; Florie, C.

    2017-12-01

    Observations of electron pitch angle distributions have suggested collisions are not the only pitch angle scattering process occurring in the Martian ionosphere. This unknown scattering process is causing high energy electrons (>100 eV) to become isotropized. Whistler mode waves are one pitch angle scattering mechanism known to preferentially scatter high energy electrons in certain plasma regimes. The distribution of whistler mode wave diffusion coefficients are dependent on the background magnetic field strength and thermal electron density, as well as the frequency and wave normal angle of the wave. We have solved for the whistler mode wave diffusion coefficients using the quasi-linear diffusion equations and have integrated them into a superthermal electron transport (STET) model. Preliminary runs have produced results that qualitatively match the observed electron pitch angle distributions at Mars. We performed parametric sweeps over magnetic field, thermal electron density, wave frequency, and wave normal angle to understand the relationship between the plasma parameters and the diffusion coefficient distributions, but also to investigate what regimes whistler mode waves scatter only high energy electrons. Increasing the magnetic field strength and lowering the thermal electron density shifts the distribution of diffusion coefficients toward higher energies and lower pitch angles. We have created an algorithm to identify Mars Atmosphere Volatile and EvolutioN (MAVEN) observations of high energy isotropic pitch angle distributions in the Martian ionosphere. We are able to map these distributions at Mars, and compare the conditions under which these are observed at Mars with the results of our parametric sweeps. Lastly, we will also look at each term in the kinetic diffusion equation to determine if the energy and mixed diffusion coefficients are important enough to incorporate into STET as well.

  11. Toward Precision and Reproducibility of Diffusion Tensor Imaging: A Multicenter Diffusion Phantom and Traveling Volunteer Study.

    PubMed

    Palacios, E M; Martin, A J; Boss, M A; Ezekiel, F; Chang, Y S; Yuh, E L; Vassar, M J; Schnyer, D M; MacDonald, C L; Crawford, K L; Irimia, A; Toga, A W; Mukherjee, P

    2017-03-01

    Precision medicine is an approach to disease diagnosis, treatment, and prevention that relies on quantitative biomarkers that minimize the variability of individual patient measurements. The aim of this study was to assess the intersite variability after harmonization of a high-angular-resolution 3T diffusion tensor imaging protocol across 13 scanners at the 11 academic medical centers participating in the Transforming Research and Clinical Knowledge in Traumatic Brain Injury multisite study. Diffusion MR imaging was acquired from a novel isotropic diffusion phantom developed at the National Institute of Standards and Technology and from the brain of a traveling volunteer on thirteen 3T MR imaging scanners representing 3 major vendors (GE Healthcare, Philips Healthcare, and Siemens). Means of the DTI parameters and their coefficients of variation across scanners were calculated for each DTI metric and white matter tract. For the National Institute of Standards and Technology diffusion phantom, the coefficients of variation of the apparent diffusion coefficient across the 13 scanners was <3.8% for a range of diffusivities from 0.4 to 1.1 × 10 -6 mm 2 /s. For the volunteer, the coefficients of variations across scanners of the 4 primary DTI metrics, each averaged over the entire white matter skeleton, were all <5%. In individual white matter tracts, large central pathways showed good reproducibility with the coefficients of variation consistently below 5%. However, smaller tracts showed more variability, with the coefficients of variation of some DTI metrics reaching 10%. The results suggest the feasibility of standardizing DTI across 3T scanners from different MR imaging vendors in a large-scale neuroimaging research study. © 2017 by American Journal of Neuroradiology.

  12. Modified free volume theory of self-diffusion and molecular theory of shear viscosity of liquid carbon dioxide.

    PubMed

    Nasrabad, Afshin Eskandari; Laghaei, Rozita; Eu, Byung Chan

    2005-04-28

    In previous work on the density fluctuation theory of transport coefficients of liquids, it was necessary to use empirical self-diffusion coefficients to calculate the transport coefficients (e.g., shear viscosity of carbon dioxide). In this work, the necessity of empirical input of the self-diffusion coefficients in the calculation of shear viscosity is removed, and the theory is thus made a self-contained molecular theory of transport coefficients of liquids, albeit it contains an empirical parameter in the subcritical regime. The required self-diffusion coefficients of liquid carbon dioxide are calculated by using the modified free volume theory for which the generic van der Waals equation of state and Monte Carlo simulations are combined to accurately compute the mean free volume by means of statistical mechanics. They have been computed as a function of density along four different isotherms and isobars. A Lennard-Jones site-site interaction potential was used to model the molecular carbon dioxide interaction. The density and temperature dependence of the theoretical self-diffusion coefficients are shown to be in excellent agreement with experimental data when the minimum critical free volume is identified with the molecular volume. The self-diffusion coefficients thus computed are then used to compute the density and temperature dependence of the shear viscosity of liquid carbon dioxide by employing the density fluctuation theory formula for shear viscosity as reported in an earlier paper (J. Chem. Phys. 2000, 112, 7118). The theoretical shear viscosity is shown to be robust and yields excellent density and temperature dependence for carbon dioxide. The pair correlation function appearing in the theory has been computed by Monte Carlo simulations.

  13. Dependence of radiation belt simulations to assumed radial diffusion rates tested for two empirical models of radial transport

    NASA Astrophysics Data System (ADS)

    Drozdov, Alexander; Shprits, Yuri; Aseev, Nikita; Kellerman, Adam; Reeves, Geoffrey

    2017-04-01

    Radial diffusion is one of the dominant physical mechanisms that drives acceleration and loss of the radiation belt electrons, which makes it very important for nowcasting and forecasting space weather models. We investigate the sensitivity of the two parameterizations of the radial diffusion of Brautigam and Albert [2000] and Ozeke et al. [2014] on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB). Following Brautigam and Albert [2000] and Ozeke et al. [2014], we first perform 1-D radial diffusion simulations. Comparison of the simulation results with observations shows that the difference between simulations with either radial diffusion parameterization is small. To take into account effects of local acceleration and loss, we perform 3-D simulations, including pitch-angle, energy and mixed diffusion. We found that the results of 3-D simulations are even less sensitive to the choice of parameterization of radial diffusion rates than the results of 1-D simulations at various energies (from 0.59 to 1.80 MeV). This result demonstrates that the inclusion of local acceleration and pitch-angle diffusion can provide a negative feedback effect, such that the result is largely indistinguishable simulations conducted with different radial diffusion parameterizations. We also perform a number of sensitivity tests by multiplying radial diffusion rates by constant factors and show that such an approach leads to unrealistic predictions of radiation belt dynamics. References Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999ja900344. Ozeke, L. G., I. R. Mann, K. R. Murphy, I. Jonathan Rae, and D. K. Milling (2014), Analytic expressions for ULF wave radiation belt radial diffusion coefficients, J. Geophys. Res. [Space Phys.], 119(3), 1587-1605, doi:10.1002/2013JA019204.

  14. Anomalous diffusion and dynamics of fluorescence recovery after photobleaching in the random-comb model

    NASA Astrophysics Data System (ADS)

    Yuste, S. B.; Abad, E.; Baumgaertner, A.

    2016-07-01

    We address the problem of diffusion on a comb whose teeth display varying lengths. Specifically, the length ℓ of each tooth is drawn from a probability distribution displaying power law behavior at large ℓ ,P (ℓ ) ˜ℓ-(1 +α ) (α >0 ). To start with, we focus on the computation of the anomalous diffusion coefficient for the subdiffusive motion along the backbone. This quantity is subsequently used as an input to compute concentration recovery curves mimicking fluorescence recovery after photobleaching experiments in comblike geometries such as spiny dendrites. Our method is based on the mean-field description provided by the well-tested continuous time random-walk approach for the random-comb model, and the obtained analytical result for the diffusion coefficient is confirmed by numerical simulations of a random walk with finite steps in time and space along the backbone and the teeth. We subsequently incorporate retardation effects arising from binding-unbinding kinetics into our model and obtain a scaling law characterizing the corresponding change in the diffusion coefficient. Finally, we show that recovery curves obtained with the help of the analytical expression for the anomalous diffusion coefficient cannot be fitted perfectly by a model based on scaled Brownian motion, i.e., a standard diffusion equation with a time-dependent diffusion coefficient. However, differences between the exact curves and such fits are small, thereby providing justification for the practical use of models relying on scaled Brownian motion as a fitting procedure for recovery curves arising from particle diffusion in comblike systems.

  15. Molecular dynamics simulation of three plastic additives' diffusion in polyethylene terephthalate.

    PubMed

    Li, Bo; Wang, Zhi-Wei; Lin, Qin-Bao; Hu, Chang-Ying

    2017-06-01

    Accurate diffusion coefficient data of additives in a polymer are of paramount importance for estimating the migration of the additives over time. This paper shows how this diffusion coefficient can be estimated for three plastic additives [2-(2'-hydroxy-5'-methylphenyl) (UV-P), 2,6-di-tert-butyl-4-methylphenol (BHT) and di-(2-ethylhexyl) phthalate (DEHP)] in polyethylene terephthalate (PET) using the molecular dynamics (MD) simulation method. MD simulations were performed at temperatures of 293-433 K. The diffusion coefficient was calculated through the Einstein relationship connecting the data of mean-square displacement at different times. Comparison of the diffusion coefficients simulated by the MD simulation technique, predicted by the Piringer model and experiments, showed that, except for a few samples, the MD-simulated values were in agreement with the experimental values within one order of magnitude. Furthermore, the diffusion process for additives is discussed in detail, and four factors - the interaction energy between additive molecules and PET, fractional free volume, molecular shape and size, and self-diffusion of the polymer - are proposed to illustrate the microscopic diffusion mechanism. The movement trajectories of additives in PET cell models suggested that the additive molecules oscillate slowly rather than hopping for a long time. Occasionally, when a sufficiently large hole was created adjacently, the molecule could undergo spatial motion by jumping into the free-volume hole and consequently start a continuous oscillation and hop. The results indicate that MD simulation is a useful approach for predicting the microstructure and diffusion coefficient of plastic additives, and help to estimate the migration level of additives from PET packaging.

  16. Fractal Theory and Field Cover Experiments: Implications for the Fractal Characteristics and Radon Diffusion Behavior of Soils and Rocks.

    PubMed

    Tan, Wanyu; Li, Yongmei; Tan, Kaixuan; Duan, Xianzhe; Liu, Dong; Liu, Zehua

    2016-12-01

    Radon diffusion and transport through different media is a complex process affected by many factors. In this study, the fractal theories and field covering experiments were used to study the fractal characteristics of particle size distribution (PSD) of six kinds of geotechnical materials (e.g., waste rock, sand, laterite, kaolin, mixture of sand and laterite, and mixture of waste rock and laterite) and their effects on radon diffusion. In addition, the radon diffusion coefficient and diffusion length were calculated. Moreover, new formulas for estimating diffusion coefficient and diffusion length functional of fractal dimension d of PSD were proposed. These results demonstrate the following points: (1) the fractal dimension d of the PSD can be used to characterize the property of soils and rocks in the studies of radon diffusion behavior; (2) the diffusion coefficient and diffusion length decrease with increasing fractal dimension of PSD; and (3) the effectiveness of final covers in reducing radon exhalation of uranium tailings impoundments can be evaluated on the basis of the fractal dimension of PSD of materials.

  17. Hybrid MD-Nernst Planck Model of Alpha-hemolysin Conductance Properties

    NASA Technical Reports Server (NTRS)

    Cozmuta, Ioana; O'Keefer, James T.; Bose, Deepak; Stolc, Viktor

    2006-01-01

    Motivated by experiments in which an applied electric field translocates polynucleotides through an alpha-hemolysin protein channel causing ionic current transient blockade, a hybrid simulation model is proposed to predict the conductance properties of the open channel. Time scales corresponding to ion permeation processes are reached using the Poisson-Nemst-Planck (PNP) electro-diffusion model in which both solvent and local ion concentrations are represented as a continuum. The diffusion coefficients of the ions (K(+) and Cl(-)) input in the PNP model are, however, calculated from all-atom molecular dynamics (MD). In the MD simulations, a reduced representation of the channel is used. The channel is solvated in a 1 M KCI solution, and an external electric field is applied. The pore specific diffusion coefficients for both ionic species are reduced 5-7 times in comparison to bulk values. Significant statistical variations (17-45%) of the pore-ions diffusivities are observed. Within the statistics, the ionic diffusivities remain invariable for a range of external applied voltages between 30 and 240mV. In the 2D-PNP calculations, the pore stem is approximated by a smooth cylinder of radius approx. 9A with two constriction blocks where the radius is reduced to approx. 6A. The electrostatic potential includes the contribution from the atomistic charges. The MD-PNP model shows that the atomic charges are responsible for the rectifying behaviour and for the slight anion selectivity of the a-hemolysin pore. Independent of the hierarchy between the anion and cation diffusivities, the anionic contribution to the total ionic current will dominate. The predictions of the MD-PNP model are in good agreement with experimental data and give confidence in the present approach of bridging time scales by combining a microscopic and macroscopic model.

  18. Measurement of diffusion coefficients of VOCs for building materials: review and development of a calculation procedure.

    PubMed

    Haghighat, F; Lee, C S; Ghaly, W S

    2002-06-01

    The measurement and prediction of building material emission rates have been the subject of intensive research over the past decade, resulting in the development of advanced sensory and chemical analysis measurement techniques as well as the development of analytical and numerical models. One of the important input parameters for these models is the diffusion coefficient. Several experimental techniques have been applied to estimate the diffusion coefficient. An extensive literature review of the techniques used to measure this coefficient was carried out, for building materials exposed to volatile organic compounds (VOC). This paper reviews these techniques; it also analyses the results and discusses the possible causes of difference in the reported data. It was noted that the discrepancy between the different results was mainly because of the assumptions made in and the techniques used to analyze the data. For a given technique, the results show that there can be a difference of up to 700% in the reported data. Moreover, the paper proposes what is referred to as the mass exchanger method, to calculate diffusion coefficients considering both diffusion and convection. The results obtained by this mass exchanger method were compared with those obtained by the existing method considering only diffusion. It was demonstrated that, for porous materials, the convection resistance could not be ignored when compared with the diffusion resistance.

  19. Apparent Diffusion Coefficient and Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Pancreatic Cancer: Characteristics and Correlation With Histopathologic Parameters.

    PubMed

    Ma, Wanling; Li, Na; Zhao, Weiwei; Ren, Jing; Wei, Mengqi; Yang, Yong; Wang, Yingmei; Fu, Xin; Zhang, Zhuoli; Larson, Andrew C; Huan, Yi

    2016-01-01

    To clarify diffusion and perfusion abnormalities and evaluate correlation between apparent diffusion coefficient (ADC), MR perfusion and histopathologic parameters of pancreatic cancer (PC). Eighteen patients with PC underwent diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Parameters of DCE-MRI and ADC of cancer and non-cancerous tissue were compared. Correlation between the rate constant that represents transfer of contrast agent from the arterial blood into the extravascular extracellular space (K, volume of the extravascular extracellular space per unit volume of tissue (Ve), and ADC of PC and histopathologic parameters were analyzed. The rate constant that represents transfer of contrast agent from the extravascular extracellular space into blood plasma, K, tissue volume fraction occupied by vascular space, and ADC of PC were significantly lower than nontumoral pancreases. Ve of PC was significantly higher than that of nontumoral pancreas. Apparent diffusion coefficient and K values of PC were negatively correlated to fibrosis content and fibroblast activation protein staining score. Fibrosis content was positively correlated to Ve. Apparent diffusion coefficient values and parameters of DCE-MRI can differentiate PC from nontumoral pancreases. There are correlations between ADC, K, Ve, and fibrosis content of PC. Fibroblast activation protein staining score of PC is negatively correlated to ADC and K. Apparent diffusion coefficient, K, and Ve may be feasible to predict prognosis of PC.

  20. An improved strip FRAP method for estimating diffusion coefficients: correcting for the degree of photobleaching.

    PubMed

    Yang, J; Köhler, K; Davis, D M; Burroughs, N J

    2010-06-01

    Fluorescence recovery after photobleaching is a widely established method for the estimation of diffusion coefficients, strip bleaching with an associated recovery curve analysis being one of the simplest techniques. However, its implementation requires near 100% bleaching in the region of interest with negligible fluorescence loss outside, both constraints being hard to achieve concomitantly for fast diffusing molecules. We demonstrate that when these requirements are not met there is an error in the estimation of the diffusion coefficient D, either an under- or overestimation depending on which assumption is violated the most. We propose a simple modification to the recovery curve analysis incorporating the concept of the relative bleached mass m giving a revised recovery time parametrization tau=m(2)w(2)/4piD for a strip of width w. This modified model removes the requirement of 100% bleaching in the region of interest and allows for limited diffusion of the fluorophore during bleaching. We validate our method by estimating the (volume) diffusion coefficient of FITC-labelled IgG in 60% glycerol solution, D= 4.09 +/- 0.21 microm(2) s(-1), and the (surface) diffusion coefficient of a green-fluorescent protein-tagged class I MHC protein expressed at the surface of a human B cell line, D= 0.32 +/- 0.03 microm(2) s(-1) for a population of cells.

  1. Approximation of effective moisture-diffusion coefficient to characterize performance of a barrier coating

    NASA Astrophysics Data System (ADS)

    Nagai, Shingo

    2013-11-01

    We report estimation of the effective diffusion coefficient of moisture through a barrier coating to develop an encapsulation technology for the thin-film electronics industry. This investigation targeted a silicon oxide (SiOx) film that was deposited on a plastic substrate by a large-process-area web coater. Using the finite difference method based on diffusion theory, our estimation of the effective diffusion coefficient of a SiOx film corresponded to that of bulk glass that was previously reported. This result suggested that the low diffusivities of barrier films can be obtained on a mass-production level in the factory. In this investigation, experimental observations and mathematical confirmation revealed the limit of the water vapor transmission rate on the single barrier coating.

  2. Calculation of the fractional interstitial component of boron diffusion and segregation coefficient of boron in Si0.8Ge0.2

    NASA Astrophysics Data System (ADS)

    Fang, Tilden T.; Fang, Wingra T. C.; Griffin, Peter B.; Plummer, James D.

    1996-02-01

    Investigation of boron diffusion in strained silicon germanium buried layers reveals a fractional interstitial component of boron diffusion (fBI) in Se0.8Ge0.2 approximately equal to the fBI value in silicon. In conjunction with computer-simulated boron profiles, the results yield an absolute lower-bound of fBI in Si0.8Ge0.2 of ˜0.8. In addition, the experimental methodology provides a unique vehicle for measuring the segregation coefficient; oxidation-enhanced diffusion is used instead of an extended, inert anneal to rapidly diffuse the dopant to equilibrium levels across the interface, allowing the segregation coefficient to be measured more quickly.

  3. Note on coefficient matrices from stochastic Galerkin methods for random diffusion equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Tao, E-mail: tzhou@lsec.cc.ac.c; Tang Tao, E-mail: ttang@hkbu.edu.h

    2010-11-01

    In a recent work by Xiu and Shen [D. Xiu, J. Shen, Efficient stochastic Galerkin methods for random diffusion equations, J. Comput. Phys. 228 (2009) 266-281], the Galerkin methods are used to solve stochastic diffusion equations in random media, where some properties for the coefficient matrix of the resulting system are provided. They also posed an open question on the properties of the coefficient matrix. In this work, we will provide some results related to the open question.

  4. Separation of Electric Fields Into Potential and Inductive Parts, and Implications for Radial Diffusion

    NASA Astrophysics Data System (ADS)

    Chan, A. A.; Ilie, R.; Elkington, S. R.; Albert, J.; Huie, W.

    2017-12-01

    It has been traditional to separate radiation belt radial-diffusion coefficients into two contributions: an "electrostatic" diffusion coefficient, which is assumed to be due to a potential (non-inductive) electric field, and an "electromagnetic" diffusion coefficient , which is assumed to be due to the combined effect of an inductive electric field and the corresponding time-dependent magnetic field. One difficulty in implementing this separation when using magnetospheric fields obtained from measurements, or from MHD simulations, is that only the total electric field is given; the separation of the electric field into potential and inductive parts is not readily available. In this work we separate the electric field using a numerical method based on the Helmholtz decomposition of the total motional electric field calculated by the BATS-R-US MHD code. The inner boundary for the electric potential is based on the Ridley Ionospheric Model solution and we assume floating boundary conditions in the solar wind. Using different idealized solar wind drivers, including a solar wind density that is oscillating at a single frequency or with a broad spectrum of frequencies, we calculate potential and inductive electric fields, electric and magnetic power spectral densities, and corresponding radial diffusion coefficients. Simulations driven by idealized solar wind conditions show a clear separation of the potential and inductive contributions to the power spectral densities and diffusion coefficients. Simulations with more realistic solar wind drivers are underway to better assess the use of electrostatic and electromagnetic diffusion coefficients in understanding ULF wave-particle interactions in Earth's radiation belts.

  5. The Effect of a Fluorophore Photo-Physics on the Lipid Vesicle Diffusion Coefficient Studied by Fluorescence Correlation Spectroscopy.

    PubMed

    Drabik, Dominik; Przybyło, Magda; Sikorski, Aleksander; Langner, Marek

    2016-03-01

    Fluorescence Correlation Spectroscopy (FCS) is a technique, which allows determination of the diffusion coefficient and concentration of fluorescent objects suspended in the solution. The measured parameter is the fluctuation of the fluorescence signal emitted by diffusing molecules. When 100 nm DOPC vesicles labeled with various fluorescent dyes (Fluorescein-PE, NBD-PE, Atto488 DOPE or βBodipy FL) were measured, different values of diffusion coefficients have been obtained. These diffusion coefficients were different from the expected values measured using the dynamic light scattering method (DLS). The FCS was initially developed for solutions containing small fluorescent molecules therefore the observed inconsistency may result from the nature of vesicle suspension itself. The duration of the fluorescence signal may depend on the following factors: the exposure time of the labeled object to the excitation beam, the photo-physical properties (e.g., stability) of a fluorophore, the theoretical model used for the calculations of the diffusion coefficient and optical properties of the vesicle suspension. The diffusion coefficients determined for differently labeled liposomes show that its dependence on vesicle size and quantity of fluorescent probed used for labeling was significant demonstrating that the fluorescence properties of the fluorophore itself (bleaching and/or blinking) were critical factors for a correct outcome of FCS experiment. The new, based on combined FCS and DLS measurements, method for the determination of the focal volume prove itself to be useful for the evaluation of a fluorescence dye with respect to its applicability for FCS experiment.

  6. Effects of molecular size and structure on self-diffusion coefficient and viscosity for saturated hydrocarbons having six carbon atoms.

    PubMed

    Iwahashi, Makio; Kasahara, Yasutoshi

    2007-01-01

    Self-diffusion coefficients and viscosities for the saturated hydrocarbons having six carbon atoms such as hexane, 2-methylpentane (2MP), 3-methylpentane (3MP), 2,2-dimethylbutane (22DMB), 2,3-dimethylbutane (23DMB), methylcyclopentane (McP) and cyclohexane (cH) were measured at various constant temperatures; obtained results were discussed in connection with their molar volumes, molecular structures and thermodynamic properties. The values of self-diffusion coefficients as the microscopic property were inversely proportional to those of viscosities as the macroscopic property. The order of their viscosities was almost same to those of their melting temperatures and enthalpies of fusion, which reflect the attractive interactions among their molecules. On the other hand, the order of the self-diffusion coefficients inversely related to the order of the melting temperatures and the enthalpies of the fusion. Namely, the compound having the larger attractive interaction mostly shows the less mobility in its liquid state, e.g., cyclohexane (cH), having the largest attractive interaction and the smallest molar volume exhibits an extremely large viscosity and small self-diffusion coefficient comparing with other hydrocarbons. However, a significant exception was 22DMB, being most close to a sphere: In spite of the smallest attractive interaction and the largest molar volume of 22DMB in the all samples, it has the thirdly larger viscosity and the thirdly smaller self-diffusion coefficient. Consequently, the dynamical properties such as self-diffusion and viscosity for the saturated hydrocarbons are determined not only by their attractive interactions but also by their molecular structures.

  7. Relativistic collective diffusion in one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Lin, Gui-Wu; Lam, Yu-Yiu; Zheng, Dong-Qin; Zhong, Wei-Rong

    2018-05-01

    The relativistic collective diffusion in one-dimensional molecular system is investigated through nonequilibrium molecular dynamics with Monte Carlo methods. We have proposed the relationship among the speed, the temperature, the density distribution and the collective diffusion coefficient of particles in a relativistic moving system. It is found that the relativistic speed of the system has no effect on the temperature, but the collective diffusion coefficient decreases to zero as the velocity of the system approaches to the speed of light. The collective diffusion coefficient is modified as D‧ = D(1 ‑w2 c2 )3 2 for satisfying the relativistic circumstances. The present results may contribute to the understanding of the behavior of the particles transport diffusion in a high speed system, as well as enlighten the study of biological metabolism at relativistic high speed situation.

  8. Macromolecule diffusion and confinement in prokaryotic cells.

    PubMed

    Mika, Jacek T; Poolman, Bert

    2011-02-01

    We review recent observations on the mobility of macromolecules and their spatial organization in live bacterial cells. We outline the major fluorescence microscopy-based methods to determine the mobility and thus the diffusion coefficients (D) of molecules, which is not trivial in small cells. The extremely high macromolecule crowding of prokaryotes is used to rationalize the reported lower diffusion coefficients as compared to eukaryotes, and we speculate on the nature of the barriers for diffusion observed for proteins (and mRNAs) in vivo. Building on in vitro experiments and modeling studies, we evaluate the size dependence of diffusion coefficients for macromolecules in vivo, in case of both water-soluble and integral membrane proteins. We comment on the possibilities of anomalous diffusion and provide examples where the macromolecule mobility may be limiting biological processes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Self diffusion of alkaline-Earth in Ca-Mg-aluminosilicate melts: Experimental improvements on the determination of the self-diffusion coefficients

    NASA Technical Reports Server (NTRS)

    Paillat, O.; Wasserburg, G. J.

    1993-01-01

    Experimental studies of self-diffusion isotopes in silicate melts often have quite large uncertainties when comparing one study to another. We designed an experiment in order to improve the precision of the results by simultaneously studying several elements (Mg, Ca, Sr, Ba) during the same experiment thereby greatly reducing the relative experimental uncertainties. Results show that the uncertainties on the diffusion coefficients can be reduced to 10 percent, allowing a more reliable comparison of differences of self-diffusion coefficients of the elements. This type of experiment permits us to study precisely and simultaneously several elements with no restriction on any element. We also designed an experiment to investigate the possible effects of multicomponent diffusion during Mg self-diffusion experiments by comparing cases where the concentrations of the elements and the isotopic compositions are different. The results suggest that there are differences between the effective means of transport. This approach should allow us to investigate the importance of multicomponent diffusion in silicate melts.

  10. Diffusion Coefficients from Molecular Dynamics Simulations in Binary and Ternary Mixtures

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Schnell, Sondre K.; Simon, Jean-Marc; Krüger, Peter; Bedeaux, Dick; Kjelstrup, Signe; Bardow, André; Vlugt, Thijs J. H.

    2013-07-01

    Multicomponent diffusion in liquids is ubiquitous in (bio)chemical processes. It has gained considerable and increasing interest as it is often the rate limiting step in a process. In this paper, we review methods for calculating diffusion coefficients from molecular simulation and predictive engineering models. The main achievements of our research during the past years can be summarized as follows: (1) we introduced a consistent method for computing Fick diffusion coefficients using equilibrium molecular dynamics simulations; (2) we developed a multicomponent Darken equation for the description of the concentration dependence of Maxwell-Stefan diffusivities. In the case of infinite dilution, the multicomponent Darken equation provides an expression for [InlineEquation not available: see fulltext.] which can be used to parametrize the generalized Vignes equation; and (3) a predictive model for self-diffusivities was proposed for the parametrization of the multicomponent Darken equation. This equation accurately describes the concentration dependence of self-diffusivities in weakly associating systems. With these methods, a sound framework for the prediction of mutual diffusion in liquids is achieved.

  11. Film cooling performance of a row of dual-fanned holes at various injection angles

    NASA Astrophysics Data System (ADS)

    Li, Guangchao; Wang, Haofeng; Zhang, Wei; Kou, Zhihai; Xu, Rangshu

    2017-10-01

    Film cooling performance about a row of dual-fanned holes with injection angles of 30°, 60 ° and 90° were experimentally investigated at blowing ratios of 1.0 and 2.0. Dual-fanned hole is a novel shaped hole which has both inlet expansion and outlet expansion. A transient thermochromic liquid crystal technique was used to reveal the local values of film cooling effectiveness and heat transfer coefficient. The results show that injection angles have strong influence on the two dimensional distributions of film cooling effectiveness and heat transfer coefficient. For the small injection angle of 30 degree and small blowing ratio of 1.0, there is only a narrow spanwise region covered with film. The increase of injection angle and blowing ratio both leads to the enhanced spanwise film diffusion, but reduced local cooling ability far away from the hole. Injection angles have comprehensive influence on the averaged film cooling effectiveness for various x/d locations. As injection angles are 30 and 60 degree, two bands of high heat transfer coefficients are found in mixing region of the gas and coolant. As injection angle increases to 90 degree, the mixing leads to the enhanced heat transfer region near the film hole. The averaged heat transfer coefficient increases with the increase of injection angle.

  12. Partitioning and diffusion of PBDEs through an HDPE geomembrane.

    PubMed

    Rowe, R Kerry; Saheli, Pooneh T; Rutter, Allison

    2016-09-01

    Polybrominated diphenyl ether (PBDE) has been measured in MSW landfill leachate and its migration through a modern landfill liner has not been investigated previously. To assure environmental protection, it is important to evaluate the efficacy of landfill liners for controlling the release of PBDE to the environment to a negligible level. The partitioning and diffusion of a commercial mixture of PBDEs (DE-71: predominantly containing six congeners) with respect to a high-density polyethylene (HDPE) geomembrane is examined. The results show that the partitioning coefficients of the six congeners in this mixture range from 700,000 to 7,500,000 and the diffusion coefficients range from 1.3 to 6.0×10(-15)m(2)/s depending on the congener. This combination of very high partitioning coefficients and very low diffusion coefficients suggest that a well constructed HDPE geomembrane liner will be an extremely effective barrier for PBDEs with respect to diffusion from a municipal solid waste landfill, as illustrated by an example. The results for pure diffusion scenario showed that the congeners investigated meet the guidelines by at least a factor of three for an effective geomembrane liner where diffusion is the controlling transport mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effect of component substitution on the atomic dynamics in glass-forming binary metallic melts

    NASA Astrophysics Data System (ADS)

    Nowak, B.; Holland-Moritz, D.; Yang, F.; Voigtmann, Th.; Evenson, Z.; Hansen, T. C.; Meyer, A.

    2017-08-01

    We investigate the substitution of early transition metals (Zr, Hf, and Nb) in Ni-based binary glass-forming metallic melts and the impact on structural and dynamical properties by using a combination of neutron scattering, electrostatic levitation (ESL), and isotopic substitution. The self-diffusion coefficients measured by quasielastic neutron scattering (QENS) identify a sluggish diffusion as well as an increased activation energy by almost a factor of 2 for Hf35Ni65 compared to Zr36Ni64 . This finding can be explained by the locally higher packing density of Hf atoms in Hf35Ni65 compared to Zr atoms in Zr36Ni64 , which has been derived from interatomic distances by analyzing the measured partial structure factors. Furthermore, QENS measurements of liquid Hf35Ni65 prepared with 60Ni , which has a vanishing incoherent scattering cross section, have demonstrated that self-diffusion of Hf is slowed down compared to the concentration weighted self-diffusion of Hf and Ni. This implies a dynamical decoupling between larger Hf and smaller Ni atoms, which can be related to a saturation effect of unequal atomic nearest-neighbor pairs, that was observed recently for Ni-rich compositions in Zr-Ni metallic melts. In order to establish a structure-dynamics relation, measured partial structure factors have been used as an input for mode-coupling theory (MCT) of the glass transition to calculate self-diffusion coefficients for the different atomic components. Remarkably, MCT can reproduce the increased activation energy for Hf35Ni65 as well as the dynamical decoupling between Hf and Ni atoms.

  14. DIFF--A 7090 Fortran Program to Determine Neutron Diffusion Constants Relating to a Six-Group Calculation; DIFF--UN PROGRAMME FOR TRAN 7090 POUR DETERMINER LES CONSTANTES DE DIFFUSION NEUTRONIQUE RELATIVES A UN CALCUL A SIX GROUPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plelnevaux, C.

    The computer program DIFF, in Fortran for the IBM 7090, for calculating the neutron diffusion coefficients and attenuation areas (L/sup 2/) necessary for multigroup diffusion calculations for reactor shielding is described. Diffusion coefficients and values of the inverse attenuation length are given for a six group calculation for several interesting shielding materials. (D.C.W.)

  15. Thermal diffusion behavior of nonionic surfactants in water.

    PubMed

    Ning, Hui; Kita, Rio; Kriegs, Hartmut; Luettmer-Strathmann, Jutta; Wiegand, Simone

    2006-06-08

    We studied the thermal diffusion behavior of hexaethylene glycol monododecyl ether (C12E6) in water by means of thermal diffusion forced Rayleigh scattering (TDFRS) and determined Soret coefficients, thermal diffusion coefficients, and diffusion constants at different temperatures and concentrations. At low surfactant concentrations, the measured Soret coefficient is positive, which implies that surfactant micelles move toward the cold region in a temperature gradient. For C12E6/water at a high surfactant concentration of w1 = 90 wt % and a temperature of T = 25 degrees C, however, a negative Soret coefficient S(T) was observed. Because the concentration part of the TDFRS diffraction signal for binary systems is expected to consist of a single mode, we were surprised to find a second, slow mode for C12E6/water system in a certain temperature and concentration range. To clarify the origin of this second mode, we investigated also, tetraethylene glycol monohexyl ether (C6E4), tetraethylene glycol monooctyl ether (C8E4), pentaethylene glycol monododecyl ether (C12E5), and octaethylene glycol monohexadecyl ether (C16E8) and compared the results with the previous results for octaethylene glycol monodecyl ether (C10E8). Except for C6E4 and C10E8, a second slow mode was observed in all systems usually for state points close to the phase boundary. The diffusion coefficient and Soret coefficient derived from the fast mode can be identified as the typical mutual diffusion and Soret coefficients of the micellar solutions and compare well with the independently determined diffusion coefficients in a dynamic light scattering experiment. Experiments with added salt show that the slow mode is suppressed by the addition of w(NaCl) = 0.02 mol/L sodium chloride. This suggests that the slow mode is related to the small amount of absorbing ionic dye, less than 10(-5) by weight, which is added in TDFRS experiments to create a temperature grating. The origin of the slow mode of the TDFRS signal will be tentatively interpreted in terms of a ternary mixture of neutral micelles, dye-charged micelles, and water.

  16. Short-time self-diffusion coefficient of a particle in a colloidal suspension bounded by a microchannel: Virial expansions and simulation

    NASA Astrophysics Data System (ADS)

    Kȩdzierski, Marcin; Wajnryb, Eligiusz

    2011-10-01

    Self-diffusion of colloidal particles confined to a cylindrical microchannel is considered theoretically and numerically. Virial expansion of the self-diffusion coefficient is performed. Two-body and three-body hydrodynamic interactions are evaluated with high precision using the multipole method. The multipole expansion algorithm is also used to perform numerical simulations of the self-diffusion coefficient, valid for all possible particle packing fractions. Comparison with earlier results shows that the widely used method of reflections is insufficient for calculations of hydrodynamic interactions even for small packing fractions and small particles radii, contrary to the prevalent opinion.

  17. Oxygen chemical diffusion in hypo-stoichiometric MOX

    NASA Astrophysics Data System (ADS)

    Kato, Masato; Morimoto, Kyoichi; Tamura, Tetsuya; Sunaoshi, Takeo; Konashi, Kenji; Aono, Shigenori; Kashimura, Motoaki

    2009-06-01

    Kinetics of the oxygen-to-metal ratio change in (U 0.8Pu 0.2)O 2-x and (U 0.7Pu 0.3)O 2-x was evaluated in the temperature range of 1523-1623 K using a thermo-gravimetric technique. The oxygen chemical diffusion coefficients were decided as a function of temperature from the kinetics of the reduction process under a hypo-stoichiometric composition. The diffusion coefficient of (U 0.7Pu 0.3)O 2-x was smaller than that of (U 0.8Pu 0.2)O 2-x. No strong dependence was observed for the diffusion coefficient on the O/M variation of samples.

  18. Compressor Performance Scaling in the Presence of Non-Uniform Flow

    NASA Astrophysics Data System (ADS)

    Hill, David Jarrod

    Fuselage-embedded engines in future aircraft will see increased flow distortions due to the ingestion of airframe boundary layers. This reduces the required propulsive power compared to podded engines. Inlet flow distortions mean that localized regions of flow within the fan and first stage compressor are operating at off-design conditions. It is important to weigh the benefit of increased vehicle propulsive efficiency against the resultant reduction in engine efficiency. High computational cost has limited most past research to single distortion studies. The objective of this thesis is to extract scaling laws for transonic compressor performance in the presence of various distortion patterns and intensities. The machine studied is the NASA R67 transonic compressor. Volumetric source terms are used to model rotor and stator blade rows. The modelling approach is an innovative combination of existing flow turning and loss models, combined with a compressible flow correction. This approach allows for a steady calculation to capture distortion transfer; as a result, the computational cost is reduced by two orders of magnitude. At peak efficiency, the rotor work coefficient and isentropic efficiency are matched within 1.4% of previously published experimental results. A key finding of this thesis is that, in non-uniform flow, the state-of-the-art loss model employed is unable to capture the impact of variations in local flow coefficient, limiting the analysis of local entropy generation. New insight explains the mechanism governing the interaction between a total temperature distortion and a compressor rotor. A parametric study comprising 16 inlet distortions reveals that for total temperature distortions, upstream flow redistribution and rotor diffusion factor changes are shown to scale linearly with distortion severity. Linear diffusion factor scaling does not hold true for total pressure distortions. For combined total temperature and total pressure distortions, the changes in rotor diffusion factor are predicted by the summation of the individual distortions, within 3.65%.

  19. Optimization of cell morphology measurement via single-molecule tracking PALM.

    PubMed

    Frost, Nicholas A; Lu, Hsiangmin E; Blanpied, Thomas A

    2012-01-01

    In neurons, the shape of dendritic spines relates to synapse function, which is rapidly altered during experience-dependent neural plasticity. The small size of spines makes detailed measurement of their morphology in living cells best suited to super-resolution imaging techniques. The distribution of molecular positions mapped via live-cell Photoactivated Localization Microscopy (PALM) is a powerful approach, but molecular motion complicates this analysis and can degrade overall resolution of the morphological reconstruction. Nevertheless, the motion is of additional interest because tracking single molecules provides diffusion coefficients, bound fraction, and other key functional parameters. We used Monte Carlo simulations to examine features of single-molecule tracking of practical utility for the simultaneous determination of cell morphology. We find that the accuracy of determining both distance and angle of motion depend heavily on the precision with which molecules are localized. Strikingly, diffusion within a bounded region resulted in an inward bias of localizations away from the edges, inaccurately reflecting the region structure. This inward bias additionally resulted in a counterintuitive reduction of measured diffusion coefficient for fast-moving molecules; this effect was accentuated by the long camera exposures typically used in single-molecule tracking. Thus, accurate determination of cell morphology from rapidly moving molecules requires the use of short integration times within each image to minimize artifacts caused by motion during image acquisition. Sequential imaging of neuronal processes using excitation pulses of either 2 ms or 10 ms within imaging frames confirmed this: processes appeared erroneously thinner when imaged using the longer excitation pulse. Using this pulsed excitation approach, we show that PALM can be used to image spine and spine neck morphology in living neurons. These results clarify a number of issues involved in interpretation of single-molecule data in living cells and provide a method to minimize artifacts in single-molecule experiments.

  20. Diffusion relaxation times of nonequilibrium isolated small bodies and their solid phase ensembles to equilibrium states

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2017-08-01

    The possibility of obtaining analytical estimates in a diffusion approximation of the times needed by nonequilibrium small bodies to relax to their equilibrium states based on knowledge of the mass transfer coefficient is considered. This coefficient is expressed as the product of the self-diffusion coefficient and the thermodynamic factor. A set of equations for the diffusion transport of mixture components is formulated, characteristic scales of the size of microheterogeneous phases are identified, and effective mass transfer coefficients are constructed for them. Allowing for the developed interface of coexisting and immiscible phases along with the porosity of solid phases is discussed. This approach can be applied to the diffusion equalization of concentrations of solid mixture components in many physicochemical systems: the mutual diffusion of components in multicomponent systems (alloys, semiconductors, solid mixtures of inert gases) and the mass transfer of an absorbed mobile component in the voids of a matrix consisting of slow components or a mixed composition of mobile and slow components (e.g., hydrogen in metals, oxygen in oxides, and the transfer of molecules through membranes of different natures, including polymeric).

  1. Study of Water Absorption in Raffia vinifera Fibres from Bandjoun, Cameroon

    PubMed Central

    Sikame Tagne, N. R.; Njeugna, E.; Fogue, M.; Drean, J.-Y.; Nzeukou, A.; Fokwa, D.

    2014-01-01

    The study is focused on the water diffusion phenomenon through the Raffia vinifera fibre from the stem. The knowledge on the behavior of those fibres in presence of liquid during the realization of biocomposite, is necessary. The parameters like percentage of water gain at the point of saturation, modelling of the kinetic of water absorption, and the effective diffusion coefficient were the main objectives. Along a stem of raffia, twelve zones of sampling were defined. From Fick's 2nd law of diffusion, a new model was proposed and evaluated compared to four other models at a constant temperature of 23°C. From the proposed model, the effective diffusion coefficient was deduced. The percentage of water gain was in the range of 303–662%. The proposed model fitted better to the experimental data. The estimated diffusion coefficient was evaluated during the initial phase and at the final phase. In any cross section located along the stem of Raffia vinifera, it was found that the effective diffusion coefficient increases from the periphery to the centre during the initial and final phases. PMID:24592199

  2. Measurement of CO2 diffusivity for carbon sequestration: a microfluidic approach for reservoir-specific analysis.

    PubMed

    Sell, Andrew; Fadaei, Hossein; Kim, Myeongsub; Sinton, David

    2013-01-02

    Predicting carbon dioxide (CO(2)) security and capacity in sequestration requires knowledge of CO(2) diffusion into reservoir fluids. In this paper we demonstrate a microfluidic based approach to measuring the mutual diffusion coefficient of carbon dioxide in water and brine. The approach enables formation of fresh CO(2)-liquid interfaces; the resulting diffusion is quantified by imaging fluorescence quenching of a pH-dependent dye, and subsequent analyses. This method was applied to study the effects of site-specific variables--CO(2) pressure and salinity levels--on the diffusion coefficient. In contrast to established, macro-scale pressure-volume-temperature cell methods that require large sample volumes and testing periods of hours/days, this approach requires only microliters of sample, provides results within minutes, and isolates diffusive mass transport from convective effects. The measured diffusion coefficient of CO(2) in water was constant (1.86 [± 0.26] × 10(-9) m(2)/s) over the range of pressures (5-50 bar) tested at 26 °C, in agreement with existing models. The effects of salinity were measured with solutions of 0-5 M NaCl, where the diffusion coefficient varied up to 3 times. These experimental data support existing theory and demonstrate the applicability of this method for reservoir-specific testing.

  3. Statistical theory of diffusion in concentrated bcc and fcc alloys and concentration dependencies of diffusion coefficients in bcc alloys FeCu, FeMn, FeNi, and FeCr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaks, V. G.; Khromov, K. Yu., E-mail: khromov-ky@nrcki.ru; Pankratov, I. R.

    2016-07-15

    The statistical theory of diffusion in concentrated bcc and fcc alloys with arbitrary pairwise interatomic interactions based on the master equation approach is developed. Vacancy–atom correlations are described using both the second-shell-jump and the nearest-neighbor-jump approximations which are shown to be usually sufficiently accurate. General expressions for Onsager coefficients in terms of microscopic interatomic interactions and some statistical averages are given. Both the analytical kinetic mean-field and the Monte Carlo methods for finding these averages are described. The theory developed is used to describe sharp concentration dependencies of diffusion coefficients in several iron-based alloy systems. For the bcc alloys FeCu,more » FeMn, and FeNi, we predict the notable increase of the iron self-diffusion coefficient with solute concentration c, up to several times, even though values of c possible for these alloys do not exceed some percent. For the bcc alloys FeCr at high temperatures T ≳ 1400 K, we show that the very strong and peculiar concentration dependencies of both tracer and chemical diffusion coefficients observed in these alloys can be naturally explained by the theory, without invoking exotic models discussed earlier.« less

  4. Ion conduction mechanisms and thermal properties of hydrated and anhydrous phosphoric acids studied with 1H, 2H, and 31P NMR.

    PubMed

    Aihara, Yuichi; Sonai, Atsuo; Hattori, Mineyuki; Hayamizu, Kikuko

    2006-12-14

    To understand the behaviors of phosphoric acids in fuel cells, the ion conduction mechanisms of phosphoric acids in condensed states without free water and in a monomer state with water were studied by measuring the ionic conductivity (sigma) using AC impedance, thermal properties, and self-diffusion coefficients (D) and spin-lattice relaxation times (T1) with multinuclear NMR. The self-diffusion coefficient of the protons (H+ or H3O+), H2O, and H located around the phosphate were always larger than the diffusion coefficients of the phosphates and the disparity increased with increasing phosphate concentration. The diffusion coefficients of the samples containing D2O paralleled those in the protonated samples. Since the 1H NMR T1 values exhibited a minimum with temperature, it was possible to determine the correlation times and they were found to be of nanosecond order for a distance of nanometer order for a flip. The agreement of the ionic conductivities measured directly and those calculated from the diffusion coefficients indicates that the ion conduction obeys the Nernst-Einstein equation in the condensed phosphoric acids. The proton diffusion plays a dominant role in the ion conduction, especially in the condensed phosphoric acids.

  5. MD simulation study of the diffusion and local structure of n-alkanes in liquid and supercritical methanol at infinite dilution.

    PubMed

    Feng, Huajie; Gao, Wei; Su, Li; Sun, Zhenfan; Chen, Liuping

    2017-06-01

    The diffusion coefficients of 14 n-alkanes (ranging from methane to n-tetradecane) in liquid and supercritical methanol at infinite dilution (at a pressure of 10.5 MPa and at temperatures of 299 K and 515 K) were deduced via molecular dynamics simulations. Values for the radial distribution function, coordination number, and number of hydrogen bonds were then calculated to explore the local structure of each fluid. The flexibility of the n-alkane (as characterized by the computed dihedral distribution, end-to-end distance, and radius of gyration) was found to be a major influence and hydrogen bonding to be a minor influence on the local structure. Hydrogen bonding reduces the flexibility of the n-alkane, whereas increasing the temperature enhances its flexibility, with temperature having a greater effect than hydrogen bonding on flexibility. Graphical abstract The flexibility of the alkane is a major influence and the hydrogen bonding is a minor influence on the first solvation shell; the coordination numbers of long-chain n-alkanes in the first solvation shell are rather low.

  6. Enhanced Carbon Diffusion in Austenitic Stainless Steel Carburized at Low Temperature

    NASA Astrophysics Data System (ADS)

    Ernst, F.; Avishai, A.; Kahn, H.; Gu, X.; Michal, G. M.; Heuer, A. H.

    2009-08-01

    Austenitic stainless steel AISI 316L was carburized by a novel, low-temperature gas-phase process. Using a calibrated scanning Auger microprobe (SAM) analysis of cross-sectional specimens under dynamic sputtering, we determined the fraction-depth profile of carbon. The profile is concave—very different from the shape expected for concentration-independent diffusion—and indicates a carbide-free solid solution with carbon levels up to 15 at. pct and a case depth of ≈30 μm. A Boltzmann-Matano analysis with a careful evaluation of the stochastic and potential systematic errors indicates that increasing levels of carbon significantly enhance carbon diffusion. For the highest carbon level observed (15 at. pct), the carbon diffusion coefficient is more than two orders of magnitude larger than in dilute solution. The most likely explanation for this strong increase is that carbon-induced local expansion of metal-metal atom distances, observed as an expansion of the lattice parameter, reduces the activation energy for carbon diffusion.

  7. What is the alternative to the Alexander-Orbach relation?

    NASA Astrophysics Data System (ADS)

    Sokolov, Igor M.

    2016-03-01

    The Alexander-Orbach (AO) relation d w = 2d f /d s connecting the fractal dimension of a random walk’s (RW) trajectory d w or the exponent of anomalous diffusion α = 2/d w on a fractal structure with the fractal and spectral dimension of the structure itself plays a key role in discussion of dynamical properties of complex systems including living cells and single biomolecules. This relation however does not hold universally and breaks down for some structures like diffusion limited aggregates and Eden trees. We show that the alternative to the AO relation is the explicit dependence of the coefficient of the anomalous diffusion on the system’s size, i.e. the absence of its thermodynamical limit. The prerequisite for its breakdown is the dependence of the local structure of possible steps of the RW on the system’s size. The discussion is illustrated by the examples of diffusion on a Koch curve (AO-conform) and on a Cantor dust (violating AO relation).

  8. Interdiffusion and Intrinsic Diffusion in the Mg-Al System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brennan, Sarah; Bermudez, Katrina; Sohn, Yong Ho

    2012-01-01

    Solid-to-solid diffusion couples were assembled and annealed to examine the diffusion between pure Mg (99.96%) and Al (99.999%). Diffusion anneals were carried out at 300 , 350 , and 400 C for 720, 360, and 240 hours, respectively. Optical and scanning electron microscopes were utilized to identify the formation of the intermetallic phases, -Al12Mg17 and -Al3Mg2 and absence of the -phase in the diffusion couples. Thicknesses of the -Al12Mg17 and -Al3Mg2 phases were measured and the parabolic growth constants were calculated to determine the activation energies for the growth, 165 and 86 KJ/mole, respectively. Concentration profiles were determined with electronmore » microprobe analysis using pure elemental standards. Composition-dependent interdiffusion coefficients in Mg-solid solution, -Al12Mg17 and - Al3Mg2 and Al-solid solutions were calculated based on the Boltzmann-Matano analysis. Average effective interdiffusion coefficients for each phase were also calculated, and the magnitude was the highest for the -Al3Mg2 phase, followed by -Al12Mg17, Al-solid solution and Mg-solid solution. Intrinsic diffusion coefficients based on Huemann s analysis (e.g., marker plane) were determined for the ~38 at.% Mg in the -Al3Mg2 phase. Activation energies and the pre-exponential factors for the inter- and intrinsic diffusion coefficients were calculated for the temperature range examined. The -Al3Mg2 phase was found to have the lowest activation energies for growth and interdiffusion among all four phases studied. At the marker location in the -Al3Mg2 phase, the intrinsic diffusion of Al was found to be faster than that of Mg. Extrapolations of the impurity diffusion coefficients in the terminal solid solutions were made and compared to the available self- and impurity diffusion data from literature. Thermodynamic factor, tracer diffusion coefficients and atomic mobilities at the marker plane composition were approximated using available literature values of Mg activity in the -Al3Mg2 phase.« less

  9. Visualization of hemodynamics and light scattering in exposed brain of rat using multispectral image reconstruction based on Wiener estimation method

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Ishizuka, Tomohiro; Yoshida, Keiichiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu

    2015-07-01

    We investigate a method to estimate the spectral images of reduced scattering coefficients and the absorption coefficients of in vivo exposed brain tissues in the range from visible to near-infrared wavelength (500-760 nm) based on diffuse reflectance spectroscopy using a digital RGB camera. In the proposed method, the multi-spectral reflectance images of in vivo exposed brain are reconstructed from the digital red, green, blue images using the Wiener estimation algorithm. The Monte Carlo simulation-based multiple regression analysis for the absorbance spectra is then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin are estimated as the absorption parameters whereas the scattering amplitude a and the scattering power b in the expression of μs'=aλ-b as the scattering parameters, respectively. The spectra of absorption and reduced scattering coefficients are reconstructed from the absorption and scattering parameters, and finally, the spectral images of absorption and reduced scattering coefficients are estimated. We performed simultaneous recordings of spectral diffuse reflectance images and of the electrophysiological signals for in vivo exposed rat brain during the cortical spreading depression evoked by the topical application of KCl. Changes in the total hemoglobin concentration and the tissue oxygen saturation imply the temporary change in cerebral blood flow during CSD. Change in the reduced scattering coefficient was observed before the profound increase in the total hemoglobin concentration, and its occurrence was synchronized with the negative dc shift of the local field potential.

  10. Sucrose diffusion in aqueous solution

    PubMed Central

    Murray, Benjamin J.

    2016-01-01

    The diffusion of sugar in aqueous solution is important both in nature and in technological applications, yet measurements of diffusion coefficients at low water content are scarce. We report directly measured sucrose diffusion coefficients in aqueous solution. Our technique utilises a Raman isotope tracer method to monitor the diffusion of non-deuterated and deuterated sucrose across a boundary between the two aqueous solutions. At a water activity of 0.4 (equivalent to 90 wt% sucrose) at room temperature, the diffusion coefficient of sucrose was determined to be approximately four orders of magnitude smaller than that of water in the same material. Using literature viscosity data, we show that, although inappropriate for the prediction of water diffusion, the Stokes–Einstein equation works well for predicting sucrose diffusion under the conditions studied. As well as providing information of importance to the fundamental understanding of diffusion in binary solutions, these data have technological, pharmaceutical and medical implications, for example in cryopreservation. Moreover, in the atmosphere, slow organic diffusion may have important implications for aerosol growth, chemistry and evaporation, where processes may be limited by the inability of a molecule to diffuse between the bulk and the surface of a particle. PMID:27364512

  11. High-grade glioma diffusive modeling using statistical tissue information and diffusion tensors extracted from atlases.

    PubMed

    Roniotis, Alexandros; Manikis, Georgios C; Sakkalis, Vangelis; Zervakis, Michalis E; Karatzanis, Ioannis; Marias, Kostas

    2012-03-01

    Glioma, especially glioblastoma, is a leading cause of brain cancer fatality involving highly invasive and neoplastic growth. Diffusive models of glioma growth use variations of the diffusion-reaction equation in order to simulate the invasive patterns of glioma cells by approximating the spatiotemporal change of glioma cell concentration. The most advanced diffusive models take into consideration the heterogeneous velocity of glioma in gray and white matter, by using two different discrete diffusion coefficients in these areas. Moreover, by using diffusion tensor imaging (DTI), they simulate the anisotropic migration of glioma cells, which is facilitated along white fibers, assuming diffusion tensors with different diffusion coefficients along each candidate direction of growth. Our study extends this concept by fully exploiting the proportions of white and gray matter extracted by normal brain atlases, rather than discretizing diffusion coefficients. Moreover, the proportions of white and gray matter, as well as the diffusion tensors, are extracted by the respective atlases; thus, no DTI processing is needed. Finally, we applied this novel glioma growth model on real data and the results indicate that prognostication rates can be improved. © 2012 IEEE

  12. Mechanisms Restricting Diffusion of Intracellular cAMP.

    PubMed

    Agarwal, Shailesh R; Clancy, Colleen E; Harvey, Robert D

    2016-01-22

    Although numerous receptors stimulate cAMP production in a wide array of cells, many elicit distinct, highly localized responses, implying that the subcellular distribution of cAMP is not uniform. One often used explanation is that phosphodiesterases, which breakdown cAMP, act as functional barriers limiting diffusion. However, several studies refute the notion that this is sufficient, suggesting that phosphodiesterase-independent movement of cAMP must occur at rates slower than free diffusion. But, until now this has never been demonstrated. Using Raster Image Correlation Spectroscopy (RICS), we measured the diffusion coefficient of a fluorescently-labeled cAMP derivative (φ450-cAMP) as well as other fluorescent molecules in order to investigate the role that molecular size, cell morphology, and buffering by protein kinase A (PKA) play in restricting cAMP mobility in different cell types. Our results demonstrate that cytosolic movement of cAMP is indeed much slower than the rate of free diffusion and that interactions with PKA, especially type II PKA associated with mitochondria, play a significant role. These findings have important implications with respect to cAMP signaling in all cells.

  13. Mechanisms Restricting Diffusion of Intracellular cAMP

    PubMed Central

    Agarwal, Shailesh R.; Clancy, Colleen E.; Harvey, Robert D.

    2016-01-01

    Although numerous receptors stimulate cAMP production in a wide array of cells, many elicit distinct, highly localized responses, implying that the subcellular distribution of cAMP is not uniform. One often used explanation is that phosphodiesterases, which breakdown cAMP, act as functional barriers limiting diffusion. However, several studies refute the notion that this is sufficient, suggesting that phosphodiesterase-independent movement of cAMP must occur at rates slower than free diffusion. But, until now this has never been demonstrated. Using Raster Image Correlation Spectroscopy (RICS), we measured the diffusion coefficient of a fluorescently-labeled cAMP derivative (φ450-cAMP) as well as other fluorescent molecules in order to investigate the role that molecular size, cell morphology, and buffering by protein kinase A (PKA) play in restricting cAMP mobility in different cell types. Our results demonstrate that cytosolic movement of cAMP is indeed much slower than the rate of free diffusion and that interactions with PKA, especially type II PKA associated with mitochondria, play a significant role. These findings have important implications with respect to cAMP signaling in all cells. PMID:26795432

  14. Metabolic Compartmentation – A System Level Property of Muscle Cells

    PubMed Central

    Saks, Valdur; Beraud, Nathalie; Wallimann, Theo

    2008-01-01

    Problems of quantitative investigation of intracellular diffusion and compartmentation of metabolites are analyzed. Principal controversies in recently published analyses of these problems for the living cells are discussed. It is shown that the formal theoretical analysis of diffusion of metabolites based on Fick's equation and using fixed diffusion coefficients for diluted homogenous aqueous solutions, but applied for biological systems in vivo without any comparison with experimental results, may lead to misleading conclusions, which are contradictory to most biological observations. However, if the same theoretical methods are used for analysis of actual experimental data, the apparent diffusion constants obtained are orders of magnitude lower than those in diluted aqueous solutions. Thus, it can be concluded that local restrictions of diffusion of metabolites in a cell are a system-level properties caused by complex structural organization of the cells, macromolecular crowding, cytoskeletal networks and organization of metabolic pathways into multienzyme complexes and metabolons. This results in microcompartmentation of metabolites, their channeling between enzymes and in modular organization of cellular metabolic networks. The perspectives of further studies of these complex intracellular interactions in the framework of Systems Biology are discussed. PMID:19325782

  15. Diffusion coefficients of rare earth elements in fcc Fe: A first-principles study

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Gao, Xueyun; Ren, Huiping; Chen, Shuming; Yao, Zhaofeng

    2018-01-01

    The diffusion data and corresponding detailed insights are particularly important for the understanding of the related kinetic processes in Fe based alloys, e.g. solute strengthening, phase transition, solution treatment etc. We present a density function theory study of the diffusivity of self and solutes (La, Ce, Y and Nb) in fcc Fe. The five-frequency model was employed to calculate the microscopic parameters in the correlation factors of the solute diffusion. The interactions of the solutes with the first nearest-neighbor vacancy (1nn) are all attractive, and can be well understood on the basis of the combination of the strain-relief effects and the electronic effects. It is found that among the investigated species, Ce is the fastest diffusing solute in fcc Fe matrix followed by Nb, and the diffusion coefficients of these two solutes are about an order of magnitude higher than that of Fe self-diffusion. And the results show that the diffusion coefficient of La is slightly higher than that of Y, and both species are comparable to that of Fe self-diffusion.

  16. Analysis of diffusion and binding in cells using the RICS approach.

    PubMed

    Digman, Michelle A; Gratton, Enrico

    2009-04-01

    The movement of macromolecules in cells is assumed to occur either through active transport or by diffusion. However, the determination of the diffusion coefficients in cells using fluctuation methods or FRAP frequently give diffusion coefficient that are orders of magnitude smaller than the diffusion coefficients measured for the same macromolecule in solution. It is assumed that the cell internal viscosity is partially responsible for this decrease in the apparent diffusion. When the apparent diffusion is too slow to be due to cytoplasm viscosity, it is assumed that weak binding of the macromolecules to immobile or quasi immobile structures is taking place. In this article, we derive equations for fitting of the RICS (Raster-scan Image Correlations Spectroscopy) data in cells to a model that includes transient binding to immobile structures, and we show that under some conditions, the spatio-temporal correlation provided by the RICS approach can distinguish the process of diffusion and weak binding. We apply the method to determine the diffusion in the cytoplasm and binding of Focal Adhesion Kinase-EGFP to adhesions in MEF cells.

  17. Backstepping-based boundary control design for a fractional reaction diffusion system with a space-dependent diffusion coefficient.

    PubMed

    Chen, Juan; Cui, Baotong; Chen, YangQuan

    2018-06-11

    This paper presents a boundary feedback control design for a fractional reaction diffusion (FRD) system with a space-dependent (non-constant) diffusion coefficient via the backstepping method. The contribution of this paper is to generalize the results of backstepping-based boundary feedback control for a FRD system with a space-independent (constant) diffusion coefficient to the case of space-dependent diffusivity. For the boundary stabilization problem of this case, a designed integral transformation treats it as a problem of solving a hyperbolic partial differential equation (PDE) of transformation's kernel, then the well posedness of the kernel PDE is solved for the plant with non-constant diffusivity. Furthermore, by the fractional Lyapunov stability (Mittag-Leffler stability) theory and the backstepping-based boundary feedback controller, the Mittag-Leffler stability of the closed-loop FRD system with non-constant diffusivity is proved. Finally, an extensive numerical example for this closed-loop FRD system with non-constant diffusivity is presented to verify the effectiveness of our proposed controller. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Neutral solute transport across osteochondral interface: A finite element approach.

    PubMed

    Arbabi, Vahid; Pouran, Behdad; Weinans, Harrie; Zadpoor, Amir A

    2016-12-08

    Investigation of the solute transfer across articular cartilage and subchondral bone plate could nurture the understanding of the mechanisms of osteoarthritis (OA) progression. In the current study, we approached the transport of neutral solutes in human (slight OA) and equine (healthy) samples using both computed tomography and biphasic-solute finite element modeling. We developed a multi-zone biphasic-solute finite element model (FEM) accounting for the inhomogeneity of articular cartilage (superficial, middle and deep zones) and subchondral bone plate. Fitting the FEM model to the concentration-time curves of the cartilage and the equilibrium concentration of the subchondral plate/calcified cartilage enabled determination of the diffusion coefficients in the superficial, middle and deep zones of cartilage and subchondral plate. We found slightly higher diffusion coefficients for all zones in the human samples as compared to the equine samples. Generally the diffusion coefficient in the superficial zone of human samples was about 3-fold higher than the middle zone, the diffusion coefficient of the middle zone was 1.5-fold higher than that of the deep zone, and the diffusion coefficient of the deep zone was 1.5-fold higher than that of the subchondral plate/calcified cartilage. Those ratios for equine samples were 9, 2 and 1.5, respectively. Regardless of the species considered, there is a gradual decrease of the diffusion coefficient as one approaches the subchondral plate, whereas the rate of decrease is dependent on the type of species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Mutual diffusion coefficients of heptane isomers in nitrogen: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Chae, Kyungchan; Violi, Angela

    2011-01-01

    The accurate knowledge of transport properties of pure and mixture fluids is essential for the design of various chemical and mechanical systems that include fluxes of mass, momentum, and energy. In this study we determine the mutual diffusion coefficients of mixtures composed of heptane isomers and nitrogen using molecular dynamics (MD) simulations with fully atomistic intermolecular potential parameters, in conjunction with the Green-Kubo formula. The computed results were compared with the values obtained using the Chapman-Enskog (C-E) equation with Lennard-Jones (LJ) potential parameters derived from the correlations of state values: MD simulations predict a maximum difference of 6% among isomers while the C-E equation presents that of 3% in the mutual diffusion coefficients in the temperature range 500-1000 K. The comparison of two approaches implies that the corresponding state principle can be applied to the models, which are only weakly affected by the anisotropy of the interaction potentials and the large uncertainty will be included in its application for complex polyatomic molecules. The MD simulations successfully address the pure effects of molecular structure among isomers on mutual diffusion coefficients by revealing that the differences of the total mutual diffusion coefficients for the six mixtures are caused mainly by heptane isomers. The cross interaction potential parameters, collision diameter σ _{12}, and potential energy well depth \\varepsilon _{12} of heptane isomers and nitrogen mixtures were also computed from the mutual diffusion coefficients.

  20. Transport coefficients in high-temperature ionized air flows with electronic excitation

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Oblapenko, G. P.

    2018-01-01

    Transport coefficients are studied in high-temperature ionized air mixtures using the modified Chapman-Enskog method. The 11-component mixture N2/N2+/N /N+/O2/O2+/O /O+/N O /N O+/e- , taking into account the rotational and vibrational degrees of freedom of molecules and electronic degrees of freedom of both atomic and molecular species, is considered. Using the PAINeT software package, developed by the authors of the paper, in wide temperature range calculations of the thermal conductivity, thermal diffusion, diffusion, and shear viscosity coefficients for an equilibrium ionized air mixture and non-equilibrium flow conditions for mixture compositions, characteristic of those in shock tube experiments and re-entry conditions, are performed. For the equilibrium air case, the computed transport coefficients are compared to those obtained using simplified kinetic theory algorithms. It is shown that neglecting electronic excitation leads to a significant underestimation of the thermal conductivity coefficient at temperatures higher than 25 000 K. For non-equilibrium test cases, it is shown that the thermal diffusion coefficients of neutral species and the self-diffusion coefficients of all species are strongly affected by the mixture composition, while the thermal conductivity coefficient is most strongly influenced by the degree of ionization of the flow. Neglecting electronic excitation causes noticeable underestimation of the thermal conductivity coefficient at temperatures higher than 20 000 K.

  1. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme.

    PubMed

    Ginzburg, Irina

    2017-01-01

    Impact of the unphysical tangential advective-diffusion constraint of the bounce-back (BB) reflection on the impermeable solid surface is examined for the first four moments of concentration. Despite the number of recent improvements for the Neumann condition in the lattice Boltzmann method-advection-diffusion equation, the BB rule remains the only known local mass-conserving no-flux condition suitable for staircase porous geometry. We examine the closure relation of the BB rule in straight channel and cylindrical capillary analytically, and show that it excites the Knudsen-type boundary layers in the nonequilibrium solution for full-weight equilibrium stencil. Although the d2Q5 and d3Q7 coordinate schemes are sufficient for the modeling of isotropic diffusion, the full-weight stencils are appealing for their advanced stability, isotropy, anisotropy and anti-numerical-diffusion ability. The boundary layers are not covered by the Chapman-Enskog expansion around the expected equilibrium, but they accommodate the Chapman-Enskog expansion in the bulk with the closure relation of the bounce-back rule. We show that the induced boundary layers introduce first-order errors in two primary transport properties, namely, mean velocity (first moment) and molecular diffusion coefficient (second moment). As a side effect, the Taylor-dispersion coefficient (second moment), skewness (third moment), and kurtosis (fourth moment) deviate from their physical values and predictions of the fourth-order Chapman-Enskog analysis, even though the kurtosis error in pure diffusion does not depend on grid resolution. In two- and three-dimensional grid-aligned channels and open-tubular conduits, the errors of velocity and diffusion are proportional to the diagonal weight values of the corresponding equilibrium terms. The d2Q5 and d3Q7 schemes do not suffer from this deficiency in grid-aligned geometries but they cannot avoid it if the boundaries are not parallel to the coordinate lines. In order to vanish or attenuate the disparity of the modeled transport coefficients with the equilibrium weights without any modification of the BB rule, we propose to use the two-relaxation-times collision operator with free-tunable product of two eigenfunctions Λ. Two different values Λ_{v} and Λ_{b} are assigned for bulk and boundary nodes, respectively. The rationale behind this is that Λ_{v} is adjustable for stability, accuracy, or other purposes, while the corresponding Λ_{b}(Λ_{v}) controls the primary accommodation effects. Two distinguished but similar functional relations Λ_{b}(Λ_{v}) are constructed analytically: they preserve advection velocity in parabolic profile, exactly in the two-dimensional channel and very accurately in a three-dimensional cylindrical capillary. For any velocity-weight stencil, the (local) double-Λ BB scheme produces quasi-identical solutions with the (nonlocal) specular-forward reflection for first four moments in a channel. In a capillary, this strategy allows for the accurate modeling of the Taylor-dispersion and non-Gaussian effects. As illustrative example, it is shown that in the flow around a circular obstacle, the double-Λ scheme may also vanish the dependency of mean velocity on the velocity weight; the required value for Λ_{b}(Λ_{v}) can be identified in a few bisection iterations in given geometry. A positive solution for Λ_{b}(Λ_{v}) may not exist in pure diffusion, but a sufficiently small value of Λ_{b} significantly reduces the disparity in diffusion coefficient with the mass weight in ducts and in the presence of rectangular obstacles. Although Λ_{b} also controls the effective position of straight or curved boundaries, the double-Λ scheme deals with the lower-order effects. Its idea and construction may help understanding and amelioration of the anomalous, zero- and first-order behavior of the macroscopic solution in the presence of the bulk and boundary or interface discontinuities, commonly found in multiphase flow and heterogeneous transport.

  2. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme

    NASA Astrophysics Data System (ADS)

    Ginzburg, Irina

    2017-01-01

    Impact of the unphysical tangential advective-diffusion constraint of the bounce-back (BB) reflection on the impermeable solid surface is examined for the first four moments of concentration. Despite the number of recent improvements for the Neumann condition in the lattice Boltzmann method-advection-diffusion equation, the BB rule remains the only known local mass-conserving no-flux condition suitable for staircase porous geometry. We examine the closure relation of the BB rule in straight channel and cylindrical capillary analytically, and show that it excites the Knudsen-type boundary layers in the nonequilibrium solution for full-weight equilibrium stencil. Although the d2Q5 and d3Q7 coordinate schemes are sufficient for the modeling of isotropic diffusion, the full-weight stencils are appealing for their advanced stability, isotropy, anisotropy and anti-numerical-diffusion ability. The boundary layers are not covered by the Chapman-Enskog expansion around the expected equilibrium, but they accommodate the Chapman-Enskog expansion in the bulk with the closure relation of the bounce-back rule. We show that the induced boundary layers introduce first-order errors in two primary transport properties, namely, mean velocity (first moment) and molecular diffusion coefficient (second moment). As a side effect, the Taylor-dispersion coefficient (second moment), skewness (third moment), and kurtosis (fourth moment) deviate from their physical values and predictions of the fourth-order Chapman-Enskog analysis, even though the kurtosis error in pure diffusion does not depend on grid resolution. In two- and three-dimensional grid-aligned channels and open-tubular conduits, the errors of velocity and diffusion are proportional to the diagonal weight values of the corresponding equilibrium terms. The d2Q5 and d3Q7 schemes do not suffer from this deficiency in grid-aligned geometries but they cannot avoid it if the boundaries are not parallel to the coordinate lines. In order to vanish or attenuate the disparity of the modeled transport coefficients with the equilibrium weights without any modification of the BB rule, we propose to use the two-relaxation-times collision operator with free-tunable product of two eigenfunctions Λ . Two different values Λv and Λb are assigned for bulk and boundary nodes, respectively. The rationale behind this is that Λv is adjustable for stability, accuracy, or other purposes, while the corresponding Λb(Λv) controls the primary accommodation effects. Two distinguished but similar functional relations Λb(Λv) are constructed analytically: they preserve advection velocity in parabolic profile, exactly in the two-dimensional channel and very accurately in a three-dimensional cylindrical capillary. For any velocity-weight stencil, the (local) double-Λ BB scheme produces quasi-identical solutions with the (nonlocal) specular-forward reflection for first four moments in a channel. In a capillary, this strategy allows for the accurate modeling of the Taylor-dispersion and non-Gaussian effects. As illustrative example, it is shown that in the flow around a circular obstacle, the double-Λ scheme may also vanish the dependency of mean velocity on the velocity weight; the required value for Λb(Λv) can be identified in a few bisection iterations in given geometry. A positive solution for Λb(Λv) may not exist in pure diffusion, but a sufficiently small value of Λb significantly reduces the disparity in diffusion coefficient with the mass weight in ducts and in the presence of rectangular obstacles. Although Λb also controls the effective position of straight or curved boundaries, the double-Λ scheme deals with the lower-order effects. Its idea and construction may help understanding and amelioration of the anomalous, zero- and first-order behavior of the macroscopic solution in the presence of the bulk and boundary or interface discontinuities, commonly found in multiphase flow and heterogeneous transport.

  3. Comparisons among MRI signs, apparent diffusion coefficient, and fractional anisotropy in dogs with a solitary intracranial meningioma or histiocytic sarcoma.

    PubMed

    Wada, Masae; Hasegawa, Daisuke; Hamamoto, Yuji; Yu, Yoshihiko; Fujiwara-Igarashi, Aki; Fujita, Michio

    2017-07-01

    Although MRI has become widely used in small animal practice, little is known about the validity of advanced MRI techniques such as diffusion-weighted imaging and diffusion tensor imaging. The aim of this retrospective analytical observational study was to investigate the characteristics of diffusion parameters, that is the apparent diffusion coefficient and fractional anisotropy, in dogs with a solitary intracranial meningioma or histiocytic sarcoma. Dogs were included based on the performance of diffusion MRI and histological confirmation. Statistical analyses were performed to compare apparent diffusion coefficient and fractional anisotropy for the two types of tumor in the intra- and peritumoral regions. Eleven cases with meningioma and six with histiocytic sarcoma satisfied the inclusion criteria. Significant differences in apparent diffusion coefficient value (× 10 -3 mm 2 /s) between meningioma vs. histiocytic sarcoma were recognized in intratumoral small (1.07 vs. 0.76) and large (1.04 vs. 0.77) regions of interest, in the peritumoral margin (0.93 vs. 1.08), and in the T2 high region (1.21 vs. 1.41). Significant differences in fractional anisotropy values were found in the peritumoral margin (0.29 vs. 0.24) and the T2 high region (0.24 vs. 0.17). The current study identified differences in measurements of apparent diffusion coefficient and fractional anisotropy for meningioma and histiocytic sarcoma in a small sample of dogs. In addition, we observed that all cases of intracranial histiocytic sarcoma showed leptomeningeal enhancement and/or mass formation invading into the sulci in the contrast study. Future studies are needed to determine the sensitivity of these imaging characteristics for differentiating between these tumor types. © 2017 American College of Veterinary Radiology.

  4. An improved procedure for determining grain boundary diffusion coefficients from averaged concentration profiles

    NASA Astrophysics Data System (ADS)

    Gryaznov, D.; Fleig, J.; Maier, J.

    2008-03-01

    Whipple's solution of the problem of grain boundary diffusion and Le Claire's relation, which is often used to determine grain boundary diffusion coefficients, are examined for a broad range of ratios of grain boundary to bulk diffusivities Δ and diffusion times t. Different reasons leading to errors in determining the grain boundary diffusivity (DGB) when using Le Claire's relation are discussed. It is shown that nonlinearities of the diffusion profiles in lnCav-y6/5 plots and deviations from "Le Claire's constant" (-0.78) are the major error sources (Cav=averaged concentration, y =coordinate in diffusion direction). An improved relation (replacing Le Claire's constant) is suggested for analyzing diffusion profiles particularly suited for small diffusion lengths (short times) as often required in diffusion experiments on nanocrystalline materials.

  5. Diffusion kinetics of the glucose/glucose oxidase system in swift heavy ion track-based biosensors

    NASA Astrophysics Data System (ADS)

    Fink, Dietmar; Vacik, Jiri; Hnatowicz, V.; Muñoz Hernandez, G.; Garcia Arrelano, H.; Alfonta, Lital; Kiv, Arik

    2017-05-01

    For understanding of the diffusion kinetics and their optimization in swift heavy ion track-based biosensors, recently a diffusion simulation was performed. This simulation aimed at yielding the degree of enrichment of the enzymatic reaction products in the highly confined space of the etched ion tracks. A bunch of curves was obtained for the description of such sensors that depend only on the ratio of the diffusion coefficient of the products to that of the analyte within the tracks. As hitherto none of these two diffusion coefficients is accurately known, the present work was undertaken. The results of this paper allow one to quantify the previous simulation and hence yield realistic predictions of glucose-based biosensors. At this occasion, also the influence of the etched track radius on the diffusion coefficients was measured and compared with earlier prediction.

  6. Measurement of shear-induced diffusion of red blood cells using dynamic light scattering-optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Tang, Jianbo; Erdener, Sefik Evren; Li, Baoqiang; Fu, Buyin; Sakadzic, Sava; Carp, Stefan A.; Lee, Jonghwan; Boas, David A.

    2018-02-01

    Dynamic Light Scattering-Optical Coherence Tomography (DLS-OCT) takes the advantages of using DLS to measure particle flow and diffusion within an OCT resolution-constrained 3D volume, enabling the simultaneous measurements of absolute RBC velocity and diffusion coefficient with high spatial resolution. In this work, we applied DLS-OCT to measure both RBC velocity and the shear-induced diffusion coefficient within penetrating venules of the somatosensory cortex of anesthetized mice. Blood flow laminar profile measurements indicate a blunted laminar flow profile, and the degree of blunting decreases with increasing vessel diameter. The measured shear-induced diffusion coefficient was proportional to the flow shear rate with a magnitude of 0.1 to 0.5 × 10-6 mm2 . These results provide important experimental support for the recent theoretical explanation for why DCS is dominantly sensitive to RBC diffusive motion.

  7. Comparison of nanoparticle diffusion using fluorescence correlation spectroscopy and differential dynamic microscopy within concentrated polymer solutions

    NASA Astrophysics Data System (ADS)

    Shokeen, Namita; Issa, Christopher; Mukhopadhyay, Ashis

    2017-12-01

    We studied the diffusion of nanoparticles (NPs) within aqueous entangled solutions of polyethylene oxide (PEO) by using two different optical techniques. Fluorescence correlation spectroscopy, a method widely used to investigate nanoparticle dynamics in polymer solution, was used to measure the long-time diffusion coefficient (D) of 25 nm radius particles within high molecular weight, Mw = 600 kg/mol PEO in water solutions. Differential dynamic microscopy (DDM) was used to determine the wave-vector dependent dynamics of NPs within the same polymer solutions. Our results showed good agreement between the two methods, including demonstration of normal diffusion and almost identical diffusion coefficients obtained by both techniques. The research extends the scope of DDM to study the dynamics and rheological properties of soft matter at a nanoscale. The measured diffusion coefficients followed a scaling theory, which can be explained by the coupling between polymer dynamics and NP motion.

  8. The Steady-State Transport of Oxygen through Hemoglobin Solutions

    PubMed Central

    Keller, K. H.; Friedlander, S. K.

    1966-01-01

    The steady-state transport of oxygen through hemoglobin solutions was studied to identify the mechanism of the diffusion augmentation observed at low oxygen tensions. A novel technique employing a platinum-silver oxygen electrode was developed to measure the effective diffusion coefficient of oxygen in steady-state transport. The measurements were made over a wider range of hemoglobin and oxygen concentrations than previously reported. Values of the Brownian motion diffusion coefficient of oxygen in hemoglobin solution were obtained as well as measurements of facilitated transport at low oxygen tensions. Transport rates up to ten times greater than ordinary diffusion rates were found. Predictions of oxygen flux were made assuming that the oxyhemoglobin transport coefficient was equal to the Brownian motion diffusivity which was measured in a separate set of experiments. The close correlation between prediction and experiment indicates that the diffusion of oxyhemoglobin is the mechanism by which steady-state oxygen transport is facilitated. PMID:5943608

  9. Exciton diffusion coefficient measurement in ZnO nanowires under electron beam irradiation.

    PubMed

    Donatini, Fabrice; Pernot, Julien

    2018-03-09

    In semiconductor nanowires (NWs) the exciton diffusion coefficient can be determined using a scanning electron microscope fitted with a cathodoluminescence system. High spatial and temporal resolution cathodoluminescence experiments are needed to measure independently the exciton diffusion length and lifetime in single NWs. However, both diffusion length and lifetime can be affected by the electron beam bombardment during observation and measurement. Thus, in this work the exciton lifetime in a ZnO NW is measured versus the electron beam dose (EBD) via a time-resolved cathodoluminescence experiment with a temporal resolution of 50 ps. The behavior of the measured exciton lifetime is consistent with our recent work on the EBD dependence of the exciton diffusion length in similar NWs investigated under comparable SEM conditions. Combining the two results, the exciton diffusion coefficient in ZnO is determined at room temperature and is found constant over the full span of EBD.

  10. Lateral diffusion of proteins in the periplasm of Escherichia coli.

    PubMed Central

    Brass, J M; Higgins, C F; Foley, M; Rugman, P A; Birmingham, J; Garland, P B

    1986-01-01

    We have introduced biologically active, fluorescently labeled maltose-binding protein into the periplasmic space of Escherichia coli and measured its lateral diffusion coefficient by the fluorescence photobleaching recovery method. Diffusion of this protein in the periplasm was found to be surprisingly low (lateral diffusion coefficient, 0.9 X 10(-10) cm2 s-1), about 1,000-fold lower than would be expected for diffusion in aqueous medium and almost 100-fold lower than for an equivalent-size protein in the cytoplasm. Galactose-binding protein, myoglobin, and cytochrome c were also introduced into the periplasm and had diffusion coefficients identical to that determined for the maltose-binding protein. For all proteins nearly 100% recovery of fluorescence was obtained after photobleaching, indicating that the periplasm is a single contiguous compartment surrounding the cell. These data have considerable implications for periplasmic structure and for the role of periplasmic proteins in transport and chemotaxis. Images PMID:3005237

  11. Complex Analysis of Diffusion Transport and Microstructure of an Intervertebral Disk.

    PubMed

    Byvaltsev, V A; Kolesnikov, S I; Belykh, E G; Stepanov, I A; Kalinin, A A; Bardonova, L A; Sudakov, N P; Klimenkov, I V; Nikiforov, S B; Semenov, A V; Perfil'ev, D V; Bespyatykh, I V; Antipina, S L; Giers, M; Prul, M

    2017-12-01

    We studied the relationship between diffusion transport and morphological and microstructural organization of extracellular matrix of human intervertebral disk. Specimens of the lumbar intervertebral disks without abnormalities were studied ex vivo by diffusion-weighed magnetic resonance imaging, histological and immunohistochemical methods, and electron microscopy. Distribution of the diffusion coefficient in various compartments of the intervertebral disk was studied. Significant correlations between diffusion coefficient and cell density in the nucleus pulposus, posterior aspects of annulus fibrosus, and endplate at the level of the posterior annulus fibrosus were detected for each disk. In disks with nucleus pulposus diffusion coefficient below 15×10 -4 mm 2 /sec, collagens X and XI were detected apart from aggrecan and collagens I and II. The results supplement the concept on the relationship between the microstructure and cell composition of various compartments of the intervertebral disk and parameters of nutrient transport.

  12. Nature of self-diffusion in two-dimensional fluids

    NASA Astrophysics Data System (ADS)

    Choi, Bongsik; Han, Kyeong Hwan; Kim, Changho; Talkner, Peter; Kidera, Akinori; Lee, Eok Kyun

    2017-12-01

    Self-diffusion in a two-dimensional simple fluid is investigated by both analytical and numerical means. We investigate the anomalous aspects of self-diffusion in two-dimensional fluids with regards to the mean square displacement, the time-dependent diffusion coefficient, and the velocity autocorrelation function (VACF) using a consistency equation relating these quantities. We numerically confirm the consistency equation by extensive molecular dynamics simulations for finite systems, corroborate earlier results indicating that the kinematic viscosity approaches a finite, non-vanishing value in the thermodynamic limit, and establish the finite size behavior of the diffusion coefficient. We obtain the exact solution of the consistency equation in the thermodynamic limit and use this solution to determine the large time asymptotics of the mean square displacement, the diffusion coefficient, and the VACF. An asymptotic decay law of the VACF resembles the previously known self-consistent form, 1/(t\\sqrt{{ln}t}), however with a rescaled time.

  13. An inverse moisture diffusion algorithm for the determination of diffusion coefficient

    Treesearch

    Jen Y. Liu; William T. Simpson; Steve P. Verrill

    2000-01-01

    The finite difference approximation is applied to estimate the moisture-dependent diffusion coefficient by utilizing test data of isothermal moisture desorption in northern red oak (Quercus rubra). The test data contain moisture distributions at discrete locations across the thickness of specimens, which coincides with the radial direction of northern red oak, and at...

  14. An inverse moisture diffusion algorithm for the determination of diffusion coefficient

    Treesearch

    Jen Y. Liu; William T. Simpson; Steve P. Verrill

    2001-01-01

    The finite difference approximation is applied to estimate the moisture-dependent diffusion coefficient by utilizing test data of isothermal moisture desorption in northern red oak (Quercus rubra). The test data contain moisture distributions at discrete locations across the thickness of specimens, which coincides with the radial direction of northern red oak, and at...

  15. Correlation Between Minimum Apparent Diffusion Coefficient (ADCmin) and Tumor Cellularity: A Meta-analysis.

    PubMed

    Surov, Alexey; Meyer, Hans Jonas; Wienke, Andreas

    2017-07-01

    Diffusion-weighted imaging (DWI) is a magnetic resonance imaging (MRI) technique based on measure of water diffusion that can provide information about tissue microstructure, especially about cell count. Increase of cell density induces restriction of water diffusion and decreases apparent diffusion coefficient (ADC). ADC can be divided into three sub-parameters: ADC minimum or ADC min , mean ADC or ADC mean and ADC maximum or ADC max Some studies have suggested that ADC min shows stronger correlations with cell count in comparison to other ADC fractions and may be used as a parameter for estimation of tumor cellularity. The aim of the present meta-analysis was to summarize correlation coefficients between ADC min and cellularity in different tumors based on large patient data. For this analysis, MEDLINE database was screened for associations between ADC and cell count in different tumors up to September 2016. For this work, only data regarding ADC min were included. Overall, 12 publications with 317 patients were identified. Spearman's correlation coefficient was used to analyze associations between ADC min and cellularity. The reported Pearson correlation coefficients in some publications were converted into Spearman correlation coefficients. The pooled correlation coefficient for all included studies was ρ=-0.59 (95% confidence interval (CI)=-0.72 to -0.45), heterogeneity Tau 2 =0.04 (p<0.0001), I 2 =73%, test for overall effect Z=8.67 (p<0.00001). ADC min correlated moderately with tumor cellularity. The calculated correlation coefficient is not stronger in comparison to the reported coefficient for ADC mean and, therefore, ADC min does not represent a better means to reflect cellularity. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Shape matters in protein mobility within membranes

    PubMed Central

    Quemeneur, François; Sigurdsson, Jon K.; Renner, Marianne; Atzberger, Paul J.; Bassereau, Patricia; Lacoste, David

    2014-01-01

    The lateral mobility of proteins within cell membranes is usually thought to be dependent on their size and modulated by local heterogeneities of the membrane. Experiments using single-particle tracking on reconstituted membranes demonstrate that protein diffusion is significantly influenced by the interplay of membrane curvature, membrane tension, and protein shape. We find that the curvature-coupled voltage-gated potassium channel (KvAP) undergoes a significant increase in protein mobility under tension, whereas the mobility of the curvature-neutral water channel aquaporin 0 (AQP0) is insensitive to it. Such observations are well explained in terms of an effective friction coefficient of the protein induced by the local membrane deformation. PMID:24706877

  17. Fast internal dynamics in alcohol dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monkenbusch, M.; Stadler, A., E-mail: a.stadler@fz-juelich.de; Biehl, R.

    2015-08-21

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in themore » fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D{sub 2}O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains.« less

  18. Thermodynamics analysis of diffusion in spark plasma sintering welding Cr3C2 and Ni

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Zhang, Jinyong; Leng, Xiaoxuan; Lei, Liwen; Fu, Zhengyi

    2017-03-01

    Spark plasma sintering (SPS) welding of chromium carbide (Cr3C2) and nickel (Ni) was used to investigate the atomic diffusion caused by bypassing current. It was found that the diffusion coefficient with bypassing current was enhanced by almost 3.57 times over that without bypassing current. Different from the previous researches, the thermodynamics analysis conducted herein showed that the enhancement included a current direction-independent part besides the known current direction-dependent part. A local temperature gradient (LTG) model was proposed to explain the current direction-independent effect. Assuming that the LTG was mainly due to the interfacial electric resistance causing heterogeneous Joule heating, the theoretical results were in good agreement with the experimental results both in the present and previous studies. This new LTG model provides a reasonable physical meaning for the low-temperature advantage of SPS welding and should be useful in a wide range of applications.

  19. Crosstalk and transitions between multiple spatial maps in an attractor neural network model of the hippocampus: Collective motion of the activity

    NASA Astrophysics Data System (ADS)

    Monasson, R.; Rosay, S.

    2014-03-01

    The dynamics of a neural model for hippocampal place cells storing spatial maps is studied. In the absence of external input, depending on the number of cells and on the values of control parameters (number of environments stored, level of neural noise, average level of activity, connectivity of place cells), a "clump" of spatially localized activity can diffuse or remains pinned due to crosstalk between the environments. In the single-environment case, the macroscopic coefficient of diffusion of the clump and its effective mobility are calculated analytically from first principles and corroborated by numerical simulations. In the multienvironment case the heights and the widths of the pinning barriers are analytically characterized with the replica method; diffusion within one map is then in competition with transitions between different maps. Possible mechanisms enhancing mobility are proposed and tested.

  20. Turbulent dispersion of slightly buoyant oil droplets and turbulent breakup of crude oil droplets mixed with dispersants

    NASA Astrophysics Data System (ADS)

    Gopalan, Balaji

    In part I, high speed in-line digital holographic cinematography is used for studying turbulent diffusion of slightly buoyant 0.5-1.2 mm diameter diesel droplets (specific gravity of 0.85) and 50 mum diameter neutral density particles. Experiments are performed in a 50x50x70 mm3 sample volume in a controlled, nearly isotropic turbulence facility, which is characterized by 2-D PIV. An automated tracking program has been used for measuring velocity time history of more than 17000 droplets and 15000 particles. The PDF's of droplet velocity fluctuations are close to Gaussian for all turbulent intensities ( u'i ). The mean rise velocity of droplets is enhanced or suppressed, compared to quiescent rise velocity (Uq), depending on Stokes number at lower turbulence levels, but becomes unconditionally enhanced at higher turbulence levels. The horizontal droplet velocity rms exceeds the fluid velocity rms for most of the data, while the vertical ones are higher than the fluid only at the highest turbulence level. The scaled droplet horizontal diffusion coefficient is higher than the vertical one, for 1 < u'i /Uq < 5, consistent with trends of the droplet velocity fluctuations. Conversely, the scaled droplet horizontal diffusion timescale is smaller than the vertical one due to crossing trajectories effect. The droplet diffusion coefficients scaled by the product of turbulence intensity and an integral length scale is a monotonically increasing function of u'i /Uq. Part II of this work explains the formation of micron sized droplets in turbulent flows from crude oil droplets pre-mixed with dispersants. Experimental visualization shows that this breakup starts with the formation of very long and quite stable, single or multiple micro threads that trail behind millimeter sized droplets. These threads form in regions with localized increase in concentration of surfactant, which in turn depends on the flow around the droplet. The resulting reduction of local surface tension, aided by high oil viscosity and stretching by the flow, suppresses capillary breakup and explains the stability of these threads. Due to increasing surface area and diffusion of dispersants into the continuous phase, the threads eventually breakup into ˜3 mum droplets.

  1. Predicting the size-dependent tissue accumulation of agents released from vascular targeted nanoconstructs

    NASA Astrophysics Data System (ADS)

    de Tullio, Marco D.; Singh, Jaykrishna; Pascazio, Giuseppe; Decuzzi, Paolo

    2014-03-01

    Vascular targeted nanoparticles have been developed for the delivery of therapeutic and imaging agents in cancer and cardiovascular diseases. However, at authors' knowledge, a comprehensive systematic analysis on their delivery efficiency is still missing. Here, a computational model is developed to predict the vessel wall accumulation of agents released from vascular targeted nanoconstructs. The transport problem for the released agent is solved using a finite volume scheme in terms of three governing parameters: the local wall shear rate , ranging from to ; the wall filtration velocity , varying from to ; and the agent diffusion coefficient , ranging from to . It is shown that the percentage of released agent adsorbing on the vessel walls in the vicinity of the vascular targeted nanoconstructs reduces with an increase in shear rate , and with a decrease in filtration velocity and agent diffusivity . In particular, in tumor microvessels, characterized by lower shear rates () and higher filtration velocities (), an agent with a diffusivity (i.e. a 50 nm particle) is predicted to deposit on the vessel wall up to of the total released dose. Differently, drug molecules, exhibiting a smaller size and much higher diffusion coefficient (), are predicted to accumulate up to . In healthy vessels, characterized by higher and lower , the largest majority of the released agent is redistributed directly in the circulation. These data suggest that drug molecules and small nanoparticles only can be efficiently released from vascular targeted nanoconstructs towards the diseased vessel walls and tissue.

  2. Molecular dynamics simulation of imidazolium-based ionic liquids. I. Dynamics and diffusion coefficient.

    PubMed

    Kowsari, M H; Alavi, Saman; Ashrafizaadeh, Mahmud; Najafi, Bijan

    2008-12-14

    Molecular dynamics simulations are used to study the dynamics and transport properties of 12 room-temperature ionic liquids of the 1-alkyl-3-methylimidazolium [amim](+) (alkyl = methyl, ethyl, propyl, and butyl) family with PF(6)(-), NO(3)(-), and Cl(-) counterions. The explicit atom transferable force field of Canongia Lopes et al. [J. Phys. Chem. B 108, 2038 (2004)] is used in the simulations. In this first part, the dynamics of the ionic liquids are characterized by studying the mean-square displacement (MSD) and the velocity autocorrelation function (VACF) for the centers of mass of the ions at 400 K. Trajectory averaging was employed to evaluate the diffusion coefficients at two temperatures from the linear slope of MSD(t) functions in the range of 150-300 ps and from the integration of the VACF(t) functions at 400 K. Detailed comparisons are made between the diffusion results from the MSD and VACF methods. The diffusion coefficients from the integration of the VACFs are closer to experimental values than the diffusion coefficients calculated from the slope of MSDs. Both methods can show good agreement with experiment in predicting relative trends in the diffusion coefficients and determining the role of the cation and anion structures on the dynamical behavior of this family of ionic liquids. The MSD and self-diffusion of relatively heavier imidazolium cations are larger than those of the lighter anions from the Einstein results, except for the case of [bmim][Cl]. The cationic transference number generally decreases with temperature, in good agreement with experiments. For the same anion, the cationic transference numbers decrease with increasing length of the alkyl chain, and for the same cation, the trends in the cationic transference numbers are [NO(3)](-) < [Cl](-) < [PF(6)](-). The trends in the diffusion coefficient in the series of cations with identical anions are [emim](+) > [pmim](+) > [bmim](+) and those for anions with identical cations are [NO(3)](-) > [PF(6)](-) > [Cl](-). The [dmim](+) has a relatively low diffusion coefficient due to its symmetric structure and good packing in the liquid phase. The major factor for determining the magnitude of the self-diffusion is the geometric shape of the anion of the ionic liquid. Other important factors are the ion size and the charge delocalization in the anion.

  3. In situ diffusion experiment in granite: Phase I

    NASA Astrophysics Data System (ADS)

    Vilks, P.; Cramer, J. J.; Jensen, M.; Miller, N. H.; Miller, H. G.; Stanchell, F. W.

    2003-03-01

    A program of in situ experiments, supported by laboratory studies, was initiated to study diffusion in sparsely fractured rock (SFR), with a goal of developing an understanding of diffusion processes within intact crystalline rock. Phase I of the in situ diffusion experiment was started in 1996, with the purpose of developing a methodology for estimating diffusion parameter values. Four in situ diffusion experiments, using a conservative iodide tracer, were performed in highly stressed SFR at a depth of 450 m in the Underground Research Laboratory (URL). The experiments, performed over a 2 year period, yielded rock permeability estimates of 2×10 -21 m 2 and effective diffusion coefficients varying from 2.1×10 -14 to 1.9×10 -13 m 2/s, which were estimated using the MOTIF code. The in situ diffusion profiles reveal a characteristic "dog leg" pattern, with iodide concentrations decreasing rapidly within a centimeter of the open borehole wall. It is hypothesized that this is an artifact of local stress redistribution and creation of a zone of increased constrictivity close to the borehole wall. A comparison of estimated in situ and laboratory diffusivities and permeabilities provides evidence that the physical properties of rock samples removed from high-stress regimes change. As a result of the lessons learnt during Phase I, a Phase II in situ program has been initiated to improve our general understanding of diffusion in SFR.

  4. Mass diffusion coefficient measurement for vitreous humor using FEM and MRI

    NASA Astrophysics Data System (ADS)

    Rattanakijsuntorn, Komsan; Penkova, Anita; Sadha, Satwindar S.

    2018-01-01

    In early studies, the ‘contour method’ for determining the diffusion coefficient of the vitreous humor was developed. This technique relied on careful injection of an MRI contrast agent (surrogate drug) into the vitreous humor of fresh bovine eyes, and tracking the contours of the contrast agent in time. In addition, an analytical solution was developed for the theoretical contours built on point source model for the injected surrogate drug. The match between theoretical and experimental contours as a least square fit, while floating the diffusion coefficient, led to the value of the diffusion coefficient. This method had its limitation that the initial injection of the surrogate had to be spherical or ellipsoidal because of the analytical result based on the point-source model. With a new finite element model for the analysis in this study, the technique is much less restrictive and handles irregular shapes of the initial bolus. The fresh bovine eyes were used for drug diffusion study in the vitreous and three contrast agents of different molecular masses: gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA, 938 Da), non-ionic gadoteridol (Prohance, 559 Da), and bovine albumin conjugated with gadolinium (Galbumin, 74 kDa) were used as drug surrogates to visualize the diffusion process by MRI. The 3D finite element model was developed to determine the diffusion coefficients of these surrogates with the images from MRI. This method can be used for other types of bioporous media provided the concentration profile can be visualized (by methods such as MRI or fluorescence).

  5. New sensitive micro-measurements of dynamic surface tension and diffusion coefficients: Validated and tested for the adsorption of 1-Octanol at a microscopic air-water interface and its dissolution into water.

    PubMed

    Kinoshita, Koji; Parra, Elisa; Needham, David

    2017-02-15

    Currently available dynamic surface tension (DST) measurement methods, such as Wilhelmy plate, droplet- or bubble-based methods, still have various experimental limitations such as the large size of the interface, convection in the solution, or a certain "dead time" at initial measurement. These limitations create inconsistencies for the kinetic analysis of surfactant adsorption/desorption, especially significant for ionic surfactants. Here, the "micropipette interfacial area-expansion method" was introduced and validated as a new DST measurement having a high enough sensitivity to detect diffusion controlled molecular adsorption at the air-water interfaces. To validate the new technique, the diffusion coefficient of 1-Octanol in water was investigated with existing models: the Ward Tordai model for the long time adsorption regime (1-100s), and the Langmuir and Frumkin adsorption isotherm models for surface excess concentration. We found that the measured diffusion coefficient of 1-Octanol, 7.2±0.8×10 -6 cm 2 /s, showed excellent agreement with the result from an alternative method, "single microdroplet catching method", to measure the diffusion coefficient from diffusion-controlled microdroplet dissolution, 7.3±0.1×10 -6 cm 2 /s. These new techniques for determining adsorption and diffusion coefficients can apply for a range of surface active molecules, especially the less-characterized ionic surfactants, and biological compounds such as lipids, peptides, and proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Anomalous diffusion and scaling in coupled stochastic processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bel, Golan; Nemenman, Ilya

    2009-01-01

    Inspired by problems in biochemical kinetics, we study statistical properties of an overdamped Langevin processes with the friction coefficient depending on the state of a similar, unobserved, process. Integrating out the latter, we derive the Pocker-Planck the friction coefficient of the first depends on the state of the second. Integrating out the latter, we derive the Focker-Planck equation for the probability distribution of the former. This has the fonn of diffusion equation with time-dependent diffusion coefficient, resulting in an anomalous diffusion. The diffusion exponent can not be predicted using a simple scaling argument, and anomalous scaling appears as well. Themore » diffusion exponent of the Weiss-Havlin comb model is derived as a special case, and the same exponent holds even for weakly coupled processes. We compare our theoretical predictions with numerical simulations and find an excellent agreement. The findings caution against treating biochemical systems with unobserved dynamical degrees of freedom by means of standandard, diffusive Langevin descritpion.« less

  7. Influence of structure properties on protein-protein interactions-QSAR modeling of changes in diffusion coefficients.

    PubMed

    Bauer, Katharina Christin; Hämmerling, Frank; Kittelmann, Jörg; Dürr, Cathrin; Görlich, Fabian; Hubbuch, Jürgen

    2017-04-01

    Information about protein-protein interactions provides valuable knowledge about the phase behavior of protein solutions during the biopharmaceutical production process. Up to date it is possible to capture their overall impact by an experimentally determined potential of mean force. For the description of this potential, the second virial coefficient B22, the diffusion interaction parameter kD, the storage modulus G', or the diffusion coefficient D is applied. In silico methods do not only have the potential to predict these parameters, but also to provide deeper understanding of the molecular origin of the protein-protein interactions by correlating the data to the protein's three-dimensional structure. This methodology furthermore allows a lower sample consumption and less experimental effort. Of all in silico methods, QSAR modeling, which correlates the properties of the molecule's structure with the experimental behavior, seems to be particularly suitable for this purpose. To verify this, the study reported here dealt with the determination of a QSAR model for the diffusion coefficient of proteins. This model consisted of diffusion coefficients for six different model proteins at various pH values and NaCl concentrations. The generated QSAR model showed a good correlation between experimental and predicted data with a coefficient of determination R2 = 0.9 and a good predictability for an external test set with R2 = 0.91. The information about the properties affecting protein-protein interactions present in solution was in agreement with experiment and theory. Furthermore, the model was able to give a more detailed picture of the protein properties influencing the diffusion coefficient and the acting protein-protein interactions. Biotechnol. Bioeng. 2017;114: 821-831. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Multiple-scattering coefficients and absorption controlled diffusive processes

    NASA Astrophysics Data System (ADS)

    Godoy, Salvador; García-Colín, L. S.; Micenmacher, Victor

    1999-11-01

    Multiple-scattering transmission and reflection coefficients (T,R) are introduced in addition to the diffusion coefficient D for the description of ballistic diffusion in the presence of absorption. For 1D (one-dimensional) systems, the measurement of only one between T and D imposes restrictions on the possible values of the other. If D is measured, then T is bounded between the Landauer and Lambert-Beer equations. Measurements of both (T,D) imply the theoretical knowledge of the microscopic absorption Σa and scattering rΣs cross sections.

  9. Calibration-free concentration analysis for an analyte prone to self-association.

    PubMed

    Imamura, Hiroshi; Honda, Shinya

    2017-01-01

    Calibration-free concentration analysis (CFCA) based on surface plasmon resonance uses the diffusion coefficient of an analyte to determine the concentration of that analyte in a bulk solution. In general, CFCA is avoided when investigating analytes prone to self-association, as the heterogeneous diffusion coefficient results in a loss of precision. The derivation for self-association of the analyte was presented here. By using the diffusion coefficient for the monomeric state, CFCA provides the lowest possible concentration even though the analyte is self-associated. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Simultaneous confocal fluorescence microscopy and optical coherence tomography for drug distribution and tissue integrity assessment

    NASA Astrophysics Data System (ADS)

    Rinehart, Matthew T.; LaCroix, Jeffrey; Henderson, Marcus; Katz, David; Wax, Adam

    2011-03-01

    The effectiveness of microbicidal gels, topical products developed to prevent infection by sexually transmitted diseases including HIV/AIDS, is governed by extent of gel coverage, pharmacokinetics of active pharmaceutical ingredients (APIs), and integrity of vaginal epithelium. While biopsies provide localized information about drug delivery and tissue structure, in vivo measurements are preferable in providing objective data on API and gel coating distribution as well as tissue integrity. We are developing a system combining confocal fluorescence microscopy with optical coherence tomography (OCT) to simultaneously measure local concentrations and diffusion coefficients of APIs during transport from microbicidal gels into tissue, while assessing tissue integrity. The confocal module acquires 2-D images of fluorescent APIs multiple times per second allowing analysis of lateral diffusion kinetics. The custom Fourier domain OCT module has a maximum a-scan rate of 54 kHz and provides depth-resolved tissue integrity information coregistered with the confocal fluorescence measurements. The combined system is validated by imaging phantoms with a surrogate fluorophore. Time-resolved API concentration measured at fixed depths is analyzed for diffusion kinetics. This multimodal system will eventually be implemented in vivo for objective evaluation of microbicide product performance.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duranty, Edward R.; Baschnagel, Jörg; Dadmun, Mark

    Copolymers are commonly used as interface modifiers that allow for the compatibilization of polymer components in a blend. For copolymers to function as a compatibilizer, they must diffuse through the matrix of the blend to the interface between the two blend components. The diffusivity of a copolymer in a blend matrix therefore becomes important in determining good candidates for use as compatibilizers. In this paper, coarse-grained Monte Carlo simulations using the bond fluctuation model modified with an overlap penalty have been developed to study the diffusive behavior of PS/PMMA random copolymers in a PMMA homopolymer blend. The simulations vary themore » connectivity between different monomers, the thermodynamic interactions between the monomers which manifest within a chain, and between copolymer and homopolymer matrix and define the monomer friction coefficient of each component independently, allowing for the determination of the combined effect of these parameters on copolymer chain diffusion. Finally, the results of this work indicate that PS-r-PMMA copolymer diffusion is not linearly dependent on the copolymer composition on a logarithmic scale, but its diffusion is a balance of the kinetics governed by the dominant motion of the faster styrene monomers and thermodynamics, which are governed by the concentration of styrene monomer within a given monomer’s local volume.« less

  12. Hopping Diffusion of Nanoparticles in Polymer Matrices

    PubMed Central

    2016-01-01

    We propose a hopping mechanism for diffusion of large nonsticky nanoparticles subjected to topological constraints in both unentangled and entangled polymer solids (networks and gels) and entangled polymer liquids (melts and solutions). Probe particles with size larger than the mesh size ax of unentangled polymer networks or tube diameter ae of entangled polymer liquids are trapped by the network or entanglement cells. At long time scales, however, these particles can diffuse by overcoming free energy barrier between neighboring confinement cells. The terminal particle diffusion coefficient dominated by this hopping diffusion is appreciable for particles with size moderately larger than the network mesh size ax or tube diameter ae. Much larger particles in polymer solids will be permanently trapped by local network cells, whereas they can still move in polymer liquids by waiting for entanglement cells to rearrange on the relaxation time scales of these liquids. Hopping diffusion in entangled polymer liquids and networks has a weaker dependence on particle size than that in unentangled networks as entanglements can slide along chains under polymer deformation. The proposed novel hopping model enables understanding the motion of large nanoparticles in polymeric nanocomposites and the transport of nano drug carriers in complex biological gels such as mucus. PMID:25691803

  13. A novel method for effective diffusion coefficient measurement in gas diffusion media of polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Yang, Linlin; Sun, Hai; Fu, Xudong; Wang, Suli; Jiang, Luhua; Sun, Gongquan

    2014-07-01

    A novel method for measuring effective diffusion coefficient of porous materials is developed. The oxygen concentration gradient is established by an air-breathing proton exchange membrane fuel cell (PEMFC). The porous sample is set in a sample holder located in the cathode plate of the PEMFC. At a given oxygen flux, the effective diffusion coefficients are related to the difference of oxygen concentration across the samples, which can be correlated with the differences of the output voltage of the PEMFC with and without inserting the sample in the cathode plate. Compared to the conventional electrical conductivity method, this method is more reliable for measuring non-wetting samples.

  14. Critical role for mesoscale eddy diffusion in supplying oxygen to hypoxic ocean waters

    NASA Astrophysics Data System (ADS)

    Gnanadesikan, Anand; Bianchi, Daniele; Pradal, Marie-Aude

    2013-10-01

    of the oceanic lateral eddy diffusion coefficient Aredi vary by more than an order of magnitude, ranging from less than a few hundred m2/s to thousands of m2/s. This uncertainty has first-order implications for the intensity of oceanic hypoxia, which is poorly simulated by the current generation of Earth System Models. Using satellite-based estimate of oxygen consumption in hypoxic waters to estimate the required diffusion coefficient for these waters gives a value of order 1000 m2/s. Varying Aredi across a suite of Earth System Models yields a broadly consistent result given a thermocline diapycnal diffusion coefficient of 1 × 10-5 m2/s.

  15. Lateral mobility of plasma membrane proteins in dividing eggs of the loach (Misgurnus fossilis): Regional differences and changes during the cell cycle.

    PubMed

    Bozhkova, V P; Budayova, M; Kvasnicka, P; Cigankova, N; Chorvat, D

    1994-12-01

    Regional differences in lateral diffusion rates of fluorescence-labeled proteins have been studied in the plasma membrane of dividing eggs of the loach (Misgurnus fossilis) by fluorescence recovery after photobleaching (FRAP). Apparent animal-vegetal differences in fluorescence intensity, lateral diffusion coefficients, and fractions of mobile proteins have been found, with all these quantities being higher in the animal pole region than in the yolk region. Cyclic changes in protein diffusion coefficients and mobile fractions during the first few cell cycles have also been recorded. Soon after the end of a cleavage, the diffusion coefficient reaches its minimal value and increases rapidly before the next cleavage.

  16. Hybrid diffusion-P3 equation in N-layered turbid media: steady-state domain.

    PubMed

    Shi, Zhenzhi; Zhao, Huijuan; Xu, Kexin

    2011-10-01

    This paper discusses light propagation in N-layered turbid media. The hybrid diffusion-P3 equation is solved for an N-layered finite or infinite turbid medium in the steady-state domain for one point source using the extrapolated boundary condition. The Fourier transform formalism is applied to derive the analytical solutions of the fluence rate in Fourier space. Two inverse Fourier transform methods are developed to calculate the fluence rate in real space. In addition, the solutions of the hybrid diffusion-P3 equation are compared to the solutions of the diffusion equation and the Monte Carlo simulation. For the case of small absorption coefficients, the solutions of the N-layered diffusion equation and hybrid diffusion-P3 equation are almost equivalent and are in agreement with the Monte Carlo simulation. For the case of large absorption coefficients, the model of the hybrid diffusion-P3 equation is more precise than that of the diffusion equation. In conclusion, the model of the hybrid diffusion-P3 equation can replace the diffusion equation for modeling light propagation in the N-layered turbid media for a wide range of absorption coefficients.

  17. Wanted: Scalable Tracers for Diffusion Measurements

    PubMed Central

    2015-01-01

    Scalable tracers are potentially a useful tool to examine diffusion mechanisms and to predict diffusion coefficients, particularly for hindered diffusion in complex, heterogeneous, or crowded systems. Scalable tracers are defined as a series of tracers varying in size but with the same shape, structure, surface chemistry, deformability, and diffusion mechanism. Both chemical homology and constant dynamics are required. In particular, branching must not vary with size, and there must be no transition between ordinary diffusion and reptation. Measurements using scalable tracers yield the mean diffusion coefficient as a function of size alone; measurements using nonscalable tracers yield the variation due to differences in the other properties. Candidate scalable tracers are discussed for two-dimensional (2D) diffusion in membranes and three-dimensional diffusion in aqueous solutions. Correlations to predict the mean diffusion coefficient of globular biomolecules from molecular mass are reviewed briefly. Specific suggestions for the 3D case include the use of synthetic dendrimers or random hyperbranched polymers instead of dextran and the use of core–shell quantum dots. Another useful tool would be a series of scalable tracers varying in deformability alone, prepared by varying the density of crosslinking in a polymer to make say “reinforced Ficoll” or “reinforced hyperbranched polyglycerol.” PMID:25319586

  18. Carbon diffusion in solid iron as function of pressure and temperature

    NASA Astrophysics Data System (ADS)

    Stagno, V.; Crispin, K. L.; Fei, Y.

    2012-12-01

    The knowledge of carbon diffusion in metallic iron is of importance for both industrial and geological applications. In industry the diffusion properties of carbon apply to the massive production of steel through carburizing and galvanization processes at high temperature with the aim to improve the hardness and rust resistance of such materials. In geoscience the diffusion of carbon in metallic phases at high pressure and temperature is important for determining the rate of reactions and crystal growth of carbide phases likely coexisting with mantle silicates. Due to a small atomic radius, carbon is expected to dissolve by interstitial diffusion in solid metals. However, to date there are no experimental data available to understand the role that pressure plays on the mobilization of carbon through solid iron. Further, for light elements such as carbon or sulfur the activation energy is assumed to be lower than in case of lattice diffusion. However, with increasing pressure the activation volume must be taken into account to better understand diffusion processes at the atomic scale. We performed experiments using multianvil and piston cylinder devices at pressures between 1.5 and 6 GPa and temperature of 700-1200°C. Experiments were carried out using cylindrical glassy carbon sandwiched between layers of pure iron rods of known thickness enclosed in MgO capsule. Analytical techniques included FE-SEM for textural observation and accurate analyses of the interface between layers, while concentration profiles were measured using the electron microprobe with an optimized standardization procedure. Concentration profiles of carbon in iron were computed to determine the diffusion coefficients based on Fick's second law formulation assuming isotropic one dimension diffusion. Preliminary results confirm the positive temperature dependence of the diffusion coefficient for carbon widely discussed in literature. However, our results also show that a significant increase in pressure is required to affect the mobility of carbon through metallic iron by almost the same order of magnitude as cooling. The variation of the diffusion coefficient as function of temperature and pressure will be used to determine the activation energy and volume. It is known that the stability of carbide phases in the Earth's interior is mainly governed by the local Fe/C ratios. In the case of enriched mantle model, for instance, carbon in form of diamond will coexist with Fe7C3 for small amounts of metallic iron. In contrast, this would imply that at low carbon contents (<50 ppm) typical of a depleted mantle source, and at oxygen fugacity conditions lower than EMOD buffer, the transport of carbon will likely occur by diffusion through the coexisting metal phase. Results from this study will improve our understanding on the transport of carbon by diffusion at conditions of the Earth's interior and will provide new thermodynamic data to explain the fractionation of carbon by diffusion in other planetary bodies.

  19. Diffusion measurement from observed transverse beam echoes

    DOE PAGES

    Sen, Tanaji; Fischer, Wolfram

    2017-01-09

    For this research, we study the measurement of transverse diffusion through beam echoes. We revisit earlier observations of echoes in RHIC and apply an updated theoretical model to these measurements. We consider three possible models for the diffusion coefficient and show that only one is consistent with measured echo amplitudes and pulse widths. This model allows us to parameterize the diffusion coefficients as functions of bunch charge. We demonstrate that echoes can be used to measure diffusion much quicker than present methods and could be useful to a variety of hadron synchrotrons.

  20. Random diffusion and leverage effect in financial markets.

    PubMed

    Perelló, Josep; Masoliver, Jaume

    2003-03-01

    We prove that Brownian market models with random diffusion coefficients provide an exact measure of the leverage effect [J-P. Bouchaud et al., Phys. Rev. Lett. 87, 228701 (2001)]. This empirical fact asserts that past returns are anticorrelated with future diffusion coefficient. Several models with random diffusion have been suggested but without a quantitative study of the leverage effect. Our analysis lets us to fully estimate all parameters involved and allows a deeper study of correlated random diffusion models that may have practical implications for many aspects of financial markets.

  1. Chemical transport models: the combined non-local diffusion and mixing schemes, and calculation of in-canopy resistance for dry deposition fluxes.

    PubMed

    Mihailovic, Dragutin T; Alapaty, Kiran; Podrascanin, Zorica

    2009-03-01

    Improving the parameterization of processes in the atmospheric boundary layer (ABL) and surface layer, in air quality and chemical transport models. To do so, an asymmetrical, convective, non-local scheme, with varying upward mixing rates is combined with the non-local, turbulent, kinetic energy scheme for vertical diffusion (COM). For designing it, a function depending on the dimensionless height to the power four in the ABL is suggested, which is empirically derived. Also, we suggested a new method for calculating the in-canopy resistance for dry deposition over a vegetated surface. The upward mixing rate forming the surface layer is parameterized using the sensible heat flux and the friction and convective velocities. Upward mixing rates varying with height are scaled with an amount of turbulent kinetic energy in layer, while the downward mixing rates are derived from mass conservation. The vertical eddy diffusivity is parameterized using the mean turbulent velocity scale that is obtained by the vertical integration within the ABL. In-canopy resistance is calculated by integration of inverse turbulent transfer coefficient inside the canopy from the effective ground roughness length to the canopy source height and, further, from its the canopy height. This combination of schemes provides a less rapid mass transport out of surface layer into other layers, during convective and non-convective periods, than other local and non-local schemes parameterizing mixing processes in the ABL. The suggested method for calculating the in-canopy resistance for calculating the dry deposition over a vegetated surface differs remarkably from the commonly used one, particularly over forest vegetation. In this paper, we studied the performance of a non-local, turbulent, kinetic energy scheme for vertical diffusion combined with a non-local, convective mixing scheme with varying upward mixing in the atmospheric boundary layer (COM) and its impact on the concentration of pollutants calculated with chemical and air-quality models. In addition, this scheme was also compared with a commonly used, local, eddy-diffusivity scheme. Simulated concentrations of NO2 by the COM scheme and new parameterization of the in-canopy resistance are closer to the observations when compared to those obtained from using the local eddy-diffusivity scheme. Concentrations calculated with the COM scheme and new parameterization of in-canopy resistance, are in general higher and closer to the observations than those obtained by the local, eddy-diffusivity scheme (on the order of 15-22%). To examine the performance of the scheme, simulated and measured concentrations of a pollutant (NO2) were compared for the years 1999 and 2002. The comparison was made for the entire domain used in simulations performed by the chemical European Monitoring and Evaluation Program Unified model (version UNI-ACID, rv2.0) where schemes were incorporated.

  2. Comparison of the Radiative Two-Flux and Diffusion Approximations

    NASA Technical Reports Server (NTRS)

    Spuckler, Charles M.

    2006-01-01

    Approximate solutions are sometimes used to determine the heat transfer and temperatures in a semitransparent material in which conduction and thermal radiation are acting. A comparison of the Milne-Eddington two-flux approximation and the diffusion approximation for combined conduction and radiation heat transfer in a ceramic material was preformed to determine the accuracy of the diffusion solution. A plane gray semitransparent layer without a substrate and a non-gray semitransparent plane layer on an opaque substrate were considered. For the plane gray layer the material is semitransparent for all wavelengths and the scattering and absorption coefficients do not vary with wavelength. For the non-gray plane layer the material is semitransparent with constant absorption and scattering coefficients up to a specified wavelength. At higher wavelengths the non-gray plane layer is assumed to be opaque. The layers are heated on one side and cooled on the other by diffuse radiation and convection. The scattering and absorption coefficients were varied. The error in the diffusion approximation compared to the Milne-Eddington two flux approximation was obtained as a function of scattering coefficient and absorption coefficient. The percent difference in interface temperatures and heat flux through the layer obtained using the Milne-Eddington two-flux and diffusion approximations are presented as a function of scattering coefficient and absorption coefficient. The largest errors occur for high scattering and low absorption except for the back surface temperature of the plane gray layer where the error is also larger at low scattering and low absorption. It is shown that the accuracy of the diffusion approximation can be improved for some scattering and absorption conditions if a reflectance obtained from a Kubelka-Munk type two flux theory is used instead of a reflection obtained from the Fresnel equation. The Kubelka-Munk reflectance accounts for surface reflection and radiation scattered back by internal scattering sites while the Fresnel reflection only accounts for surface reflections.

  3. Non-destructive testing method for determining the solvent diffusion coefficient in the porous materials products

    NASA Astrophysics Data System (ADS)

    Belyaev, V. P.; Mishchenko, S. V.; Belyaev, P. S.

    2018-01-01

    Ensuring non-destructive testing of products in industry is an urgent task. Most of the modern methods for determining the diffusion coefficient in porous materials have been developed for bodies of a given configuration and size. This leads to the need for finished products destruction to make experimental samples from them. The purpose of this study is the development of a dynamic method that allows operatively determine the diffusion coefficient in finished products from porous materials without destroying them. The method is designed to investigate the solvents diffusion coefficient in building constructions from materials having a porous structure: brick, concrete and aerated concrete, gypsum, cement, gypsum or silicate solutions, gas silicate blocks, heat insulators, etc. A mathematical model of the method is constructed. The influence of the design and measuring device operating parameters on the method accuracy is studied. The application results of the developed method for structural porous products are presented.

  4. Identification of diffusive transport properties of poly(vinyl alcohol) hydrogels from reservoir test.

    PubMed

    Kazimierska-Drobny, Katarzyna; Kaczmarek, Mariusz

    2013-12-01

    In this paper the identification of diffusion coefficient, retardation factor and surface distribution coefficient for selected salts in poly(vinyl alcohol) hydrogels is performed. The identification of the transport parameters is based on the previously developed inverse problem technique using experimental data from the reservoir test and the solution of the diffusive transport equation with linear equilibrium sorption. The estimated values of diffusion coefficient are: for physiological fluid (6.30±0.10)×10(-10) m(2)/s, for 1 M NaCl (6.42±0.39)×10(-10) m(2)/s, and for 1 M KCl (7.94±0.38)×10(-10) m(2)/s. The retardation factor for all tested materials and salts is equal or close to one. The average value of the effective surface distribution coefficient is equal to 0.5. © 2013 Elsevier B.V. All rights reserved.

  5. Diffusion and Electric Mobility of KCI within Isolated Cuticles of Citrus aurantium 1

    PubMed Central

    Tyree, Melvin T.; Wescott, Charles R.; Tabor, Christopher A.; Morse, Anne D.

    1992-01-01

    Fick's second law has been used to predict the time course of electrical conductance change in isolated cuticles following the rapid change in bathing solution (KCI) from concentration C to 0.1 C. The theoretical time course is dependent on the coefficient of diffusion of KCI in the cuticle and the cuticle thickness. Experimental results, obtained from cuticles isolated from sour orange (Citrus aurantium), fit with a diffusion model of an isolated cuticle in which about 90% of the conductance change following a solution change is due to salts diffusing from polar pores in the wax, and 10% of the change is due to salt diffusion from the wax. Short and long time constants for the washout of KCI were found to be 0.11 and 3.8 hours, respectively. These time constants correspond to KCI diffusion coefficients of 1 × 10−15 and 3 × 10−17 square meters per second, respectively. The larger coefficient is close to the diffusion coefficient for water in polar pores of Citrus reported elsewhere (M Becker, G Kerstiens, J Schönherr [1986] Trees 1: 54-60). This supports our interpretation of the washout kinetics of KCI following a change in concentration of bathing solution. PMID:16668971

  6. A diffusivity model for predicting VOC diffusion in porous building materials based on fractal theory.

    PubMed

    Liu, Yanfeng; Zhou, Xiaojun; Wang, Dengjia; Song, Cong; Liu, Jiaping

    2015-12-15

    Most building materials are porous media, and the internal diffusion coefficients of such materials have an important influences on the emission characteristics of volatile organic compounds (VOCs). The pore structure of porous building materials has a significant impact on the diffusion coefficient. However, the complex structural characteristics bring great difficulties to the model development. The existing prediction models of the diffusion coefficient are flawed and need to be improved. Using scanning electron microscope (SEM) observations and mercury intrusion porosimetry (MIP) tests of typical porous building materials, this study developed a new diffusivity model: the multistage series-connection fractal capillary-bundle (MSFC) model. The model considers the variable-diameter capillaries formed by macropores connected in series as the main mass transfer paths, and the diameter distribution of the capillary bundles obeys a fractal power law in the cross section. In addition, the tortuosity of the macrocapillary segments with different diameters is obtained by the fractal theory. Mesopores serve as the connections between the macrocapillary segments rather than as the main mass transfer paths. The theoretical results obtained using the MSFC model yielded a highly accurate prediction of the diffusion coefficients and were in a good agreement with the VOC concentration measurements in the environmental test chamber. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Effect of water on structure and dynamics of [BMIM][PF6] ionic liquid: An all-atom molecular dynamics simulation investigation.

    PubMed

    Sharma, Anirban; Ghorai, Pradip Kr

    2016-03-21

    Composition dependent structural and dynamical properties of aqueous hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) ionic liquid (IL) have been investigated by using all-atom molecular dynamics simulation. We observe that addition of water does not increase significant number of dissociated ions in the solution over the pure state. As a consequence, self-diffusion coefficient of the cation and anion is comparable to each other at all water concentration similar to that is observed for the pure state. Voronoi polyhedra analysis exhibits strong dependence on the local environment of IL concentration. Void and neck distributions in Voronoi tessellation are approximately Gaussian for pure IL but upon subsequent addition of water, we observe deviation from the Gaussian behaviour with an asymmetric broadening with long tail of exponential decay at large void radius, particularly at higher water concentrations. The increase in void space and neck size at higher water concentration facilitates ionic motion, thus, decreasing dynamical heterogeneity and IL reorientation time and increases self-diffusion coefficient significantly.

  8. Effect of water on structure and dynamics of [BMIM][PF{sub 6}] ionic liquid: An all-atom molecular dynamics simulation investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Anirban; Ghorai, Pradip Kr., E-mail: pradip@iiserkol.ac.in

    2016-03-21

    Composition dependent structural and dynamical properties of aqueous hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF{sub 6}]) ionic liquid (IL) have been investigated by using all-atom molecular dynamics simulation. We observe that addition of water does not increase significant number of dissociated ions in the solution over the pure state. As a consequence, self-diffusion coefficient of the cation and anion is comparable to each other at all water concentration similar to that is observed for the pure state. Voronoi polyhedra analysis exhibits strong dependence on the local environment of IL concentration. Void and neck distributions in Voronoi tessellation are approximately Gaussian for pure ILmore » but upon subsequent addition of water, we observe deviation from the Gaussian behaviour with an asymmetric broadening with long tail of exponential decay at large void radius, particularly at higher water concentrations. The increase in void space and neck size at higher water concentration facilitates ionic motion, thus, decreasing dynamical heterogeneity and IL reorientation time and increases self-diffusion coefficient significantly.« less

  9. Boron diffusion in bcc-Fe studied by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Xianglong, Li; Ping, Wu; Ruijie, Yang; Dan, Yan; Sen, Chen; Shiping, Zhang; Ning, Chen

    2016-03-01

    The diffusion mechanism of boron in bcc-Fe has been studied by first-principles calculations. The diffusion coefficients of the interstitial mechanism, the B-monovacancy complex mechanism, and the B-divacancy complex mechanism have been calculated. The calculated diffusion coefficient of the interstitial mechanism is D0 = 1.05 × 10-7 exp (-0.75 eV/kT) m2 · s-1, while the diffusion coefficients of the B-monovacancy and the B-divacancy complex mechanisms are D1 = 1.22 × 10-6 f1 exp (-2.27 eV/kT) m2 · s-1 and D2 ≈ 8.36 × 10-6 exp (-4.81 eV/kT) m2 · s-1, respectively. The results indicate that the dominant diffusion mechanism in bcc-Fe is the interstitial mechanism through an octahedral interstitial site instead of the complex mechanism. The calculated diffusion coefficient is in accordance with the reported experiment results measured in Fe-3%Si-B alloy (bcc structure). Since the non-equilibrium segregation of boron is based on the diffusion of the complexes as suggested by the theory, our calculation reasonably explains why the non-equilibrium segregation of boron is not observed in bcc-Fe in experiments. Project supported by the National Natural Science Foundation of China (Grant No. 51276016) and the National Basic Research Program of China (Grant No. 2012CB720406).

  10. Transfer coefficients in ultracold strongly coupled plasma

    NASA Astrophysics Data System (ADS)

    Bobrov, A. A.; Vorob'ev, V. S.; Zelener, B. V.

    2018-03-01

    We use both analytical and molecular dynamic methods for electron transfer coefficients in an ultracold plasma when its temperature is small and the coupling parameter characterizing the interaction of electrons and ions exceeds unity. For these conditions, we use the approach of nearest neighbor to determine the average electron (ion) diffusion coefficient and to calculate other electron transfer coefficients (viscosity and electrical and thermal conductivities). Molecular dynamics simulations produce electronic and ionic diffusion coefficients, confirming the reliability of these results. The results compare favorably with experimental and numerical data from earlier studies.

  11. Augmentation of oxygen transport by various hemoglobins as determined by pulsed field gradient NMR.

    PubMed

    Budhiraja, Vikas; Hellums, J David; Post, Jan F M

    2002-11-01

    Diffusion of oxyhemoglobin has been shown to augment the oxygen transport inside the red blood cells. Measurement of hemoglobin diffusion coefficients by pulsed-field gradient (PFG) nuclear magnetic resonance (NMR) technique can be used for estimating this augmentation effect. Self-diffusion coefficients of polymerized and unpolymerized bovine hemoglobin (Hb) and several other proteins were measured using this technique. The Hb diffusion coefficient was used to determine the effective permeability of oxygen and augmentation of oxygen transport through samples of Hb solutions due to diffusion of oxyhemoglobin. The values compared well with our previous diffusion cell measurements of effective diffusivity and augmentation. Our NMR studies show that even at low concentrations the augmentation of oxygen transport due to diffusion can be significant. The PFG NMR technique can thus provide an accurate and easy method for measuring augmentation of oxygen transport, especially in dilute samples of Hb. The results on polyhemoglobin and high-molecular-weight hemoglobin are of both basic interest and practical value in assessing the promise and performance of hemoglobin-based blood substitutes.

  12. Proton MR Spectroscopy and Diffusion MR Imaging Monitoring to Predict Tumor Response to Interstitial Photodynamic Therapy for Glioblastoma.

    PubMed

    Toussaint, Magali; Pinel, Sophie; Auger, Florent; Durieux, Nicolas; Thomassin, Magalie; Thomas, Eloise; Moussaron, Albert; Meng, Dominique; Plénat, François; Amouroux, Marine; Bastogne, Thierry; Frochot, Céline; Tillement, Olivier; Lux, François; Barberi-Heyob, Muriel

    2017-01-01

    Despite recent progress in conventional therapeutic approaches, the vast majority of glioblastoma recur locally, indicating that a more aggressive local therapy is required. Interstitial photodynamic therapy (iPDT) appears as a very promising and complementary approach to conventional therapies. However, an optimal fractionation scheme for iPDT remains the indispensable requirement. To achieve that major goal, we suggested following iPDT tumor response by a non-invasive imaging monitoring. Nude rats bearing intracranial glioblastoma U87MG xenografts were treated by iPDT, just after intravenous injection of AGuIX® nanoparticles, encapsulating PDT and imaging agents. Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) allowed us an original longitudinal follow-up of post-treatment effects to discriminate early predictive markers. We successfully used conventional MRI, T2 star (T2*), Diffusion Weighted Imaging (DWI) and MRS to extract relevant profiles on tissue cytoarchitectural alterations, local vascular disruption and metabolic information on brain tumor biology, achieving earlier assessment of tumor response. From one day post-iPDT, DWI and MRS allowed us to identify promising markers such as the Apparent Diffusion Coefficient (ADC) values, lipids, choline and myoInositol levels that led us to distinguish iPDT responders from non-responders. All these responses give us warning signs well before the tumor escapes and that the growth would be appreciated.

  13. Relative Roles of Gap Junction Channels and Cytoplasm in Cell-to-Cell Diffusion of Fluorescent Tracers

    NASA Astrophysics Data System (ADS)

    Safranyos, Richard G. A.; Caveney, Stanley; Miller, James G.; Petersen, Nils O.

    1987-04-01

    Intercellular (tissue) diffusion of molecules requires cytoplasmic diffusion and diffusion through gap junctional (or cell-to-cell) channels. The rates of tissue and cytoplasmic diffusion of fluorescent tracers, expressed as an effective diffusion coefficient, De, and a cytoplasmic diffusion coefficient, Dcyt, have been measured among the developing epidermal cells of a larval beetle, Tenebrio molitor L., to determine the contribution of the junctional channels to intercellular diffusion. Tracer diffusion was measured by injecting fluorescent tracers into cells and quantitating the rate of subsequent spread into adjacent cells. Cytoplasmic diffusion was determined by fluorescence photobleaching. These experiments show that gap junctional channels constitute approximately 70-80% of the total cell-to-cell resistance to the diffusion of organic tracers at high concentrations in this tissue. At low concentrations, however, the binding of tracer to cytoplasm slows down the cytoplasmic diffusion, which may limit intercellular diffusion.

  14. Diffusion of protein through the human cornea.

    PubMed

    Charalel, Resmi A; Engberg, Kristin; Noolandi, Jaan; Cochran, Jennifer R; Frank, Curtis; Ta, Christopher N

    2012-01-01

    To determine the rate of diffusion of myoglobin and bovine serum albumin (BSA) through the human cornea. These small proteins have hydrodynamic diameters of approximately 4.4 and 7.2 nm, and molecular weights of 16.7 and 66 kDa, for myoglobin and BSA, respectively. Diffusion coefficients were measured using a diffusion chamber where the protein of interest and balanced salt solution were in different chambers separated by an ex vivo human cornea. Protein concentrations in the balanced salt solution chamber were measured over time. Diffusion coefficients were calculated using equations derived from Fick's law and conservation of mass in a closed system. Our experiments demonstrate that the diffusion coefficient of myoglobin is 5.5 ± 0.9 × 10(-8) cm(2)/s (n = 8; SD = 1.3 × 10(-8) cm(2)/s; 95% CI: 4.6 × 10(-8) to 6.4 × 10(-8) cm(2)/s) and the diffusion coefficient of BSA is 3.1 ± 1.0 × 10(-8) cm(2)/s (n = 8; SD = 1.4 × 10(-8) cm(2)/s; 95% CI: 2.1 × 10(-8) to 4.1 × 10(-8) cm(2)/s). Our study suggests that molecules as large as 7.2 nm may be able to passively diffuse through the human cornea. With applications in pharmacotherapy and the development of an artificial cornea, further experiments are warranted to fully understand the limits of human corneal diffusion and its clinical relevance. Copyright © 2012 S. Karger AG, Basel.

  15. The electron diffusion coefficient in Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Birmingham, T.; Northrop, T.; Baxter, R.; Hess, W.; Lojko, M.

    1974-01-01

    A steady-state model of Jupiter's electron radiation belt is developed. The model includes injection from the solar wind, radial diffusion, energy degradation by synchrotron radiation, and absorption at Jupiter's surface. A diffusion coefficient of the form D sub RR/R sub J squared = k times R to the m-th power is assumed, and then observed data on synchrotron radiation are used to fit the model. The free parameters determined from this fit are m = 1.95 plus or minus 0.5, k = 1.7 plus or minus 0.5 x 10 to the 9th power per sec, and the magnetic moment of injected particles equals 770 plus or minus 300 MeV/G. The value of m shows quite clearly that the diffusion is not caused by magnetic pumping by a variable solar wind or by a fluctuating convection electric field. The process might be field line exchange driven by atmospheric-ionospheric winds; our diffusion coefficient has roughly the same radial dependence but is considerably smaller in magnitude than the upper bound diffusion coefficients recently suggested for this process by Brice and McDonough (1973) and Jacques and Davis (1972).

  16. In situ estimation of the effective chemical diffusion coefficient of a rock matrix in a fractured aquifer

    USGS Publications Warehouse

    Gebrekristos, R.A.; Shapiro, A.M.; Usher, B.H.

    2008-01-01

    An in situ method of estimating the effective diffusion coefficient for a chemical constituent that diffuses into the primary porosity of a rock is developed by abruptly changing the concentration of the dissolved constituent in a borehole in contact with the rock matrix and monitoring the time-varying concentration. The experiment was conducted in a borehole completed in mudstone on the campus of the University of the Free State in Bloemfontein, South Africa. Numerous tracer tests were conducted at this site, which left a residual concentration of sodium chloride in boreholes that diffused into the rock matrix over a period of years. Fresh water was introduced into a borehole in contact with the mudstone, and the time-varying increase of chloride was observed by monitoring the electrical conductivity (EC) at various depths in the borehole. Estimates of the effective diffusion coefficient were obtained by interpreting measurements of EC over 34 d. The effective diffusion coefficient at a depth of 36 m was approximately 7.8??10-6 m2/d, but was sensitive to the assumed matrix porosity. The formation factor and mass flux for the mudstone were also estimated from the experiment. ?? Springer-Verlag 2007.

  17. Understanding of Relationship between Phospholipid Membrane Permeability and Self-Diffusion Coefficients of Some Drugs and Biologically Active Compounds in Model Solvents.

    PubMed

    Blokhina, Svetlana V; Volkova, Tatyana V; Golubev, Vasiliy A; Perlovich, German L

    2017-10-02

    In this work we measured self-diffusion coefficients of 5 drugs (aspirin, caffeine, ethionamide, salicylic acid, and paracetamol) and 11 biologically active compounds of similar structure in deuterated water and 1-octanol by NMR. It has been found that an increase in the van der Waals volume of the molecules of the studied substances result in reduction of their diffusion mobility in both solvents. The analysis of the experimental data showed the influence of chemical nature and structural isomerization of the molecules on the diffusion mobility. Apparent permeability coefficients of the studied compounds were determined using an artificial phospholipid membrane made of egg lecithin as a model of in vivo absorption. Distribution coefficients in 1-octanol/buffer pH 7.4 system were measured. For the first time the model of the passive diffusion through the phospholipid membrane was validated based on the experimental data. To this end, the passive diffusion was considered as an additive process of molecule passage through the aqueous boundary layer before the membrane and 1-octanol barrier simulating the lipid layer of the membrane.

  18. Effect of Hydrodynamic Interactions on Self-Diffusion of Quasi-Two-Dimensional Colloidal Hard Spheres.

    PubMed

    Thorneywork, Alice L; Rozas, Roberto E; Dullens, Roel P A; Horbach, Jürgen

    2015-12-31

    We compare experimental results from a quasi-two-dimensional colloidal hard sphere fluid to a Monte Carlo simulation of hard disks with small particle displacements. The experimental short-time self-diffusion coefficient D(S) scaled by the diffusion coefficient at infinite dilution, D(0), strongly depends on the area fraction, pointing to significant hydrodynamic interactions at short times in the experiment, which are absent in the simulation. In contrast, the area fraction dependence of the experimental long-time self-diffusion coefficient D(L)/D(0) is in quantitative agreement with D(L)/D(0) obtained from the simulation. This indicates that the reduction in the particle mobility at short times due to hydrodynamic interactions does not lead to a proportional reduction in the long-time self-diffusion coefficient. Furthermore, the quantitative agreement between experiment and simulation at long times indicates that hydrodynamic interactions effectively do not affect the dependence of D(L)/D(0) on the area fraction. In light of this, we discuss the link between structure and long-time self-diffusion in terms of a configurational excess entropy and do not find a simple exponential relation between these quantities for all fluid area fractions.

  19. Diffusion models for corona formation in metagabbros from the Western Grenville Province, Canada

    NASA Astrophysics Data System (ADS)

    Grant, Shona M.

    1988-01-01

    Metagabbro bodies in SW Grenville Province display a variety of disequilibrium corona textures between spinel-clouded plagioclase and primary olivine or opaque oxide. Textural evidence favours a single-stage, subsolidus origin for the olivine coronas and diffusive mass transfer is believed to have been the rate-controlling process. Irreversible thermodynamics have been used to model two different garnet symplectite-bearing corona sequences in terms of steady state diffusion. In the models the flux of each component is related to the chemical potential gradients of all diffusing species by the Onsager or L-coefficients for diffusion. These coefficients are analogous to experimentally determined diffusion coefficients ( d), but relate the flux of components to chemical potential rather than concentration gradients. The major constraint on the relative values of Onsager coefficients comes from the observed mole fraction, X, of garnet in the symplectites; in (amph-gt) symplectites X {Gt/Sym}˜0.80, compared with ˜0.75 in (cpx-gt) symplectites. Several models using simple oxide components, and two different modifications of the reactant plagioclase composition, give the following qualitative results: the very low mobility of aluminium appears to control the rate of corona formation. Mg and Fe have similar mobility, and Mg can be up to 6 8 times more mobile than sodium. Determination of calcium mobility is problematical because of a proposed interaction with cross-coefficient terms reflecting “uphill” Ca-diffusion, i.e., calcium diffusing up its own chemical potential gradient. If these terms are not introduced, it is difficult to generate the required proportions of garnet in the symplectite. However, at moderate values of the cross-coefficient ratios, Mg can be up to 4 6 times more mobile than calcium ( L MgMg/LCaCa<4 6) and calcium must be 3 4 times more mobile than aluminium ( L CaCa/LAlAl>3).

  20. Langevin Equation for DNA Dynamics

    NASA Astrophysics Data System (ADS)

    Grych, David; Copperman, Jeremy; Guenza, Marina

    Under physiological conditions, DNA oligomers can contain well-ordered helical regions and also flexible single-stranded regions. We describe the site-specific motion of DNA with a modified Rouse-Zimm Langevin equation formalism that describes DNA as a coarse-grained polymeric chain with global structure and local flexibility. The approach has successfully described the protein dynamics in solution and has been extended to nucleic acids. Our approach provides diffusive mode analytical solutions for the dynamics of global rotational diffusion and internal motion. The internal DNA dynamics present a rich energy landscape that accounts for an interior where hydrogen bonds and base-stacking determine structure and experience limited solvent exposure. We have implemented several models incorporating different coarse-grained sites with anisotropic rotation, energy barrier crossing, and local friction coefficients that include a unique internal viscosity and our models reproduce dynamics predicted by atomistic simulations. The models reproduce bond autocorrelation along the sequence as compared to that directly calculated from atomistic molecular dynamics simulations. The Langevin equation approach captures the essence of DNA dynamics without a cumbersome atomistic representation.

  1. Biocompatible polymer microneedle for topical/dermal delivery of tranexamic acid.

    PubMed

    A Machekposhti, S; Soltani, M; Najafizadeh, P; Ebrahimi, S A; Chen, P

    2017-09-10

    Recently-introduced biocompatible polymeric microneedles offer an efficient method for drug delivery. Tranexamic acid is a novel drug for treating melasma that is administered both locally and orally and inhibits excessive melanin via melanocyte. The tranexamic acid biocompatible polymer microneedle used in this study was fabricated from PVP and methacrylic acid, using the lithography method. The required mechanical strength to pierce skin was attained by optimizing the ratio of PVP to methacrylic acid. Acute dermal toxicity was done, and drug diffusion in skin layers was simulated by calculating the diffusion coefficient of tranexamic acid in interstitial fluid (plasma). The biocompatible polymer microneedle was fabricated at 60°C. Needles could sustain 0.6N that is enough to pierce stratum corneum. 34% of the released drug was locally effective and the rest permeated through the skin. The pyramidal polymer microneedle in this study was fully released in skin in approx. 7h. This polymer microneedle has no dermal toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The structure of mass-loading shocks. [interaction of solar wind with cometary coma or local interstellar medium using two-fluid model

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Khabibrakhmanov, I. KH.; Story, T.

    1993-01-01

    A new two-fluid model which describes mass loading in the solar wind (e.g., the interaction of the solar wind with a cometary coma or the local interstellar medium) is presented. The self-consistent back-reaction of the mass-loaded ions is included through their effective scattering in low-frequency MHD turbulence and the invocation of a diffusive approximation. Such an approximation has the advantage of introducing self-consistent dissipation coefficients into the governing equations, thereby facilitating the investigation of the internal structure of shocks in mass-loading environments. To illustrate the utility of the new model, we consider the structure of cometary shocks in the hypersonic one-dimensional limit, finding that the incoming solar wind is slowed by both mass loading and the development of a large cometary ion pressure gradient. The shock is broadened and smoothed by the cometary ions with a thickness of the order of the cometary ion diffusion scale.

  3. Interpreting high time resolution galactic cosmic ray observations in a diffusive context

    NASA Astrophysics Data System (ADS)

    Jordan, A.; Spence, H. E.; Blake, J. B.; Shaul, D. A.

    2009-12-01

    We interpret galactic cosmic ray (GCR) variations near Earth within a diffusive context. The variations occur on time-/size-scales ranging from Forbush decreases (Fds), to substructure embedded within Fds, to smaller amplitude and shorter duration variations during relatively benign interplanetary conditions. We use high time resolution GCR observations from the High Sensitivity Telescope (HIST) on Polar and from the Spectrometer for INTEGRAL (SPI) and also use solar wind plasma and magnetic field observations from ACE and/or Wind. To calculate the coefficient of diffusion, we combine these datasets with a simple convection-diffusion model for relativistic charged particles in a magnetic field. We find reasonable agreement between our and previous estimates of the coefficient. We also show whether changes in the coefficient of diffusion are sufficient to explain the above GCR variations.

  4. Space, energy and anisotropy effects on effective cross sections and diffusion coefficients in the resonance region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meftah, B.

    1982-01-01

    Present methods used in reactor analysis do not include adequately the effect of anisotropic scattering in the calculation of resonance effective cross sections. Also the assumption that the streaming term ..cap omega...del Phi is conserved when the total, absorption and transfer cross sections are conserved, is bad because the leakage from a heterogeneous cell will not be conserved and is strongly anisotropic. A third major consideration is the coupling between different regions in a multiregion reactor; currently this effect is being completely ignored. To assess the magnitude of these effects, a code based on integral transport formalism with linear anisotropicmore » scattering was developed. Also, a more adequate formulation of the diffusion coefficient in a heterogeneous cell was derived. Two reactors, one fast, ZPR-6/5, and one thermal, TRX-3, were selected for the study. The study showed that, in general, the inclusion of linear scattering anisotropy increases the cell effective capture cross section of U-238. The increase was up to 2% in TRX-3 and 0.5% in ZPR-6/5. The effect on the multiplication factor was -0.003% ..delta..k/k for ZPR-6/5 and -0.05% ..delta..k/k for TRX-3. For the case of the diffusion coefficient, the combined effect of heterogeneity and linear anisotropy gave an increase of up to 29% in the parallel diffusion coefficient of TRX-3 and 5% in the parallel diffusion coefficient of ZPR-6/5. In contrast, the change in the perpendicular diffusion coefficient did not exceed 2% in both systems.« less

  5. Effects of vitamin D receptor knockout on cornea epithelium gap junctions.

    PubMed

    Lu, Xiaowen; Watsky, Mitchell A

    2014-05-06

    Gap junctions are present in all corneal cell types and have been shown to have a critical role in cell phenotype determination. Vitamin D has been shown to influence cell differentiation, and recent work demonstrates the presence of vitamin D in the ocular anterior segment. This study measured and compared gap junction diffusion coefficients among different cornea epithelium phenotypes and in keratocytes using a noninvasive technique, fluorescence recovery after photobleaching (FRAP), and examined the influence of vitamin D receptor (VDR) knockout on epithelial gap junction communication in intact corneas. Previous gap junction studies in cornea epithelium and keratocytes were performed using cultured cells or ex vivo invasive techniques. These invasive techniques were unable to measure diffusion coefficients and likely were disruptive to normal cell physiology. Corneas from VDR knockout and control mice were stained with 5(6)-carboxyfluorescein diacetate (CFDA). Gap junction diffusion coefficients of the corneal epithelium phenotypes and of keratocytes, residing in intact corneas, were detected using FRAP. Diffusion coefficients equaled 18.7, 9.8, 5.6, and 4.2 μm(2)/s for superficial squamous cells, middle wing cells, basal cells, and keratocytes, respectively. Corneal thickness, superficial cell size, and the superficial squamous cell diffusion coefficient of 10-week-old VDR knockout mice were significantly lower than those of control mice (P < 0.01). The superficial cell diffusion coefficient of heterozygous mice was significantly lower than control mice (P < 0.05). Our results demonstrate differences in gap junction dye spread among the epithelial cell phenotypes, mirroring the epithelial developmental axis. The VDR knockout influences previously unreported cell-to-cell communication in superficial epithelium.

  6. Solubility and diffusion of oxygen in phospholipid membranes.

    PubMed

    Möller, Matías N; Li, Qian; Chinnaraj, Mathivanan; Cheung, Herbert C; Lancaster, Jack R; Denicola, Ana

    2016-11-01

    The transport of oxygen and other nonelectrolytes across lipid membranes is known to depend on both diffusion and solubility in the bilayer, and to be affected by changes in the physical state and by the lipid composition, especially the content of cholesterol and unsaturated fatty acids. However, it is not known how these factors affect diffusion and solubility separately. Herein we measured the partition coefficient of oxygen in liposome membranes of dilauroyl-, dimiristoyl- and dipalmitoylphosphatidylcholine in buffer at different temperatures using the equilibrium-shift method with electrochemical detection. The apparent diffusion coefficient was measured following the fluorescence quenching of 1-pyrenedodecanoate inserted in the liposome bilayers under the same conditions. The partition coefficient varied with the temperature and the physical state of the membrane, from below 1 in the gel state to above 2.8 in the liquid-crystalline state in DMPC and DPPC membranes. The partition coefficient was directly proportional to the partial molar volume and was then associated to the increase in free-volume in the membrane as a function of temperature. The apparent diffusion coefficients were corrected by the partition coefficients and found to be nearly the same, with a null dependence on viscosity and physical state of the membrane, probably because the pyrene is disturbing the surrounding lipids and thus becoming insensitive to changes in membrane viscosity. Combining our results with those of others, it is apparent that both solubility and diffusion increase when increasing the temperature or when comparing a membrane in the gel to one in the fluid state. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Diffusion modelling of metamorphic layered coronas with stability criterion and consideration of affinity

    NASA Astrophysics Data System (ADS)

    Ashworth, J. R.; Sheplev, V. S.

    1997-09-01

    Layered coronas between two reactant minerals can, in many cases, be attributed to diffusion-controlled growth with local equilibrium. This paper clarifies and unifies the previous approaches of various authors to the simplest form of modelling, which uses no assumed values for thermochemical quantities. A realistic overall reaction must be estimated from measured overall proportions of minerals and their major element compositions. Modelling is not restricted to a particular number of components S, relative to the number of phases Φ. IfΦ > S + 1, the overall reaction is a combination of simultaneous reactions. The stepwise method, solving for the local reaction at each boundary in turn, is extended to allow for recurrence of a mineral (its presence in two parts of the layer structure separated by a gap). The equations are also given in matrix form. A thermodynamic stability criterion is derived, determining which layer sequence is truly stable if several are computable from the same inputs. A layer structure satisfying the stability criterion has greater growth rate (and greater rate of entropy production) than the other computable layer sequences. This criterion of greatest entropy production is distinct from Prigogine's theorem of minimum entropy production, which distinguishes the stationary or quasi-stationary state from other states of the same layer sequence. The criterion leads to modification of previous results for coronas comprising hornblende, spinel, and orthopyroxene between olivine (Ol) and plagioclase (Pl). The outcome supports the previous inference that Si, and particularly Al, commonly behave as immobile relative to other cation-forming major elements. The affinity (-ΔG) of a corona-forming reaction is estimated, using previous estimates of diffusion coefficient and the duration t of reaction, together with a new model quantity (-ΔG) *. For an example of the Ol + Pl reaction, a rough calculation gives (-ΔG) > 1.7RT (per mole of P1 consumed, based on a 24-oxygen formula for Pl). At 600-700°C, this represents (-ΔG) > 10kJ mol -1 and departure from equilibrium temperature by at least ˜ 100°C. The lower end of this range is petrologically reasonable and, for t < 100Ma, corresponds to a Fick's-law diffusion coefficient for Al, DAl > 10 -25m 2s -1, larger than expected for lattice diffusion but consistent with fluid-absent grain-boundary diffusion and small concentration gradients.

  8. Molecular dynamics simulation of diffusion and electrical conductivity in montmorillonite interlayers

    DOE PAGES

    Greathouse, Jeffery A.; Cygan, Randall T.; Fredrich, Joanne T.; ...

    2016-01-20

    In this study, the diffusion of water and ions in the interlayer region of smectite clay minerals represents a direct probe of the type and strength of clay–fluid interactions. Interlayer diffusion also represents an important link between molecular simulation and macroscopic experiments. Here we use molecular dynamics simulation to investigate trends in cation and water diffusion in montmorillonite interlayers, looking specifically at the effects of layer charge, interlayer cation and cation charge (sodium or calcium), water content, and temperature. For Na-montmorillonite, the largest increase in ion and water diffusion coefficients occurs between the one-layer and two-layer hydrates, corresponding to themore » transition from inner-sphere to outer-sphere surface complexes. Calculated activation energies for ion and water diffusion in Na-montmorillonite are similar to each other and to the water hydrogen bond energy, suggesting the breaking of water–water and water–clay hydrogen bonds as a likely mechanism for interlayer diffusion. A comparison of interlayer diffusion with that of bulk electrolyte solutions reveals a clear trend of decreasing diffusion coefficient with increasing electrolyte concentration, and in most cases the interlayer diffusion results are nearly coincident with the corresponding bulk solutions. Trends in electrical conductivities computed from the ion diffusion coefficients are also compared.« less

  9. Multiphasic modeling of charged solute transport across articular cartilage: Application of multi-zone finite-bath model.

    PubMed

    Arbabi, Vahid; Pouran, Behdad; Weinans, Harrie; Zadpoor, Amir A

    2016-06-14

    Charged and uncharged solutes penetrate through cartilage to maintain the metabolic function of chondrocytes and to possibly restore or further breakdown the cartilage tissue in different stages of osteoarthritis. In this study the transport of charged solutes across the various zones of cartilage was quantified, taken into account the physicochemical interactions between the solute and the cartilage constituents. A multiphasic finite-bath finite element (FE) model was developed to simulate equine cartilage diffusion experiments that used a negatively charged contrast agent (ioxaglate) in combination with serial micro-computed tomography (micro-CT) to measure the diffusion. By comparing the FE model with the experimental data both the diffusion coefficient of ioxaglate and the fixed charge density (FCD) were obtained. In the multiphasic model, cartilage was divided into multiple (three) zones to help understand how diffusion coefficient and FCD vary across cartilage thickness. The direct effects of charged solute-FCD interaction on diffusion were investigated by comparing the diffusion coefficients derived from the multiphasic and biphasic-solute models. We found a relationship between the FCD obtained by the multiphasic model and ioxaglate partitioning obtained from micro-CT experiments. Using our multi-zone multiphasic model, diffusion coefficient of the superficial zone was up to ten-fold higher than that of the middle zone, while the FCD of the middle zone was up to almost two-fold higher than that of the superficial zone. In conclusion, the developed finite-bath multiphasic model provides us with a non-destructive method by which we could obtain both diffusion coefficient and FCD of different cartilage zones. The outcomes of the current work will also help understand how charge of the bath affects the diffusion of a charged molecule and also predict the diffusion behavior of a charged solute across articular cartilage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Seasonal Variability in Global Eddy Diffusion and the Effect on Thermospheric Neutral Density

    NASA Astrophysics Data System (ADS)

    Pilinski, M.; Crowley, G.

    2014-12-01

    We describe a method for making single-satellite estimates of the seasonal variability in global-average eddy diffusion coefficients. Eddy diffusion values as a function of time between January 2004 and January 2008 were estimated from residuals of neutral density measurements made by the CHallenging Minisatellite Payload (CHAMP) and simulations made using the Thermosphere Ionosphere Mesosphere Electrodynamics - Global Circulation Model (TIME-GCM). The eddy diffusion coefficient results are quantitatively consistent with previous estimates based on satellite drag observations and are qualitatively consistent with other measurement methods such as sodium lidar observations and eddy-diffusivity models. The eddy diffusion coefficient values estimated between January 2004 and January 2008 were then used to generate new TIME-GCM results. Based on these results, the RMS difference between the TIME-GCM model and density data from a variety of satellites is reduced by an average of 5%. This result, indicates that global thermospheric density modeling can be improved by using data from a single satellite like CHAMP. This approach also demonstrates how eddy diffusion could be estimated in near real-time from satellite observations and used to drive a global circulation model like TIME-GCM. Although the use of global values improves modeled neutral densities, there are some limitations of this method, which are discussed, including that the latitude-dependence of the seasonal neutral-density signal is not completely captured by a global variation of eddy diffusion coefficients. This demonstrates the need for a latitude-dependent specification of eddy diffusion consistent with diffusion observations made by other techniques.

  11. Seasonal variability in global eddy diffusion and the effect on neutral density

    NASA Astrophysics Data System (ADS)

    Pilinski, M. D.; Crowley, G.

    2015-04-01

    We describe a method for making single-satellite estimates of the seasonal variability in global-average eddy diffusion coefficients. Eddy diffusion values as a function of time were estimated from residuals of neutral density measurements made by the Challenging Minisatellite Payload (CHAMP) and simulations made using the thermosphere-ionosphere-mesosphere electrodynamics global circulation model (TIME-GCM). The eddy diffusion coefficient results are quantitatively consistent with previous estimates based on satellite drag observations and are qualitatively consistent with other measurement methods such as sodium lidar observations and eddy diffusivity models. Eddy diffusion coefficient values estimated between January 2004 and January 2008 were then used to generate new TIME-GCM results. Based on these results, the root-mean-square sum for the TIME-GCM model is reduced by an average of 5% when compared to density data from a variety of satellites, indicating that the fidelity of global density modeling can be improved by using data from a single satellite like CHAMP. This approach also demonstrates that eddy diffusion could be estimated in near real-time from satellite observations and used to drive a global circulation model like TIME-GCM. Although the use of global values improves modeled neutral densities, there are limitations to this method, which are discussed, including that the latitude dependence of the seasonal neutral-density signal is not completely captured by a global variation of eddy diffusion coefficients. This demonstrates the need for a latitude-dependent specification of eddy diffusion which is also consistent with diffusion observations made by other techniques.

  12. Ti diffusion in ion prebombarded MgO(100). I. A model for quantitative analysis

    NASA Astrophysics Data System (ADS)

    Lu, M.; Lupu, C.; Styve, V. J.; Lee, S. M.; Rabalais, J. W.

    2002-01-01

    Enhancement of Ti diffusion in MgO(100) prebombarded with 7 keV Ar+ has been observed. Diffusion was induced by annealing to 1000 °C following the prebombardment and Ti evaporation. Such a sample geometry and experimental procedure alleviates the continuous provision of freely mobile defects introduced by ion irradiation during annealing for diffusion, making diffusion proceed in a non-steady-state condition. Diffusion penetration profiles were obtained by using secondary ion mass spectrometry depth profiling techniques. A model that includes a depth-dependent diffusion coefficient was proposed, which successfully explains the observed non-steady-state radiation enhanced diffusion. The diffusion coefficients are of the order of 10-20 m2/s and are enhanced due to the defect structure inflected by the Ar+ prebombardment.

  13. Diffusion of copolymers composed of monomers with drastically different friction factors in copolymer/homopolymer blends

    DOE PAGES

    Duranty, Edward R.; Baschnagel, Jörg; Dadmun, Mark

    2017-02-07

    Copolymers are commonly used as interface modifiers that allow for the compatibilization of polymer components in a blend. For copolymers to function as a compatibilizer, they must diffuse through the matrix of the blend to the interface between the two blend components. The diffusivity of a copolymer in a blend matrix therefore becomes important in determining good candidates for use as compatibilizers. In this paper, coarse-grained Monte Carlo simulations using the bond fluctuation model modified with an overlap penalty have been developed to study the diffusive behavior of PS/PMMA random copolymers in a PMMA homopolymer blend. The simulations vary themore » connectivity between different monomers, the thermodynamic interactions between the monomers which manifest within a chain, and between copolymer and homopolymer matrix and define the monomer friction coefficient of each component independently, allowing for the determination of the combined effect of these parameters on copolymer chain diffusion. Finally, the results of this work indicate that PS-r-PMMA copolymer diffusion is not linearly dependent on the copolymer composition on a logarithmic scale, but its diffusion is a balance of the kinetics governed by the dominant motion of the faster styrene monomers and thermodynamics, which are governed by the concentration of styrene monomer within a given monomer’s local volume.« less

  14. Apparent diffusion coefficient of the normal human brain for various experimental conditions

    NASA Astrophysics Data System (ADS)

    Moraru, Luminita; Dimitrievici, Lucian

    2017-01-01

    Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) is being increasingly used to assess both brain tissues and cerebrospinal fluid integrity. In this paper we study inter-site reproducibility of the apparent diffusion coefficient values for the main cerebral tissues such as gray matter, white matter and into cerebrospinal fluid and for three different stacks of slices that were spaced at L = 79.8, 84.9 and 90 mm. We assessed the impact of the attenuation factor and diffusion gradient on the results reproducibility.

  15. Diffusion tensor magnetic resonance imaging of the pancreas.

    PubMed

    Nissan, Noam; Golan, Talia; Furman-Haran, Edna; Apter, Sara; Inbar, Yael; Ariche, Arie; Bar-Zakay, Barak; Goldes, Yuri; Schvimer, Michael; Grobgeld, Dov; Degani, Hadassa

    2014-01-01

    To develop a diffusion-tensor-imaging (DTI) protocol that is sensitive to the complex diffusion and perfusion properties of the healthy and malignant pancreas tissues. Twenty-eight healthy volunteers and nine patients with pancreatic-ductal-adenocacinoma (PDAC), were scanned at 3T with T2-weighted and DTI sequences. Healthy volunteers were also scanned with multi-b diffusion-weighted-imaging (DWI), whereas a standard clinical protocol complemented the PDAC patients' scans. Image processing at pixel resolution yielded parametric maps of three directional diffusion coefficients λ1, λ2, λ3, apparent diffusion coefficient (ADC), and fractional anisotropy (FA), as well as a λ1-vector map, and a main diffusion-direction map. DTI measurements of healthy pancreatic tissue at b-values 0,500 s/mm² yielded: λ1 = (2.65±0.35)×10⁻³, λ2 = (1.87±0.22)×10⁻³, λ3 = (1.20±0.18)×10⁻³, ADC = (1.91±0.22)×10⁻³ (all in mm²/s units) and FA = 0.38±0.06. Using b-values of 100,500 s/mm² led to a significant reduction in λ1, λ2, λ3 and ADC (p<.0001) and a significant increase (p<0.0001) in FA. The reduction in the diffusion coefficients suggested a contribution of a fast intra-voxel-incoherent-motion (IVIM) component at b≤100 s/mm², which was confirmed by the multi-b DWI results. In PDACs, λ1, λ2, λ3 and ADC in both 0,500 s/mm² and 100,500 s/mm² b-values sets, as well as the reduction in these diffusion coefficients between the two sets, were significantly lower in comparison to the distal normal pancreatic tissue, suggesting higher cellularity and diminution of the fast-IVIM component in the cancer tissue. DTI using two reference b-values 0 and 100 s/mm² enabled characterization of the water diffusion and anisotropy of the healthy pancreas, taking into account a contribution of IVIM. The reduction in the diffusion coefficients of PDAC, as compared to normal pancreatic tissue, and the smaller change in these coefficients in PDAC when the reference b-value was modified from 0 to 100 s/mm², helped identifying the presence of malignancy.

  16. System-size corrections for self-diffusion coefficients calculated from molecular dynamics simulations: The case of CO2, n-alkanes, and poly(ethylene glycol) dimethyl ethers

    NASA Astrophysics Data System (ADS)

    Moultos, Othonas A.; Zhang, Yong; Tsimpanogiannis, Ioannis N.; Economou, Ioannis G.; Maginn, Edward J.

    2016-08-01

    Molecular dynamics simulations were carried out to study the self-diffusion coefficients of CO2, methane, propane, n-hexane, n-hexadecane, and various poly(ethylene glycol) dimethyl ethers (glymes in short, CH3O-(CH2CH2O)n-CH3 with n = 1, 2, 3, and 4, labeled as G1, G2, G3, and G4, respectively) at different conditions. Various system sizes were examined. The widely used Yeh and Hummer [J. Phys. Chem. B 108, 15873 (2004)] correction for the prediction of diffusion coefficient at the thermodynamic limit was applied and shown to be accurate in all cases compared to extrapolated values at infinite system size. The magnitude of correction, in all cases examined, is significant, with the smallest systems examined giving for some cases a self-diffusion coefficient approximately 15% lower than the infinite system-size extrapolated value. The results suggest that finite size corrections to computed self-diffusivities must be used in order to obtain accurate results.

  17. Data-driven analysis for the temperature and momentum dependence of the heavy-quark diffusion coefficient in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Xu, Yingru; Bernhard, Jonah E.; Bass, Steffen A.; Nahrgang, Marlene; Cao, Shanshan

    2018-01-01

    By applying a Bayesian model-to-data analysis, we estimate the temperature and momentum dependence of the heavy quark diffusion coefficient in an improved Langevin framework. The posterior range of the diffusion coefficient is obtained by performing a Markov chain Monte Carlo random walk and calibrating on the experimental data of D -meson RAA and v2 in three different collision systems at the Relativistic Heavy-Ion Collidaer (RHIC) and the Large Hadron Collider (LHC): Au-Au collisions at 200 GeV and Pb-Pb collisions at 2.76 and 5.02 TeV. The spatial diffusion coefficient is found to be consistent with lattice QCD calculations and comparable with other models' estimation. We demonstrate the capability of our improved Langevin model to simultaneously describe the RAA and v2 at both RHIC and the LHC energies, as well as the higher order flow coefficient such as D meson v3. We show that by applying a Bayesian analysis, we are able to quantitatively and systematically study the heavy flavor dynamics in heavy-ion collisions.

  18. Fluorescence fluctuation analysis of BACE1-GFP fusion protein in cultured HEK293 cells

    NASA Astrophysics Data System (ADS)

    Gardeen, Spencer; Johnson, Joseph L.; Heikal, Ahmed A.

    2016-10-01

    Beta-site APP cleaving enzyme 1 (BACE1) is a type I transmembrane aspartyl protease. In the amyloidogenic pathway, BACE1 provides β-secretase activity that cleaves the amyloid precursor protein (APP) that leads to amyloid beta (Aβ) peptides. The aggregation of these Aβ will ultimately results in amyloid plaque formation, a hallmark of Alzheimer's disease (AD). Amyloid aggregation leads to progressive memory impairment and neural loss. Recent detergent protein extraction studies suggest that the untreated BACE1 protein forms a dimer that has significantly higher catalytic activity than its monomeric counterpart. Here, we examine the dimerization hypothesis of BACE1 in cultured HEK293 cells using fluorescence correlation spectroscopy (FCS). Cells were transfected with a BACE1-EGFP fusion protein construct and imaged using confocal and DIC microscopy to monitor labeled BACE1 localization and distribution within the cell. Our one-photon fluorescence fluctuation autocorrelation of BACE1- EGFP on the plasma membrane of HEK cells is modeled using two diffusing species on the plasma membrane with estimated diffusion coefficients of 1.39 x 10-7 cm2/sec and 2.8 x 10-8 cm2/sec under resting conditions and STA-200 inhibition, respectively. Anomalous diffusion model also provided adequate description of the observed autocorrelation function of BACE1- EGFP on the plasma membrane with an estimate exponent (α) of 0.8 and 0.5 for resting and STA-200 treated cells, respectively. The corresponding hydrodynamic radius of this transmembrane fusion protein was estimated using the measured diffusion coefficients assuming both Stokes-Einstein and Saffman-Delbruck models. Our results suggest a complex diffusion pattern of BACE1-EGFP on the plasma membrane of HEK cells with the possibility for dimer formation, especially under STA-200 inhibition.

  19. Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging.

    PubMed

    Nicholson, C; Tao, L

    1993-12-01

    This paper describes the theory of an integrative optical imaging system and its application to the analysis of the diffusion of 3-, 10-, 40-, and 70-kDa fluorescent dextran molecules in agarose gel and brain extracellular microenvironment. The method uses a precisely defined source of fluorescent molecules pressure ejected from a micropipette, and a detailed theory of the intensity contributions from out-of-focus molecules in a three-dimensional medium to a two-dimensional image. Dextrans tagged with either tetramethylrhodamine or Texas Red were ejected into 0.3% agarose gel or rat cortical slices maintained in a perfused chamber at 34 degrees C and imaged using a compound epifluorescent microscope with a 10 x water-immersion objective. About 20 images were taken at 2-10-s intervals, recorded with a cooled CCD camera, then transferred to a 486 PC for quantitative analysis. The diffusion coefficient in agarose gel, D, and the apparent diffusion coefficient, D*, in brain tissue were determined by fitting an integral expression relating the measured two-dimensional image intensity to the theoretical three-dimensional dextran concentration. The measurements in dilute agarose gel provided a reference value of D and validated the method. Values of the tortuosity, lambda = (D/D*)1/2, for the 3- and 10-kDa dextrans were 1.70 and 1.63, respectively, which were consistent with previous values derived from tetramethylammonium measurements in cortex. Tortuosities for the 40- and 70-kDa dextrans had significantly larger values of 2.16 and 2.25, respectively. This suggests that the extracellular space may have local constrictions that hinder the diffusion of molecules above a critical size that lies in the range of many neurotrophic compounds.

  20. Molecular dynamic simulation of dicationic ionic liquids: effects of anions and alkyl chain length on liquid structure and diffusion.

    PubMed

    Yeganegi, Saeid; Soltanabadi, Azim; Farmanzadeh, Davood

    2012-09-20

    Structures and dynamics of nine geminal dicationic ionic liquids (DILs) Cn(mim)2X2, where n = 3, 6, and 9 and X = PF6(-), BF4(-), and Br(-), were studied by molecular dynamic simulations (J. Phys. Chem.B2004, 108, 2038-2047). A force field with a minor modification for C3(mim)2 × 2 was adopted for the simulations. Densities, detailed microscopic structures, mean-square displacements (MSD), and self-diffusivities for various ion pairs from MD simulations have been presented. The calculated densities for C9(mim)2X2 (X = Br(-) and BF4(-)) agreed well with the experimental values. The calculated RDFs show that anions are well organized around the imidazolium rings. The calculated RDFs indicate that, unlike the mono cationic ILs, the anions and cations in DILs distribute homogeneously. Enthalpies of vaporization were calculated and correlated with the structural features of DILs. The local structure of C9(mim)2X2 (X = Br, PF6) was examined by the spatial distribution function (SDF). The calculated SDFs show that similar trends were found by other groups for mono cationic ionic liquids (ILs). The highest probability densities are located around the imidazolium ring hydrogens. The calculated diffusion coefficients show that the ion diffusivities are 1 order of magnitude smaller than that of the mono cationic ionic liquids. The effects of alkyl chain length and anion type on the diffusion coefficient were also studied. The dynamics of the imidazolium rings and the alkyl chain in different time scales have also discussed. The calculated transference numbers show that the anions have the major role in carrying the electric current in a DIL.

Top