Science.gov

Sample records for local electronic structure

  1. Electronic-structure calculation for metals by local optimization

    NASA Astrophysics Data System (ADS)

    Woodward, C.; Min, B. I.; Benedek, R.; Garner, J.

    1989-03-01

    Recent work by Car and Parrinello has generated considerable interest in the calculation of electronic structure by nonlinear optimization. The technique introduced by these authors, dynamical simulated annealing, is designed for problems that involve energy barriers. When local optimization suffices to determine the energy minimum, more direct methods are available. In this paper we apply the algorithm suggested by Williams and Soler to calculate the electronic structure of metals, using a plane-wave expansion for the electronic orbitals and an electron-ion pseudopotential of the Kleinman-Bylander form. Radial pseudopotentials were taken from the compilation of Bachelet, Hamann, and Schlüter. Calculations are performed to optimize the electronic structure (i) with fixed atomic configuration, or (ii) with the atomic volume being optimized simultaneously. It is found that the dual optimization (ii) converges in essentially the same number of steps as the static lattice optimization (i). Numerical results are presented for Li, K, Al, and simple-cubic P.

  2. Change of Electronic Structures by Dopant-Induced Local Strain

    NASA Astrophysics Data System (ADS)

    Hyeong Kim, Gyu; Jeong, Sukmin

    2015-06-01

    Ag-induced Si(111)- surfaces (-Ag) exhibit unusual electronic structures that cannot be explained by the conventional rigid band model and charge transfer model. The (-Ag surfaces feature a free-electron-like parabolic band, the S1 band, that selectively shifts downward upon the adsorption of noble metal or alkali metal adatoms. Furthermore, the downward shift of S1 is independent of the type of dopants, Au, Ag, and Na. According to charge transfer analysis, Au adatoms accumulate electrons from the substrate and become negatively charged, whereas Na adatoms become positively charged, which indicates that S1 should shift in the opposite direction for both the adatoms. Investigation of calculated structures, calculation of model structures, and tight-binding analysis disclose that the changes in the electronic structure are closely related to the average Ag-Ag distance in the substrate and have their origin in the local strain induced by dopants (adatoms). This explanation implies that the electronic structure is irrespective of the dopant characters itself and paves a new way for understanding the electronic structures associated with the presence of dopants.

  3. Electronic Structure, Localization and 5f Occupancy in Pu Materials

    SciTech Connect

    Joyce, John J.; Beaux, Miles F.; Durakiewicz, Tomasz; Graham, Kevin S.; Bauer, Eric D.; Mitchell, Jeremy N.; Tobash, Paul H.; Richmond, Scott

    2012-05-03

    The electronic structure of delta plutonium ({delta}-Pu) and plutonium compounds is investigated using photoelectron spectroscopy (PES). Results for {delta}-Pu show a small component of the valence electronic structure which might reasonably be associated with a 5f{sup 6} configuration. PES results for PuTe are used as an indication for the 5f{sup 6} configuration due to the presence of atomic multiplet structure. Temperature dependent PES data on {delta}-Pu indicate a narrow peak centered 20 meV below the Fermi energy and 100 meV wide. The first PES data for PuCoIn5 indicate a 5f electronic structure more localized than the 5fs in the closely related PuCoGa{sub 5}. There is support from the PES data for a description of Pu materials with an electronic configuration of 5f{sup 5} with some admixture of 5f{sup 6} as well as a localized/delocalized 5f{sup 5} description.

  4. Electronic structure and localized states in a model amorphous silicon

    NASA Astrophysics Data System (ADS)

    Allan, G.; Delerue, C.; Lannoo, M.

    1998-03-01

    The electronic structure of a model amorphous silicon (a-Si) represented by a supercell of 4096 silicon atoms [B.R. Djordjevic, M.F. Thorpe, and F. Wooten, Phys. Rev. B 52, 5685 (1995)] and of a model hydrogenated amorphous silicon (a-Si:H) that we have built from the a-Si model are calculated in the tight-binding approximation. The band edges near the gap are characterized by exponential tails of localized states induced mainly by the variations in bond angles. The spatial localization of the states is compared between a-Si and a-Si:H. Comparison with experiments suggests that the structural models give good descriptions of the amorphous materials.

  5. The local electronic structure of alpha-Li3N.

    PubMed

    Fister, T T; Seidler, G T; Shirley, E L; Vila, F D; Rehr, J J; Nagle, K P; Linehan, J C; Cross, J O

    2008-07-28

    New theoretical and experimental investigations of the occupied and unoccupied local electronic densities of states (DOS) are reported for alpha-Li(3)N. Band-structure and density-functional theory calculations confirm the absence of covalent bonding character. However, real-space full-multiple-scattering (RSFMS) calculations of the occupied local DOS find less extreme nominal valences than have previously been proposed. Nonresonant inelastic x-ray scattering, RSFMS calculations, and calculations based on the Bethe-Salpeter equation are used to characterize the unoccupied electronic final states local to both the Li and N sites. There is a good agreement between experiment and theory. Throughout the Li 1s near-edge region, both experiment and theory find strong similarities in the s-and p-type components of the unoccupied local final DOS projected onto an orbital angular momentum basis (l-DOS). An unexpected, significant correspondence exists between the near-edge spectra for the Li 1s and N 1s initial states. We argue that both spectra are sampling essentially the same final DOS due to the combination of long core-hole lifetimes, long photoelectron lifetimes, and the fact that orbital angular momentum is the same for all relevant initial states. Such considerations may be generally applicable for low atomic number compounds.

  6. The local electronic structure of α-Li3N

    SciTech Connect

    Fister, Timothy T.; Siedler, Gerald T.; Shirley, E. L.; Vila, Fernando D.; Nagle, Kenneth P.; Rehr, John J.; Linehan, John C.; Cross, Julie O.

    2008-07-28

    We investigate the local electronic structure of α-Li3N by the combination of nonresonant inelastic x-ray scattering measurements and three independent ab initio theoretical treatments. Experimental determination of the local final density of states projected onto an orbital angular momentum basis (l-DOS) for Li 1s initial states finds strong similarities in the s- and p-DOS throughout the near-edge region, which we attribute to the 3-fold rotational symmetry about Li sites in the Li2N sheets of α-Li3N. We also find a significant correspondence between the near-edge spectra for the Li 1s and N 1s contributions to the NRIXS signal. This is unexpected, as such behavior is typically associated with covalent materials whereas α-Li3N is strongly ionic. We explain that such similarity in the DOS at different sites in either ionic or covalent systems may occur when the core-hole lifetimes are very long, so that the lifetime of the photoelectron is the dominant factor in cutting off high-order multiple scattering in the near-edge regime. This work was supported by the U.S. Department of Energy's Office of Basic Energy Sciences. The Pacific Northwest National Laboratory is operated by Battelle for DOE.

  7. Local atomic order, electronic structure and electron transport properties of Cu-Zr metallic glasses

    SciTech Connect

    Antonowicz, J. Pietnoczka, A.; Pękała, K.; Latuch, J.; Evangelakis, G. A.

    2014-05-28

    We studied atomic and electronic structures of binary Cu-Zr metallic glasses (MGs) using combined experimental and computational methods including X-ray absorption fine structure spectroscopy, electrical resistivity, thermoelectric power (TEP) measurements, molecular dynamics (MD) simulations, and ab-initio calculations. The results of MD simulations and extended X-ray absorption fine structure analysis indicate that atomic order of Cu-Zr MGs and can be described in terms of interpenetrating icosahedral-like clusters involving five-fold symmetry. MD configurations were used as an input for calculations of theoretical electronic density of states (DOS) functions which exhibits good agreement with the experimental X-ray absorption near-edge spectra. We found no indication of minimum of DOS at Fermi energy predicted by Mott's nearly free electron (NFE) model for glass-forming alloys. The theoretical DOS was subsequently used to test Mott's model describing the temperature variation of electrical resistivity and thermoelectric power of transition metal-based MGs. We demonstrate that the measured temperature variations of electrical resistivity and TEP remain in a contradiction with this model. On the other hand, the experimental temperature dependence of electrical resistivity can be explained by incipient localization of conduction electrons. It is shown that weak localization model works up to relatively high temperatures when localization is destroyed by phonons. Our results indicate that electron transport properties of Cu-Zr MGs are dominated by localization effects rather than by electronic structure. We suggest that NFE model fails to explain a relatively high glass-forming ability of binary Cu-Zr alloys.

  8. Local atomic order, electronic structure and electron transport properties of Cu-Zr metallic glasses

    NASA Astrophysics Data System (ADS)

    Antonowicz, J.; Pietnoczka, A.; Pekała, K.; Latuch, J.; Evangelakis, G. A.

    2014-05-01

    We studied atomic and electronic structures of binary Cu-Zr metallic glasses (MGs) using combined experimental and computational methods including X-ray absorption fine structure spectroscopy, electrical resistivity, thermoelectric power (TEP) measurements, molecular dynamics (MD) simulations, and ab-initio calculations. The results of MD simulations and extended X-ray absorption fine structure analysis indicate that atomic order of Cu-Zr MGs and can be described in terms of interpenetrating icosahedral-like clusters involving five-fold symmetry. MD configurations were used as an input for calculations of theoretical electronic density of states (DOS) functions which exhibits good agreement with the experimental X-ray absorption near-edge spectra. We found no indication of minimum of DOS at Fermi energy predicted by Mott's nearly free electron (NFE) model for glass-forming alloys. The theoretical DOS was subsequently used to test Mott's model describing the temperature variation of electrical resistivity and thermoelectric power of transition metal-based MGs. We demonstrate that the measured temperature variations of electrical resistivity and TEP remain in a contradiction with this model. On the other hand, the experimental temperature dependence of electrical resistivity can be explained by incipient localization of conduction electrons. It is shown that weak localization model works up to relatively high temperatures when localization is destroyed by phonons. Our results indicate that electron transport properties of Cu-Zr MGs are dominated by localization effects rather than by electronic structure. We suggest that NFE model fails to explain a relatively high glass-forming ability of binary Cu-Zr alloys.

  9. Local electronic structures in electron-doped cuprates with coexisting orders

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Hu, Xiao

    2010-12-01

    Motivated by the observation of a so-called non-monotonic gap in recent angle-resolved photoemission spectroscopy measurement, we study the local electronic structure near impurities in electron-doped cuprates by considering the influence of antiferromagnetic (AF) spin-density-wave (SDW) order. We find that the evolution of density of states (DOS) with AF SDW order clearly indicates the non-monotonic d-wave gap behavior. More interestingly, the local DOS for spin-up is much different from that for spin-down with increasing AF SDW order. As a result, the impurity induced resonance state near the Fermi energy exhibits a spin-polarized feature. These features can be detected by spin-polarized scanning tunneling microscopy experiments.

  10. Electronic and local structures of BiFeO₃ films.

    PubMed

    Yoneda, Y; Sakamoto, W

    2011-01-12

    The electronic structure of BiFeO₃ (BFO), BiFeO₃-PbTiO(3) solid solution (BFO-PT), and Mn-doped BFO-PT (BFM-PT) films fabricated by chemical solution deposition was investigated by x-ray absorption fine structure (XAFS). The BiFeO₃ shows a large leakage current owing to the mixed valance state of Fe(2 +) and Fe(3 +). The BFO film has a blunt absorption edge jump indicating the charge fluctuated state of the iron ions. The BFO-PT and BFM-PT films have sharp absorption edges, and the absorption energy of these films shifted to opposite energy. The valence fluctuation of the iron ions was closely connected with the leakage current properties. The charge fluctuated BFO film showed a leaky feature, and the charge unfluctuated BFO-PT and BFM-PT films had improved leakage current properties. The valence fluctuation of the iron ions can be controlled by Mn substitution and by making solid solutions.

  11. Probing the band structure and local electronic properties of low-dimensional semiconductor structures

    NASA Astrophysics Data System (ADS)

    Walrath, Jenna Cherie

    Low-dimensional semiconductor structures are important for a wide variety of applications, and recent advances in nanoscale fabrication are paving the way for increasingly precise nano-engineering of a wide range of materials. It is therefore essential that the physics of materials at the nanoscale are thoroughly understood to unleash the full potential of nanotechnology, requiring the development of increasingly sophisticated instrumentation and modeling. Of particular interest is the relationship between the local density of states (LDOS) of low-dimensional structures and the band structure and local electronic properties. This dissertation presents the investigation of the band structure, LDOS, and local electronic properties of nanostructures ranging from zero-dimensional (0D) quantum dots (QDs) to two-dimensional (2D) thin films, synthesizing computational and experimental approaches including Poisson-Schrodinger band structure calculations, scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and scanning thermoelectric microscopy (SThEM). A method is presented for quantifying the local Seebeck coefficient (S) with SThEM, using a quasi-3D conversion matrix approach to directly convert temperature gradient-induced voltages S. For a GaAs p-n junction, the resulting S-profile is consistent with that computed using the free carrier concentration profile. This combined computational-experimental approach is expected to enable nanoscale measurements of S across a wide variety of heterostructure interfaces. The local carrier concentration, n, is profiled across epitaxial InAs/GaAs QDs, where SThEM is used to profile the temperature gradient-induced voltage, which is converted to a profile of the local S and finally to an n profile. The S profile is converted to a conduction band-edge profile and compared with Poisson-Schrodinger band-edge simulations. The combined computational-experimental approach suggests a reduced n in the QD center in

  12. How localized is ``local?'' Efficiency vs. accuracy of O(N) domain decomposition in local orbital based all-electron electronic structure theory

    NASA Astrophysics Data System (ADS)

    Havu, Vile; Blum, Volker; Scheffler, Matthias

    2007-03-01

    Numeric atom-centered local orbitals (NAO) are efficient basis sets for all-electron electronic structure theory. The locality of NAO's can be exploited to render (in principle) all operations of the self-consistency cycle O(N). This is straightforward for 3D integrals using domain decomposition into spatially close subsets of integration points, enabling critical computational savings that are effective from ˜tens of atoms (no significant overhead for smaller systems) and make large systems (100s of atoms) computationally feasible. Using a new all-electron NAO-based code,^1 we investigate the quantitative impact of exploiting this locality on two distinct classes of systems: Large light-element molecules [Alanine-based polypeptide chains (Ala)n], and compact transition metal clusters. Strict NAO locality is achieved by imposing a cutoff potential with an onset radius rc, and exploited by appropriately shaped integration domains (subsets of integration points). Conventional tight rc<= 3å have no measurable accuracy impact in (Ala)n, but introduce inaccuracies of 20-30 meV/atom in Cun. The domain shape impacts the computational effort by only 10-20 % for reasonable rc. ^1 V. Blum, R. Gehrke, P. Havu, V. Havu, M. Scheffler, The FHI Ab Initio Molecular Simulations (aims) Project, Fritz-Haber-Institut, Berlin (2006).

  13. Local structural and compositional determination via electron scattering: Heterogeneous Cu(001)-Pd surface alloy

    SciTech Connect

    Sun, J.; Pohl, K.; Hannon, J. B.; Kellogg, G. L.

    2007-11-15

    We have measured the structure and chemical composition of ultrathin Pd films on Cu(001) using low-energy electron microscopy. We determine their local stoichiometry and structure, with 8.5 nm lateral spatial resolution, by quantitatively analyzing the scattered electron intensity and comparing it to dynamical scattering calculations, as in a conventional low-energy electron diffraction (LEED)-IV analysis. The average t-matrix approximation is used to calculate the total atomic scattering matrices for this random substitutional alloy. As in the traditional LEED analysis, the structural and compositional parameters are determined by comparing the computed diffraction intensity of a trial structure to that measured in experiment. Monte Carlo simulations show how the spatial and compositional inhomogeneity can be used to understand the energetics of Cu-Pd bonding.

  14. Effect of local atomic and electronic structures on thermoelectric properties of chemically substituted CoSi

    NASA Astrophysics Data System (ADS)

    Hsu, C. C.; Pao, C. W.; Chen, J. L.; Chen, C. L.; Dong, C. L.; Liu, Y. S.; Lee, J. F.; Chan, T. S.; Chang, C. L.; Kuo, Y. K.; Lue, C. S.

    2014-05-01

    We report the effects of Ge partial substitution for Si on local atomic and electronic structures of thermoelectric materials in binary compound cobalt monosilicides (\\text{CoSi}_{1-x}\\text{Ge}_{x}\\text{:}\\ 0 \\le x \\le 0.15 ). Correlations between local atomic/electronic structure and thermoelectric properties are investigated by means of X-ray absorption spectroscopy. The spectroscopic results indicate that as Ge is partially substituted onto Si sites at x \\le 0.05 , Co in CoSi1-xGex gains a certain amount of charge in its 3d orbitals. Contrarily, upon further replacing Si with Ge at x \\ge 0.05 , the Co 3d orbitals start to lose some of their charge. Notably, thermopower is strongly correlated with charge redistribution in the Co 3d orbital, and the observed charge transfer between Ge and Co is responsible for the variation of Co 3d occupancy number. In addition to Seebeck coefficient, which can be modified by tailoring the Co 3d states, local lattice disorder may also be beneficial in enhancing the thermoelectric properties. Extended X-ray absorption fine structure spectrum results further demonstrate that the lattice phonons can be enhanced by Ge doping, which results in the formation of the disordered Co-Co pair. Improvements in the thermoelectric properties are interpreted based on the variation of local atomic and electronic structure induced by lattice distortion through chemical substitution.

  15. Distinct local electronic structure and magnetism for Mn in amorphous Si and Ge

    SciTech Connect

    Zeng, Li; Cao, J. X.; Helgren, E.; Karel, J.; Arenholz, E.; Ouyang, Lu; Smith, David J.; Wu, R. Q.; Hellman, F.

    2010-06-01

    Transition metals such as Mn generally have large local moments in covalent semiconductors due to their partially filled d shells. However, Mn magnetization in group-IV semiconductors is more complicated than often recognized. Here we report a striking crossover from a quenched Mn moment (<0.1 {mu}{sub B}) in amorphous Si (a-Si) to a large distinct local Mn moment ({ge}3{mu}{sub B}) in amorphous Ge (a-Ge) over a wide range of Mn concentrations (0.005-0.20). Corresponding differences are observed in d-shell electronic structure and the sign of the Hall effect. Density-functional-theory calculations show distinct local structures, consistent with different atomic density measured for a-Si and a-Ge, respectively, and the Mn coordination number N{sub c} is found to be the key factor. Despite the amorphous structure, Mn in a-Si is in a relatively well-defined high coordination interstitial type site with broadened d bands, low moment, and electron (n-type) carriers, while Mn in a-Ge is in a low coordination substitutional type site with large local moment and holes (p-type) carriers. Moreover, the correlation between N{sub c} and the magnitude of the local moment is essentially independent of the matrix; the local Mn moments approach zero when N{sub c} > 7 for both a-Si and a-Ge.

  16. Effect of oxygen deficiency on electronic properties and local structure of amorphous tantalum oxide thin films

    SciTech Connect

    Denny, Yus Rama; Firmansyah, Teguh; Oh, Suhk Kun; Kang, Hee Jae; Yang, Dong-Seok; Heo, Sung; Chung, JaeGwan; Lee, Jae Cheol

    2016-10-15

    Highlights: • The effect of oxygen flow rate on electronic properties and local structure of tantalum oxide thin films was studied. • The oxygen deficiency induced the nonstoichiometric state a-TaOx. • A small peak at 1.97 eV above the valence band side appeared on nonstoichiometric Ta{sub 2}O{sub 5} thin films. • The oxygen flow rate can change the local electronic structure of tantalum oxide thin films. - Abstract: The dependence of electronic properties and local structure of tantalum oxide thin film on oxygen deficiency have been investigated by means of X-ray photoelectron spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), and X-ray absorption spectroscopy (XAS). The XPS results showed that the oxygen flow rate change results in the appearance of features in the Ta 4f at the binding energies of 23.2 eV, 24.4 eV, 25.8, and 27.3 eV whose peaks are attributed to Ta{sup 1+}, Ta{sup 2+}, Ta{sup 3+}/Ta{sup 4+}, and Ta{sup 5+}, respectively. The presence of nonstoichiometric state from tantalum oxide (TaOx) thin films could be generated by the oxygen vacancies. In addition, XAS spectra manifested both the increase of coordination number of the first Ta-O shell and a considerable reduction of the Ta-O bond distance with the decrease of oxygen deficiency.

  17. Effect of structural distortion and polarization in localization of electronic excitations in organic semiconductor materials

    NASA Astrophysics Data System (ADS)

    Nayyar, Iffat; Batista, Enrique; Tretiak, Sergei; Saxena, Avadh; Smith, Darryl; Martin, Richard

    2012-02-01

    Organic polymers find varied applications in optoelectronic devices such as solar cells, light emitting diodes and lasers. Detailed understanding of charge carrier transport by polarons and excitonic energy transfer producing singlet and triplet excitations is critical to improve their efficiency. We benchmarked the ability of current functional models to describe the spatial extent of self-trapped neutral and charged excitations for MEH-PPV owing to its superior luminescence and experimental evidence. Now we are interested in distinguishing between two distinct origins leading to localization; spatial localization of the wavefunction by itself on the undistorted geometry and localization of the wavefunction assured by distortion of the structure during its relaxation. We suggest localization is produced by electronic rearrangements and character of the functional. We also observe that different functionals place the highest occupied and lowest virtual orbitals at different positions in the energy band diagram based on their ability to predict the extent of localization of these states.

  18. Simulation of NMR data reveals that proteins' local structures are stabilized by electronic polarization.

    PubMed

    Tong, Yan; Ji, Chang G; Mei, Ye; Zhang, John Z H

    2009-06-24

    Molecular dynamics simulations of NMR backbone relaxation order parameters have been carried out to investigate the polarization effect on the protein's local structure and dynamics for five benchmark proteins (bovine pancreatic trypsin inhibitor, immunoglobulin-binding domain (B1) of streptococcal protein G, bovine apo-calbindin D9K, human interleukin-4 R88Q mutant, and hen egg white lysozyme). In order to isolate the polarization effect from other interaction effects, our study employed both the standard AMBER force field (AMBER03) and polarized protein-specific charges (PPCs) in the MD simulations. The simulated order parameters, employing both the standard nonpolarizable and polarized force fields, are directly compared with experimental data. Our results show that residue-specific order parameters at some specific loop and turn regions are significantly underestimated by the MD simulations using the standard AMBER force field, indicating hyperflexibility of these local structures. Detailed analysis of the structures and dynamic motions of individual residues reveals that the hyperflexibility of these local structures is largely related to the breaking or weakening of relevant hydrogen bonds. In contrast, the agreement with the experimental results is significantly improved and more stable local structures are observed in the MD simulations using the polarized force field. The comparison between theory and experiment provides convincing evidence that intraprotein hydrogen bonds in these regions are stabilized by electronic polarization, which is critical to the dynamical stability of these local structures in proteins.

  19. Local Structure, Electronic Behavior, and Electrocatalytic Reactivity of CO-Reduced Platinum-Iron Oxide Nanoparticles

    SciTech Connect

    Duchesne, Paul N.; Chen, Guangxu; Zheng, Nanfeng; Zhang, Peng

    2014-02-18

    A series of platinum–iron oxide nanoparticles was synthesized using a “clean” CO-reduction method that employed different ratios of Pt-Fe precursor salts in oleylamine at elevated temperatures. High-resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDS) studies revealed that nearly monodisperse (i.e., with relative standard deviations of less than 15%) nanoparticles with mean diameters of 3.5–4.4 nm and varied elemental compositions (Pt54Fe46 Pt70Fe30, and Pt87Fe13) were obtained. X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements at the Pt L3- and Fe K-edges revealed that these nanoparticles all consisted of a Pt core with amorphous iron oxide on the surface. Furthermore, it was observed that the local structure (e.g., Pt–Pt bond distance and coordination number) and electronic behavior of the Pt–FeO nanoparticles (e.g., Pt d electron density and Fe valence state) are dependent on the Pt-Fe precursor ratios used in their synthesis. Quantum mechanical ab initio calculations were employed to interpret the results from X-ray spectroscopy and help elucidate the relationships between local structure and electronic properties in the nanoparticle samples. Finally, the surface reactivity of these nanoparticles in the oxygen reduction reaction (ORR) was explored, demonstrating higher electrocatalytic activity for all three platinum–iron oxide samples in comparison with a commercial Pt catalyst. The surface reactivity was also found to be sensitive to the Pt-Fe ratios of the nanoparticles and could be correlated with their local structure and electronic behavior.

  20. Direct Visualization of Local Electromagnetic Field Structures by Scanning Transmission Electron Microscopy.

    PubMed

    Shibata, Naoya; Findlay, Scott D; Matsumoto, Takao; Kohno, Yuji; Seki, Takehito; Sánchez-Santolino, Gabriel; Ikuhara, Yuichi

    2017-07-18

    The functional properties of materials and devices are critically determined by the electromagnetic field structures formed inside them, especially at nanointerface and surface regions, because such structures are strongly associated with the dynamics of electrons, holes and ions. To understand the fundamental origin of many exotic properties in modern materials and devices, it is essential to directly characterize local electromagnetic field structures at such defect regions, even down to atomic dimensions. In recent years, rapid progress in the development of high-speed area detectors for aberration-corrected scanning transmission electron microscopy (STEM) with sub-angstrom spatial resolution has opened new possibilities to directly image such electromagnetic field structures at very high-resolution. In this Account, we give an overview of our recent development of differential phase contrast (DPC) microscopy for aberration-corrected STEM and its application to many materials problems. In recent years, we have developed segmented-type STEM detectors which divide the detector plane into 16 segments and enable simultaneous imaging of 16 STEM images which are sensitive to the positions and angles of transmitted/scattered electrons on the detector plane. These detectors also have atomic-resolution imaging capability. Using these segmented-type STEM detectors, we show DPC STEM imaging to be a very powerful tool for directly imaging local electromagnetic field structures in materials and devices in real space. For example, DPC STEM can clearly visualize the local electric field variation due to the abrupt potential change across a p-n junction in a GaAs semiconductor, which cannot be observed by normal in-focus bright-field or annular type dark-field STEM imaging modes. DPC STEM is also very effective for imaging magnetic field structures in magnetic materials, such as magnetic domains and skyrmions. Moreover, real-time imaging of electromagnetic field structures can

  1. Local Electronic Structure of a Single Magnetic Impurity in a Superconductor

    SciTech Connect

    Flatte, M.E.; Byers, J.M.

    1997-05-01

    We present the first three-dimensional, self-consistent calculation of the electronic structure near a strong classical magnetic impurity in a superconductor. Localized excited states are found within the energy gap which are half electron and half hole. The spatial structure of the positive-frequency (electronlike) spectral weight (or local density of states) can differ strongly from that of the negative frequency (holelike) spectral weight. The effect of the impurity on the continuum states above the energy gap is calculated with good spectral resolution for the first time. For sufficiently strong impurity potentials, the order parameter may change sign at the impurity site. {copyright} {ital 1997} {ital The American Physical Society}

  2. Local atomic and electronic structure of boron chemical doping in monolayer graphene.

    PubMed

    Zhao, Liuyan; Levendorf, Mark; Goncher, Scott; Schiros, Theanne; Pálová, Lucia; Zabet-Khosousi, Amir; Rim, Kwang Taeg; Gutiérrez, Christopher; Nordlund, Dennis; Jaye, Cherno; Hybertsen, Mark; Reichman, David; Flynn, George W; Park, Jiwoong; Pasupathy, Abhay N

    2013-10-09

    We use scanning tunneling microscopy and X-ray spectroscopy to characterize the atomic and electronic structure of boron-doped and nitrogen-doped graphene created by chemical vapor deposition on copper substrates. Microscopic measurements show that boron, like nitrogen, incorporates into the carbon lattice primarily in the graphitic form and contributes ~0.5 carriers into the graphene sheet per dopant. Density functional theory calculations indicate that boron dopants interact strongly with the underlying copper substrate while nitrogen dopants do not. The local bonding differences between graphitic boron and nitrogen dopants lead to large scale differences in dopant distribution. The distribution of dopants is observed to be completely random in the case of boron, while nitrogen displays strong sublattice clustering. Structurally, nitrogen-doped graphene is relatively defect-free while boron-doped graphene films show a large number of Stone-Wales defects. These defects create local electronic resonances and cause electronic scattering, but do not electronically dope the graphene film.

  3. Scale-adaptive tensor algebra for local many-body methods of electronic structure theory

    SciTech Connect

    Liakh, Dmitry I

    2014-01-01

    While the formalism of multiresolution analysis (MRA), based on wavelets and adaptive integral representations of operators, is actively progressing in electronic structure theory (mostly on the independent-particle level and, recently, second-order perturbation theory), the concepts of multiresolution and adaptivity can also be utilized within the traditional formulation of correlated (many-particle) theory which is based on second quantization and the corresponding (generally nonorthogonal) tensor algebra. In this paper, we present a formalism called scale-adaptive tensor algebra (SATA) which exploits an adaptive representation of tensors of many-body operators via the local adjustment of the basis set quality. Given a series of locally supported fragment bases of a progressively lower quality, we formulate the explicit rules for tensor algebra operations dealing with adaptively resolved tensor operands. The formalism suggested is expected to enhance the applicability and reliability of local correlated many-body methods of electronic structure theory, especially those directly based on atomic orbitals (or any other localized basis functions).

  4. TiO2 nanotube arrays for photocatalysis: Effects of crystallinity, local order, and electronic structure

    DOE PAGES

    Liu, Jing; Hosseinpour, Pegah M.; Luo, Si; ...

    2014-11-19

    To furnish insight into correlations of electronic and local structure and photoactivity, arrays of short and long TiO₂ nanotubes were synthesized by electrochemical anodization of Ti foil, followed by thermal treatment in O₂ (oxidizing), Ar (inert), and H₂ (reducing) environments. The physical and electronic structures of these nanotubes were probed with x-ray diffraction, scanning electron microscopy, and synchrotron-based x-ray absorption spectroscopy, and correlated with their photocatalytic properties. The photocatalytic activity of the nanotubes was evaluated by monitoring the degradation of methyl orange under UV-VIS light irradiation. Results show that upon annealing at 350 °C all as-anodized amorphous TiO₂ nanotube samplesmore » partially transform to the anatase structure, with variations in the degree of crystallinity and in the concentration of local defects near the nanotubes' surface (~5 nm) depending on the annealing conditions. Degradation of methyl orange was not detectable for the as-anodized TiO₂ nanotubes regardless of their length. The annealed long nanotubes demonstrated detectable catalytic activity, which was more significant with the H₂-annealed nanotubes than with the Ar- and O₂-annealed nanotube samples. This enhanced photocatalytic response of the H₂-annealed long nanotubes relative to the other samples is positively correlated with the presence of a larger concentration of lattice defects (such as Ti3+ and anticipated oxygen vacancies) and a slightly lower degree of crystallinity near the nanotube surface. These physical and electronic structural attributes impact the efficacy of visible light absorption; moreover, the increased concentration of surface defects is postulated to promote the generation of hydroxyl radicals and thus accelerate the photodegradation of the methyl orange. The information obtained from this study provides unique insight into the role of the near-surface electronic and defect structure

  5. The effects of local correlations on the electronic structure of FeSe

    NASA Astrophysics Data System (ADS)

    Watson, Matthew; Kim, Timur; Haghighirad, Amir; Coldea, Amalia

    FeSe is structurally the simplest of Fe-based superconductors, but its complex and unique properties pose important theoretical questions. One important aspect of the physics of FeSe is the understanding of the strength and effects of electronic correlations. In order to explore this, we have performed angle-resolved photo-emission spectroscopy (ARPES) measurements on high quality bulk single crystals of FeSe over a wide range of binding energies, in different scattering geometries and with varying incident photon energies, analysing the quasiparticle renormalisations, scattering rates and degree of coherence. We find that FeSe exhibits moderately strong, orbital-dependent correlation effects which are understood to arise primarily due to local electron-electron interactions on the Fe sites. We conclude that electronic correlations constitute a key ingredient in understanding the electronic structure of FeSe. Part of this work was supported by EPSRC, UK (EP/I004475/1, EP/I017836/1). We thank Diamond Light Source for access to Beamline I05.

  6. Localization of fluorescently labeled structures in frozen-hydrated samples using integrated light electron microscopy.

    PubMed

    Faas, F G A; Bárcena, M; Agronskaia, A V; Gerritsen, H C; Moscicka, K B; Diebolder, C A; van Driel, L F; Limpens, R W A L; Bos, E; Ravelli, R B G; Koning, R I; Koster, A J

    2013-03-01

    Correlative light and electron microscopy is an increasingly popular technique to study complex biological systems at various levels of resolution. Fluorescence microscopy can be employed to scan large areas to localize regions of interest which are then analyzed by electron microscopy to obtain morphological and structural information from a selected field of view at nm-scale resolution. Previously, an integrated approach to room temperature correlative microscopy was described. Combined use of light and electron microscopy within one instrument greatly simplifies sample handling, avoids cumbersome experimental overheads, simplifies navigation between the two modalities, and improves the success rate of image correlation. Here, an integrated approach for correlative microscopy under cryogenic conditions is presented. Its advantages over the room temperature approach include safeguarding the native hydrated state of the biological specimen, preservation of the fluorescence signal without risk of quenching due to heavy atom stains, and reduced photo bleaching. The potential of cryo integrated light and electron microscopy is demonstrated for the detection of viable bacteria, the study of in vitro polymerized microtubules, the localization of mitochondria in mouse embryonic fibroblasts, and for a search into virus-induced intracellular membrane modifications within mammalian cells.

  7. Local electronic structure and nanolevel hierarchical organization of bone tissue: theory and NEXAFS study

    NASA Astrophysics Data System (ADS)

    Pavlychev, A. A.; Avrunin, A. S.; Vinogradov, A. S.; Filatova, E. O.; Doctorov, A. A.; Krivosenko, Yu S.; Samoilenko, D. O.; Svirskiy, G. I.; Konashuk, A. S.; Rostov, D. A.

    2016-12-01

    Theoretical and experimental investigations of native bone are carried out to understand relationships between its hierarchical organization and local electronic and atomic structure of the mineralized phase. The 3D superlattice model of a coplanar assembly of the hydroxyapatite (HAP) nanocrystallites separated by the hydrated nanolayers is introduced to account the interplay of short-, long- and super-range order parameters in bone tissue. The model is applied to (i) predict and rationalize the HAP-to-bone spectral changes in the electronic structure and (ii) describe the mechanisms ensuring the link of the hierarchical organization with the electronic structure of the mineralized phase in bone. To check the predictions the near-edge x-ray absorption fine structure (NEXAFS) at the Ca 2p, P 2p and O 1s thresholds is measured for native bone and compared with NEXAFS for reference compounds. The NEXAFS analysis has demonstrated the essential hierarchy induced HAP-to-bone red shifts of the Ca and P 2p-to-valence transitions. The lowest O 1s excitation line at 532.2 eV in bone is assigned with superposition of core transitions in the hydroxide OH-(H2O) m anions, Ca2+(H2O) n cations, the carboxyl groups inside the collagen and [PO4]2- and [PO4]- anions with unsaturated P-O bonds.

  8. Local conditions for the Pauli potential in order to yield self-consistent electron densities exhibiting proper atomic shell structure

    SciTech Connect

    Finzel, Kati

    2016-01-21

    The local conditions for the Pauli potential that are necessary in order to yield self-consistent electron densities from orbital-free calculations are investigated for approximations that are expressed with the help of a local position variable. It is shown that those local conditions also apply when the Pauli potential is given in terms of the electron density. An explicit formula for the Ne atom is given, preserving the local conditions during the iterative procedure. The resulting orbital-free electron density exhibits proper shell structure behavior and is in close agreement with the Kohn-Sham electron density. This study demonstrates that it is possible to obtain self-consistent orbital-free electron densities with proper atomic shell structure from simple one-point approximations for the Pauli potential at local density level.

  9. Local crystal structure analysis with 10-pm accuracy using scanning transmission electron microscopy.

    PubMed

    Saito, Mitsuhiro; Kimoto, Koji; Nagai, Takuro; Fukushima, Shun; Akahoshi, Daisuke; Kuwahara, Hideki; Matsui, Yoshio; Ishizuka, Kazuo

    2009-06-01

    We demonstrate local crystal structure analysis based on annular dark-field (ADF) imaging in scanning transmission electron microscopy (STEM). Using a stabilized STEM instrument and customized software, we first realize high accuracy of elemental discrimination and atom-position determination with a 10-pm-order accuracy, which can reveal major cation displacements associated with a variety of material properties, e.g. ferroelectricity and colossal magnetoresistivity. A-site ordered/disordered perovskite manganites Tb(0.5)Ba(0.5)MnO(3) are analysed; A-site ordering and a Mn-site displacement of 12 pm are detected in each specific atomic column. This method can be applied to practical and advanced materials, e.g. strongly correlated electron materials.

  10. Local crystal structure analysis with several picometer precision using scanning transmission electron microscopy.

    PubMed

    Kimoto, Koji; Asaka, Toru; Yu, Xiuzhen; Nagai, Takuro; Matsui, Yoshio; Ishizuka, Kazuo

    2010-06-01

    We report a local crystal structure analysis with a high precision of several picometers on the basis of scanning transmission electron microscopy (STEM). Advanced annular dark-field (ADF) imaging has been demonstrated using software-based experimental and data-processing techniques, such as the improvement of signal-to-noise ratio, the reduction of image distortion, the quantification of experimental parameters (e.g., thickness and defocus) and the resolution enhancement by maximum-entropy deconvolution. The accuracy in the atom position measurement depends on the validity of the incoherent imaging approximation, in which an ADF image is described as the convolution between the incident probe profile and scattering objects. Although the qualitative interpretation of ADF image contrast is possible for a wide range of specimen thicknesses, the direct observation of a crystal structure with deep-sub-angstrom accuracy requires a thin specimen (e.g., 10nm), as well as observation of the structure image by conventional high-resolution transmission electron microscopy. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Electronic structure and local magnetism of 3d-5d impurity substituted CeFe2

    NASA Astrophysics Data System (ADS)

    Das, Rakesh; Das, G. P.; Srivastava, S. K.

    2016-04-01

    We present here a systematic first-principles study of electronic structure and local magnetic properties of Ce[Fe0.75M0.25]2 compounds, where M is a 3d, 4d or 5d transition or post-transition element, using the generalized gradient approximation of the density functional theory. The d-f band hybridizations existing in CeFe2 get modified by the impurity M in an orderly manner across a period for each impurity series: the hybridization is strongest for the Mn group impurity in the period and gets diminished on either side of it. The weakening of the d-f hybridization strength is also associated with a relative localization of the Ce 4f states with respect to the delocalized 4f states in CeFe2. The above effects are most prominent for 3d impurity series, while for 4d and 5d impurities, the hybridizations and relocalizations are relatively weak due primarily to the relatively extended nature of 4d and 5d wavefunctions. The Ce local moment is found to decrease from the CeFe2 value in proportion to the strength of relocalization, thus following almost the same orderly trend as obeyed by the d-f hybridization. Further, depending on the way the spin-up and spin-down densities of states of an impurity shift relative to the Fermi energy, the impurity local moments are highest for Mn or Fe group, reduce on either side, become zero for Ni to Ga, and are small but negative for V and Ti. The Ce hyperfine field is found to follow the M local moment in a linear fashion, and vice-versa.

  12. Local spectroscopy of moiré-induced electronic structure in gate-tunable twisted bilayer graphene

    NASA Astrophysics Data System (ADS)

    Wong, Dillon; Wang, Yang; Jung, Jeil; Pezzini, Sergio; DaSilva, Ashley M.; Tsai, Hsin-Zon; Jung, Han Sae; Khajeh, Ramin; Kim, Youngkyou; Lee, Juwon; Kahn, Salman; Tollabimazraehno, Sajjad; Rasool, Haider; Watanabe, Kenji; Taniguchi, Takashi; Zettl, Alex; Adam, Shaffique; MacDonald, Allan H.; Crommie, Michael F.

    2015-10-01

    Twisted bilayer graphene (tBLG) forms a quasicrystal whose structural and electronic properties depend on the angle of rotation between its layers. Here, we present a scanning tunneling microscopy study of gate-tunable tBLG devices supported by atomically smooth and chemically inert hexagonal boron nitride (BN). The high quality of these tBLG devices allows identification of coexisting moiré patterns and moiré super-superlattices produced by graphene-graphene and graphene-BN interlayer interactions. Furthermore, we examine additional tBLG spectroscopic features in the local density of states beyond the first van Hove singularity. Our experimental data are explained by a theory of moiré bands that incorporates ab initio calculations and confirms the strongly nonperturbative character of tBLG interlayer coupling in the small twist-angle regime.

  13. Propagation of localized structures in relativistic magnetized electron-positron plasmas using particle-in-cell simulations

    SciTech Connect

    López, Rodrigo A.; Muñoz, Víctor; Viñas, Adolfo F.; Valdivia, Juan A.

    2015-09-15

    We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity.

  14. Local atomic and electronic structure in LaMnO{sub 3} across the orbital ordering transition

    SciTech Connect

    Souza, Raquel A.; Souza-Neto, Narcizo M.; Ramos, Aline Y.; Tolentino, Helio C.N.; Granado, Eduardo

    2004-12-01

    The local atomic disorder and electronic structure in the environment of manganese atoms in LaMnO{sub 3} has been studied by x-ray absorption spectroscopy over a temperature range (300-870 K) covering the orbital ordering transition ({approx}710 K). The Mn-O distance splitting into short and long bonds (1.95 and 2.15 A) is kept across the transition temperature, so that the MnO{sub 6} octahedra remain locally Jahn-Teller distorted. Discontinuities in the Mn local structure are identified in the extended x-ray fine structure spectra at this temperature, associated with a reduction of the disorder in the superexchange angle and to the removal of the anisotropy in the radial disorder within the coordination shell. Subtle changes in the electronic local structure also take place at the Mn site at the transition temperature. The near-edge spectra show a small drop of the Mn 4p hole count and a small enhancement in the pre-edge structures at the transition temperature. These features are associated with an increase of the covalence of the Mn-O bonds. Our results shed light on the local electronic and structural phenomena in a model of order-disorder transition, where the cooperative distortion is overcome by the thermal disorder.

  15. Edge states and local electronic structure around an adsorbed impurity in a topological superconductor

    NASA Astrophysics Data System (ADS)

    Tai, Yuan-Yen; Choi, Hongchul; Ahmed, Towfiq; Ting, C. S.; Zhu, Jian-Xin

    2015-11-01

    Recently, topological superconducting states have attracted much interest. In this paper, we consider a topological superconductor with Z2 topological mirror order [Y.-Y. Tai et al., Phys. Rev. B 91, 041111(R) (2015), 10.1103/PhysRevB.91.041111] and s±-wave superconducting pairing symmetry, within a two-orbital model originally designed for iron-based superconductivity [Y.-Y. Tai et al., Europhys. Lett. 103, 67001 (2013), 10.1209/0295-5075/103/67001]. We predict the existence of gapless edge states. We also study the local electronic structure around an adsorbed interstitial magnetic impurity in the system, and find the existence of low-energy in-gap bound states even with a weak spin polarization on the impurity. We also discuss the relevance of our results to a recent scanning tunneling microscopy experiment on a Fe(Te,Se) compound with an adsorbed Fe impurity [J.-X. Yin et al., Nat. Phys. 11, 543 (2015), 10.1038/nphys3371], for which our density functional calculations show the Fe impurity is spin polarized.

  16. Local electronic structure and ferromagnetic interaction in La(Co,Ni)O3

    NASA Astrophysics Data System (ADS)

    Huang, Meng-Jie; Nagel, Peter; Fuchs, Dirk; von Loehneysen, Hilbert; Merz, Michael; Schuppler, Stefan

    Perovskite-related transition-metal oxides exhibit a wide range of properties from insulating to superconducting as well as many peculiar magnetic phases, and cobaltites, in particular, have been known for their proximity to spin-state transitions. How this changes with partial substitution by Ni is the topic of the present study. The local electronic structure and the ferromagnetic interaction in La(Co1-xNix) O3 has been studied by x-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD). XAS clearly indicates a mixed-valence state for both Co and Ni, with both valences changing systematically with Ni content, x. While the gradual spin-state transition of Co3+ from low-spin (LS) to high-spin (HS) is preserved for low x it is suppressed in the high Ni-content samples. Regarding the spin configuration of Ni we find it stabilized in a ``mixed'' spin state, unlike the purely LS state of Ni in LaNiO3. XMCD identifies the element-specific contributions to the magnetic moment and interactions. In particular, we find that it must be the coexistence of the HS state in both Co3+ and Ni3 + that induces t2 g-based ferromagnetic interaction via the double-exchange mechanism.

  17. Local electronic structure and photoelectrochemical activity of partial chemically etched Ti-doped hematite

    NASA Astrophysics Data System (ADS)

    Rioult, Maxime; Belkhou, Rachid; Magnan, Hélène; Stanescu, Dana; Stanescu, Stefan; Maccherozzi, Francesco; Rountree, Cindy; Barbier, Antoine

    2015-11-01

    The direct conversion of solar light into chemical energy or fuel through photoelectrochemical water splitting is promising as a clean hydrogen production solution. Ti-doped hematite (Ti:α-Fe2O3) is a potential key photoanode material, which despite its optimal band gap, excellent chemical stability, abundance, non-toxicity and low cost, still has to be improved. Here we give evidence of a drastic improvement of the water splitting performances of Ti-doped hematite photoanodes upon a HCl wet-etching. In addition to the topography investigation by atomic force microscopy, a detailed determination of the local electronic structure has been carried out in order to understand the phenomenon and to provide new insights in the understanding of solar water splitting. Using synchrotron radiation based spectromicroscopy (X-PEEM), we investigated the X-ray absorption spectral features at the L3 Fe edge of the as grown surface and of the wet-etched surface on the very same sample thanks to patterning. We show that HCl wet etching leads to substantial surface modifications of the oxide layer including increased roughness and chemical reduction (presence of Fe2 +) without changing the band gap. We demonstrate that these changes are profitable and correlated to the drastic changes of the photocatalytic activity.

  18. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Electronic Transport Calculations Using Maximally-Localized Wannier Functions

    NASA Astrophysics Data System (ADS)

    Wang, Neng-Ping

    2011-01-01

    I present a method to calculate the ballistic transport properties of atomic-scale structures under bias. The electronic structure of the system is calculated using the Kohn-Sham scheme of density functional theory (DFT). The DFT eigenvectors are then transformed into a set of maximally localized Wannier functions (MLWFs) [N. Marzari and D. Vanderbilt, Phys. Rev. B 56 (1997) 12847]. The MLWFs are used as a minimal basis set to obtain the Hamitonian matrices of the scattering region and the adjacent leads, which are needed for transport calculation using the nonequilibrium Green's function formalism. The coupling of the scattering region to the semi-infinite leads is described by the self-energies of the leads. Using the nonequilibrium Green's function method, one calculates self-consistently the charge distribution of the system under bias and evaluates the transmission and current through the system. To solve the Poisson equation within the scheme of MLWFs I introduce a computationally efficient method. The method is applied to a molecular hydrogen contact in two transition metal monatomic wires (Cu and Pt). It is found that for Pt the I-V characteristics is approximately linear dependence, however, for Cu the I-V characteristics manifests a linear dependence at low bias voltages and exhibits apparent nonlinearity at higher bias voltages. I have also calculated the transmission in the zero bias voltage limit for a single CO molecule adsorbed on Cu and Pt monatomic wires. While a chemical scissor effect occurs for the Cu monatomic wire with an adsorbed CO molecule, it is absent for the Pt monatomic wire due to the contribution of d-orbitals at the Fermi energy.

  19. Mapping local optical densities of states in silicon photonic structures with nanoscale electron spectroscopy

    SciTech Connect

    Cha, Judy J.; Couillard, Martin; Muller, David A.; Yu Zongfu; Fan Shanhui; Smith, Eric

    2010-03-15

    Relativistic electrons in a structured medium generate radiative losses such as Cherenkov and transition radiation that act as a virtual light source, coupling to the photonic densities of states. The effect is most pronounced when the imaginary part of the dielectric function is zero, a regime where in a nonretarded treatment no loss or coupling can occur. Maps of the resultant energy losses as a sub-5 nm electron probe scans across finite waveguide structures reveal spatial distributions of optical modes in a spectral domain ranging from near infrared to far ultraviolet.

  20. TiO2 nanotube arrays for photocatalysis: Effects of crystallinity, local order, and electronic structure

    SciTech Connect

    Liu, Jing; Hosseinpour, Pegah M.; Luo, Si; Heiman, Don; Menon, Latika; Arena, Dario A.; Lewis, Laura H.

    2014-11-19

    To furnish insight into correlations of electronic and local structure and photoactivity, arrays of short and long TiO₂ nanotubes were synthesized by electrochemical anodization of Ti foil, followed by thermal treatment in O₂ (oxidizing), Ar (inert), and H₂ (reducing) environments. The physical and electronic structures of these nanotubes were probed with x-ray diffraction, scanning electron microscopy, and synchrotron-based x-ray absorption spectroscopy, and correlated with their photocatalytic properties. The photocatalytic activity of the nanotubes was evaluated by monitoring the degradation of methyl orange under UV-VIS light irradiation. Results show that upon annealing at 350 °C all as-anodized amorphous TiO₂ nanotube samples partially transform to the anatase structure, with variations in the degree of crystallinity and in the concentration of local defects near the nanotubes' surface (~5 nm) depending on the annealing conditions. Degradation of methyl orange was not detectable for the as-anodized TiO₂ nanotubes regardless of their length. The annealed long nanotubes demonstrated detectable catalytic activity, which was more significant with the H₂-annealed nanotubes than with the Ar- and O₂-annealed nanotube samples. This enhanced photocatalytic response of the H₂-annealed long nanotubes relative to the other samples is positively correlated with the presence of a larger concentration of lattice defects (such as Ti3+ and anticipated oxygen vacancies) and a slightly lower degree of crystallinity near the nanotube surface. These physical and electronic structural attributes impact the efficacy of visible light absorption; moreover, the increased concentration of surface defects is postulated to promote the generation of hydroxyl radicals and thus accelerate the photodegradation of the methyl orange. The information obtained from this study provides unique insight into the role of the near-surface electronic and defect structure

  1. Local 3d Electronic Structures of Co-Based Complexes with Medicinal Molecules Probed by Soft X-ray Absorption

    NASA Astrophysics Data System (ADS)

    Yamagami, Kohei; Fujiwara, Hidenori; Imada, Shin; Kadono, Toshiharu; Yamanaka, Keisuke; Muro, Takayuki; Tanaka, Arata; Itai, Takuma; Yoshinari, Nobuto; Konno, Takumi; Sekiyama, Akira

    2017-07-01

    We have examined the local 3d electronic structures of Co-Au multinuclear complexes with the medicinal molecules d-penicillaminate (d-pen) [Co{Au(PPh3)(d-pen)}2]ClO4 and [Co3{Au3(tdme)(d-pen)3}2] by Co L2,3-edge soft X-ray absorption (XAS) spectroscopy, where PPh3 denotes triphenylphosphine and tdme stands for 1,1,1-tris[(diphenylphosphino)methyl]ethane. The Co L2,3-edge XAS spectra indicate the localized ionic 3d electronic states in both materials. The experimental spectra are well explained by spectral simulation for a localized Co ion under ligand fields with the full multiplet theory, which verifies that the ions are in the low-spin Co3+ state in the former compound and in the high-spin Co2+ state in the latter.

  2. Tailoring the local structure and electronic property of AuPd nanoparticles by selecting capping molecules

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Zhang, Peng

    2010-01-01

    Nine AuPd nanoparticle samples selectively capped with tetraoctylphosphonium bromide, primary amine and tertiary amine molecules were studied with the Au L3-edge x-ray absorption spectroscopy (XAS). The AuPd mixing patterns were analyzed by comparing the XAS results with the theoretical coordination numbers of 24 AuPd model clusters of varied size, Au concentration, and bimetal mixing pattern. It was found that the use of amines, particularly tertiary amine, produced a more homogeneous AuPd mixing pattern and the Au d-electron density was fine-tunable by tailoring the density of Au-Pd bonds. Mechanisms for the tailored structural and electronic properties of these nanoparticles were proposed.

  3. Carrier type inversion in quasi-free standing graphene: studies of local electronic and structural properties

    PubMed Central

    Melios, Christos; Panchal, Vishal; Giusca, Cristina E.; Strupiński, Włodek; Silva, S. Ravi P.; Kazakova, Olga

    2015-01-01

    We investigate the local surface potential and Raman characteristics of as-grown and ex-situ hydrogen intercalated quasi-free standing graphene on 4H-SiC(0001) grown by chemical vapor deposition. Upon intercalation, transport measurements reveal a change in the carrier type from n- to p-type, accompanied by a more than three-fold increase in carrier mobility, up to μh ≈ 4540 cm2 V−1 s−1. On a local scale, Kelvin probe force microscopy provides a complete and detailed map of the surface potential distribution of graphene domains of different thicknesses. Rearrangement of graphene layers upon intercalation to (n + 1)LG, where n is the number of graphene layers (LG) before intercalation, is demonstrated. This is accompanied by a significant increase in the work function of the graphene after the H2-intercalation, which confirms the change of majority carriers from electrons to holes. Raman spectroscopy and mapping corroborate surface potential studies. PMID:26030153

  4. Local structural evidence for strong electronic correlations in spinel LiRh2O4

    NASA Astrophysics Data System (ADS)

    Knox, K. R.; Abeykoon, A. M. M.; Zheng, H.; Yin, W.-G.; Tsvelik, A. M.; Mitchell, J. F.; Billinge, S. J. L.; Bozin, E. S.

    2013-11-01

    The local structure of the spinel LiRh2O4 has been studied using atomic-pair distribution function analysis of powder x-ray diffraction data. This measurement is sensitive to the presence of short Rh-Rh bonds that form due to dimerization of Rh4+ ions on the pyrochlore sublattice, independent of the existence of long-range order. We show that structural dimers exist in the low-temperature phase, as previously supposed, with a bond shortening of Δr˜0.15 Å. The dimers persist up to 350 K, well above the insulator-metal transition, with Δr decreasing in magnitude on warming. Such behavior is inconsistent with the Fermi-surface nesting-driven Peierls transition model. Instead, we argue that LiRh2O4 should properly be described as a strongly correlated system.

  5. Asymptotic Near Nucleus Structure of the Electron-Interaction Potential in Local Effective Potential Theories

    NASA Astrophysics Data System (ADS)

    Sahni, Viraht; Qian, Zhixin

    2007-03-01

    In previous work, it has been shown that for spherically symmetric or sphericalized systems, the asymptotic near nucleus structure of the electron-interaction potential is vee(r) = vee(0) + βr + γr^2. In this paper we prove via time-independent Quantal Density Functional Theory[1](Q-DFT): (i) correlations due to the Pauli exclusion principle and Coulomb repulsion do not contribute to the linear structure;(ii) these Pauli and Coulomb correlations contribute quadratically; (iii) the linear structure is solely due to Correlation-Kinetic effects, the coefficient β being determined analytically. By application of adiabatic coupling constant perturbation theory via QDFT we further prove: (iv) the Kohn-Sham (KS-DFT) `exchange' potential vx(r) approaches the nucleus linearly, this structure being due solely to lowest- order Correlation-Kinetic effects: (v) the KS-DFT `correlation' potential vc(r) also approaches the nucleus linearly, being solely due to higher-order Correlation-Kinetic contributions. The above conclusions are equally valid for system of arbitrary symmetry, provided spherical averages of the properties are employed. 1 Quantal Density Functional Theory, V. Sahni (Springer-Verlag 2004)

  6. Operando X-ray spectroscopic observations of modulations of local atomic and electronic structures of color switching smart film.

    PubMed

    Lu, Ying-Rui; Wu, Tzung-Zing; Chang, Han-Wei; Chen, Jeng-Lung; Chen, Chi-Liang; Wei, Da-Hau; Chen, Jin-Ming; Chou, Wu-Ching; Dong, Chung-Li

    2017-06-07

    Smart windows, which change color in response to external stimuli, are extensively studied owing to their potential technological applications in sensors and their ability to reduce the energy consumed by buildings. Most related studies focus on the optical properties of smart color switching films that can control the transmission of light and that of heat independently. This study examines the vanadium pentoxide thin film as a model system of a color switchable window. A gasochromic thin film of V2O5 is fabricated using sol-gel spin coating. In operando soft X-ray absorption spectroscopy (XAS) at the V L-edge is used to determine the evolutions of the electronic and atomic structures of V2O5 thin film under gasochromic color switching. Analysis of the V K-edge with respect to crystalline structural symmetry and valence requires many reference samples, whereas the V L-edge, which involves V 3d orbitals of various symmetries, can provide information about the atomic/electronic structures without many reference samples. A new gas reaction in situ cell was developed to collect the total-electron-yield XAS. The total-electron-yield signal can provide more accurate information about atomic and electronic structures than can the fluorescence-yield signal, which typically exerts a saturation effect. Analytical results reveal that the gasochromic reaction changes the charge state and causes a local atomic structural deformation of the film. The suggestion has been made that in the reaction, the central vanadium atom within the octahedron moves closer to the basal plane such that the apical V-O bond becomes more symmetrical than the film before gasochromic coloration. Unlike the cell that is used for hard XAS, and for which only cation sites can be studied, this in situ gas cell enables the real-time studies of atomic/electronic structures at gas-solid interfaces from viewpoints of both cation and anion sites.

  7. Forging Fast Ion Conducting Nanochannels with Swift Heavy Ions: The Correlated Role of Local Electronic and Atomic Structure

    DOE PAGES

    Sachan, Ritesh; Cooper, Valentino R.; Liu, Bin; ...

    2016-12-19

    Atomically disordered oxides have attracted significant attention in recent years due to the possibility of enhanced ionic conductivity. However, the correlation between atomic disorder, corresponding electronic structure, and the resulting oxygen diffusivity is not well understood. The disordered variants of the ordered pyrochlore structure in gadolinium titanate (Gd2Ti2O7) are seen as a particularly interesting prospect due to intrinsic presence of a vacant oxygen site in the unit atomic structure, which could provide a channel for fast oxygen conduction. In this paper, we provide insights into the subangstrom scale on the disordering-induced variations in the local atomic environment and its effectmore » on the electronic structure in high-energy ion irradiation-induced disordered nanochannels, which can be utilized as pathways for fast oxygen ion transport. With the help of an atomic plane-by-plane-resolved analyses, the work shows how the presence of various types of TiOx polyhedral that exist in the amorphous and disordered crystalline phase modify the electronic structures relative to the ordered pyrochlore phase in Gd2Ti2O7. Finally, the correlated molecular dynamics simulations on the disordered structures show a remarkable enhancement in oxygen diffusivity as compared with ordered pyrochlore lattice and make that a suitable candidate for applications requiring fast oxygen conduction.« less

  8. Forging Fast Ion Conducting Nanochannels with Swift Heavy Ions: The Correlated Role of Local Electronic and Atomic Structure

    SciTech Connect

    Sachan, Ritesh; Cooper, Valentino R.; Liu, Bin; Aidhy, Dilpuneet S.; Voas, Brian K.; Lang, Maik; Ou, Xin; Trautmann, Christina; Zhang, Yanwen; Chisholm, Matthew F.; Weber, William J.

    2016-12-19

    Atomically disordered oxides have attracted significant attention in recent years due to the possibility of enhanced ionic conductivity. However, the correlation between atomic disorder, corresponding electronic structure, and the resulting oxygen diffusivity is not well understood. The disordered variants of the ordered pyrochlore structure in gadolinium titanate (Gd2Ti2O7) are seen as a particularly interesting prospect due to intrinsic presence of a vacant oxygen site in the unit atomic structure, which could provide a channel for fast oxygen conduction. In this paper, we provide insights into the subangstrom scale on the disordering-induced variations in the local atomic environment and its effect on the electronic structure in high-energy ion irradiation-induced disordered nanochannels, which can be utilized as pathways for fast oxygen ion transport. With the help of an atomic plane-by-plane-resolved analyses, the work shows how the presence of various types of TiOx polyhedral that exist in the amorphous and disordered crystalline phase modify the electronic structures relative to the ordered pyrochlore phase in Gd2Ti2O7. Finally, the correlated molecular dynamics simulations on the disordered structures show a remarkable enhancement in oxygen diffusivity as compared with ordered pyrochlore lattice and make that a suitable candidate for applications requiring fast oxygen conduction.

  9. Probing the structural and dynamical properties of liquid water with models including non-local electron correlation

    SciTech Connect

    Del Ben, Mauro Hutter, Jürg; VandeVondele, Joost

    2015-08-07

    Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance.

  10. TiO{sub 2} nanotube arrays for photocatalysis: Effects of crystallinity, local order, and electronic structure

    SciTech Connect

    Liu, Jing; Hosseinpour, Pegah M.; Lewis, Laura H.; Luo, Si; Heiman, Don; Menon, Latika; Arena, Dario A.

    2015-03-15

    To furnish insight into correlations of electronic and local structure and photoactivity, arrays of short and long TiO{sub 2} nanotubes were synthesized by electrochemical anodization of Ti foil, followed by thermal treatment in O{sub 2} (oxidizing), Ar (inert), and H{sub 2} (reducing) environments. The physical and electronic structures of these nanotubes were probed with x-ray diffraction, scanning electron microscopy, and synchrotron-based x-ray absorption spectroscopy, and correlated with their photocatalytic properties. The photocatalytic activity of the nanotubes was evaluated by monitoring the degradation of methyl orange under UV-VIS light irradiation. Results show that upon annealing at 350 °C all as-anodized amorphous TiO{sub 2} nanotube samples partially transform to the anatase structure, with variations in the degree of crystallinity and in the concentration of local defects near the nanotubes' surface (∼5 nm) depending on the annealing conditions. Degradation of methyl orange was not detectable for the as-anodized TiO{sub 2} nanotubes regardless of their length. However, the annealed long nanotubes demonstrated detectable catalytic activity, which was more significant with the H{sub 2}-annealed nanotubes than with the Ar- and O{sub 2}-annealed nanotube samples. This enhanced photocatalytic response of the H{sub 2}-annealed long nanotubes relative to the other samples is positively correlated with the presence of a larger concentration of lattice defects (such as Ti{sup 3+} and anticipated oxygen vacancies) and a slightly lower degree of crystallinity near the nanotube surface. These physical and electronic structural attributes impact the efficacy of visible light absorption; moreover, the increased concentration of surface defects is postulated to promote the generation of hydroxyl radicals and thus accelerate the photodegradation of the methyl orange. The information obtained from this study provides unique insight into the role of the near

  11. The Local Electronic Structure of Dicarba-closo-dodecaboranes C2B10H12

    SciTech Connect

    Fister, Timothy T.; Vila, Fernando D.; Seidler, Gerald T.; Svec, Lukas; Linehan, John C.; Cross, Julie O.

    2008-01-16

    We report nonresonant inelastic x-ray scattering (NRIXS) measurement of core-shell excitations from both B 1s and C 1s initial states in all three isomers of the dicarba-closo-dodecaboranes C2B10H12. First, this data yields an experimental determination of the angular-momentum-projected final local density of states (l-DOS). We find low-energy resonances with distinctive local s- or p-type character, providing a more complete experimental characterization of bond hybridization than is available from dipole-transition limited techniques, such as x-ray absorption spectroscopies. This analysis is supported by independent density functional theory and real-space full multiple scattering calculation of the l-DOS which yield a clear distinction between tangential and radial contributions. Second, we investigate the isomer-sensitivity of the NRIXS signal, and compare and contrast these results with prior electron energy loss spectroscopy measurements. This work establishes NRIXS as a valuable tool for borane chemistry, not only for the unique spectroscopic capabilities of the technique, but also through its compatibility with future studies in solution or in high pressure environments. In addition, this work also establishes the real-space full multiple scattering approach as a useful alternative to traditional approaches for the excited states calculations for aromatic polyhedral boranes and related systems. This research was supported by DOE, Basic Energy Science, Office of Science, Contract Nos. DE-FGE03-97ER45628 and W-31-109-ENG-38, ONR Grant No. N00014-05-1-0843, Grant DE-FG03-97ER5623, NIH NCRR BTP Grant RR-01209, the Leonard X. Bosack and Bette M. Kruger Foundation, the Hydrogen Fuel Cell Initiative of DOE Office of Basic Energy Sciences, and the Summer Research Institute Program at the Pacific Northwest National Lab. Battelle operates the Pacific Northwest National Lab for DOE. The operation of Sector 20 PNC-CAT/XOR is supported by DOE Basic Energy Science

  12. CoCrMo cellular structures made by Electron Beam Melting studied by local tomography and finite element modelling

    SciTech Connect

    Petit, Clémence; Maire, Eric; Meille, Sylvain; Adrien, Jérôme; Kurosu, Shingo; Chiba, Akihiko

    2016-06-15

    The work focuses on the structural and mechanical characterization of Co-Cr-Mo cellular samples with cubic pore structure made by Electron Beam Melting (EBM). X-ray tomography was used to characterize the architecture of the sample. High resolution images were also obtained thanks to local tomography in which the specimen is placed close to the X-ray source. These images enabled to observe some defects due to the fabrication process: small pores in the solid phase, partially melted particles attached to the surface. Then, in situ compression tests were performed in the tomograph. The images of the deformed sample show a progressive buckling of the vertical struts leading to final fracture. The deformation initiated where the defects were present in the strut i.e. in regions with reduced local thickness. The finite element modelling confirmed the high stress concentrations of these weak points leading to the fracture of the sample. - Highlights: • CoCrMo samples fabricated by Electron Beam Melting (EBM) process are considered. • X-ray Computed Tomography is used to observe the structure of the sample. • The mechanical properties are tested thanks to an in situ test in the tomograph. • A finite element model is developed to model the mechanical behaviour.

  13. Low-temperature localized motion of hydrogen and electronic structure transition in hexagonal-close-packed scandium

    SciTech Connect

    Lichty, L.R.; Han, J.; Ibanez-Meier, R.; Torgeson, D.R.; Barnes, R.G.; Seymour, E.F.W.; Sholl, C.A.

    1989-02-01

    We report nuclear magnetic resonance (NMR) measurements of the proton (/sup 1/H) spin-lattice relaxation rate (R/sub 1/) in the hexagonal-close-packed (hcp) solid solution (..cap alpha..) phase of the Sc-H system over the temperature range 10--300 K in which hydrogen pairs are known to form. At low temperatures (10--120 K), fast localized motion of hydrogen between closely spaced tetrahedral interstitial sites in the lattice gives rise to a peak in the relaxation rate. Both the temperature and frequency dependences of the relaxation rate peak exhibit characteristics typical of amorphous and disordered systems, suggesting the formation of hydrogen pairs with little long-range order results effectively in a ''proton glass'' within the metal lattice. The measurements reveal an electronic structure transition near 170 K where the unpaired electron spin density at the proton sites decreases with increasing temperature.

  14. Electron paramagnetic resonance and photoluminescence investigation of europium local structure in oxyfluoride glass ceramics containing SrF2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Antuzevics, A.; Kemere, M.; Krieke, G.; Ignatans, R.

    2017-10-01

    Different compositions of europium doped aluminosilicate oxyfluoride glass ceramics prepared in air atmosphere have been studied by electron paramagnetic resonance (EPR) and optical spectroscopy methods. X-ray diffraction (XRD) and transmission electron microscopy (TEM) measurements show presence of homogenously distributed SrF2 nanocrystals after the heat treatment of the precursor glass. Efficient Eu3+ incorporation in the high symmetry environment of glass ceramics is observed from the photoluminescence spectra. EPR spectra indicate Eu3+ → Eu2+ reduction upon precipitation of crystalline phases in the glass matrix. For composition abundant with Eu2+ in the glassy state such behaviour is not detected. Local structure around europium ions is discussed based on differences in chemical compositions.

  15. Local electronic structure of aqueous zinc acetate: oxygen K-edge X-ray absorption and emission spectroscopy on micro-jets.

    PubMed

    Golnak, Ronny; Atak, Kaan; Suljoti, Edlira; Hodeck, Kai F; Lange, Kathrin M; Soldatov, Mikhail A; Engel, Nicholas; Aziz, Emad F

    2013-06-07

    Oxygen K-edge X-ray absorption, emission, and resonant inelastic X-ray scattering spectra were measured to site selectively gain insights into the electronic structure of aqueous zinc acetate solution. The character of the acetate ion and the influence of zinc and water on its local electronic structure are discussed.

  16. Extended electron energy loss fine structure simulation of the local boron environment in sodium aluminoborosilicate glasses containing gadolinium

    SciTech Connect

    Qian, Morris; Li, Hong; Li, Liyu ); Strachan, Denis M. )

    2003-10-15

    Gadolinium can be dissolved in sodium-alumino-borosilicate glasses up to 47 wt% in a baseline borosilicate glass (mol%) 20 B2O3, 5 Al2O3, 60 SiO2,and 20 Na2O. Understanding of Gd dissolution in borosilicate melts is important in glass formulation optimization. Electron energy loss fine structure (ELFS) spectroscopy is chosen, which provides well resolved local atomic structure information for both amorphous and crystalline materials with high sensitivity to low Z elements such as Al, B, Na, O, and Si where the x-ray absorption fine structure (XAFS) technique faces experimental difficulty. In this study, we report our results of boron K-edge ELFS study. Two borosilicate glass samples with 30 and 47 mass% Gd2O3, B20Gd30 and B20Gd47were chosen for B K-edge ELFS study. EEL spectra were acquired on a Philips 430 TEM equipped with Gatan PEELS system 666 and EL/P 2.1 software with Custom function AcqLong. The ELFS data analysis was performed using UWELFS, UWXAFS and FEFF software. From our Gd solubility study, the local structure of Gd in the borate environment possibly resembles double chain structure found in crystalline Gd(BO2)3 as proposed by Chakraborty et al. The B/Gd ratio's in both glasses are smaller then 3, which means the excess Gd atoms in the Si-sites would be 17 and 60 mol% of the total Gd atoms, respectively according to the model, yet the local environment of borate sites saturated with Gd should be remained. To verity above hypothesis, the double chain structure model was applied to fit boron K-edge. The model was shown to well fit experimental boron K-edge EELS spectra for both glasses with some degree of distance distortion which is understandable in amorphous structure. Therefore, it is very likely that Gd stabilized in borate sites has a local structure resembling the double chain Gd(BO2)3 structure as proposed by our solubility study and literature.

  17. Electron acceleration at localized wave structures in the solar corona (German Title: Elektronenbeschleunigung an lokalen Wellenstrukturen in der Sonnenkorona)

    NASA Astrophysics Data System (ADS)

    Miteva, Rositsa Stoycheva

    2007-07-01

    Our dynamic Sun manifests its activity by different phenomena: from the 11-year cyclic sunspot pattern to the unpredictable and violent explosions in the case of solar flares. During flares, a huge amount of the stored magnetic energy is suddenly released and a substantial part of this energy is carried by the energetic electrons, considered to be the source of the nonthermal radio and X-ray radiation. One of the most important and still open question in solar physics is how the electrons are accelerated up to high energies within (the observed in the radio emission) short time scales. Because the acceleration site is extremely small in spatial extent as well (compared to the solar radius), the electron acceleration is regarded as a local process. The search for localized wave structures in the solar corona that are able to accelerate electrons together with the theoretical and numerical description of the conditions and requirements for this process, is the aim of the dissertation. Two models of electron acceleration in the solar corona are proposed in the dissertation: I. Electron acceleration due to the solar jet interaction with the background coronal plasma (the jet--plasma interaction) A jet is formed when the newly reconnected and highly curved magnetic field lines are relaxed by shooting plasma away from the reconnection site. Such jets, as observed in soft X-rays with the Yohkoh satellite, are spatially and temporally associated with beams of nonthermal electrons (in terms of the so-called type III metric radio bursts) propagating through the corona. A model that attempts to give an explanation for such observational facts is developed here. Initially, the interaction of such jets with the background plasma leads to an (ion-acoustic) instability associated with growing of electrostatic fluctuations in time for certain range of the jet initial velocity. During this process, any test electron that happen to feel this electrostatic wave field is drawn to co

  18. Local environment effects in the magnetic properties and electronic structure of disordered FePt

    NASA Astrophysics Data System (ADS)

    Khan, Saleem Ayaz; Minár, Ján; Ebert, Hubert; Blaha, Peter; Šipr, Ondřej

    2017-01-01

    Local aspects of magnetism of disordered FePt are investigated by ab initio fully relativistic full-potential calculations, employing the supercell approach and the coherent potential approximation (CPA). The focus is on trends of the spin and orbital magnetic moments with chemical composition and with bond lengths around the Fe and Pt atoms. A small but distinct difference between average magnetic moments obtained when using the supercells and when relying on the CPA is identified and linked to the neglect of the Madelung potential in the CPA.

  19. Electron Structure of Francium

    NASA Astrophysics Data System (ADS)

    Koufos, Alexander

    2012-02-01

    This talk presents the first calculations of the electronic structure of francium for the bcc, fcc and hcp structures, using the Augmented Plane Wave (APW) method in its muffin-tin and linearized general potential forms. Both the Local Density Approximation (LDA) and Generalized Gradient Approximation (GGA), were used to calculate the electronic structure and total energy of francium (Fr). The GGA and LDA both found the total energy of the hcp structure slightly below that of the fcc and bcc structure, respectively. This is in agreement with similar results for the other alkali metals using the same methodology. The equilibrium lattice constant, bulk modulus and superconductivity parameters were calculated. We found that under pressures, in the range of 1-5 GPa, Fr could be a superconductor at a critical temperature of about 4K.

  20. Dependence of Localized Electronic Structure on Ligand Configuration in the [2Fe] Hydrogenase Catalytic Core^*

    NASA Astrophysics Data System (ADS)

    Chang, Christopher H.; Kim, Kwiseon

    2007-03-01

    The [FeFe] hydrogenase enzyme is found in a variety of organisms, including Archaea, Eubacteria, and green algae^1,2, and crystallographically determined atomic position data is available for two examples. The biologically unusual catalytic H-cluster, responsible for proton reduction to H2 in vivo, is conserved in the known structures and includes two bis-thiolato bridged iron ions with extensive cyano- and carbonyl ligation. To address the configurational specificity of the diatomic ligand ligation, density functional theoretical calculations were done on [2Fe] core models of the active center, with varying CO and CN^- ligation patterns. Bonding in each complex has been characterized within the Natural Bond Orbital formalism. The effect of ligand configuration on bonding and charge distribution as well as Kohn-Sham orbital structure will be presented. [1] M. Forestier, P. King, L. Zhang, M. Posewitz, S. Schwarzer, T. Happe, M.L. Ghirardi, and M. Seibert, Eur. J. Biochem. 270, 2750 (2003). [2] Posewitz, M.C., P.W. King, S.L. Smolinski, R.D. Smith, II, A.R. Ginley, M.L. Ghirardi, and M. Seibert, Biochem. Soc. Trans. 33, 102 (2005). ^*This work was supported by the US DOE-SC-BES Hydrogen Fuels Initiative, and done in collaboration with the NREL Chemical and Biosciences Center.

  1. Local Electronic and Atomic Structure of CMR Oxides Under High Pressure

    NASA Astrophysics Data System (ADS)

    Cui, Congwu; Tyson, Trevor A.; Woo, Hyungje; Kao, Chi-Chang

    2000-03-01

    The application of pressure has been known to suppress the peak resistivity of CMR oxides in a manner analogous to the suppression by magnetic fields . The coupling of the transport and structural changes which occurs under high pressure has not been well explored. It is know that at x=0.875 the systems La _1-xCa_xMnO3 and Bi _1-xCa_xMnO3 exhibit a maximum magnetic moment and show canted spin behavior. The low temperature resistivity is a minimum at this doping with a value typical of semiconductors. Hence, the possibility of a metal to insulator transition exists. High pressure x-ray absorption measurements have been used to determine the structural changes which occur with pressure. The changes are correlated with the change in resistivity with pressure. The origin of the minimun in the resistivity is explored. This work is supported by National Science Foundation Career Grant DMR-9733862 and by DOE Grant DE-FG02-97ER45665 [1] (a) J. J. Neumeier et al., Phys. Rev. B 52, R7006 (1995). (b) Y. Moritomo, A. Asamitsu, and Y. Tokura, Phys. Rev. B 51, 16491 (1995). (c) S. Tamura, J. Mag. Mag. Mat. 31-34, 675 (1982). (d) Z. Arnold et al., Appl. Phys. Lett. 67, 2876 (1995)

  2. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Localized electronic states in gaps on hole-net structures of silicon

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Qi; Lü, Quan; Zhang, Rong-Tao; Wang, Xiao-Yun; Yu, Shi-Qiang

    2009-11-01

    Hole-net structure silicon is fabricated by laser irradiation and annealing, on which a photoluminescence (PL) band in a the region of 650-750 nm is pinned and its intensity increases obviously after oxidation. It is found that the PL intensity changes with both laser irradiation time and annealing time. Calculations show that some localized states appear in the band gap of the smaller nanocrystal when Si = O bonds or Si-O-Si bonds are passivated on the surface. It is discovered that the density and the number of Si = O bonds or Si-O-Si bonds related to both the irradiation time and the annealing time obviously affect the generation of the localized gap states of hole-net silicon, by which the production of stimulated emission through controlling oxidation time can be explained.

  3. Fermi orbital self-interaction corrected electronic structure of molecules beyond local density approximation

    SciTech Connect

    Hahn, T. Liebing, S.; Kortus, J.; Pederson, Mark R.

    2015-12-14

    The correction of the self-interaction error that is inherent to all standard density functional theory calculations is an object of increasing interest. In this article, we apply the very recently developed Fermi-orbital based approach for the self-interaction correction [M. R. Pederson et al., J. Chem. Phys. 140, 121103 (2014) and M. R. Pederson, J. Chem. Phys. 142, 064112 (2015)] to a set of different molecular systems. Our study covers systems ranging from simple diatomic to large organic molecules. We focus our analysis on the direct estimation of the ionization potential from orbital eigenvalues. Further, we show that the Fermi orbital positions in structurally similar molecules appear to be transferable.

  4. Extended electron energy loss fine structure simulation of the local boron environment in sodium aluminoborosilicate glasses containing gadolinium

    SciTech Connect

    Qian, Morris; Li, Hong; Li, Liyu ); Strachan, Denis M. )

    2003-12-01

    Phase separation in sodium-aluminoborosilicate glasses was systematically studied as a function of Gd2O3 concentration with transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), and electron energy loss spectroscopy (EELS) methods. Gadolinium-induced phase separation in the three systems can be consistently explained by proposing that Gd cations partition to the borate-rich environments and subsequent agglomeration of the Gd-borate moieties, or short-range ordered structural groups, in the glass. Agglomeration of the Gd-borate rich environments is further discussed within the context of excess metal oxides,[Na2O]ex or[Al2O3]ex=|Na2O - Al2O3|, and excess B2O3,[B2O3]ex, available for incorporating Gd cations. Results showed that agglomeration of the Gd-borate rich environments occurred at a much lower Gd2O3 concentration in the glass without[Na2O]ex or[Al2O3]ex and at a significantly higher Gd2O3 concentration in the glass with either[Na2O]ex or[Al2O3]ex. Assuming 1BO4 : 1Gd : 2BO3 (based on literature-reported Gd-metaborate structure) as a local Gd-borate environment in glass, we introduced the saturation index of boron, SI[B]= Gd2O3/(1/3[B2O3]ex), to examine the glass susceptibility to Gd-induced phase separation for all three alkali-aluminoborosilicate systems. While our results have provided some insight to the glass structure, they also provide insight to the mechanism by which the metal oxide is dissolved into the melt. This appears to occur predominantly through boron complexation of the metal oxide.

  5. A theoretical study of the local electronic structure of two adjacent CuOplanes in YBa 2Cu 3O 7

    NASA Astrophysics Data System (ADS)

    Suter, H. U.; Stoll, E. P.; Hüsser, P.; Schafroth, S.; Meier, P. F.

    1997-08-01

    To reveal the local electronic structure of the two adjacent CuOplanes in YBa 2Cu 3O 7, ab initio studies on a small cluster (Cu 2Y 4O 8) were performed. Electron correlation was investigated with both density functional theory and Møller-Plesset theory. The ionisation energies, electron affinities adn the singlet-triplet differences are discussed with respect to model Hamiltonians of high-T c compounds.

  6. An experimental study of the local electronic structure of B-site gallium doped bismuth ferrite powders

    NASA Astrophysics Data System (ADS)

    Gholam, Turghunjan; Ablat, Abduleziz; Mamat, Mamatrishat; Wu, Rong; Aimidula, Aimierding; Bake, Muhammad Ali; Zheng, Lirong; Wang, Jiaou; Qian, Haijie; Wu, Rui; Ibrahim, Kurash

    2017-08-01

    The un-doped and gallium (Ga) doped multiferroic bismuth ferrite (BiFeO3) compounds were successfully synthesized by the hydrothermal technique. This is then followed by a series of detailed investigations into the influence of Ga doping on the structural, morphological, optical and magnetic properties of BiFe1 - xGaxO3 (0 ≤ x ≤ 0.15). X-ray diffraction (XRD) analyses reveal that B-site doping of Ga may lead to the transformation of its crystal structure from a rhombohedral with a space group of R3c to an orthorhombic with a space group of Pbnm phase. The scanning electron microscope (SEM) images show that doping with Ga causes a significant reduction in particle size, when compared to un-doped BiFeO3. X-ray absorption near-edge structure (XANES) spectra have also shown that as the substitution of Ga increases, the Fe K and Bi LIII-edge absorption spectra shift towards higher energy site. It also implies that doping of Ga affects the local structures of both Bi and Fe atoms. Distinct transmission band fluctuations, as shown by Fourier transform infrared (FT-IR) spectra, can provide significant evidence for a transformation in crystal structure, following the increase of Ga concentration. The magnetization hysteresis measurements show that the magnetization decreases when Ga content is x ≥ 0.05. Such a phenomenon mainly stems from the substitution of Fe for an excessive amount of Ga, resulting in reduction of both valence fluctuations and the magnetization in the BiFe1 - xGaxO3 system.

  7. Nanometer-scale local structural study of the paraelectric cubic phase of KNbO3 by convergent-beam electron diffraction

    NASA Astrophysics Data System (ADS)

    Tsuda, Kenji; Tanaka, Michiyoshi

    2017-10-01

    Nanometer-scale local structures of the paraelectric cubic phase of potassium niobate (KNbO3) are examined by convergent-beam electron diffraction (CBED) using a nanometer-size electron probe. The breaking of the cubic symmetry has been directly observed in the nanometer-scale areas of the cubic phase of KNbO3. This indicates the existence of local polarization clusters in the cubic phase. Symmetry breaking index maps for the fourfold rotation symmetry are given at different temperatures with the combined use of scanning transmission electron microscopy (STEM) and CBED (STEM–CBED).

  8. Probing local and electronic structure in Warm Dense Matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe

    PubMed Central

    Torchio, Raffaella; Occelli, Florent; Mathon, Olivier; Sollier, Arnaud; Lescoute, Emilien; Videau, Laurent; Vinci, Tommaso; Benuzzi-Mounaix, Alessandra; Headspith, Jon; Helsby, William; Bland, Simon; Eakins, Daniel; Chapman, David; Pascarelli, Sakura; Loubeyre, Paul

    2016-01-01

    Understanding Warm Dense Matter (WDM), the state of planetary interiors, is a new frontier in scientific research. There exists very little experimental data probing WDM states at the atomic level to test current models and those performed up to now are limited in quality. Here, we report a proof-of-principle experiment that makes microscopic investigations of materials under dynamic compression easily accessible to users and with data quality close to that achievable at ambient. Using a single 100 ps synchrotron x-ray pulse, we have measured, by K-edge absorption spectroscopy, ns-lived equilibrium states of WDM Fe. Structural and electronic changes in Fe are clearly observed for the first time at such extreme conditions. The amplitude of the EXAFS oscillations persists up to 500 GPa and 17000 K, suggesting an enduring local order. Moreover, a discrepancy exists with respect to theoretical calculations in the value of the energy shift of the absorption onset and so this comparison should help to refine the approximations used in models. PMID:27246145

  9. Probing local and electronic structure in Warm Dense Matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe

    NASA Astrophysics Data System (ADS)

    Torchio, Raffaella; Occelli, Florent; Mathon, Olivier; Sollier, Arnaud; Lescoute, Emilien; Videau, Laurent; Vinci, Tommaso; Benuzzi-Mounaix, Alessandra; Headspith, Jon; Helsby, William; Bland, Simon; Eakins, Daniel; Chapman, David; Pascarelli, Sakura; Loubeyre, Paul

    2016-06-01

    Understanding Warm Dense Matter (WDM), the state of planetary interiors, is a new frontier in scientific research. There exists very little experimental data probing WDM states at the atomic level to test current models and those performed up to now are limited in quality. Here, we report a proof-of-principle experiment that makes microscopic investigations of materials under dynamic compression easily accessible to users and with data quality close to that achievable at ambient. Using a single 100 ps synchrotron x-ray pulse, we have measured, by K-edge absorption spectroscopy, ns-lived equilibrium states of WDM Fe. Structural and electronic changes in Fe are clearly observed for the first time at such extreme conditions. The amplitude of the EXAFS oscillations persists up to 500 GPa and 17000 K, suggesting an enduring local order. Moreover, a discrepancy exists with respect to theoretical calculations in the value of the energy shift of the absorption onset and so this comparison should help to refine the approximations used in models.

  10. The effect of the electronic structure, phase transition, and localized dynamics of atoms in the formation of tiny particles of gold

    NASA Astrophysics Data System (ADS)

    Ali, Mubarak; Lin, I.-Nan

    2017-01-01

    In addition to self-governing properties, tiny-sized particles of metallic colloids are the building blocks of large-sized particles; thus, their study has been the subject of a large number of publications. In the present work, it has been discussed that geometry structure of tiny particle made through atom-to-atom amalgamation depends on attained dynamics of gold atoms along with protruded orientations. The localized process conditions direct two-dimensional structure of a tiny particle at atomically flat air-solution interface while heating locally dynamically approached atoms, thus, negate the role of van der Waals interactions. At electronphoton-solution interface, impinging electrons stretch or deform atoms of tiny particles depending on the mechanism of impingement. In addition, to strike regular grid of electrons ejected on split of atoms not executing excitations and de-excitations of their electrons, atoms of tiny particles also deform or stretch while occupying various sites depending on the process of synergy. Under suitable impinging electron streams, those tiny particles in monolayer two-dimensional structure electron states of their atoms are diffused in the direction of transferred energy, thus, coincide to the next adjacent atoms in each one-dimensional array dealing the same sort of behavior. Instantaneously, photons of adequate energy propagate on the surfaces of such electronic structures and modify those into smooth elements, thus, disregard the phenomenon of localized surface plasmons. This study highlights the fundamental process of formation of tiny particles where the role of localized dynamics of atoms and their electronic structure along with interaction to light are discussed. Such a tool of processing materials, in nonequilibrium pulse-based process, opens a number of possibilities to develop engineered materials with specific chemical, optical, and electronic properties.

  11. Laser induced local structural and property modifications in semiconductors for electronic and photonic superstructures - Silicon carbide to graphene conversion

    NASA Astrophysics Data System (ADS)

    Yue, Naili

    Graphene is a single atomic layer two-dimensional (2D) hexagonal crystal of carbon atoms with sp2-bonding. Because of its various special or unique properties, graphene has attracted huge attention and considerable interest in recent years. This PhD research work focuses on the development of a novel approach to fabricating graphene micro- and nano-structures using a 532 nm Nd:YAG laser, a technique based on local conversion of 3C-SiC thin film into graphene. Different from other reported laser-induced graphene on single crystalline 4H- or 6H- SiC, this study focus on 3C-SiC polycrystal film grown using MBE. Because the SiC thin film is grown on silicon wafer, this approach may potentially lead to various new technologies that are compatible with those of Si microelectronics for fabricating graphene-based electronic, optoelectronic, and photonic devices. The growth conditions for depositing 3C-SiC using MBE on Si wafers with three orientations, (100), (110), and (111), were evaluated and explored. The surface morphology and crystalline structure of 3C-SiC epilayer were investigated with SEM, AFM, XRD, μ-Raman, and TEM. The laser modification process to convert 3C-SiC into graphene layers has been developed and optimized by studying the quality dependence of the graphene layers on incident power, irradiation time, and surface morphology of the SiC film. The laser and power density used in this study which focused on thin film SiC was compared with those used in other related research works which focused on bulk SiC. The laser-induced graphene was characterized with μ-Raman, SEM/EDS, TEM, AFM, and, I-V curve tracer. Selective deposition of 3C-SiC thin film on patterned Si substrate with SiO2 as deposition mask has been demonstrated, which may allow the realization of graphene nanostructures (e.g., dots and ribbons) smaller than the diffraction limit spot size of the laser beam, down to the order of 100 nm. The electrical conductance of directly written graphene

  12. Compositional dependence of local atomic structures in amorphous Fe100-xBx (x=14,17,20) alloys studied by electron diffraction and high-resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Hirata, Akihiko; Hirotsu, Yoshihiko; Ohkubo, Tadakatsu; Hanada, Takeshi; Bengus, V. Z.

    2006-12-01

    Local atomic structures of rapidly quenched amorphous Fe100-xBx (x=14,17,20) alloys have been investigated comprehensively by means of high-resolution electron microscopy (HREM), nanobeam electron diffraction (NBED), and electron diffraction atomic pair distribution function (PDF) analysis. In HREM images, crystalline cluster regions with a bcc-Fe structure extending as small as 1nm were observed locally as lattice images, while NBED with a probe size as small as 1nm revealed an existence of local clusters with structures of bcc-Fe and also of Fe-boride in all the as-formed alloys. Atomic PDF analyses were performed for these alloys by precise measurements of halo-electron diffraction intensities using imaging-plate and energy-filtering techniques. From the interference functions, atomic structure models were constructed for the Fe-B amorphous structures with the help of reverse Monte Carlo calculation. From Voronoi polyhedral analysis applied to these structure models, it was confirmed that atomic polyhedral arrangements with bcc and icosahedral clusters of Fe, and trigonal prisms of Fe and B, are formed in these amorphous structures, and the fraction of bcc-Fe clusters increases with the Fe content, while the fraction of trigonal prisms increases with the B content. The direct observation of local cluster structures of bcc-Fe and Fe-boride by HREM and NBED is an indication of “nanoscale phase separation” driven in the course of amorphous formation of these alloys, and the constructed structures based on the experimental PDFs with different B contents are inconsistent with a local structure scheme expected from the “nanoscale phase separation” model. The present study demonstrates that the structure model of nanoscale phase separation stands for the amorphous alloy structures where the phase separation fatally occurs in the crystallization stage.

  13. Localization of electrons and excitations

    NASA Astrophysics Data System (ADS)

    Larsson, Sven

    2006-07-01

    Electrons, electron holes, or excitations in finite or infinite 'multimer systems' may be localized or delocalized. In the theory of Hush, localization depends on the ratio Δ/ λ ( Δ/2 = coupling; λ = reorganization energy). The latter theory has been extended to the infinite system [S. Larsson, A. Klimkāns, Mol. Cryst. Liq. Cryst. 355 (2000) 217]. The metal/insulator transition often takes place abruptly as a function of Δ/ λ. It is argued that localization in a system with un-filled bands cannot be determined on the basis of Mott-Hubbard U alone, but depends on the number of accessible valence states, reorganization energy λ and coupling Δ (=2t). In fact U = 0 does not necessarily imply delocalization. The analysis here shows that there are many different situations for an insulator to metal transition. Charge transfer in doped NiO is characterized by Ni 2+ - Ni 3+ exchange while charge transfer in pure NiO is characterized by a disproportionation 2Ni 2+ → Ni + + Ni 3+. In spite of the great differences between these two cases, U has been applied without discrimination to both. The relevant localization parameters appear to be Δ and λ in the first case, with only two oxidation states, and U, Δ and λ in the second case with three oxidation states. The analysis is extended to insulator-metal transitions, giant magnetic resistance (GMR) and high Tc superconductivity (SC). λ and Δ can be determined quite accurately in quantum mechanical calculations involving only one and two monomers, respectively.

  14. Impurities and electronic localization in graphene bilayers

    NASA Astrophysics Data System (ADS)

    Ojeda Collado, H. P.; Usaj, Gonzalo; Balseiro, C. A.

    2015-01-01

    We analyze the electronic properties of bilayer graphene with Bernal stacking and a low concentration of adatoms. Assuming that the host bilayer lies on top of a substrate, we consider the case where impurities are adsorbed only on the upper layer. We describe nonmagnetic impurities as a single orbital hybridized with carbon's pz states. The effect of impurity doping on the local density of states with and without a gated electric field perpendicular to the layers is analyzed. We look for Anderson localization in the different regimes and estimate the localization length. In the biased system, the field-induced gap is partially filled by strongly localized impurity states. Interestingly, the structure, distribution, and localization length of these states depend on the field polarization.

  15. Correlation of Calculated Halonium Ion Structures with Experimental Product Distributions from Terminal Alkenes: The Effect of Electron-Withdrawing Fluorine Substituents on the Structure and Charge Localization of Halonium Ions (PREPRINT)

    DTIC Science & Technology

    2006-04-03

    2) Substituting a vinyl hydrogen with a fluorine presents an interesting situation for electrophilic reactions. The π-bond is less...reactive toward electrophiles due to the electron-withdrawing effect of the vinyl fluorine . Therefore, carbocations or radical cations are destabilized...NUMBER Distributions from Terminal Alkenes: The Effect of Electron-Withdrawing Fluorine Substituents on the Structure and Charge Localization of

  16. Role of defects in BiFeO₃ multiferroic films and their local electronic structure by x-ray absorption spectroscopy

    SciTech Connect

    Ravalia, Ashish; Vagadia, Megha; Solanki, P. S.; Shah, N. A.; Kuberkar, D. G.; Gautam, S.; Chae, K. H.; Asokan, K.

    2014-10-21

    Present study reports the role of defects in the electrical transport in BiFeO₃ (BFO) multiferroic films and its local electronic structure investigated by near-edge X-ray absorption fine structure. Defects created by high energy 200 MeV Ag⁺¹⁵ ion irradiation with a fluence of ∼5 × 10¹¹ ions/cm² results in the increase in structural strain and reduction in the mobility of charge carriers and enhancement in resistive (I-V) and polarization (P-E) switching behaviour. At higher fluence of ∼5 × 10¹² ions/cm², there is a release in the structural strain due to local annealing effect, resulting in an increase in the mobility of charge carriers, which are released from oxygen vacancies and hence suppression in resistive and polarization switching. Near-edge X-ray absorption fine structure studies at Fe L₃,₂- and O K-edges show a significant change in the spectral features suggesting the modifications in the local electronic structure responsible for changes in the intrinsic magnetic moment and electrical transport properties of BFO.

  17. On the electron density localization in elemental cubic ceramic and FCC transition metals by means of a localized electrons detector

    NASA Astrophysics Data System (ADS)

    Aray, Yosslen; Paredes, Ricardo; Álvarez, Luis Javier; Martiz, Alejandro

    2017-06-01

    The electron density localization in insulator and semiconductor elemental cubic materials with diamond structure, carbon, silicon, germanium, and tin, and good metallic conductors with face centered cubic structure such as α-Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au, was studied using a localized electrons detector defined in the local moment representation. Our results clearly show an opposite pattern of the electron density localization for the cubic ceramic and transition metal materials. It was found that, for the elemental ceramic materials, the zone of low electron localization is very small and is mainly localized on the atomic basin edges. On the contrary, for the transition metals, there are low-valued localized electrons detector isocontours defining a zone of highly delocalized electrons that extends throughout the material. We have found that the best conductors are those in which the electron density at this low-value zone is the lowest.

  18. Temperature dependent evolution of the electronic and local atomic structure in the cubic colossal magnetoresistive manganite La1-xSrxMnO3

    SciTech Connect

    Arenholz, Elke; Mannella, N.; Booth, C.H.; Rosenhahn, A.; Sell, B.C.; Nambu, A.; Marchesini, S.; Mun, B. S.; Yang, S.-H.; Watanabe, M.; Ibrahim, K.; Arenholz, E.; Young, A.; Guo, J.; Tomioka, Y.; Fadley, C.S.

    2007-12-06

    We have studied the temperature-dependent evolution of the electronic and local atomic structure in the cubic colossal magnetoresistive manganite La{sub 1-x}Sr{sub x}MnO{sub 3} (x= 0.3-0.4) with core and valence level photoemission (PE), x-ray absorption spectroscopy (XAS), x-ray emission spectroscopy (XES), resonant inelastic x-ray scattering (RIXS), extended x-ray absorption fine structure (EXAFS) spectroscopy and magnetometry. As the temperature is varied across the Curie temperature T{sub c}, our PE experiments reveal a dramatic change of the electronic structure involving an increase in the Mn spin moment from {approx} 3 {micro}B to {approx} 4 {micro}B, and a modification of the local chemical environment of the other constituent atoms indicative of electron localization on the Mn atom. These effects are reversible and exhibit a slow-timescale {approx}200 K-wide hysteresis centered at T{sub c}. Based upon the probing depths accessed in our PE measurements, these effects seem to survive for at least 35-50 {angstrom} inward from the surface, while other consistent signatures for this modification of the electronic structure are revealed by more bulk sensitive spectroscopies like XAS and XES/RIXS. We interpret these effects as spectroscopic fingerprints for polaron formation, consistent with the presence of local Jahn-Teller distortions of the MnO{sub 6} octahedra around the Mn atom, as revealed by the EXAFS data. Magnetic susceptibility measurements in addition show typical signatures of ferro-magnetic clusters formation well above the Curie temperature.

  19. Electronic structure, local magnetism, and spin-orbit effects of Ir(IV)-, Ir(V)-, and Ir(VI)-based compounds

    SciTech Connect

    Laguna-Marco, M. A.; Kayser, P.; Alonso, J. A.; Martinez-Lope, M. J.; van Veenendaal, M.; Choi, Y.; Haskel, D.

    2015-06-29

    Element- and orbital-selective x-ray absorption and magnetic circular dichroism measurements are carried out to probe the electronic structure and magnetism of Ir 5d electronic states in double perovskite Sr2MIrO6 (M = Mg, Ca, Sc, Ti, Ni, Fe, Zn, In) and La2NiIrO6 compounds. All the studied systems present a significant influence of spin-orbit interactions in the electronic ground state. In addition, we find that the Ir 5d local magnetic moment shows different character depending on the oxidation state despite the net magnetization being similar for all the compounds. Ir carries an orbital contribution comparable to the spin contribution for Ir4+ (5d(5)) and Ir5+ (5d(4)) oxides, whereas the orbital contribution is quenched for Ir6+ (5d(3)) samples. Incorporation of a magnetic 3d atom allows getting insight into the magnetic coupling between 5d and 3d transition metals. Together with previous susceptibility and neutron diffractionmeasurements, the results indicate that Ir carries a significant local magnetic moment even in samples without a 3d metal. The size of the (small) net magnetization of these compounds is a result of predominant antiferromagnetic interactions between local moments coupled with structural details of each perovskite structure

  20. Local structures of electrons with energies of hundreds of keV in the inner belt and the slot region observed from the Vernov satellite

    NASA Astrophysics Data System (ADS)

    Kovtyukh, A. S.; Myagkova, I. N.; Bogomolov, A. V.; Bogomolov, V. V.; Panasyuk, M. I.; Svertilov, S. I.

    2016-11-01

    The structure and dynamics of electron fluxes of subrelativistic energies in the range 235-300 keV at L < 4 during December 3-8, 2014, are analyzed according to the RELEC instrument onboard the Vernov satellite. Sharp changes in the parameters of the solar wind and the IMF were detected on December 6, but they did not lead to a magnetic storm. However, after the event of December 6, subrelativistic electron fluxes in the inner belt and the slot region were enhanced and structured. The dynamics of electron fluxes in the local transient bursts at L 1.5-1.7 is considered in detail. It is shown that these bursts are associated with the development of the cyclotron instability in the tops of magnetic flux tubes near the inner belt maximum. The electron anisotropic index is estimated in these bursts. It is shown that in the beginning these bursts are anisotropic and that they become isotropic as the decay proceeds. The most likely chain of physical mechanisms that could lead to variations in electron fluxes of the inner belt described in this paper is presented. For the first time, the topological effects in stationary distributions of the electrons of the inner belt observed at low altitudes in the South Atlantic Anomaly region are explained.

  1. Impact of local strain on Ti-L₂,₃ electron energy-loss near-edge structures of BaTiO₃: a first-principles multiplet study.

    PubMed

    Ootsuki, Shirou; Ikeno, Hidekazu; Umeda, Yuji; Yonezawa, Yu; Moriwake, Hiroki; Kuwabara, Akihide; Kido, Osamu; Ueda, Satoko; Tanaka, Isao; Fujikawa, Yoshinori; Mizoguchi, Teruyasu

    2014-06-01

    Identification of local strains is crucial because the local strains largely influence the ferroelectric property of BaTiO₃. The effects of local strains induced by external pressures on the Ti-L₂,₃ electron energy-loss near-edge structure (ELNES) of BaTiO₃ were theoretically investigated using first-principles multiplet calculations. We revealed that the effects appear in the position of the spectral threshold, namely the spectrum shifts to lower and higher energy sides by the tensile and compressive pressures, respectively. We concluded that conventional ELNES observations can identify only large strains induced by -10 GPa, and 0.1 eV energy resolution is required to identify ±2% of strains.

  2. Electronic structure localization and spin-state transition in Cu-substituted FeSe: Fe1-xCuxSe

    SciTech Connect

    Chadov, Stanislav; Scharf, Daniel; Fecher, Gerhard H; Felser, Claudia; Zhang, Lijun; Singh, David J

    2010-01-01

    We report density-functional studies of the Fe{sub 1-x}Cu{sub x}Se alloy done using supercell and coherent-potential approximation methods. Magnetic behavior was investigated using the disordered local moment approach. We find that Cu occurs in a nominal d{sup 10} configuration and is highly disruptive to the electronic structure of the Fe sheets. This would be consistent with a metal-insulator transition due to Anderson localization. We further find a strong crossover from a weak moment itinerant system to a local moment magnet at x{approx}0.12. We associate this with the experimentally observed jump near this concentration. our results are consistent with the characterization of this concentration-dependent jump as a transition to a spin glass.

  3. Extended x-ray-absorption and electron-energy-loss fine-structure studies of the local atomic structure of amorphous unhydrogenated and hydrogenated silicon carbide

    NASA Astrophysics Data System (ADS)

    Kaloyeros, Alain E.; Rizk, Richard B.; Woodhouse, John B.

    1988-12-01

    Extended x-ray-absorption (EXAFS) and electron-energy-loss fine-structure (EXELFS) measurements have been performed on amorphous unhydrogenated silicon carbide, a-SiC, and amorphous hydrogenated silicon carbide, a-SiC:H. Two hydrogenated samples with hydrogen concentrations corresponding, respectively, to H flows of 4 sccm (20% of argon flow) and 8 sccm (40% of argon flow) during the reactive sputtering process, were analyzed (sccm denotes standard cubic centimeters per minute at STP). It is found that short-range order (SRO), consisting of the same tetrahedrally coordinated units present in cubic crystalline c-SiC (zinc-blende structure), where a Si atom is surrounded by nearly four C atoms and vice versa, does exist in all the amorphous samples. This SRO, however, is detected only at a level of the first C and Si coordination shells in a-SiC and a-SiC:H. The structural disorder of the first Si and C coordination shells in all forms of amorphous SiC is somewhat greater than c-SiC, and it decreases appreciably as hydrogen is added. The a-SiC sample exhibits large Si and C coordination numbers, almost identical to c-SiC, a low atomic density, and virtually the same Si-C bond length as c-SiC. These results indicate that a relatively small concentration of large voids exist in a highly disordered a-SiC matrix. The a-SiC:H samples, on the other hand, exhibit a decrease in the C coordination number relative to a-SiC, which is independent of H concentration, low Si and C atomic densities, comparable to a-SiC, and virtually the same Si coordination number as a-SiC. These EXAFS-EXELFS results are consistent with a model where part of the H is substituting for Si in the local tetrahedra surrounding C atoms, while the rest is located inside internal voids in the a-SiC:H samples. The surface of the voids is composed of C atoms which have at least one bond to H, and of Si atoms. Finally, a straightforward computational procedure is applied to estimate the size of these voids

  4. Studies of local structural distortions in strained ultrathin BaTiO3 films using scanning transmission electron microscopy.

    PubMed

    Park, Daesung; Herpers, Anja; Menke, Tobias; Heidelmann, Markus; Houben, Lothar; Dittmann, Regina; Mayer, Joachim

    2014-06-01

    Ultrathin ferroelectric heterostructures (SrTiO3/BaTiO3/BaRuO3/SrRuO3) were studied by scanning transmission electron microscopy (STEM) in terms of structural distortions and atomic displacements. The TiO2-termination at the top interface of the BaTiO3 layer was changed into a BaO-termination by adding an additional BaRuO3 layer. High-angle annular dark-field (HAADF) imaging by aberration-corrected STEM revealed that an artificially introduced BaO-termination can be achieved by this interface engineering. By using fast sequential imaging and frame-by-frame drift correction, the effect of the specimen drift was significantly reduced and the signal-to-noise ratio of the HAADF images was improved. Thus, a quantitative analysis of the HAADF images was feasible, and an in-plane and out-of-plane lattice spacing of the BaTiO3 layer of 3.90 and 4.22 Å were determined. A 25 pm shift of the Ti columns from the center of the unit cell of BaTiO3 along the c-axis was observed. By spatially resolved electron energy-loss spectroscopy studies, a reduction of the crystal field splitting (CFS, ΔL3=1.93 eV) and an asymmetric broadening of the eg peak were observed in the BaTiO3 film. These results verify the presence of a ferroelectric polarization in the ultrathin BaTiO3 film.

  5. An insight into crystal, electronic, and local structures of lithium iron silicate (Li2FeSiO4) materials upon lithium extraction

    NASA Astrophysics Data System (ADS)

    Kamon-in, O.; Klysubun, W.; Limphirat, W.; Srilomsak, S.; Meethong, N.

    2013-05-01

    Recently, orthosilicate, Li2MSiO4 (where M=transition metal) materials have been attracting considerable attention for potential use as a new generation cathode for Li-ion batteries due to their safety, low toxicity, and low cost characteristics. In addition, the presence of two Li+ ions in the molecule offers a multiple electron-charge transfer (M2+/M3+ and M3+/M4+ redox couples), thus allowing a high achievable capacity of more than 320 mA h/g per M unit. Good electrochemical properties of Li2FeSiO4 have been reported through several approaches such as downsizing of the particles, carbon-coating, etc. However, in addition to electrochemical performance, fundamental understanding regarding crystal, electronic and local structure changes during charge/discharge processes is also important and needs more rigorous investigation. In this work, lithium iron silicates (Li2FeSiO4/C) in space group of Pnma: a=10.6671(3) Å, b=6.2689(2) Å, and c=5.0042(2) Å have been prepared by solid-state reaction. The synthesized as well as chemical delithiated samples have been characterized by XRD, HRTEM, AAS and XAS techniques. We will show the results focusing on Fe K-edge XANES, EXAFS, HRTEM and XRD of the Li2-xFeSiO4 samples and discuss how the crystal, electronic, and local structure changes upon Li+ de-intercalation.

  6. Natural geometric representation for electron local observables

    SciTech Connect

    Minogin, V.G.

    2014-03-15

    An existence of the quartic identities for the electron local observables that define orthogonality relations for the 3D quantities quadratic in the electron observables is found. It is shown that the joint solution of the quartic and bilinear identities for the electron observables defines a unique natural representation of the observables. In the natural representation the vector type electron local observables have well-defined fixed positions with respect to a local 3D orthogonal reference frame. It is shown that the natural representation of the electron local observables can be defined in six different forms depending on a choice of the orthogonal unit vectors. The natural representation is used to determine the functional dependence of the electron wave functions on the local observables valid for any shape of the electron wave packet. -- Highlights: •Quartic identities that define the orthogonality relations for the electron local observables are found. •Joint solution of quartic and bilinear identities defines a unique natural representation of the electron local observables. •Functional dependence of the electron wave functions on the electron local observables is determined.

  7. Electronic structure and the local electroneutrality level of SiC polytypes from quasiparticle calculations within the GW approximation

    SciTech Connect

    Brudnyi, V. N.; Kosobutsky, A. V.

    2012-06-15

    The most important interband transitions and the local charge neutrality level (CNL) in silicon carbide polytypes 3C-SiC and nH-SiC (n = 2-8) are calculated using the GW approximation for the self energy of quasiparticles. The calculated values of band gap E{sub g} for various polytypes fall in the range 2.38 eV (3C-SiC)-3.33 eV (2H-SiC) and are very close to the experimental data (2.42-3.33 eV). The quasiparticle corrections to E{sub g} determined by DFT-LDA calculations (about 1.1 eV) are almost independent of the crystal structure of a polytype. The positions of CNL in various polytypes are found to be almost the same, and the change in CNL correlates weakly with the change in E{sub g}, which increases with the hexagonality of SiC. The calculated value of CNL varies from 1.74 eV in polytype 3C-SiC to 1.81 eV in 4H-SiC.

  8. Ytterbium monopnictides under high pressure and high temperature: Structural and electronic properties studied using local spin density approximation and Hubbard corrections approach

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Verma, U. P.

    2014-06-01

    The structural and electronic properties of ytterbium monopnictides YbX (X = N, P) compounds have been investigated using full potential linear augmented plane wave plus local orbitals approach within the framework of density functional theory. The local spin-density approximation along with Hubbard- U corrections and spin-orbit coupling have been used for correct prediction of electronic properties. At ambient conditions ytterbium monopnictides stabilize in NaCl ( B1) structure. Also, the equilibrium properties, viz., lattice constants ( a), bulk modulus ( B 0) and its pressure derivative ( B 0 ') and total energy ( E 0) have been calculated in three other phases namely CsCl ( B2), zinc blende ( B3) and body centred tetragonal. Under compression, both YbN and YbP undergo first-order structural transition from B1 to B2 phase at 164.0 and 33.7 GPa of pressure, respectively. Obtained results show that YbX is semi-metallic in B1 phase and metallic in B2 phase. Thermal parameters such as Gruneisen parameter, Debye temperature, specific heat, thermal expansion coefficient and entropy have been determined as a function of pressure and temperature. The calculated lattice and other parameters are in good agreement with experimental and other theoretical values reported earlier.

  9. Local control approach to ultrafast electron transfer

    NASA Astrophysics Data System (ADS)

    Vindel-Zandbergen, Patricia; Meier, Christoph; Sola, Ignacio R.

    2016-10-01

    We study ultrafast electron transfer between separated nuclei using local control theory. By imposing electron ionization and electron transport through the continuum, different local control formulations are used to increase the yield of retrapping the electron at the desired nuclei. The control mechanism is based on impulsive de-excitation. Both symmetric and asymmetric nuclear arrangements are analyzed, as well as the role of the nuclear motion.

  10. Utilizing Electron Spin Echo Envelope Modulation To Distinguish between the Local Secondary Structures of an α-Helix and an Amphipathic 310-Helical Peptide.

    PubMed

    Bottorf, Lauren; Rafferty, Sophia; Sahu, Indra D; McCarrick, Robert M; Lorigan, Gary A

    2017-04-13

    Electron spin echo envelope modulation (ESEEM) spectroscopy was used to distinguish between the local secondary structures of an α-helix and a 310-helix. Previously, we have shown that ESEEM spectroscopy in combination with site-directed spin labeling (SDSL) and (2)H-labeled amino acids (i) can probe the local secondary structure of α-helices, resulting in an obvious deuterium modulation pattern, where i+4 positions generally show larger (2)H ESEEM peak intensities than i+3 positions. Here, we have hypothesized that due to the unique turn periodicities of an α-helix (3.6 residues per turn with a pitch of 5.4 Å) and a 310-helix (3.1 residues per turn with a pitch of 5.8-6.0 Å), the opposite deuterium modulation pattern would be observed for a 310-helix. In this study, (2)H-labeled d10-leucine (Leu) was substituted at a specific Leu residue (i) and a nitroxide spin label was positioned 2, 3, and 4 residues away (denoted i+2 to i+4) on an amphipathic model peptide, LRL8. When LRL8 is solubilized in trifluoroethanol (TFE), the peptide adopts an α-helical structure, and alternatively, forms a 310-helical secondary structure when incorporated into liposomes. Larger (2)H ESEEM peaks in the FT frequency domain data were observed for the i+4 samples when compared to the i+3 samples for the α-helix whereas the opposite pattern was revealed for the 310-helix. These unique patterns provide pertinent local secondary structural information to distinguish between the α-helical and 310-helical structural motifs for the first time using this ESEEM spectroscopic approach with short data acquisition times (∼30 min) and small sample concentrations (∼100 μM) as well as providing more site-specific secondary structural information compared to other common biophysical approaches, such as CD.

  11. Correlative photoactivated localization and scanning electron microscopy.

    PubMed

    Kopek, Benjamin G; Shtengel, Gleb; Grimm, Jonathan B; Clayton, David A; Hess, Harald F

    2013-01-01

    The ability to localize proteins precisely within subcellular space is crucial to understanding the functioning of biological systems. Recently, we described a protocol that correlates a precise map of fluorescent fusion proteins localized using three-dimensional super-resolution optical microscopy with the fine ultrastructural context of three-dimensional electron micrographs. While it achieved the difficult simultaneous objectives of high photoactivated fluorophore preservation and ultrastructure preservation, it required a super-resolution optical and specialized electron microscope that is not available to many researchers. We present here a faster and more practical protocol with the advantage of a simpler two-dimensional optical (Photoactivated Localization Microscopy (PALM)) and scanning electron microscope (SEM) system that retains the often mutually exclusive attributes of fluorophore preservation and ultrastructure preservation. As before, cryosections were prepared using the Tokuyasu protocol, but the staining protocol was modified to be amenable for use in a standard SEM without the need for focused ion beam ablation. We show the versatility of this technique by labeling different cellular compartments and structures including mitochondrial nucleoids, peroxisomes, and the nuclear lamina. We also demonstrate simultaneous two-color PALM imaging with correlated electron micrographs. Lastly, this technique can be used with small-molecule dyes as demonstrated with actin labeling using phalloidin conjugated to a caged dye. By retaining the dense protein labeling expected for super-resolution microscopy combined with ultrastructural preservation, simplifying the tools required for correlative microscopy, and expanding the number of useful labels we expect this method to be accessible and valuable to a wide variety of researchers.

  12. Structural and electronic control of the metal to insulator transition and local orderings in the θ-(BEDT-TTF)2X organic conductors

    NASA Astrophysics Data System (ADS)

    Alemany, Pere; Pouget, Jean-Paul; Canadell, Enric

    2015-11-01

    A first-principles density functional theory (DFT) study of θ -(BEDT-TTF)2X molecular conductors with X  =  I3, CsCo(SCN)4 (ambient pressure, 7.5 kbar and 10 kbar), CsZn(SCN)4, TlCo(SCN)4, RbCo(SCN)4 and RbZn(SCN)4 (220 K and 90 K) is reported. It is shown that these salts exhibit three different types of band structure each of them associated with a different physical behavior. In contrast with previous proposals it is found that the key electronic parameter behind the differences in the band structures is the intrastack transfer integral, t c . A new mechanism for the metal to insulator transition in the θ -(BEDT-TTF)2MM‧(SCN)4 (\\text{M}=\\text{Rb} , Tl; {{\\text{M}}\\prime}=\\text{Zn} , Co) salts is proposed, where an order-disorder structural transition of the ethylenedithio groups doubling the periodicity along the stack direction drives the system into an electronically pseudo-1D system along the interstack direction that is subject to a 4k F charge localization of holes. The structural rearrangement is such that the holes are not distributed equally between the two donors; the larger hole density is associated with the B donors which establish the strongest hydrogen bonds with the anion layers. A detailed microscopic description of how disorder of the ethylenedithio groups, the θ dihedral angle and the electronic structure intermingle and lead to the unusual phase diagram of these salts is presented. In this framework the role of pressure and uniaxial strain in controlling the physical behavior of these salts is discussed.

  13. Finite-size effects on electronic structure and local properties in passivated AA-stacked bilayer armchair-edge graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Chen, Xiongwen; Shi, Zhengang; Xiang, Shaohua; Song, Kehui; Zhou, Guanghui

    2017-03-01

    Based on the tight-binding model and dual-probe scanning tunneling microscopy technology, we theoretically investigate the electronic structure and local property in the passivated AA-stacked bilayer armchair-edge graphene nanoribbons (AABLAGNRs). We show that they are highly sensitive to the size of the ribbons, which is evidently different from the single-layer armchair-edge graphene nanoribbons. The ‘3p’ rule only applies to the narrow AABLGNRs. Namely, in the passivated 3p- and (3p  +  1)-AABLGNRs, the narrow ribbons are semiconducting while the medium and wide ribbons are metallic. Although the passivated (3p  +  2)-AABLGNRs are metallic, the ‘3j’ rule only applies to the narrow and medium ribbons. Namely, electrons are in the semiconducting states at sites of line 3j while they are in the metallic states at other sites. This induces a series of parallel and discrete metallic channels, consisting of lines 3j  -  1 and 3j  -  2, for the low-energy electronic transports. In the passivated wide (3p  +  2)-AABLGNRs, all electrons are in the metallic states. Additionally, the ‘3p’ and ‘3j’ rules are controllable to disappear and reappear by applying an external perpendicular electric field. Resultantly, an electric filed-driven current switch can be realized in the passivated narrow and medium (3p  +  2)-AABLGNRs.

  14. Finite-size effects on electronic structure and local properties in passivated AA-stacked bilayer armchair-edge graphene nanoribbons.

    PubMed

    Chen, Xiongwen; Shi, Zhengang; Xiang, Shaohua; Song, Kehui; Zhou, Guanghui

    2017-03-01

    Based on the tight-binding model and dual-probe scanning tunneling microscopy technology, we theoretically investigate the electronic structure and local property in the passivated AA-stacked bilayer armchair-edge graphene nanoribbons (AABLAGNRs). We show that they are highly sensitive to the size of the ribbons, which is evidently different from the single-layer armchair-edge graphene nanoribbons. The '3p' rule only applies to the narrow AABLGNRs. Namely, in the passivated 3p- and (3p  +  1)-AABLGNRs, the narrow ribbons are semiconducting while the medium and wide ribbons are metallic. Although the passivated (3p  +  2)-AABLGNRs are metallic, the '3j' rule only applies to the narrow and medium ribbons. Namely, electrons are in the semiconducting states at sites of line 3j while they are in the metallic states at other sites. This induces a series of parallel and discrete metallic channels, consisting of lines 3j  -  1 and 3j  -  2, for the low-energy electronic transports. In the passivated wide (3p  +  2)-AABLGNRs, all electrons are in the metallic states. Additionally, the '3p' and '3j' rules are controllable to disappear and reappear by applying an external perpendicular electric field. Resultantly, an electric filed-driven current switch can be realized in the passivated narrow and medium (3p  +  2)-AABLGNRs.

  15. Manipulation of electronic structure via alteration of local orbital environment in [(SrIrO3)m,(SrTi O3)] (m =1 ,2 ,and ∞ ) superlattices

    NASA Astrophysics Data System (ADS)

    Kim, So Yeun; Kim, Choong H.; Sandilands, L. J.; Sohn, C. H.; Matsuno, J.; Takagi, H.; Kim, K. W.; Lee, Y. S.; Moon, S. J.; Noh, T. W.

    2016-12-01

    We investigated the electronic structure of [(SrIrO3)m,(SrTi O3)] (m =1 ,2 ,and ∞ ) superlattice (SL) thin films with optical spectroscopy and first principles calculations. Our optical results confirmed the existence of the Jeff= 1 /2 states in SL samples, similar to the bulk Ruddlesden-Popper series S rn+1I rnO3 n +1 iridates. Apart from this similarity, in the SL samples, we observed red shifts of the characteristic optical excitations in the Jeff= 1 /2 state and an enhancement of the low-energy spectral weight, which implies a reduction in the effective electron correlation for bands near the Fermi energy. The density functional theory plus Coulomb interactions (DFT +U ) calculations suggested that the SrTi O3 layer intervened between SrIr O3 layers in the SLs activated additional hopping channels between the Ir ions, thus increasing the bandwidth and reducing the effective strength of the correlations. This paper demonstrates that fabrication of iridium-based heterostructures can be used to finely tune electronic structures via alteration of their local orbital environments.

  16. Local atomic and electronic structures in ferromagnetic topological insulator Cr-doped (BixSb1-x) 2Te3 studied by XAFS and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Wei, Xinyuan; Wang, Jiajia; Pan, Hong; Ji, Fuhao; Ye, Mao; Yang, Zhongqin; Qiao, Shan

    2015-09-01

    The local atomic and electronic structures around the dopants in Cr-doped (BixSb1 -x )2Te3 are studied by x-ray absorption fine structure (XAFS) measurements and first-principles calculations. Both Cr and Bi are confirmed substituting Sb sites (CrSb and BiSb). The six nearest Te atoms around Cr move towards Cr and shorten the Cr-Te bond lengths to 2.76 Å and 2.77 Å for x =0.1 and x =0.2 , respectively. Importantly, we reveal the hybridization between the Sb/Te p states and Cr d states by the presence of a pre-edge peak at Cr K -absorption edge, which is also supported by our ab initio calculations. These findings provide important clues to understand the mechanism of ferromagnetic order in this system with quantum anomalous Hall effect.

  17. Electron acceleration by a localized Bernstein mode

    NASA Astrophysics Data System (ADS)

    Kumar, Asheel

    2017-07-01

    An analytical framework for electron acceleration by an axially localized large amplitude electron Bernstein mode in a magnetized plasma is developed. The mode is localized due to plasma density profile or magnetic field profile and could be excited by launching an electron cyclotron wave from out side. A mildly pre-accelerated electron beam of finite Larmor radius resonantly interacts with the mode and gains axial energy as well as transverse energy. The scheme is suitable for producing electron beams of energy upto several MeV.

  18. How do electron localization functions describe π-electron delocalization?

    PubMed

    Steinmann, Stephan N; Mo, Yirong; Corminboeuf, Clemence

    2011-12-14

    Scalar fields provide an intuitive picture of chemical bonding. In particular, the electron localization function (ELF) has proven to be highly valuable in interpreting a broad range of bonding patterns. The discrimination between enhanced or reduced electron (de)localization within cyclic π-conjugated systems remains, however, challenging for ELF. In order to clearly distinguish between the local properties of ten highly and weakly π-(de)localized prototype systems, we compare the ELFs of both the canonical wave functions and electron-localized states (diabatic) with those of two closely related scalar fields: the electron localizability indicator (ELI-D) and the localized orbital locator (LOL). The simplest LOL function distinguishes enhanced from weak π-(de)localization in an insightful and reliable manner. LOL offers the finest contrast between annulenes with 4n/4n + 2 π electrons and their inorganic analogues as well as between hyperconjugated cyclopentadiene derivatives. LOL(π) also gives an appealing and intuitive picture of the π-bond. In contrast, the most popular ELF fails to capture subtle contrasting local electronic properties and suffers from the arbitrariness of the σ/π dissection. The orbital separation of the most recent ELI-D is clear-cut but the interpretations sometime less straightforward in the present context.

  19. Temperature dependent evolution of the local electronic structure of atmospheric plasma treated carbon nanotubes: Near edge x-ray absorption fine structure study

    SciTech Connect

    Roy, S. S.; Papakonstantinou, P.; Okpalugo, T. I. T.; Murphy, H.

    2006-09-01

    Near edge x-ray absorption fine structure (NEXAFS) spectroscopy has been employed to obtain the temperature dependent evolution of the electronic structure of acid treated carbon nanotubes, which were further modified by dielectric barrier discharge plasma processing in an ammonia atmosphere. The NEXAFS studies were performed from room temperature up to 900 deg. C. The presence of oxygen and nitrogen containing functional groups was observed in C K edge, N K edge, and O K edge NEXAFS spectra of the multiwalled carbon nanotubes. The N K edge spectra revealed three types of {pi}* features, the source of which was decisively identified by their temperature dependent evolution. It was established that these features are attributed to pyridinelike, NO, and graphitelike structures, respectively. The O K edge indicated that both carbonyl (C=O), {pi}*(CO), and ether C-O-C, {sigma}*(CO), functionalities were present. Upon heating in a vacuum to 900 deg. C the {pi}*(CO) resonances disappeared while the {sigma}*(CO) resonances were still present confirming their higher thermal stability. Heating did not produce a significant change in the {pi}* feature of the C K edge spectrum indicating that the tabular structure of the nanotubes is essentially preserved following the thermal decomposition of the functional groups on the nanotube surface.

  20. Extended x-ray-absorption and electron-energy-loss fine-structure studies of the local atomic structure of amorphous unhydrogenated and hydrogenated silicon carbide

    SciTech Connect

    Kaloyeros, A.E.; Rizk, R.B.; Woodhouse, J.B.

    1988-12-15

    Extended x-ray-absorption (EXAFS) and electron-energy-loss fine-structure (EXELFS) measurements have been performed on amorphous unhydrogenated silicon carbide, a-SiC, and amorphous hydrogenated silicon carbide, a-SiC:H. Two hydrogenated samples with hydrogen concentrations corresponding, respectively, to H flows of 4 sccm (20% of argon flow) and 8 sccm (40% of argon flow) during the reactive sputtering process, were analyzed (sccm denotes standard cubic centimeters per minute at STP). It is found that short-range order (SRO), consisting of the same tetrahedrally coordinated units present in cubic crystalline c-SiC (zinc-blende structure), where a Si atom is surrounded by nearly four C atoms and vice versa, does exist in all the amorphous samples. This SRO, however, is detected only at a level of the first C and Si coordination shells in a-SiC and a-SiC:H. The structural disorder of the first Si and C coordination shells in all forms of amorphous SiC is somewhat greater than c-SiC, and it decreases appreciably as hydrogen is added. The a-SiC sample exhibits large Si and C coordination numbers, almost identical to c-SiC, a low atomic density, and virtually the same Si-C bond length as c-SiC. These results indicate that a relatively small concentration of large voids exist in a highly disordered a-SiC matrix.

  1. A Local Variant of the Conductor-Like Screening Model for Fragment-Based Electronic-Structure Methods.

    PubMed

    Goez, Albrecht; Neugebauer, Johannes

    2015-11-10

    Due to steadily rising computational power and sophisticated modeling approaches, increasingly larger molecular systems can be modeled with ab initio methods. An especially promising approach is subsystem methods, where the total system is broken down into smaller subunits that can be treated individually. If an implicit solvent environment such as the conductor-like screening model (COSMO) is included in the description, then additional environmental effects can be incorporated at relatively low cost. For very large systems described with subsystem methods, however, the solution of the COSMO equations can actually become the bottleneck of the calculation. A prominent example in this area is biomolecular systems such as proteins, which can, for instance, be described with frozen density embedding (FDE), especially the related 3-FDE approach. In this article, we present an alternative COSMO variant, which exploits the subsystem nature of the underlying electronic description and has been implemented in a development version of the Amsterdam Density Functional program suite (Adf). We show that the computational cost for the solvent model can be reduced dramatically while retaining the accuracy of the regular description. We compare several schemes for density and surface charge updates and assess the effect of the single tuning parameter.

  2. Local geometric and electronic structures and origin of magnetism in Co-doped BaTiO{sub 3} multiferroics

    SciTech Connect

    Phan, The-Long; Ho, T. A.; Manh, T. V.; Yu, S. C.; Thang, P. D.; Thanh, Tran Dang; Lam, V. D.; Dang, N. T.

    2015-05-07

    We have prepared polycrystalline samples BaTi{sub 1−x}Co{sub x}O{sub 3} (x = 0–0.1) by solid-state reaction. X-ray diffraction and Raman-scattering studies reveal the phase separation in crystal structure as changing Co-doping content (x). The samples with x = 0–0.01 are single phase in a tetragonal structure. At higher doping contents (x > 0.01), there is the formation and development of a secondary hexagonal phase. Magnetization measurements at room temperature indicate a coexistence of paramagnetic and weak-ferromagnetic behaviors in BaTi{sub 1−x}Co{sub x}O{sub 3} samples with x > 0, while pure BaTiO{sub 3} is diamagnetic. Both these properties increase with increasing x. Analyses of X-ray absorption spectra recorded from BaTi{sub 1−x}Co{sub x}O{sub 3} for the Co and Ti K-edges indicate the presence of Co{sup 2+} and Co{sup 3+} ions. They locate in the Ti{sup 4+} site of the tetragonal and hexagonal BaTiO{sub 3} structures. Particularly, there is a shift of oxidation state from Co{sup 2+} to Co{sup 3+} when Co-doping content increases. We believe that the paramagnetic nature in BaTi{sub 1−x}Co{sub x}O{sub 3} samples is due to isolated Co{sup 2+} and Co{sup 3+} centers. The addition of Co{sup 3+} ions enhances the paramagnetic behavior. Meanwhile, the origin of ferromagnetism is due to lattice defects, which is less influenced by the changes caused by the variation in concentration of Co{sup 2+} and Co{sup 3+} ions.

  3. Electronic structure of Calcium hexaborides

    SciTech Connect

    Lee, Byounghak; Wang, Lin-Wang

    2005-06-15

    We present a theoretical study of crystal and electronic structures of CaB6 within a screened-exchange local density approximation (sX-LDA). Our ab initio total energy calculations show that CaB6 is a semiconductor with a gap of >1.2 eV, in agreement with recent experimental observations. We show a very sensitive band gap dependence on the crystal internal parameter, which might partially explain the scatter of previous theoretical results. Our calculation demonstrates that it is essential to study this system simultaneously for both crystal structures and electronic properties, and that the sX-LDA provides an ideal method for this problem.

  4. Investigation of electronic and local structural changes during lithium uptake and release of nano-crystalline NiFe2O4 by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Dong; Permien, Stefan; Rana, Jatinkumar; Krengel, Markus; Sun, Fu; Schumacher, Gerhard; Bensch, Wolfgang; Banhart, John

    2017-02-01

    Nano-crystalline NiFe2O4 particles were synthesized and used as active electrode material for a lithium ion battery that showed a high discharge capacity of 1534 mAh g-1 and charge capacity of 1170 mAh g-1 during the 1st cycle. X-ray absorption spectroscopy including XANES and EXAFS were used to investigate electronic and local structural changes of NiFe2O4 during the 1st lithiation and de-lithiation process. As lithium is inserted into the structure, tetrahedral site Fe3+ ions are reduced to Fe2+ and moved from tetrahedral sites to empty octahedral sites, while Ni2+ ions are unaffected. As a consequence, the matrix spinel structure collapses and transforms to an intermediate rock-salt monoxide phase. Meanwhile, the inserted Li is partially consumed by the formation of SEI and other side reactions during the conversion reaction. With further lithiation, the monoxide phase is reduced to highly disordered metallic Fe/Ni nanoparticles with a number of nearest neighbors of 6.0(8) and 8.1(4) for Fe and Ni, respectively. During subsequent de-lithiation, the metal particles are individually re-oxidized to Fe2O3 and NiO phases instead to the original NiFe2O4 spinel phase.

  5. Study of local atomic and electronic structure in glassy metallic alloys. Progress report, December 1, 1979-November 1, 1980

    SciTech Connect

    Messmer, R.P.; Wong, J.

    1980-01-01

    During the first reporting period, March 1, 1979-December 1, 1979, small clusters such as Fe/sub 4/, Ni/sub 4/, Ni/sub 2/Fe/sub 2/ alone and containing the metalloid atoms P and B were investigated. The effect of P and B on the magnetic moment of the clusters was investigated and found to parallel the known experimental trend. Significant metal-metalloid bonding was found in all the clusters studied. During the present reporting period a detailed analysis of the bonding in these small clusters was carried out. As a result of this detailed analysis a very significant conclusion has been reached: there are preferential metal-metalloid interactions which are predicted on the basis of the calculations. Room temperature extended x-ray absorption fine structure (EXAFS) spectra above the K absorption edge of metal constituents in the following metal-metalloid and metal-metal glasses have been measured in the February and June 1980 runs at Stanford Synchrotron Radiation Laboratory: Fe/sub 1-x/B/sub x/, (FeNi)/sub 1-x/B/sub x/, Ni/sub 1-x/B/sub x/; Zr/sub 1-x/M/sub x/ (M- Fe, Co, Ni and Cu) and Nb/sub 1-x/Ni/sub x/.

  6. The electronic structure of Lu

    NASA Astrophysics Data System (ADS)

    Tibbetts, T. A.; Harmon, B. N.

    1982-12-01

    The electronic structure of hcp Lu has been calculated using a linearized augmented plane wave (LAPW) method and the Hedin-Lundqvist local density approximation for exchange and correlation. Although complete self-consistency was hindered by the proximity of the 4f levels to the Fermi energy, the valence bands were converged and the calculation yielded a Fermi surface remarkably similar to that calculated by Keeton and Loucks. Comparison is made with recent de Haas-van Alphen and neutron magnetic form factor experiments.

  7. Investigation of the local structure of Cu2+ ions doped in alkali lead tetraborate glasses by their electron paramagnetic resonance and optical spectra

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Chen, Zhi

    2014-06-01

    The local structure of the Cu2+ centers in alkali lead tetraborate glasses was theoretically studied based on the optical spectra data and high-order perturbation formulas of the spin Hamiltonian parameters (electron paramagnetic resonance g factors g∥, g⊥ and hyperfine structure constants A∥, A⊥) for a 3d9 ion in a tetragonally elongated octahedron. In these formulas, the relative axial elongation of the ligand O2- octahedron around the Cu2+ due to the Jahn-Teller effect is taken into account by considering the contributions to the g factors from the tetragonal distortion which is characterized by the tetragonal crystal-field parameters Ds and Dt. From the calculations, the ligand O2- octahedral around Cu2+ is determined to suffer about 19.2% relative elongation along the C4 axis of the alkali lead tetraborate glass system, and a negative sign for A∥ and a positive sign for A⊥ for these Cu2+ centers are suggested in the discussion.

  8. Electronic structure and local atomic arrangement of transition metal ions in nanoporous iron-substituted nickel phosphates, VSB-1 and VSB-5.

    PubMed

    Kim, Tae Woo; Oh, Eun-Jin; Jhung, Sung Hwa; Chang, Jong-San; Hwang, Seong-Ju

    2010-01-01

    The electronic structure and local atomic arrangement of transition metal ions in nanoporous iron-substituted nickel phosphates VSB-1 and VSB-5 have been investigated using X-ray absorption near-edge structure (XANES) spectroscopy at Fe K- and Ni K-edges. The Fe K-edge XANES study clearly demonstrated that substituted iron ions were stabilized in octahedral nickel sites of nanoporous nickel phosphate lattice. A comparison with several Fe-references revealed that the substituted irons have mixed Fe2+/Fe3+ oxidation state with the average valence of +2.8-3.0. According to the Ni K-edge XANES analysis, the aliovalent substitution of Ni2+ with Fe2+/Fe3+ induced a slight reduction of divalent nickel ions in VSB-5 to meet a charge balance. On the contrary, Fe substitution for the VSB-1 phase did not cause notable decrease in the oxidation state of nickel ions, which would be related either to the accompanying decrease of pentavalent phosphorus cations or to the increase of oxygen anions. In conclusion, the present findings clearly demonstrated that the nanoporous lattice of nickel phosphate can accommodate effectively iron ions in its octahedral nickel sites.

  9. Local orbitals in electron scattering calculations*

    NASA Astrophysics Data System (ADS)

    Winstead, Carl L.; McKoy, Vincent

    2016-05-01

    We examine the use of local orbitals to improve the scaling of calculations that incorporate target polarization in a description of low-energy electron-molecule scattering. After discussing the improved scaling that results, we consider the results of a test calculation that treats scattering from a two-molecule system using both local and delocalized orbitals. Initial results are promising. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  10. Local electron heating in nanoscopic conductors

    NASA Astrophysics Data System (ADS)

    D'Agosta, Roberto; Sai, Na; di Ventra, Massimiliano

    2007-03-01

    The electron current density in nanoscale junctions is typically several orders of magnitude larger than the corresponding one in bulk electrodes. Consequently, the electron-electron scattering rate increases substantially in the junction. This leads to local electron heating of the underlying Fermi sea [1] in analogy to the local ionic heating that is due to the increased electron-phonon scattering rates [2]. By using a novel hydrodynamic formulation of transport [3], we predict the bias dependence of local electron heating in quasi-ballistic nanoscale conductors [1], its effect on ionic heating [1], and the consequent observable changes in the inelastic conductance [4]. [1] R. D'Agosta, N. Sai and M. Di Ventra, accepted in Nano Letters (2006). [2] Y.-C. Chen, M. Zwolak, and M. Di Ventra, Nano Lett. 3, 1961 (2003); Nano Lett. 4, 1709 (2004); Nano Lett. 5, 621 (2005). M. J. Montgomery, T. N. Todorov, and A. P. Sutton, J. Phys. Cond. Matt. 14, 5377 (2002). [3] R. D'Agosta and M. Di Ventra, J. Phys. Cond. Matt. in press. [4] R. D'Agosta and M. Di Ventra, in preparation.

  11. Excess Electron Localization in Solvated DNA Bases

    SciTech Connect

    Smyth, Maeve; Kohanoff, Jorge

    2011-06-10

    We present a first-principles molecular dynamics study of an excess electron in condensed phase models of solvated DNA bases. Calculations on increasingly large microsolvated clusters taken from liquid phase simulations show that adiabatic electron affinities increase systematically upon solvation, as for optimized gas-phase geometries. Dynamical simulations after vertical attachment indicate that the excess electron, which is initially found delocalized, localizes around the nucleobases within a 15 fs time scale. This transition requires small rearrangements in the geometry of the bases.

  12. Electron localization of anions probed by nitrile vibrations

    DOE PAGES

    Mani, Tomoyasu; Grills, David C.; Newton, Marshall D.; ...

    2015-08-02

    Localization and delocalization of electrons is a key concept in chemistry, and is one of the important factors determining the efficiency of electron transport through organic conjugated molecules, which have potential to act as “molecular wires”. This, in turn, substantially influences the efficiencies of organic solar cells and other molecular electronic devices. It is also necessary to understand the electronic energy landscape and the dynamics of electrons through molecular chain that govern their transport capabilities in one-dimensional conjugated chains so that we can better define the design principles of conjugated molecules for their applications. We show that nitrile ν(C≡N) vibrationsmore » respond to the degree of electron localization in nitrile-substituted organic anions by utilizing time-resolved infrared (TRIR) detection combined with pulse radiolysis. Measurements of a series of aryl nitrile anions allow us to construct a semi-empirical calibration curve between the changes in the ν(C≡N) IR shifts and the changes in the electronic charges from the neutral to the anion states in the nitriles; more electron localization in the nitrile anion results in larger IR shifts. Furthermore, the IR linewidth in anions can report a structural change accompanying changes in the electronic density distribution. Probing the shift of the nitrile ν(C≡N) IR vibrational bands enables us to determine how the electron is localized in anions of nitrile-functionalized oligofluorenes, considered as organic mixed-valence compounds. We estimate the diabatic electron transfer distance, electronic coupling strengths, and energy barriers in these organic mixed-valence compounds. The analysis reveals a dynamic picture, showing that the electron is moving back and forth within the oligomers with a small activation energy of ≤ kBT, likely controlled by the movement of dihedral angles between monomer units. Thus, implications for the electron transport capability

  13. Electron localization of anions probed by nitrile vibrations

    SciTech Connect

    Mani, Tomoyasu; Grills, David C.; Newton, Marshall D.; Miller, John R.

    2015-08-02

    Localization and delocalization of electrons is a key concept in chemistry, and is one of the important factors determining the efficiency of electron transport through organic conjugated molecules, which have potential to act as “molecular wires”. This, in turn, substantially influences the efficiencies of organic solar cells and other molecular electronic devices. It is also necessary to understand the electronic energy landscape and the dynamics of electrons through molecular chain that govern their transport capabilities in one-dimensional conjugated chains so that we can better define the design principles of conjugated molecules for their applications. We show that nitrile ν(C≡N) vibrations respond to the degree of electron localization in nitrile-substituted organic anions by utilizing time-resolved infrared (TRIR) detection combined with pulse radiolysis. Measurements of a series of aryl nitrile anions allow us to construct a semi-empirical calibration curve between the changes in the ν(C≡N) IR shifts and the changes in the electronic charges from the neutral to the anion states in the nitriles; more electron localization in the nitrile anion results in larger IR shifts. Furthermore, the IR linewidth in anions can report a structural change accompanying changes in the electronic density distribution. Probing the shift of the nitrile ν(C≡N) IR vibrational bands enables us to determine how the electron is localized in anions of nitrile-functionalized oligofluorenes, considered as organic mixed-valence compounds. We estimate the diabatic electron transfer distance, electronic coupling strengths, and energy barriers in these organic mixed-valence compounds. The analysis reveals a dynamic picture, showing that the electron is moving back and forth within the oligomers with a small activation energy of ≤ kBT, likely controlled by the movement of dihedral angles between monomer units. Thus, implications for the electron transport

  14. Electron localization following attosecond molecular photoionization.

    PubMed

    Sansone, G; Kelkensberg, F; Pérez-Torres, J F; Morales, F; Kling, M F; Siu, W; Ghafur, O; Johnsson, P; Swoboda, M; Benedetti, E; Ferrari, F; Lépine, F; Sanz-Vicario, J L; Zherebtsov, S; Znakovskaya, I; L'huillier, A; Ivanov, M Yu; Nisoli, M; Martín, F; Vrakking, M J J

    2010-06-10

    For the past several decades, we have been able to directly probe the motion of atoms that is associated with chemical transformations and which occurs on the femtosecond (10(-15)-s) timescale. However, studying the inner workings of atoms and molecules on the electronic timescale has become possible only with the recent development of isolated attosecond (10(-18)-s) laser pulses. Such pulses have been used to investigate atomic photoexcitation and photoionization and electron dynamics in solids, and in molecules could help explore the prompt charge redistribution and localization that accompany photoexcitation processes. In recent work, the dissociative ionization of H(2) and D(2) was monitored on femtosecond timescales and controlled using few-cycle near-infrared laser pulses. Here we report a molecular attosecond pump-probe experiment based on that work: H(2) and D(2) are dissociatively ionized by a sequence comprising an isolated attosecond ultraviolet pulse and an intense few-cycle infrared pulse, and a localization of the electronic charge distribution within the molecule is measured that depends-with attosecond time resolution-on the delay between the pump and probe pulses. The localization occurs by means of two mechanisms, where the infrared laser influences the photoionization or the dissociation of the molecular ion. In the first case, charge localization arises from quantum mechanical interference involving autoionizing states and the laser-altered wavefunction of the departing electron. In the second case, charge localization arises owing to laser-driven population transfer between different electronic states of the molecular ion. These results establish attosecond pump-probe strategies as a powerful tool for investigating the complex molecular dynamics that result from the coupling between electronic and nuclear motions beyond the usual Born-Oppenheimer approximation.

  15. Electronic structure of disordered conjugated polymers: Polythiophenes

    SciTech Connect

    Vukmirovic, Nenad; Wang, Lin-Wang

    2008-11-26

    Electronic structure of disordered semiconducting conjugated polymers was studied. Atomic structure was found from a classical molecular dynamics simulation and the charge patching method was used to calculate the electronic structure with the accuracy similar to the one of density functional theory in local density approximation. The total density of states, the local density of states at different points in the system and the wavefunctions of several states around the gap were calculated in the case of poly(3-hexylthiophene) (P3HT) and polythiophene (PT) systems to gain insight into the origin of disorder in the system, the degree of carrier localization and the role of chain interactions. The results indicated that disorder in the electronic structure of alkyl substituted polythiophenes comes from disorder in the conformation of individualchains, while in the case of polythiophene there is an additional contribution due to disorder in the electronic coupling between the chains. Each of the first several wavefunctions in the conduction and valence band of P3HT is localized over several rings of a single chain. It was shown that the localization can be caused in principle both by ring torsions and chain bending, however the effect of ring torsions is much stronger. PT wavefunctions are more complicated due to larger interchain electronic coupling and are not necessarily localized on a single chain.

  16. Local Electronic and Spin Structure of GdBaCo2O5.5 from X-ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shen, Kyle; Hawthorn, David; Peets, Darren; Elfimov, Ilya; Sawatzky, George; Taskin, Alexey; Ando, Yoichi

    2006-03-01

    The family of RBaCo2O5+δ cobaltates is known to exhibit a rich variety of magnetic behavior as a function of oxygen content and temperature. We present x-ray absorption measurements on detwinned single crystals of GdBaCo2O5.5, where the structure is comprised of alternating rows of CoO6 octahedra and CoO5 pyramids. GdBaCo2O5.5 exhibits successive paramagnetic, ferromagnetic, and antiferromagnetic phases, and also exhibits a ``spin blockade'' effect upon doping. These unusual behaviors are believed to stem from the nearly degenerate spin states of the Co^3+ ions which can potentially vary from low (S=0), intermediate (S=1), to high (S=2) spin states. Our recent x-ray absorption measurements provide the first measurements of the local electronic and spin states. Measurements of the temperature and polarization dependence of the x-ray absorption at the oxygen K edge clearly indicate an abrupt change in the orbital populations at the metal-insulator transition at T ˜ 360 K. We combine our spectroscopic measurements with atomic multiplet and LSDA+U calculations to provide a first insight into the true nature of the spin state transitions which govern the unusually rich magnetic properties of the RBaCo2O5+δ cobaltates.

  17. Anderson Localization and the Electron Glass

    NASA Astrophysics Data System (ADS)

    Pastor, A. A.; Dobrosavljevic, V.

    2000-03-01

    In recent work [1], we have formulated a dynamical mean-field (DMF) approach to the electron glass problem, which is exact in the large coordination limit. However, this theory ignores Anderson localization effects, since it reduces to the CPA formulation in the limit of noninteracting electrons. In the present study, we extend our formulation to incorporate Anderson localization in a fashion similar to the previous DMF approaches to the Mott-Anderson transition [2]. We find that localization strongly enhances the glass phase, and stabilizes the existence of the Coulomb gap in the entire insulating region. Interstingly, our formulation suggests the existence of an intermediate metallic glass phase, which is expected to display non-Fermi liquid features. [1] A. A. Pastor and V. Dobrosavljevic, Phys. Rev. Lett. 83, 4642 (1999). [2] V. Dobrosavljevic and G. Kotliar, Phys. Rev. Lett. 78, 3943 (1997).

  18. Localized structures in convective experiments

    NASA Astrophysics Data System (ADS)

    Burguete, J.; Mancini, H.

    2014-01-01

    In this work we review localized structures appearing in thermo-convective experiments performed in extended (large "aspect ratio") fluid layers. After a brief general review (not exhaustive), we focus on some results obtained in pure fluids in a Bénard-Marangoni system with non-homogeneous heating where some structures of this kind appear. The experimental results are compared in reference to the most classical observed in binary mixtures experiments or simulations. In the Bénard-Marangoni experiment we present the stability diagram where localized structures appear and the typical situations where these local mechanisms have been studied experimentally. Some new experimental results are also included. The authors want to honor Prof. H. Brand in his 60th. birthday and to thank him for helpful discussions.

  19. Theory and the Experimental Confirmation of the Local Electronic Structure of the Multiferroic PbVO3, a New Member of PbTiO3 Family, Studied by X-ray Near Edge Absorption Structure: I

    NASA Astrophysics Data System (ADS)

    Alam, Sher; Ahmad, Javed; Ohya, Yutaka; Dong, Chungli; Hsu, Chih-Chin; Lee, Jyh-Fu; Mutsuhiro, Shima; Miki, Kazuki; Al-Deyab, Salem S.; Guo, Jinghua; Nishimura, Chikashi

    2012-07-01

    Recently, an interesting multiferroic system PbVO3 [A. A. Belik et al.: Chem. Mater. 17 (2005) 269] has been successfully prepared using a high-pressure and high-temperature technique. The crystallographic features of PbVO3 were reported. In this note, we concentrate on the theoretical and the experimental X-ray near edge absorption structure (XANES) spectra by considering the K-edge of Vanadium. The tetragonality (c/a=1.229 at 300 K) of PbVO3 is the largest in the PbTiO3 family of compounds. Thus, one is led naturally to examine the effects of the changes in the tetragonality and axial oxygen position on the electronic structure (i.e., XANES spectrum). We study these effects in two ways. At a given temperature, we vary the tetragonality and the axial oxygen position, and quantify the changes in terms of the XANES difference spectrum. Secondly, we compute the XANES spectra at three different temperatures, namely, 90, 300, and 530 K, and quantify the changes in terms of the difference spectrum. We note that in this compound the tetragonality increases almost monotonically with temperature from 12 to 570 K, without transition to the cubic phase under ambient pressure. A key objective of the current investigation is to gain an understanding of various absorption features in the vicinity of the K-edge of V, in terms of valence, local site symmetry, local coordination geometry, local bond distances, charge transfer, and local projected density of states. We consider both the polarized and unpolarized XANES spectra, theoretically. The experiment was performed on the polycrystalline material after the theoretical investigation. In short, we have performed a local electronic study, theoretical as well as experimental, which complements the crystallographic features reported recently for PbVO3. The local electronic study given here is supplemented and enhanced by the O-K edge results indicated in the accompanying Paper II, which gives both the experimental and theoretical

  20. Electronically controllable spoof localized surface plasmons

    NASA Astrophysics Data System (ADS)

    Zhou, Yong Jin; Zhang, Chao; Yang, Liu; Xun Xiao, Qian

    2017-10-01

    Electronically controllable multipolar spoof localized surface plasmons (LSPs) are experimentally demonstrated in the microwave frequencies. It has been shown that half integer order LSPs modes exist on the corrugated ring loaded with a slit, which actually arise from the Fabry–Perot-like resonances. By mounting active components across the slit in the corrugated rings, electronic switchability and tunability of spoof LSPs modes have been accomplished. Both simulated and measured results demonstrate efficient dynamic control of the spoof LSPs. These elements may form the basis of highly integrated programmable plasmonic circuits in microwave and terahertz regimes.

  1. Dynamical properties and instability of local fluorite BaF(2) structure around doped Mn(2+) ions-EPR and electron spin echo studies.

    PubMed

    Lijewski, S; Hoffmann, S K; Goslar, J; Wencka, M; Ulanov, V A

    2008-09-24

    The electron paramagnetic resonance (EPR) and electron spin echo (ESE) were measured at the X-band for Mn(2+) in a BaF(2) crystal in the temperature range 4.2-300 K. In addition to the cubic symmetry centre, two other lower concentration tetragonal centres were identified. Temperature variations and computer simulation of the EPR spectrum confirm that the cubic symmetry of the MnF(8) centre is deformed to two T(d) tetrahedra of different dimensions at around 45 K. Electron spin relaxation was measured in the temperature range 4.2-35 K, where the ESE signal was detectable. For higher temperature the Mn(2+) dynamics produces homogeneously broadened EPR lines. At the lowest temperatures the spin-lattice relaxation is governed by ordinary phonon processes with 1/T(1)∼T(5). The efficiency of these processes rapidly decreases and at about 11 K a local mode of energy 17 cm(-1) becomes the relaxation mechanism. Phase relaxation observed as ESE signal dephasing indicates that after the local deformation jumps (tunnelling with frequency 4 × 10(8) s(-1)) between the two tetrahedral configurations appear, with the energy barrier being the local mode energy. This motion is directly visible as a resonance-type enhancement of the ESE dephasing rate 1/T(M) around 11 K. Only the cubic centre displays the above dynamics.

  2. Electron localization in rod-shaped triicosahedral gold nanocluster

    DOE PAGES

    Zhou, Meng; Jin, Renxi; Sfeir, Matthew Y.; ...

    2017-05-30

    Atomically precise gold nanocluster based on linear assembly of repeating icosahedrons (clusters of clusters) is a unique type of linear nanostructure, which exhibits strong near-infrared absorption as their free electrons are confined in a one-dimensional quantum box. There is little known about the carrier dynamics in these nanoclusters, which limit their energy-related applications. We reported the observation of exciton localization in triicosahedral Au37 nanoclusters (0.5 nm in diameter and 1.6 nm in length) by measuring femtosecond and nanosecond carrier dynamics. Upon photoexcitation to S1 electronic state, electrons in Au37 undergo ~100-ps localization from the two vertexes of three icosahedrons tomore » one vertex, forming a long-lived S1* state. Such phenomenon is not observed in Au25 (dimer) and Au13 (monomer) consisting of two and one icosahedrons, respectively. We have further observed temperature dependence on the localization process, which proves it is thermally driven. Two excited-state vibration modes with frequencies of 20 and 70 cm-1 observed in the kinetic traces are assigned to the axial and radial breathing modes, respectively. The electron localization is ascribed to the structural distortion of Au37 in the excited state induced by the strong coherent vibrations. The electron localization phenomenon we observed provides unique physical insight into one-dimensional gold nanoclusters and other nanostructures, which will advance their applications in solar-energy storage and conversion.« less

  3. Electronic Structure of Semiconductor Interfaces.

    DTIC Science & Technology

    1984-11-01

    no localized Interface states In the thermal gap If all the SI atoms at the Interface are saturated. In a second paper, 13 we showed how localized...OF INTERFACE STATES Various authors3 8 have called attention to the fact that there is often a sharp peak In the density of Si /Si0 2 interface states ...generating bulk amorphous Si clusters from random hard-sphere configuratlons. 7 , 8 Finally, the local electronic density of states near the interface Is

  4. Electronic structures of geometrically restricted nanocarbons

    NASA Astrophysics Data System (ADS)

    Baskin, Artem; Kral, Petr

    2012-02-01

    We use large scale ab-initio calculations to explore the electronic structures of graphene, graphene nanoribbons, and carbon nanotubes periodically perforated with nanopores. We disclose common features in electronic structures of these porous nanocarbons (PNCs) with nanopores of different size, shapes, and localization. We develop a unified picture that permits to analytically predict and systematically characterize metal-semiconductor transitions in PNCs, allowing mapping of their electronic structures on those in pristine nanocarbons [1]. In contrast to other studies, we show that porous graphene can be metallic for certain arrangements of the pores. When we replace pores by defects (such as SW 55-77), we observe similar features in the electronic structures of the formed nanocarbons. We also study magnetic ordering in these nanocarbons and show that the position of pores/defects can influence the ordering of localized electronic spin states. These periodically modified nanocarbons with highly tunable band structures have great potential applications in electronics and optics. [1] A.I. Baskin and P. Kral, Sci. Rep.1, 36 (2011).

  5. Probing the local electronic structure of the cross-linked (1 × 2) reconstruction of rutile TiO2(110)

    NASA Astrophysics Data System (ADS)

    Yim, Chi Ming; Pang, Chi Lun; Thornton, Geoff

    2016-08-01

    The electronic structure of cross-linked TiO2(110)-(1 × 2) has been investigated using scanning tunneling spectroscopy (STS) and by monitoring changes in ultraviolet photoelectron spectroscopy (UPS) following exposure of the surface to O2. STS reveals two states located in the bandgap, at 0.7 and 1.5 eV below the Fermi level. The population of these two states varies over different parts of the (1 × 2)-reconstructed surface. An additional state at 1.1 eV above the Fermi level is observed at the double link part of the structure. All of the bandgap states are attenuated following exposure to O2, while the workfunction is increased. We attribute this to an electron transfer from the surface to the adsorbed oxygen.

  6. Localized Electron States Near a Metal-SemiconductorNanocontact

    SciTech Connect

    Demchenko, Denis O.; Wang, Lin-Wang

    2007-04-25

    The electronic structure of nanowires in contact withmetallic electrodes of experimentally relevant sizes is calculated byincorporating the electrostatic polarization potential into the atomisticsingle particle Schrodinger equation. We show that the presence of anelectrode produces localized electron/hole states near the electrode, aphenomenon only exhibited in nanostructures and overlooked in the past.This phenomenon will have profound implications on electron transport insuch nanosystems. We calculate several electrode/nanowire geometries,with varying contact depths and nanowire radii. We demonstrate the changein the band gap of up to 0.5 eV in 3 nm diameter CdSe nanowires andcalculate the magnitude of the applied electric field necessary toovercome the localization.

  7. Electronic structures of porous nanocarbons

    PubMed Central

    Baskin, Artem; Král, Petr

    2011-01-01

    We use large scale ab-initio calculations to describe electronic structures of graphene, graphene nanoribbons, and carbon nanotubes periodically perforated with nanopores. We disclose common features of these systems and develop a unified picture that permits us to analytically predict and systematically characterize metal-semiconductor transitions in nanocarbons with superlattices of nanopores of different sizes and types. These novel materials with highly tunable band structures have numerous potential applications in electronics, light detection, and molecular sensing. PMID:22355555

  8. Electronic structures of porous nanocarbons.

    PubMed

    Baskin, Artem; Král, Petr

    2011-01-01

    We use large scale ab-initio calculations to describe electronic structures of graphene, graphene nanoribbons, and carbon nanotubes periodically perforated with nanopores. We disclose common features of these systems and develop a unified picture that permits us to analytically predict and systematically characterize metal-semiconductor transitions in nanocarbons with superlattices of nanopores of different sizes and types. These novel materials with highly tunable band structures have numerous potential applications in electronics, light detection, and molecular sensing.

  9. Electronic structures of porous nanocarbons

    NASA Astrophysics Data System (ADS)

    Baskin, Artem; Král, Petr

    2011-07-01

    We use large scale ab-initio calculations to describe electronic structures of graphene, graphene nanoribbons, and carbon nanotubes periodically perforated with nanopores. We disclose common features of these systems and develop a unified picture that permits us to analytically predict and systematically characterize metal-semiconductor transitions in nanocarbons with superlattices of nanopores of different sizes and types. These novel materials with highly tunable band structures have numerous potential applications in electronics, light detection, and molecular sensing.

  10. Theory of electron localization in disordered systems

    NASA Astrophysics Data System (ADS)

    Arnold, Wolfram Till

    2000-10-01

    The effects of disorder penetrate many areas of physics. A question of fundamental interest is how disorder affects the conductance of a material. In this dissertation, we have studied the quantum mechanical transmittance of disordered samples which dominates the conductance in the low-temperature regime where phase-destroying, inelastic scattering events are infrequent. When the phase is conserved, disorder may eventually lead to a localization of the wave-function, and hence insulating behavior, through destructive interference between different components of the wavefunction. While many phenomena are attributed to an interplay of disorder and carrier interactions, non-interacting models, specifically the Anderson model, display surprising complexity and despite a large body of research, some aspects have remained inconclusive. For the Anderson model, our findings indicate that in one dimension, all states are exponentially localized. In two dimensions, the states are localized with a power law at low disorders, which turns into an exponential law at a disorder strength of about W ≥ 12. A mobility edge between center-of-band states and edge states persists up to the highest studied disorder of W = 30, indicating a qualitative difference in the localization. In three dimensions, the states are delocalized up to a disorder of around W = 8. Beyond that, the system exhibits only power-law localization up the highest disorder considered, W = 24. A sharp mobility edge exists and moves outward with increasing disorder. This supports a qualitative difference between center-of-band states and edge states. In the second part of this dissertation, we address recent experimental findings of an apparent 2D metal-insulator transition in high-mobility Silicon MOS-FETs. Owing to the low carrier density, electron-electron interaction effects are considered to play an important role in this effect. Using a simple interacting model based on the Hubbard Hamiltonian and including

  11. Electronic transport in nanoscale structures

    NASA Astrophysics Data System (ADS)

    Lagerqvist, Johan

    In this dissertation electronic transport in nanoscale structures is discussed. An expression for the shot noise, a fluctuation in current due to the discreteness of charge, is derived directly from the wave functions of a nanoscale system. Investigation of shot noise is of particular interest due to the rich fundamental physics involved. For example, the study of shot noise can provide fundamental insight on the nature of electron transport in a nanoscale junction. We report calculations of the shot noise properties of parallel wires in the regime in which the interwire distance is much smaller than the inelastic mean free path. The validity of quantized transverse momenta in a nanoscale structure and its effect on shot noise is also discussed. We theoretically propose and show the feasibility of a novel protocol for DNA sequencing based on the electronic signature of single-stranded DNA while it translocates through a nanopore. We find that the currents for the bases are sufficiently different to allow for efficient sequencing. Our estimates reveal that sequencing of an entire human genome could be done with very high accuracy in a matter of hours, e.g., orders of magnitude faster than present techniques. We also find that although the overall magnitude of the current may change dramatically with different detection conditions, the intrinsic distinguishability of the bases is not significantly affected by pore size and transverse field strength. Finally, we study the ability of water to screen charges in nanopores by using all-atom molecular dynamics simulations coupled to electrostatic calculations. Due to the short length scales of the nanopore geometry and the large local field gradient of a single ion, the energetics of transporting an ion through the pore is strongly dependent on the microscopic details of the electric field. We show that as long as the pore allows the first hydration shell to stay intact, e.g., ˜6 nearby water molecules, the electric field

  12. Local atomic and electronic structure of LaCoO3 /SrTiO3 thin films by HAADF STEM and EELS

    NASA Astrophysics Data System (ADS)

    Borisevich, Albina; Hyuck Jang, Jae; Kim, Young-Min; Qiao, Liang; Biegalski, Michael

    2013-03-01

    For perovskite films with several competing functionalities, magnetic and electronic properties can be affected both by structural order parameters and chemical factors. For example, in LaCoO3 (LCO) thin films, magnetic and transport properties are strongly dependent on strain state and oxygen content. For this study, LCO thin films were deposited by pulsed laser deposition method with different thicknesses (2, 5, 15 unit cell and 20 nm thickness) on SrTiO3 substrate. X-ray photoelectron spectroscopy studies of the grown films have demonstrated that Co 3p edges shift up to 2 eV for 15 u.c. and 20 nm films, indicating possible presence of 2D electron gas. The structure of the 5 u.c and 15 u.c LCO films was examined. Atomic position mapping from STEM HAADF and BF images can reveal lattice parameter and octahedral tilt behavior with atomic resolution. BF STEM imaging showed that octahedral tilts were active in the 15 u.c. film but not in the 5 u.c. film. A complex pattern of O K fine structure evolution at the interface was observed; results of the deconvolution of different contributions to this behavior using advanced simulations, as well as data on oxygen vacancy mapping, will be presented. Research supported by the US DOE-BES, Materials Sciences and Engineering Division, and through a user project supported by ORNL's ShaRE User Program.

  13. Correlated cryogenic photoactivated localization microscopy and electron cryotomography

    PubMed Central

    Chang, Yi-Wei; Chen, Songye; Tocheva, Elitza I.; Treuner-Lange, Anke; Löbach, Stephanie; Søgaard-Andersen, Lotte; Jensen, Grant J.

    2014-01-01

    Electron cryotomography (ECT) produces three-dimensional images of cells in a near-native state at macromolecular resolution, but identifying structures of interest can be challenging. Here we describe a correlated "cryo-PALM"-ECT method for localizing objects within cryotomograms to beyond the diffraction limit of the light microscope, and use it to identify multiple and new conformations of the dynamic type VI secretion system in the crowded interior of Myxococcus xanthus. PMID:24813625

  14. Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography.

    PubMed

    Chang, Yi-Wei; Chen, Songye; Tocheva, Elitza I; Treuner-Lange, Anke; Löbach, Stephanie; Søgaard-Andersen, Lotte; Jensen, Grant J

    2014-07-01

    Cryo-electron tomography (CET) produces three-dimensional images of cells in a near-native state at macromolecular resolution, but identifying structures of interest can be challenging. Here we describe a correlated cryo-PALM (photoactivated localization microscopy)-CET method for localizing objects within cryo-tomograms to beyond the diffraction limit of the light microscope. Using cryo-PALM-CET, we identified multiple and new conformations of the dynamic type VI secretion system in the crowded interior of Myxococcus xanthus.

  15. Mechanism of the high transition temperature for the 1111-type iron-based superconductors R FeAsO (R =rare earth ): Synergistic effects of local structures and 4 f electrons

    NASA Astrophysics Data System (ADS)

    Zhang, Lifang; Meng, Junling; Liu, Xiaojuan; Yao, Fen; Meng, Jian; Zhang, Hongjie

    2017-07-01

    Among the iron-based superconductors, the 1111-type Fe-As-based superconductors REFeAs O1 -xFx (RE = rare earth) exhibit high transition temperatures (Tc) above 40 K. We perform first-principles calculations based on density functional theory with the consideration of both electronic correlations and spin-orbit couplings on rare earths and Fe ions to study the underlying mechanism as the microscopic structural distortions in REFeAsO tuned by both lanthanide contraction and external strain. The electronic structures evolve similarly in both cases. It is found that there exist an optimal structural regime that will not only initialize but also optimize the orbital fluctuations due to the competing Fe-As and Fe-Fe crystal fields. We also find that the key structural features in REFeAsO, such as As-Fe-As bond angle, intrinsically induce the modification of the Fermi surface and dynamic spin fluctuation. These results suggest that the superconductivity is mediated by antiferromagnetic spin fluctuations. Simultaneously, we show that the rare-earth 4 f electrons play important roles on the high transition temperature whose behavior might be analogous to that of the heavy-fermion superconductors. The superconductivity of these 1111-type iron-based superconductors with high-Tc is considered to originate from the synergistic effects of local structures and 4 f electrons.

  16. Electronic structure of Mn and Fe oxides

    NASA Astrophysics Data System (ADS)

    Harrison, Walter

    2008-03-01

    We present a clear, simple tight-binding representation of the electronic structure and cohesive energy (energy of atomization) of MnO, Mn2O3, and MnO2, in which the formal charge states Mn^2+, Mn^3+, and Mn^4+, respectively, occur. It is based upon localized cluster orbitals for each Mn and its six oxygen neighbors. This approach is fundamentally different from local-density theory (or LDA+U), and perhaps diametrically opposite to Dynamical Mean Field Theory. Electronic states were calculated self-consistently using existing parameters [1], but it is found that the charge density is quite insensitive to charge state, so that the starting parameters are adequate. The cohesive energy per Mn is dominated by the transfer of two s electrons to oxygen p states, the same for all three compounds. The differing transfer of majority d electrons to oxygen p states, and the coupling between them, accounts for the observed variation in cohesion in the series. The same description applies to the perovskites, such as LaxSr1-xMnO3, and can be used for FeO, Fe2O3 (and FeO2), Because the formulation is local, it is equally applicable to impurities, defects and surfaces. [1] Walter A. Harrison, Elementary Electronic Structure, World Scientific (Singapore, 1999), revised edition (2004).

  17. Electronic structure of sulfanilamides

    SciTech Connect

    Grechishkin, V.S.; Grechishkina, R.V.; Starovoitova, O.V.

    1986-05-01

    At present, about 30,000 derivatives of sulfanilamide are known. The establishment of a relationship between the structure of these compounds and their bacteriostatic activity is an urgent problem. In the present work, this problem is solved by means of NQR and NMR spectroscopy. Since the content of the /sup 14/N nuclei in these molecules is not high, to run the NQR, they used the double resonance method. Some samples of the sulfanilamides were studied by direct pulsed NQR method. The high resolution NMR spectra were run in heavy water solution on a RS-60MA spectrometer. All the measurements were carried out at 120/sup 0/K in the solid phase. The results of the calculation of eQq/sub zz/ for the NH/sub 2/ groups in the sulfanilamide residue are listed. To interpret the results by the MO LCAO method in the Hueckel approximation on the EC-1022 computer by a special FORTRAN program, they calculated the charged rho on an atom in the amino group with parameters of hetero atoms and coupling constants.

  18. Local moment formation in Dirac electrons

    NASA Astrophysics Data System (ADS)

    Mashkoori, M.; Mahyaeh, I.; Jafari, S. A.

    2015-04-01

    Elemental bismuth and its compounds host strong spin-orbit interaction which is at the heart of topologically non-trivial alloys based on bismuth. These class of materials are described in terms of 4x4 matrices at each v point where spin and orbital labels of the underlying electrons are mixed. In this work we investigate the single impurity Anderson model (SIAM) within a mean field approximation to address the nature of local magnetic moment formation in a generic Dirac Hamiltonian. Despite the spin-mixing in the Hamiltonian, within the Hartree approximation it turns out that the impuritys Green function is diagonal in spin label. In the three dimensional Dirac materials defined over a bandwidth D and spin-orbit parameter γ, that hybridizes with impurity through V, a natural dimensionless parameter V2D/2πγ3 emerges. So neither the hybridization strength, V, nor the spin-orbit coupling γ, but a combination thereof governs the phase diagram. By tuning chemical potential and the impurity level, we present phase diagram for various values of Hubbard U. Numerical results suggest that strong spin-orbit coupling enhances the local moment formation both in terms of its strength and the area of the local moment region. In the case that we tune the chemical potential in a similar way as normal metal we find that magnetic region is confined to μ ≥ ε0, in sharp contrast to 2D Dirac fermions. If one fixes the chemical potential and tunes the impurity level, phase diagram has two magnetic regions which corresponds to hybridization of impurity level with lower and upper bands.

  19. Solvation effects on the electronic structure of 4-N, N-dimethylaminobenzonitrile: Mixing of the local ππ* and charge-transfer states

    NASA Astrophysics Data System (ADS)

    Shang, Quan-yuan; Bernstein, Elliot R.

    1992-07-01

    The effect of polar solvents acetonitrile and water on the electronic excited states of 4-N, N-dimethylaminobenzonitrile (DMABN) is studied through the optical spectroscopy of small clusters of DMABN/solvent. The clusters are created in a supersonic jet expansion. The results of mass resolved excitation spectroscopy (MRES), fluorescence excitation (FE), dispersed emission (DE), and photodepletion studies demonstrate that the solvent molecule can bind to DMABN at two distinct sites for the one-to-one cluster. Both DMABN (H2O)1 clusters generate small blue shifts for the S1←S0 cluster transition and evidence low-energy vibronic structure nearly identical to that found for the bare molecule. The DMABN (CH3CN)1 clusters behave quite differently. One cluster geometry induces a small blue shift of the S1←S0 electronic transition with little change in its vibronic structure and intensity pattern. We suggest this binding site involves the cyano end of the DMABN molecule. The second cluster geometry induces a large red shift (˜1000 cm-1) and significant broadening (>103 cm-1) of the lowest-energy transition. This red shifted transition is associated with a charge-transfer transition within the DMABN molecule lowered in energy due to the acetonitrile coordination with the DMABN aromatic ring. The lowering of the charge-transfer state in DMABN (CH3CN)n, n=1,...,5 clusters is supported by the following data: long wavelength emission from clusters with broad red shifted absorption; distinct lifetimes for emission at 350 nm (4.6 ns) and 400 nm (6.0 ns); broad red shifted absorption for one geometry of the DMABN (CH3CN)1 cluster. These results support the idea that the charge-transfer transition in DMABN is stabilized by short-range dipole-dipole interactions between DMABN and polar nonhydrogen bonding solvents.

  20. DNA Electronic Fingerprints by Local Spectroscopy on Graphene

    NASA Astrophysics Data System (ADS)

    Balatsky, Alexander

    2013-03-01

    Working and scalable alternatives to the conventional chemical methods of DNA sequencing that are based on electronic/ionic signatures would revolutionize the field of sequencing. The approach of a single molecule imaging and spectroscopy with unprecedented resolution, achieved by Scanning Tunneling Spectroscopy (STS) and nanopore electronics could enable this revolution. We use the data from our group and others in applying this local scanning tunneling microscopy and illustrate possibilities of electronic sequencing of freeze dried deposits on graphene. We will present two types of calculated fingerprints: first in Local Density of States (LDOS) of DNA nucleotide bases (A,C,G,T) deposited on graphene. Significant base-dependent features in the LDOS in an energy range within few eV of the Fermi level were found in our calculations. These features can serve as electronic fingerprints for the identification of individual bases in STS. In the second approach we present calculated base dependent electronic transverse conductance as DNA translocates through the graphene nanopore. Thus we argue that the fingerprints of DNA-graphene hybrid structures may provide an alternative route to DNA sequencing using STS. Work supported by US DOE, NORDITA.

  1. Local electronic properties of organic semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Blumenfeld, Michael L.

    Understanding organic semiconductor interfaces is critical to developing organic photovoltaics (OPV). OPV interfaces are disordered due to weak intermolecular interactions, resulting in diverse charge transfer micro-environments. I present experimental data isolating high-order intermolecular interactions controlling interfacial energy level alignment and describe new instrumental capabilities providing access to the local electronic and kinetic landscape at organic semiconductor interfaces. Interface formation between vanadyl naphthalocyanine (VONc) and highly ordered pyrolytic graphite (HOPG) is investigated. Ultraviolet photoemission spectroscopy (UPS) shows that the VONc binding energy (BE) decouples from the work function, shifting in an opposite direction and contradicting the standard interface dipole model. This effect is quantitatively described using an electrostatic depolarization model and confirmed by simulations which show an inhomogeneous potential at the interface. New data and literature values suggest orthogonality between polarizability and molecular dipole in polar porphyrazines. Their potential for interface engineering is discussed. The electron-rich Au(111)/VONc interface is investigated. The organic layer induces a large interface dipole in Au(111) which can be fit to a depolarization model. Ionization potential and depolarization data suggest that the second VONc layer on Au(111) adopts a tilted geometry. Electrostatic differences between Au(111)/VONc and HOPG/VONc are discussed, demonstrating that interface dipole contributions are not interchangeable. The surface states of the Au(111)/VONc interface are characterized by angle resolved 2-photon photoemission to determine the magnitude of the perturbation. The measured free-electron-like effective mass and BE destabilization of the Shockley state is attributed to step edges caused by lifting the Au(111) (22x 3 ) reconstruction. The Shockley state is accessible primarily through resonance

  2. Theoretical electronic structure of structurally modified graphene

    NASA Astrophysics Data System (ADS)

    Dvorak, Marc David

    Graphene has emerged as a promising replacement for silicon in next-generation electronics and optoelectronic devices. If graphene is to be used in semiconductor devices, however, it must acquire an electronic band gap. Numerous approaches have been proposed to control the band gap of graphene, including the periodic patterning of defects. However, the mechanism for band gap opening and the associated physics in graphene patterned with defects remain unclear. Using both analytic theory and first-principles calculations, we show that periodic patterning of defects on graphene can open a large and tunable band gap, induce strong absorption peaks at optical wavelengths, and host a giant band gap quantum spin Hall phase. First, a geometric rule is analytically derived for the arrangements of defects that open a band gap in graphene, with one ninth of all possible patterns opening a band gap. Next, we perform ab-initio density functional calculations to compare the effects of structural vacancies, hexagonal BN dopants, and passivants on the electronic structure of graphene. Qualitatively, these three types of structural defects behave the same, with only slight differences in their resulting band structures. By adjusting the shape of structural defects, we show how to move the Dirac cones in reciprocal space in accordance with the tight-binding model for the anisotropic honeycomb lattice, while the fundamental mechanism for band gap opening remains the same. To quantitatively predict the band gap and optical properties of these materials, we employ many-body perturbation theory with Green's functions (GW/Bethe-Salpeter equation) to directly include electron-electron and electron-hole interactions. Structurally modified graphene shows a strong renormalization of the fundamental band gap over single particle descriptions, and a strong electron-hole interaction as indicated by strong exciton binding energies (> 0.5 eV). Finally, we show that structurally modified graphene

  3. Spatially resolved imaging of inhomogeneous charge transfer behavior in polymorphous molybdenum oxide. I. Correlation of localized structural, electronic, and chemical properties using conductive probe atomic force microscopy and Raman microprobe spectroscopy.

    PubMed

    McEvoy, Todd M; Stevenson, Keith J

    2005-04-12

    A detailed study of electrochemically deposited molybdenum oxide thin films has been carried out after they were sintered at 250 degrees C. Conductive probe atomic force microscopy (CP-AFM), Raman microscopy, and X-ray photoelectron spectroscopy (XPS) techniques were employed to assess the complex structural, electronic, and compositional properties of these films. Spatially resolved Raman microprobe spectroscopy studies reveal that sintered molybdenum oxide is polymorphous and phase segregated with three types of domains observed comprising orthorhombic alpha-MoO3, monoclinic beta-MoO3, and intermixed alpha-/beta-MoO3. CP-AFM studies conducted in concert with Raman microprobe spectroscopy allowed for correlation between specific compositional regions and localized electronic properties. Single point tunneling spectroscopy studies of chemically distinct regions show semiconducting current-voltage (I-V) behavior with the beta-MoO3 polymorph exhibiting higher electronic conductivity than intermixed alpha-/beta-MoO3 or microcrystalline alpha-MoO3 domains. XPS valence level spectra of beta-MoO3 films display a small structured band near the Fermi level, indicative of an increased concentration of oxygen vacancies. This accounts for the greatly enhanced electronic conductivity of beta-MoO3 as these positively charged cationic defects (anion vacancies) act to trap excess electrons. Connections between structural features, electronic properties, and chemical composition are established and discussed. Importantly, this work highlights the value of using spatially resolved techniques for correlating structural and compositional features with electrochemical behaviors of disordered, mixed-phase lithium insertion oxides.

  4. Dynamic local field factor of an uniform electron liquid

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, G.

    1988-08-01

    We present an expression for the dynamic local field factor of a uniform interacting electron liquid, as G(q, ω) = G1(q) + G2(q, ω), where G1 is the static local field factor of the STLS-theory, and G2 has a structure similar to that obtainable from the mode-coupling theory of the Memory-function approach. The q → 0 limit of the imaginary part of G, which is of interest in the time-dependent Local-density-functional theory, has the correct ω-3/2 dependence, and yields the long-wavelength plasmon damping coefficient in good agreement with diagramatic calculations as well as the mode-coupling approach; detailed numerical results are also presented.

  5. The Local Electronic Library: Science Fiction or the Real Future?

    ERIC Educational Resources Information Center

    Cuadra, Carlos A.

    1983-01-01

    Addresses the question of whether interest in downloading into local electronic libraries is a reflection of user needs or is being generated by those who have something to sell. Growth of online services, growth of local computer capacity, purposes of a local electronic library, and sources of data are highlighted. (EJS)

  6. The Local Electronic Library: Science Fiction or the Real Future?

    ERIC Educational Resources Information Center

    Cuadra, Carlos A.

    1983-01-01

    Addresses the question of whether interest in downloading into local electronic libraries is a reflection of user needs or is being generated by those who have something to sell. Growth of online services, growth of local computer capacity, purposes of a local electronic library, and sources of data are highlighted. (EJS)

  7. Electronic structure of wet DNA.

    PubMed

    Gervasio, Francesco Luigi; Carloni, Paolo; Parrinello, Michele

    2002-09-02

    The electronic properties of a Z-DNA crystal synthesized in the laboratory are investigated by means of density-functional theory Car-Parrinello calculations. The electronic structure has a gap of only 1.28 eV. This separates a manifold of 12 occupied states which came from the pi guanine orbitals from the lowest empty states in which the electron is transferred to the Na+ from PO-4 groups and water molecules. We have evaluated the anisotropic optical conductivity. At low frequency the conductivity is dominated by the pi-->Na+ transitions. Our calculation demonstrates that the cost of introducing electron holes in wet DNA strands could be lower than previously anticipated.

  8. Electron Scattering and Nuclear Structure

    ERIC Educational Resources Information Center

    Trower, W. P.; Ficenec, J. R.

    1971-01-01

    Presents information about the nucleus gained by studies of electron scattering. Discusses what can be implied about the shape of the charge distribution, the nucleus positions, the vibrational modes of the nucleus, the momentum of the nucleus, and the granularity and core structures of the nucleus. (DS)

  9. Electronic Structure Principles and Aromaticity

    ERIC Educational Resources Information Center

    Chattaraj, P. K.; Sarkar, U.; Roy, D. R.

    2007-01-01

    The relationship between aromaticity and stability in molecules on the basis of quantities such as hardness and electrophilicity is explored. The findings reveal that aromatic molecules are less energetic, harder, less polarizable, and less electrophilic as compared to antiaromatic molecules, as expected from the electronic structure principles.

  10. Electronic Structure Principles and Aromaticity

    ERIC Educational Resources Information Center

    Chattaraj, P. K.; Sarkar, U.; Roy, D. R.

    2007-01-01

    The relationship between aromaticity and stability in molecules on the basis of quantities such as hardness and electrophilicity is explored. The findings reveal that aromatic molecules are less energetic, harder, less polarizable, and less electrophilic as compared to antiaromatic molecules, as expected from the electronic structure principles.

  11. Electron Scattering and Nuclear Structure

    ERIC Educational Resources Information Center

    Trower, W. P.; Ficenec, J. R.

    1971-01-01

    Presents information about the nucleus gained by studies of electron scattering. Discusses what can be implied about the shape of the charge distribution, the nucleus positions, the vibrational modes of the nucleus, the momentum of the nucleus, and the granularity and core structures of the nucleus. (DS)

  12. An optimized locally adaptive non-local means denoising filter for cryo-electron microscopy data.

    PubMed

    Wei, Dai-Yu; Yin, Chang-Cheng

    2010-12-01

    Cryo-electron microscopy (cryo-EM) now plays an important role in structural analysis of macromolecular complexes, organelles and cells. However, the cryo-EM images obtained close to focus and under low dose conditions have a very high level of noise and a very low contrast, which hinders high-resolution structural analysis. Here, an optimized locally adaptive non-local (LANL) means filter, which can preserve signal details and simultaneously significantly suppress noise for cryo-EM data, is presented. This filter takes advantage of a wide range of pixels to estimate the denoised pixel values instead of the traditional filter that only uses pixels in the local neighborhood. The filter performed well on simulated data and showed promising results on raw cryo-EM images and tomograms. The predominant advantage of this optimized LANL-means filter is the structural signal and the background are clearly distinguishable. This locally adaptive non-local means filter may become a useful tool in the analysis of cryo-EM data, such as automatic particle picking, extracting structural features and segmentation of tomograms.

  13. Structural and electronic properties for atomic clusters

    NASA Astrophysics Data System (ADS)

    Sun, Yan

    We have studied the structural and electronic properties for different groups of atomic clusters by doing a global search on the potential energy surface using the Taboo Search in Descriptors Space (TSDS) method and calculating the energies with Kohn-Sham Density Functional Theory (KS-DFT). Our goal was to find the structural and electronic principles for predicting the structure and stability of clusters. For Ben (n = 3--20), we have found that the evolution of geometric and electronic properties with size reflects a change in the nature of the bonding from van der Waals to metallic and then bulk-like. The cluster sizes with extra stability agree well with the predictions of the jellium model. In the 4d series of transition metal (TM) clusters, as the d-type bonding becomes more important, the preferred geometric structure changes from icosahedral (Y, Zr), to distorted compact structures (Nb, Mo), and FCC or simple cubic crystal fragments (Tc, Ru, Rh) due to the localized nature of the d-type orbital. Analysis of relative isomer energies and their electronic density of states suggest that these clusters tend to follow a maximum hardness principle (MHP). For A4B12 clusters (A is divalent, B is monovalent), we found unusually large (on average 1.95 eV) HOMO-LUMO gap values. This shows the extra stability at an electronic closed shell (20 electrons) predicted by the jellium model. The importance of symmetry, closed electronic and ionic shells in stability is shown by the relative stability of homotops of Mg4Ag12 which also provides support for the hypothesis that clusters that satisfy more than one stability criterion ("double magic") should be particularly stable.

  14. Nano-fEM: protein localization using photo-activated localization microscopy and electron microscopy.

    PubMed

    Watanabe, Shigeki; Richards, Jackson; Hollopeter, Gunther; Hobson, Robert J; Davis, Wayne M; Jorgensen, Erik M

    2012-12-03

    Mapping the distribution of proteins is essential for understanding the function of proteins in a cell. Fluorescence microscopy is extensively used for protein localization, but subcellular context is often absent in fluorescence images. Immuno-electron microscopy, on the other hand, can localize proteins, but the technique is limited by a lack of compatible antibodies, poor preservation of morphology and because most antigens are not exposed to the specimen surface. Correlative approaches can acquire the fluorescence image from a whole cell first, either from immuno-fluorescence or genetically tagged proteins. The sample is then fixed and embedded for electron microscopy, and the images are correlated (1-3). However, the low-resolution fluorescence image and the lack of fiducial markers preclude the precise localization of proteins. Alternatively, fluorescence imaging can be done after preserving the specimen in plastic. In this approach, the block is sectioned, and fluorescence images and electron micrographs of the same section are correlated (4-7). However, the diffraction limit of light in the correlated image obscures the locations of individual molecules, and the fluorescence often extends beyond the boundary of the cell. Nano-resolution fluorescence electron microscopy (nano-fEM) is designed to localize proteins at nano-scale by imaging the same sections using photo-activated localization microscopy (PALM) and electron microscopy. PALM overcomes the diffraction limit by imaging individual fluorescent proteins and subsequently mapping the centroid of each fluorescent spot (8-10). We outline the nano-fEM technique in five steps. First, the sample is fixed and embedded using conditions that preserve the fluorescence of tagged proteins. Second, the resin blocks are sectioned into ultrathin segments (70-80 nm) that are mounted on a cover glass. Third, fluorescence is imaged in these sections using the Zeiss PALM microscope. Fourth, electron dense structures are

  15. Localized structure of Euglena bioconvection

    NASA Astrophysics Data System (ADS)

    Iima, Makoto; Shoji, Erika; Awazu, Akinori; Nishimori, Hiraku; Izumi, Shunsuke; Hiroshima University Collaboration

    2013-11-01

    Bioconvection of a suspension of Euglena gracilis, a photosensitive flagellate whose body length is approximately 50 micrometers, was experimentally studied. Under strong light intensity, Euglena has a negative phototaxis; they tend to go away from the light source. When the bright illumination is given from the bottom, a large scale spatio-temporal pattern is generated as a result of interaction between Euglena and surrounding flow. Recently, localized convection pattern had been reported, however, the generation process and interaction of the localized convection cells has not been analyzed. We performed experimental study to understand the localization mechanism, in particular, the onset of bioconvection and lateral localization behavior due to phototaxis. Experiments started from different initial condition suggests a bistability near the onset of the convection as binary fluid convection that also shows localized convection cells. Dynamics of localized convections cells, which is similar to the binary fluid convection case although the basic equations are not the same, is also reported.

  16. Electronic structure of tin monosulfide

    NASA Astrophysics Data System (ADS)

    Bletskan, D. I.; Bletskan, M. M.; Glukhov, K. E.

    2017-01-01

    The band structure of three-dimensional and two-dimensional tin monosulfide was calculated by the density functional method in LDA and LDA+U approximations. Group-theoretical analysis of the electronic band structure of SnS crystallized in the orthorhombic structure with space group D2h16- Pcmn is carried out, the symmetry of wave functions of the valence band and the bottom of the conduction band is found. The selection rules for direct and indirect optical transitions at different incident light polarization are determined. The group-theoretical analysis of energy states of the three-dimensional and two-dimensional SnS structures explains the formation of the band structure including the Davydov splitting. The calculated total density of states is compared with the known experimental XPS and UPS spectra, providing the assignment of their main features.

  17. Electron-electron interaction, weak localization and spin valve effect in vertical-transport graphene devices

    SciTech Connect

    Long, Mingsheng; Gong, Youpin; Wei, Xiangfei; Zhu, Chao; Xu, Jianbao; Liu, Ping; Guo, Yufen; Li, Weiwei; Liu, Liwei; Liu, Guangtong

    2014-04-14

    We fabricated a vertical structure device, in which graphene is sandwiched between two asymmetric ferromagnetic electrodes. The measurements of electron and spin transport were performed across the combined channels containing the vertical and horizontal components. The presence of electron-electron interaction (EEI) was found not only at low temperatures but also at moderate temperatures up to ∼120 K, and EEI dominates over weak localization (WL) with and without applying magnetic fields perpendicular to the sample plane. Moreover, spin valve effect was observed when magnetic filed is swept at the direction parallel to the sample surface. We attribute the EEI and WL surviving at a relatively high temperature to the effective suppress of phonon scattering in the vertical device structure. The findings open a way for studying quantum correlation at relatively high temperature.

  18. Electronic structure of lithium tetraborate

    NASA Astrophysics Data System (ADS)

    Wooten, David J.

    Due to many of its attributes, Li2B4O7 provides a possible material for incorporation as either a primary or companion material in future solid state neutron detectors. There is however a lack of fundamental characterization information regarding this useful material, particularly its electronic configuration. To address this, an investigation of Li2B4O7(110) and Li2B 4O7(100) was undertaken, utilizing photoemission and inverse photoemission spectroscopic techniques. The measured band gap depended on crystallographic direction with the band gaps ranging from 8.9+/-0.5 eV to 10.1+/-0.5 eV. The measurement yielded a density of states that qualitatively agreed with the theoretical results from model bulk band structure calculations for Li2B4O7; albeit with a larger band gap than predicted, but consistent with the known deficiencies of Local Density Approximation and Density Functional Theory calculations. The occupied states of both surfaces were extremely flat; to the degree that resolving periodic dispersion of the occupied states was inconclusive, within the resolution of the system. However, both surfaces demonstrated clear periodic dispersion within the empty states very close to theoretical Brillouin zone values. These attributes also translated to a lighter charge carrier effective mass in the unoccupied states. Of the two surfaces, Li2B4O 7(110) yielded the more consistent values in orthogonal directions for energy states. The presence of a bulk band gap surface state and image potential state in Li2B4O7(110) was indicative of a defect-free surface. The absence of both in the more polar, more dielectric Li2B4O7(100) was attributed to the presence of defects determined to be O vacancies. The results from Li2B 4O7(110) were indicative of a more stable surface than Li 2B4O7(100). In addition, Li 1s bulk and surface core level components were determined at the binding energies of -56.5+0.4 and -53.7+0.5 eV. Resonance features were observed along the [001

  19. Site Sensitivity and local electronic symmetries in carboranes

    NASA Astrophysics Data System (ADS)

    Fister, T. T.; Seidler, G. T.; Vila, F. D.; Cross, J. O.; Linehan, J. C.

    2007-03-01

    Icosohedral carboranes containing ten boron and two carbon atoms are seeing renewed interest because of their potential use in new cancer and AIDS therapies. These molecules have flexible geometries which allow bonding to three types of carbon sites (e.g. ortho-, para-, and meta- configurations). Using a new multielement spectrometer, we present the first x-ray Raman scattering (XRS) study on each isomer with excited state spectra taken from the both the carbon and boron 1s states. The change in the electronic structure between the isomers is most pronounced in the carbon spectrum, where the position in the edge confirms prior density functional theory calculations. With the boron spectra, we used the unique momentum transfer dependence of XRS to extract the symmetry components of the density of unoccupied states, i.e. the l-DOS. These results give an improved picture of the local electronic properties of the carboranes.

  20. Geometrical optimization for strictly localized structures

    NASA Astrophysics Data System (ADS)

    Mo, Yirong

    2003-07-01

    Recently we proposed the block localized wavefunction (BLW) approach which takes the advantages of valence bond theory and molecular orbital theory and defines the wavefunctions for resonance structures based on the assumption that all electrons and orbitals are partitioned into a few subgroups. In this work, we implement the geometrical optimization of the BLW method based on the algorithm proposed by Gianinetti and coworkers. Thus, we can study the conjugation effect on not only the molecular stability, but also the molecular geometry. With this capability, the π conjugation effect in trans-polyenes C2nH2n+2 (n=2-5) as well as in formamide and its analogs are studied by optimizing their delocalized and strictly localized forms with the 6-31G(d) and 6-311+G(d,p) basis sets. Although it has been well presumed that the π resonance shortens the single bonds and lengthens the double bonds with the delocalization of π electrons across the whole line in polyenes, our optimization of the strictly localized structures quantitatively shows that when the conjugation effect is "turned off," the double bond lengths will be identical to the CC bond length in ethylene and the single Csp2-Csp2 bond length will be about 1.513-1.517 Å. In agreement with the classical Hückel theory, the resonance energies in polyenes are approximately in proportion to the number of double bonds. Similarly, resonance is responsible not only for the planarity of formamide, thioformamide, and selenoformamide, but also for the lengthening of the CX (X=O,S,Se) double bond and the shortening of the CN bonds. Although it is assumed that the CX bond polarization decreases in the order of O>S>Se, the π electronic delocalization increases in the opposite order, i.e., formamide

  1. On the local electronic and atomic structure of Ce1-xPrxO2-δ epitaxial films on Si

    SciTech Connect

    Niu, Gang Schubert, Markus Andreas; Zoellner, Marvin Hartwig; D'Acapito, Francesco; Boscherini, Federico

    2014-09-28

    The local electronic and atomic structure of (111)-oriented, single crystalline mixed Ce1-xPrxO2-δ (x = 0, 0.1 and 0.6) epitaxial thin films on silicon substrates have been investigated in view of engineering redox properties of complex oxide films. Non-destructive X-ray absorption near edge structure reveals that Pr shows only +3 valence and Ce shows only nominal +4 valence in mixed oxides. Extended x-ray absorption fine structure (EXAFS) studies were performed at K edges of Ce and Pr using a specially designed monochromator system for high energy measurements. They demonstrate that the fluorite lattice of ceria (CeO₂) is almost not perturbed for x = 0.1 sample, while higher Pr concentration (x = 0.6) not only generates a higher disorder level (thus more disordered oxygen) but also causes a significant reduction of Ce–O interatomic distances. The valence states of the cations were also examined by techniques operating in highly reducing environments: scanning transmission electron microscopy-electron energy loss spectroscopy and X-ray photoemission spectroscopy; in these reducing environments, evidence for the presence of Ce³⁺ was clearly found for the higher Pr concentration. Thus, the introduction of Pr³⁺ into CeO₂ strongly enhances the oxygen exchange properties of CeO₂. This improved oxygen mobility properties of CeO₂ are attributed to the lattice disorder induced by Pr mixing in the CeO₂ fluorite lattice, as demonstrated by EXAFS measurements. Thus, a comprehensive picture of the modifications of the atomic and electronic structure of Ce1-xPrxO2-δ epitaxial films and their relation is obtained.

  2. Structural Dynamics of Electronic Systems

    NASA Astrophysics Data System (ADS)

    Suhir, E.

    2013-03-01

    The published work on analytical ("mathematical") and computer-aided, primarily finite-element-analysis (FEA) based, predictive modeling of the dynamic response of electronic systems to shocks and vibrations is reviewed. While understanding the physics of and the ability to predict the response of an electronic structure to dynamic loading has been always of significant importance in military, avionic, aeronautic, automotive and maritime electronics, during the last decade this problem has become especially important also in commercial, and, particularly, in portable electronics in connection with accelerated testing of various surface mount technology (SMT) systems on the board level. The emphasis of the review is on the nonlinear shock-excited vibrations of flexible printed circuit boards (PCBs) experiencing shock loading applied to their support contours during drop tests. At the end of the review we provide, as a suitable and useful illustration, the exact solution to a highly nonlinear problem of the dynamic response of a "flexible-and-heavy" PCB to an impact load applied to its support contour during drop testing.

  3. Electronic structure investigations of quasicrystals

    NASA Astrophysics Data System (ADS)

    Rotenberg, E.; Theis, W.; Horn, K.

    2004-08-01

    We present a review of the determination of density of states (DOS) of quasicrystals using valence band photoemission spectroscopy. The absence of fine or spiky structure in the angle-integrated DOS of quasicrystals suggests the possibility of delocalized electronic states. These were confirmed with angle-resolved photoemission studies, which clearly establish the presence of dispersing features attributed to momentum-dependent bandstructure. Such dispersing states are observed not only for deeper-lying sp states, but also for d-derived bands near the Fermi level. Data from three different high symmetry surfaces of decagonal Al-Ni-Co, an ideal model system, are presented. We find that only a few dominant reciprocal lattice vectors are sufficient to describe the quasiperiodic potential, and the implications for electronic properties are discussed.

  4. Imaging Local Electronic Corrugations and Doped Regions in Graphene

    SciTech Connect

    B Schultz; C Patridge; V Lee; C Jaye; P Lysaght; C Smith; J Barnett; D Fischer; D Prendergast; S Banerjee

    2011-12-31

    Electronic structure heterogeneities are ubiquitous in two-dimensional graphene and profoundly impact the transport properties of this material. Here we show the mapping of discrete electronic domains within a single graphene sheet using scanning transmission X-ray microscopy in conjunction with ab initio density functional theory calculations. Scanning transmission X-ray microscopy imaging provides a wealth of detail regarding the extent to which the unoccupied levels of graphene are modified by corrugation, doping and adventitious impurities, as a result of synthesis and processing. Local electronic corrugations, visualized as distortions of the {pi}*cloud, have been imaged alongside inhomogeneously doped regions characterized by distinctive spectral signatures of altered unoccupied density of states. The combination of density functional theory calculations, scanning transmission X-ray microscopy imaging, and in situ near-edge X-ray absorption fine structure spectroscopy experiments also provide resolution of a longstanding debate in the literature regarding the spectral assignments of pre-edge and interlayer states.

  5. Electronic instrumentation for smart structures

    NASA Astrophysics Data System (ADS)

    Blanar, George J.

    1995-04-01

    The requirements of electronic instrumentation for smart structures are similar to those of data acquisition systems at our national particle physics laboratories. Modern high energy and heavy ion physics experiments may have tens of thousands of channels of data sources producing data that must be converted to digital form, compacted, stored and interpreted. In parallel, multiple sensors distributed in and around smart structures generate either binary or analog signals that are voltage, charge, or time like in their information content. In all cases, they must be transmitted, converted and preserved into a unified digital format for real-time processing. This paper will review the current status of practical large scale electronic measurement systems with special attention to architectures and physical organization. Brief surveys of the current state of the art will include preamplifiers and amplifiers, comparators and discriminators, voltage or charge analog-to-digital converters, time internal meters or time-to-digital converters, and finally, counting or scalar systems. The paper will conclude by integrating all of these ideas in a concept for an all-digital readout of a smart structure using the latest techniques used in physics research today.

  6. Identifying local structural states in atomic imaging by computer vision

    DOE PAGES

    Laanait, Nouamane; Ziatdinov, Maxim; He, Qian; ...

    2016-11-02

    The availability of atomically resolved imaging modalities enables an unprecedented view into the local structural states of materials, which manifest themselves by deviations from the fundamental assumptions of periodicity and symmetry. Consequently, approaches that aim to extract these local structural states from atomic imaging data with minimal assumptions regarding the average crystallographic configuration of a material are indispensable to advances in structural and chemical investigations of materials. Here, we present an approach to identify and classify local structural states that is rooted in computer vision. This approach introduces a definition of a structural state that is composed of both localmore » and non-local information extracted from atomically resolved images, and is wholly untethered from the familiar concepts of symmetry and periodicity. Instead, this approach relies on computer vision techniques such as feature detection, and concepts such as scale-invariance. We present the fundamental aspects of local structural state extraction and classification by application to simulated scanning transmission electron microscopy images, and analyze the robustness of this approach in the presence of common instrumental factors such as noise, limited spatial resolution, and weak contrast. Finally, we apply this computer vision-based approach for the unsupervised detection and classification of local structural states in an experimental electron micrograph of a complex oxides interface, and a scanning tunneling micrograph of a defect engineered multilayer graphene surface.« less

  7. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals.

    PubMed

    Pinski, Peter; Riplinger, Christoph; Valeev, Edward F; Neese, Frank

    2015-07-21

    In this work, a systematic infrastructure is described that formalizes concepts implicit in previous work and greatly simplifies computer implementation of reduced-scaling electronic structure methods. The key concept is sparse representation of tensors using chains of sparse maps between two index sets. Sparse map representation can be viewed as a generalization of compressed sparse row, a common representation of a sparse matrix, to tensor data. By combining few elementary operations on sparse maps (inversion, chaining, intersection, etc.), complex algorithms can be developed, illustrated here by a linear-scaling transformation of three-center Coulomb integrals based on our compact code library that implements sparse maps and operations on them. The sparsity of the three-center integrals arises from spatial locality of the basis functions and domain density fitting approximation. A novel feature of our approach is the use of differential overlap integrals computed in linear-scaling fashion for screening products of basis functions. Finally, a robust linear scaling domain based local pair natural orbital second-order Möller-Plesset (DLPNO-MP2) method is described based on the sparse map infrastructure that only depends on a minimal number of cutoff parameters that can be systematically tightened to approach 100% of the canonical MP2 correlation energy. With default truncation thresholds, DLPNO-MP2 recovers more than 99.9% of the canonical resolution of the identity MP2 (RI-MP2) energy while still showing a very early crossover with respect to the computational effort. Based on extensive benchmark calculations, relative energies are reproduced with an error of typically <0.2 kcal/mol. The efficiency of the local MP2 (LMP2) method can be drastically improved by carrying out the LMP2 iterations in a basis of pair natural orbitals. While the present work focuses on local electron correlation, it is of much broader applicability to computation with sparse tensors in

  8. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals

    NASA Astrophysics Data System (ADS)

    Pinski, Peter; Riplinger, Christoph; Valeev, Edward F.; Neese, Frank

    2015-07-01

    In this work, a systematic infrastructure is described that formalizes concepts implicit in previous work and greatly simplifies computer implementation of reduced-scaling electronic structure methods. The key concept is sparse representation of tensors using chains of sparse maps between two index sets. Sparse map representation can be viewed as a generalization of compressed sparse row, a common representation of a sparse matrix, to tensor data. By combining few elementary operations on sparse maps (inversion, chaining, intersection, etc.), complex algorithms can be developed, illustrated here by a linear-scaling transformation of three-center Coulomb integrals based on our compact code library that implements sparse maps and operations on them. The sparsity of the three-center integrals arises from spatial locality of the basis functions and domain density fitting approximation. A novel feature of our approach is the use of differential overlap integrals computed in linear-scaling fashion for screening products of basis functions. Finally, a robust linear scaling domain based local pair natural orbital second-order Möller-Plesset (DLPNO-MP2) method is described based on the sparse map infrastructure that only depends on a minimal number of cutoff parameters that can be systematically tightened to approach 100% of the canonical MP2 correlation energy. With default truncation thresholds, DLPNO-MP2 recovers more than 99.9% of the canonical resolution of the identity MP2 (RI-MP2) energy while still showing a very early crossover with respect to the computational effort. Based on extensive benchmark calculations, relative energies are reproduced with an error of typically <0.2 kcal/mol. The efficiency of the local MP2 (LMP2) method can be drastically improved by carrying out the LMP2 iterations in a basis of pair natural orbitals. While the present work focuses on local electron correlation, it is of much broader applicability to computation with sparse tensors in

  9. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals

    SciTech Connect

    Pinski, Peter; Riplinger, Christoph; Neese, Frank E-mail: frank.neese@cec.mpg.de; Valeev, Edward F. E-mail: frank.neese@cec.mpg.de

    2015-07-21

    In this work, a systematic infrastructure is described that formalizes concepts implicit in previous work and greatly simplifies computer implementation of reduced-scaling electronic structure methods. The key concept is sparse representation of tensors using chains of sparse maps between two index sets. Sparse map representation can be viewed as a generalization of compressed sparse row, a common representation of a sparse matrix, to tensor data. By combining few elementary operations on sparse maps (inversion, chaining, intersection, etc.), complex algorithms can be developed, illustrated here by a linear-scaling transformation of three-center Coulomb integrals based on our compact code library that implements sparse maps and operations on them. The sparsity of the three-center integrals arises from spatial locality of the basis functions and domain density fitting approximation. A novel feature of our approach is the use of differential overlap integrals computed in linear-scaling fashion for screening products of basis functions. Finally, a robust linear scaling domain based local pair natural orbital second-order Möller-Plesset (DLPNO-MP2) method is described based on the sparse map infrastructure that only depends on a minimal number of cutoff parameters that can be systematically tightened to approach 100% of the canonical MP2 correlation energy. With default truncation thresholds, DLPNO-MP2 recovers more than 99.9% of the canonical resolution of the identity MP2 (RI-MP2) energy while still showing a very early crossover with respect to the computational effort. Based on extensive benchmark calculations, relative energies are reproduced with an error of typically <0.2 kcal/mol. The efficiency of the local MP2 (LMP2) method can be drastically improved by carrying out the LMP2 iterations in a basis of pair natural orbitals. While the present work focuses on local electron correlation, it is of much broader applicability to computation with sparse tensors in

  10. An improved and broadly accurate local approximation to the exchange-correlation density functional: the MN12-L functional for electronic structure calculations in chemistry and physics.

    PubMed

    Peverati, Roberto; Truhlar, Donald G

    2012-10-14

    We report a new local exchange-correlation energy functional that has significantly improved across-the-board performance, including main-group and transition metal chemistry and solid-state physics, especially atomization energies, ionization potentials, barrier heights, noncovalent interactions, isomerization energies of large moleucles, and solid-state lattice constants and cohesive energies.

  11. Densest Local Structures of Uniaxial Ellipsoids

    NASA Astrophysics Data System (ADS)

    Schaller, Fabian M.; Weigel, Robert F. B.; Kapfer, Sebastian C.

    2016-10-01

    Connecting the collective behavior of disordered systems with local structure on the particle scale is an important challenge, for example, in granular and glassy systems. Compounding complexity, in many scientific and industrial applications, particles are polydisperse, aspherical, or even of varying shape. Here, we investigate a generalization of the classical kissing problem in order to understand the local building blocks of packings of aspherical grains. We numerically determine the densest local structures of uniaxial ellipsoids by minimizing the Set Voronoi cell volume around a given particle. Depending on the particle aspect ratio, different local structures are observed and classified by symmetry and Voronoi coordination number. In extended disordered packings of frictionless particles, knowledge of the densest structures allows us to rescale the Voronoi volume distributions onto the single-parameter family of k -Gamma distributions. Moreover, we find that approximate icosahedral clusters are found in random packings, while the optimal local structures for more aspherical particles are not formed.

  12. Electronic and local atomistic structure of MgSiO3 glass under pressure: a study of X-ray Raman scattering at the silicon and magnesium L-edges

    NASA Astrophysics Data System (ADS)

    Fukui, Hiroshi; Hiraoka, Nozomu

    2017-06-01

    We applied X-ray Raman scattering technique to MgSiO3 glass, a precursor to magnesium silicate melts, with respect to magnesium and silicon under high-pressure conditions as well as some polycrystalline phases of MgSiO3 at ambient conditions. We also performed ab initio calculations to interpret the X-ray Raman spectra. Experimentally obtained silicon L-edge spectra indicate that the local environment around silicon started changing at pressure above 10 GPa, where the electronic structure of oxygen is known to change. In contrast, the shape of the magnesium L-edge spectrum changed below 10 GPa. This indicates that the magnesium sites in MgSiO3 glass first distort and that the local structure around magnesium shows a wide variation under pressure. The framework structure consisting of silicon and oxygen changed above 10 GPa, where the coordination number of silicon was more than four. Our results imply that 6-oxygen-coordinated silicon was formed above 20 GPa.

  13. Local Electronic And Dielectric Properties at Nanosized Interfaces

    SciTech Connect

    Bonnell, Dawn A.

    2015-02-23

    Final Report to the Department of Energy for period 6/1/2000 to 11/30/2014 for Grant # DE-FG02-00ER45813-A000 to the University of Pennsylvania Local Electronic And Dielectric Properties at Nanosized Interfaces PI: Dawn Bonnell The behavior of grain boundaries and interfaces has been a focus of fundamental research for decades because variations of structure and composition at interfaces dictate mechanical, electrical, optical and dielectric properties in solids. Similarly, the consequence of atomic and electronic structures of surfaces to chemical and physical interactions are critical due to their implications to catalysis and device fabrication. Increasing fundamental understanding of surfaces and interfaces has materially advanced technologies that directly bear on energy considerations. Currently, exciting developments in materials processing are enabling creative new electrical, optical and chemical device configurations. Controlled synthesis of nanoparticles, semiconducting nanowires and nanorods, optical quantum dots, etc. along with a range of strategies for assembling and patterning nanostructures portend the viability of new devices that have the potential to significantly impact the energy landscape. As devices become smaller the impact of interfaces and surfaces grows geometrically. As with other nanoscale phenomena, small interfaces do not exhibit the same properties as do large interfaces. The size dependence of interface properties had not been explored and understanding at the most fundamental level is necessary to the advancement of nanostructured devices. An equally important factor in the behavior of interfaces in devices is the ability to examine the interfaces under realistic conditions. For example, interfaces and boundaries dictate the behavior of oxide fuel cells which operate at extremely high temperatures in dynamic high pressure chemical environments. These conditions preclude the characterization of local properties during fuel cell

  14. Local atomic and electronic structure of oxide/GaAs and SiO2/Si interfaces using high-resolution XPS

    NASA Technical Reports Server (NTRS)

    Grunthaner, F. J.; Grunthaner, P. J.; Vasquez, R. P.; Lewis, B. F.; Maserjian, J.; Madhukar, A.

    1979-01-01

    The chemical structures of thin SiO2 films, thin native oxides of GaAs (20-30 A), and the respective oxide-semiconductor interfaces, have been investigated using high-resolution X-ray photoelectron spectroscopy. Depth profiles of these structures have been obtained using argon ion bombardment and wet chemical etching techniques. The chemical destruction induced by the ion profiling method is shown by direct comparison of these methods for identical samples. Fourier transform data-reduction methods based on linear prediction with maximum entropy constraints are used to analyze the discrete structure in oxides and substrates. This discrete structure is interpreted by means of a structure-induced charge-transfer model.

  15. Combinatorics of locally optimal RNA secondary structures.

    PubMed

    Fusy, Eric; Clote, Peter

    2014-01-01

    It is a classical result of Stein and Waterman that the asymptotic number of RNA secondary structures is 1.104366∙n-3/2∙2.618034n. Motivated by the kinetics of RNA secondary structure formation, we are interested in determining the asymptotic number of secondary structures that are locally optimal, with respect to a particular energy model. In the Nussinov energy model, where each base pair contributes -1 towards the energy of the structure, locally optimal structures are exactly the saturated structures, for which we have previously shown that asymptotically, there are 1.07427∙n-3/2∙2.35467n many saturated structures for a sequence of length n. In this paper, we consider the base stacking energy model, a mild variant of the Nussinov model, where each stacked base pair contributes -1 toward the energy of the structure. Locally optimal structures with respect to the base stacking energy model are exactly those secondary structures, whose stems cannot be extended. Such structures were first considered by Evers and Giegerich, who described a dynamic programming algorithm to enumerate all locally optimal structures. In this paper, we apply methods from enumerative combinatorics to compute the asymptotic number of such structures. Additionally, we consider analogous combinatorial problems for secondary structures with annotated single-stranded, stacking nucleotides (dangles).

  16. Imaging of localized electronic states at a nonconducting surface by single-electron tunneling force microscopy.

    PubMed

    Bussmann, Ezra B; Zheng, Ning; Williams, Clayton C

    2006-11-01

    Localized electronic states near a nonconducting SiO(2) surface are imaged on a approximately 1 nm scale by single-electron tunneling between the states and a scanning probe tip. Each tunneling electron is detected by electrostatic force. The images represent the number of tunneling electrons at each spatial location. The spatial resolution of the single electron tunneling force microscope is determined by quantum mechanical tunneling, providing new atomic-scale access to electronic states in dielectric surfaces and nonconducting nanostructures.

  17. Electronic structure quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Bajdich, Michal; Mitas, Lubos

    2009-04-01

    Quantum Monte Carlo (QMC) is an advanced simulation methodology for studies of manybody quantum systems. The QMC approaches combine analytical insights with stochastic computational techniques for efficient solution of several classes of important many-body problems such as the stationary Schrödinger equation. QMC methods of various flavors have been applied to a great variety of systems spanning continuous and lattice quantum models, molecular and condensed systems, BEC-BCS ultracold condensates, nuclei, etc. In this review, we focus on the electronic structure QMC, i.e., methods relevant for systems described by the electron-ion Hamiltonians. Some of the key QMC achievements include direct treatment of electron correlation, accuracy in predicting energy differences and favorable scaling in the system size. Calculations of atoms, molecules, clusters and solids have demonstrated QMC applicability to real systems with hundreds of electrons while providing 90-95% of the correlation energy and energy differences typically within a few percent of experiments. Advances in accuracy beyond these limits are hampered by the so-called fixed-node approximation which is used to circumvent the notorious fermion sign problem. Many-body nodes of fermion states and their properties have therefore become one of the important topics for further progress in predictive power and efficiency of QMC calculations. Some of our recent results on the wave function nodes and related nodal domain topologies will be briefly reviewed. This includes analysis of few-electron systems and descriptions of exact and approximate nodes using transformations and projections of the highly-dimensional nodal hypersurfaces into the 3D space. Studies of fermion nodes offer new insights into topological properties of eigenstates such as explicit demonstrations that generic fermionic ground states exhibit the minimal number of two nodal domains. Recently proposed trial wave functions based on Pfaffians with

  18. Local statistical interpretation for water structure

    NASA Astrophysics Data System (ADS)

    Sun, Qiang

    2013-05-01

    In this Letter, Raman spectroscopy is employed to study supercooled water down to a temperature of 248 K at ambient pressure. Based on our interpretation of the Raman OH stretching band, decreasing temperature mainly leads to a structural transition from the single donor-single acceptor (DA) to the double donor-double acceptor (DDAA) hydrogen bonding motif. Additionally, a local statistical interpretation of the water structure is proposed, which reveals that a water molecule interacts with molecules in the first shell through various local hydrogen-bonded networks. From this, a local structure order parameter is proposed to explain the short-range order and long-range disorder.

  19. Local structural origins of the distinct electronic properties of Nb-substituted SrTiO3 and BaTiO3

    SciTech Connect

    Proffen, Thomas E; Page, Katharine L; Kolodiazhnyi, Taras; Cheetham, Anthony K; Seshadri, R

    2008-01-01

    Relating the minute details of crystal and defect structures to the properties of transition metal oxides is a central preoccupation in condensed matter science. Aiding in these efforts have been the many significant advances in high resolution and high momentum transfer neutron diffraction, which today provide unprecedented precision in describing the location of atoms in functional materials.

  20. Actinide electronic structure and atomic forces

    NASA Astrophysics Data System (ADS)

    Albers, R. C.; Rudin, Sven P.; Trinkle, Dallas R.; Jones, M. D.

    2000-07-01

    We have developed a new method[1] of fitting tight-binding parameterizations based on functional forms developed at the Naval Research Laboratory.[2] We have applied these methods to actinide metals and report our success using them (see below). The fitting procedure uses first-principles local-density-approximation (LDA) linear augmented plane-wave (LAPW) band structure techniques[3] to first calculate an electronic-structure band structure and total energy for fcc, bcc, and simple cubic crystal structures for the actinide of interest. The tight-binding parameterization is then chosen to fit the detailed energy eigenvalues of the bands along symmetry directions, and the symmetry of the parameterization is constrained to agree with the correct symmetry of the LDA band structure at each eigenvalue and k-vector that is fit to. By fitting to a range of different volumes and the three different crystal structures, we find that the resulting parameterization is robust and appears to accurately calculate other crystal structures and properties of interest.

  1. Metastable and spin-polarized states in electron systems with localized electron-electron interaction

    NASA Astrophysics Data System (ADS)

    Sablikov, Vladimir A.; Shchamkhalova, Bagun S.

    2014-05-01

    We study the formation of spontaneous spin polarization in inhomogeneous electron systems with pair interaction localized in a small region that is not separated by a barrier from surrounding gas of non-interacting electrons. Such a system is interesting as a minimal model of a quantum point contact in which the electron-electron interaction is strong in a small constriction coupled to electron reservoirs without barriers. Based on the analysis of the grand potential within the self-consistent field approximation, we find that the formation of the polarized state strongly differs from the Bloch or Stoner transition in homogeneous interacting systems. The main difference is that a metastable state appears in the critical point in addition to the globally stable state, so that when the interaction parameter exceeds a critical value, two states coexist. One state has spin polarization and the other is unpolarized. Another feature is that the spin polarization increases continuously with the interaction parameter and has a square-root singularity in the critical point. We study the critical conditions and the grand potentials of the polarized and unpolarized states for one-dimensional and two-dimensional models in the case of extremely small size of the interaction region.

  2. Study of local atomic order in amorphous materials in a computerized transmission electron microscope.

    PubMed

    Balossier, G; Garg, R K; Bonhomme, P; Thomas, X

    1989-03-01

    Experimental results obtained by electron diffraction (ED) and extended electron energy loss fine structure (EXELFS) techniques to study the local atomic order in amorphous materials such as carbon, silicon, and its oxides are described. Potential applications of ED and EXELFS techniques and their limitations are also discussed.

  3. Deterministic weak localization in periodic structures.

    PubMed

    Tian, C; Larkin, A

    2005-12-09

    In some perfect periodic structures classical motion exhibits deterministic diffusion. For such systems we present the weak localization theory. As a manifestation for the velocity autocorrelation function a universal power law decay is predicted to appear at four Ehrenfest times. This deterministic weak localization is robust against weak quenched disorders, which may be confirmed by coherent backscattering measurements of periodic photonic crystals.

  4. Electronic Structure of UGe_2

    NASA Astrophysics Data System (ADS)

    Denlinger, J. D.; Rossnagel, Kai; Allen, J. W.; Huxley, A. D.; Flouquet, J.

    2003-03-01

    UGe2 is of high current interest in connection with the possible role of ferromagnetic fluctuations in its pressure induced superconductivity, for which the Fermi surface (FS) is thought to be important. The band structure and FS contours of a single crystal have been measured using resonant angle-resolved photoemission near the U 5d to 5f edge. Quantitative comparisons to available band structure calculations and to magneto-oscillaory measurements will be presented. Discrepancies with theory are generically similar to those(J.D. Denlinger et al.), J. Electron Spectrosc. Relat. Phenom. 117-118, 347 (2001). found for heavy Fermion URu_2Si2 in that the underlying non-f bands appear to play the major role in defining the FS and in determining the k-space location of 5f spectral weight, in contrast to the important role of actual f-bands in the theory. Supported by the U.S. NSF at U. Mich. (DMR-9971611) and by the U.S. DOE at U. Mich. (DE-FG02-90ER45416) and at the Advanced Light Source (DE-AC03-76SF00098).

  5. Basis functions for electronic structure calculations on spheres

    SciTech Connect

    Gill, Peter M. W. Loos, Pierre-François Agboola, Davids

    2014-12-28

    We introduce a new basis function (the spherical Gaussian) for electronic structure calculations on spheres of any dimension D. We find general expressions for the one- and two-electron integrals and propose an efficient computational algorithm incorporating the Cauchy-Schwarz bound. Using numerical calculations for the D = 2 case, we show that spherical Gaussians are more efficient than spherical harmonics when the electrons are strongly localized.

  6. Electron localization function in full-potential representation for crystalline materials.

    PubMed

    Ormeci, A; Rosner, H; Wagner, F R; Kohout, M; Grin, Yu

    2006-01-26

    The electron localization function (ELF) is implemented in the first-principles, all-electron, full-potential local orbital method. This full-potential implementation increases the accuracy with which the ELF can be computed for crystalline materials. Some representative results obtained are presented and compared with the results of other methods. Although for crystal structures with directed bonding only minor differences are found, in simple elemental metals, there are differences in the valence region, which give rise to different ELF topologies.

  7. Studying localized corrosion using liquid cell transmission electron microscopy.

    PubMed

    Chee, See Wee; Pratt, Sarah H; Hattar, Khalid; Duquette, David; Ross, Frances M; Hull, Robert

    2015-01-04

    Localized corrosion of Cu and Al thin films exposed to aqueous NaCl solutions was studied using liquid cell transmission electron microscopy (LCTEM). We demonstrate that potentiostatic control can be used to initiate pitting and that local compositional changes, due to focused ion beam implantation of Au(+) ions, can modify the corrosion susceptibility of Al films.

  8. Think Locally: A Prudent Approach to Electronic Resource Management Systems

    ERIC Educational Resources Information Center

    Gustafson-Sundell, Nat

    2011-01-01

    A few articles have drawn some amount of attention specifically to the local causes of the success or failure of electronic resource management system (ERMS) implementations. In fact, it seems clear that local conditions will largely determine whether any given ERMS implementation will succeed or fail. This statement might seem obvious, but the…

  9. The electron localization as the information content of the conditional pair density

    NASA Astrophysics Data System (ADS)

    Urbina, Andres S.; Torres, F. Javier; Rincon, Luis

    2016-06-01

    In the present work, the information gained by an electron for "knowing" about the position of another electron with the same spin is calculated using the Kullback-Leibler divergence (DKL) between the same-spin conditional pair probability density and the marginal probability. DKL is proposed as an electron localization measurement, based on the observation that regions of the space with high information gain can be associated with strong correlated localized electrons. Taking into consideration the scaling of DKL with the number of σ-spin electrons of a system (Nσ), the quantity χ = (Nσ - 1) DKLfcut is introduced as a general descriptor that allows the quantification of the electron localization in the space. fcut is defined such that it goes smoothly to zero for negligible densities. χ is computed for a selection of atomic and molecular systems in order to test its capability to determine the region in space where electrons are localized. As a general conclusion, χ is able to explain the electron structure of molecules on the basis of chemical grounds with a high degree of success and to produce a clear differentiation of the localization of electrons that can be traced to the fluctuation in the average number of electrons in these regions.

  10. Fast probe of local electronic states in nanostructures utilizing a single-lead quantum dot

    PubMed Central

    Otsuka, Tomohiro; Amaha, Shinichi; Nakajima, Takashi; Delbecq, Matthieu R.; Yoneda, Jun; Takeda, Kenta; Sugawara, Retsu; Allison, Giles; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo

    2015-01-01

    Transport measurements are powerful tools to probe electronic properties of solid-state materials. To access properties of local electronic states in nanostructures, such as local density of states, electronic distribution and so on, micro-probes utilizing artificial nanostructures have been invented to perform measurements in addition to those with conventional macroscopic electronic reservoirs. Here we demonstrate a new kind of micro-probe: a fast single-lead quantum dot probe, which utilizes a quantum dot coupled only to the target structure through a tunneling barrier and fast charge readout by RF reflectometry. The probe can directly access the local electronic states with wide bandwidth. The probe can also access more electronic states, not just those around the Fermi level, and the operations are robust against bias voltages and temperatures. PMID:26416582

  11. Localized electron heating by strong guide-field magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Guo, Xuehan; Inomoto, Michiaki; Sugawara, Takumichi; Yamasaki, Kotaro; Ushiki, Tomohiko; Ono, Yasushi

    2015-10-01

    Localized electron heating of magnetic reconnection was studied under strong guide-field using two merging spherical tokamak plasmas in the University of Tokyo Spherical Tokamak experiment. Our new slide-type two-dimensional Thomson scattering system is documented for the first time the electron heating localized around the X-point. Shape of the high electron temperature area does not agree with that of energy dissipation term Et.jt . If we include a guide-field effect term Bt/(Bp+αBt) for Et.jt , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point.

  12. Electronic structure and magnetic anisotropy of CrO2

    NASA Astrophysics Data System (ADS)

    Toropova, Antonina; Savrasov, Sergej; Oudovenko, Viktor

    2005-03-01

    The problem of importance of strong correlations for the electronic structure, transport and magnetic properties of half--metallic ferromagnetic CrO2 is addressed by performing density functional based electronic structure calculations in the local spin density approximation (LSDA) as well as using the LSDA+U method. In both schemes we compute electronic structure, optical conductivity and magnetic anisotropy energy for chromium dioxide. It is shown that the corresponding low-- temperature experimental data are best fitted without accounting for the Hubbard U corrections. We conclude that the ordered phase of CrO2 is weakly correlated.

  13. Weak localization and electron-electron interactions in few layer black phosphorus devices

    NASA Astrophysics Data System (ADS)

    Shi, Yanmeng; Gillgren, Nathaniel; Espiritu, Timothy; Tran, Son; Yang, Jiawei; Watanabe, Kenji; Taniguchi, Takahashi; Lau, Chun Ning

    2016-09-01

    Few layer phosphorene (FLP) devices are extensively studied due to their unique electronic properties and potential applications on nano-electronics. Here we present magnetotransport studies which reveal electron-electron interactions as the dominant scattering mechanism in hexagonal boron nitride-encapsulated FLP devices. From weak localization measurements, we estimate the electron dephasing length to be 30 to 100 nm at low temperatures, which exhibits a strong dependence on carrier density n and a power-law dependence on temperature (˜T -0.4). These results establish that the dominant scattering mechanism in FLP is electron-electron interactions.

  14. Introduction: Dissipative localized structures in extended systems

    NASA Astrophysics Data System (ADS)

    Tlidi, Mustapha; Taki, Majid; Kolokolnikov, Theodore

    2007-09-01

    Localized structures belong to the class of dissipative structures found far from equilibrium. Contributions from the most representative groups working on a various fields of natural science such as biology, chemistry, plant ecology, mathematics, optics, and laser physics are presented. The aim of this issue is to gather specialists from these fields towards a cross-fertilization among these active areas of research and thereby to present an overview of the state of art in the formation and the characterization of dissipative localized structures. Nonlinear optics and laser physics have an important part in this issue because of potential applications in information technology. In particular, localized structures could be used as "bits" for parallel information storage and processing.

  15. Electronic processes in multilayer memory structures

    NASA Astrophysics Data System (ADS)

    Plotnikov, A. F.

    The papers presented in this volume contain results of recent theoretical and experimental research related to electron processes in optoelectronic memory media based on structures consisting of a metal, an amorphous insulating layer, and a semiconductor. Topics discussed include photostimulated electron processes in metal-insulator-semiconductor structures, electron transfer phenomena in amorphous dielectric layers, degradation phenomena in MNOS memory elements under prolonged charge injection into the dielectric layer, and characteristics of charge relaxation in MNOS structures following multiple reprogramming.

  16. Role of electronic structure in magnetic tunneling

    NASA Astrophysics Data System (ADS)

    Wang, Kuising; Zhang, Shufeng; Levy, Peter M.; Szunyogh, Laszlo; Weinberger, Peter

    1998-11-01

    To assess the effect of electronic structure of magnetic electrodes on the magnetoresistance of tunnel junctions (JMR) we made ab initio calculations of the electronic structure of BCC(1 0 0) Fe, and FCC(1 0 0) Co and Ni electrodes. We treat hopping to and propagation in the barrier as adjustable parameters and discuss features of the JMR attributable to the electronic structure of the electrodes.

  17. Electronic Structure and Effectively Unpaired Electron Density Topology in closo-Boranes: Nonclassical Three-Center Two-Electron Bonding.

    PubMed

    Lobayan, Rosana M; Bochicchio, Roberto C; Torre, Alicia; Lain, Luis

    2011-04-12

    This article provides a detailed study of the structure and bonding in closo-borane cluster compounds X2B3H3 (X = BH(-), P, SiH, CH, N), with particular emphasis on the description of the electron distribution using the topology of the quantum many-body effectively unpaired density. The close relationship observed between the critical points of this quantity and the localization of the electron cloud allows us to characterize the nonclassical bonding patterns of these systems. The obtained results confirm the suitability of the local rule to detect three-center two-electron bonds, which was conjectured in our previous study on boron hydrides.

  18. Electronic structure of one-dimensional cuprates

    NASA Astrophysics Data System (ADS)

    Maiti, K.; Sarma, D. D.; Mizokawa, T.; Fujimori, A.

    1998-01-01

    We have investigated the electronic structures of one-dimensional antiferromagnetic insulators Ca2CuO3 and Sr2CuO3 combining electron spectroscopic measurements and various calculations. While calculations based on a local-spin-density approach for the real magnetic structures fail to yield an insulating state, from our experiments we estimate the intrinsic band gaps in these materials to be about 1.7 eV (Ca2CuO3) and 1.5 eV (Sr2CuO3). Analysis of the core-level and the valence-band spectra in terms of model many-body Hamiltonians show that the charge-transfer energy Δ for these one-dimensional systems is significantly smaller than other cuprates, such as the high-Tc oxides (two-dimensional) and CuO (three-dimensional). Such a small Δ suggests the presence of the bare upper Hubbard band within the oxygen p bandwidth and thus provides an example of a correlated covalent insulator.

  19. Localized electron heating during magnetic reconnection in MAST

    NASA Astrophysics Data System (ADS)

    Yamada, T.; Tanabe, H.; Watanabe, T. G.; Hayashi, Y.; Imazawa, R.; Inomoto, M.; Ono, Y.; Gryaznevich, M.; Scannell, R.; Michael, C.; The MAST Team

    2016-10-01

    Significant increase in the plasma temperature above 1 keV was measured during the kilogauss magnetic field reconnection of two merging toroidal plasmas under the high-guide field and collision-less conditions. The electron temperature was observed to peak significantly at the X-point inside the current sheet, indicating Joule heating caused by the toroidal electric field along the X-line. This peaked temperature increases significantly with the guide field, in agreement with the electron mean-free path calculation. The slow electron heating in the downstream suggests energy conversion from ions to electrons through ion-electron collisions in the bulk plasma as the second electron heating mechanism in the bulk plasma. The electron density profile clearly reveals the electron density pile-up / fast shock structures in the downstream of reconnection, suggesting energy conversion from ion flow energy to ion thermal energy as well as significant ion heating by reconnection outflow.

  20. Electron localization in self-assembled Si quantum dots grown on Ge(111)

    NASA Astrophysics Data System (ADS)

    Stepina, N. P.; Zinovieva, A. F.; Zinovyev, V. A.; Deryabin, A. S.; Kulik, L. V.; Dvurechenskii, A. V.

    2015-12-01

    Electron localization in a Si/Ge heterosystem with Si quantum dots (QDs) was studied by transport and electron spin resonance (ESR) measurements. For Si QD structures grown on Ge(111) substrates, the ESR signal with a g-factor g=2.0022+/- 0.0001 and ESR line width {{Δ }}H≈ 1.2 Oe was observed and attributed to the electrons localized in QDs. The g-factor value was explained taking into account the energy band modification due to both strain and quantum confinement. The transport behavior confirms the efficient electron localization in QDs for a Si/Ge(111) system. A strong Ge-Si intermixing in QD structures grown on Ge(001) is assumed to be the main reason for an unobserved ESR signal from the QDs.

  1. Interplay of hot electrons from localized and propagating plasmons.

    PubMed

    Hoang, Chung V; Hayashi, Koki; Ito, Yasuo; Gorai, Naoki; Allison, Giles; Shi, Xu; Sun, Quan; Cheng, Zhenzhou; Ueno, Kosei; Goda, Keisuke; Misawa, Hiroaki

    2017-10-03

    Plasmon-induced hot-electron generation has recently received considerable interest and has been studied to develop novel applications in optoelectronics, photovoltaics and green chemistry. Such hot electrons are typically generated from either localized plasmons in metal nanoparticles or propagating plasmons in patterned metal nanostructures. Here we simultaneously generate these heterogeneous plasmon-induced hot electrons and exploit their cooperative interplay in a single metal-semiconductor device to demonstrate, as an example, wavelength-controlled polarity-switchable photoconductivity. Specifically, the dual-plasmon device produces a net photocurrent whose polarity is determined by the balance in population and directionality between the hot electrons from localized and propagating plasmons. The current responsivity and polarity-switching wavelength of the device can be varied over the entire visible spectrum by tailoring the hot-electron interplay in various ways. This phenomenon may provide flexibility to manipulate the electrical output from light-matter interaction and offer opportunities for biosensors, long-distance communications, and photoconversion applications.Plasmon-induced hot electrons have potential applications spanning photodetection and photocatalysis. Here, Hoang et al. study the interplay between hot electrons generated by localized and propagating plasmons, and demonstrate wavelength-controlled polarity-switchable photoconductivity.

  2. Multilevel domain decomposition for electronic structure calculations

    SciTech Connect

    Barrault, M. . E-mail: maxime.barrault@edf.fr; Cances, E. . E-mail: cances@cermics.enpc.fr; Hager, W.W. . E-mail: hager@math.ufl.edu; Le Bris, C. . E-mail: lebris@cermics.enpc.fr

    2007-03-01

    We introduce a new multilevel domain decomposition method (MDD) for electronic structure calculations within semi-empirical and density functional theory (DFT) frameworks. This method iterates between local fine solvers and global coarse solvers, in the spirit of domain decomposition methods. Using this approach, calculations have been successfully performed on several linear polymer chains containing up to 40,000 atoms and 200,000 atomic orbitals. Both the computational cost and the memory requirement scale linearly with the number of atoms. Additional speed-up can easily be obtained by parallelization. We show that this domain decomposition method outperforms the density matrix minimization (DMM) method for poor initial guesses. Our method provides an efficient preconditioner for DMM and other linear scaling methods, variational in nature, such as the orbital minimization (OM) procedure.

  3. On the local representation of the electronic momentum operator in atomic systems

    NASA Astrophysics Data System (ADS)

    Bohórquez, Hugo J.; Boyd, Russell J.

    2008-07-01

    The local quantum theory is applied to the study of the momentum operator in atomic systems. Consequently, a quantum-based local momentum expression in terms of the single-electron density is determined. The limiting values of this function correctly obey two fundamental theorems: Kato's cusp condition and the Hoffmann-Ostenhof and Hoffmann-Ostenhof exponential decay. The local momentum also depicts the electron shell structure in atoms as given by its local maxima and inflection points. The integration of the electron density in a shell gives electron populations that are in agreement with the ones expected from the Periodic Table of the elements. The shell structure obtained is in agreement with the higher level of theory computations, which include the Kohn-Sham kinetic energy density. The average of the local kinetic energy associated with the local momentum is the Weizsäcker kinetic energy. In conclusion, the local representation of the momentum operator provides relevant information about the electronic properties of the atom at any distance from the nucleus.

  4. Non-locality, adiabaticity, thermodynamics and electron energy probability functions

    NASA Astrophysics Data System (ADS)

    Boswell, Roderick; Zhang, Yunchao; Charles, Christine; Takahashi, Kazunori

    2016-09-01

    Thermodynamic properties are revisited for electrons that are governed by nonlocal electron energy probability functions in a plasma of low collisionality. Measurements in a laboratory helicon double layer experiment have shown that the effective electron temperature and density show a polytropic correlation with an index of γe = 1 . 17 +/- 0 . 02 along the divergent magnetic field, implying a nearly isothermal plasma (γe = 1) with heat being brought into the system. However, the evolution of electrons along the divergent magnetic field is essentially an adiabatic process, which should have a γe = 5 / 3 . The reason for this apparent contradiction is that the nearly collisionless plasma is very far from local thermodynamic equilibrium and the electrons behave nonlocally. The corresponding effective electron enthalpy has a conservation relation with the potential energy, which verifies that there is no heat transferred into the system during the electron evolution. The electrons are shown in nonlocal momentum equilibrium under the electric field and the gradient of the effective electron pressure. The convective momentum of ions, which can be assumed as a cold species, is determined by the effective electron pressure and the effective electron enthalpy is shown to be the source for ion acceleration. For these nearly collisionless plasmas, the use of traditional thermodynamic concepts can lead to very erroneous conclusions regarding the thermal conductivity.

  5. Electronic Structure of Lanthanum Hydrides with Switchable Optical Properties

    SciTech Connect

    Ng, K.; Zhang, F.; Ng, K.; Zhang, F.; Anisimov, V.; Rice, T.; Anisimov, V.

    1997-02-01

    Recent dramatic changes in the optical properties of LaH{sub 2+x} and YH{sub 2+x} films discovered by Huiberts {ital et al.}[Nature (London) {bold 380}, 231 (1996)] suggest their electronic structure is described best by a local model. Electron correlation is important in H{sup -} centers and in explaining the transparent insulating behavior of LaH{sub 3}. The metal-insulator transition at x{approximately}0.8 takes place in a band of highly localized states centered on the H vacancies in the LaH{sub 3} structure. {copyright} {ital 1997} {ital The American Physical Society}

  6. Structural phase transition and electronic properties of NdBi

    SciTech Connect

    Sahu, Ashvini K.; Patiya, Jagdish; Sanyal, Sankar P.

    2015-06-24

    The structural and electronic properties of NdBi from an electronic structure calculation have been presented. The calculation is performed using self-consistent tight binding linear muffin tin orbital (TB-LMTO) method within the local density approximation (LDA). The calculated equilibrium structural parameters are in good agreement with the available experimental results. It is found that this compound shows metallic behavior under ambient condition and undergoes a structural phase transition from the NaCl structure to the CsCl structure at the pressure 20.1 GPa. The electronic structures of NdBi under pressure are investigated. It is found that NdBi have metallization and the hybridizations of atoms in NdBi under pressure become stronger.

  7. Superconductivity at the border of electron localization and itinerancy.

    PubMed

    Yu, Rong; Goswami, Pallab; Si, Qimiao; Nikolic, Predrag; Zhu, Jian-Xin

    2013-01-01

    The superconducting state of iron pnictides and chalcogenides exists at the border of anti-ferromagnetic order. Consequently, these materials could provide clues about the relationship between magnetism and unconventional superconductivity. One explanation, motivated by the so-called bad metal behaviour of these materials proposes that magnetism and superconductivity develop out of quasi-localized magnetic moments that are generated by strong electron-electron correlations. Another suggests that these phenomena are the result of weakly interacting electron states that lie on nested Fermi surfaces. Here we address the issue by comparing the newly discovered alkaline iron selenide superconductors, which exhibit no Fermi-surface nesting, to their iron pnictide counterparts. We show that the strong-coupling approach leads to similar pairing amplitudes in these materials, despite their different Fermi surfaces. We also find that the pairing amplitudes are largest at the boundary between electronic localization and itinerancy, suggesting that new superconductors might be found in materials with similar characteristics.

  8. Local representation of the electronic dielectric response function

    DOE PAGES

    Lu, Deyu; Ge, Xiaochuan

    2015-12-11

    We present a local representation of the electronic dielectric response function, based on a spatial partition of the dielectric response into contributions from each occupied Wannier orbital using a generalized density functional perturbation theory. This procedure is fully ab initio, and therefore allows us to rigorously define local metrics, such as “bond polarizability,” on Wannier centers. We show that the locality of the bare response function is determined by the locality of three quantities: Wannier functions of the occupied manifold, the density matrix, and the Hamiltonian matrix. Furthermore, in systems with a gap, the bare dielectric response is exponentially localized,more » which supports the physical picture of the dielectric response function as a collection of interacting local responses that can be captured by a tight-binding model.« less

  9. Local representation of the electronic dielectric response function

    SciTech Connect

    Lu, Deyu; Ge, Xiaochuan

    2015-12-11

    We present a local representation of the electronic dielectric response function, based on a spatial partition of the dielectric response into contributions from each occupied Wannier orbital using a generalized density functional perturbation theory. This procedure is fully ab initio, and therefore allows us to rigorously define local metrics, such as “bond polarizability,” on Wannier centers. We show that the locality of the bare response function is determined by the locality of three quantities: Wannier functions of the occupied manifold, the density matrix, and the Hamiltonian matrix. Furthermore, in systems with a gap, the bare dielectric response is exponentially localized, which supports the physical picture of the dielectric response function as a collection of interacting local responses that can be captured by a tight-binding model.

  10. Electronic correlation contributions to structural energies

    NASA Astrophysics Data System (ADS)

    Haydock, Roger

    2015-03-01

    The recursion method is used to calculate electronic excitation spectra including electron-electron interactions within the Hubbard model. The effects of correlation on structural energies are then obtained from these spectra and applied to stacking faults. http://arxiv.org/abs/1405.2288 Supported by the Richmond F. Snyder Fund and Gifts.

  11. Polarization properties of localized structures in VCSELs

    NASA Astrophysics Data System (ADS)

    Averlant, Etienne; Tlidi, Mustapha; Ackemann, Thorsten; Thienpont, Hugo; Panajotov, Krassimir

    2016-04-01

    Broad area Vertical-Cavity Surface-Emitting Lasers (VCSELs) have peculiar polarization properties which are a field of study by itself.1-3 These properties have already been used for localized structure generation, in a simple configuration, where only one polarization component was used.4 Here, we present new experimental and theoretical results on the complex polarization behavior of localized structures generated in an optically-injected broad area VCSEL. A linear stability analysis of the spin-flip VCSEL model is performed for the case of broad area devices, in a restrained and experimentally relevant parameter set. Numerical simulations are performed, in one and two dimensions. They reveal existence of vector localized structures. These structures have a complex polarization state, which is not simply a linear polarization following the one of the optical injection. Experimental results confirm theoretical predictions. Applications of this work can lead to the encoding of small color images in the polarization state of an ensemble of localized structures at the surface of a broad area VCSEL.

  12. Program For Local-Area-Network Electronic Mail

    NASA Technical Reports Server (NTRS)

    Weiner, Michael J.

    1989-01-01

    MailRoom is computer program for local-area network (LAN) electronic mail. Enables users of LAN to exchange electronically notes, letters, reminders, or any sort of communication via their computers. Links all users of LAN into communication circle in which messages created, sent, copied, printed, downloaded, uploaded, and deleted through series of menu-driven screens. Includes feature that enables users to determine whether messages sent have been read by receivers. Written in Microsoft QuickBasic.

  13. Program For Local-Area-Network Electronic Mail

    NASA Technical Reports Server (NTRS)

    Weiner, Michael J.

    1989-01-01

    MailRoom is computer program for local-area network (LAN) electronic mail. Enables users of LAN to exchange electronically notes, letters, reminders, or any sort of communication via their computers. Links all users of LAN into communication circle in which messages created, sent, copied, printed, downloaded, uploaded, and deleted through series of menu-driven screens. Includes feature that enables users to determine whether messages sent have been read by receivers. Written in Microsoft QuickBasic.

  14. Studying localized corrosion using liquid cell transmission electron microscopy

    DOE PAGES

    Chee, See Wee; Pratt, Sarah H.; Hattar, Khalid; ...

    2014-11-07

    Using liquid cell transmission electron microscopy (LCTEM), localized corrosion of Cu and Al thin films immersed in aqueous NaCl solutions was studied. We demonstrate that potentiostatic control can be used to initiate pitting and that local compositional changes, due to focused ion beam implantation of Au+ ions, can modify the corrosion susceptibility of Al films. Likewise, a discussion on strategies to control the onset of pitting is also presented.

  15. Studying localized corrosion using liquid cell transmission electron microscopy

    SciTech Connect

    Chee, See Wee; Pratt, Sarah H.; Hattar, Khalid; Duquette, David; Ross, Frances M.; Hull, Robert

    2014-11-07

    Using liquid cell transmission electron microscopy (LCTEM), localized corrosion of Cu and Al thin films immersed in aqueous NaCl solutions was studied. We demonstrate that potentiostatic control can be used to initiate pitting and that local compositional changes, due to focused ion beam implantation of Au+ ions, can modify the corrosion susceptibility of Al films. Likewise, a discussion on strategies to control the onset of pitting is also presented.

  16. Parallel adaptive mesh refinement for electronic structure calculations

    SciTech Connect

    Kohn, S.; Weare, J.; Ong, E.; Baden, S.

    1996-12-01

    We have applied structured adaptive mesh refinement techniques to the solution of the LDA equations for electronic structure calculations. Local spatial refinement concentrates memory resources and numerical effort where it is most needed, near the atomic centers and in regions of rapidly varying charge density. The structured grid representation enables us to employ efficient iterative solver techniques such as conjugate gradients with multigrid preconditioning. We have parallelized our solver using an object-oriented adaptive mesh refinement framework.

  17. Electronic band structure of defect chalcopyrites

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoshu; Lambrecht, Walter R. L.

    2001-03-01

    The defect chalcopyrites of chemical composition II-III-VI4 in which II, III and VI mean group-II elements such as Cd or Hg, group-III elements such as Al and Ga and group-VI elements such as S, Se, Te, form an interesting family of semiconductor compounds with potential nonlinear optical applications. They can be thought of as derived from the regular I-III-VI2 chalcopyrites by doubling the formula unit and replacing the group I element, for example, Ag by the group-II element and a vacancy in an ordered manner. The chalcopyrites themselves are derived from II-VI compounds by replacing the group-II by a group I and a group-III element. In this contribution we present electronic band structure calculations of some of these compounds, calculated using the linear muffin-tin orbital method combined with the local density functional approximation. We discuss the relation of the band structures of the corresponding zincblende, chalcopyrite and defect chalcopyrite compounds. In particular, the role of the group I or group II d-band energy will be shown to be important. The trends with chemical substutions and the effects of structural distortions c/a and internal parameters accompanying the chemical distortion will be discussed.

  18. Detecting structure of haplotypes and local ancestry

    USDA-ARS?s Scientific Manuscript database

    We present a two-layer hidden Markov model to detect the structure of haplotypes for unrelated individuals. This allows us to model two scales of linkage disequilibrium (one within a group of haplotypes and one between groups), thereby taking advantage of rich haplotype information to infer local an...

  19. Electronic structures of ytterbocene-imine complexes

    SciTech Connect

    Da Re, R. E.; Kuehl, C. J.; John, K. D.; Morris, D. E.

    2004-01-01

    The electronic structures of complexes of the form [(C{sub 5}Me{sub 5}){sub 2}Yb(L)]{sup +/0} (L = bipyridine, phenanthroline, terpyridine) have been probed using cyclic voltammetry and electronic spectroscopy. Remarkably, the voltammetric data reveal that the imine-based LUMO is stabilized and the redox-active metal f orbital is destabilized by ca. 1 V each upon formation of the ytterbocene-imine adduct, which is presumably responsible for the [(f){sup 13}({pi}*(L)){sup 1}] charge-transfer ground state characteristic of these complexes. The ca. 0.8 V separation between ligand-based oxidation and metal-based reduction waves for each ytterbocene adduct correlates with the energy of its optically promoted {pi}*(L)-f(Yb) charge transfer (LMCT) transition (ca. 5000 cm{sup -1}). The coupling between this LMCT excited state and the {sup 2}F{sub 7/2} ground and {sup 2}F{sub 5/2} excited states of Yb(III) leads to unusually large intensities ({var_epsilon} {approx} 1000) for the metal-localized f-f bands, which will be discussed in the context of an intensity borrowing mechanism that invokes exchange between the ligand-based {sup 2}S and metal-based {sup 2}F spin states.

  20. Localized Electron Heating by Strong Guide-Field Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Guo, Xuehan; Sugawara, Takumichi; Inomoto, Michiaki; Yamasaki, Kotaro; Ono, Yasushi; UTST Team

    2015-11-01

    Localized electron heating of magnetic reconnection was studied under strong guide-field (typically Bt 15Bp) using two merging spherical tokamak plasmas in Univ. Tokyo Spherical Tokamak (UTST) experiment. Our new slide-type two-dimensional Thomson scattering system documented for the first time the electron heating localized around the X-point. The region of high electron temperature, which is perpendicular to the magnetic field, was found to have a round shape with radius of 2 [cm]. Also, it was localized around the X-point and does not agree with that of energy dissipation term Et .jt . When we include a guide-field effect term Bt / (Bp + αBt) for Et .jt where α =√{ (vin2 +vout2) /v∥2 } , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus,'' a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  1. Electronic Structure of Lithium Tetraborate

    DTIC Science & Technology

    2010-06-01

    binding energies of -56.5+0.4 and -53.7+0.5 eV. Resonance features were observed along the [001] direction and were attributed to a Coster- Kronig ...could be theoretically explained as an Auger electron [12] or Coster- Kronig process [13] of a Li 1s electron photoexcitation to an unoccupied 2p...Coster Kronig , which requires only one Li atom. Such a Coster Kronig mechanism is pictorially displayed below in Figure 7.9. 128 Figure 7.9

  2. Electron tomography of dislocation structures

    SciTech Connect

    Liu, G.S.; House, S.D.; Kacher, J.; Tanaka, M.; Higashida, K.; Robertson, I.M.

    2014-01-15

    Recent developments in the application of electron tomography for characterizing microstructures in crystalline solids are described. The underlying principles for electron tomography are presented in the context of typical challenges in adapting the technique to crystalline systems and in using diffraction contrast imaging conditions. Methods for overcoming the limitations associated with the angular range, the number of acquired images, and uniformity of image contrast are introduced. In addition, a method for incorporating the real space coordinate system into the tomogram is presented. As the approach emphasizes development of experimental solutions to the challenges, the solutions developed and implemented are presented in the form of examples.

  3. Localized electrons on a lattice with incommensurate magnetic flux

    NASA Astrophysics Data System (ADS)

    Fishman, Shmuel; Shapir, Yonathan; Wang, Xiang-Rong

    1992-11-01

    The magnetic-field effects on lattice wave functions of Hofstadter electrons strongly localized at boundaries are studied analytically and numerically. The exponential decay of the wave function is modulated by a field-dependent amplitude J(t)=tprodt-1r=02 cos(παr), where α is the magnetic flux per plaquette (in units of a flux quantum) and t is the distance from the boundary (in units of the lattice spacing). The behavior of ||J(t)|| is found to depend sensitively on the value of α. While for rational values α=p/q the envelope of J(t) increases as 2t/q, the behavior for α irrational (q-->∞) is erratic with an aperiodic structure which drastically changes with α. For algebraic α it is found that J(t) increases as a power law tβ(α) while it grows faster (presumably as tβ(α)lnt) for transcendental α. This is very different from the growth rate J(t)~e√t that is typical for cosines with random phases. The theoretical analysis is extended to products of the type Jν(t)=tprodt-1r=02 cos(παrν) with ν>0. Different behavior of Jν(t) is found in various regimes of ν. It changes from periodic for small ν to randomlike for large ν.

  4. Electron gun controlled smart structure

    DOEpatents

    Martin, Jeffrey W.; Main, John Alan; Redmond, James M.; Henson, Tammy D.; Watson, Robert D.

    2001-01-01

    Disclosed is a method and system for actively controlling the shape of a sheet of electroactive material; the system comprising: one or more electrodes attached to the frontside of the electroactive sheet; a charged particle generator, disposed so as to direct a beam of charged particles (e.g. electrons) onto the electrode; a conductive substrate attached to the backside of the sheet; and a power supply electrically connected to the conductive substrate; whereby the sheet changes its shape in response to an electric field created across the sheet by an accumulation of electric charge within the electrode(s), relative to a potential applied to the conductive substrate. Use of multiple electrodes distributed across on the frontside ensures a uniform distribution of the charge with a single point of e-beam incidence, thereby greatly simplifying the beam scanning algorithm and raster control electronics, and reducing the problems associated with "blooming". By placing a distribution of electrodes over the front surface of a piezoelectric film (or other electroactive material), this arrangement enables improved control over the distribution of surface electric charges (e.g. electrons) by creating uniform (and possibly different) charge distributions within each individual electrode. Removal or deposition of net electric charge can be affected by controlling the secondary electron yield through manipulation of the backside electric potential with the power supply. The system can be used for actively controlling the shape of space-based deployable optics, such as adaptive mirrors and inflatable antennae.

  5. The electronic structure of grain boundaries in Nb

    SciTech Connect

    Sowa, E.C.; Gonis, A. ); Zhang, X.G. )

    1990-11-01

    We present first-principles calculations of the electronic structure of Nb grain boundaries. These are the first such calculations for a bcc metal using the real-space multiple-scattering theory (RSMST). Local densities of states near a {Sigma}5 twist grain boundary are compared to those for bulk Nb. 5 refs., 1 fig.

  6. Complex structures of dense lithium: Electronic origin

    NASA Astrophysics Data System (ADS)

    Degtyareva, V. F.

    2016-11-01

    Lithium—the lightest alkali metal exhibits unexpected structures and electronic behavior at high pressures. Like the heavier alkali metals, Li is bcc at ambient pressure and transforms first to fcc (at 7.5 GPa). The post-fcc high-pressure form Li-cI 16 (at 40-60 GPa) is similar to Na-cI 16 and related to more complex structures of heavy alkalis Rb-oC52 and Cs- oC84. The other high pressure phases for Li (oC88, oC40, oC24) observed at pressures up to 130 GPa are found only in Li. The different route of Li high-pressure structures correlates with its special electronic configuration containing the only 3 electrons (at 1s and 2s levels). Crystal structures for Li are analyzed within the model of Fermi sphere-Brillouin zone interactions. Stability of post-fcc structures for Li are supported by the Hume-Rothery arguments when new diffraction plains appear close to the Fermi level producing pseudogaps near the Fermi level and decreasing the crystal energy. The filling of Brillouin-Jones zones by electron states for a given structure defines the physical properties as optical reflectivity, electrical resistivity and superconductivity. To understand the complexity of structural and physical properties of Li above 60 GPa it is necessary to assume the valence electron band overlap with the core electrons and increase the valence electron count under compression.

  7. Electronic Structure of Small Lanthanide Containing Molecules

    NASA Astrophysics Data System (ADS)

    Kafader, Jared O.; Ray, Manisha; Topolski, Josey E.; Chick Jarrold, Caroline

    2016-06-01

    Lanthanide-based materials have unusual electronic properties because of the high number of electronic degrees of freedom arising from partial occupation of 4f orbitals, which make these materials optimal for their utilization in many applications including electronics and catalysis. Electronic spectroscopy of small lanthanide molecules helps us understand the role of these 4f electrons, which are generally considered core-like because of orbital contraction, but are energetically similar to valence electrons. The spectroscopy of small lanthanide-containing molecules is relatively unexplored and to broaden this understanding we have completed the characterization of small cerium, praseodymium, and europium molecules using photoelectron spectroscopy coupled with DFT calculations. The characterization of PrO, EuH, EuO/EuOH, and CexOy molecules have allowed for the determination of their electron affinity, the assignment of numerous anion to neutral state transitions, modeling of anion/neutral structures and electron orbital occupation.

  8. Quantum-classical simulation of electron localization in negatively charged methanol clusters.

    PubMed

    Mones, Letif; Rossky, Peter J; Turi, László

    2011-08-28

    A series of quantum molecular dynamics simulations have been performed to investigate the energetic, structural, dynamic, and spectroscopic properties of methanol cluster anions, [(CH(3)OH)(n)](-), (n = 50-500). Consistent with the inference from photo-electron imaging experiments, we find two main localization modes of the excess electron in equilibrated methanol clusters at ∼200 K. The two different localization patterns have strikingly different physical properties, consistent with experimental observations, and are manifest in comparable cluster sizes to those observed. Smaller clusters (n ≤ 128) tend to localize the electron in very weakly bound, diffuse electronic states on the surface of the cluster, while in larger ones the electron is stabilized in solvent cavities, in compact interior-bound states. The interior states exhibit properties that largely resemble and smoothly extrapolate to those simulated for a solvated electron in bulk methanol. The surface electronic states of methanol cluster anions are significantly more weakly bound than the surface states of the anionic water clusters. The key source of the difference is the lack of stabilizing free hydroxyl groups on a relaxed methanol cluster surface. We also provide a mechanistic picture that illustrates the essential role of the interactions of the excess electron with the hydroxyl groups in the dynamic process of the transition of the electron from surface-bound states to interior-bound states.

  9. The nearby structure of the Local Arm

    NASA Astrophysics Data System (ADS)

    Cersosimo, J. C.; Muller, R. J.; Santiago Figueroa, N.; Figueroa Vélez, S.; Báez, P.; Testori, J. C.

    The continuum emission of the galactic region located at G85-0.5 is well defined by the weak 11 cm wavelength emission. The region catalogued as W80 is extended 3° in diameter and the optical images show the North America and the Pelican Nebulae (NPN) complex. In this paper we derive new distances wich were obtained from the radiorecombination line observations made at a frequency near 1.4 GHz. The results suggest that the ionized hydrogen is spread along the line of sight instead of being clumped at one specific distance. We identified three structures located at distances of about 0.7 kpc, 1.7 kpc, and 2.7 kpc, respectively. Using a simple model where we assume homogeneity and a constant electron temperature the electron densities of each structure are obtained. We conclude that W80 is composed of different regions located along the line of sight.

  10. Drifting localized structures in doubly diffusive convection

    NASA Astrophysics Data System (ADS)

    Knobloch, Edgar; Lo Jacono, David; Bergeon, Alain

    2016-11-01

    We use numerical continuation to compute a multiplicity of spatially localized states in doubly diffusive convection in a vertical slot driven by imposed horizontal temperature and concentration differences. The calculations focus on the so-called opposing case, in which the resulting gradients are in balance. No-slip boundary conditions are used at the sides and periodic boundary conditions with large spatial period are used in the vertical direction. This system exhibits homoclinic snaking of stationary spatially localized structures with point symmetry. In this talk we demonstrate the existence, near threshold, of drifting pulses of spatially localized convection that appear when mixed concentration boundary conditions are used, and use homotopic continuation to identify similar states in the case of fixed concentration boundary conditions. We show that these states persist to large values of the Grasshof number and provide a detailed study of their properties.

  11. Structural physiology based on electron crystallography

    PubMed Central

    Fujiyoshi, Yoshinori

    2011-01-01

    There are many questions in brain science, which are extremely interesting but very difficult to answer. For example, how do education and other experiences during human development influence the ability and personality of the adult? The molecular mechanisms underlying such phenomena are still totally unclear. However, technological and instrumental advancements of electron microscopy have facilitated comprehension of the structures of biological components, cells, and organelles. Electron crystallography is especially good for studying the structure and function of membrane proteins, which are key molecules of signal transduction in neural and other cells. Electron crystallography is now an established technique to analyze the structures of membrane proteins in lipid bilayers, which are close to their natural biological environment. By utilizing cryo-electron microscopes with helium cooled specimen stages, which were developed through a personal motivation to understand functions of neural systems from a structural point of view, structures of membrane proteins were analyzed at a resolution higher than 3 Å. This review has four objectives. First, it is intended to introduce the new research field of structural physiology. Second, it introduces some of the personal struggles, which were involved in developing the cryo-electron microscope. Third, it discusses some of the technology for the structural analysis of membrane proteins based on cryo-electron microscopy. Finally, it reviews structural and functional analyses of membrane proteins. PMID:21416541

  12. Electronic spectrum and localization of electronic states in aperiodic quantum dot chains

    NASA Astrophysics Data System (ADS)

    Korotaev, P. Yu.; Vekilov, Yu. Kh.; Kaputkina, N. E.

    2014-02-01

    The electronic energy spectra of aperiodic Thue-Morse, Rudin-Shapiro, and double-periodic quantum dot chains are investigated in the tight-binding approximation. The dependence of the spectrum on all parameters of a "mixed" aperiodic chain model is studied: the electronic energy at quantum dots and the hopping integrals. The electronic degree of localization in the chains under consideration is determined by analyzing the inverse participation ratio. Its spectral distribution and the dependence of the band-averaged degree of localization on these model parameters have been calculated. It is shown that a transition of the system's sites to a resonant state in which the degree of electron localization decreases, while an overlap between the subbands occurs in the spectrum is possible when the parameters are varied.

  13. Structure and electronic properties of lead-selenide nanocrystal solids

    NASA Astrophysics Data System (ADS)

    Whitham, Kevin

    Recent advances in the controlled formation of nanocrystal superlattices have potential for creating materials with properties by design. The ability to tune nanocrystal size, shape and composition as well as symmetry of the superlattice opens routes to new materials. Calculations of such materials predict interesting electronic phenomena including topological states and Dirac cones, however experimental support is lacking. We have investigated electron localization in nanocrystal superlattices using a combination of advanced structural characterization techniques and charge transport measurements. Recent experimental efforts to improve the electronic properties of nanocrystal solids have focused on increasing inter-dot coupling. However, this approach only leads to electronic bands if the coupling energy can overcome energetic and translational disorder. We have investigated oriented-attachment as a method to create nanocrystal superlattices with increased coupling and translational order. We show that epitaxially connected superlattices form by a coherent phase transformation that is sensitive to structural defects and ligand length. In order to measure intrinsic electronic properties we demonstrate control over electronic defects by tailoring surface chemistry and device architecture. To probe charge transport in these structures we performed variable temperature field-effect measurements. By integrating structure analysis, surface chemistry, and transport measurements we find that carriers are localized to a few superlattice constants due to disorder. Importantly, our analysis shows that greater delocalization is possible by optimizing dot-to-dot bonding, thus providing a path forward to create quantum dot solids in which theoretically predicted properties can be realized.

  14. Automatic Tool for Local Assembly Structures

    SciTech Connect

    2016-10-11

    Whole community shotgun sequencing of total DNA (i.e. metagenomics) and total RNA (i.e. metatranscriptomics) has provided a wealth of information in the microbial community structure, predicted functions, metabolic networks, and is even able to reconstruct complete genomes directly. Here we present ATLAS (Automatic Tool for Local Assembly Structures) a comprehensive pipeline for assembly, annotation, genomic binning of metagenomic and metatranscriptomic data with an integrated framework for Multi-Omics. This will provide an open source tool for the Multi-Omic community at large.

  15. Localized electronic states at grain boundaries on the surface of graphene and graphite

    NASA Astrophysics Data System (ADS)

    Luican-Mayer, Adina; Barrios-Vargas, Jose E.; Toft Falkenberg, Jesper; Autès, Gabriel; Cummings, Aron W.; Soriano, David; Li, Guohong; Brandbyge, Mads; Yazyev, Oleg V.; Roche, Stephan; Andrei, Eva Y.

    2016-09-01

    Recent advances in large-scale synthesis of graphene and other 2D materials have underscored the importance of local defects such as dislocations and grain boundaries (GBs), and especially their tendency to alter the electronic properties of the material. Understanding how the polycrystalline morphology affects the electronic properties is crucial for the development of applications such as flexible electronics, energy harvesting devices or sensors. We here report on atomic scale characterization of several GBs and on the structural-dependence of the localized electronic states in their vicinity. Using low temperature scanning tunneling microscopy and spectroscopy, together with tight binding and ab initio numerical simulations we explore GBs on the surface of graphite and elucidate the interconnection between the local density of states and their atomic structure. We show that the electronic fingerprints of these GBs consist of pronounced resonances which, depending on the relative orientation of the adjacent crystallites, appear either on the electron side of the spectrum or as an electron-hole symmetric doublet close to the charge neutrality point. These two types of spectral features will impact very differently the transport properties allowing, in the asymmetric case to introduce transport anisotropy which could be utilized to design novel growth and fabrication strategies to control device performance.

  16. Electronic Structure Calculations at Macroscopic Scales

    DTIC Science & Technology

    2012-02-02

    to satisfy the Lindhard response function—a known limiting behavior of uniform electron gas. The Wang- Govind -Carter (WGC) kinetic energy functional... R ., QTT Representation of the Hartree and Ex- change Operators in Electronic Structure Calculations. MPI MIS preprint 37/2011 (2011). Kolda, T.G...2010). Wang, L., Teter, M.P., Kinetic energy functional of electron density. Phys. Rev. B, 45, 13196 (1992). Wang Y.A., Govind , N., Carter, E.A

  17. Localized basis sets for unbound electrons in nanoelectronics.

    PubMed

    Soriano, D; Jacob, D; Palacios, J J

    2008-02-21

    It is shown how unbound electron wave functions can be expanded in a suitably chosen localized basis sets for any desired range of energies. In particular, we focus on the use of Gaussian basis sets, commonly used in first-principles codes. The possible usefulness of these basis sets in a first-principles description of field emission or scanning tunneling microscopy at large bias is illustrated by studying a simpler related phenomenon: The lifetime of an electron in a H atom subjected to a strong electric field.

  18. Structure of Wet Specimens in Electron Microscopy

    ERIC Educational Resources Information Center

    Parsons, D. F.

    1974-01-01

    Discussed are past work and recent advances in the use of electron microscopes for viewing structures immersed in gas and liquid. Improved environmental chambers make it possible to examine wet specimens easily. (Author/RH)

  19. Computational Chemistry Using Modern Electronic Structure Methods

    ERIC Educational Resources Information Center

    Bell, Stephen; Dines, Trevor J.; Chowdhry, Babur Z.; Withnall, Robert

    2007-01-01

    Various modern electronic structure methods are now days used to teach computational chemistry to undergraduate students. Such quantum calculations can now be easily used even for large size molecules.

  20. Instructional Approach to Molecular Electronic Structure Theory

    ERIC Educational Resources Information Center

    Dykstra, Clifford E.; Schaefer, Henry F.

    1977-01-01

    Describes a graduate quantum mechanics projects in which students write a computer program that performs ab initio calculations on the electronic structure of a simple molecule. Theoretical potential energy curves are produced. (MLH)

  1. Structure of Wet Specimens in Electron Microscopy

    ERIC Educational Resources Information Center

    Parsons, D. F.

    1974-01-01

    Discussed are past work and recent advances in the use of electron microscopes for viewing structures immersed in gas and liquid. Improved environmental chambers make it possible to examine wet specimens easily. (Author/RH)

  2. Computational Chemistry Using Modern Electronic Structure Methods

    ERIC Educational Resources Information Center

    Bell, Stephen; Dines, Trevor J.; Chowdhry, Babur Z.; Withnall, Robert

    2007-01-01

    Various modern electronic structure methods are now days used to teach computational chemistry to undergraduate students. Such quantum calculations can now be easily used even for large size molecules.

  3. Structural and electronic properties of hexagonal yttrium trihydride

    SciTech Connect

    Wang, Y.; Chou, M.Y. )

    1995-03-15

    The structural and electronic properties of yttrium trihydride with metal atoms in the hexagonal-close-packed (hcp) structure are studied by the pseudopotential method within the local-density-functional approximation (LDA). It is found that the hydrogen positions within the metal lattice have a major role in determining these properties. Calculations confirmed that hexagonal YH[sub 3] with unusual wavelike hydrogen displacements (space group [ital D][sub 3[ital d

  4. Electronic structure and isomer shifts of neptunium compounds

    NASA Astrophysics Data System (ADS)

    Svane, A.; Petit, L.; Temmerman, W. M.; Szotek, Z.

    2002-08-01

    The electronic structures of αNp metal and 28 Np compounds are calculated with the generalized gradient approximation to density-functional theory, implemented with the full-potential linear-muffin-tin-orbital method. The calculations are compared to experimental isomer shifts providing a calibration of the 237Np isomeric transition with a value of Δ=(-40.1+/-1.3)×10- 3 fm2 for the difference in nuclear radius between the excited isomeric level and the ground state. The isomer shift is primarily determined by the chemical environment. Decreasing the volume, either by external or chemical pressure, causes an f-->s+d charge transfer on Np, which leads to a higher electron contact density. The possible f-electron localization in Np compounds is discussed using self-interaction corrections, and it is concluded that f-electron localization has only a minor influence on the isomer shift.

  5. Electronic structure and photophysical properties of polyimides

    SciTech Connect

    LaFemina, J.P. ); Kafafi, S.A. . Div. of Environmental Chemistry)

    1992-04-01

    The quantum mechanical AM1 and CNDO/S3 models were used to examine the effect of isoelectronic substitutions on the conformation, electronic structure, and optical absorption spectra for a series of aromatic polyimides. An analysis of the geometric changes at the substitution site and its effect on the electronic structure allowed for the prediction of changes in the ICT band of the optical absorption spectra.

  6. Controlling the Electronic Structure of Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Ohta, Taisuke; Bostwick, Aaron; Seyller, Thomas; Horn, Karsten; Rotenberg, Eli

    2006-08-01

    We describe the synthesis of bilayer graphene thin films deposited on insulating silicon carbide and report the characterization of their electronic band structure using angle-resolved photoemission. By selectively adjusting the carrier concentration in each layer, changes in the Coulomb potential led to control of the gap between valence and conduction bands. This control over the band structure suggests the potential application of bilayer graphene to switching functions in atomic-scale electronic devices.

  7. Frequency based localization of structural discrepancies

    NASA Technical Reports Server (NTRS)

    Shepard, G. D.; Milani, J.

    1988-01-01

    The intent of modal analysis is to develop a reliable model of a structure by working with the analytical and experimental modal properties of frequency, damping and mode shape. In addition to identifying these modal properties, it would be desirable to determine spatially which parts of the structure are modelled poorly or well. It is shown how the pattern of discrepancies in the analytical and experimental test values for the pole and the driving point zero frequencies of a structure can be linked to discrepancies in the mass or stiffness of the structural elements. The success of the procedure depends on the numerical conditioning of a modal reference matrix. Strategies to insure adequate numerical conditioning require a formulation which avoids geometric and energy storage symmetries of the structure, and ignores structural elements which contribute negligibly small potential or kinetic energy to the excited modes. Physical insight into the numerical conditioning problem is provided by a numerical example and by localization of a mass discrepancy in a real structure based on lab tests.

  8. MCSNA: Experimental Benchmarking of Pu Electronic Structure

    SciTech Connect

    Tobin, J G

    2007-01-29

    The objective of this work is to develop and/or apply advanced diagnostics to the understanding of aging of Pu. Advanced characterization techniques such as photoelectron and x-ray absorption spectroscopy will provide fundamental data on the electronic structure of Pu phases. These data are crucial for the validation of the electronic structure methods. The fundamental goal of this project is to narrow the parameter space for the theoretical modeling of Pu aging. The short-term goal is to perform experiments to validate electronic structure calculations of Pu. The long-term goal is to determine the effects of aging upon the electronic structure of Pu. Many of the input parameters for aging models are not directly measurable. These parameters will need to be calculated or estimated. Thus a First Principles-Approach Theory is needed, but it is unclear what terms are important in the Hamiltonian. (H{Psi} = E{Psi}) Therefore, experimental data concerning the 5f electronic structure are needed, to determine which terms in the Hamiltonian are important. The data obtained in this task are crucial for reducing the uncertainty of Task LL-01-developed models and predictions. The data impact the validation of electronic structure methods, the calculation of defect properties, the evaluation of helium diffusion, and the validation of void nucleation models. The importance of these activities increases if difficulties develop with the accelerating aging alloy approach.

  9. Multifractal electronic wave functions in the Anderson model of localization

    SciTech Connect

    Schreiber, M.; Grussbach, H. )

    1992-06-20

    In this paper, investigations of the multifractal properties of electronic wave functions in disordered samples are reviewed. The characteristic mass exponents of the multifractal measure, the generalized dimensions and the singularity spectra are discussed for typical cases. New results for large 3D systems are reported, suggesting that the multifractal properties at the mobility edge which separates localized and extended states are independent of the microscopic details of the model.

  10. The Structure of the Local Hot Bubble

    NASA Technical Reports Server (NTRS)

    Liu, W.; Chiao, M.; Collier, M. R.; Cravens, T.; Galeazzi, M.; Koutroumpa, D.; Kuntz, K. D.; Lallement, R.; Lepri, S. T.; McCammon, Dan; hide

    2016-01-01

    Diffuse X-rays from the Local Galaxy (DXL) is a sounding rocket mission designed to quantify and characterize the contribution of Solar Wind Charge eXchange (SWCX) to the Diffuse X-ray Background and study the properties of the Local Hot Bubble (LHB). Based on the results from the DXL mission, we quantified and removed the contribution of SWCX to the diffuse X-ray background measured by the ROSAT All Sky Survey. The cleaned maps were used to investigate the physical properties of the LHB. Assuming thermal ionization equilibrium, we measured a highly uniform temperature distributed around kT = 0.097 keV +/- 0.013 keV (FWHM) +/- 0.006 keV(systematic). We also generated a thermal emission measure map and used it to characterize the three-dimensional (3D) structure of the LHB, which we found to be in good agreement with the structure of the local cavity measured from dust and gas.

  11. The Structure of the Local Hot Bubble

    NASA Astrophysics Data System (ADS)

    Liu, W.; Chiao, M.; Collier, M. R.; Cravens, T.; Galeazzi, M.; Koutroumpa, D.; Kuntz, K. D.; Lallement, R.; Lepri, S. T.; McCammon, D.; Morgan, K.; Porter, F. S.; Snowden, S. L.; Thomas, N. E.; Uprety, Y.; Ursino, E.; Walsh, B. M.

    2017-01-01

    Diffuse X-rays from the Local Galaxy (DXL) is a sounding rocket mission designed to quantify and characterize the contribution of Solar Wind Charge eXchange (SWCX) to the Diffuse X-ray Background and study the properties of the Local Hot Bubble (LHB). Based on the results from the DXL mission, we quantified and removed the contribution of SWCX to the diffuse X-ray background measured by the ROSAT All Sky Survey. The “cleaned” maps were used to investigate the physical properties of the LHB. Assuming thermal ionization equilibrium, we measured a highly uniform temperature distributed around kT = 0.097 keV ± 0.013 keV (FWHM) ± 0.006 keV (systematic). We also generated a thermal emission measure map and used it to characterize the three-dimensional (3D) structure of the LHB, which we found to be in good agreement with the structure of the local cavity measured from dust and gas.

  12. Indoor footstep localization from structural dynamics instrumentation

    NASA Astrophysics Data System (ADS)

    Poston, Jeffrey D.; Buehrer, R. Michael; Tarazaga, Pablo A.

    2017-05-01

    Measurements from accelerometers originally deployed to measure a building's structural dynamics can serve a new role: locating individuals moving within a building. Specifically, this paper proposes measurements of footstep-generated vibrations as a novel source of information for localization. The complexity of wave propagation in a building (e.g., dispersion and reflection) limits the utility of existing algorithms designed to locate, for example, the source of sound in a room or radio waves in free space. This paper develops enhancements for arrival time determination and time difference of arrival localization in order to address the complexities posed by wave propagation within a building's structure. Experiments with actual measurements from an instrumented public building demonstrate the potential of locating footsteps to sub-meter accuracy. Furthermore, this paper explains how to forecast performance in other buildings with different sensor configurations. This localization capability holds the potential to assist public safety agencies in building evacuation and incidence response, to facilitate occupancy-based optimization of heating or cooling and to inform facility security.

  13. Localizing Target Structures in Ultrasound Video

    PubMed Central

    Kwitt, R.; Vasconcelos, N.; Razzaque, S.; Aylward, S.

    2013-01-01

    The problem of localizing specific anatomic structures using ultrasound (US) video is considered. This involves automatically determining when an US probe is acquiring images of a previously defined object of interest, during the course of an US examination. Localization using US is motivated by the increased availability of portable, low-cost US probes, which inspire applications where inexperienced personnel and even first-time users acquire US data that is then sent to experts for further assessment. This process is of particular interest for routine examinations in underserved populations as well as for patient triage after natural disasters and large-scale accidents, where experts may be in short supply. The proposed localization approach is motivated by research in the area of dynamic texture analysis and leverages several recent advances in the field of activity recognition. For evaluation, we introduce an annotated and publicly available database of US video, acquired on three phantoms. Several experiments reveal the challenges of applying video analysis approaches to US images and demonstrate that good localization performance is possible with the proposed solution. PMID:23746488

  14. Electronic structure and magnetic anisotropy of CrO2

    NASA Astrophysics Data System (ADS)

    Toropova, A.; Kotliar, G.; Savrasov, S. Y.; Oudovenko, V. S.

    2005-05-01

    The problem of importance of strong correlations for the electronic structure, transport, and magnetic properties of half-metallic ferromagnetic CrO2 is addressed by performing density functional electronic structure calculations in the local spin density approximation (LSDA) as well as using the LSDA+U method. It is shown that the corresponding low-temperature experimental data are best fitted without accounting for the Hubbard U corrections. We conclude that the ordered phase of CrO2 is weakly correlated.

  15. Investigation of electron localization in harmonic emission from asymmetric molecular ion

    NASA Astrophysics Data System (ADS)

    Zhang, Cai-Ping; Miao, Xiang-Yang

    2015-04-01

    We theoretically investigate the electron localization around two nuclei in harmonic emission from asymmetric molecular ion. The results show that the ionization process of electron localized around one nucleus competes with its transfer process to the other nucleus. By increasing the initial vibrational level, more electrons localized around the nucleus D+ tend to transfer to the nucleus He2+ so that the ionizations of electrons localized around the nucleus He2+ increase. In this case, the difference in harmonic efficiency between HeH2+ and HeD2+ decreases while the difference in harmonic spectral structure increases. The evident minimum can be observed in the harmonic spectrum of HeH2+ compared with that in the spectral structure of HeD2+, which is due to the strong interference of multiple recombination channels originating from two nuclei. Time-dependent nuclear probability density, electron-nuclear probability density, double-well model, and time-frequency maps are presented to explain the underlying mechanisms. Project supported by the National Natural Science Foundation of China (Grant No. 11404204), the Key Project of Chinese Ministry of Education (Grant No. 211025), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111404120004), the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2009021005), and the Innovation Project for Postgraduates of Shanxi Province, China (Grant No. 20133081).

  16. Electronic structure and enthalpy of hydrogen and helium mixtures

    NASA Astrophysics Data System (ADS)

    Ross, M.; Klepeis, J. E.; Schafer, K. J.; Barbee, T. W., III

    1992-11-01

    The first local density approximation (LDA) calculations of the electronic structure, equation of state, and enthalpy of mixing were carried out for a number of different compositions of hydrogen and helium in bcc and fcc lattices. These are fully quantum mechanical, self-consistent calculations utilizing state-of-the-art methods of electron band theory, which make no assumptions regarding pressure ionization. The major approximation in the LDA method is that the exchange and correlation energy is given by a free electron functional in terms of the local electron density. The majority of previous mixture calculations start with the assumption that both hydrogen and helium are pressure-ionized so that the electronic structure is approximately that of free or weakly screened electrons in the presence of positive ions. Stevenson used a hard-sphere mixture model for the ions with an ion-ion pseudopotential to account for electron screening and predicted that a mixture containing 7% helium by number, the composition believed to be present in Jupiter and Saturn, would phase separate at a temperature of about 7000 K at 8 Mbar. Subsequent calculations carried out for the fully ionized mixture and for a mixture of screened ions (linear response theory) have all arrived at predictions similar to those of Stevenson. MacFarlane and Hubbard performed Thomas-Fermi-Dirac calculations for mixing enthalpies of hydrogen and helium in bcc and fcc lattices and predicted that phase separation would not occur at any temperature.

  17. Crossed Andreev Reflection and Spin-Resolved Non-local Electron Transport

    NASA Astrophysics Data System (ADS)

    Kalenkov, Mikhail S.; Zaikin, Andrei D.

    The phenomenon of crossed Andreev reflection (CAR) is known to play a key role in non-local electron transport across three-terminal normal-superconducting-normal (NSN) devices. Here, we review our general theory of non-local charge transport in three-terminal disordered ferromagnet-superconductor-ferromagnet (FSF) structures. We demonstrate that CAR is highly sensitive to electron spins and yields a rich variety of properties of non-local conductance, which we describe non-perturbatively at arbitrary voltages, temperature, degree of disorder, spin-dependent interface transmissions and their polarizations. We demonstrate that magnetic effects have different implications: While strong exchange field suppresses disorder-induced electron interference in ferromagnetic electrodes, spin-sensitive electron scattering at SF interfaces can drive the total non-local conductance negative at sufficiently low energies. At higher energies, magnetic effects become less important and the non-local resistance behaves similarly to the non-magnetic case. Our results can be applied to multi-terminal hybrid structures with normal, ferromagnetic and half-metallic electrodes and can be directly tested in future experiments.

  18. Transport in nanoscale systems: hydrodynamics, turbulence, and local electron heating

    NASA Astrophysics Data System (ADS)

    di Ventra, Massimiliano

    2007-03-01

    Transport in nanoscale systems is usually described as an open-boundary scattering problem. This picture, however, says nothing about the dynamical onset of steady states, their microscopic nature, or their dependence on initial conditions [1]. In order to address these issues, I will first describe the dynamical many-particle state via an effective quantum hydrodynamic theory [2]. This approach allows us to predict a series of novel phenomena like turbulence of the electron liquid [2], local electron heating in nanostructures [3], and the effect of electron viscosity on resistance [4]. I will provide both analytical results and numerical examples of first-principles electron dynamics in nanostructures using the above approach. I will also discuss possible experimental tests of our predictions. Work supported in part by NSF and DOE. [1] N. Bushong, N. Sai and M. Di Ventra, ``Approach to steady-state transport in nanoscale systems'' Nano Letters, 5 2569 (2005); M. Di Ventra and T.N. Todorov, ``Transport in nanoscale systems: the microcanonical versus grand-canonical picture,'' J. Phys. Cond. Matt. 16, 8025 (2004). [2] R. D'Agosta and M. Di Ventra, ``Hydrodynamic approach to transport and turbulence in nanoscale conductors,'' cond-mat/05123326; J. Phys. Cond. Matt., in press. [3] R. D'Agosta, N. Sai and M. Di Ventra, ``Local electron heating in nanoscale conductors,'' cond-mat/0605312; Nano Letters, in press. [4] N. Sai, M. Zwolak, G. Vignale and M. Di Ventra, ``Dynamical corrections to the DFT-LDA electron conductance in nanoscale systems,'' Phys. Rev. Lett. 94, 186810 (2005).

  19. First-principle simulations of electronic structure in semicrystalline polyethylene

    NASA Astrophysics Data System (ADS)

    Moyassari, A.; Unge, M.; Hedenqvist, M. S.; Gedde, U. W.; Nilsson, F.

    2017-05-01

    In order to increase our fundamental knowledge about high-voltage cable insulation materials, realistic polyethylene (PE) structures, generated with a novel molecular modeling strategy, have been analyzed using first principle electronic structure simulations. The PE structures were constructed by first generating atomistic PE configurations with an off-lattice Monte Carlo method and then equilibrating the structures at the desired temperature and pressure using molecular dynamics simulations. Semicrystalline, fully crystalline and fully amorphous PE, in some cases including crosslinks and short-chain branches, were analyzed. The modeled PE had a structure in agreement with established experimental data. Linear-scaling density functional theory (LS-DFT) was used to examine the electronic structure (e.g., spatial distribution of molecular orbitals, bandgaps and mobility edges) on all the materials, whereas conventional DFT was used to validate the LS-DFT results on small systems. When hybrid functionals were used, the simulated bandgaps were close to the experimental values. The localization of valence and conduction band states was demonstrated. The localized states in the conduction band were primarily found in the free volume (result of gauche conformations) present in the amorphous regions. For branched and crosslinked structures, the localized electronic states closest to the valence band edge were positioned at branches and crosslinks, respectively. At 0 K, the activation energy for transport was lower for holes than for electrons. However, at room temperature, the effective activation energy was very low (˜0.1 eV) for both holes and electrons, which indicates that the mobility will be relatively high even below the mobility edges and suggests that charge carriers can be hot carriers above the mobility edges in the presence of a high electrical field.

  20. Electron-interface phonon interaction in multiple quantum well structures

    NASA Astrophysics Data System (ADS)

    Sun, J. P.; Teng, H. B.; Haddad, G. I.; Stroscio, M. A.

    1998-08-01

    Intersubband relaxation rates due to electron interactions with the interface phonons are evaluated for multiple quantum well structures designed for step quantum well lasers operating at mid-infrared to submillimetre wavelengths. The interface phonon modes and electron-phonon interaction Hamiltonians for the structures are derived using the transfer matrix method, based on the macroscopic dielectric continuum model, whereas the electron wavefunctions are obtained by solving the Schrödinger equation. Fermi's golden rule is employed to calculate the electron relaxation rates between the subbands in these structures. The relaxation rates for two different structures are examined and compared with those calculated using the bulk phonon modes and the Fröhlich interaction Hamiltonian. The sum rule for the relationship between the form factors of the various localized phonon modes and the bulk phonon modes is verified. The results obtained in this work illustrate that the transfer matrix method provides a convenient way for deriving the properties of the interface phonon modes in different structures of current interest and that, for preferential electron relaxation in intersubband laser structures, the effects of the interface phonon modes are significant and should be considered for optimal design of these laser structures.

  1. Foil support structure for large electron guns

    SciTech Connect

    Brucker, J.P.; Rose, E.A.

    1993-08-01

    This paper describes a novel support structure for a vacuum diode used to pump a gaseous laser with an electron beam. Conventional support structures are designed to hold a foil flat and rigid. This new structure takes advantage of the significantly greater strength of metals in pure tension, utilizing curved shapes for both foil and support structure. The shape of the foil is comparable to the skin of a balloon, and the shape of the support structures is comparable to the cables of a suspension bridge. This design allows a significant reduction in foil thickness and support structure mass, resulting in a lower electron-beam loss between diode and laser gas. In addition, the foil is pre-formed in the support structure at pressures higher than operating pressure. Therefore, the foil is operated far from the yield point. Increased reliability is anticipated.

  2. A Mapping of the Electron Localization Function for Earth Materials

    SciTech Connect

    Gibbs, Gerald V.; Cox, David F.; Ross, Nancy; Crawford, T Daniel; Burt, Jason; Rosso, Kevin M.

    2005-06-01

    The electron localization function, ELF, generated for a number of geometry-optimized earth materials, provides a graphical representation of the spatial localization of the probability electron density distribution as embodied in domains ascribed to localized bond and lone pair electrons. The lone pair domains, displayed by the silica polymorphs quartz, coesite and cristobalite, are typically banana-shaped and oriented perpendicular to the plane of the SiOSi angle at ~0.60 Å from the O atom on the reflex side of the angle. With decreasing angle, the domains increase in magnitude, indicating an increase in the nucleophilic character of the O atom, rendering it more susceptible to potential electrophilic attack. The Laplacian isosurface maps of the experimental and theoretical electron density distribution for coesite substantiates the increase in the size of the domain with decreasing angle. Bond pair domains are displayed along each of the SiO bond vectors as discrete concave hemispherically-shaped domains at ~0.70 Å from the O atom. For more closed-shell ionic bonded interactions, the bond and lone pair domains are often coalesced, resulting in concave hemispherical toroidal-shaped domains with local maxima centered along the bond vectors. As the shared covalent character of the bonded interactions increases, the bond and lone pair domains are better developed as discrete domains. ELF isosurface maps generated for the earth materials tremolite, diopside, talc and dickite display banana-shaped lone pair domains associated with the bridging O atoms of SiOSi angles and concave hemispherical toroidal bond pair domains associated with the nonbridging ones. The lone pair domains in dickite and talc provide a basis for understanding the bonded interactions between the adjacent neutral layers. Maps were also generated for beryl, cordierite, quartz, low albite, forsterite, wadeite, åkermanite, pectolite, periclase, hurlbutite, thortveitite and vanthoffite. Strategies

  3. A mapping of the electron localization function for earth materials

    NASA Astrophysics Data System (ADS)

    Gibbs, G. V.; Cox, D. F.; Ross, N. L.; Crawford, T. D.; Burt, J. B.; Rosso, K. M.

    2005-06-01

    The electron localization function, ELF, generated for a number of geometry-optimized earth materials, provides a graphical representation of the spatial localization of the probability electron density distribution as embodied in domains ascribed to localized bond and lone pair electrons. The lone pair domains, displayed by the silica polymorphs quartz, coesite and cristobalite, are typically banana-shaped and oriented perpendicular to the plane of the SiOSi angle at ~0.60 Å from the O atom on the reflex side of the angle. With decreasing angle, the domains increase in magnitude, indicating an increase in the nucleophilic character of the O atom, rendering it more susceptible to potential electrophilic attack. The Laplacian isosurface maps of the experimental and theoretical electron density distribution for coesite substantiates the increase in the size of the domain with decreasing angle. Bond pair domains are displayed along each of the SiO bond vectors as discrete concave hemispherically-shaped domains at ~0.70 Å from the O atom. For more closed-shell ionic bonded interactions, the bond and lone pair domains are often coalesced, resulting in concave hemispherical toroidal-shaped domains with local maxima centered along the bond vectors. As the shared covalent character of the bonded interactions increases, the bond and lone pair domains are better developed as discrete domains. ELF isosurface maps generated for the earth materials tremolite, diopside, talc and dickite display banana-shaped lone pair domains associated with the bridging O atoms of SiOSi angles and concave hemispherical toroidal bond pair domains associated with the nonbridging ones. The lone pair domains in dickite and talc provide a basis for understanding the bonded interactions between the adjacent neutral layers. Maps were also generated for beryl, cordierite, quartz, low albite, forsterite, wadeite, åkermanite, pectolite, periclase, hurlbutite, thortveitite and vanthoffite. Strategies

  4. Variability of Protein Structure Models from Electron Microscopy.

    PubMed

    Monroe, Lyman; Terashi, Genki; Kihara, Daisuke

    2017-03-02

    An increasing number of biomolecular structures are solved by electron microscopy (EM). However, the quality of structure models determined from EM maps vary substantially. To understand to what extent structure models are supported by information embedded in EM maps, we used two computational structure refinement methods to examine how much structures can be refined using a dataset of 49 maps with accompanying structure models. The extent of structure modification as well as the disagreement between refinement models produced by the two computational methods scaled inversely with the global and the local map resolutions. A general quantitative estimation of deviations of structures for particular map resolutions are provided. Our results indicate that the observed discrepancy between the deposited map and the refined models is due to the lack of structural information present in EM maps and thus these annotations must be used with caution for further applications.

  5. Study of electronic structures of solids with strongly interacting electrons

    NASA Astrophysics Data System (ADS)

    Su, Yen-Sheng

    This work contains studies of two classes of perovskite transition metal oxides. The first class is the layered perovskite cuprates and the related nickelate. The second class is the three dimensional perovskite manganites. Both model and ab initio calculations are carried out for the two classes of systems. The dissertation is therefore divided into the following four parts. The first part is about the 3-band Hubbard model. The model is commonly used for describing the electronic properties of the important CuO2 layers in the crystals of high-Tc superconducting cuprates, such as doped La2CuO4 and YBa2Cu3O 7. The straightforward perturbation expansion on the model taking tpd/ɛpd (~0.36 for the cuprates) as the small parameter does not converge. In this work, I show that there exist canonical transformations on the model Hamiltonian such that the perturbation expansion based on the transformed Hamiltonians converges. In the second part, crystal Hartree-Fock calculations are carried out for La2NiO4 and La2CuO4. The results predict correctly that these two materials are antiferromagnetic insulators, in contrast to the wrong predictions made by the density functional calculations using the local spin density approximation (LSDA). The spin form factors of the materials are also calculated. The results agree with previous theoretical works using an embedded cluster model. The calculated spin form factor of La2CuO4 is consistent with the few experimental data currently available, while the results for La2NiO4 show a large discrepancy between theory and experiment. We question the accuracy of the experimental results of La2NiO4 and call for more experiments to settle the issue. In the third part, crystal Hartree-Fock calculations are carried out for LaMnO3. Our main focus is on the magnetic and orbital orderings, the effect of the crystal distortion from the cubic perovskite structure, and the analysis of the projected density of states. In addition, we also find

  6. Size of the localized electron emission sites on a closed multiwalled carbon nanotube.

    PubMed

    Heeres, Erwin C; Oosterkamp, Tjerk H; de Jonge, Niels

    2012-01-20

    We have measured the size of the localized electron emission sites on multiwalled carbon nanotubes (MWNTs) with caps closed by a fullerenelike structure. MWNTs were individually mounted on tungsten support tips and imaged with a field emission microscope (FEM). The magnification of the FEM was calibrated using electron ray tracing and verified by comparing transmission electron microscope images. The FEM image was also tested for effects of the lateral energy spread. We found ring-shaped emission areas with three flattened sides, of a radius of 1.7±0.3 nm, and separated by 5±1 nm. © 2012 American Physical Society

  7. Concomitant antiferromagnetic transition and disorder-induced weak localization in an interacting electron system

    NASA Astrophysics Data System (ADS)

    Ghosh, Tanmoy; Fukuda, Takashi; Kakeshita, Tomoyuki; Kaul, S. N.; Mukhopadhyay, P. K.

    2017-04-01

    In this Rapid Communication we report a phenomenon in a disordered interacting electron system. The measurements of structural, magnetic, and transport properties of FeA l2 -xG ax (0 ≤x ≤0.5 ) show that antiferromagnetic transition in these intermetallic compounds occurs concomitantly with a disorder-induced weak localization of electrons; the temperatures TN and Tm, at which antiferromagnetic transition and the weak localization respectively occur, closely track each other as the Ga concentration is varied. The antiferromagnetic transition is confirmed from the magnetic and specific heat measurements, and the occurrence of weak localization is confirmed from the temperature variation of resistivity and magnetoresistance measurements. With increasing Ga concentration, substitutional disorder in the system increases, and the consequent disorder-enhanced magnetic exchange interaction and disorder-induced fluctuations simultaneously drive antiferromagnetic transition and weak localization, respectively, to higher temperatures.

  8. Electronic structure and bonding in hydroxocobalamin

    NASA Astrophysics Data System (ADS)

    Ouyang, Lizhi; Rulis, Paul; Ching, Wai-Y.; Slouf, Miroslav; Nardin, Giorgio; Randaccio, Lucio

    2005-05-01

    The electronic structure of hydroxocobalamin (OHCbl) has been calculated by a density functional method, using the orthogonalized linear combination of the atomic orbitals method (OLCAO). The X-ray crystal structure has been determined from synchrotron X-ray diffraction data and the geometry determined was used in the calculations. Comparison with the recently reported electronic structures of cyanocobalamin (CNCbl), methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl) shows that Mulliken charges ( Q*) and bond orders (BO) vary only on the axial fragment.

  9. Electronic and optical properties of novel carbon structures

    NASA Astrophysics Data System (ADS)

    Matthews, Manyalibo Joseph

    Novel carbon structures in the form of fullerenes and disordered carbon clusters offer a wide variety of physical systems, possessing both long or short range order, which can generally be tuned through non- combustive heat-treatment at various elevated temperatures, THT. Due to the sheer complexity and diversity of the possible nanoscale arrangements, the optical and electronic properties of carbon structures with finite dimensions and crystallinity are still not fully understood. In this study, we focus mainly on the structures produced from carbonization of the hydrocarbon polymer polyparaphenylene (PPP), but we also present experimental results from carbons based on other precursors (e.g. mesophase pitch) which yield quite different structures with both comparable and contrasting physical properties. In terms of electronic properties, we show that in the low-THT PPP-based structures, which exemplify extreme disorder, the electronic states are strongly localized, giving rise to a Mott T1/4 hopping conductivity and self-trapped spin defects AS evidenced by low-temperature transport and electron spin resonance experiments. Electronic transitions which give rise to ~2-3 eV photoluminescent emissions in PPP-based structures are found to be influenced most strongly by residual semi-localized polymeric states which weakly couple to low-frequency PPP phonon modes. However, at intermediate heat-treatment temperatures (THT~ 1500[-]2500oC), all sp2-bonded carbon compounds in this study exhibit a characteristic phonon spectrum (as evidenced by Raman spectroscopy) in which disorder may be characterized by non-zone-center phonon scattering arising from finite crystallite sizes. Because of its intimate connection to carrier confinement and structural disorder, the anomalous 'disorder-induced' graphite D-band is thoroughly investigated by use of Raman spectroscopy, showing that strong dispersion effects are due to a photon-phonon coupling mediated by electronic transitions

  10. Electronic transitions in polymethine dyes involving local and delocalized levels

    NASA Astrophysics Data System (ADS)

    Viniychuk, O. O.; Levchenko, S. M.; Przhonska, O. V.; Kachkovsky, O. D.; Bricks, Yu. L.; Kudinova, M. O.; Kovtun, Yu. P.; Poronik, Ye. M.; Shandura, M. P.; Tolmachev, O. I.

    2014-02-01

    Several series of polymethine dyes containing terminal groups, which can generate the local levels close to the HOMO/LUMO energy gap, have been investigated by spectroscopic and quantum-chemical methods. The analysis of the obtained data has shown that the participation of the local levels in the electronic transitions leads to the appearance of the specific quasi-local transitions which differ from the transitions between delocalized molecular orbitals by their sensitivity to the length of the π-conjugated chromophore and to the chemical constitution of the terminal groups. These quasi-local transitions can be experimentally detected by measuring of the ordinary absorption spectra or by the excitation anisotropy spectra, in case when their low-intensive bands are covered by the intensive absorption band. In the unsymmetrical dyes, containing different terminal groups, the delocalized and quasi-local transitions can be mixed producing complicated absorption spectra with two comparatively intensive bands, and their shapes can be gradually transformed upon the lengthening of the π-conjugated chromophore.

  11. Quantum currents and pair correlation of electrons in a chain of localized dots

    NASA Astrophysics Data System (ADS)

    Morawetz, Klaus

    2017-03-01

    The quantum transport of electrons in a wire of localized dots by hopping, interaction and dissipation is calculated and a representation by an equivalent RCL circuit is found. The exact solution for the electric-field induced currents allows to discuss the role of virtual currents to decay initial correlations and Bloch oscillations. The dynamical response function in random phase approximation (RPA) is calculated analytically with the help of which the static structure function and pair correlation function are determined. The pair correlation function contains a form factor from the Brillouin zone and a structure factor caused by the localized dots in the wire.

  12. Plasmonic hot electron transport drives nano-localized chemistry

    PubMed Central

    Cortés, Emiliano; Xie, Wei; Cambiasso, Javier; Jermyn, Adam S.; Sundararaman, Ravishankar; Narang, Prineha; Schlücker, Sebastian; Maier, Stefan A.

    2017-01-01

    Nanoscale localization of electromagnetic fields near metallic nanostructures underpins the fundamentals and applications of plasmonics. The unavoidable energy loss from plasmon decay, initially seen as a detriment, has now expanded the scope of plasmonic applications to exploit the generated hot carriers. However, quantitative understanding of the spatial localization of these hot carriers, akin to electromagnetic near-field maps, has been elusive. Here we spatially map hot-electron-driven reduction chemistry with 15 nm resolution as a function of time and electromagnetic field polarization for different plasmonic nanostructures. We combine experiments employing a six-electron photo-recycling process that modify the terminal group of a self-assembled monolayer on plasmonic silver nanoantennas, with theoretical predictions from first-principles calculations of non-equilibrium hot-carrier transport in these systems. The resulting localization of reactive regions, determined by hot-carrier transport from high-field regions, paves the way for improving efficiency in hot-carrier extraction science and nanoscale regio-selective surface chemistry. PMID:28348402

  13. Plasmonic hot electron transport drives nano-localized chemistry

    NASA Astrophysics Data System (ADS)

    Cortés, Emiliano; Xie, Wei; Cambiasso, Javier; Jermyn, Adam S.; Sundararaman, Ravishankar; Narang, Prineha; Schlücker, Sebastian; Maier, Stefan A.

    2017-03-01

    Nanoscale localization of electromagnetic fields near metallic nanostructures underpins the fundamentals and applications of plasmonics. The unavoidable energy loss from plasmon decay, initially seen as a detriment, has now expanded the scope of plasmonic applications to exploit the generated hot carriers. However, quantitative understanding of the spatial localization of these hot carriers, akin to electromagnetic near-field maps, has been elusive. Here we spatially map hot-electron-driven reduction chemistry with 15 nm resolution as a function of time and electromagnetic field polarization for different plasmonic nanostructures. We combine experiments employing a six-electron photo-recycling process that modify the terminal group of a self-assembled monolayer on plasmonic silver nanoantennas, with theoretical predictions from first-principles calculations of non-equilibrium hot-carrier transport in these systems. The resulting localization of reactive regions, determined by hot-carrier transport from high-field regions, paves the way for improving efficiency in hot-carrier extraction science and nanoscale regio-selective surface chemistry.

  14. Plasmonic hot electron transport drives nano-localized chemistry.

    PubMed

    Cortés, Emiliano; Xie, Wei; Cambiasso, Javier; Jermyn, Adam S; Sundararaman, Ravishankar; Narang, Prineha; Schlücker, Sebastian; Maier, Stefan A

    2017-03-28

    Nanoscale localization of electromagnetic fields near metallic nanostructures underpins the fundamentals and applications of plasmonics. The unavoidable energy loss from plasmon decay, initially seen as a detriment, has now expanded the scope of plasmonic applications to exploit the generated hot carriers. However, quantitative understanding of the spatial localization of these hot carriers, akin to electromagnetic near-field maps, has been elusive. Here we spatially map hot-electron-driven reduction chemistry with 15 nm resolution as a function of time and electromagnetic field polarization for different plasmonic nanostructures. We combine experiments employing a six-electron photo-recycling process that modify the terminal group of a self-assembled monolayer on plasmonic silver nanoantennas, with theoretical predictions from first-principles calculations of non-equilibrium hot-carrier transport in these systems. The resulting localization of reactive regions, determined by hot-carrier transport from high-field regions, paves the way for improving efficiency in hot-carrier extraction science and nanoscale regio-selective surface chemistry.

  15. Vortical structures generated by a localized forcing

    NASA Astrophysics Data System (ADS)

    Korabel, Vasily N.

    Vortex structures (monopoles, dipoles, quadrupoles) as well as more complex structures (vortex streets) are fundamental elements of geophysical turbulence. Because they can effectively transport momentum, heat, salt and biochemical products, they play an essential role in ocean dynamics. Organized vortex structures are a well known feature of quasi-two-dimensional flows where motion in one direction is suppressed due to one of the following physical mechanisms: background rotation of the system, density stratification or geometrical restrictions such as for the flows in thin layers or soap films. Vortex dipoles are formed in a viscous fluid when a force is applied locally to some volume of fluid. If the force acts impulsively, a translating vortex dipole is generated. If the force starts at t = 0 and then acts continuously a starting jet with a dipole at its front is generated. Solutions for unsteady viscous flows generated by the action of continuous or impulsive localized forces are obtained in Oseen approximation. The solutions are compared with direct numerical simulations of vortex dipoles as well as with laboratory experiments. The comparison shows good quantitative agreement in both cases. A physical problem where the localized force acting continuously on fluid is placed in a uniform stream is equivalent to a problem of a fixed body in a uniform stream, while the couple of forces acting in opposite direction are equivalent to the problem of self-propelled body moving at constant velocity through a fluid. The solutions for the two-dimensional far-field wake are obtained in both cases. At a certain Reynolds number, wakes become unstable and form vortex streets. New series of high-resolution 2D numerical simulations is performed to study the characteristics of the wakes including the shedding frequency for a wide range of control parameters such as translational velocity, magnitude and spatial extent of a localized force. The results of numerical experiments

  16. Electronic Structure and Phase Stability of PdPt Nanoparticles.

    PubMed

    Ishimoto, Takayoshi; Koyama, Michihisa

    2016-03-03

    To understand the origin of the physicochemical nature of bimetallic PdPt nanoparticles, we theoretically investigated the phase stability and electronic structure employing the PdPt nanoparticles models consisting of 711 atoms (ca. 3 nm). For the Pd-Pt core-shell nanoparticle, the PdPt solid-solution phase was found to be a thermodynamically stable phase in the nanoparticle as the result of difference in surface energy of Pd and Pt nanoparticles and configurational entropy effect, while it is well known that the Pd and Pt are the immiscible combination in the bulk phase. The electronic structure of nanoparticles is conducted to find that the electron transfer occurs locally within surface and subsurface layers. In addition, the electron transfer from Pd to Pt at the interfacial layers in core-shell nanoparticles is observed, which leads to unique geometrical and electronic structure changes. Our results show a clue for the tunability of the electronic structure of nanoparticles by controlling the arrangement in the nanoparticles.

  17. Electronic structure and polarizability of metallic nanoshells

    NASA Astrophysics Data System (ADS)

    Prodan, E.; Nordlander, P.

    2002-01-01

    An efficient method for the calculation of the electronic structure of metallic nanoshells is developed. The method is applied to a large nanoshell (of 10 nm in diameter) containing more than 2.5×10 4 conduction electrons. The calculations show that the density of states of the nanoshell is relatively bulk-like. The frequency dependent polarizability is calculated and shown to display strong confinement effects and features similar to what is predicted by semi-classical electrodynamic theory.

  18. Software abstractions and computational issues in parallel structure adaptive mesh methods for electronic structure calculations

    SciTech Connect

    Kohn, S.; Weare, J.; Ong, E.; Baden, S.

    1997-05-01

    We have applied structured adaptive mesh refinement techniques to the solution of the LDA equations for electronic structure calculations. Local spatial refinement concentrates memory resources and numerical effort where it is most needed, near the atomic centers and in regions of rapidly varying charge density. The structured grid representation enables us to employ efficient iterative solver techniques such as conjugate gradient with FAC multigrid preconditioning. We have parallelized our solver using an object- oriented adaptive mesh refinement framework.

  19. Electronic structures of hydrogenated Si(001) surfaces

    NASA Astrophysics Data System (ADS)

    Lee, Seung Mi; Lee, Young Hee

    1996-02-01

    We have studied the electronic structure of clean and hydrogenated Si(001) surfaces via the empirical tight-binding total energy scheme. In the clean Si(001) surface, several reconstructed structures such as symmetric (2 × 1), buckled (2 × 1), p(2 × 2), and are studied. We find that higher-orderings such as the c(4 × 2) and p(2 × 2) are energetically favorable configurations. The electr density of states of these structures are also provided and compared with experimental results. In the hydrogenated Si(001) surface, there are three stable structures: monohydride, dihydride, and a (3 × 1) phase upon hydrogen coverage. We suggest that the electronic density of states can provide a way to distinguish the respective structures by several characteristic hydrogen-related peaks. These are further compared with experimental results.

  20. Symmetry breaking and hole localization in multiple core electron ionization.

    PubMed

    Carravetta, V; Ågren, H

    2013-08-08

    Motivated by recent opportunitites to study hollow molecules with multiple core holes offered by X-ray free electron lasers, we revisit the core-hole localization and symmetry breaking problem, now studying ionization of more than one core electron. It is shown, using a N2 molecule with one, two, three, and four core holes, for example, that in a multiconfigurational determination of the core ionization potentials employing a molecular point group with broken inversion symmetry, one particular configuration is sufficient to account for the symmetry breaking relaxation energy in an independent particle approximation in the case of one or three holes, whereas the choice of point group symmetry is unessential for two and four holes. The relaxation energy follows a quadratic dependence on the number of holes in both representations.

  1. The local electron affinity for non-minimal basis sets.

    PubMed

    Clark, Timothy

    2010-07-01

    A technique known as intensity filtering is introduced to select valence-like virtual orbitals for calculating the local electron affinity, EA(L). Intensity filtering allows EA(L) to be calculated using semiempirical molecular orbital techniques that include polarisation functions. Without intensity filtering, such techniques yield spurious EA(L) values that are dominated by the polarisation functions. As intensity filtering should also be applicable for ab initio or density functional theory calculations with large basis sets, it also makes EA(L) available for these techniques.

  2. Defect Induced Electronic Structure of Uranofullerene

    PubMed Central

    Dai, Xing; Cheng, Cheng; Zhang, Wei; Xin, Minsi; Huai, Ping; Zhang, Ruiqin; Wang, Zhigang

    2013-01-01

    The interaction between the inner atoms/cluster and the outer fullerene cage is the source of various novel properties of endohedral metallofullerenes. Herein, we introduce an adatom-type spin polarization defect on the surface of a typical endohedral stable U2@C60 to predict the associated structure and electronic properties of U2@C61 based on the density functional theory method. We found that defect induces obvious changes in the electronic structure of this metallofullerene. More interestingly, the ground state of U2@C61 is nonet spin in contrast to the septet of U2@C60. Electronic structure analysis shows that the inner U atoms and the C ad-atom on the surface of the cage contribute together to this spin state, which is brought about by a ferromagnetic coupling between the spin of the unpaired electrons of the U atoms and the C ad-atom. This discovery may provide a possible approach to adapt the electronic structure properties of endohedral metallofullerenes. PMID:23439318

  3. Pair 2-electron reduced density matrix theory using localized orbitals

    NASA Astrophysics Data System (ADS)

    Head-Marsden, Kade; Mazziotti, David A.

    2017-08-01

    Full configuration interaction (FCI) restricted to a pairing space yields size-extensive correlation energies but its cost scales exponentially with molecular size. Restricting the variational two-electron reduced-density-matrix (2-RDM) method to represent the same pairing space yields an accurate lower bound to the pair FCI energy at a mean-field-like computational scaling of O (r3) where r is the number of orbitals. In this paper, we show that localized molecular orbitals can be employed to generate an efficient, approximately size-extensive pair 2-RDM method. The use of localized orbitals eliminates the substantial cost of optimizing iteratively the orbitals defining the pairing space without compromising accuracy. In contrast to the localized orbitals, the use of canonical Hartree-Fock molecular orbitals is shown to be both inaccurate and non-size-extensive. The pair 2-RDM has the flexibility to describe the spectra of one-electron RDM occupation numbers from all quantum states that are invariant to time-reversal symmetry. Applications are made to hydrogen chains and their dissociation, n-acene from naphthalene through octacene, and cadmium telluride 2-, 3-, and 4-unit polymers. For the hydrogen chains, the pair 2-RDM method recovers the majority of the energy obtained from similar calculations that iteratively optimize the orbitals. The localized-orbital pair 2-RDM method with its mean-field-like computational scaling and its ability to describe multi-reference correlation has important applications to a range of strongly correlated phenomena in chemistry and physics.

  4. The Electronic Structure of Heavy Element Complexes

    SciTech Connect

    Bursten, Bruce E.

    2000-07-25

    The area of study is the bonding in heavy element complexes, and the application of more sophisticated electronic structure theories. Progress is recounted in several areas: (a) technological advances and current methodologies - Relativistic effects are extremely important in gaining an understanding of the electronic structure of compounds of the actinides, transactinides, and other heavy elements. Therefore, a major part of the continual benchmarking was the proper inclusion of the appropriate relativistic effects for the properties under study. (b) specific applications - These include organoactinide sandwich complexes, CO activation by actinide atoms, and theoretical studies of molecules of the transactinide elements. Finally, specific directions in proposed research are described.

  5. Boron Fullerenes: An Electronic Structure Study

    NASA Astrophysics Data System (ADS)

    Sadrzadeh, Arta; Pupysheva, Olga; Boustani, Ihsan; Yakobson, Boris

    2008-03-01

    Using ab initio calculations, we study electronic structure and frequency modes of B80, a member of boron fullerene family made from boron isomorphs of carbon fullerenes with additional atoms in the centers of hexagons. We also investigate geometrical and electronic structural properties of double-rings with various diameters, which are important as building blocks of boron nanotubes, and as the most stable clusters among the studied isomers with no more than 36 atoms. Double-rings also appear as building blocks of B80. Furthermore, we investigate the possibility of further stabilizing some of fullerenes by depleting them.

  6. Localization and structure of carbonaceous deposits on reforming catalysts

    SciTech Connect

    Espinat, D.; Freund, E.; Martino, G. ); Dexpert, H. , Orsay )

    1990-12-01

    The aging of alumina-supported Pt-containing reforming catalysts by coke deposition has previously been extensively investigated. In the present work, a large number of techniques including optical and electron microscopy have been used to determine both the localization and the structure of the so-called coke (carbonaceous deposits) formed during the normal operation of these catalysts. The coke is not uniformly deposited on the surface of the catalysts. Its structure is not uniform for a given catalyst, and depends on the operating condition (especially the H{sub 2}/hydrocarbon ratio) as well as the composition of the metallic phase (pure platinum or multimetallic alloy). The structure is always rather well organized (pregraphitic) even at the onset of coke deposition.

  7. Electronic structure of Gd-doped MgO

    NASA Astrophysics Data System (ADS)

    Lukoyanov, A. V.; Anisimov, V. I.

    2016-02-01

    The electronic structure of Gd-doped MgO is investigated using the LSDA+U (local spin density approximation with U-correction) method and compared with the MgO structure. The total density of states obtained accounting for the correlation effects in the 4 f shell of gadolinium is found to be formed by the oxygen 2 p states at the valence band and the 4 f gadolinium occupied states, while the conduction band is represented by a mixture of empty electronic states. Magnetic properties of the calculated Gd-doped MgO are found to be formed solely by the Gd-4 f-magnetic moment of about 7μB, in good agreement with recent experimental results suggesting a ferromagnetic coupling of the local magnetic moments induced by Gd.

  8. Localization of Electronic States in III-V Semiconductor Alloys: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Pashartis, C.; Rubel, O.

    2017-06-01

    Electronic properties of III-V semiconductor alloys are examined using first principles, with the focus on the spatial localization of electronic states. We compare localization at the band edges due to various isovalent impurities in a host GaAs, including its impact on the photoluminescence linewidths and carrier mobilities. The extremity of localization at the band edges is correlated with the ability of individual elements to change the band gap and the relative band alignment. Additionally, the formation energies of substitutional defects are calculated and linked to challenges associated with the growth and formability of alloys. A spectrally resolved inverse participation ratio is used to map localization in prospective GaAs-based materials alloyed with B, N, In, Sb, and Bi for 1.55 -μ m -wavelength telecommunication lasers. This analysis is complemented by a band unfolding of the electronic structure and a discussion of the implications of localization on the optical gain and Auger losses. Correspondence with experimental data on the broadening of the photoluminescence spectrum and charge-carrier mobilities show that the localization characteristics can serve as a guideline for the engineering of semiconductor alloys.

  9. Structural and electronic properties of small silicon clusters

    NASA Astrophysics Data System (ADS)

    Baturin, V. S.; Lepeshkin, S. V.; Magnitskaya, M. V.; Matsko, N. L.; Uspenskii, Yu A.

    2014-05-01

    The atomic structure and electronic spectrum of silicon nanoclusters (Si-ncs) Si7, Si10,Si10H16 and Si10H20 are calculated using the evolutionary algorithm with total energy computed within density functional theory and generalized gradient approximation (DFT-GGA). When analysing the low-energy structures, we pay significant attention to their symmetry and interatomic bond geometry. The candidate structures arising in the process of evolutionary algorithm convergence are also considered and classified by their topology and grouping near local energy minima. Possible ways to improve the convergence of evolutionary computation are discussed. Addressing qualitative criteria for the ground-state atomic structure of Si-ncs, we consider correlations between the density of electronic states and the total energetics of clusters in the ground state and low-energy-isomer configurations.

  10. Atomic and electronic structures of novel silicon surface structures

    SciTech Connect

    Terry, J.H. Jr.

    1997-03-01

    The modification of silicon surfaces is presently of great interest to the semiconductor device community. Three distinct areas are the subject of inquiry: first, modification of the silicon electronic structure; second, passivation of the silicon surface; and third, functionalization of the silicon surface. It is believed that surface modification of these types will lead to useful electronic devices by pairing these modified surfaces with traditional silicon device technology. Therefore, silicon wafers with modified electronic structure (light-emitting porous silicon), passivated surfaces (H-Si(111), Cl-Si(111), Alkyl-Si(111)), and functionalized surfaces (Alkyl-Si(111)) have been studied in order to determine the fundamental properties of surface geometry and electronic structure using synchrotron radiation-based techniques.

  11. The local magnetic moment and electron transfer of ZnO-based dilute magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Zhuang, Bin; Yang, Yanmin; Zhong, Kehua; Zhang, Jian-Min; Xu, Guigui; Huang, Zhigao

    2017-05-01

    The electronic structures and magnetic properties of ZnO semiconductors doped with Cu, Co, C, Al and S are studied by first-principles calculation. The electronic transfer among Zn, O and doped atoms, and the differences of the number of electron between spin-up and spin-down, Δs, Δp, Δd for s, p and d orbits of these atoms, are analyzed in detail. It is found that, the ferromagnetic ground state is stabilized by its half-metallic electronic structure, and the strong local magnetic moments in Zn1-xCoxO, Zn1-xCuxO and ZnO1-xCx (x = 5.55%) DMSs originate mainly from the strong hybridizations between Cu-3d and O-2p, Co-3d and O-2p, Zn-3d and C-2p electrons. It is considered that the requirements to give rise to the ferromagnetism in the DMSs are the strong local magnetic moment and the electron transfer. The magnetic coupling in Zn1-xCoxO, Zn1-xCuxO and ZnO1-xCx is also considered to be a RKKY interaction.

  12. Creating and Probing Graphene Electron Optics with Local Scanning Probes

    NASA Astrophysics Data System (ADS)

    Stroscio, Joseph

    Ballistic propagation and the light-like dispersion of graphene charge carriers make graphene an attractive platform for optics-inspired graphene electronics where gate tunable potentials can control electron refraction and transmission. In analogy to optical wave propagation in lenses, mirrors and metamaterials, gate potentials can be used to create a negative index of refraction for Veselago lensing and Fabry-Pérot interferometers. In circular geometries, gate potentials can induce whispering gallery modes (WGM), similar to optical and acoustic whispering galleries albeit on a much smaller length scale. Klein scattering of Dirac carriers plays a central role in determining the coherent propagation of electron waves in these resonators. In this talk, I examine the probing of electron resonators in graphene confined by linear and circular gate potentials with the scanning tunneling microscope (STM). The tip in the STM tunnel junction serves both as a tunable local gate potential, and as a probe of the graphene states through tunneling spectroscopy. A combination of a back gate potential, Vg, and tip potential, Vb, creates and controls a circular pn junction that confines the WGM graphene states. The resonances are observed in two separate channels in the tunneling spectroscopy experiment: first, by directly tunneling into the state at the bias energy eVb, and, second, by tunneling from the resonance at the Fermi level as the state is gated by the tip potential. The second channel produces a fan-like set of WGM peaks, reminiscent of the fringes seen in planar geometries by transport measurements. The WGM resonances split in a small applied magnetic field, with a large energy splitting approaching the WGM spacing at 0.5 T. These results agree well with recent theory on Klein scattering in graphene electron resonators. This work is done in collaboration with Y. Zhao, J. Wyrick, F.D. Natterer, J. F. Rodriquez-Nieva, C. Lewandoswski, K. Watanabe, T. Taniguchi, N. B

  13. Computation of Local and Global Properties of the Electron Localization Function Topology in Crystals.

    PubMed

    Contreras-García, J; Pendás, A Martín; Recio, J M; Silvi, B

    2009-01-13

    We present a novel computational procedure, general, automated, and robust, for the analysis of local and global properties of the electron localization function (ELF) in crystalline solids. Our algorithm successfully faces the two main shortcomings of the ELF analysis in crystals: (i) the automated identification and characterization of the ELF induced topology in periodic systems, which is impeded by the great number and concentration of critical points in crystalline cells, and (ii) the localization of the zero flux surfaces and subsequent integration of basins, whose difficulty is due to the diverse (in many occasions very flat or very steep) ELF profiles connecting the set of critical points. Application of the new code to representative crystals exhibiting different bonding patterns is carried out in order to show the performance of the algorithm and the conceptual possibilities offered by the complete characterization of the ELF topology in solids.

  14. Light-induced electron localization in a quantum Hall system

    NASA Astrophysics Data System (ADS)

    Arikawa, T.; Hyodo, K.; Kadoya, Y.; Tanaka, K.

    2017-07-01

    An insulating bulk state is a prerequisite for the protection of topological edge states. In quantum Hall systems, the thermal excitation of delocalized electrons is the main route to breaking bulk insulation. In equilibrium, the only way to achieve a clear bulk gap is to use a high-quality crystal under high magnetic field at low temperature. However, bulk conduction could also be suppressed in a system driven out of equilibrium such that localized states in the Landau levels are selectively occupied. Here we report a transient suppression of bulk conduction induced by terahertz wave excitation between the Landau levels in a GaAs quantum Hall system. Strikingly, the Hall resistivity almost reaches the quantized value at a temperature where the exact quantization is normally disrupted by thermal fluctuations. The electron localization is realized by the long-range potential fluctuations, which are a unique and inherent feature of quantum Hall systems. Our results demonstrate a new means of effecting dynamical control of topology by manipulating bulk conduction using light.

  15. First-Principles-Based Method for Electron Localization: Application to Monolayer Hexagonal Boron Nitride.

    PubMed

    Ekuma, C E; Dobrosavljević, V; Gunlycke, D

    2017-03-10

    We present a first-principles-based many-body typical medium dynamical cluster approximation and density function theory method for characterizing electron localization in disordered structures. This method applied to monolayer hexagonal boron nitride shows that the presence of boron vacancies could turn this wide-gap insulator into a correlated metal. Depending on the strength of the electron interactions, these calculations suggest that conduction could be obtained at a boron vacancy concentration as low as 1.0%. We also explore the distribution of the local density of states, a fingerprint of spatial variations, which allows localized and delocalized states to be distinguished. The presented method enables the study of disorder-driven insulator-metal transitions not only in h-BN but also in other physical materials.

  16. First-Principles-Based Method for Electron Localization: Application to Monolayer Hexagonal Boron Nitride

    NASA Astrophysics Data System (ADS)

    Ekuma, C. E.; Dobrosavljević, V.; Gunlycke, D.

    2017-03-01

    We present a first-principles-based many-body typical medium dynamical cluster approximation and density function theory method for characterizing electron localization in disordered structures. This method applied to monolayer hexagonal boron nitride shows that the presence of boron vacancies could turn this wide-gap insulator into a correlated metal. Depending on the strength of the electron interactions, these calculations suggest that conduction could be obtained at a boron vacancy concentration as low as 1.0%. We also explore the distribution of the local density of states, a fingerprint of spatial variations, which allows localized and delocalized states to be distinguished. The presented method enables the study of disorder-driven insulator-metal transitions not only in h -BN but also in other physical materials.

  17. Structural and electronic properties of a tetrahedral amorphous carbon surface

    NASA Astrophysics Data System (ADS)

    Dong, Jianjun; Drabold, D. A.

    1997-03-01

    We present ab initio studies of a model of tetrahedral amorphous carbon (ta-C) surface. Our methodology is LDA (with Harris functional and local basis) molecular dynamics simulations. The surface is modeled by a 216 atom slab supercell. Several candidate slabs are constructed by starting with the DTW model (B.R. Djordjevic, M.F. Thorpe and F. Wooten, Phys. Rev. B 52) 5685 (1995) and applying various simulated heating/quenching cycles. We analyze the structural and electronic properties of the surface , with special attention forcused on the electronic signatures of surface structural defects. Preliminary results indicate that the surface layer significantly graphitizes, and many surface gap states are present in the electronic density of states.

  18. Electronic and structural properties of functional nanostructures

    NASA Astrophysics Data System (ADS)

    Yang, Teng

    In this Thesis, I present a study of electronic and structural properties of functional nanostructures such as MoSxIy nanowires, self-assembled monolayer on top of metallic surfaces and structural changes induced in graphite by photo excitations. MoSxI y nanowires, which can be easily synthesized in one step, show many advantages over conventional carbon nanotubes in molecular electronics and many other applications. But how to self-assemble them into desired pattern for practical electronic network? Self-assembled monolayers of polymers on metallic surfaces may help to guide pattern formation of some nanomaterials such as MoSxIy nanowires. I have investigated the physical properties of these nanoscale wires and microscopic self-assembly mechanisms of patterns by total energy calculations combined with molecular dynamics simulations and structure optimization. First, I studied the stability of novel Molybdenum chaicohalide nanowires, a candidate for molecular electronics applications. Next, I investigated the self-assembly of nanoparticles into ordered arrays with the aid of a template. Such templates, I showed, can be formed by polymer adsorption on surfaces such as highly ordered pyrolytic graphite and Ag(111). Finally, I studied the physical origin of of structural changes induced in graphite by light in form of a femtosecond laser pulse.

  19. Structure refinement from precession electron diffraction data.

    PubMed

    Palatinus, Lukáš; Jacob, Damien; Cuvillier, Priscille; Klementová, Mariana; Sinkler, Wharton; Marks, Laurence D

    2013-03-01

    Electron diffraction is a unique tool for analysing the crystal structures of very small crystals. In particular, precession electron diffraction has been shown to be a useful method for ab initio structure solution. In this work it is demonstrated that precession electron diffraction data can also be successfully used for structure refinement, if the dynamical theory of diffraction is used for the calculation of diffracted intensities. The method is demonstrated on data from three materials - silicon, orthopyroxene (Mg,Fe)(2)Si(2)O(6) and gallium-indium tin oxide (Ga,In)(4)Sn(2)O(10). In particular, it is shown that atomic occupancies of mixed crystallographic sites can be refined to an accuracy approaching X-ray or neutron diffraction methods. In comparison with conventional electron diffraction data, the refinement against precession diffraction data yields significantly lower figures of merit, higher accuracy of refined parameters, much broader radii of convergence, especially for the thickness and orientation of the sample, and significantly reduced correlations between the structure parameters. The full dynamical refinement is compared with refinement using kinematical and two-beam approximations, and is shown to be superior to the latter two.

  20. Robust and controllable electronic local transports in armchair silicene nanoribbons under a perpendicular electric field

    NASA Astrophysics Data System (ADS)

    Chen, Xiongwen; Shi, Zhengang; Chen, Baoju; Song, Kehui

    2017-08-01

    We study the electronic local distribution and transports in pristine armchair-edge silicene nanoribbons (ASiNRs) based on the tight-binding approximation. By calculating the local densities of states at different sites and the bond current between two adjacent sites, we show that comparing to the pristine armchair-edge graphene nanoribbons, a similar “3j” rule and multiple low-electron transport channels exist in the pristine (3p + 2)-ASiNRs. However, differently, they are controllable to appear and disappear by applying an electric field perpendicular to the ribbon plane. Therefore, one can manipulate the semiconducting channels and realize the current switch “on/off,” unchanging their structures. Moreover, the results are robust against the edge-passivation and a few structural defects, which ensures their stability for the practical application in the silicene-based device.

  1. Electron localization in a mixed-valence diniobium benzene complex

    DOE PAGES

    Gianetti, Thomas L.; Nocton, Grégory; Minasian, Stefan G.; ...

    2014-11-11

    Reaction of the neutral diniobium benzene complex {[Nb(BDI)NtBu]2(μ-C6H6)} (BDI = N,N'-diisopropylbenzene-β-diketiminate) with Ag[B(C6F5)4] results in a single electron oxidation to produce a cationic diniobium arene complex, {[Nb(BDI)NtBu]2(μ-C6H6)}{B(C6F5)4}. Investigation of the solid state and solution phase structure using single-crystal X-ray diffraction, cyclic voltammetry, magnetic susceptibility, and multinuclear NMR spectroscopy indicates that the oxidation results in an asymmetric molecule with two chemically inequivalent Nb atoms. Further characterization using density functional theory (DFT) calculations, UV-visible, Nb L3,2-edge X-ray absorption near-edge structure (XANES), and EPR spectroscopies supports assignment of a diniobium complex, in which one Nb atom carries a single unpaired electron that ismore » not largely delocalized on the second Nb atom. During the oxidative transformation, one electron is removed from the δ-bonding HOMO, which causes a destabilization of the molecule and formation of an asymmetric product. Subsequent reactivity studies indicate that the oxidized product allows access to metal-based chemistry with substrates that did not exhibit reactivity with the starting neutral complex.« less

  2. Electron localization in a mixed-valence diniobium benzene complex

    SciTech Connect

    Gianetti, Thomas L.; Nocton, Grégory; Minasian, Stefan G.; Kaltsoyannis, Nikolas; Kilcoyne, A. L. David; Kozimor, Stosh A.; Shuh, David K.; Tyliszczak, Tolek; Bergman, Robert G.; Arnold, John

    2014-11-11

    Reaction of the neutral diniobium benzene complex {[Nb(BDI)NtBu]2(μ-C6H6)} (BDI = N,N'-diisopropylbenzene-β-diketiminate) with Ag[B(C6F5)4] results in a single electron oxidation to produce a cationic diniobium arene complex, {[Nb(BDI)NtBu]2(μ-C6H6)}{B(C6F5)4}. Investigation of the solid state and solution phase structure using single-crystal X-ray diffraction, cyclic voltammetry, magnetic susceptibility, and multinuclear NMR spectroscopy indicates that the oxidation results in an asymmetric molecule with two chemically inequivalent Nb atoms. Further characterization using density functional theory (DFT) calculations, UV-visible, Nb L3,2-edge X-ray absorption near-edge structure (XANES), and EPR spectroscopies supports assignment of a diniobium complex, in which one Nb atom carries a single unpaired electron that is not largely delocalized on the second Nb atom. During the oxidative transformation, one electron is removed from the δ-bonding HOMO, which causes a destabilization of the molecule and formation of an asymmetric product. Subsequent reactivity studies indicate that the oxidized product allows access to metal-based chemistry with substrates that did not exhibit reactivity with the starting neutral complex.

  3. Evidence of local power deposition and electron heating by a standing electromagnetic wave in electron-cyclotron-resonance plasma.

    PubMed

    Durocher-Jean, A; Stafford, L; Dap, S; Makasheva, K; Clergereaux, R

    2014-09-01

    Microwave plasmas excited at electron-cyclotron resonance were studied in the 0.5-15 mTorr pressure range. In contrast with low-limit pressure conditions where the plasma emission highlights a fairly homogeneous spatial structure, a periodic spatial modulation (period ∼6.2 cm) appeared as pressure increased. This feature is ascribed to a local power deposition (related to the electron density) due to the presence of a standing electromagnetic wave created by the feed electromagnetic field (2.45 GHz) in the cavity formed by the reactor walls. Analysis of the electron energy probability function by Langmuir probe and optical emission spectroscopy further revealed the presence of a high-energy tail that showed strong periodic spatial modulation at higher pressure. The spatial evolution of the electron density and of the characteristic temperature of these high-energy electrons coincides with the nodes (maximum) and antinodes (minimum) of the standing wave. These spatially-modulated power deposition and electron heating mechanisms are then discussed.

  4. Local electron-electron interaction strength in ferromagnetic nickel determined by spin-polarized positron annihilation

    PubMed Central

    Ceeh, Hubert; Weber, Josef Andreass; Böni, Peter; Leitner, Michael; Benea, Diana; Chioncel, Liviu; Ebert, Hubert; Minár, Jan; Vollhardt, Dieter; Hugenschmidt, Christoph

    2016-01-01

    We employ a positron annihilation technique, the spin-polarized two-dimensional angular correlation of annihilation radiation (2D-ACAR), to measure the spin-difference spectra of ferromagnetic nickel. The experimental data are compared with the theoretical results obtained within a combination of the local spin density approximation (LSDA) and the many-body dynamical mean-field theory (DMFT). We find that the self-energy defining the electronic correlations in Ni leads to anisotropic contributions to the momentum distribution. By direct comparison of the theoretical and experimental results we determine the strength of the local electronic interaction U in ferromagnetic Ni as 2.0 ± 0.1 eV. PMID:26879249

  5. Stepwise deprotonation of sumanene: electronic structures, energetics and aromaticity alterations.

    PubMed

    Xu, Qi; Petrukhina, Marina A; Rogachev, Andrey Yu

    2017-08-16

    The first comprehensive theoretical investigation of structural, energetic, and electronic changes in a sumanene skeleton, C21H12, upon a step-wise deprotonation process is performed. This study is complemented by a detailed consideration of aromaticity in target bowl-shaped systems, including neutral sumanene and its three deprotonated anions, namely C21H11(1-), C21H10(2-), and C21H9(3-). In order to obtain the most reliable and method-independent characteristics, a set of aromatic descriptors of different nature has been applied. It included structure-based HOMA, topological descriptors PDI and FLU, as well as magnetic NICS and ACID. The calculation results reveal that the neutral sumanene can be best described as mechanically bent triphenylene, in which π-conjugation is mostly localized over three peripheral 6-membered rings. Sequential deprotonation changed the system from the localized mono-anionic to semi-localized di-anionic, and eventually to the fully delocalized tri-anionic sumanenyl species. Structural changes, namely, bond equalization upon the deprotonation process, are in excellent agreement with alterations observed in electronic structures and aromaticity. Deprotonation results in a significant reduction of the barrier for a bowl-to-bowl transition only in the tri-anionic sumanenyl system, whereas the first and the second deprotonation steps show no notable effect. This clearly indicates that only complete aromatization of the sumanene core in C21H9(3-) leads to a substantial increase of bowl flexibility.

  6. Electronic structure engineering of various structural phases of phosphorene.

    PubMed

    Kaur, Sumandeep; Kumar, Ashok; Srivastava, Sunita; Tankeshwar, K

    2016-07-21

    We report the tailoring of the electronic structures of various structural phases of phosphorene (α-P, β-P, γ-P and δ-P) based homo- and hetero-bilayers through in-plane mechanical strains, vertical pressure and transverse electric field by employing density functional theory. In-plane biaxial strains have considerably modified the electronic bandgap of both homo- and hetero-bilayers while vertical pressure induces metallization in the considered structures. The γ-P homo-bilayer structure showed the highest ultimate tensile strength (UTS ∼ 6.21 GPa) upon in-plane stretching. Upon application of a transverse electric field, the variation in the bandgap of hetero-bilayers was found to be strongly dependent on the polarity of the applied field which is attributed to the counterbalance between the external electric field and the internal field induced by different structural phases and heterogeneity in the arrangements of atoms of each surface of the hetero-bilayer system. Our results demonstrate that the electronic structures of the considered hetero- and homo-bilayers of phosphorene could be modified by biaxial strain, pressure and electric field to achieve the desired properties for future nano-electronic devices.

  7. [Structured electronic consultation letter for shoulder disorders].

    PubMed

    Paloneva, Juha; Oikari, Marjo; Ylinen, Jari; Ingalsuo, Minna; Ilkka, Kunnamo; Ilkka, Kiviranta

    2012-01-01

    Referral to a specialist has a significant influence on management of the patient and costs associated with the treatments. However, development and research of the process by which patients are referred has been almost neglected. Expectations considering the purpose, contents, and timing of the referral of the consulting physician and the consultant do not always meet. A structured, electronic consultation letter was developed to respond this need. Functionality and interactivity are the key elements of the referral, including (1) an electronic referral letter to a specialist, (2) interactive education in clinical examination and management of shoulder disorders, and (3) an instrument of clinical examination and documentation of shoulder disorders.

  8. [Localization of the apical foramen using the newest electronic instruments: stereomicroscopy and SEM (scanning electron microscopy)].

    PubMed

    Pagavino, G; Diamante, D; Marri, M; Pace, R

    1995-11-01

    Introduction of double impedence as new parameter in root canal length electronic measurement allowed first and second generation electronic apical localizers main problems overcoming: precision failure in presence of conducting fluids. Our study's purpose was an in vitro evaluation of two third generation instruments (Apit-Osada and Root ZX-Morita Corp.) ability in apical foramen localization using sodium hypoclorite as irrigating solution. 40 human monorooted teeth with immature apex were studied. 20 samples were measured by Apit and 20 by Root ZX; measurements were recorded when apical foramen was reached. Samples were fixed for stereomicroscope observation before and after apical 3 mm worn and prepared for SEM observation. Evaluations about each system's precision were made by calculating difference between foramen position determined by electronic localizer and its real anatomical position determined by a computed image analizing system linked to SEM. All measurements were included between a minimum value of -0.45 mm and a maximum value of 0.26 mm. Mann Whithney U test was performed to compare average values of the two sample groups but his was not meaningful (p = 0.18) showing that there is no valuable difference in accuracy between Apit and Root ZX. According to most researchers, who consider a +/- 0.5 mm error range clinically acceptable, and considering that in vitro measurements never exceded this limit value we conclude confirming both instruments' safety.

  9. Compositional dependence of the local structure of Se{sub x}Te{sub 1-x} alloys: Electron energy-loss spectra, real-space multiple-scattering calculations, and first-principles molecular dynamics

    SciTech Connect

    Katcho, N. A.; Lomba, E.; Urones-Garrote, E.; Otero-Diaz, L. C.; Landa-Canovas, A. R.

    2006-06-01

    In this work we present an investigation on the composition dependence of the local structure in Se{sub x}Te{sub 1-x} crystalline alloys analyzing their experimental energy-loss spectra with the aid of a real-space multiple-scattering modeling approach and first-principles molecular dynamics. The concourse of this latter technique is essential for a proper modeling of the alloy spectra. From our results, it can be inferred that Se{sub x}Te{sub 1-x} alloys exhibit a high degree of substitutional disorder ruling out the existence of fully ordered alternating copolymer chains of Se and Te atoms.

  10. The electronic structure of nonpolyhex carbon nanotubes.

    PubMed

    László, István

    2004-01-01

    Generalizing the folding method to any periodic two-dimensional planar carbon structures we have calculated the corresponding electronic structures in the framework of the one orbital one site tight-binding (Bloch-Hückel) method by solving the eigenvalue problems in a numerical way. We discussed the metallic or the nonmetallic behavior of the nanotubes by applying the folding vectors of parameters (m, n). We extended the topological coordinate method to two-dimensional periodic planar structures as well. Nearly regular hexagonal, pentagonal, and heptagonal polygons were obtained. The curvatures of the final relaxed structures can be read from the sizes of the polygons. Thus relying only on the topological information we could describe the shape of the tubular structures and their conductivity behaviors.

  11. Probing Structural and Electronic Dynamics with Ultrafast Electron Microscopy

    SciTech Connect

    Plemmons, DA; Suri, PK; Flannigan, DJ

    2015-05-12

    In this Perspective, we provide an overview,of the field of ultrafast electron microscopy (UEM). We begin by briefly discussing the emergence of methods for probing ultrafast structural dynamics and the information that can be obtained. Distinctions are drawn between the two main types a probes for femtosecond (fs) dynamics fast electrons and X-ray photons and emphasis is placed on hour the nature of charged particles is exploited in ultrafast electron-based' experiments:. Following this, we describe the versatility enabled by the ease with which electron trajectories and velocities can be manipulated with transmission electron microscopy (TEM): hardware configurations, and we emphasize how this is translated to the ability to measure scattering intensities in real, reciprocal, and energy space from presurveyed and selected rianoscale volumes. Owing to decades of ongoing research and development into TEM instrumentation combined with advances in specimen holder technology, comprehensive experiments can be conducted on a wide range of materials in various phases via in situ methods. Next, we describe the basic operating concepts, of UEM, and we emphasize that its development has led to extension of several of the formidable capabilities of TEM into the fs domain, dins increasing the accessible temporal parameter spade by several orders of magnitude. We then divide UEM studies into those conducted in real (imaging), reciprocal (diffraction), and energy (spectroscopy) spate. We begin each of these sections by providing a brief description of the basic operating principles and the types of information that can be gathered followed by descriptions of how these approaches are applied in UM, the type of specimen parameter space that can be probed, and an example of the types of dynamics that can be resolved. We conclude with an Outlook section, wherein we share our perspective on some future directions of the field pertaining to continued instrument development and

  12. Probing local work function of electron emitting Si-nanofacets

    NASA Astrophysics Data System (ADS)

    Basu, Tanmoy; Som, Tapobrata

    2017-10-01

    Large area, Si-nanofacets are synthesized by obliquely incident low energy Ar+-ion-beam bombardment at room temperature (RT). The field emission properties of such nanofacets are studied based on current-voltage measurements and the Fowler-Nordheim equation. Low turn-on field with relatively high current density is obtained due to the shape and an overall rough morphology. We demonstrate a tunable field emission property from the silicon nanofacets by varying the ion exposure time. Atomic force microscopy (AFM) in conjunction with Kelvin probe force microscopy (KPFM) measurements provide the information on the aspect ratio and confirms the presence of native oxide layer near the apexes of the facets, respectively. The inhomogeneous oxidation leads to an increase in the local work function at the apexes of the facets, restricting the electron emission from the same. Due to its room temperature fabrication, the present method is of great significance to the low-cost vacuum field emission devices fabrication.

  13. A diagrammatic quantum field approach to localized-electron systems

    NASA Astrophysics Data System (ADS)

    Bonev, Stanimir; Ashcroft, Neil W.

    2002-03-01

    We present a diagrammatic language for the variational evaluation of the energy of systems with localized electrons. It is used to develop a convergent series expansion for the energy in powers of overlap integrals of single-particle orbitals. This method gives intuitive and practical rules for writing down the expansion to arbitrary order of overlap, and can be applied to any spin configuration, and to any dimension. Our approach extends previous work by van Dijk and Vertogen,(L. G. J. van Dijk and G. Vertogen, J. Phys.: Condens. Matter 3), 7763 (1991). Abarenkov,(I. V. Abarenkov, J. Phys.: Condens. Matter 5) 2341 (1993). and Moulopoulos and Ashcroft.(K. Moulopoulos and N. W. Ashcroft, Phys. Rev. B 48) 11646 (1993).

  14. Electronic energy transfer: Localized operator partitioning of electronic energy in composite quantum systems

    NASA Astrophysics Data System (ADS)

    Khan, Yaser; Brumer, Paul

    2012-11-01

    A Hamiltonian based approach using spatially localized projection operators is introduced to give precise meaning to the chemically intuitive idea of the electronic energy on a quantum subsystem. This definition facilitates the study of electronic energy transfer in arbitrarily coupled quantum systems. In particular, the decomposition scheme can be applied to molecular components that are strongly interacting (with significant orbital overlap) as well as to isolated fragments. The result defines a consistent electronic energy at all internuclear distances, including the case of separated fragments, and reduces to the well-known Förster and Dexter results in their respective limits. Numerical calculations of coherent energy and charge transfer dynamics in simple model systems are presented and the effect of collisionally induced decoherence is examined.

  15. Mechanical Deformation and Electronic Structure of Carbon Nanotorus

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Wu, Shi-Yu; Jayanthi, Chakram

    2000-03-01

    The mechanical deformation and the electronic structure of carbon nanotorus of various radii are studied using an order(N) non-orthogonal tight-binding molecular dynamics[1] at finite temperature. The onset of the development of kinks in the torus is investigated as a function of radius. The defect structures associated with the kinks are analyzed in terms of local bonding configurations and the bond charge between pairs of atoms. [1] C.S. Jayanthi, S.Y. Wu, J. Cocks, N.S. Luo, Z.L. Xie, M.Menon, and G. Yang, Phys. Rev. B57, 3799 (1998).

  16. Localize.pytom: a modern webserver for cryo-electron tomography

    PubMed Central

    Hrabe, Thomas

    2015-01-01

    Localize.pytom, available through http://localize.pytom.org is a webserver for the localize module in the PyTom package. It is a free website and open to all users and there is no login requirement. The server accepts tomograms as they are imaged and reconstructed by Cryo-Electron Tomography (CET) and returns densities and coordinates of candidate-macromolecules in the tomogram. Localization of macromolecules in cryo-electron tomograms is one of the key procedures to unravel structural features of imaged macromolecules. Positions of localized molecules are further used for structural analysis by single particle procedures such as fine alignment, averaging and classification. Accurate localization can be furthermore used to generate molecular atlases of whole cells. Localization uses a cross-correlation-based score and requires a reference volume as input. A reference can either be a previously detected macromolecular structure or extrapolated on the server from a specific PDB chain. Users have the option to use either coarse or fine angular sampling strategies based on uniformly distributed rotations and to accurately compensate for the CET common ‘Missing Wedge’ artefact during sampling. After completion, all candidate macromolecules cut out from the tomogram are available for download. Their coordinates are stored and available in XML format, which can be easily integrated into successive analysis steps in other software. A pre-computed average of the first one hundred macromolecules is also available for immediate download, and the user has the option to further analyse the average, based on the detected score distribution in a novel web-density viewer. PMID:25934806

  17. MAILROOM- A LOCAL AREA NETWORK ELECTRONIC MAIL PROGRAM

    NASA Technical Reports Server (NTRS)

    Weiner, M. J.

    1994-01-01

    The Mailroom program is a Local Area Network (LAN) electronic mail program. It allows LAN users to electronically exchange notes, letters, reminders, or any sort of communication via their computer. The Mailroom program links all LAN users into a communication circle where messages can be created, sent, copied, printed, downloaded, uploaded, and deleted through a series of menu-driven screens. Mailroom includes a feature which allows users to determine if a message they have sent has been read by the receiver. Each user must be separately installed and removed from Mailroom as they join or leave the network. Mailroom comes with a program that accomplishes this with minimum of effort on the part of the Network Administrator/Manager. There is also a program that allows the Network Administrator/Manager to install Mailroom on each user's workstation so that on execution of Mailroom the user's station may be identified and the configurations settings activated. It will create its own configuration and data/supporting files during the setup and installation process. The Mailroom program is written in Microsoft QuickBasic. It was developed to run on networked IBM XT/ATs or compatibles and requires that all participating workstations share a common drive. It has been implemented under DOS 3.2 and has a memory requirement of 71K. Mailroom was developed in 1988.

  18. Electron microscopic localization of cytoplasmic myosin with ferritin- labeled antibodies

    PubMed Central

    1981-01-01

    We localized myosin in vertebrate nonmuscle cells by electron microscopy using purified antibodies coupled with ferritin. Native and formaldehyde-fixed filaments of purified platelet myosin filaments each consisting of approximately 30 myosin molecules bound an equivalent number of ferritin-antimyosin conjugates. In preparations of crude platelet actomyosin, the ferritin-antimyosin bound exclusively to similar short, 10-15 nm wide filaments. In both cases, binding of the ferritin-antimyosin to the myosin filaments was blocked by preincubation with unlabeled antimyosin. With indirect fluorescent antibody staining at the light microscope level, we found that the ferritin-antimyosin and unlabeled antimyosin stained HeLa cells identically, with the antibodies concentrated in 0.5-microns spots along stress fibers. By electron microscopy, we found that the concentration of ferritin-antimyosin in the dense regions of stress fibers was five to six times that in the intervening less dense regions, 20 times that in the cytoplasmic matrix, and 100 times that in the nucleus. These concentration differences may account for the light microscope antibody staining pattern of spread interphase cells. Some, but certainly not all, of the ferritin-antimyosin was associated with 10-15-nm filaments. In mouse intestinal epithelial cells, ferritin- antimyosin was located almost exclusively in the terminal web. In isolated brush borders exposed to 5 mM MgCl2, ferritin-antimyosin was also concentrated in the terminal web associated with 10-15-nm filaments. PMID:7193682

  19. MAILROOM- A LOCAL AREA NETWORK ELECTRONIC MAIL PROGRAM

    NASA Technical Reports Server (NTRS)

    Weiner, M. J.

    1994-01-01

    The Mailroom program is a Local Area Network (LAN) electronic mail program. It allows LAN users to electronically exchange notes, letters, reminders, or any sort of communication via their computer. The Mailroom program links all LAN users into a communication circle where messages can be created, sent, copied, printed, downloaded, uploaded, and deleted through a series of menu-driven screens. Mailroom includes a feature which allows users to determine if a message they have sent has been read by the receiver. Each user must be separately installed and removed from Mailroom as they join or leave the network. Mailroom comes with a program that accomplishes this with minimum of effort on the part of the Network Administrator/Manager. There is also a program that allows the Network Administrator/Manager to install Mailroom on each user's workstation so that on execution of Mailroom the user's station may be identified and the configurations settings activated. It will create its own configuration and data/supporting files during the setup and installation process. The Mailroom program is written in Microsoft QuickBasic. It was developed to run on networked IBM XT/ATs or compatibles and requires that all participating workstations share a common drive. It has been implemented under DOS 3.2 and has a memory requirement of 71K. Mailroom was developed in 1988.

  20. Electronic Structure of PbSe Nanowires

    NASA Astrophysics Data System (ADS)

    Avdeev, I. D.; Nestoklon, M. O.

    2016-11-01

    We present the tight binding calculations of the lead selenide nanowires: energy spectra of quantum confined states as a function of nanowire radius, dispersion in the full Brillouin zone, and the radial part of local electronic state density, which helps us to recognise valley splitting in the spectra. Also, we compare our results to KP perturbation theory predictions. We show that the value of the valley splitting is comparable with the distance between two levels of size quantization and that it strongly depends on the arrangement of the atoms in the wire.

  1. Electron density power spectrum in the local interstellar medium

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Rickett, B. J.; Spangler, S. R.

    1995-01-01

    Interstellar scintillation (ISS), fluctuations in the amplitude and phase of radio waves caused by scattering in the interstellar medium, is important as a diagnostic of interstellar plasma turbulence. ISS is also of interest because it is noise for other radio astronomical observations. The unifying concern is the power spectrum of the interstellar electron density. Here we use ISS observations through the nearby (less than or approximately =1 kpc) (ISM) to estimate the spectrum. From measurements of angular broadening of pulsars and extragalactic sources, decorrelation bandwidth of pulsars, refractive steering of features in pulsar dynamic spectra, dispersion measured fluctuations of pulsars, and refractive scintillation index measurements, we construct a composite structure function that is approximately power law over 2 x 10(exp 6) m less than scale less than 10(exp 13) m. The data are consistent with the structure function having a logarithmic slope versus baseline less than 2; thus there is a meaningful connection between scales in the radiowave fluctuation field and the scales in the electron density field causing the scattering. The data give an upper limit to the inner scale, l(sub o) less than or approximately 10(exp 8) m and are consistent with much smaller values. We construct a composite electron density spectrum that is approximately power law over at least the approximately = 5 decade wavenumber range 10(exp -13)/m less than wavenumber less than 10(exp -8)/m and that may extend to higher wavenumbers. The average spectral index of electron density over this wavenumber range is approximately = 3.7, very close to the value expected for a Kolmogorov process. The outer scale size, L(sub o), must be greater than or approximately = 10(exp 13) m (determined from dispersion measure fluctuations). When the ISS data are combined with measurements of differential Faraday rotation angle, and gradients in the average electron density, constraints can be put on the

  2. Electron density power spectrum in the local interstellar medium

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Rickett, B. J.; Spangler, S. R.

    1995-01-01

    Interstellar scintillation (ISS), fluctuations in the amplitude and phase of radio waves caused by scattering in the interstellar medium, is important as a diagnostic of interstellar plasma turbulence. ISS is also of interest because it is noise for other radio astronomical observations. The unifying concern is the power spectrum of the interstellar electron density. Here we use ISS observations through the nearby (less than or approximately =1 kpc) (ISM) to estimate the spectrum. From measurements of angular broadening of pulsars and extragalactic sources, decorrelation bandwidth of pulsars, refractive steering of features in pulsar dynamic spectra, dispersion measured fluctuations of pulsars, and refractive scintillation index measurements, we construct a composite structure function that is approximately power law over 2 x 10(exp 6) m less than scale less than 10(exp 13) m. The data are consistent with the structure function having a logarithmic slope versus baseline less than 2; thus there is a meaningful connection between scales in the radiowave fluctuation field and the scales in the electron density field causing the scattering. The data give an upper limit to the inner scale, l(sub o) less than or approximately 10(exp 8) m and are consistent with much smaller values. We construct a composite electron density spectrum that is approximately power law over at least the approximately = 5 decade wavenumber range 10(exp -13)/m less than wavenumber less than 10(exp -8)/m and that may extend to higher wavenumbers. The average spectral index of electron density over this wavenumber range is approximately = 3.7, very close to the value expected for a Kolmogorov process. The outer scale size, L(sub o), must be greater than or approximately = 10(exp 13) m (determined from dispersion measure fluctuations). When the ISS data are combined with measurements of differential Faraday rotation angle, and gradients in the average electron density, constraints can be put on the

  3. Electronic structure of worm-eaten graphene

    NASA Astrophysics Data System (ADS)

    Negishi, Hayato; Takeda, Kyozaburo

    2017-02-01

    We theoretically study the electronic structure of graphenes having several kinds of imperfections such as atomic vacancies and heteroatom replacements. We consider 12 different configurations of vacancies and 39 different geometries of heteroatom replacements in order to approximately take into account the random conformations of imperfections. To systematically provide a perspective understanding of the defect π and σ states caused by atomistic voids and/or vacancies and heteroatom replacements, we have carried out a tight-binding (TB) calculation. We study the orbital hybridization to clarify the origin and formation of π and σ defect states arising from such imperfections. We also discuss the electronic structure around the Fermi level through the TB band calculation.

  4. Local electronic, sensing and optical properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Staii, Cristian

    The work presented in this thesis is focused on the electronic and optical properties of single wall carbon nanotubes (swCNs). In a first set of experiments we investigate the local electronic properties of swCNs using novel scanning probe microscopies. We use Scanning Gate Microscopy (SGM) to measure the energy of the resonant scattering centers in metallic swCNs, and to show the local nature of the memory effect observed in swCN field effect transistors (swCN-FETs). We also combine Impedance Spectroscopy and SGM to measure the high frequency properties of swCN-FETs. These experiments provide the first observations concerning the role of individual defects at high frequencies. The results are consistent with a simple parallel R-C circuit model for the swCN-FET. Furthermore, we present a quantitative model for the phase shifts observed in Scanning Conductance Microscopy (SCM) and demonstrate that this can be used to investigate the electronic properties of nanoscale samples without requiring electrical contacts. We provide a general method based on SCM that can be used to measure the dielectric constant of nanoscale objects. In a second set of experiments we demonstrate that swCN-FETs functionalized with single stranded DNA (ss-DNA) act as highly sensitive chemical sensors. The ss-DNA decorated swCN-FETs are sensitive to chemical species (odors) that do not cause a detectable response in non-functionalized swCN-FETs. Moreover, odor responses of these devices are different in sign and magnitude for different odors, and the odor response characteristics are dependent on the base sequence of the ss-DNA used to decorate the swCN. These results suggest that swCN-FET functionalized with ss-DNA and related molecules (RNA, aptamers, etc) are extremely promising candidates for sensing applications. Finally, we present photoluminescence measurements on individual swCNs, freely suspended across open apertures. These experiments show asymmetric peak line shapes, with line

  5. Electronic structure investigation of biphenylene films

    NASA Astrophysics Data System (ADS)

    Totani, R.; Grazioli, C.; Zhang, T.; Bidermane, I.; Lüder, J.; de Simone, M.; Coreno, M.; Brena, B.; Lozzi, L.; Puglia, C.

    2017-02-01

    Photoelectron Spectroscopy (PS) and Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy have been used to investigate the occupied and empty density of states of biphenylene films of different thicknesses, deposited onto a Cu(111) crystal. The obtained results have been compared to previous gas phase spectra and single molecule Density Functional Theory (DFT) calculations to get insights into the possible modification of the molecular electronic structure in the film induced by the adsorption on a surface. Furthermore, NEXAFS measurements allowed characterizing the variation of the molecular arrangement with the film thickness and helped to clarify the substrate-molecule interaction.

  6. Atomic and Electronic Structure of Solids

    NASA Astrophysics Data System (ADS)

    Kaxiras, Efthimios

    2003-01-01

    Preface; Acknowledgements; Part I. Crystalline Solids: 1. Atomic structure of crystals; 2. The single-particle approximation; 3. Electrons in crystal potential; 4. Band structure of crystals; 5. Applications of band theory; 6. Lattice vibrations; 7. Magnetic behaviour of solids; 8. Superconductivity; Part II. Defects, Non-Crystalline Solids and Finite Structures: 9. Defects I: point defects; 10. Defects II: line defects; 11. Defects III: surfaces and interfaces; 12. Non-crystalline solids; 13. Finite structures; Part III. Appendices: A. Elements of classical electrodynamics; B. Elements of quantum mechanics; C. Elements of thermodynamics; D. Elements of statistical mechanics; E. Elements of elasticity theory; F. The Madelung energy; G. Mathematical tools; H. Nobel Prize citations; I. Units and symbols; References; Index.

  7. Controlling the Electronic Structure of Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Ohta, Taisuke; Bostwick, Aaron; McChesney, Jessica; Seyller, Thomas; Horn, Karsten; Rotenberg, Eli

    2007-03-01

    Carbon-based materials such as carbon nanotubes, graphite intercalation compounds, fullerenes, and ultrathin graphite films exhibit many exotic phenomena such as superconductivity and an anomalous quantum Hall effect. These findings have caused renewed interest in the electronic structure of ultrathin layers of graphene: a single honeycomb carbon layer that is the building block for these materials. There is a strong motivation to incorporate graphene multilayers into atomic-scale devices, spurred on by rapid progress in their fabrication and manipulation. We have synthesized bilayer graphene thin films deposited on insulating silicon carbide and characterized their electronic band structure using angle-resolved photoemission. By selectively adjusting the carrier concentration in each layer, changes in the Coulomb potential led to control of the gap between valence and conduction bands [1]. This control over the band structure suggests the potential application of bilayer graphene to switching functions in atomic scale electronic devices. [1] T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science, 313, 951 (2006).

  8. Spatially Resolved Electronic Structures of Atomically Precise Armchair Graphene Nanoribbons

    PubMed Central

    Huang, Han; Wei, Dacheng; Sun, Jiatao; Wong, Swee Liang; Feng, Yuan Ping; Neto, A. H. Castro; Wee, Andrew Thye Shen

    2012-01-01

    Graphene has attracted much interest in both academia and industry. The challenge of making it semiconducting is crucial for applications in electronic devices. A promising approach is to reduce its physical size down to the nanometer scale. Here, we present the surface-assisted bottom-up fabrication of atomically precise armchair graphene nanoribbons (AGNRs) with predefined widths, namely 7-, 14- and 21-AGNRs, on Ag(111) as well as their spatially resolved width-dependent electronic structures. STM/STS measurements reveal their associated electron scattering patterns and the energy gaps over 1 eV. The mechanism to form such AGNRs is addressed based on the observed intermediate products. Our results provide new insights into the local properties of AGNRs, and have implications for the understanding of their electrical properties and potential applications. PMID:23248746

  9. Approximate ab initio calculations of electronic structure of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Durandurdu, M.; Drabold, D. A.; Mousseau, N.

    2000-12-01

    We report on ab initio calculations of electronic states of two large and realistic models of amorphous silicon generated using a modified version of the Wooten-Winer-Weaire algorithm and relaxed, in both cases, with a Keating and a modified Stillinger-Weber potentials. The models have no coordination defects and a very narrow bond-angle distribution. We compute the electronic density-of-states and pay particular attention to the nature of the band-tail states around the electronic gap. All models show a large and perfectly clean optical gap and realistic Urbach tails. Based on these results and the extended quasi-one-dimensional stringlike structures observed for certain eigenvalues in the band tails, we postulate that the generation of model a-Si without localized states might be achievable under certain circumstances.

  10. Aromaticity of rings-in-molecules (RIMs) from electron localization-delocalization matrices (LDMs)

    NASA Astrophysics Data System (ADS)

    Sumar, Ismat; Cook, Ronald; Ayers, Paul W.; Matta, Chérif F.

    2016-01-01

    A new and powerful molecular descriptor termed the LDM (localization-delocalization matrix) has recently been proposed as a molecular fingerprinting tool and has been shown to yield robust quantitative-structure-to-activity/property-relationships (QSAR/QSPR). An LDM lists the average number of electrons localized within an atom in a molecule along its diagonal while the off-diagonal elements are the pair-wise average number of electrons shared between every pair of atoms in the molecule, bonded or not. Hence, the LDM is a representation of a fuzzy molecular graph that accounts for the whereabouts of all electron(s) in the molecule and can be expected to encode for several facets of its chemistry at once. We show that the LDM captures the aromatic character of a ring-in-a-molecule by comparing the aromaticity ranking based on the LDMs and their eigenvalues of 6-membered carbon rings within (polycyclic) benzenoid hydrocarbons with the ranking based on four well-established local aromaticity measures (harmonic oscillator model of aromaticity, acromatic fluctuation index, para delocalization index, and nucleus independent chemical shift(0)). This paper is dedicated to the memory of Professor Paul von Ragué Schleyer (1930-2014).

  11. Electronic band structure and phonons in V2O5

    NASA Astrophysics Data System (ADS)

    Bhandari, Churna; Lambrecht, Walter R. L.

    2013-03-01

    Among the vanadium oxides, V2O5 presents special interest as a layered material. As for other layered materials, it is of interest to search for changes in its electronic structure and phonon spectrum in the monolayer modification of this material. For example, reduced screening may modify phonon modes affected by long-range Coulomb interactions. As a preliminary we here present a first-principles study of the bulk electronic band structure and the phonons at the Γ-point. Density functional calculations in the local density approximation were carried out for the electronic band structure and the density functional perturbation method was used for the phonon calculations. We used LDA and norm-conserving pseudopotentials in the abinit code. A group theoretical analysis is used to label the phonon modes. Non-analyticity is included for the LO modes. The band structures are in good agreement with previous work and yield an indirect band gap. Relaxed structural properties are also in good agreement with experiment. Simulated infrared and Raman spectra will be presented. Our results will be compared with experimental and previous theoretical work.

  12. The structure of the hydrated electron in bulk and at interfaces: Does the hydrated electron occupy a cavity?

    NASA Astrophysics Data System (ADS)

    Casey, Jennifer Ryan

    Since its discovery over fifty years ago, the hydrated electron has been the subject of much interest. Hydrated electrons, which are free electrons in water, are found in fields ranging from biochemistry to radiation chemistry, so it is important that we understand the structure and dynamics of this species. Because of its high reactivity, the hydrated electron's structure has proven difficult to pin down, especially its molecular details. One-electron mixed quantum/classical molecular dynamics simulations have proven useful in helping elucidate the structure of the hydrated electron. The picture most commonly presented from these studies is one of the electron residing in a cavity, disrupting the local water structure much like an anion the size of bromide. Our group has recently proposed a completely different structure for the hydrated electron, which arose from rigorous calculations of a new electron-water potential. The picture that emerged was of an electron that does not occupy a cavity but instead draws water within itself; this non-cavity electron resides in a region of enhanced water density. The one-electron cavity and non-cavity models all predict similar experimental observables that probe the electronic structure of the hydrated electron, such as the optical absorption spectrum, which makes it difficult to determine which model most accurately describes the true structure of the hydrated electron. In this thesis, we work to calculate experimental observables for various simulated cavity and non-cavity models that are particularly sensitive to the local water structure near the electron, in an effort to distinguish the various models from each other. Two particular observables we are interested in are the resonance Raman spectrum and the temperature dependent optical absorption spectrum of the hydrated electron. We find that for both of these experiments, only the non-cavity model has qualitative agreement with experiment; the cavity models miss the

  13. Electronic structure theory of the superheavy elements

    NASA Astrophysics Data System (ADS)

    Eliav, Ephraim; Fritzsche, Stephan; Kaldor, Uzi

    2015-12-01

    High-accuracy calculations of atomic properties of the superheavy elements (SHE) up to element 122 are reviewed. The properties discussed include ionization potentials, electron affinities and excitation energies, which are associated with the spectroscopic and chemical behavior of these elements, and are therefore of considerable interest. Accurate predictions of these quantities require high-order inclusion of relativity and electron correlation, as well as large, converged basis sets. The Dirac-Coulomb-Breit Hamiltonian, which includes all terms up to second order in the fine-structure constant α, serves as the framework for the treatment; higher-order Lamb shift terms are considered in some selected cases. Electron correlation is treated by either the multiconfiguration self-consistent-field approach or by Fock-space coupled cluster theory. The latter is enhanced by the intermediate Hamiltonian scheme, allowing the use of larger model (P) spaces. The quality of the calculations is assessed by applying the same methods to lighter homologs of the SHEs and comparing with available experimental information. Very good agreement is obtained, within a few hundredths of an eV, and similar accuracy is expected for the SHEs. Many of the properties predicted for the SHEs differ significantly from what may be expected by straightforward extrapolation of lighter homologs, demonstrating that the structure and chemistry of SHEs are strongly affected by relativity. The major scientific challenge of the calculations is to find the electronic structure and basic atomic properties of the SHE and assign its proper place in the periodic table. Significant recent developments include joint experimental-computational studies of the excitation spectrum of Fm and the ionization energy of Lr, with excellent agreement of experiment and theory, auguring well for the future of research in the field.

  14. Electronic structure and the magneto-caloric effect.

    PubMed

    Gruber, C; Bedolla, P O; Mohn, P

    2013-10-30

    We present a theoretical investigation of the entropy changes upon the application of an external field leading to the magneto-caloric effect (MCE). The case of localized magnetic moments is treated within the Weiss molecular field model, but special emphasis is given to cases of itinerant electron magnetism. These are described within the Landau theory of phase transitions and the temperature dependence is included via spin fluctuations. Since the parameters of the Landau expansion can be calculated from first-principles calculations of the electronic and magnetic structure, an immediate connection to the electronic band structure and its properties becomes possible. We study ordinary ferromagnets, including magneto-volume coupling and itinerant electron metamagnets, where in a small external field range large changes of the magnetic moments occur. We find that such metamagnetic systems are the most promising candidates for a large MCE in itinerant electron systems. We apply our expressions to several transition metals and their alloys, as well as to the metamagnets YCo2 and Fe2P, and find reasonable agreement with available experimental data.

  15. Phase Diagram and Electronic Structure of Praseodymium and Plutonium

    DOE PAGES

    Lanatà, Nicola; Yao, Yongxin; Wang, Cai-Zhuang; ...

    2015-01-29

    We develop a new implementation of the Gutzwiller approximation in combination with the local density approximation, which enables us to study complex 4f and 5f systems beyond the reach of previous approaches. We calculate from first principles the zero-temperature phase diagram and electronic structure of Pr and Pu, finding good agreement with the experiments. Our study of Pr indicates that its pressure-induced volume-collapse transition would not occur without change of lattice structure—contrarily to Ce. Our study of Pu shows that the most important effect originating the differentiation between the equilibrium densities of its allotropes is the competition between the Peierlsmore » effect and the Madelung interaction and not the dependence of the electron correlations on the lattice structure.« less

  16. Electronic structure of spontaneously strained graphene on hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    San-Jose, Pablo; Gutiérrez-Rubio, A.; Sturla, Mauricio; Guinea, Francisco

    2014-09-01

    Hexagonal boron nitride substrates have been shown to dramatically improve the electric properties of graphene. Recently, it has been observed that when the two honeycomb crystals are close to perfect alignment, strong lattice distortions develop in graphene due to the moiré adhesion landscape. Simultaneously, a gap opens at the Dirac point. Here, we derive a simple low-energy electronic model for graphene aligned with the substrate, taking into account spontaneous strains at equilibrium and pseudogauge fields. We carry out a detailed characterization of the modified band structure, gap, local and global density of states, and band topology in terms of physical parameters. We show that the overall electronic structure is strongly modified by the spontaneous strains.

  17. Atomic and electronic structure of Ni-Nb metallic glasses

    SciTech Connect

    Yuan, C. C.; Yang, Y.-F. Xi, X. K.

    2013-12-07

    Solid state {sup 93}Nb nuclear magnetic resonance spectroscopy has been employed to investigate the atomic and electronic structures in Ni-Nb based metallic glass (MG) model system. {sup 93}Nb nuclear magnetic resonance (NMR) isotropic metallic shift of Ni{sub 60}Nb{sub 35}Sn{sub 5} has been found to be ∼100 ppm lower than that of Ni{sub 60}Nb{sub 35}Zr{sub 5} MG, which is correlated with their intrinsic fracture toughness. The evolution of {sup 93}Nb NMR isotropic metallic shifts upon alloying is clearly an electronic origin, as revealed by both local hyperfine fields analysis and first-principle computations. This preliminary result indicates that, in addition to geometrical considerations, atomic form factors should be taken into a description of atomic structures for better understanding the mechanical behaviors of MGs.

  18. Spectral properties and localization of an electron in a two-dimensional system with point scatterers in a magnetic field

    NASA Astrophysics Data System (ADS)

    Gredeskul, S. A.; Zusman, M.; Avishai, Y.; Azbel', M. Ya.

    1997-09-01

    Electron spectral properties and localization in a two-dimensional system with point potentials subject to a perpendicular magnetic field are studied. A brief review of the known results concerning electron dynamics in such systems is presented. For a set of periodic point potentials, exact dispersion laws and energy-flux diagram (Hofstadter-type butterfly) are obtained. It is shown that, in the case of one-dimensional disorder, the electron localization in a strong magnetic field is described by the random Harper equation. Energy-flux diagram for the localization length is presented and the fractal structure of the localization length is demonstrated. Near the Landau levels an exact formula for the localization length as a function of energy and disorder is obtained. The corresponding critical exponent is equal to unity which is reminiscent of one-dimensional characteristics.

  19. Delocalized and localized states of eg electrons in half-doped manganites.

    PubMed

    Winkler, E L; Tovar, M; Causa, M T

    2013-07-24

    We have studied the magnetic behaviour of half-doped manganite Y0.5Ca0.5MnO3 in an extended range of temperatures by means of magnetic susceptibility, χ(T), and electron spin resonance (ESR) experiments. At high temperature the system crystallizes in an orthorhombic structure. The resistivity value, ρ ≃ 0.05 Ω cm at 500 K, indicates a metallic behaviour, while the Curie-Weiss dependence of χ(T) and the thermal evolution of the ESR parameters are very well described by a model that considers a system conformed by localized Mn(4+) cores, [Formula: see text], and itinerant, eg, electrons. The strong coupling between t2g and eg electrons results in an enhanced Curie constant and an FM Curie-Weiss temperature that overcomes the AFM interactions between the [Formula: see text] cores. A transition to a more distorted phase is observed at T ≈ 500 K and signatures of localization of the eg electrons appear in the χ(T) behaviour below 300 K. A new Curie-Weiss regime is observed, where the Curie-constant value is consistent with dimer formation. Based on mean-field calculations, the dimer formation is predicted as a function of the interaction strength between the t2g and eg electrons.

  20. Electronic structure of interfaces between hexagonal and rhombohedral graphite

    NASA Astrophysics Data System (ADS)

    Taut, M.; Koepernik, K.

    2016-07-01

    An analysis of the electronic structure of interfaces between hexagonal (A B ) and rhombohedral (A B C ) graphite based on density functional theory is presented. Both of the two simplest interface structures host (localized) interface bands, which are located around the K point in the Brillouin zone, and which give rise to strong peaks in the density of states at the Fermi level. All interface bands near the Fermi energy are localized at monomers (single atoms with dangling pz orbitals), whereas those around 0.5 eV belong to pz-bonded trimers, which are introduced by the interface and which are not found in the two adjacent bulk substances. There is also an interface band at the (A B ) side of the interface which resembles one of the interface states near a stacking fault in (A B ) graphite.

  1. Electronic structure and crystal phase stability of palladium hydrides

    NASA Astrophysics Data System (ADS)

    Houari, Abdesalem; Matar, Samir F.; Eyert, Volker

    2014-11-01

    The results of electronic structure calculations for a variety of palladium hydrides are presented. The calculations are based on density functional theory and used different local and semilocal approximations. The thermodynamic stability of all structures as well as the electronic and chemical bonding properties are addressed. For the monohydride, taking into account the zero-point energy is important to identify the octahedral Pd-H arrangement with its larger voids and, hence, softer hydrogen vibrational modes as favorable over the tetrahedral arrangement as found in the zincblende and wurtzite structures. Stabilization of the rocksalt structure is due to strong bonding of the 4d and 1s orbitals, which form a characteristic split-off band separated from the main d-band group. Increased filling of the formerly pure d states of the metal causes strong reduction of the density of states at the Fermi energy, which undermines possible long-range ferromagnetic order otherwise favored by strong magnetovolume effects. For the dihydride, octahedral Pd-H arrangement as realized, e.g., in the pyrite structure turns out to be unstable against tetrahedral arrangement as found in the fluorite structure. Yet, from both heat of formation and chemical bonding considerations, the dihydride turns out to be less favorable than the monohydride. Finally, the vacancy ordered defect phase Pd3H4 follows the general trend of favoring the octahedral arrangement of the rocksalt structure for Pd:H ratios less or equal to one.

  2. Electronic structure and crystal phase stability of palladium hydrides

    SciTech Connect

    Houari, Abdesalem; Matar, Samir F.; Eyert, Volker

    2014-11-07

    The results of electronic structure calculations for a variety of palladium hydrides are presented. The calculations are based on density functional theory and used different local and semilocal approximations. The thermodynamic stability of all structures as well as the electronic and chemical bonding properties are addressed. For the monohydride, taking into account the zero-point energy is important to identify the octahedral Pd-H arrangement with its larger voids and, hence, softer hydrogen vibrational modes as favorable over the tetrahedral arrangement as found in the zincblende and wurtzite structures. Stabilization of the rocksalt structure is due to strong bonding of the 4d and 1s orbitals, which form a characteristic split-off band separated from the main d-band group. Increased filling of the formerly pure d states of the metal causes strong reduction of the density of states at the Fermi energy, which undermines possible long-range ferromagnetic order otherwise favored by strong magnetovolume effects. For the dihydride, octahedral Pd-H arrangement as realized, e.g., in the pyrite structure turns out to be unstable against tetrahedral arrangement as found in the fluorite structure. Yet, from both heat of formation and chemical bonding considerations, the dihydride turns out to be less favorable than the monohydride. Finally, the vacancy ordered defect phase Pd{sub 3}H{sub 4} follows the general trend of favoring the octahedral arrangement of the rocksalt structure for Pd:H ratios less or equal to one.

  3. Thermal transfer structures coupling electronics card(s) to coolant-cooled structure(s)

    DOEpatents

    David, Milnes P; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Parida, Pritish R; Schmidt, Roger R

    2014-12-16

    Cooling apparatuses and coolant-cooled electronic systems are provided which include thermal transfer structures configured to engage with a spring force one or more electronics cards with docking of the electronics card(s) within a respective socket(s) of the electronic system. A thermal transfer structure of the cooling apparatus includes a thermal spreader having a first thermal conduction surface, and a thermally conductive spring assembly coupled to the conduction surface of the thermal spreader and positioned and configured to reside between and physically couple a first surface of an electronics card to the first surface of the thermal spreader with docking of the electronics card within a socket of the electronic system. The thermal transfer structure is, in one embodiment, metallurgically bonded to a coolant-cooled structure and facilitates transfer of heat from the electronics card to coolant flowing through the coolant-cooled structure.

  4. Electronic structure interpolation via atomic orbitals.

    PubMed

    Chen, Mohan; Guo, G-C; He, Lixin

    2011-08-17

    We present an efficient scheme for accurate electronic structure interpolation based on systematically improvable optimized atomic orbitals. The atomic orbitals are generated by minimizing the spillage value between the atomic basis calculations and the converged plane wave basis calculations on some coarse k-point grid. They are then used to calculate the band structure of the full Brillouin zone using the linear combination of atomic orbitals algorithms. We find that usually 16-25 orbitals per atom can give an accuracy of about 10 meV compared to the full ab initio calculations, and the accuracy can be systematically improved by using more atomic orbitals. The scheme is easy to implement and robust, and works equally well for metallic systems and systems with complicated band structures. Furthermore, the atomic orbitals have much better transferability than Shirley's basis and Wannier functions, which is very useful for perturbation calculations.

  5. Electronic bandstructure of semiconductor dilute bismide structures

    NASA Astrophysics Data System (ADS)

    Erucar, T.; Nutku, F.; Donmez, O.; Erol, A.

    2017-02-01

    In this work electronic band structure of dilute bismide GaAs/GaAs1-xBix quantum well structures with 1.8% and 3.75% bismuth compositions have been investigated both experimentally and theoretically. Photoluminescence (PL) measurements reveal that effective bandgap of the samples decreases approximately 65 meV per bismuth concentration. Temperature dependence of the effective bandgap is obtained to be higher for the sample with higher bismuth concentration. Moreover, both asymmetric characteristic at the low energy tail of the PL and full width at half maximum (FWHM) of PL peak increase with increasing bismuth composition as a result of increased Bi related defects located above valence band (VB). In order to explain composition dependence of the effective bandgap quantitatively, valence band anti-crossing (VBAC) model is used. Bismuth composition and temperature dependence of effective bandgap in a quantum well structure is modeled by solving Schrödinger equation and compared with experimental PL data.

  6. Localized heating of electrons in ionization zones: Going beyond the Penning-Thornton paradigm in magnetron sputtering

    SciTech Connect

    Anders, Andre

    2014-12-07

    The fundamental question of how energy is supplied to a magnetron discharge is commonly answered by the Penning-Thornton paradigm invoking secondary electrons. Huo et al. (Plasma Sources Sci. Technol. 22, 045005, (2013)) used a global discharge model to show that electron heating in the electric field of the magnetic presheath is dominant. In this contribution, this concept is applied locally taking into account the electric potential structure of ionization zones. Images of ionization zones can and should be interpreted as diagrams of the localization of electric potential and related electron energy, where certain collisions promote or dampen their formation.

  7. A soft X-ray spectroscopic perspective of electron localization and transport in tungsten doped bismuth vanadate single crystals.

    PubMed

    Jovic, Vedran; Rettie, Alexander J E; Singh, Vijay R; Zhou, Jianshi; Lamoureux, Bethany; Buddie Mullins, C; Bluhm, Hendrik; Laverock, Jude; Smith, Kevin E

    2016-11-23

    Doped BiVO4 is a promising photoelectrochemical water splitting anode, whose activity is hampered by poor charge transport. Here we use a set of X-ray spectroscopic methods to probe the origin and nature of localized electron states in W:BiVO4. Furthermore, using the polarized nature of the X-rays, we probe variations in the electronic structure along the crystal axes. In this manner, we reveal aspects of the electronic structure related to electron localization and observations consistent with conductivity anisotropy between the ab-plane and c-axis. We verify that tungsten substitutes as W(6+) for V(5+) in BiVO4. This is shown to result in the presence of inter-band gap states related to electrons at V(4+) sites of e symmetry. The energetic position of the states in the band gap suggest that they are highly localized and may act as recombination centres. Polarization dependent X-ray absorption spectra reveal anisotropy in the electronic structure between the ab-plane and c-axis. Results show the superior hybridization between V 3d and O 2p states, higher V wavefunction overlap and broader conduction bands in the ab-plane than in the c-axis. These insights into the electronic structure are discussed in the context of existing experimental and theoretical reports regarding charge transport in BiVO4.

  8. Extraordinary electronic properties in uncommon structure types

    NASA Astrophysics Data System (ADS)

    Ali, Mazhar Nawaz

    In this thesis I present the results of explorations into several uncommon structure types. In Chapter 1 I go through the underlying idea of how we search for new compounds with exotic properties in solid state chemistry. The ideas of exploring uncommon structure types, building up from the simple to the complex, using chemical intuition and thinking by analogy are discussed. Also, the history and basic concepts of superconductivity, Dirac semimetals, and magnetoresistance are briefly reviewed. In chapter 2, the 1s-InTaS2 structural family is introduced along with the discovery of a new member of the family, Ag0:79VS2; the synthesis, structure, and physical properties of two different polymorphs of the material are detailed. Also in this chapter, we report the observation of superconductivity in another 1s structure, PbTaSe2. This material is especially interesting due to it being very heavy (resulting in very strong spin orbit coulping (SOC)), layered, and noncentrosymmetric. Electronic structure calculations reveal the presence of a bulk 3D Dirac cone (very similar to graphene) that is gapped by SOC originating from the hexagonal Pb layer. In Chapter 3 we show the re-investigation of the crystal structure of the 3D Dirac semimetal, Cd3As2. It is found to be centrosymmetric, rather than noncentrosymmetric, and as such all bands are spin degenerate and there is a 4-fold degenerate bulk Dirac point at the Fermi level, making Cd3As2 a 3D electronic analog to graphene. Also, for the first time, scanning tunneling microscopy experiments identify a 2x2 surface reconstruction in what we identify as the (112) cleavage plane of single crystals; needle crystals grow with a [110] long axis direction. Lastly, in chapter 4 we report the discovery of "titanic" (sadly dubbed ⪉rge, nonsaturating" by Nature editors and given the acronym XMR) magnetoresistance (MR) in the non-magnetic, noncentrosymmetric, layered transition metal dichalcogenide WTe2; over 13 million% at 0.53 K in

  9. Structural and electronic properties of fluorographene.

    PubMed

    Samarakoon, Duminda K; Chen, Zhifan; Nicolas, Chantel; Wang, Xiao-Qian

    2011-04-04

    The structural and electronic characteristics of fluorinated graphene are investigated based on first-principles density-functional calculations. A detailed analysis of the energy order for stoichiometric fluorographene membranes indicates that there exists prominent chair and stirrup conformations, which correlate with the experimentally observed in-plane lattice expansion contrary to a contraction in graphane. The optical response of fluorographene is investigated using the GW-Bethe-Salpeter equation approach. The results are in good conformity with the experimentally observed optical gap and reveal predominant charge-transfer excitations arising from strong electron-hole interactions. The appearance of bounded excitons in the ultraviolet region can result in an excitonic Bose-Einstein condensate in fluorographene.

  10. Pu electronic structure and photoelectron spectroscopy

    SciTech Connect

    Joyce, John J; Durakiewicz, Tomasz; Graham, Kevin S; Bauer, Eric D; Moore, David P; Mitchell, Jeremy N; Kennison, John A; Martin, Richard L; Roy, Lindsay E; Scuseria, G. E.

    2010-01-01

    The electronic structure of PuCoGa{sub 5}, Pu metal, and PuO{sub 2} is explored using photoelectron spectroscopy. Ground state electronic properties are inferred from temperature dependent photoemission near the Fermi energy for Pu metal. Angle-resolved photoemission details the energy vs. crystaJ momentum landscape near the Fermi energy for PuCoGa{sub 5} which shows significant dispersion in the quasiparticle peak near the Fermi energy. For the Mott insulators AnO{sub 2}(An = U, Pu) the photoemission results are compared against hybrid functional calculations and the model prediction of a cross over from ionic to covalent bonding is found to be reasonable.

  11. Is localized infrared spectroscopy now possible in the electron microscope?

    PubMed

    Rez, Peter

    2014-06-01

    The recently developed in-column monochromators make it possible to record energy-c spectra with resolutions better than 30 meV from nanometer-sized regions. It should therefore in principle be possible to detect localized vibrational excitations. The scattering geometry in the electron microscope means that bond stretching in the specimen plane or longitudinal optic phonons dominate the scattering. Most promising for initial studies are vibrations with energies between 300 and 400 meV from hydrogen bonded to other atoms. Estimates of the scattering cross-sections on the basis of a simple model show that they are about the same as inner shell scattering cross-sections. Cross-sections also increase with charge transfer between the atoms, and theory incorporating realistic charge distributions shows that signal/noise is the only limitation to high-resolution imaging. Given the magnitude of the scattering cross-sections, minimizing the tail of the zero-loss peak is just as important as achieving a small-width at half-maximum. Improvements in both resolution and controlling the zero-loss tail will be necessary before it is practical to detect optic phonons in solids between 40 and 60 meV.

  12. Localized SXR Emission During Electron Bernstein Wave Injection in MST

    NASA Astrophysics Data System (ADS)

    Anderson, Jay; Forest, Cary; Seltzman, Andrew

    2008-11-01

    The electron Bernstein wave has been suggested as a solution to the RFP confinement problem: sustained, off-axis current drive stabilizes the resistive tearing modes which govern thermal transport. A staged experiment to test the feasibility of EBW heating and current drive is underway on MST. Experiments (˜10^5 W) aimed at a demonstration of EBW heating have produced a localized increase in SXR emission. This measured emission is consistent with modeling in its location, energy spectrum and dependence on radial diffusion within the plasma. Preliminary analysis indicates that the emission is strongest in the region where ray tracing predicts maximum deposition of the injected power. The multi-chord SXR camera used is sensitive to 4-7 keV photons which is consistent with Fokker-Plank modeling of EBW injection. The enhanced SXR emission vanishes quickly when radial diffusion in the plasma is high (as indicated by m=0 magnetic activity); this is also consistent with Fokker-Plank modeling. An increase of boron emission (and presumably boron within the plasma) is also observed during EBW injection. This presents an alternative explanation to the enhanced SXR emission; recent efforts have been made to isolate the two effects.

  13. Electronically Tuned Local Oscillators for the NOEMA Interferometer

    NASA Astrophysics Data System (ADS)

    Mattiocco, Francois; Garnier, Olivier; Maier, Doris; Navarrini, Alessandro; Serres, Patrice

    2016-03-01

    We present an overview of the electronically tuned local oscillator (LO) system developed at the Institut de RadioAstronomie millimetrique (IRAM) for the superconductor-insulator-superconductor (SIS) receivers of the NOrthern Extended Millimeter Array interferometer (NOEMA). We modified the frequency bands and extended the bandwidths of the LO designs developed by the National Radio Astronomy Observatory (NRAO) for the Atacama Large Millimeter Array (ALMA) project to cover the four NOEMA LO frequency ranges 82-108.3 GHz (Band 1), 138.6-171.3 GHz (Band 2), 207.7-264.4 GHz (Band 3), and 283-365 GHz (Band 4). The NOEMA LO system employs commercially available MMICs and GaAs millimeter MMICs from NRAO which are micro-assembled into active multiplied chain (AMC) and power amplifier (PA) modules. We discuss the problem of the LO spurious harmonics and of the LO signal directly multiplied by the SIS mixers that add extra noise and lead to detections of unwanted spectral lines from higher order sidebands. A waveguide filter in the LO path is used to reduce the higher order harmonics level of the LO at the output of the final frequency multiplier, thus mitigating the undesired effects and improving the system noise temperature.

  14. Localized reconstruction of subunits from electron cryomicroscopy images of macromolecular complexes

    PubMed Central

    Ilca, Serban L.; Kotecha, Abhay; Sun, Xiaoyu; Poranen, Minna M.; Stuart, David I.; Huiskonen, Juha T.

    2015-01-01

    Electron cryomicroscopy can yield near-atomic resolution structures of highly ordered macromolecular complexes. Often however some subunits bind in a flexible manner, have different symmetry from the rest of the complex, or are present in sub-stoichiometric amounts, limiting the attainable resolution. Here we report a general method for the localized three-dimensional reconstruction of such subunits. After determining the particle orientations, local areas corresponding to the subunits can be extracted and treated as single particles. We demonstrate the method using three examples including a flexible assembly and complexes harbouring subunits with either partial occupancy or mismatched symmetry. Most notably, the method allows accurate fitting of the monomeric RNA-dependent RNA polymerase bound at the threefold axis of symmetry inside a viral capsid, revealing for the first time its exact orientation and interactions with the capsid proteins. Localized reconstruction is expected to provide novel biological insights in a range of challenging biological systems. PMID:26534841

  15. Local conservation laws and the structure of the many-body localized states.

    PubMed

    Serbyn, Maksym; Papić, Z; Abanin, Dmitry A

    2013-09-20

    We construct a complete set of local integrals of motion that characterize the many-body localized (MBL) phase. Our approach relies on the assumption that local perturbations act locally on the eigenstates in the MBL phase, which is supported by numerical simulations of the random-field XXZ spin chain. We describe the structure of the eigenstates in the MBL phase and discuss the implications of local conservation laws for its nonequilibrium quantum dynamics. We argue that the many-body localization can be used to protect coherence in the system by suppressing relaxation between eigenstates with different local integrals of motion.

  16. Real-time feedback from iterative electronic structure calculations.

    PubMed

    Vaucher, Alain C; Haag, Moritz P; Reiher, Markus

    2016-04-05

    Real-time feedback from iterative electronic structure calculations requires to mediate between the inherently unpredictable execution times of the iterative algorithm used and the necessity to provide data in fixed and short time intervals for real-time rendering. We introduce the concept of a mediator as a component able to deal with infrequent and unpredictable reference data to generate reliable feedback. In the context of real-time quantum chemistry, the mediator takes the form of a surrogate potential that has the same local shape as the first-principles potential and can be evaluated efficiently to deliver atomic forces as real-time feedback. The surrogate potential is updated continuously by electronic structure calculations and guarantees to provide a reliable response to the operator for any molecular structure. To demonstrate the application of iterative electronic structure methods in real-time reactivity exploration, we implement self-consistent semiempirical methods as the data source and apply the surrogate-potential mediator to deliver reliable real-time feedback.

  17. Electronic Structure of Buried Interfaces - Oral Presentation

    SciTech Connect

    Porter, Zachary

    2015-08-25

    In the electronics behind computer memory storage, the speed and size are dictated by the performance of permanent magnets inside devices called read heads. Complicated magnets made of stacked layers of thin films can be engineered to have properties that yield more energy storage and faster switching times compared to conventional iron or cobalt magnets. The reason is that magnetism is a result of subtle interactions amongst electrons; just how neurons come together on large scales to make cat brains and dog brains, ensembles of electrons interact and become ferromagnets and paramagnets. These interactions make magnets too difficult to study in their entirety, so I focus on the interfaces between layers, which are responsible for the coupling materials physicists hope to exploit to produce next-generation magnets. This project, I study a transition metal oxide material called LSCO, Lanthanum Cobaltite, which can be a paramagnet or a ferromagnet depending on how you tweak the electronic structure. It exhibits an exciting behavior: its sum is greater than the sum of its parts. When another similar material called a LSMO, Lanthanum Manganite, is grown on top of it, their interface has a different type of magnetism from the LSCO or the LSMO! I hope to explain this by demonstrating differently charged ions in the interface. The typical method for quantifying this is x-ray absorption, but all conventional techniques look at every layer simultaneously, averaging the interfaces and the LSCO layers that we want to characterize separately. Instead, I must use a new reflectivity technique, which tracks the intensity of reflected x-rays at different angles, at energies near the absorption peaks of certain elements, to track changes in the electronic structure of the material. The samples were grown by collaborators at the Takamura group at U.C. Davis and probed with this “resonant reflectivity” technique on Beamline 2-1 at the Stanford Synchrotron Radiation Lightsource

  18. Effects of Paramagnetism and Electron Correlations on the Electronic Structure of MnO: Ab Initio Study

    NASA Astrophysics Data System (ADS)

    Yoon, Sangmoon; Jin, Kyoungsuk; Kang, Seoung-Hun; Nam, Ki Tae; Kim, Miyoung; Kwon, Young-Kyun

    Manganese oxide nanoparticles have attracted a lot of attentions as a promising candidate for next-generation catalyst. Therefore, understanding the electronic structure of manganese oxide in room temperature is highly required for the rational design of catalysts. We study the effects of paramagnetism and electron correlations on the electronic structure of MnO using ab initio density functional theory. Spin configurations of paramagnetism are postulated as the ensemble average of various spin disorders. Each initial disordered spin configuration is randomly generated with two constraints on magnetic local moments. We first investigate the influence of magnetic ordering on the elctronic structure of MnO using noncollinear spin calculations and find that the magnetic disorders make valence band maximum more delocalized. Moreover, we examine the role of electron correlations in the electronic structure of paramagnetic MnO using DFT +U calculations. Strong electron correlations modify not only the size of band gap but also the magnitude of local moments as in the antiferromagnetic MnO. Besides, the initialized spin disorder remains almost unchanged as electron correlation get stronger. Furthermore, our results obtained by considering both strong electron correlation and paramagnetism confirm experimentally-observed oxygen K edge X-ray emission spectra [1] reflecting the feature of valence bands. [1] E. Z. Kurmaev et al., Phys. Rev. B. 77, 165127 (2008).

  19. Calculation of smooth potential energy surfaces using local electron correlation methods

    NASA Astrophysics Data System (ADS)

    Mata, Ricardo A.; Werner, Hans-Joachim

    2006-11-01

    The geometry dependence of excitation domains in local correlation methods can lead to noncontinuous potential energy surfaces. We propose a simple domain merging procedure which eliminates this problem in many situations. The method is applied to heterolytic bond dissociations of ketene and propadienone, to SN2 reactions of Cl- with alkylchlorides, and in a quantum mechanical/molecular mechanical study of the chorismate mutase enzyme. It is demonstrated that smooth potentials are obtained in all cases. Furthermore, basis set superposition error effects are reduced in local calculations, and it is found that this leads to better basis set convergence when computing barrier heights or weak interactions. When the electronic structure strongly changes between reactants or products and the transition state, the domain merging procedure leads to a balanced description of all structures and accurate barrier heights.

  20. Calculation of smooth potential energy surfaces using local electron correlation methods

    SciTech Connect

    Mata, Ricardo A.; Werner, Hans-Joachim

    2006-11-14

    The geometry dependence of excitation domains in local correlation methods can lead to noncontinuous potential energy surfaces. We propose a simple domain merging procedure which eliminates this problem in many situations. The method is applied to heterolytic bond dissociations of ketene and propadienone, to SN2 reactions of Cl{sup -} with alkylchlorides, and in a quantum mechanical/molecular mechanical study of the chorismate mutase enzyme. It is demonstrated that smooth potentials are obtained in all cases. Furthermore, basis set superposition error effects are reduced in local calculations, and it is found that this leads to better basis set convergence when computing barrier heights or weak interactions. When the electronic structure strongly changes between reactants or products and the transition state, the domain merging procedure leads to a balanced description of all structures and accurate barrier heights.

  1. Damping of Electron Density Structures and Implications for Interstellar Scintillation

    NASA Astrophysics Data System (ADS)

    Smith, K. W.; Terry, P. W.

    2011-04-01

    The forms of electron density structures in kinetic Alfvén wave (KAW) turbulence are studied in connection with scintillation. The focus is on small scales L ~ 108-1010 cm where the KAW regime is active in the interstellar medium, principally within turbulent H II regions. Scales at 10 times the ion gyroradius and smaller are inferred to dominate scintillation in the theory of Boldyrev et al. From numerical solutions of a decaying KAW turbulence model, structure morphology reveals two types of localized structures, filaments and sheets, and shows that they arise in different regimes of resistive and diffusive damping. Minimal resistive damping yields localized current filaments that form out of Gaussian-distributed initial conditions. When resistive damping is large relative to diffusive damping, sheet-like structures form. In the filamentary regime, each filament is associated with a non-localized magnetic and density structure, circularly symmetric in cross section. Density and magnetic fields have Gaussian statistics (as inferred from Gaussian-valued kurtosis) while density gradients are strongly non-Gaussian, more so than current. This enhancement of non-Gaussian statistics in a derivative field is expected since gradient operations enhance small-scale fluctuations. The enhancement of density gradient kurtosis over current kurtosis is not obvious, yet it suggests that modest density fluctuations may yield large scintillation events during pulsar signal propagation. In the sheet regime the same statistical observations hold, despite the absence of localized filamentary structures. Probability density functions are constructed from statistical ensembles in both regimes, showing clear formation of long, highly non-Gaussian tails.

  2. Electronic Structure of LaSb_2

    NASA Astrophysics Data System (ADS)

    Browne, Dana A.; Kurtz, Richard

    2004-03-01

    LaSb2 is a nonmagnetic material that exhibits a large linear magnetoresistance. We have calculated its electronic structure using a full potential LAPW GGA density functional method including the spin-orbit interaction. We find that the Fermi surface consists of both two dimensional sheets and three dimensional bands. Our results are consistent with recent dHvA measurements^1. We discuss the possibility of CDW formation based on nesting of the sheets as well as compare with photoemission^2 and neutron scattering. ^1 R.G. Goodrich et al, submitted to Phys Rev B. ^2 A. I. Acatrinei et al, J. Phys.: Condens. Matter 15, L511 (2003).

  3. Structural, electronic and optical properties of carbonnitride

    SciTech Connect

    Cohen, Marvin L.

    1996-01-31

    Carbon nitride was proposed as a superhard material and a structural prototype, Beta-C3N4, was examined using several theoretical models. Some reports claiming experimental verifications have been made recently. The current status of the theory and experiment is reviewed, and a detailed discussion is presented of calculations of the electronic and optical properties of this material. These calculations predict that Beta-C3N4 will have a minimum gap which is indirect at 6.4 plus or minus 0.5 eV. A discussion of the possibility of carbon nitride nanotubes is also presented.

  4. Surface structure and electronic properties of materials

    NASA Technical Reports Server (NTRS)

    Siekhaus, W. J.; Somorjai, G. A.

    1975-01-01

    A surface potential model is developed to explain dopant effects on chemical vapor deposition. Auger analysis of the interaction between allotropic forms of carbon and silicon films has shown Si-C formation for all forms by glassy carbon. LEED intensity measurements have been used to determine the mean square displacement of surface atoms of silicon single crystals, and electron loss spectroscopy has shown the effect of structure and impurities on surface states located within the band gap. A thin film of Al has been used to enhance film crystallinity at low temperature.

  5. Electronic structure of nonstoichiometric cubic hydrides

    SciTech Connect

    Switendick, A.C.

    1980-01-01

    Using the supercell approach we have calculated the electronic structure of Y/sub 4/H/sub 8/, Y/sub 4/H/sub 9/, Y/sub 4/H/sub 11/, and Y/sub 4/H/sub 12/ as prototypic of nonstoichiometric cubic di- and trihydrides. The nature of the interaction between the yttrium and the octahedral and tetrahedral hydrogens is shown by the relative amount of charge contained in the crystal spheres. Each added hydrogen lowers one band which was already partially filled. The charge on both the octahedral and tetrahedral sites is very similar and significantly more than is contained in a comparable atomic sphere.

  6. Electron transfer mechanism and the locality of the system-bath interaction: a comparison of local, semilocal, and pure dephasing models.

    PubMed

    Weiss, Emily A; Katz, Gil; Goldsmith, Randall H; Wasielewski, Michael R; Ratner, Mark A; Kosloff, Ronnie; Nitzan, Abraham

    2006-02-21

    We simulate the effects of two types of dephasing processes, a nonlocal dephasing of system eigenstates and a dephasing of semilocal eigenstates, on the rate and mechanism of electron transfer (eT) through a series of donor-bridge-acceptor systems, D-B(N)-A, where N is the number of identical bridge units. Our analytical and numerical results show that pure dephasing, defined as the perturbation of system eigenstates through the system-bath interaction, does not disrupt coherent eT because it induces no localization; electron transfer may proceed through superexchange in a system undergoing only pure dephasing. A more physically reasonable description may be obtained via a system-bath interaction that reflects the perturbation of more local electronic structure by local nuclear distortions and dipole interactions. The degree of locality of this interaction is guided by the structure of the system Hamiltonian and by the nature of the measurement performed on the system (i.e., the nature of the environment). We compare our result from this "semilocal" model with an even more local phenomenological dephasing model. We calculate electron transfer rate by obtaining nonequilibrium steady-state solutions for the elements of a reduced density matrix; a semigroup formalism is used to write down the dissipative part of the equation of motion.

  7. Local hydrophobicity stabilizes secondary structures in proteins

    SciTech Connect

    Kanehisa, M.I.; Tsong, T.Y.

    1980-01-01

    The probability of occurrence of helix and ..beta..-sheet residues in 47 globular proteins was determined as a function of local hydrophobicity, which was defined by the sum of the Nozaki-Tanford transfer free energies at two nearest-neighbors on both sides of the amino acid sequence. In general, hydrophilic amino acids favor neither helix nor ..beta..-sheet formations when neighbor residues are also hydrophilic but favor helix formation at higher local hydrophobicity. On the other hand, some hydrophobic amino acids such as Met, Leu, and Ile favor helix formation when neighbor residues are hydrophilic. None of the hydrophobic amino acids favor ..beta..-sheet formation with hydrophilic neighbors, but most of them strongly favor ..beta..-sheet formation at high local hydrophobicity. When the average of 20 amino acids is taken, both helix and ..beta..-sheet residue probabilities are higher at higher local hydrophobicity, although the increase is steeper for ..beta..-sheets. Therefore, ..beta..-sheet formation is more influenced by local hydrophobicity than helix formation. Generally, helices are nearer the surface and tend to have hydrophilic and hydrophobic faces at opposite sides. The tendency of alternating regions of hydrophilic and hydrophobic residues in a helical sequence was revealed by calculating the correlation of the Nozaki-Tanford values. Such amphipathic helices may be important in protein-protein-lipid interactions and in forming hydrophilic channels in the membrane. The choice of 30 nonhomologous proteins as the data set did not alter the above results.

  8. Effects of xenon insertion into hydrogen bromide. Comparison of the electronic structure of the HBr···CO2 and HXeBr···CO2 complexes using quantum chemical topology methods: electron localization function, atoms in molecules and symmetry adapted perturbation theory.

    PubMed

    Makarewicz, Emilia; Gordon, Agnieszka J; Mierzwicki, Krzysztof; Latajka, Zdzislaw; Berski, Slawomir

    2014-06-05

    Quantum chemistry methods have been applied to study the influence of the Xe atom inserted into the hydrogen-bromine bond (HBr → HXeBr), particularly on the nature of atomic interactions in the HBr···CO2 and HXeBr···CO2 complexes. Detailed analysis of the nature of chemical bonds has been carried out using topological analysis of the electron localization function, while topological analysis of electron density was used to gain insight into the nature of weak nonbonding interactions. Symmetry-adapted perturbation theory within the orbital approach was applied for greater understanding of the physical contributions to the total interaction energy.

  9. Electronic Structure of the NaxCoO2 Surface

    NASA Astrophysics Data System (ADS)

    Pillay, D.; Johannes, M. D.; Mazin, I. I.

    2008-12-01

    The idea that surface effects may play an important role in suppressing eg' Fermi surface pockets on NaxCoO2 (0.333≤x≤0.75) has been frequently proposed to explain the discrepancy between local-density approximation calculations which find eg' hole pockets present and Angle resolved photoemission spectra (ARPES) experiments, which do not observe the hole pockets. Since ARPES is a surface sensitive technique, it is important to investigate the effects that surface formation will have on the electronic structure. We show that a combination of surface formation and contamination effects could resolve the ongoing controversy between ARPES experiments and theory.

  10. Electronic structure calculation by nonlinear optimization: Application to metals

    NASA Astrophysics Data System (ADS)

    Benedek, R.; Min, B. I.; Woodward, C.; Garner, J.

    1988-04-01

    There is considerable interest in the development of novel algorithms for the calculation of electronic structure (e.g., at the level of the local-density approximation of density-functional theory). In this paper we consider a first-order equation-of-motion method. Two methods of solution are described, one proposed by Williams and Soler, and the other base on a Born-Dyson series expansion. The extension of the approach to metallic systems is outlined and preliminary numerical calculations for Zintl-phase NaTl are presented.

  11. Comparison of optimization methods for electronic-structure calculations

    NASA Astrophysics Data System (ADS)

    Garner, J.; Das, S. G.; Min, B. I.; Woodward, C.; Benedek, R.

    1989-06-01

    The performance of several local-optimization methods for calculating electronic structure is compared. The fictitious first-order equation of motion proposed by Williams and Soler is integrated numerically by three procedures: simple finite-difference integration, approximate analytical integration (the Williams-Soler algorithm), and the Born perturbation series. These techniques are applied to a model problem for which exact solutions are known, the Mathieu equation. The Williams-Soler algorithm and the second Born approximation converge equally rapidly, but the former involves considerably less computational effort and gives a more accurate converged solution. Application of the method of conjugate gradients to the Mathieu equation is discussed.

  12. Electronic structure of disordered α-FeMn alloys

    NASA Astrophysics Data System (ADS)

    Paduani, C.; da Silva, E. G.

    1996-08-01

    Cluster calculations were performed with the first-principles discrete variational method, in the LSD approximation and spin-polarized case, to investigate the electronic structure of the ferromagnetic disordered α-FeMn alloys. We investigated the effect on the local magnetic properties at iron sites of the introduction of Mn atoms in their first and second neighborhoods. The calculated magnetic moment and hyperfine magnetic field ( Hc) for an isolated Mn atom in a bcc iron host were obtained as -3.15 μB and -230 kG, respectively, in good agreement with experimental results.

  13. 8th international conference on electronic spectroscopy and structure

    SciTech Connect

    Robinson, Art

    2000-10-16

    Gathering from 33 countries around the world, 408 registrants and a number of local drop-in participants descended on the Clark Kerr Campus of the University of California, Berkeley, from Monday, August 7 through Saturday, August 12, 2000 for the Eighth International Conference on Electronic Structure and Spectroscopy (ICESS8). At the conference, participants benefited from an extensive scientific program comprising more than 100 oral presentations (plenary lectures and invited and contributed talks) and 330 poster presentations, as well as ample time for socializing and a tour of the Advanced Light Source (ALS) at the nearby Lawrence Berkeley National Laboratory.

  14. Electron energy-loss and soft X-ray emission spectroscopy of electronic structure of MgB4

    NASA Astrophysics Data System (ADS)

    Sato, Yohei; Saito, Taiki; Tsuchiya, Kohei; Terauchi, Masami; Saito, Hiroki; Takeda, Masatoshi

    2017-09-01

    The electronic structure of MgB4, with the characteristic crystal structure comprising one-dimensional pentagonal B6 cluster chain, was investigated using electron energy-loss spectroscopy and soft X-ray emission spectroscopy based on transmission electron microscopy. The dielectric function and density of state of unoccupied and occupied states were clarified experimentally for the first time. Although theoretical calculations has predicted MgB4 to be a semiconductor, the electron energy-loss spectrum in this study show a plasmon peak at 0.4 eV, which might be due to carrier electrons. Theoretical calculations suggested that the electronic states near the Fermi energy are localized along the one dimensional B6 cluster chain. Therefore, one-dimensional electric conductivity is expected.

  15. Analysis of boron carbides' electronic structure

    NASA Technical Reports Server (NTRS)

    Howard, Iris A.; Beckel, Charles L.

    1986-01-01

    The electronic properties of boron-rich icosahedral clusters were studied as a means of understanding the electronic structure of the icosahedral borides such as boron carbide. A lower bound was estimated on bipolaron formation energies in B12 and B11C icosahedra, and the associated distortions. While the magnitude of the distortion associated with bipolaron formation is similar in both cases, the calculated formation energies differ greatly, formation being much more favorable on B11C icosahedra. The stable positions of a divalent atom relative to an icosahedral borane was also investigated, with the result that a stable energy minimum was found when the atom is at the center of the borane, internal to the B12 cage. If incorporation of dopant atoms into B12 cages in icosahedral boride solids is feasible, novel materials might result. In addition, the normal modes of a B12H12 cluster, of the C2B10 cage in para-carborane, and of a B12 icosahedron of reduced (D sub 3d) symmetry, such as is found in the icosahedral borides, were calculated. The nature of these vibrational modes will be important in determining, for instance, the character of the electron-lattice coupling in the borides, and in analyzing the lattice contribution to the thermal conductivity.

  16. Electron beam coupling to a metamaterial structure

    SciTech Connect

    French, David M.; Shiffler, Don; Cartwright, Keith

    2013-08-15

    Microwave metamaterials have shown promise in numerous applications, ranging from strip lines and antennas to metamaterial-based electron beam driven devices. In general, metamaterials allow microwave designers to obtain electromagnetic characteristics not typically available in nature. High Power Microwave (HPM) sources have in the past drawn inspiration from work done in the conventional microwave source community. In this article, the use of metamaterials in an HPM application is considered by using an effective medium model to determine the coupling of an electron beam to a metamaterial structure in a geometry similar to that of a dielectric Cerenkov maser. Use of the effective medium model allows for the analysis of a wide range of parameter space, including the “mu-negative,”“epsilon-negative,” and “double negative” regimes of the metamaterial. The physics of such a system are modeled analytically and by utilizing the particle-in-cell code ICEPIC. For this geometry and effective medium representation, optimum coupling of the electron beam to the metamaterial, and thus the optimum microwave or RF production, occurs in the epsilon negative regime of the metamaterial. Given that HPM tubes have been proposed that utilize a metamaterial, this model provides a rapid method of characterizing a source geometry that can be used to quickly understand the basic physics of such an HPM device.

  17. Experimental Benchmarking of Pu Electronic Structure

    SciTech Connect

    Tobin, J.G.; Moore, K.T.; Chung, B.W.; Wall, M.A.; Schwartz, A.J.; Ebbinghaus, B.B.; Butterfield, M.T.; Teslich, Jr., N.E.; Bliss, R.A.; Morton, S.A.; Yu, S.W.; Komesu, T.; Waddill, G.D.; van der Laan, G.; Kutepov, A.L.

    2008-10-30

    The standard method to determine the band structure of a condensed phase material is to (1) obtain a single crystal with a well defined surface and (2) map the bands with angle resolved photoelectron spectroscopy (occupied or valence bands) and inverse photoelectron spectroscopy (unoccupied or conduction bands). Unfortunately, in the case of Pu, the single crystals of Pu are either nonexistent, very small and/or having poorly defined surfaces. Furthermore, effects such as electron correlation and a large spin-orbit splitting in the 5f states have further complicated the situation. Thus, we have embarked upon the utilization of unorthodox electron spectroscopies, to circumvent the problems caused by the absence of large single crystals of Pu with well-defined surfaces. Our approach includes the techniques of resonant photoelectron spectroscopy, x-ray absorption spectroscopy, electron energy loss spectroscopy, Fano Effect measurements, and Bremstrahlung Isochromat Spectroscopy, including the utilization of micro-focused beams to probe single-crystallite regions of polycrystalline Pu samples.

  18. Experimental Benchmarking of Pu Electronic Structure

    SciTech Connect

    Tobin, J G; Moore, K T; Chung, B W; Wall, M A; Schwartz, A J; Ebbinghaus, B B; Butterfield, M T; Teslich, Jr., N E; Bliss, R A; Morton, S A; Yu, S W; Komesu, T; Waddill, G D; der Laan, G v; Kutepov, A L

    2005-10-13

    The standard method to determine the band structure of a condensed phase material is to (1) obtain a single crystal with a well defined surface and (2) map the bands with angle resolved photoelectron spectroscopy (occupied or valence bands) and inverse photoelectron spectroscopy (unoccupied or conduction bands). Unfortunately, in the case of Pu, the single crystals of Pu are either nonexistent, very small and/or having poorly defined surfaces. Furthermore, effects such as electron correlation and a large spin-orbit splitting in the 5f states have further complicated the situation. Thus, we have embarked upon the utilization of unorthodox electron spectroscopies, to circumvent the problems caused by the absence of large single crystals of Pu with well-defined surfaces. Our approach includes the techniques of resonant photoelectron spectroscopy [1], x-ray absorption spectroscopy [1,2,3,4], electron energy loss spectroscopy [2,3,4], Fano Effect measurements [5], and Bremstrahlung Isochromat Spectroscopy [6], including the utilization of micro-focused beams to probe single-crystallite regions of polycrystalline Pu samples. [2,3,6

  19. Electronic-structural dynamics in graphene.

    PubMed

    Gierz, Isabella; Cavalleri, Andrea

    2016-09-01

    We review our recent time- and angle-resolved photoemission spectroscopy experiments, which measure the transient electronic structure of optically driven graphene. For pump photon energies in the near infrared ([Formula: see text]), we have discovered the formation of a population-inverted state near the Dirac point, which may be of interest for the design of THz lasing devices and optical amplifiers. At lower pump photon energies ([Formula: see text]), for which interband absorption is not possible in doped samples, we find evidence for free carrier absorption. In addition, when mid-infrared pulses are made resonant with an infrared-active in-plane phonon of bilayer graphene ([Formula: see text]), a transient enhancement of the electron-phonon coupling constant is observed, providing interesting perspective for experiments that report light-enhanced superconductivity in doped fullerites in which a similar lattice mode was excited. All the studies reviewed here have important implications for applications of graphene in optoelectronic devices and for the dynamical engineering of electronic properties with light.

  20. Electronic-structural dynamics in graphene

    PubMed Central

    Gierz, Isabella; Cavalleri, Andrea

    2016-01-01

    We review our recent time- and angle-resolved photoemission spectroscopy experiments, which measure the transient electronic structure of optically driven graphene. For pump photon energies in the near infrared (ℏωpump=950 meV), we have discovered the formation of a population-inverted state near the Dirac point, which may be of interest for the design of THz lasing devices and optical amplifiers. At lower pump photon energies (ℏωpump<400 meV), for which interband absorption is not possible in doped samples, we find evidence for free carrier absorption. In addition, when mid-infrared pulses are made resonant with an infrared-active in-plane phonon of bilayer graphene (ℏωpump=200 meV), a transient enhancement of the electron-phonon coupling constant is observed, providing interesting perspective for experiments that report light-enhanced superconductivity in doped fullerites in which a similar lattice mode was excited. All the studies reviewed here have important implications for applications of graphene in optoelectronic devices and for the dynamical engineering of electronic properties with light. PMID:27822486

  1. The CECAM Electronic Structure Library: community-driven development of software libraries for electronic structure simulations

    NASA Astrophysics Data System (ADS)

    Oliveira, Micael

    The CECAM Electronic Structure Library (ESL) is a community-driven effort to segregate shared pieces of software as libraries that could be contributed and used by the community. Besides allowing to share the burden of developing and maintaining complex pieces of software, these can also become a target for re-coding by software engineers as hardware evolves, ensuring that electronic structure codes remain at the forefront of HPC trends. In a series of workshops hosted at the CECAM HQ in Lausanne, the tools and infrastructure for the project were prepared, and the first contributions were included and made available online (http://esl.cecam.org). In this talk I will present the different aspects and aims of the ESL and how these can be useful for the electronic structure community.

  2. Structures of Local Rearrangements in Soft Colloidal Glasses

    NASA Astrophysics Data System (ADS)

    Yang, Xiunan; Liu, Rui; Yang, Mingcheng; Wang, Wei-Hua; Chen, Ke

    2016-06-01

    We image local structural rearrangements in soft colloidal glasses under small periodic perturbations induced by thermal cycling. Local structural entropy S2 positively correlates with observed rearrangements in colloidal glasses. The high S2 values of the rearranging clusters in glasses indicate that fragile regions in glasses are structurally less correlated, similar to structural defects in crystalline solids. Slow-evolving high S2 spots are capable of predicting local rearrangements long before the relaxations occur, while fluctuation-created high S2 spots best correlate with local deformations right before the rearrangement events. Local free volumes are also found to correlate with particle rearrangements at extreme values, although the ability to identify relaxation sites is substantially lower than S2. Our experiments provide an efficient structural identifier for the fragile regions in glasses and highlight the important role of structural correlations in the physics of glasses.

  3. Quantum mirages formed by coherent projection of electronic structure

    PubMed

    Manoharan; Lutz; Eigler

    2000-02-03

    Image projection relies on classical wave mechanics and the use of natural or engineered structures such as lenses or resonant cavities. Well-known examples include the bending of light to create mirages in the atmosphere, and the focusing of sound by whispering galleries. However, the observation of analogous phenomena in condensed matter systems is a more recent development, facilitated by advances in nanofabrication. Here we report the projection of the electronic structure surrounding a magnetic Co atom to a remote location on the surface of a Cu crystal; electron partial waves scattered from the real Co atom are coherently refocused to form a spectral image or 'quantum mirage'. The focusing device is an elliptical quantum corral, assembled on the Cu surface. The corral acts as a quantum mechanical resonator, while the two-dimensional Cu surface-state electrons form the projection medium. When placed on the surface, Co atoms display a distinctive spectroscopic signature, known as the many-particle Kondo resonance, which arises from their magnetic moment. By positioning a Co atom at one focus of the ellipse, we detect a strong Kondo signature not only at the atom, but also at the empty focus. This behaviour contrasts with the usual spatially-decreasing response of an electron gas to a localized perturbation.

  4. Ab initio simulation of the electron structure and optical spectroscopy of ErRhGe compound

    NASA Astrophysics Data System (ADS)

    Knyazev, Yu. V.; Lukoyanov, A. V.; Kuz'min, Yu. I.; Gupta, S.; Suresh, K. G.

    2017-07-01

    The results of investigation of the electronic structure and optical properties of ErRhGe are presented. The band spectrum of this compound is calculated in the local electron spin density approximation with correction for strong electron interactions in the 4 f shell of the rare-earth metal (LSDA + U method) with allowance for the spin polarization. The optical constants of the compound are measured, and a number of spectral and electronic characteristics are determined by the ellipsometric method in a wide range of wave-lengths. Structural features of the optical conductivity spectrum in the interband absorption region are interpreted on the basis of the calculated electron state density.

  5. Rodlike localized structure in isotropic pattern-forming systems.

    PubMed

    Bordeu, Ignacio; Clerc, Marcel G

    2015-10-01

    Stationary two-dimensional localized structures have been observed in a wide variety of dissipative systems. The existence, stability properties, dynamical evolution, and bifurcation diagram of an azimuthal symmetry breaking, rodlike localized structure in the isotropic prototype model of pattern formation, the Swift-Hohenberg model, is studied. These rodlike structures persist under the presence of nongradient perturbations. Interaction properties of the rodlike structures are studied. This allows us to envisage the possibility of different crystal-like configurations.

  6. Femtosecond X-ray absorption study of electron localization in photoexcited anatase TiO2

    PubMed Central

    Santomauro, F. G.; Lübcke, A.; Rittmann, J.; Baldini, E.; Ferrer, A.; Silatani, M.; Zimmermann, P.; Grübel, S.; Johnson, J. A.; Mariager, S. O.; Beaud, P.; Grolimund, D.; Borca, C.; Ingold, G.; Johnson, S.L.; Chergui, M.

    2015-01-01

    Transition metal oxides are among the most promising solar materials, whose properties rely on the generation, transport and trapping of charge carriers (electrons and holes). Identifying the latter’s dynamics at room temperature requires tools that combine elemental and structural sensitivity, with the atomic scale resolution of time (femtoseconds, fs). Here, we use fs Ti K-edge X-ray absorption spectroscopy (XAS) upon 3.49 eV (355 nm) excitation of aqueous colloidal anatase titanium dioxide nanoparticles to probe the trapping dynamics of photogenerated electrons. We find that their localization at Titanium atoms occurs in <300 fs, forming Ti3+ centres, in or near the unit cell where the electron is created. We conclude that electron localization is due to its trapping at pentacoordinated sites, mostly present in the surface shell region. The present demonstration of fs hard X-ray absorption capabilities opens the way to a detailed description of the charge carrier dynamics in transition metal oxides. PMID:26437873

  7. Some Aspects of the Electronic Structure of Metals.

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Aron Marcus

    This work is concerned with a number of applications and fundamental issues in the theory of metals. In the first part, conventional liquid metal transport theory is extended to crystalline simple metals near the melting point. The concept of an ion reference system is introduced for the solid to deal with coherent scattering effects and the ion dynamics are treated beyond the conventional one-phonon approximation by working directly with the ion structure factor. The change in resistivity on melting is calculated for fourteen elements and related to differences in structure between liquid and solid. The identification, during this work, of anomalous features in the structure factor of alkali metals is then pursued. Surveys of this function for several bcc metals are carried out based on lattice dynamical calculations, which reveal specific classes of structure. The origin of these in the phonon spectra is elucidated and their connection to structural phase transitions is discussed. The second part of the work deals with issues relating to the non-uniform electron density in a metal. First, the consistent treatment of static and dynamic properties of metals using interatomic potentials containing volume or mean density dependence is examined. The focus is on the discrepancy in the bulk modulus calculated via the methods of longwaves and homogeneous deformation. A resolution of this long-standing 'compressibility problem' is provided which hinges on taking account of local inhomogeneities in electron density that modulate the interatomic potentials. Finally, the quasiatom model, which provides a practical scheme for treating the embedding energy of an impurity atom in a non-uniform electronic host, is considered. The physical basis of this model is examined by re-deriving the embedding energy of a He atom in the uniform electron gas using an alternate model which focuses on orthogonality effects.

  8. Local Surface Structure From Disparity Measurements

    NASA Astrophysics Data System (ADS)

    Jenkin, Michael R. M.; Jepson, Allan D.; Tsotsos, John K.

    1988-02-01

    Current theories of stereopsis involve three distinct stages: First, the two images of a stereo pair are processed separately to extract monocular features. One common choice of feature is the presence of a zero-crossing in a bandpassed versions of the image. Second, the monocular features in one image are matched with corresponding features found in the other image. In practice this second stage cannot be expected to produce only the correct matches, and a third stage must be considered in order to remove the incorrect matches ("false targets"). There are therefore three main issues the design of such a traditional algorithm for stereopsis, namely i) the choice of image features; the choice of matching criteria; and iii) the way false targets are avoided or eliminated. In this paper we introduce a different approach. We propose that symbolic features should not be extracted from the monocular images in the first stage of processing. Rather we examine a technique for measuring the local phase difference between the two images. We show how local phase difference in a bandpassed version of the image can be interpreted as disparity. This essentially combines the first two stages of the traditional approach. These disparity measurements may contain "false targets" which must be eliminated. Building upon the results of these disparty detectors, we show that a simple surface model based on object cohesiveness and local surface planarity across a range of spatial-frequency tuned channels can be used to reduce false matches. The resulting local planar surface support can be used to segment the image into planar regions in depth. Due to the independent nature of both the disparity detection and local planar support mechanism, this method is capable of dealing with both opaque and transparent stimuli.

  9. Structure and navigation for electronic publishing

    NASA Astrophysics Data System (ADS)

    Tillinghast, John; Beretta, Giordano B.

    1998-01-01

    The sudden explosion of the World Wide Web as a new publication medium has given a dramatic boost to the electronic publishing industry, which previously was a limited market centered around CD-ROMs and on-line databases. While the phenomenon has parallels to the advent of the tabloid press in the middle of last century, the electronic nature of the medium brings with it the typical characteristic of 4th wave media, namely the acceleration in its propagation speed and the volume of information. Consequently, e-publications are even flatter than print media; Shakespeare's Romeo and Juliet share the same computer screen with a home-made plagiarized copy of Deep Throat. The most touted tool for locating useful information on the World Wide Web is the search engine. However, due to the medium's flatness, sought information is drowned in a sea of useless information. A better solution is to build tools that allow authors to structure information so that it can easily be navigated. We experimented with the use of ontologies as a tool to formulate structures for information about a specific topic, so that related concepts are placed in adjacent locations and can easily be navigated using simple and ergonomic user models. We describe our effort in building a World Wide Web based photo album that is shared among a small network of people.

  10. Electronic structure of FeS

    NASA Astrophysics Data System (ADS)

    Miao, J.; Niu, X. H.; Xu, D. F.; Yao, Q.; Chen, Q. Y.; Ying, T. P.; Li, S. Y.; Fang, Y. F.; Zhang, J. C.; Ideta, S.; Tanaka, K.; Xie, B. P.; Feng, D. L.; Chen, Fei

    2017-05-01

    Here we report the electronic structure of FeS, a recently identified iron-based superconductor. Our high-resolution angle-resolved photoemission spectroscopy studies show two holelike (α and β ) and two electronlike (η and δ ) Fermi pockets around the Brillouin zone center and corner, respectively, all of which exhibit moderate dispersion along kz. However, a third holelike band (γ ) is not observed, which is expected around the zone center from band calculations and is common in iron-based superconductors. Since this band has the highest renormalization factor and is known to be the most vulnerable to defects, its absence in our data is likely due to defect scattering—and yet superconductivity can exist without coherent quasiparticles in the γ band. This may help resolve the current controversy on the superconducting gap structure of FeS. Moreover, by comparing the β bandwidths of various iron chalcogenides, including FeS, FeSe1 -xSx , FeSe, and FeSe1 -xTex , we find that the β bandwidth of FeS is the broadest. However, the band renormalization factor of FeS is still quite large, when compared with the band calculations, which indicates sizable electron correlations. This explains why the unconventional superconductivity can persist over such a broad range of isovalent substitution in FeSe1 -xTex and FeSe1 -xSx .

  11. Local structure of solid Rb at megabar pressures

    SciTech Connect

    De Panfilis, S.; Gorelli, F.; Santoro, M.; Ulivi, L.; Gregoryanz, E.; Irifune, T.; Shinmei, T.; Kantor, I.; Mathon, O.; Pascarelli, S.

    2015-06-07

    We have investigated the local and electronic structure of solid rubidium by means of x-ray absorption spectroscopy up to 101.0 GPa, thus doubling the maximum investigated experimental pressure. This study confirms the predicted stability of phase VI and was completed by the combination of two pivotal instrumental solutions. On one side, we made use of nanocrystalline diamond anvils, which, contrary to the more commonly used single crystal diamond anvils, do not generate sharp Bragg peaks (glitches) at specific energies that spoil the weak fine structure oscillations in the x-ray absorption cross section. Second, we exploited the performance of a state-of-the-art x-ray focussing device yielding a beam spot size of 5 × 5 μm{sup 2}, spatially stable over the entire energy scan. An advanced data analysis protocol was implemented to extract the pressure dependence of the structural parameters in phase VI of solid Rb from 51.2 GPa up to the highest pressure. A continuous reduction of the nearest neighbour distances was observed, reaching about 6% over the probed pressure range. We also discuss a phenomenological model based on the Einstein approximation to describe the pressure behaviour of the mean-square relative displacement. Within this simplified scheme, we estimate the Grüneisen parameter for this high pressure Rb phase to be in the 1.3–1.5 interval.

  12. Localization of antigens PwA33 and La on lampbrush chromosomes and on nucleoplasmic structures in the oocyte of the urodele Pleurodeles waltl: light and electron microscopic immunocytochemical studies.

    PubMed

    Pyne, C K; Simon, F; Loones, M T; Géraud, G; Bachmann, M; Lacroix, J C

    1994-12-01

    Monoclonal antibodies A33/22 and La11G7 have been used to study the distribution of the corresponding antigens, PwA33 and La, on the lampbrush chromosome loops and nucleoplasmic structures of P. waltl oocytes, using immunofluorescence, confocal laser scanning microscopy and immunogold labeling. The results obtained with these antibodies have been compared with those obtained with the Sm-antigen-specific monoclonal antibody Y12. All these monoclonal antibodies (mAbs) labeled the matrices of the majority of normal loops along their whole length. Nucleoplasmic RNP granules showed a strong staining with the mAbs La11G7 and Y12 throughout their mass, but with the mAb A33/22, they showed only a weak peripheral labeling in the form of patches on their surface. This patchy labeling was confirmed by confocal laser scanning microscopy. Electron microscopy revealed that this patchy labeling might be due to a hitherto undescribed type of submicroscopic granular structure, around 100 nm in either dimension, formed by 10-nm particles. Such granules were observed either attached to the RNP granules or free in the nucleoplasm, but rarely in relation with the normal loop matrices. These 100-nm granules may have a role in the movement of proteins and snRNPs inside the oocyte nuclei for storage, recycling, and/or degradation. Our results also suggest that all the microscopically visible free RNP granules of the nucleoplasm of P. waltl oocytes correspond to B snurposomes. The granules forming the B (globular) loops showed a labeling pattern similar to that of B snurposomes; their possible relationship is discussed.

  13. Multigrid Methods in Electronic Structure Calculations

    NASA Astrophysics Data System (ADS)

    Briggs, Emil

    1996-03-01

    Multigrid techniques have become the method of choice for a broad range of computational problems. Their use in electronic structure calculations introduces a new set of issues when compared to traditional plane wave approaches. We have developed a set of techniques that address these issues and permit multigrid algorithms to be applied to the electronic structure problem in an efficient manner. In our approach the Kohn-Sham equations are discretized on a real-space mesh using a compact representation of the Hamiltonian. The resulting equations are solved directly on the mesh using multigrid iterations. This produces rapid convergence rates even for ill-conditioned systems with large length and/or energy scales. The method has been applied to both periodic and non-periodic systems containing over 400 atoms and the results are in very good agreement with both theory and experiment. Example applications include a vacancy in diamond, an isolated C60 molecule, and a 64-atom cell of GaN with the Ga d-electrons in valence which required a 250 Ry cutoff. A particular strength of a real-space multigrid approach is its ready adaptability to massively parallel computer architectures. The compact representation of the Hamiltonian is especially well suited to such machines. Tests on the Cray-T3D have shown nearly linear scaling of the execution time up to the maximum number of processors (512). The MPP implementation has been used for studies of a large Amyloid Beta Peptide (C_146O_45N_42H_210) found in the brains of Alzheimers disease patients. Further applications of the multigrid method will also be described. (in collaboration D. J. Sullivan and J. Bernholc)

  14. Structural, electronic and magnetic properties of binary transition metal aluminum clusters: absence of electronic shell structure.

    PubMed

    Chauhan, Vikas; Singh, Akansha; Majumder, Chiranjib; Sen, Prasenjit

    2014-01-08

    Single Cr, Mn, Fe, Co and Ni doped Al clusters having up to 12 Al atoms are studied using density functional methods. The global minima of structure for all the clusters are identified, and their relative stability and electronic and magnetic properties are studied. FeAl4 and CoAl3 are found to have enhanced stability and aromatic behavior. In contrast to binary transition metal alkali and transition metal alkaline earth clusters, spherical shell models cannot describe the electronic structure of transition metal aluminum clusters.

  15. Electronic Structure and Bonding in Complex Biomolecule

    NASA Astrophysics Data System (ADS)

    Ouyang, Lizhi

    2005-03-01

    For over a century vitamin B12 and its enzyme cofactor derivates have persistently attracted research efforts for their vital biological role, unique Co-C bonding, rich red-ox chemistry, and recently their candidacies as drug delivery vehicles etc. However, our understanding of this complex metalorganic molecule's efficient enzyme activated catalytic power is still controversial. We have for the first time calculated the electronic structure, Mulliken effective charge and bonding of a whole Vitamin B12 molecule without any structural simplification by first- principles approaches based on density functional theory using structures determined by high resolution X-ray diffraction. A partial density of states analysis shows excellent agreement with X-ray absorption data and has been used successfully to interpret measured optical absorption spectra. Mulliken bonding analysis of B12 and its derivatives reveal noticeable correlations between the two axial ligands which could be exploited by the enzyme to control the catalytic process. Our calculated X-ray near edge structure of B12 and its derivates using Slater's transition state theory are also in good agreement with experiments. The same approach has been applied to other B12 derivatives, ferrocene peptides, and recently DNA molecules.

  16. Electron Beam Freeform Fabrication of Titanium Alloy Gradient Structures

    NASA Technical Reports Server (NTRS)

    Brice, Craig A.; Newman, John A.; Bird, Richard Keith; Shenoy, Ravi N.; Baughman, James M.; Gupta, Vipul K.

    2014-01-01

    Historically, the structural optimization of aerospace components has been done through geometric methods. A monolithic material is chosen based on the best compromise between the competing design limiting criteria. Then the structure is geometrically optimized to give the best overall performance using the single material chosen. Functionally graded materials offer the potential to further improve structural efficiency by allowing the material composition and/or microstructural features to spatially vary within a single structure. Thus, local properties could be tailored to the local design limiting criteria. Additive manufacturing techniques enable the fabrication of such graded materials and structures. This paper presents the results of a graded material study using two titanium alloys processed using electron beam freeform fabrication, an additive manufacturing process. The results show that the two alloys uniformly mix at various ratios and the resultant static tensile properties of the mixed alloys behave according to rule-of-mixtures. Additionally, the crack growth behavior across an abrupt change from one alloy to the other shows no discontinuity and the crack smoothly transitions from one crack growth regime into another.

  17. Electronic structure effects in liquid water studied by photoelectron spectroscopy and density functional theory

    SciTech Connect

    Nordlund, Dennis; Odelius, Michael; Bluhm, Hendrik; Ogasawara, Hirohito; Pettersson, Lars G.M.; Nilsson, Anders

    2008-04-29

    We present valence photoelectron emission spectra of liquid water in comparison with gas-phase water, ice close to the melting point, low temperature amorphous and crystalline ice. All aggregation states have major electronic structure changes relative to the free molecule, with rehybridization and development of bonding and anti-bonding states accompanying the hydrogen bond formation. Sensitivity to the local structural order, most prominent in the shape and splitting of the occupied 3a{sub 1} orbital, is understood from the electronic structure averaging over various geometrical structures, and reflects the local nature of the orbital interaction.

  18. Structure and luminescence of intrinsic localized states in sodium silicate glasses

    NASA Astrophysics Data System (ADS)

    Konstantinou, Konstantinos; Duffy, Dorothy M.; Shluger, Alexander L.

    2016-11-01

    Sodium silicate glasses exhibit a characteristic luminescence with a maximum at about 3.4 eV, which is thought to be determined by optical excitation of local glass structures, called L centers. To investigate the atomic and electronic structures of these centers, we calculated the electronic properties of the ground and excited states of a sodium silicate glass using classical and ab initio methods. Classical molecular dynamics was used to generate glass models of Na2O -3 SiO2 molar composition, and the density functional theory (DFT), with hybrid functionals, was used to identify and characterize the geometric and electronic structures of L centers. The ground and excited L* center states are studied, and their calculated excitation and luminescence transition energies are in good agreement with experimental data. The results confirm that the lowest triplet excited states in sodium silicate glass are associated with small clusters of Na ions and nonbridging oxygen atoms. These clusters serve as structural precursors for the localization of the excited states, and the broad distribution of the luminescence energies is correlated with the short-range order of the Na cations. The atomic and electronic structures of the electron E1- and hole H1+ centers are also studied. These results provide a more detailed insight into the atomistic structure of localized states in these important glasses.

  19. Electronic structure of Ca, Sr, and Ba under pressure.

    NASA Technical Reports Server (NTRS)

    Animalu, A. O. E.; Heine, V.; Vasvari, B.

    1967-01-01

    Electronic band structure calculations phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure

  20. Electronic dental anesthesia in a patient with suspected allergy to local anesthetics: report of case.

    PubMed

    Malamed, S F; Quinn, C L

    1988-01-01

    A 56-year-old patient with alleged allergy to local anesthetics required restorative dental treatment. Electronic dental anesthesia was used successfully, in lieu of injectable local anesthetics, to manage intraoperative pain associated with the restoration of vital mandibular teeth.

  1. Electronic structure of benzene adsorbed on Ni and Cu surfaces

    SciTech Connect

    Weinelt, M.; Nilsson, A.; Wassdahl, N.

    1997-04-01

    Benzene has for a long time served as a prototype adsorption system of large molecules. It adsorbs with the molecular plane parallel to the surface. The bonding of benzene to a transition metal is typically viewed to involve the {pi} system. Benzene adsorbs weakly on Cu and strongly on Ni. It is interesting to study how the adsorption strength is reflected in the electronic structure of the adsorbate-substrate complex. The authors have used X-ray Emission (XE) and X-ray Absorption (XA) spectroscopies to selectively study the electronic states localized on the adsorbed benzene molecule. Using XES the occupied states can be studies and with XAS the unoccupied states. The authors have used beamline 8.0 and the Swedish endstation equipped with a grazing incidence x-ray spectrometer and a partial yield absorption detector. The resolution in the XES and XAS were 0.5 eV and 0.05 eV, respectively.

  2. Geometry motivated alternative view on local protein backbone structures.

    PubMed

    Zacharias, Jan; Knapp, Ernst Walter

    2013-11-01

    We present an alternative to the classical Ramachandran plot (R-plot) to display local protein backbone structure. Instead of the (φ, ψ)-backbone angles relating to the chemical architecture of polypeptides generic helical parameters are used. These are the rotation or twist angle ϑ and the helical rise parameter d. Plots with these parameters provide a different view on the nature of local protein backbone structures. It allows to display the local structures in polar (d, ϑ)-coordinates, which is not possible for an R-plot, where structural regimes connected by periodicity appear disconnected. But there are other advantages, like a clear discrimination of the handedness of a local structure, a larger spread of the different local structure domains--the latter can yield a better separation of different local secondary structure motives--and many more. Compared to the R-plot we are not aware of any major disadvantage to classify local polypeptide structures with the (d, ϑ)-plot, except that it requires some elementary computations. To facilitate usage of the new (d, ϑ)-plot for protein structures we provide a web application (http://agknapp.chemie.fu-berlin.de/secsass), which shows the (d, ϑ)-plot side-by-side with the R-plot.

  3. Electronic structure and magneto-optical properties of CeSb and Gd

    NASA Astrophysics Data System (ADS)

    Antropov, V. P.; Liechtenstein, A. I.; Harmon, B. N.

    1995-02-01

    The electronic structure of gadolinium metal and CeSb have been calculated using a density functional method which explicitly includes the Coulomb parameter U for the 4f-electrons. The calculated density of states, total energies, Fermi surface, and magneto-optical properties are in better agreement with experiment than those obtained with the standard local density technique.

  4. Reversible Hydrogen Storage Materials – Structure, Chemistry, and Electronic Structure

    SciTech Connect

    Robertson, Ian M.; Johnson, Duane D.

    2014-06-21

    To understand the processes involved in the uptake and release of hydrogen from candidate light-weight metal hydride storage systems, a combination of materials characterization techniques and first principle calculation methods have been employed. In addition to conventional microstructural characterization in the transmission electron microscope, which provides projected information about the through thickness microstructure, electron tomography methods were employed to determine the three-dimensional spatial distribution of catalyst species for select systems both before and after dehydrogenation. Catalyst species identification as well as compositional analysis of the storage material before and after hydrogen charging and discharging was performed using a combination of energy dispersive spectroscopy, EDS, and electron energy loss spectroscopy, EELS. The characterization effort was coupled with first-principles, electronic-structure and thermodynamic techniques to predict and assess meta-stable and stable phases, reaction pathways, and thermodynamic and kinetic barriers. Systems studied included:NaAlH4, CaH2/CaB6 and Ca(BH4)2, MgH2/MgB2, Ni-Catalyzed Magnesium Hydride, TiH2-Catalyzed Magnesium Hydride, LiBH4, Aluminum-based systems and Aluminum

  5. Structure and local charging of electromigrated Au nanocontacts

    NASA Astrophysics Data System (ADS)

    Arnold, D.; Marz, M.; Schneider, S.; Hoffmann-Vogel, R.

    2017-02-01

    We study the structure and the electronic properties of Au nanocontacts created by controlled electromigration of thin film devices, a method frequently used to contact molecules. In contrast to electromigration testing, a current is applied in a cyclic fashion and during each cycle the resistance increase of the metal upon heating is used to avoid thermal runaway. In this way, nanometer sized-gaps are obtained. The thin film devices with an optimized structure at the origin of the electromigration process are made by shadow evaporation without contamination by organic materials. Defining rounded edges and a thinner area in the center of the device allow to pre-determine the location where the electromigration takes place. Scanning force microscopy images of the pristine Au film and electromigrated contact show its grainy structure. Through electromigration, a 1.5 μm-wide slit is formed, with extensions only on the anode side that had previously not been observed in narrower structures. It is discussed whether this could be explained by asymmetric heating of both electrodes. New grains are formed in the slit and on the extensions on both, the anode and the cathode side. The smaller structures inside the slit lead to an electrode distance below 150 nm. Kelvin probe force microscopy images show a local work function difference with fluctuations of 70 mV on the metal before electromigration. Between the electrodes, disconnected through electromigration, a work function difference of 3.2 V is observed due to charging. Some of the grains newly formed by electromigration are electrically disconnected from the electrodes.

  6. Structure and local charging of electromigrated Au nanocontacts.

    PubMed

    Arnold, D; Marz, M; Schneider, S; Hoffmann-Vogel, R

    2017-02-03

    We study the structure and the electronic properties of Au nanocontacts created by controlled electromigration of thin film devices, a method frequently used to contact molecules. In contrast to electromigration testing, a current is applied in a cyclic fashion and during each cycle the resistance increase of the metal upon heating is used to avoid thermal runaway. In this way, nanometer sized-gaps are obtained. The thin film devices with an optimized structure at the origin of the electromigration process are made by shadow evaporation without contamination by organic materials. Defining rounded edges and a thinner area in the center of the device allow to pre-determine the location where the electromigration takes place. Scanning force microscopy images of the pristine Au film and electromigrated contact show its grainy structure. Through electromigration, a 1.5 μm-wide slit is formed, with extensions only on the anode side that had previously not been observed in narrower structures. It is discussed whether this could be explained by asymmetric heating of both electrodes. New grains are formed in the slit and on the extensions on both, the anode and the cathode side. The smaller structures inside the slit lead to an electrode distance below 150 nm. Kelvin probe force microscopy images show a local work function difference with fluctuations of 70 mV on the metal before electromigration. Between the electrodes, disconnected through electromigration, a work function difference of 3.2 V is observed due to charging. Some of the grains newly formed by electromigration are electrically disconnected from the electrodes.

  7. Electronic structure and bonding in transuranics: comparison with lanthanides

    SciTech Connect

    Ward, J.W.

    1983-01-01

    The physico-chemical properties of the actinide metals, alloys, and compounds show interesting parallels and contrasts with the rare earths, beyond uranium. At first there is a transition region where the unique bonding properties of the early actinides become less prominent, due to progressive f-electron localization. Nevertheless, in contrast to the rare earths, f-electron energies remain close to the Fermi level, resulting in complex behavior as a function of temperature, pressure and structure. Particularly interesting in this region are the metallic hydrides, whose chemistry is clearly rare-earth like, but whose electronic properties are entirely different. At americium a major localization and f-band narrowing occurs, but the explanation of americium behavior is obscured by the occurrence of the unique f/sup 6/ non-magnetic solid-state configuration. Beyond americium, it would appear that real rare-earth-like behavior finally begins; this has been born out by recent studies on the thermodynamics and cohesive energies of curium, berkelium, californium and einsteinium metals. However, a new complication arises almost immediately, in the onset of incipient stabilization of the divalent state, which already appears in californium, whose physico-chemical properties are remarkably similar to samarium. Einsteinium appears to be fully divalent, thus heralding the beginning of a mini-series of truly divalent metals.

  8. Structural evolution and valence electron-state change during ultra thin silicon-oxide growth

    NASA Astrophysics Data System (ADS)

    Shimizu, A.; Abe, S.; Nakayama, H.; Nishino, T.; Iida, S.

    2000-06-01

    We have studied valence electron-state changes of Si during initial oxidation of Si(111) clean surface, HF-treated Si(001) and Si(111) surfaces by Auger valence electron spectroscopy (AVES). The results showed that the valence electron-state changes during initial oxidation were sensitively reflected in Si[2s,2p,V] (V=3s,3p) AVES spectra and that they depended on both initial surface treatment and surface orientation. The local valence electron-states, local density of states in other words, showed the characteristic-structure evolution depending on the initial surface treatment and surface orientation.

  9. Localization of defects using checkerboard test structures

    NASA Astrophysics Data System (ADS)

    Schellenberg, Sven-Olaf

    2001-04-01

    Defects in semiconductor industry become more important by shrinking structures and increasing complexity of process. Therefore the size of a killer defect becomes smaller and it is not easy to find them with optical inspection tools. In addition Inspection tools are not able to say something about electrical effects from defects which are found. With Checkerboard Test Structures it is possible to locate electrical defects. In fact these special test structures will be tested at the end of the process, like an usual function test. A special developed algorithm allows low quantity of pads. This gives a high spatial resolution and on the other hand we have good ratio between active and passive area. A reduction of a statistical failure could be reached, because it is not necessary to calculate the defect density from a small region. In particular special defect distribution like cluster can be considered. With this structures different layers can be examined for disconnections and short-circuits. Therefore it is possible to locate defects in one layer or between two layers. So the defect density for the sensitive dielectrica between two layers, like any kind of oxide can be calculated. The karree test structures can be used very good as an inline-defectmonitoring, because there is no difference from the original technology of proces. There are also no differences in time for processing and for testing, so Karreeteststructures is an optimal representation for your process.

  10. Efficient O(N) integration for all-electron electronic structure calculation using numeric basis functions

    SciTech Connect

    Havu, V. Blum, V.; Havu, P.; Scheffler, M.

    2009-12-01

    We consider the problem of developing O(N) scaling grid-based operations needed in many central operations when performing electronic structure calculations with numeric atom-centered orbitals as basis functions. We outline the overall formulation of localized algorithms, and specifically the creation of localized grid batches. The choice of the grid partitioning scheme plays an important role in the performance and memory consumption of the grid-based operations. Three different top-down partitioning methods are investigated, and compared with formally more rigorous yet much more expensive bottom-up algorithms. We show that a conceptually simple top-down grid partitioning scheme achieves essentially the same efficiency as the more rigorous bottom-up approaches.

  11. Population structure with localized haplotype clusters.

    PubMed

    Browning, Sharon R; Weir, Bruce S

    2010-08-01

    We propose a multilocus version of F(ST) and a measure of haplotype diversity using localized haplotype clusters. Specifically, we use haplotype clusters identified with BEAGLE, which is a program implementing a hidden Markov model for localized haplotype clustering and performing several functions including inference of haplotype phase. We apply this methodology to HapMap phase 3 data. With this haplotype-cluster approach, African populations have highest diversity and lowest divergence from the ancestral population, East Asian populations have lowest diversity and highest divergence, and other populations (European, Indian, and Mexican) have intermediate levels of diversity and divergence. These relationships accord with expectation based on other studies and accepted models of human history. In contrast, the population-specific F(ST) estimates obtained directly from single-nucleotide polymorphisms (SNPs) do not reflect such expected relationships. We show that ascertainment bias of SNPs has less impact on the proposed haplotype-cluster-based F(ST) than on the SNP-based version, which provides a potential explanation for these results. Thus, these new measures of F(ST) and haplotype-cluster diversity provide an important new tool for population genetic analysis of high-density SNP data.

  12. Electron Liquids in Semiconductor Quantum Structures

    SciTech Connect

    Aron Pinczuk

    2009-05-25

    The groups led by Stormer and Pinczuk have focused this project on goals that seek the elucidation of novel many-particle effects that emerge in two-dimensional electron systems (2DES) as the result from fundamental quantum interactions. This experimental research is conducted under extreme conditions of temperature and magnetic field. From the materials point of view, the ultra-high mobility systems in GaAs/AlGaAs quantum structures continue to be at the forefront of this research. The newcomer materials are based on graphene, a single atomic layer of graphite. The graphene research is attracting enormous attention from many communities involved in condensed matter research. The investigated many-particle phenomena include the integer and fractional quantum Hall effect, composite fermions, and Dirac fermions, and a diverse group of electron solid and liquid crystal phases. The Stormer group performed magneto-transport experiments and far-infrared spectroscopy, while the Pinczuk group explores manifestations of such phases in optical spectra.

  13. Silicene oxides: formation, structures and electronic properties

    PubMed Central

    Wang, Rong; Pi, Xiaodong; Ni, Zhenyi; Liu, Yong; Lin, Shisheng; Xu, Mingsheng; Yang, Deren

    2013-01-01

    Understanding the oxidation of silicon has been critical to the success of all types of silicon materials, which are the cornerstones of modern silicon technologies. For the recent experimentally obtained two-dimensional silicene, oxidation should also be addressed to enable the development of silicene-based devices. Here we focus on silicene oxides (SOs) that result from the partial or full oxidation of silicene in the framework of density functional theory. It is found that the formation of SOs greatly depends on oxidation conditions, which concern the oxidizing agents of oxygen and hydroxyl. The honeycomb lattice of silicene may be preserved, distorted or destroyed after oxidation. The charge state of Si in partially oxidized silicene ranges from +1 to +3, while that in fully oxidized silicene is +4. Metals, semimetals, semiconductors and insulators can all be found among the SOs, which show a wide spectrum of electronic structures. Our work indicates that the oxidation of silicene should be exquisitely controlled to obtain specific SOs with desired electronic properties. PMID:24336409

  14. Electronic structures of reconstructed zigzag silicene nanoribbons

    SciTech Connect

    Ding, Yi E-mail: wangyanli-04@tsinghua.org.cn; Wang, Yanli E-mail: wangyanli-04@tsinghua.org.cn

    2014-02-24

    Edge states and magnetism are crucial for spintronic applications of nanoribbons. Here, using first-principles calculations, we explore structural stabilities and electronic properties of zigzag silicene nanoribbons (ZSiNRs) with Klein and pentagon-heptagon reconstructions. Comparing to unreconstructed zigzag edges, deformed bare pentagon-heptagon ones are favored under H-poor conditions, while H-rich surroundings stabilize di-hydrogenated Klein edges. These Klein edges have analogous magnetism to zigzag ones, which also possess the electric-field-induced half-metallicity of nanoribbons. Moreover, diverse magnetic states can be achieved by asymmetric Klein and zigzag edges into ZSiNRs, which could be transformed from antiferromagnetic-semiconductors to bipolar spin-gapless-semiconductors and ferromagnetic-metals depending on edge hydrogenations.

  15. Electronic structures of reconstructed zigzag silicene nanoribbons

    NASA Astrophysics Data System (ADS)

    Ding, Yi; Wang, Yanli

    2014-02-01

    Edge states and magnetism are crucial for spintronic applications of nanoribbons. Here, using first-principles calculations, we explore structural stabilities and electronic properties of zigzag silicene nanoribbons (ZSiNRs) with Klein and pentagon-heptagon reconstructions. Comparing to unreconstructed zigzag edges, deformed bare pentagon-heptagon ones are favored under H-poor conditions, while H-rich surroundings stabilize di-hydrogenated Klein edges. These Klein edges have analogous magnetism to zigzag ones, which also possess the electric-field-induced half-metallicity of nanoribbons. Moreover, diverse magnetic states can be achieved by asymmetric Klein and zigzag edges into ZSiNRs, which could be transformed from antiferromagnetic-semiconductors to bipolar spin-gapless-semiconductors and ferromagnetic-metals depending on edge hydrogenations.

  16. Structure, Stability and Electronic Properties of Nanodiamonds

    NASA Astrophysics Data System (ADS)

    Galli, Giulia

    Diamond nanoparticles, or nanodiamonds, have the most disparate origins. They are found in crude oil at concentrations up to thousands of parts per million, in meteorites, interstellar dust, and protoplanetary nebulae, as well as in certain sediment layers on Earth. They can also be produced in the laboratory by chemical vapor deposition or by detonating high explosive materials. Here we summarize what is known about nanodiamond sources; we then describe the atomic and electronic structure, and stability of diamond nanoparticles, highlighting the role of theory and computations in understanding and predicting their properties. Possible technological applications of thin films composed of nanodiamonds, ranging from micro-resonators to substrates for drug delivery, are briefly discussed.

  17. Electronic Structure and Transport in Solids from First Principles

    NASA Astrophysics Data System (ADS)

    Mustafa, Jamal Ibrahim

    The focus of this dissertation is the determination of the electronic structure and trans- port properties of solids. We first review some of the theory and computational methodology used in the calculation of electronic structure and materials properties. Throughout the dissertation, we make extensive use of state-of-the-art software packages that implement density functional theory, density functional perturbation theory, and the GW approximation, in addition to specialized methods for interpolating matrix elements for extremely accurate results. The first application of the computational framework introduced is the determination of band offsets in semiconductor heterojunctions using a theory of quantum dipoles at the interface. This method is applied to the case of heterojunction formed between a new metastable phase of silicon, with a rhombohedral structure, and cubic silicon. Next, we introduce a novel method for the construction of localized Wannier functions, which we have named the optimized projection functions method (OPFM). We illustrate the method on a variety of systems and find that it can reliably construct localized Wannier functions with minimal user intervention. We further develop the OPFM to investigate a class of materials called topological insulators, which are insulating in the bulk but have conductive surface states. These properties are a result of a nontrivial topology in their band structure, which has interesting effects on the character of the Wannier functions. In the last sections of the main text, the noble metals are studied in great detail, including their electronic properties and carrier dynamics. In particular, we investigate, the Fermi surface properties of the noble metals, specifically electron-phonon scattering lifetimes, and subsequently the transport properties determined by carriers on the Fermi surface. To achieve this, a novel sampling technique is developed, with wide applicability to transport calculations

  18. Enhancing community detection by using local structural information

    NASA Astrophysics Data System (ADS)

    Xiang, Ju; Hu, Ke; Zhang, Yan; Bao, Mei-Hua; Tang, Liang; Tang, Yan-Ni; Gao, Yuan-Yuan; Li, Jian-Ming; Chen, Benyan; Hu, Jing-Bo

    2016-03-01

    Many real-world networks, such as gene networks, protein-protein interaction networks and metabolic networks, exhibit community structures, meaning the existence of groups of densely connected vertices in the networks. Many local similarity measures in the networks are closely related to the concept of the community structures, and may have a positive effect on community detection in the networks. Here, various local similarity measures are used to extract local structural information, which is then applied to community detection in the networks by using the edge-reweighting strategy. The effect of the local similarity measures on community detection is carefully investigated and compared in various networks. The experimental results show that the local similarity measures are crucial for the improvement of community detection methods, while the positive effect of the local similarity measures is closely related to the networks under study and applied community detection methods.

  19. Core-hole effect on XANES and electronic structure of minor actinide dioxides with fluorite structure

    NASA Astrophysics Data System (ADS)

    Suzuki, Chikashi; Nishi, Tsuyoshi; Nakada, Masami; Akabori, Mitsuo; Hirata, Masaru; Kaji, Yoshiyuki

    2012-02-01

    The authors investigated theoretically core-hole effects on X-ray absorption near-edge structures (XANES) of Np and Am LIII in neptunium dioxide (NpO2) and americium dioxide (AmO2) with CaF2-type crystal lattices using the all-electron full-potential linearized augmented plane-wave (FP-LAPW) method. The peak creation mechanism of XANES was shown by examining the electronic structures of these oxides, which indicated that core-hole screening was more marked for AmO2 than for NpO2 because of the difference in the charge transfer between these oxides. Furthermore, the results of charge density analysis suggested that the white line was assigned to the quasi-bound state composed of the localized Np d or Am d components and O components, and that the tail structure was created as a result of delocalized standing waves between the Np or Am atoms.

  20. Local field enhancement and thermoplasmonics in multimodal aluminum structures

    NASA Astrophysics Data System (ADS)

    Wiecha, Peter R.; Mennemanteuil, Marie-Maxime; Khlopin, Dmitry; Martin, Jérôme; Arbouet, Arnaud; Gérard, Davy; Bouhelier, Alexandre; Plain, Jérôme; Cuche, Aurélien

    2017-07-01

    Aluminum nanostructures have recently been at the focus of numerous studies due to their properties including oxidation stability and surface plasmon resonances covering the ultraviolet and visible spectral windows. In this article, we reveal a facet of this metal relevant for both plasmonic purposes and photothermal conversion. The field distribution of high-order plasmonic resonances existing in two-dimensional Al structures is studied by nonlinear photoluminescence microscopy in a spectral region where electronic interband transitions occur. The polarization sensitivity of the field intensity maps shows that the electric field concentration can be addressed and controlled on demand. We use a numerical tool based on the Green dyadic method to analyze our results and to simulate the absorbed energy that is locally converted into heat. The polarization-dependent temperature increase of the Al structures is experimentally quantitatively measured, and is in an excellent agreement with theoretical predictions. Our work highlights Al as a promising candidate for designing thermal nanosources integrated in coplanar geometries for thermally assisted nanomanipulation or biophysical applications.

  1. Improved cluster-in-molecule local correlation approach for electron correlation calculation of large systems.

    PubMed

    Guo, Yang; Li, Wei; Li, Shuhua

    2014-10-02

    An improved cluster-in-molecule (CIM) local correlation approach is developed to allow electron correlation calculations of large systems more accurate and faster. We have proposed a refined strategy of constructing virtual LMOs of various clusters, which is suitable for basis sets of various types. To recover medium-range electron correlation, which is important for quantitative descriptions of large systems, we find that a larger distance threshold (ξ) is necessary for highly accurate results. Our illustrative calculations show that the present CIM-MP2 (second-order Møller-Plesser perturbation theory, MP2) or CIM-CCSD (coupled cluster singles and doubles, CCSD) scheme with a suitable ξ value is capable of recovering more than 99.8% correlation energies for a wide range of systems at different basis sets. Furthermore, the present CIM-MP2 scheme can provide reliable relative energy differences as the conventional MP2 method for secondary structures of polypeptides.

  2. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water.

    PubMed

    Li, Yu Hang; Liu, Peng Fei; Pan, Lin Feng; Wang, Hai Feng; Yang, Zhen Zhong; Zheng, Li Rong; Hu, P; Zhao, Hui Jun; Gu, Lin; Yang, Hua Gui

    2015-08-19

    Modifications of local structure at atomic level could precisely and effectively tune the capacity of materials, enabling enhancement in the catalytic activity. Here we modulate the local atomic structure of a classical but inert transition metal oxide, tungsten trioxide, to be an efficient electrocatalyst for hydrogen evolution in acidic water, which has shown promise as an alternative to platinum. Structural analyses and theoretical calculations together indicate that the origin of the enhanced activity could be attributed to the tailored electronic structure by means of the local atomic structure modulations. We anticipate that suitable structure modulations might be applied on other transition metal oxides to meet the optimal thermodynamic and kinetic requirements, which may pave the way to unlock the potential of other promising candidates as cost-effective electrocatalysts for hydrogen evolution in industry.

  3. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water

    PubMed Central

    Li, Yu Hang; Liu, Peng Fei; Pan, Lin Feng; Wang, Hai Feng; Yang, Zhen Zhong; Zheng, Li Rong; Hu, P.; Zhao, Hui Jun; Gu, Lin; Yang, Hua Gui

    2015-01-01

    Modifications of local structure at atomic level could precisely and effectively tune the capacity of materials, enabling enhancement in the catalytic activity. Here we modulate the local atomic structure of a classical but inert transition metal oxide, tungsten trioxide, to be an efficient electrocatalyst for hydrogen evolution in acidic water, which has shown promise as an alternative to platinum. Structural analyses and theoretical calculations together indicate that the origin of the enhanced activity could be attributed to the tailored electronic structure by means of the local atomic structure modulations. We anticipate that suitable structure modulations might be applied on other transition metal oxides to meet the optimal thermodynamic and kinetic requirements, which may pave the way to unlock the potential of other promising candidates as cost-effective electrocatalysts for hydrogen evolution in industry. PMID:26286479

  4. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water

    NASA Astrophysics Data System (ADS)

    Li, Yu Hang; Liu, Peng Fei; Pan, Lin Feng; Wang, Hai Feng; Yang, Zhen Zhong; Zheng, Li Rong; Hu, P.; Zhao, Hui Jun; Gu, Lin; Yang, Hua Gui

    2015-08-01

    Modifications of local structure at atomic level could precisely and effectively tune the capacity of materials, enabling enhancement in the catalytic activity. Here we modulate the local atomic structure of a classical but inert transition metal oxide, tungsten trioxide, to be an efficient electrocatalyst for hydrogen evolution in acidic water, which has shown promise as an alternative to platinum. Structural analyses and theoretical calculations together indicate that the origin of the enhanced activity could be attributed to the tailored electronic structure by means of the local atomic structure modulations. We anticipate that suitable structure modulations might be applied on other transition metal oxides to meet the optimal thermodynamic and kinetic requirements, which may pave the way to unlock the potential of other promising candidates as cost-effective electrocatalysts for hydrogen evolution in industry.

  5. Scattering of an electronic wave packet by a one-dimensional electron-phonon-coupled structure

    NASA Astrophysics Data System (ADS)

    Brockt, C.; Jeckelmann, E.

    2017-02-01

    We investigate the scattering of an electron by phonons in a small structure between two one-dimensional tight-binding leads. This model mimics the quantum electron transport through atomic wires or molecular junctions coupled to metallic leads. The electron-phonon-coupled structure is represented by the Holstein model. We observe permanent energy transfer from the electron to the phonon system (dissipation), transient self-trapping of the electron in the electron-phonon-coupled structure (due to polaron formation and multiple reflections at the structure edges), and transmission resonances that depend strongly on the strength of the electron-phonon coupling and the adiabaticity ratio. A recently developed TEBD algorithm, optimized for bosonic degrees of freedom, is used to simulate the quantum dynamics of a wave packet launched against the electron-phonon-coupled structure. Exact results are calculated for a single electron-phonon site using scattering theory and analytical approximations are obtained for limiting cases.

  6. A Discontinuous Galerkin Framework for Electronic Structure Calculations

    NASA Astrophysics Data System (ADS)

    Baczewski, Andrew; Shanker, Balasubramaniam; Mahanti, Subhendra; Levine, Benjamin

    2012-02-01

    It is generally accepted that a good basis set for any calculation should possess a number of salient features, including systematic improvability, adaptive resolution of multiscale features, and fidelity in capturing the pertinent physics. Considering the progenitors of most modern electronic structure basis sets to be Gaussian-type orbitals or planewaves, descendants of these methods have inherited features that address either systematic improvability (planewaves) or adaptive resolution (Gaussians) separately, and use a variety of tricks to differentiate the core and valence physics. Discontinuous Galerkin methods provide a framework for defining adaptive local basis sets, that may be based on these canonical basis sets, that can be mixed and matched to simultaneously achieve all of these goals. Our group is presently developing a new electronic structure code to enable Density Functional and Hartree-Fock calculations within this framework, particularly in the context of all-electron formulations wherein the accurate resolution of both core and valence states is necessary. Numerous implementation details will be addressed, including the incorporation of hardware- and software-based acceleration, such as GPU-based parallelism, and fast electrostatics solvers.

  7. A systematic study of electronic structure from graphene to graphane.

    PubMed

    Chandrachud, Prachi; Pujari, Bhalchandra S; Haldar, Soumyajyoti; Sanyal, Biplab; Kanhere, D G

    2010-11-24

    While graphene is a semi-metal, a recently synthesized hydrogenated graphene called graphane is an insulator. We have probed the transformation of graphene upon hydrogenation to graphane within the framework of density functional theory. By analysing the electronic structure for 18 different hydrogen concentrations, we bring out some novel features of this transition. Our results show that the hydrogenation favours clustered configurations leading to the formation of compact islands. The analysis of the charge density and electron localization function (ELF) indicates that, as hydrogen coverage increases, the semi-metal turns into a metal, showing a delocalized charge density, then transforms into an insulator. The metallic phase is spatially inhomogeneous in the sense it contains islands of insulating regions formed by hydrogenated carbon atoms and metallic channels formed by contiguous bare carbon atoms. It turns out that it is possible to pattern the graphene sheet to tune the electronic structure. For example, removal of hydrogen atoms along the diagonal of the unit cell, yielding an armchair pattern at the edge, gives rise to a bandgap of 1.4 eV. We also show that a weak ferromagnetic state exists even for a large hydrogen coverage whenever there is a sublattice imbalance in the presence of an odd number of hydrogen atoms.

  8. Non-Local currents and the structure of eigenstates in planar discrete systems with local symmetries

    NASA Astrophysics Data System (ADS)

    Röntgen, M.; Morfonios, C. V.; Diakonos, F. K.; Schmelcher, P.

    2017-05-01

    Local symmetries are spatial symmetries present in a subdomain of a complex system. By using and extending a framework of so-called non-local currents that has been established recently, we show that one can gain knowledge about the structure of eigenstates in locally symmetric setups through a Kirchhoff-type law for the non-local currents. The framework is applicable to all discrete planar Schrödinger setups, including those with non-uniform connectivity. Conditions for spatially constant non-local currents are derived and we explore two types of locally symmetric subsystems in detail, closed-loops and one-dimensional open ended chains. We find these systems to support locally similar or even locally symmetric eigenstates.

  9. Generation of superhot electrons by intense field structures

    SciTech Connect

    Salomaa, R. R. E.; Karttunen, S. J.; Paettikangas, T. J. H.; Mulser, P.; Schneider, W.

    1998-02-20

    Strong, localized electrostatic fields created in laser plasma interactions act as a source of hot electrons. We have derived analytical formulas based on adiabatic invariants for explaining of the main characteristics of the electron spectra found in test particle calculations and in full wave-particle simulations. The electrons are treated relativistically. Simple models for phenomenological description of nonlinear wave damping are discussed.

  10. Electronic and structural ground state of heavy alkali metals at high pressure

    SciTech Connect

    Fabbris, G.; Lim, J.; Veiga, L. S. I.; Haskel, D.; Schilling, J. S.

    2015-02-17

    Here, alkali metals display unexpected properties at high pressure, including emergence of low symmetry crystal structures, that appear to occur due to enhanced electronic correlations among the otherwise nearly-free conduction electrons. We investigate the high pressure electronic and structural ground state of K, Rb, and Cs using x-ray absorption spectroscopy and x-ray diffraction measurements together with ab initio theoretical calculations. The sequence of phase transitions under pressure observed at low temperature is similar in all three heavy alkalis except for the absence of the oC84 phase in Cs. Both the experimental and theoretical results point to pressure-enhanced localization of the valence electrons characterized by pseudo-gap formation near the Fermi level and strong spd hybridization. Although the crystal structures predicted to host magnetic order in K are not observed, the localization process appears to drive these alkalis closer to a strongly correlated electron state.

  11. Electronic and structural ground state of heavy alkali metals at high pressure

    DOE PAGES

    Fabbris, G.; Lim, J.; Veiga, L. S. I.; ...

    2015-02-17

    Here, alkali metals display unexpected properties at high pressure, including emergence of low symmetry crystal structures, that appear to occur due to enhanced electronic correlations among the otherwise nearly-free conduction electrons. We investigate the high pressure electronic and structural ground state of K, Rb, and Cs using x-ray absorption spectroscopy and x-ray diffraction measurements together with ab initio theoretical calculations. The sequence of phase transitions under pressure observed at low temperature is similar in all three heavy alkalis except for the absence of the oC84 phase in Cs. Both the experimental and theoretical results point to pressure-enhanced localization of themore » valence electrons characterized by pseudo-gap formation near the Fermi level and strong spd hybridization. Although the crystal structures predicted to host magnetic order in K are not observed, the localization process appears to drive these alkalis closer to a strongly correlated electron state.« less

  12. Structure and Electronic Properties of Cerium Orthophosphate: Theory and Experiment

    SciTech Connect

    Adelstein, Nicole; Mun, B. Simon; Ray, Hannah; Ross Jr, Phillip; Neaton, Jeffrey; De Jonghe, Lutgard

    2010-07-27

    Structural and electronic properties of cerium orthophosphate (CePO{sub 4}) are calculated using density functional theory (DFT) with the local spin-density approximation (LSDA+U), with and without gradient corrections (GGA-(PBE)+U), and compared to X-ray diffraction and photoemission spectroscopy measurements. The density of states is found to change significantly as the Hubbard parameter U, which is applied to the Ce 4f states, is varied from 0 to 5 eV. The calculated structural properties are in good agreement with experiment and do not change significantly with U. Choosing U = 3 eV for LDSA provides the best agreement between the calculated density of states and the experimental photoemission spectra.

  13. Atomic and electronic structure of twin growth defects in magnetite.

    PubMed

    Gilks, Daniel; Nedelkoski, Zlatko; Lari, Leonardo; Kuerbanjiang, Balati; Matsuzaki, Kosuke; Susaki, Tomofumi; Kepaptsoglou, Demie; Ramasse, Quentin; Evans, Richard; McKenna, Keith; Lazarov, Vlado K

    2016-02-15

    We report the existence of a stable twin defect in Fe3O4 thin films. By using aberration corrected scanning transmission electron microscopy and spectroscopy the atomic structure of the twin boundary has been determined. The boundary is confined to the (111) growth plane and it is non-stoichiometric due to a missing Fe octahedral plane. By first principles calculations we show that the local atomic structural configuration of the twin boundary does not change the nature of the superexchange interactions between the two Fe sublattices across the twin grain boundary. Besides decreasing the half-metallic band gap at the boundary the altered atomic stacking at the boundary does not change the overall ferromagnetic (FM) coupling between the grains.

  14. Atomic and electronic structure of twin growth defects in magnetite

    PubMed Central

    Gilks, Daniel; Nedelkoski, Zlatko; Lari, Leonardo; Kuerbanjiang, Balati; Matsuzaki, Kosuke; Susaki, Tomofumi; Kepaptsoglou, Demie; Ramasse, Quentin; Evans, Richard; McKenna, Keith; Lazarov, Vlado K.

    2016-01-01

    We report the existence of a stable twin defect in Fe3O4 thin films. By using aberration corrected scanning transmission electron microscopy and spectroscopy the atomic structure of the twin boundary has been determined. The boundary is confined to the (111) growth plane and it is non-stoichiometric due to a missing Fe octahedral plane. By first principles calculations we show that the local atomic structural configuration of the twin boundary does not change the nature of the superexchange interactions between the two Fe sublattices across the twin grain boundary. Besides decreasing the half-metallic band gap at the boundary the altered atomic stacking at the boundary does not change the overall ferromagnetic (FM) coupling between the grains. PMID:26876049

  15. Atomic and electronic structure of twin growth defects in magnetite

    NASA Astrophysics Data System (ADS)

    Gilks, Daniel; Nedelkoski, Zlatko; Lari, Leonardo; Kuerbanjiang, Balati; Matsuzaki, Kosuke; Susaki, Tomofumi; Kepaptsoglou, Demie; Ramasse, Quentin; Evans, Richard; McKenna, Keith; Lazarov, Vlado K.

    2016-02-01

    We report the existence of a stable twin defect in Fe3O4 thin films. By using aberration corrected scanning transmission electron microscopy and spectroscopy the atomic structure of the twin boundary has been determined. The boundary is confined to the (111) growth plane and it is non-stoichiometric due to a missing Fe octahedral plane. By first principles calculations we show that the local atomic structural configuration of the twin boundary does not change the nature of the superexchange interactions between the two Fe sublattices across the twin grain boundary. Besides decreasing the half-metallic band gap at the boundary the altered atomic stacking at the boundary does not change the overall ferromagnetic (FM) coupling between the grains.

  16. Immuno- and correlative light microscopy-electron tomography methods for 3D protein localization in yeast.

    PubMed

    Mari, Muriel; Geerts, Willie J C; Reggiori, Fulvio

    2014-10-01

    Compartmentalization of eukaryotic cells is created and maintained through membrane rearrangements that include membrane transport and organelle biogenesis. Three-dimensional reconstructions with nanoscale resolution in combination with protein localization are essential for an accurate molecular dissection of these processes. The yeast Saccharomyces cerevisiae is a key model system for identifying genes and characterizing pathways essential for the organization of cellular ultrastructures. Electron microscopy studies of yeast, however, have been hampered by the presence of a cell wall that obstructs penetration of resins and cryoprotectants, and by the protein dense cytoplasm, which obscures the membrane details. Here we present an immuno-electron tomography (IET) method, which allows the determination of protein distribution patterns on reconstructed organelles from yeast. In addition, we extend this IET approach into a correlative light microscopy-electron tomography procedure where structures positive for a specific protein localized through a fluorescent signal are resolved in 3D. These new investigative tools for yeast will help to advance our understanding of the endomembrane system organization in eukaryotic cells.

  17. Electron localization in ultrathin films of three-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Liao, Jian; Shi, Gang; Liu, Nan; Li, Yongqing

    2016-11-01

    The recent discovery of three-dimensional (3D) topological insulators (TIs) has provided a fertile ground for obtaining further insights into electron localization in condensed matter systems. In the past few years, a tremendous amount of research effort has been devoted to investigate electron transport properties of 3D TIs and their low dimensional structures in a wide range of disorder strength, covering transport regimes from weak antilocalization to strong localization. The knowledge gained from these studies not only offers sensitive means to probe the surface states of 3D TIs but also forms a basis for exploring novel topological phases. In this article, we briefly review the main experimental progress in the study of the localization in 3D TIs, with a focus on the latest results on ultrathin TI films. Some new transport data will also be presented in order to complement those reported previously in the literature. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921703 and 2015CB921102), the National Natural Science Foundation of China (Grant Nos. 61425015, 11374337, and 91121003), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB070202).

  18. Local imaging of high mobility two-dimensional electron systems with virtual scanning tunneling microscopy

    SciTech Connect

    Pelliccione, M.; Bartel, J.; Goldhaber-Gordon, D.; Sciambi, A.; Pfeiffer, L. N.; West, K. W.

    2014-11-03

    Correlated electron states in high mobility two-dimensional electron systems (2DESs), including charge density waves and microemulsion phases intermediate between a Fermi liquid and Wigner crystal, are predicted to exhibit complex local charge order. Existing experimental studies, however, have mainly probed these systems at micron to millimeter scales rather than directly mapping spatial organization. Scanning probes should be well-suited to study the spatial structure of these states, but high mobility 2DESs are found at buried semiconductor interfaces, beyond the reach of conventional scanning tunneling microscopy. Scanning techniques based on electrostatic coupling to the 2DES deliver important insights, but generally with resolution limited by the depth of the 2DES. In this letter, we present our progress in developing a technique called “virtual scanning tunneling microscopy” that allows local tunneling into a high mobility 2DES. Using a specially designed bilayer GaAs/AlGaAs heterostructure where the tunnel coupling between two separate 2DESs is tunable via electrostatic gating, combined with a scanning gate, we show that the local tunneling can be controlled with sub-250 nm resolution.

  19. Resonance ultrasonic actuation and local structural rejuvenation in metallic glasses

    NASA Astrophysics Data System (ADS)

    Wang, D. P.; Yang, Y.; Niu, X. R.; Lu, J.; Yang, G. N.; Wang, W. H.; Liu, C. T.

    2017-06-01

    Using the method of contact resonance ultrasonic actuation (CRUA), we observed evidence of local structural rejuvenation at the surface of metallic glasses (MGs), arising from the increase of the vibration amplitude of the atoms after the resonance actuation. By adjusting the CRUA parameters, the size, pattern, and extent of the rejuvenated zones could be tailored. Nanoindentation tests revealed suppressed nucleation of shear bands after CRUA, originating from the homogenization of the local structure induced by the ultrasonic vibration. Compared with the structural homogenization from annealing, this method will not sacrifice the concentration of the free volume for the local structural constraint. These results are useful to understand the evolution of the microstructure and local structural rejuvenation of MGs, as well as the design of MGs with improved plasticity from the nanoscale to the microscale.

  20. Spatially resolved electronic structure of twisted graphene

    NASA Astrophysics Data System (ADS)

    Yao, Qirong; van Bremen, Rik; Slotman, Guus J.; Zhang, Lijie; Haartsen, Sebastiaan; Sotthewes, Kai; Bampoulis, Pantelis; de Boeij, Paul L.; van Houselt, Arie; Yuan, Shengjun; Zandvliet, Harold J. W.

    2017-06-01

    We have used scanning tunneling microscopy and spectroscopy to resolve the spatial variation of the density of states of twisted graphene layers on top of a highly oriented pyrolytic graphite substrate. Owing to the twist a moiré pattern develops with a periodicity that is substantially larger than the periodicity of a single layer graphene. The twisted graphene layer has electronic properties that are distinctly different from that of a single layer graphene due to the nonzero interlayer coupling. For small twist angles (˜1∘-3 .5∘) the integrated differential conductivity spectrum exhibits two well-defined Van Hove singularities. Spatial maps of the differential conductivity that are recorded at energies near the Fermi level exhibit a honeycomb structure that is comprised of two inequivalent hexagonal sublattices. For energies | E -EF |>0.3 eV the hexagonal structure in the differential conductivity maps vanishes. We have performed tight-binding calculations of the twisted graphene system using the propagation method, in which a third graphene layer is added to mimic the substrate. This third layer lowers the symmetry and explains the development of the two hexagonal sublattices in the moiré pattern. Our experimental results are in excellent agreement with the tight-binding calculations.

  1. Local structural study of doped-ceria by EXAFS spectroscopy

    SciTech Connect

    Shirbhate, S. C.; Acharya, S. A.; Yadav, A. K.; Sagdeo, A. P.; Jha, S. N.

    2016-05-23

    In the present work, Structural and Local structural study of Sm, Gd doped and Sm-Gd co-doped ceria system has been studied by Extended X-ray Absorption Fine Structure Spectroscopy (EXAFS). These ceria based systems are synthesized by hydrothermal synthesis route. Fluorite structure is confirmed by X-ray diffraction (XRD) and data is well fitted using Rietveld refinement by Full-Prof suite. Local structural changes in terms of coordination with surrounding, inter atomic distances and Debye Waller factor of nearest neighbor and next nearest neighbor has been discussed.

  2. Local structural study of doped-ceria by EXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Shirbhate, S. C.; Yadav, A. K.; Acharya, S. A.; Sagdeo, A. P.; Jha, S. N.

    2016-05-01

    In the present work, Structural and Local structural study of Sm, Gd doped and Sm-Gd co-doped ceria system has been studied by Extended X-ray Absorption Fine Structure Spectroscopy (EXAFS). These ceria based systems are synthesized by hydrothermal synthesis route. Fluorite structure is confirmed by X-ray diffraction (XRD) and data is well fitted using Rietveld refinement by Full-Prof suite. Local structural changes in terms of coordination with surrounding, inter atomic distances and Debye Waller factor of nearest neighbor and next nearest neighbor has been discussed.

  3. Band structures and localization properties of aperiodic layered phononic crystals

    NASA Astrophysics Data System (ADS)

    Yan, Zhi-Zhong; Zhang, Chuanzeng

    2012-03-01

    The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.

  4. Local gravity and large-scale structure

    NASA Technical Reports Server (NTRS)

    Juszkiewicz, Roman; Vittorio, Nicola; Wyse, Rosemary F. G.

    1990-01-01

    The magnitude and direction of the observed dipole anisotropy of the galaxy distribution can in principle constrain the amount of large-scale power present in the spectrum of primordial density fluctuations. This paper confronts the data, provided by a recent redshift survey of galaxies detected by the IRAS satellite, with the predictions of two cosmological models with very different levels of large-scale power: the biased Cold Dark Matter dominated model (CDM) and a baryon-dominated model (BDM) with isocurvature initial conditions. Model predictions are investigated for the Local Group peculiar velocity, v(R), induced by mass inhomogeneities distributed out to a given radius, R, for R less than about 10,000 km/s. Several convergence measures for v(R) are developed, which can become powerful cosmological tests when deep enough samples become available. For the present data sets, the CDM and BDM predictions are indistinguishable at the 2 sigma level and both are consistent with observations. A promising discriminant between cosmological models is the misalignment angle between v(R) and the apex of the dipole anisotropy of the microwave background.

  5. Local gravity and large-scale structure

    NASA Technical Reports Server (NTRS)

    Juszkiewicz, Roman; Vittorio, Nicola; Wyse, Rosemary F. G.

    1990-01-01

    The magnitude and direction of the observed dipole anisotropy of the galaxy distribution can in principle constrain the amount of large-scale power present in the spectrum of primordial density fluctuations. This paper confronts the data, provided by a recent redshift survey of galaxies detected by the IRAS satellite, with the predictions of two cosmological models with very different levels of large-scale power: the biased Cold Dark Matter dominated model (CDM) and a baryon-dominated model (BDM) with isocurvature initial conditions. Model predictions are investigated for the Local Group peculiar velocity, v(R), induced by mass inhomogeneities distributed out to a given radius, R, for R less than about 10,000 km/s. Several convergence measures for v(R) are developed, which can become powerful cosmological tests when deep enough samples become available. For the present data sets, the CDM and BDM predictions are indistinguishable at the 2 sigma level and both are consistent with observations. A promising discriminant between cosmological models is the misalignment angle between v(R) and the apex of the dipole anisotropy of the microwave background.

  6. Structural phase transition and electronic properties in samarium chalcogenides

    SciTech Connect

    Panwar, Y. S.; Aynyas, Mahendra; Pataiya, J.; Sanyal, Sankar P.

    2016-05-06

    The electronic structure and high pressure properties of samarium monochalcogenides SmS, SmSe and SmTe have been reported by using tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). The total energy as a function of volume is evaluated. It is found that these monochalcogenides are stable in NaCl-type structure under ambient pressure. We predict a structural phase transition from NaCl-type (B{sub 1}-phase) structure to CsCl-type (B{sub 2}-type) structure for these compounds. Phase transition pressures were found to be 1.7, 4.4 and 6.6 GPa, for SmS, SmSe and SmTe respectively. Apart from this, the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed that these compounds exhibit metallic character. The calculated values of equilibrium lattice parameter and phase transition pressure are in general good agreement with available data.

  7. Photo-electron momentum distribution and electron localization studies from laser-induced atomic and molecular dissociations

    NASA Astrophysics Data System (ADS)

    Ray, Dipanwita

    The broad objective of ultrafast strong-field studies is to be able to measure and control atomic and molecular dynamics on a femtosecond timescale. This thesis work has two major themes: (1) Study of high-energy photoelectron distributions from atomic targets. (2) Electron localization control in atomic and molecular reactions using shaped laser pulses. The first section focuses on the study of photoelectron diffraction patterns of simple atomic targets to understand the target structure. We measure the full vector momentum spectra of high energy photoelectrons from atomic targets (Xe, Ar and Kr) generated by intense laser pulses. The target dependence of the angular distribution of the highest energy photoelectrons as predicted by Quantitative Rescattering Theory (QRS) is explored. More recent developments show target structure information can be retrieved from photoelectrons over a range of energies, from 4Up up to 10Up, independent of the peak intensity at which the photoelectron spectra have been measured. Controlling the fragmentation pathways by manipulating the pulse shape is another major theme of ultrafast science today. In the second section we study the asymmetry of electron (and ion) emission from atoms (and molecules) by interaction with asymmetric pulses formed by the superposition of two colors (800 & 400 nm). Xe electron momentum spectra obtained as a function of the two-color phase exhibit a pronounced asymmetry. Using QRS theory we can analyze this asymmetric yield of the high energy photoelectrons to determine accurately the laser peak intensity and the absolute phase of the two-color electric field. This can be used as a standard pulse calibration method for all two-color studies. Experiments showing strong left-right asymmetry in D+ ion yield from D2 molecules using two-color pulses is also investigated. The asymmetry effect is found to be very ion-energy dependent.

  8. Electronic structure of stacking faults in rhombohedral graphite

    NASA Astrophysics Data System (ADS)

    Taut, M.; Koepernik, K.; Richter, M.

    2014-08-01

    The electronic structure of stacking faults and surfaces without and with an additional displaced layer is calculated for the case of rhombohedral (ABC) graphite. The full-potential local-orbital code and the generalized gradient approximation to density functional theory are used. All considered surfaces and interfaces induce surface/interface bands. All discovered surface and interface bands are restricted to the vicinity of the symmetry line K-M in the two-dimensional Brillouin zone. There are groups of localized band pairs around ±0, ±0.2, and ±0.6 eV for one of the two considered types of stacking faults; ±0 and ±0.5 eV for the other type and for a displaced surface layer. At the K point in the Brillouin zone, there is a one-to-one correspondence between these localized bands and the eigenvalues of those linear atomic clusters, which are produced by the perturbation of periodicity due to the displaced surface layer or due to the stacking faults. Some of the localized bands produce strong van Hove singularities in the local density of states near the surface or interface at energies up to several 0.1 eV. It is suggested to check these findings experimentally by appropriate spectroscopic methods. Undisturbed bulk (ABC) graphite is virtually a zero-gap semiconductor with a minute density of states at the Fermi energy. Both the surface and any of the considered stacking faults produce sharp peaks in the local density of states near the perturbation at energies of about 10 meV around the Fermi energy. This should provide a considerable contribution to the conductivity and its temperature dependence for samples with stacking faults or large surface-to-volume fraction.

  9. Nonlinearity in structural and electronic materials

    SciTech Connect

    Bishop, A.R.; Beardmore, K.M.; Ben-Naim, E.

    1997-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project strengthens a nonlinear technology base relevant to a variety of problems arising in condensed matter and materials science, and applies this technology to those problems. In this way the controlled synthesis of, and experiments on, novel electronic and structural materials provide an important focus for nonlinear science, while nonlinear techniques help advance the understanding of the scientific principles underlying the control of microstructure and dynamics in complex materials. This research is primarily focused on four topics: (1) materials microstructure: growth and evolution, and porous media; (2) textures in elastic/martensitic materials; (3) electro- and photo-active polymers; and (4) ultrafast photophysics in complex electronic materials. Accomplishments included the following: organization of a ``Nonlinear Materials`` seminar series and international conferences including ``Fracture, Friction and Deformation,`` ``Nonequilibrium Phase Transitions,`` and ``Landscape Paradigms in Physics and Biology``; invited talks at international conference on ``Synthetic Metals,`` ``Quantum Phase Transitions,`` ``1996 CECAM Euroconference,`` and the 1995 Fall Meeting of the Materials Research Society; large-scale simulations and microscopic modeling of nonlinear coherent energy storage at crack tips and sliding interfaces; large-scale simulation and microscopic elasticity theory for precursor microstructure and dynamics at solid-solid diffusionless phase transformations; large-scale simulation of self-assembling organic thin films on inorganic substrates; analysis and simulation of smoothing of rough atomic surfaces; and modeling and analysis of flux pattern formation in equilibrium and nonequilibrium Josephson junction arrays and layered superconductors.

  10. RESCU: A real space electronic structure method

    NASA Astrophysics Data System (ADS)

    Michaud-Rioux, Vincent; Zhang, Lei; Guo, Hong

    2016-02-01

    In this work we present RESCU, a powerful MATLAB-based Kohn-Sham density functional theory (KS-DFT) solver. We demonstrate that RESCU can compute the electronic structure properties of systems comprising many thousands of atoms using modest computer resources, e.g. 16 to 256 cores. Its computational efficiency is achieved from exploiting four routes. First, we use numerical atomic orbital (NAO) techniques to efficiently generate a good quality initial subspace which is crucially required by Chebyshev filtering methods. Second, we exploit the fact that only a subspace spanning the occupied Kohn-Sham states is required, and solving accurately the KS equation using eigensolvers can generally be avoided. Third, by judiciously analyzing and optimizing various parts of the procedure in RESCU, we delay the O (N3) scaling to large N, and our tests show that RESCU scales consistently as O (N2.3) from a few hundred atoms to more than 5000 atoms when using a real space grid discretization. The scaling is better or comparable in a NAO basis up to the 14,000 atoms level. Fourth, we exploit various numerical algorithms and, in particular, we introduce a partial Rayleigh-Ritz algorithm to achieve efficiency gains for systems comprising more than 10,000 electrons. We demonstrate the power of RESCU in solving KS-DFT problems using many examples running on 16, 64 and/or 256 cores: a 5832 Si atoms supercell; a 8788 Al atoms supercell; a 5324 Cu atoms supercell and a small DNA molecule submerged in 1713 water molecules for a total 5399 atoms. The KS-DFT is entirely converged in a few hours in all cases. Our results suggest that the RESCU method has reached a milestone of solving thousands of atoms by KS-DFT on a modest computer cluster.

  11. Experimental and theoretical electronic structure of quinacridone

    NASA Astrophysics Data System (ADS)

    Lüftner, Daniel; Refaely-Abramson, Sivan; Pachler, Michael; Resel, Roland; Ramsey, Michael G.; Kronik, Leeor; Puschnig, Peter

    2014-08-01

    The energy positions of frontier orbitals in organic electronic materials are often studied experimentally by (inverse) photoemission spectroscopy and theoretically within density functional theory. However, standard exchange-correlation functionals often result in too small fundamental gaps, may lead to wrong orbital energy ordering, and do not capture polarization-induced gap renormalization. Here we examine these issues and a strategy for overcoming them by studying the gas phase and bulk electronic structure of the organic molecule quinacridone (5Q), a promising material with many interesting properties for organic devices. Experimentally we perform angle-resolved photoemission spectroscopy (ARUPS) on thin films of the crystalline β phase of 5Q. Theoretically we employ an optimally tuned range-separated hybrid functional (OT-RSH) within density functional theory. For the gas phase molecule, our OT-RSH result for the ionization potential (IP) represents a substantial improvement over the semilocal PBE and the PBE0 hybrid functional results, producing an IP in quantitative agreement with experiment. For the bulk crystal we take into account the correct screening in the bulk, using the recently developed optimally tuned screened range-separated hybrid (OT-SRSH) approach, while retaining the optimally tuned parameters for the range separation and the short-range Fock exchange. This leads to a band gap narrowing due to polarization effects and results in a valence band spectrum in excellent agreement with experimental ARUPS data, with respect to both peak positions and heights. Finally, full-frequency G0W0 results based on a hybrid functional starting point are shown to agree with the OT-SRSH approach, improving substantially on the PBE-starting point.

  12. Localization-delocalization transition of electrons at the percolation threshold of semiconductor GaAs1–xNx alloys: The appearance of a mobility edge

    DOE PAGES

    Alberi, K.; Fluegel, B.; Beaton, D. A.; ...

    2012-07-09

    Electrons in semiconductor alloys have generally been described in terms of Bloch states that evolve from constructive interference of electron waves scattering from perfectly periodic potentials, despite the loss of structural periodicity that occurs on alloying. Using the semiconductor alloy GaAs₁₋xNx as a prototype, we demonstrate a localized to delocalized transition of the electronic states at a percolation threshold, the emergence of a mobility edge, and the onset of an abrupt perturbation to the host GaAs electronic structure, shedding light on the evolution of electronic structure in these abnormal alloys.

  13. Kinetics of vertical transport and localization of electrons in strained semiconductor supperlattices

    SciTech Connect

    Gerchikov, L. G. Mamaev, Yu. A.; Yashin, Yu. P.

    2015-08-15

    The kinetics of vertical electron transport in a semiconductor superlattice is considered taking into account partial localization of electrons. The time dependences of photoemission currents from samples based on a strained semiconductor superlattice calculated by numerically solving the kinetic equation are in good agreement with experimental data. Comparison of the theory with experiment makes it possible to determine the characteristic electron localization and thermoactivation times, the diffusion length, and losses of photoelectrons in the superlattice.

  14. Hydroxyl radicals in ice: insights into local structure and dynamics.

    PubMed

    Codorniu-Hernández, Edelsys; Kusalik, Peter G

    2012-09-07

    The hydroxyl radical and its reactivity within ice environments are crucial to many important atmospheric reactions. The associated molecular mechanisms are largely unknown due to challenges posed by direct experimental measurements and computational studies of this transient species. Here we report insights into the local structure and behaviour of the hydroxyl radical in bulk ice through an extensive study utilizing Car-Parrinello molecular dynamics simulations. Interstitial and in-lattice hydroxyl radicals in hexagonal ice were investigated at primarily 190 K. Our findings, utilizing both HCTH/120 and BLYP functionals, show that OH* can exhibit greater mobility than other ice defects (the trapping energy estimated to be only 0.09 eV). We observe the formation of a two-center three-electron hemibond structure between the hydroxyl radical and an in-lattice water molecule; while controversial, such a structure in ice may be amenable to experimental detection due to its relative stability. Our results show that interstitial water molecules can strongly influence the mobility of the hydroxyl radical in bulk ice through the displacement of the radical to an interstitial location. We also demonstrate that the H-transfer reaction from an interstitial water to the radical is a rare event in ice. Together, these results predict that the radical can be a reactive species in bulk ice, as both interstitial and in-lattice OH* can be available for reactions with other species. These microscopic insights should contribute to our understanding of the reactivity of OH* in ice and its implications to atmospheric reactions.

  15. The first principle investigations of structural and electronic properties of ZnTe

    SciTech Connect

    Khatta, Swati; Tripathi, S. K. Prakash, Satya

    2016-05-23

    Structural and electronic properties of ZnTe are investigated within the framework of density functional theory. The pseudopotential method along with local density approximation and generalized gradient approximation for the exchange-correlation potential is used within the quantum espresso package. The optimized equilibrium lattice parameter, bulk modulus and its pressure derivative are determined. The electronic band structure, density of states and partial density of states are calculated. The results are compared with available theoretical calculations and experimental results.

  16. First principle investigation of structural and electronic properties of bulk ZnSe

    SciTech Connect

    Khatta, Swati; Tripathi, S. K. Prakash, Satya

    2015-08-28

    Electronic and structural properties of ZnSe are investigated using plane-wave self-consistent field method within the framework of density functional theory. The pseudopotential method within the local density approximation is used for the exchange-correlation potential. The equilibrium lattice parameter, static bulk modulus and its pressure derivative are calculated. The electronic band structure, partial density of states and density of states are also obtained. The results are compared with available theoretical calculations and experimental results.

  17. Theory of electronic polarization and localization in insulators with applications to solid hydrogen

    NASA Astrophysics Data System (ADS)

    Souza, Ivo Nuno Saldanha Do Rosario E.

    A theory is formulated, and practical expressions are derived, for the full quantum-mechanical distribution of the intrinsic macroscopic polarization of an insulator in terms of the ground state wave function. The formalism applies to an insulating system of N electrons obeying twisted boundary conditions over a finite volume. The central quantity is a cumulant generating function which yields, upon successive differentiation, all the cumulants and moments of the probability distribution of an appropriately defined center of mass X/N of the electrons ( X=SN i=1xi ). The first moment is the average polarization, where we recover the well-known Berry phase expression. The second cumulant gives the mean-square fluctuation of the polarization, which defines an electronic localization length squared x2m along each direction m:x2m= X2m -Xm 2/N . It can be expressed in terms of a metric, which measures the infinitesimal distance between quantum states in a Hilbert space parametrized by the twisted boundary conditions. The fluctuation-dissipation relation is used to show that in the thermodynamic limit x2m diverges when the system becomes metallic and is a finite, measurable quantity in the insulating state, related to the optical gap by x2m≤ℎ2 /2meEg . In noninteracting systems x2m is related to the spread of the Wannier functions, and this picture is generalized to correlated insulators by defining the many-body analog of Wannier functions. In the limit of large N the maximally-localized many-body Wannier functions become localized in disconnected regions of the high-dimensional configuration space of the N electrons, establishing a direct connection with Kohn's theory of the insulating state. By recasting the generating function in terms of these functions, it is shown that macroscopic polarization results from the localized character of an insulating wave function in configuration space. The Berry phase theory is used to compute the Born effective charges in

  18. Local structural modeling for implementation of optimal active damping

    NASA Astrophysics Data System (ADS)

    Blaurock, Carl A.; Miller, David W.

    1993-09-01

    Local controllers are good candidates for active control of flexible structures. Local control generally consists of low order, frequency benign compensators using collocated hardware. Positive real compensators and plant transfer functions ensure that stability margins and performance robustness are high. The typical design consists of an experimentally chosen gain on a fixed form controller such as rate feedback. The resulting compensator performs some combination of damping (dissipating energy) and structural modification (changing the energy flow paths). Recent research into structural impedance matching has shown how to optimize dissipation based on the local behavior of the structure. This paper investigates the possibility of improving performance by influencing global energy flow, using local controllers designed using a global performance metric.

  19. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    SciTech Connect

    Belianinov, Alex; Panchapakesan, G.; Lin, Wenzhi; Sales, Brian C.; Sefat, Athena Safa; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.

    2014-12-02

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1 x Sex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.

  20. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    NASA Astrophysics Data System (ADS)

    Belianinov, Alex; Ganesh, Panchapakesan; Lin, Wenzhi; Sales, Brian C.; Sefat, Athena S.; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.

    2014-12-01

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1-xSex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.

  1. Automated Localization of Multiple Pelvic Bone Structures on MRI.

    PubMed

    Onal, Sinan; Lai-Yuen, Susana; Bao, Paul; Weitzenfeld, Alfredo; Hart, Stuart

    2016-01-01

    In this paper, we present a fully automated localization method for multiple pelvic bone structures on magnetic resonance images (MRI). Pelvic bone structures are at present identified manually on MRI to locate reference points for measurement and evaluation of pelvic organ prolapse (POP). Given that this is a time-consuming and subjective procedure, there is a need to localize pelvic bone structures automatically. However, bone structures are not easily differentiable from soft tissue on MRI as their pixel intensities tend to be very similar. In this paper, we present a model that combines support vector machines and nonlinear regression capturing global and local information to automatically identify the bounding boxes of bone structures on MRI. The model identifies the location of the pelvic bone structures by establishing the association between their relative locations and using local information such as texture features. Results show that the proposed method is able to locate the bone structures of interest accurately (dice similarity index >0.75) in 87-91% of the images. This research aims to enable accurate, consistent, and fully automated localization of bone structures on MRI to facilitate and improve the diagnosis of health conditions such as female POP.

  2. Proteins comparison through probabilistic optimal structure local alignment.

    PubMed

    Micale, Giovanni; Pulvirenti, Alfredo; Giugno, Rosalba; Ferro, Alfredo

    2014-01-01

    Multiple local structure comparison helps to identify common structural motifs or conserved binding sites in 3D structures in distantly related proteins. Since there is no best way to compare structures and evaluate the alignment, a wide variety of techniques and different similarity scoring schemes have been proposed. Existing algorithms usually compute the best superposition of two structures or attempt to solve it as an optimization problem in a simpler setting (e.g., considering contact maps or distance matrices). Here, we present PROPOSAL (PROteins comparison through Probabilistic Optimal Structure local ALignment), a stochastic algorithm based on iterative sampling for multiple local alignment of protein structures. Our method can efficiently find conserved motifs across a set of protein structures. Only the distances between all pairs of residues in the structures are computed. To show the accuracy and the effectiveness of PROPOSAL we tested it on a few families of protein structures. We also compared PROPOSAL with two state-of-the-art tools for pairwise local alignment on a dataset of manually annotated motifs. PROPOSAL is available as a Java 2D standalone application or a command line program at http://ferrolab.dmi.unict.it/proposal/proposal.html.

  3. Experimental Electronic Structure of Be_2C

    NASA Astrophysics Data System (ADS)

    Tsuei, K.-D.; Tzeng, C.-T.; Lo, W.-S.; Yuh, J.-Y.; Chu, R.-Y.

    1998-03-01

    The insulating Be_2C thin films have been successfully prepared on a Be surface. LEED pattern shows that the films have (100) orientation along the surface normal. We have used angle-resolved photoemission to map out the occupied bulk band dispersion along Γ-X direction. The band gap edges at X point are 6.5 and 11.7 eV below the valence band maximum which is located at Γ point. These values are in good agreement with theoretical calculations. [1,2] In addition two surface states are observed. One is 0.5 eV above VBM. The other is located at 9.5 eV below VBM in the middle of the band gap at X point. The unoccupied bulk electronic structure is measured using C 1s near edge x-ray absorption spectroscopy. The spectrum is similar in shape to an energy loss spectrum [3] and p-PDOS from the calculation, [2] while the relative peak positions are different. [1] J.L. Corkill and M.L. Cohen, Phy. Rev. B 48, 17138 (1993). [2] C.H. Lee, W.R. Lambrecht, and B. Segall, Phys. Rev. B 51, 10392 (1995). [3] M.M. Disko, J.C.H. Spence, O.F. Sankey, and D. Saldin, Phys. Rev. B 33, 5642 (1986).

  4. Electronic structure of cyclohexane on Ni(111)

    NASA Astrophysics Data System (ADS)

    Huber, W.; Zebisch, P.; Bornemann, T.; Steinrück, H.-P.

    1990-12-01

    Mono- and multilayers of cyclohexane adsorbed on a Ni(111) surface have been studied by angle resolved UV photoelectron spectroscopy (ARUPS) using linearly polarized synchrotron radiation, temperature programmed desorption (TPD) and low energy electron diffraction (LEED). Cyclohexane is molecularly adsorbed on Ni(111) at temperatures below 200 K and desorbs without dehydrogenation. Desorption from the first layer exhibits zeroth-order desorption behavior indicative of desorption from two-dimensional islands. The first layer exhibits a well ordered ( 7 × 7)R19.1° LEED structure starting at coverages of 0.04 ML up to the saturation coverage of 0.143 ML, also indicative of island formation. For cyclohexane in the first layer the binding energies of the various molecular levels are, apart from an overall shift to smaller values by 0.7 eV, within ± 0.1 eV identical to those of condensed cyclohexane. This absence of chemical shifts indicates that there is only very weak (if any) chemical interaction between cyclohexane and the Ni(111) surface. From the normal emission ARUPS spectra and symmetry selection rules we conclude that the symmetry of cyclohexane adsorbed on Ni(111) is lower than C 3v. This is attributed to a slightly inclined adsorption geometry with intramolecular C 3v symmetry of the adsorbed molecules.

  5. Local and average structure of Mn- and La-substituted BiFeO3

    NASA Astrophysics Data System (ADS)

    Jiang, Bo; Selbach, Sverre M.

    2017-06-01

    The local and average structure of solid solutions of the multiferroic perovskite BiFeO3 is investigated by synchrotron X-ray diffraction (XRD) and electron density functional theory (DFT) calculations. The average experimental structure is determined by Rietveld refinement and the local structure by total scattering data analyzed in real space with the pair distribution function (PDF) method. With equal concentrations of La on the Bi site or Mn on the Fe site, La causes larger structural distortions than Mn. Structural models based on DFT relaxed geometry give an improved fit to experimental PDFs compared to models constrained by the space group symmetry. Berry phase calculations predict a higher ferroelectric polarization than the experimental literature values, reflecting that structural disorder is not captured in either average structure space group models or DFT calculations with artificial long range order imposed by periodic boundary conditions. Only by including point defects in a supercell, here Bi vacancies, can DFT calculations reproduce the literature results on the structure and ferroelectric polarization of Mn-substituted BiFeO3. The combination of local and average structure sensitive experimental methods with DFT calculations is useful for illuminating the structure-property-composition relationships in complex functional oxides with local structural distortions.

  6. Simulation of Probe Position-Dependent Electron Energy-Loss Fine Structure

    SciTech Connect

    Oxley, M. P.; Kapetanakis, M. D.; Prange, Micah P.; Varela, M.; Pennycook, Stephen J.; Pantelides, Sokrates T.

    2014-03-31

    We present a theoretical framework for calculating probe-position-dependent electron energy-loss near-edge structure for the scanning transmission electron microscope by combining density functional theory with dynamical scattering theory. We show how simpler approaches to calculating near-edge structure fail to include the fundamental physics needed to understand the evolution of near-edge structure as a function of probe position and investigate the dependence of near-edge structure on probe size. It is within this framework that density functional theory should be presented, in order to ensure that variations of near-edge structure are truly due to local electronic structure and how much from the diffraction and focusing of the electron beam.

  7. Electronic Structure and Dynamics of Nitrosyl Porphyrins

    PubMed Central

    Scheidt, W. Robert; Barabanschikov, Alexander; Pavlik, Jeffrey W.; Silvernail, Nathan J.; Sage, J. Timothy

    2010-01-01

    fully successful at capturing the interaction between the axial NO and imidazole ligands. This supports previous conclusions that hemeNO complexes exhibit an unusual degree of variability with respect to computational method, and we speculate that this variability hints at a genuine electronic instability that a protein can exploit to tune reactivity. We anticipate that ongoing characterization of heme-NO complexes will deepen our understanding of their structure, dynamics, and reactivity. PMID:20666384

  8. Electronic structure and dynamics of nitrosyl porphyrins.

    PubMed

    Scheidt, W Robert; Barabanschikov, Alexander; Pavlik, Jeffrey W; Silvernail, Nathan J; Sage, J Timothy

    2010-07-19

    functionals are not fully successful at capturing the trans interaction between the axial NO and imidazole ligands. This supports previous conclusions that heme-NO complexes exhibit an unusual degree of variability with respect to the computational method, and we speculate that this variability hints at a genuine electronic instability that a protein can exploit to tune its reactivity. We anticipate that ongoing characterization of heme-NO complexes will deepen our understanding of their structure, dynamics, and reactivity.

  9. Dealing with the exponential wall in electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Fulde, Peter; Stoll, Hermann

    2017-05-01

    An alternative to the density functional theory is the use of wavefunction based electronic structure calculations for solids. In order to perform them, the Exponential Wall (EW) problem has to be resolved. It is caused by an exponential increase of the number of configurations with increasing electron number N. There are different routes one may follow. One is to characterize a many-electron wavefunction by a vector in Liouville space with a cumulant metric rather than in Hilbert space. This removes the EW problem. Another is to model the solid by an impurity or fragment embedded in a bath which is treated at a much lower level than the former. This is the case in the Density Matrix Embedding Theory (DMET) or the Density Embedding Theory (DET). The latter two are closely related to a Schmidt decomposition of a system and to the determination of the associated entanglement. We show here the connection between the two approaches. It turns out that the DMET (or DET) has an identical active space as a previously used Local Ansatz, based on a projection and partitioning approach. Yet, the EW problem is resolved differently in the two cases. By studying a H10 ring, these differences are analyzed with the help of the method of increments.

  10. Automatic Segmentation and Quantification of Filamentous Structures in Electron Tomography

    PubMed Central

    Loss, Leandro A.; Bebis, George; Chang, Hang; Auer, Manfred; Sarkar, Purbasha; Parvin, Bahram

    2016-01-01

    Electron tomography is a promising technology for imaging ultrastructures at nanoscale resolutions. However, image and quantitative analyses are often hindered by high levels of noise, staining heterogeneity, and material damage either as a result of the electron beam or sample preparation. We have developed and built a framework that allows for automatic segmentation and quantification of filamentous objects in 3D electron tomography. Our approach consists of three steps: (i) local enhancement of filaments by Hessian filtering; (ii) detection and completion (e.g., gap filling) of filamentous structures through tensor voting; and (iii) delineation of the filamentous networks. Our approach allows for quantification of filamentous networks in terms of their compositional and morphological features. We first validate our approach using a set of specifically designed synthetic data. We then apply our segmentation framework to tomograms of plant cell walls that have undergone different chemical treatments for polysaccharide extraction. The subsequent compositional and morphological analyses of the plant cell walls reveal their organizational characteristics and the effects of the different chemical protocols on specific polysaccharides. PMID:28090597

  11. Fine structure of subauroral electric field and electron content

    NASA Astrophysics Data System (ADS)

    Makarevich, Roman A.; Bristow, W. A.

    2014-05-01

    Small-scale structure of the plasma convection and electron content within the subauroral polarization stream (SAPS) is investigated. We present ionospheric observations during the main phase of the geomagnetic storm on 17 March 2013, during which a sequence of intense, highly localized, and fast-moving electric field (EF) structures within SAPS was observed by the Super Dual Auroral Radar Network Christmas Valley West (CVW) radar. The CVW EF measurements at 60 s resolution are analyzed in context of coincident GPS measurements of the total electron content (TEC) at 30 s resolution. The strong and narrow feature of the subauroral ion drift (SAID) was observed poleward of the TEC trough, with a TEC enhancement (peak) seen in the SAPS (SAID) region. The SAPS wave activity commenced ~2 h (15 min) after first appearance of SAPS (SAID). The SAPS structures appeared near the poleward edge of the trough, propagated westward, and merged with SAID near TEC peak. The propagation velocity was comparable with convection velocity within each EF structure. The SAPS TEC exhibited a general decrease toward the end of the period. On a smaller time scale, TEC exhibited a small but appreciable decrease within EF structures. The wavelet spectra of EF and TEC showed similar variations, with wave period of ~5 min period near onset and increasing to 8-10 min toward the end of the period with significant wave activity. A scenario is discussed, in which the SAPS wave activity may modify the ionospheric conductance and TEC at small scales, with large-scale magnetosphere-ionosphere feedback acting to continuously deplete TEC where/when such activity does not occur.

  12. Local structure preserving sparse coding for infrared target recognition

    PubMed Central

    Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lianfa

    2017-01-01

    Sparse coding performs well in image classification. However, robust target recognition requires a lot of comprehensive template images and the sparse learning process is complex. We incorporate sparsity into a template matching concept to construct a local sparse structure matching (LSSM) model for general infrared target recognition. A local structure preserving sparse coding (LSPSc) formulation is proposed to simultaneously preserve the local sparse and structural information of objects. By adding a spatial local structure constraint into the classical sparse coding algorithm, LSPSc can improve the stability of sparse representation for targets and inhibit background interference in infrared images. Furthermore, a kernel LSPSc (K-LSPSc) formulation is proposed, which extends LSPSc to the kernel space to weaken the influence of the linear structure constraint in nonlinear natural data. Because of the anti-interference and fault-tolerant capabilities, both LSPSc- and K-LSPSc-based LSSM can implement target identification based on a simple template set, which just needs several images containing enough local sparse structures to learn a sufficient sparse structure dictionary of a target class. Specifically, this LSSM approach has stable performance in the target detection with scene, shape and occlusions variations. High performance is demonstrated on several datasets, indicating robust infrared target recognition in diverse environments and imaging conditions. PMID:28323824

  13. Local Sparse Structure Denoising for Low-Light-Level Image.

    PubMed

    Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lianfa

    2015-12-01

    Sparse and redundant representations perform well in image denoising. However, sparsity-based methods fail to denoise low-light-level (LLL) images because of heavy and complex noise. They consider sparsity on image patches independently and tend to lose the texture structures. To suppress noises and maintain textures simultaneously, it is necessary to embed noise invariant features into the sparse decomposition process. We, therefore, used a local structure preserving sparse coding (LSPSc) formulation to explore the local sparse structures (both the sparsity and local structure) in image. It was found that, with the introduction of spatial local structure constraint into the general sparse coding algorithm, LSPSc could improve the robustness of sparse representation for patches in serious noise. We further used a kernel LSPSc (K-LSPSc) formulation, which extends LSPSc into the kernel space to weaken the influence of linear structure constraint in nonlinear data. Based on the robust LSPSc and K-LSPSc algorithms, we constructed a local sparse structure denoising (LSSD) model for LLL images, which was demonstrated to give high performance in the natural LLL images denoising, indicating that both the LSPSc- and K-LSPSc-based LSSD models have the stable property of noise inhibition and texture details preservation.

  14. Local structure preserving sparse coding for infrared target recognition.

    PubMed

    Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lianfa

    2017-01-01

    Sparse coding performs well in image classification. However, robust target recognition requires a lot of comprehensive template images and the sparse learning process is complex. We incorporate sparsity into a template matching concept to construct a local sparse structure matching (LSSM) model for general infrared target recognition. A local structure preserving sparse coding (LSPSc) formulation is proposed to simultaneously preserve the local sparse and structural information of objects. By adding a spatial local structure constraint into the classical sparse coding algorithm, LSPSc can improve the stability of sparse representation for targets and inhibit background interference in infrared images. Furthermore, a kernel LSPSc (K-LSPSc) formulation is proposed, which extends LSPSc to the kernel space to weaken the influence of the linear structure constraint in nonlinear natural data. Because of the anti-interference and fault-tolerant capabilities, both LSPSc- and K-LSPSc-based LSSM can implement target identification based on a simple template set, which just needs several images containing enough local sparse structures to learn a sufficient sparse structure dictionary of a target class. Specifically, this LSSM approach has stable performance in the target detection with scene, shape and occlusions variations. High performance is demonstrated on several datasets, indicating robust infrared target recognition in diverse environments and imaging conditions.

  15. Electronic Structures of Uranium Compounds Studied by Soft X-ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fujimori, Shin-ichi; Takeda, Yukiharu; Okane, Tetsuo; Saitoh, Yuji; Fujimori, Atsushi; Yamagami, Hiroshi; Haga, Yoshinori; Yamamoto, Etsuji; Ōnuki, Yoshichika

    2016-06-01

    The electronic structures of uranium-based compounds have been studied by photoelectron spectroscopy with soft X-ray synchrotron radiation. Angle-resolved photoelectron spectroscopy with soft X-rays has made it possible to directly observe their bulk band structures and Fermi surfaces. It has been shown that the band structures and Fermi surfaces of itinerant compounds such as UB2, UN, and UFeGa5 are quantitatively described by a band-structure calculation treating all U 5f electrons as itinerant. Furthermore, the overall electronic structures of heavy-fermion compounds such as UPd2Al3, UNi2Al3, and URu2Si2 are also explained by a band-structure calculation, although some disagreements exist, which might originate from the electron correlation effect. This suggests that the itinerant description of U 5f states is an appropriate starting point for the description of their electronic structures. The situation is similar for ferromagnetic superconductors such as UGe2, URhGe, UCoGe, and UIr, although the complications from their low-symmetry crystal structures make it more difficult to describe their detailed electronic structures. The local electronic structures of the uranium site have been probed by core-level photoelectron spectroscopy with soft X-rays. The comparisons of core-level spectra of heavy-fermion compounds with typical itinerant and localized compounds suggest that the local electronic structures of most itinerant and heavy-fermion compounds are close to the U 5f3 configuration except for UPd2Al3 and UPt3. The core-level spectrum of UPd2Al3 has similarities to those of both itinerant and localized compounds, suggesting that it is located at the boundary between the itinerant and localized states. Moreover, the spectrum of UPt3 is very close to that of the localized compound UPd3, suggesting that it is nearly localized, although there are narrow quasi-particle bands in the vicinity of EF.

  16. Electronic, structural, and optical properties of crystalline yttria

    SciTech Connect

    Xu, Y.; Gu, Z.; Ching, W.Y. |

    1997-12-01

    The electronic structure of crystalline Y{sub 2}O{sub 3} is investigated by first-principles calculations within the local-density approximation (LDA) of the density-functional theory. Results are presented for the band structure, the total density of states (DOS), the atom- and orbital-resolved partial DOS, effective charges, bond order, and charge-density distributions. Partial covalent character in the Y-O bonding is shown, and the nonequivalency of the two Y sites is demonstrated. The calculated electronic structure is compared with a variety of available experimental data. The total energy of the crystal is calculated as a function of crystal volume. A bulk modulus B of 183 Gpa and a pressure coefficient B{sup {prime}} of 4.01 are obtained, which are in good agreement with compression data. An LDA band gap of 4.54 eV at {Gamma} is obtained which increases with pressure at a rate of dE{sub g}/dP=0.012eV/Gpa at the equilibrium volume. Also investigated are the optical properties of Y{sub 2}O{sub 3} up to a photon energy of 20 eV. The calculated complex dielectric function and electron-energy-loss function are in good agreement with experimental data. A static dielectric constant of {var_epsilon}(0)=3.20 is obtained. It is also found that the bottom of the conduction band consists of a single band, and direct optical transition at {Gamma} between the top of the valence band and the bottom of the conduction band may be symmetry forbidden. {copyright} {ital 1997} {ital The American Physical Society}

  17. Aluminum alloy material structure impact localization by using FBG sensors

    NASA Astrophysics Data System (ADS)

    Zhu, Xiubin

    2014-12-01

    The aluminum alloy structure impact localization system by using fiber Bragg grating (FBG) sensors and impact localization algorithm was investigated. A four-FBG sensing network was established. And the power intensity demodulation method was initialized employing the narrow-band tunable laser. The wavelet transform was used to weaken the impact signal noise. And the impact signal time difference was extracted to build the time difference localization algorithm. At last, a fiber Bragg grating impact localization system was established and experimentally verified. The experimental results showed that in the aluminum alloy plate with the 500 mm*500 mm*2 mm test area, the maximum and average impact abscissa localization errors were 11 mm and 6.25 mm, and the maximum and average impact ordinate localization errors were 9 mm and 4.25 mm, respectively. The fiber Bragg grating sensors and demodulation system are feasible to realize the aviation aluminum alloy material structure impact localization. The research results provide a reliable method for the aluminum alloy material structure impact localization.

  18. A theory of local and global processes which affect solar wind electrons. II - Experimental support

    NASA Technical Reports Server (NTRS)

    Scudder, J. D.; Olbert, S.

    1979-01-01

    Strong observational support from data obtained on three different satellites and reported by three independent experimental groups is presented for all of the theoretically predicted correlations of a previous paper concerning local and global processes that affect solar-wind electrons. Specifically, it is shown that: (1) subthermal electrons behave most nearly as a classical gas; (2) the solar-wind extrathermal fraction of the electron density is anticorrelated within steady-state stream patterns with the local bulk speed; (3) the extrathermal electrons form a spectrally distinguishable subpopulation whose differential 'temperature' is anticorrelated with the local bulk speed; (4) the heat flux carried by electrons is anticorrelated with the bulk speed; and (5) the extrathermal 'temperature' is nearly independent of radius in the inner heliosphere. It is concluded that the previously discussed global and local Coulomb collisional effects are essential aspects of the solar-wind plasma as it is observed.

  19. Local structures around the substituted elements in mixed layered oxides

    PubMed Central

    Akama, Shota; Kobayashi, Wataru; Amaha, Kaoru; Niwa, Hideharu; Nitani, Hiroaki; Moritomo, Yutaka

    2017-01-01

    The chemical substitution of a transition metal (M) is an effective method to improve the functionality of a material, such as its electrochemical, magnetic, and dielectric properties. The substitution, however, causes local lattice distortion because the difference in the ionic radius (r) modifies the local interatomic distances. Here, we systematically investigated the local structures in the pure (x = 0.0) and mixed (x = 0.05 or 0.1) layered oxides, Na(M1−xM′x)O2 (M and M′ are the majority and minority transition metals, respectively), by means of extended X-ray absorption fine structure (EXAFS) analysis. We found that the local interatomic distance (dM-O) around the minority element approaches that around the majority element to reduces the local lattice distortion. We further found that the valence of the minority Mn changes so that its ionic radius approaches that of the majority M. PMID:28252008

  20. Local structures around the substituted elements in mixed layered oxides

    NASA Astrophysics Data System (ADS)

    Akama, Shota; Kobayashi, Wataru; Amaha, Kaoru; Niwa, Hideharu; Nitani, Hiroaki; Moritomo, Yutaka

    2017-03-01

    The chemical substitution of a transition metal (M) is an effective method to improve the functionality of a material, such as its electrochemical, magnetic, and dielectric properties. The substitution, however, causes local lattice distortion because the difference in the ionic radius (r) modifies the local interatomic distances. Here, we systematically investigated the local structures in the pure (x = 0.0) and mixed (x = 0.05 or 0.1) layered oxides, Na(M1-xM‧x)O2 (M and M‧ are the majority and minority transition metals, respectively), by means of extended X-ray absorption fine structure (EXAFS) analysis. We found that the local interatomic distance (dM-O) around the minority element approaches that around the majority element to reduces the local lattice distortion. We further found that the valence of the minority Mn changes so that its ionic radius approaches that of the majority M.

  1. Two-dimensional localized structures in harmonically forced oscillatory systems

    NASA Astrophysics Data System (ADS)

    Ma, Y.-P.; Knobloch, E.

    2016-12-01

    Two-dimensional spatially localized structures in the complex Ginzburg-Landau equation with 1:1 resonance are studied near the simultaneous presence of a steady front between two spatially homogeneous equilibria and a supercritical Turing bifurcation on one of them. The bifurcation structures of steady circular fronts and localized target patterns are computed in the Turing-stable and Turing-unstable regimes. In particular, localized target patterns grow along the solution branch via ring insertion at the core in a process reminiscent of defect-mediated snaking in one spatial dimension. Stability of axisymmetric solutions on these branches with respect to axisymmetric and nonaxisymmetric perturbations is determined, and parameter regimes with stable axisymmetric oscillons are identified. Direct numerical simulations reveal novel depinning dynamics of localized target patterns in the radial direction, and of circular and planar localized hexagonal patterns in the fully two-dimensional system.

  2. Probing Actinide Electronic Structure through Pu Cluster Calculations

    SciTech Connect

    Ryzhkov, Mickhail V.; Mirmelstein, Alexei; Yu, Sung-Woo; Chung, Brandon W.; Tobin, James G.

    2013-02-26

    The calculations for the electronic structure of clusters of plutonium have been performed, within the framework of the relativistic discrete-variational method. Moreover, these theoretical results and those calculated earlier for related systems have been compared to spectroscopic data produced in the experimental investigations of bulk systems, including photoelectron spectroscopy. Observation of the changes in the Pu electronic structure as a function of size provides powerful insight for aspects of bulk Pu electronic structure.

  3. Graph-based linear scaling electronic structure theory

    NASA Astrophysics Data System (ADS)

    Niklasson, Anders M. N.; Mniszewski, Susan M.; Negre, Christian F. A.; Cawkwell, Marc J.; Swart, Pieter J.; Mohd-Yusof, Jamal; Germann, Timothy C.; Wall, Michael E.; Bock, Nicolas; Rubensson, Emanuel H.; Djidjev, Hristo

    2016-06-01

    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

  4. Probing Actinide Electronic Structure through Pu Cluster Calculations

    DOE PAGES

    Ryzhkov, Mickhail V.; Mirmelstein, Alexei; Yu, Sung-Woo; ...

    2013-02-26

    The calculations for the electronic structure of clusters of plutonium have been performed, within the framework of the relativistic discrete-variational method. Moreover, these theoretical results and those calculated earlier for related systems have been compared to spectroscopic data produced in the experimental investigations of bulk systems, including photoelectron spectroscopy. Observation of the changes in the Pu electronic structure as a function of size provides powerful insight for aspects of bulk Pu electronic structure.

  5. Graph-based linear scaling electronic structure theory.

    PubMed

    Niklasson, Anders M N; Mniszewski, Susan M; Negre, Christian F A; Cawkwell, Marc J; Swart, Pieter J; Mohd-Yusof, Jamal; Germann, Timothy C; Wall, Michael E; Bock, Nicolas; Rubensson, Emanuel H; Djidjev, Hristo

    2016-06-21

    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

  6. Local Factors Determine Plant Community Structure on Closely Neighbored Islands

    PubMed Central

    Lu, Jianbo; Jiang, Lin; Yu, Lin; Sun, Que

    2011-01-01

    Despite the recent popularity of the metacommunity concept, ecologists have not evaluated the applicability of different metacommunity frameworks to insular organisms. We surveyed 50 closely spaced islands in the Thousand-Island Lake of China to examine the role of local (environmental) and regional (dispersal) factors in structuring woody plant assemblages (tree and shrub species) on these islands. By partitioning the variation in plant community structure into local and regional causes, we showed that local environmental conditions, specifically island morphometric characteristics, accounted for the majority of the variation in plant community structure among the studied islands. Spatial variables, representing the potential importance of species dispersal, explained little variation. We conclude that one metacommunity framework–species sorting–best characterizes these plant communities. This result reinforces the idea that the traditional approach of emphasizing the local perspective when studying ecological communities continues to hold its value. PMID:21572960

  7. Electronic structure of 3d metals at finite temperatures

    SciTech Connect

    Delgadillo, I.; Gollisch, H.; Feder, R.

    1996-07-01

    A theoretical approach to the electronic structure of crystalline solids at finite temperature has been developed on the basis of the adiabatic approximation. For any given temperature, correlated ion core displacement configurations on large clusters with periodic boundary conditions are determined such that they are consistent with experimental phonon dispersion relations. Total and {ital k}{searrow}-resolved densities of states are obtained by a tight-binding recursion method for each configuration followed by a configurational average. In the case of ferromagnetic crystals, the above treatment is augmented by including the influence of spin fluctuations. The local magnetic moments associated with the atomic sites are assumed to fluctuate subject to an average magnetization and a short-range order specific for the given temperature. The spin-resolved electronic structure for temperatures up to the Curie temperature and beyond can thus be obtained. Numerical calculations are performed on Cu and Ni and the results compared to experimental photoemission data. {copyright} {ital 1996 American Institute of Physics.}

  8. Electronic structures and optical properties of silicon nanowires

    NASA Astrophysics Data System (ADS)

    Li, Jun; Freeman, Arthur

    2006-03-01

    Recent optical spectroscopic and theoretical/computational studies challenge the previous consensus on the nature of the optical properties of Si nanowires (SiNW). Here, we present results of precise theoretical FLAPW determinations of the electronic structures and optical properties of (001) and (111) one nm SiNW. The electronic states at the gaps demonstrate a strong orientation dependent parabolic character in the Brillouin zone and a clear entanglement in real space between 1D and 2D dimensions of the wire. The local symmetry imposed by quantum confinement quenches the transitions around the gap, yielding an optically inactive direct gap. The observed (001) photoluminescence is attributed to a transition rooted in an Si8 ring. The optical structure in the experimental range is well reproduced by our first-principles calculations that include the screened exchange-LDA correction to the well-known failure of the LDA. Our predictions about the anisotropy and orientation dependent optical absorption are easily verified experimentally. Work supported by DARPA B529527//W-7405-Eng-48. Holmes, Johnston, Doty, and Korgel, Science 287, 1471 (2000) Zhao, Wei, Yang, and Chou, Phys. Rev. Lett. 92, 236805 (2004) Wimmer, Krakauer, Weinert, and Freeman, PRB 24, 864 (1981)

  9. Using the electron localization function to correct for confinement physics in semi-local density functional theory

    SciTech Connect

    Hao, Feng Mattsson, Ann E.; Armiento, Rickard

    2014-05-14

    We have previously proposed that further improved functionals for density functional theory can be constructed based on the Armiento-Mattsson subsystem functional scheme if, in addition to the uniform electron gas and surface models used in the Armiento-Mattsson 2005 functional, a model for the strongly confined electron gas is also added. However, of central importance for this scheme is an index that identifies regions in space where the correction provided by the confined electron gas should be applied. The electron localization function (ELF) is a well-known indicator of strongly localized electrons. We use a model of a confined electron gas based on the harmonic oscillator to show that regions with high ELF directly coincide with regions where common exchange energy functionals have large errors. This suggests that the harmonic oscillator model together with an index based on the ELF provides the crucial ingredients for future improved semi-local functionals. For a practical illustration of how the proposed scheme is intended to work for a physical system we discuss monoclinic cupric oxide, CuO. A thorough discussion of this system leads us to promote the cell geometry of CuO as a useful benchmark for future semi-local functionals. Very high ELF values are found in a shell around the O ions, and take its maximum value along the Cu–O directions. An estimate of the exchange functional error from the effect of electron confinement in these regions suggests a magnitude and sign that could account for the error in cell geometry.

  10. Using the electron localization function to correct for confinement physics in semi-local density functional theory.

    PubMed

    Hao, Feng; Armiento, Rickard; Mattsson, Ann E

    2014-05-14

    We have previously proposed that further improved functionals for density functional theory can be constructed based on the Armiento-Mattsson subsystem functional scheme if, in addition to the uniform electron gas and surface models used in the Armiento-Mattsson 2005 functional, a model for the strongly confined electron gas is also added. However, of central importance for this scheme is an index that identifies regions in space where the correction provided by the confined electron gas should be applied. The electron localization function (ELF) is a well-known indicator of strongly localized electrons. We use a model of a confined electron gas based on the harmonic oscillator to show that regions with high ELF directly coincide with regions where common exchange energy functionals have large errors. This suggests that the harmonic oscillator model together with an index based on the ELF provides the crucial ingredients for future improved semi-local functionals. For a practical illustration of how the proposed scheme is intended to work for a physical system we discuss monoclinic cupric oxide, CuO. A thorough discussion of this system leads us to promote the cell geometry of CuO as a useful benchmark for future semi-local functionals. Very high ELF values are found in a shell around the O ions, and take its maximum value along the Cu-O directions. An estimate of the exchange functional error from the effect of electron confinement in these regions suggests a magnitude and sign that could account for the error in cell geometry.

  11. Fully automated localization of multiple pelvic bone structures on MRI.

    PubMed

    Onal, Sinan; Lai-Yuen, Susana; Bao, Paul; Weitzenfeld, Alfredo; Hart, Stuart

    2014-01-01

    In this paper, we present a fully automated localization method for multiple pelvic bone structures on magnetic resonance images (MRI). Pelvic bone structures are currently identified manually on MRI to identify reference points for measurement and evaluation of pelvic organ prolapse (POP). Given that this is a time-consuming and subjective procedure, there is a need to localize pelvic bone structures without any user interaction. However, bone structures are not easily differentiable from soft tissue on MRI as their pixel intensities tend to be very similar. In this research, we present a model that automatically identifies the bounding boxes of the bone structures on MRI using support vector machines (SVM) based classification and non-linear regression model that captures global and local information. Based on the relative locations of pelvic bones and organs, and local information such as texture features, the model identifies the location of the pelvic bone structures by establishing the association between their locations. Results show that the proposed method is able to locate the bone structures of interest accurately. The pubic bone, sacral promontory, and coccyx were correctly detected (DSI > 0.75) in 92%, 90%, and 88% of the testing images. This research aims to enable accurate, consistent and fully automated identification of pelvic bone structures on MRI to facilitate and improve the diagnosis of female pelvic organ prolapse.

  12. Dramatic changes in electronic structure revealed by fractionally charged nuclei

    NASA Astrophysics Data System (ADS)

    Cohen, Aron J.; Mori-Sánchez, Paula

    2014-01-01

    Discontinuous changes in the electronic structure upon infinitesimal changes to the Hamiltonian are demonstrated. These are revealed in one and two electron molecular systems by full configuration interaction (FCI) calculations when the realm of the nuclear charge is extended to be fractional. FCI electron densities in these systems show dramatic changes in real space and illustrate the transfer, hopping, and removal of electrons. This is due to the particle nature of electrons seen in stretched systems and is a manifestation of an energy derivative discontinuity at constant number of electrons. Dramatic errors of density functional theory densities are seen in real space as this physics is missing from currently used approximations. The movements of electrons in these simple systems encapsulate those in real physical processes, from chemical reactions to electron transport and pose a great challenge for the development of new electronic structure methods.

  13. An electron localization function study of the strain energy in carbon compounds

    NASA Astrophysics Data System (ADS)

    Chevreau, Hilaire; Sevin, Alain

    2000-05-01

    It is shown, through an electron localization function (ELF) analysis of the strain in carbon compounds, that, globally, the valence basins V(CH) and V(CC) tend to preserve a VSEPR (valence shell electron pair repulsion) geometry. This point is clearly illustrated by the valence attractors location. The properties of V(CC) basins, associated with the CC bonds, remain as constant as possible. The main effect of the strain is to modify the maximal electron localization in each V(CC) basin. This study points out once more the difficulty in relating global strain to local bond properties.

  14. The imprint of Gould's belt on the local cosmic ray electron spectrum

    NASA Astrophysics Data System (ADS)

    Pohl, M.; Perrot, C.; Grenier, I.

    2001-08-01

    In a recent paper Pohl and Esposito (1998) demonstrated that if the sources of cosmic-rays are discrete, as are Supernova Remnants (SNR), then the spectra of cosmic-ray electrons largely vary with location and time and the locally measured electron spectrum may not be representative of the electron spectra elsewhere in the Galaxy, which could be substantially harder than the local one. They have shown that the observed excess of γ-ray emission above 1 GeV can in fact be partially explained as a correspondingly hard inverse Compton component, provided the bulk of cosmic-ray electrons is produced in SNR. As part of a program to model the Galactic γ-ray foreground we have continued the earlier studies by investigating the impact of the star forming region Gould's Belt on the local electron spectrum. If the electron sources in Gould's Belt were continous, the local electron spectrum would be slightly hardened. If the electron sources are discrete, which is the more probable case, the variation in the local electron spectrum found by Pohl & Esposito persists. 1 The local cosmic-ray electron spectrum The recent detections of non-thermal X-ray synchrotron radiation from the supernova remnants SN1006 (Koyama et al., 1995), RX J1713.7-3946 (Koyama et al., 1997), IC443 (Keohane et al., 1997; Slane et al., 1999), Cas A (Allen et al., 1997), and RCW86 (Borkowski et al., 2001) and the subsequent detections of SN1006 (Tanimori et al., 1998), RX J1713.7-3946 (Muraishi et al., 2000), and Cas A (Aharonian et al., 2001) at TeV energies support the hypothesis that at least Galactic cosmic-ray electrons are accelerated predominantly in SNR. The Galactic distribution and spectrum of cosmic-ray electrons are intimately linked to the distribution and nature of their sources. Supernovae and hence their remnants are tran-

  15. Vortex emission accompanies the advection of optical localized structures.

    PubMed

    Haudin, F; Rojas, R G; Bortolozzo, U; Clerc, M G; Residori, S

    2011-02-11

    We show that the advection of optical localized structures is accompanied by the emission of vortices, with phase singularities appearing in the wake of the drifting structure. Localized structures are obtained in a light-valve experiment and made to drift by a mirror tilt in the feedback loop. Pairs of oppositely charged vortices are detected for small drifts, whereas for large drifts a vortex array develops. Observations are supported by numerical simulations and linear stability analysis of the system equations and are expected to be generic for a large class of translated optical patterns.

  16. Deriving quantum theory from its local structure and reversibility.

    PubMed

    de la Torre, Gonzalo; Masanes, Lluís; Short, Anthony J; Müller, Markus P

    2012-08-31

    We investigate the class of physical theories with the same local structure as quantum theory but potentially different global structure. It has previously been shown that any bipartite correlations generated by such a theory can be simulated in quantum theory but that this does not hold for tripartite correlations. Here we explore whether imposing an additional constraint on this space of theories-that of dynamical reversibility-will allow us to recover the global quantum structure. In the particular case in which the local systems are identical qubits, we show that any theory admitting at least one continuous reversible interaction must be identical to quantum theory.

  17. Structure of local interactions in complex financial dynamics

    PubMed Central

    Jiang, X. F.; Chen, T. T.; Zheng, B.

    2014-01-01

    With the network methods and random matrix theory, we investigate the interaction structure of communities in financial markets. In particular, based on the random matrix decomposition, we clarify that the local interactions between the business sectors (subsectors) are mainly contained in the sector mode. In the sector mode, the average correlation inside the sectors is positive, while that between the sectors is negative. Further, we explore the time evolution of the interaction structure of the business sectors, and observe that the local interaction structure changes dramatically during a financial bubble or crisis. PMID:24936906

  18. Local demixion in plasticized polylactide probed by electron spin resonance.

    PubMed

    Courgneau, Cécile; Vitrac, Olivier; Ducruet, Violette; Riquet, Anne-Marie

    2013-08-01

    Improving the barrier properties to gas and organic compounds of biosourced polyesters, such as polylactides (PLAs), by increasing their crystallinity has been suggested by several authors. This paper investigates the risk of microphase separation for a technological approach that would involve a plasticization of PLA, to further its crystallization kinetics, with common plasticizers: Acetyl tributyl citrate (ATBC) and Poly(ethylene glycol) (PEG). Overplasticization effects following microphase separation were monitored along the film thickness by exposing dynamically thermo-compressed films to nitroxide spin-probes. The method enabled a scan of the local polymer mobility for different concentration profiles in spin-probes, with in particular a maximum moving continuously in time towards the geometric center. The results were interpreted as excess local temperatures that would give similar ESR spectra motion in the bulk. It was shown that measured excess temperatures could be related to local shifts in the glass transition temperature along the film thickness. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Alignment-free local structural search by writhe decomposition.

    PubMed

    Zhi, Degui; Shatsky, Maxim; Brenner, Steven E

    2010-05-01

    Rapid methods for protein structure search enable biological discoveries based on flexibly defined structural similarity, unleashing the power of the ever greater number of solved protein structures. Projection methods show promise for the development of fast structural database search solutions. Projection methods map a structure to a point in a high-dimensional space and compare two structures by measuring distance between their projected points. These methods offer a tremendous increase in speed over residue-level structural alignment methods. However, current projection methods are not practical, partly because they are unable to identify local similarities. We propose a new projection-based approach that can rapidly detect global as well as local structural similarities. Local structural search is enabled by a topology-inspired writhe decomposition protocol that produces a small number of fragments while ensuring that similar structures are cut in a similar manner. In benchmark tests, we show that our method, writher, improves accuracy over existing projection methods in terms of recognizing scop domains out of multi-domain proteins, while maintaining accuracy comparable with existing projection methods in a standard single-domain benchmark test. The source code is available at the following website: http://compbio.berkeley.edu/proj/writher/.

  20. Electronic fluxes during Diels-Alder reactions involving 1,2-benzoquinones: mechanistic insights from the analysis of electron localization function and catastrophe theory.

    PubMed

    González-Navarrete, Patricio; Domingo, Luis R; Andrés, Juan; Berski, Slawomir; Silvi, Bernard

    2012-11-15

    By means of the joint use of electron localization function (ELF) and Thom's catastrophe theory, a theoretical analysis of the energy profile for the hetero-Diels-Alder reaction of 4-methoxy-1,2-benzoquinone 1 and methoxyethylene 2 has been carried out. The 12 different structural stability domains obtained by the bonding evolution theory have been identified as well as the bifurcation catastrophes (fold and cusp) responsible for the changes in the topology of the system. This analysis permits finding a relationship between the ELF topology and the evolution of the bond breaking/forming processes and electron pair rearrangements through the reaction progress in terms of the different ways of pairing up the electrons. The reaction mechanism corresponds to an asynchronous electronic flux; first, the O1-C5 bond is formed by the nucleophilic attack of the C5 carbon of the electron rich ethylene 2 on the most electrophilically activated carbonyl O1 oxygen of 1, and once the σ bond has been completed, the formation process of the second O4C6 bond takes place. In addition, the values of the local electrophilicity and local nucleophilcity indices in the framework of conceptual density functional theory accounts for the asychronicity of the process as well as for the observed regioselectivity. Copyright © 2012 Wiley Periodicals, Inc.