Science.gov

Sample records for local galaxy properties

  1. ISM Properties of Local Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Diaz-Santos, Tanio; Armus, Lee; Stierwalt, Sabrina; Elbaz, David; Malhotra, Sangeeta

    2015-08-01

    Luminous and Ultra-luminous Infrared Galaxies ((U)LIRGs) represent the most important galaxy population at redshifts z > 1 as they account for more than 50% of all star formation produced in the Universe at those epochs; and encompass what it is called the main-sequence (MS) of star-forming galaxies. Investigating their local counterparts -low luminosity LIRGs- is therefore key to understand the physical properties and phases of their inter-stellar medium (ISM) - a task that is rather challenging in the distant Universe. On the other hand, high-z star-bursting (out of the MS) systems, although small in number, account for a modest yet still significant fraction of the total energy production. Here I present far-IR line emission observations ([CII]158μm, [OI]63μm, [OIII]88μm and [NII]122μm) obtained with Herschel for two large samples of nearby LIRGs: The Great Observatories All-sky LIRG Survey (GOALS), a sample of more than 240 relatively cold LIRGs, and a survey of 30 LIRGs selected to have very warm mid- to far-IR colors, suggestive of an ongoing intense nuclear starburst and/or an AGN. Using photo-dissociation region (PDR) models we derive the basic characteristics of the ISM (ionization intensity and density) for both samples and study differences among systems as a function of AGN activity, merger stage, dust temperature, and compactness of the starburst - parameters that are thought to control the life cycle of galaxies moving in and out of the MS, locally and at high-z.

  2. Deep near-infrared surface photometry and properties of Local Volume dwarf irregular galaxies

    NASA Astrophysics Data System (ADS)

    Young, T.; Jerjen, H.; López-Sánchez, Á. R.; Koribalski, B. S.

    2014-11-01

    We present deep H-band surface photometry and analysis of 40 Local Volume galaxies, a sample primarily composed of dwarf irregulars in the Cen A group, obtained using the Infrared Imager and Spectrograph 2 detector at the 3.9-m Anglo-Australian Telescope. We probe to a surface brightness of ˜25 mag arcsec-2, reaching a 40 times lower stellar density than the Two Micron All Sky Survey (2MASS). Employing extremely careful and rigorous cleaning techniques to remove contaminating sources, we perform surface photometry on 33 detected galaxies deriving the observed total magnitude, effective surface brightness and best-fitting Sérsic parameters. We make image quality and surface photometry comparisons to 2MASS and VISTA Hemisphere Survey demonstrating that deep targeted surveys are still the most reliable means of obtaining accurate surface photometry. We investigate the B - H colours with respect to mass for Local Volume galaxies, finding that the colours of dwarf irregulars are significantly varied, eliminating the possibility of using optical-near-infrared colour transformations to facilitate comparison to the more widely available optical data sets. The structure-luminosity relationships are investigated for our `clean' sample of dwarf irregulars. We demonstrate that a significant fraction of the Local Volume dwarf irregular population have underlying structural properties similar to both Local Volume and Virgo cluster dwarf ellipticals. Linear regressions to structure-luminosity relationships for the Local Volume galaxies and Virgo cluster dwarf ellipticals show significant differences in both slope and scatter around the established trend lines, suggesting that environment might regulate the structural scaling relationships of dwarf galaxies in comparison to their more isolated counterparts.

  3. WINGS-SPE. III. Equivalent width measurements, spectral properties, and evolution of local cluster galaxies

    NASA Astrophysics Data System (ADS)

    Fritz, J.; Poggianti, B. M.; Cava, A.; Moretti, A.; Varela, J.; Bettoni, D.; Couch, W. J.; D'Onofrio D'Onofrio, M.; Dressler, A.; Fasano, G.; Kjærgaard, P.; Marziani, P.; Moles, M.; Omizzolo, A.

    2014-06-01

    Context. Cluster galaxies are the ideal sites to look at when studying the influence of the environment on the various aspects of the evolution of galaxies, such as the changes in their stellar content and morphological transformations. In the framework of wings, the WIde-field Nearby Galaxy-cluster Survey, we have obtained optical spectra for ~6000 galaxies selected in fields centred on 48 local (0.04 < z < 0.07) X-ray selected clusters to tackle these issues. Aims: By classifying the spectra based on given spectral lines, we investigate the frequency of the various spectral types as a function of both the clusters' properties and the galaxies' characteristics. In this way, using the same classification criteria adopted for studies at higher redshift, we can consistently compare the properties of the local cluster population to those of their more distant counterparts. Methods: We describe a method that we have developed to automatically measure the equivalent width of spectral lines in a robust way, even in spectra with a non optimal signal-to-noise ratio. This way, we can derive a spectral classification reflecting the stellar content, based on the presence and strength of the [Oii] and Hδ lines. Results: After a quality check, we are able to measure 4381 of the ~6000 originally observed spectra in the fields of 48 clusters, of which 2744 are spectroscopically confirmed cluster members. The spectral classification is then analysed as a function of galaxies' luminosity, stellar mass, morphology, local density, and host cluster's global properties and compared to higher redshift samples (MORPHS and EDisCS). The vast majority of galaxies in the local clusters population are passive objects, being also the most luminous and massive. At a magnitude limit of MV < -18, galaxies in a post-starburst phase represent only ~11% of the cluster population, and this fraction is reduced to ~5% at MV < -19.5, which compares to the 18% at the same magnitude limit for high

  4. The Properties of Local Barred Disks in the Field and Dense Environments: Implications for Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Marinova, I.; Jogee, S.; Barazza, F. D.; Heiderman, A.; Gray, M. E.; Barden, M.; Wolf, C.; Peng, C. Y.; Bacon, D.; Balogh, M.; Bell, E. F.; Böhm, A.; Caldwell, J. A. R.; Häußler, B.; Heymans, C.; Jahnke, K.; van Kampen, E.; Lane, K.; McIntosh, D. H.; Meisenheimer, K.; Sánchez, S. F.; Sommerville, R. S.; Taylor, A.; Wisotzki, L.; Zheng, X.

    2009-12-01

    Stellar bars are the most efficient internal drivers of disk evolution because they redistribute material and angular momentum within the galaxy and dark matter halo. Mounting evidence suggests that processes other than major mergers, such as minor mergers, secular processes driven by bars, and clump coalescence, as well as smooth accretion, play an important role in galaxy evolution since z = 2. As a key step toward characterizing this evolution and constraining theoretical models, we determine the frequency and properties of bars in the local Universe in both field and cluster environment, based on three of our studies: Marinova & Jogee (2007), Barazza, Jogee, & Marinova (2008) and Marinova et al. (2009). Among field spirals of intermediate Hubble types in the OSU survey, we find using ellipse fitting that the bar fraction is 44% in the optical and 60% in the NIR, giving an extinction correction factor of approximately 1.4 at z ˜ 0. Using data from the Abell 901/902 cluster system at z ˜ 0.165 from the HST ACS survey STAGES, we find that the optical bar fraction is a strong trend of both absolute magnitude and host bulge-to-total ratio, increasing for galaxies that are brighter and/or more disk-dominated. The latter trend is also found in the field from SDSS. For bright early types and faint late types the optical bar fraction in the cluster is similar to that in the field. We find that between the core region and the virial radii of the clusters the optical bar fraction is not a strong function of local environment density. We discuss the implications of our results in the context of theoretical models of the impact of bars on galaxy evolution.

  5. Local normal galaxies

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.

    1990-01-01

    In the near future, high energy (E greater than 20 MeV) gamma ray astronomy offers the promise of a new means of examining the closest galaxies. Two and possibly three local galaxies, the Small and Large Magellanic Clouds and M31, should be visible to the high energy gamma ray telescope on the Gamma Ray Observatory, and the first should be seen by GAMMA-1. With the assumptions of adequate cosmic ray production and reasonable magnetic field strengths, both of which should likely be satisfied, specific predictions of the gamma ray emission can be made separating the concepts of the galactic and universal nature of cosmic rays. A study of the synchrotron radiation from the Large Magellanic Cloud (LMC) suggests that the cosmic ray density is similar to that in the local region of our galaxy, but not uniform. It is hoped the measurements will be able to verify this independent of assumptions about the magnetic fields in the LMC.

  6. Physical properties of local star-forming analogues to z ˜ 5 Lyman-break galaxies

    NASA Astrophysics Data System (ADS)

    Greis, Stephanie M. L.; Stanway, Elizabeth R.; Davies, Luke J. M.; Levan, Andrew J.

    2016-07-01

    Intense, compact, star-forming galaxies are rare in the local Universe but ubiquitous at high redshift. We interpret the 0.1-22 μm spectral energy distributions of a sample of 180 galaxies at 0.05 < z < 0.25 selected for extremely high surface densities of inferred star formation in the ultraviolet. By comparison with well-established stellar population synthesis models, we find that our sample comprises young (˜60-400 Myr), moderate mass (˜6 × 109 M⊙) star-forming galaxies with little dust extinction (mean stellar continuum extinction Econt(B - V) ˜ 0.1) and find star formation rates of a few tens of solar masses per year. We use our inferred masses to determine a mean specific star formation rate for this sample of ˜10-9 yr-1, and compare this to the specific star formation rates in distant Lyman-break galaxies (LBGs), and in other low-redshift populations. We conclude that our sample's characteristics overlap significantly with those of the z ˜ 5 LBG population, making ours the first local analogue population well tuned to match those high-redshift galaxies. We consider implications for the origin and evolution of early galaxies.

  7. Dust Properties of Local Dust-obscured Galaxies with the Submillimeter Array

    NASA Astrophysics Data System (ADS)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J.

    2013-11-01

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S ν(880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S ν(880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 1011(L ⊙) and 4-14 × 107(M ⊙), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution.

  8. DUST PROPERTIES OF LOCAL DUST-OBSCURED GALAXIES WITH THE SUBMILLIMETER ARRAY

    SciTech Connect

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J. E-mail: sandrews@cfa.harvard.edu

    2013-11-01

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S{sub ν}(880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S{sub ν}(880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 10{sup 11}(L{sub ☉}) and 4-14 × 10{sup 7}(M{sub ☉}), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution.

  9. A comparison of the morphological properties between local and z ∼ 1 infrared luminous galaxies: Are local and high-z (U)LIRGs different?

    SciTech Connect

    Hung, Chao-Ling; Sanders, D. B.; Larson, Kirsten L.; Lee, Nicholas; Li, Yanxia; Lockhart, Kelly; Shih, Hsin-Yi; Barnes, Joshua E.; Casey, Caitlin M.; Koss, Michael; Kartaltepe, Jeyhan S.; Smith, Howard A.

    2014-08-10

    Ultraluminous and luminous infrared galaxies (ULIRGs and LIRGs) are the most extreme star-forming galaxies in the universe and dominate the total star formation rate density at z > 1. In the local universe (z < 0.3), the majority of ULIRGs and a significant portion of LIRGs are triggered by interactions between gas-rich spiral galaxies, yet it is unclear if this is still the case at high z. To investigate the relative importance of galaxy interactions in infrared luminous galaxies, we carry out a comparison of optical morphological properties between local (U)LIRGs and (U)LIRGs at z = 0.5-1.5 based on the same sample selection, morphology classification scheme, and optical morphology at similar rest-frame wavelengths. In addition, we quantify the systematics in comparing local and high-z data sets by constructing a redshifted data set from local (U)LIRGs, in which its data quality mimics the high-z data set. Based on the Gini-M{sub 20} classification scheme, we find that the fraction of interacting systems decreases by ∼8% from local to z ≲ 1, and it is consistent with the reduction between local and redshifted data sets (6{sub −6}{sup +14}%). Based on visual classifications, the merger fraction of local ULIRGs is found to be ∼20% lower compared to published results, and the reduction due to redshifting is 15{sub −8}{sup +10}%. Consequently, the differences of merger fractions between local and z ≲ 1 (U)LIRGs is only ∼17%. These results demonstrate that there is no strong evolution in the fraction of (U)LIRGs classified as mergers at least out to z ∼ 1. At z > 1, the morphology types of ∼30% of (U)LIRGs cannot be determined due to their faintness in the F814W band; thus, the merger fraction measured at z > 1 suffers from large uncertainties.

  10. Local Universe Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Carignan, Claude

    2015-08-01

    One of the outstanding problems in cosmology is addressing the "small-scale crisis" and understanding structure formation at the smallest scales. Standard Lambda Cold Dark Matter cosmological simulations of Milky Way-size DM halos predict many more DM sub-halos than the number of dwarf galaxies observed. This is the so-called Missing Satellites Problem. The most popular interpretation of the Missing Satellites Problem is that the smallest dark matter halos in the universe are extremely inefficient at forming stars. The virialized extent of the Milky Way's halo should contain ~500 satellites, while only ˜100 satellites and dwarfs are observed in the whole Local Group. Despite the large amount of theoretical work and new optical observations, the discrepancy, even if reduced, still persists between observations and hierarchical models, regardless of the model parameters. It may be possible to find those isolated ultra-faint missing dwarf galaxies via their neutral gas component, which is one of the goals we are pursuing with the SKA precursor KAT-7 in South Africa, and soon with the SKA pathfinder MeerKAT.

  11. WHERE ARE THE FOSSILS OF THE FIRST GALAXIES? I. LOCAL VOLUME MAPS AND PROPERTIES OF THE UNDETECTED DWARFS

    SciTech Connect

    Bovill, Mia S.; Ricotti, Massimo E-mail: ricotti@astro.umd.edu

    2011-11-01

    We present a new method for generating initial conditions for {Lambda}CDM N-body simulations which provides the dynamical range necessary to follow the evolution and distribution of the fossils of the first galaxies on Local Volume, 5-10 Mpc, scales. The initial distribution of particles represents the position, velocity, and mass distribution of the dark and luminous halos extracted from pre-reionization simulations. We confirm previous results that ultra-faint dwarfs have properties compatible with being well-preserved fossils of the first galaxies. However, because the brightest pre-reionization dwarfs form preferentially in biased regions, they most likely merge into non-fossil halos with circular velocities >20-30 km s{sup -1}. Hence, we find that the maximum luminosity of true fossils in the Milky Way is L{sub V} < 10{sup 6} L{sub sun}, casting doubts on the interpretation that some classical dSphs are true fossils. In addition, we argue that most ultra-faints at small galactocentric distance, R < 50 kpc, had their stellar properties modified by tides, while a large population of fossils is still undetected due to their extremely low surface brightness log ({Sigma}{sub V}) < -1.4. We estimate that the region outside R{sub 50} ({approx}400 kpc) up to 1 Mpc from the Milky Way contains about a hundred true fossils of the first galaxies with V-band luminosity 10{sup 3}-10{sup 5} L{sub sun} and half-light radii, r{sub hl} {approx} 100-1000 pc.

  12. Neutral Hydrogen in Local Group Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Grcevich, Jana

    The gas content of the faintest and lowest mass dwarf galaxies provide means to study the evolution of these unique objects. The evolutionary histories of low mass dwarf galaxies are interesting in their own right, but may also provide insight into fundamental cosmological problems. These include the nature of dark matter, the disagreement between the number of observed Local Group dwarf galaxies and that predicted by lambda cold dark matter models, and the discrepancy between the observed census of baryonic matter in the Milky Way's environment and theoretical predictions. This thesis explores these questions by studying the neutral hydrogen (HI) component of dwarf galaxies. First, limits on the HI mass of the ultra-faint dwarfs are presented, and the HI content of all Local Group dwarf galaxies is examined from an environmental standpoint. We find that those Local Group dwarfs within 270 kpc of a massive host galaxy are deficient in HI as compared to those at larger galactocentric distances. Ram-pressure arguments are invoked, which suggest halo densities greater than 2-3 x 10-4 cm-3 out to distances of at least 70 kpc, values which are consistent with theoretical models and suggest the halo may harbor a large fraction of the host galaxy's baryons. We also find that accounting for the incompleteness of the dwarf galaxy count, known dwarf galaxies whose gas has been removed could have provided at most 2.1 x 108 M⊙ of HI gas to the Milky Way. Second, we examine the possibility of discovering unknown gas-rich ultra-faint galaxies in the Local Group using HI. The GALFA-HI Survey catalog is searched for compact, isolated HI clouds which are most similar to the expected HI characteristics of low mass dwarf galaxies. Fifty-one Local Group dwarf galaxy candidates are identified through column density, brightness temperature, and kinematic selection criteria, and their properties are explored. Third, we present hydrodynamic simulations of dwarf galaxies experiencing a

  13. THE HERSCHEL EXPLOITATION OF LOCAL GALAXY ANDROMEDA (HELGA). VI. THE DISTRIBUTION AND PROPERTIES OF MOLECULAR CLOUD ASSOCIATIONS IN M31

    SciTech Connect

    Kirk, J. M.; Gear, W. K.; Smith, M. W. L.; Ford, G.; Eales, S. A.; Gomez, H. L.; Fritz, J.; Baes, M.; De Looze, I.; Gentile, G.; Gordon, K.; Verstappen, J.; Viaene, S.; Bendo, G. J.; O'Halloran, B.; Madden, S. C.; Lebouteiller, V.; Boselli, A.; Cooray, A.; and others

    2015-01-01

    In this paper we present a catalog of giant molecular clouds (GMCs) in the Andromeda (M31) galaxy extracted from the Herschel Exploitation of Local Galaxy Andromeda (HELGA) data set. GMCs are identified from the Herschel maps using a hierarchical source extraction algorithm. We present the results of this new catalog and characterize the spatial distribution and spectral energy properties of its clouds based on the radial dust/gas properties found by Smith et al. A total of 326 GMCs in the mass range 10{sup 4}-10{sup 7} M {sub ☉} are identified; their cumulative mass distribution is found to be proportional to M {sup –2.34}, in agreement with earlier studies. The GMCs appear to follow the same correlation of cloud mass to L {sub CO} observed in the Milky Way. However, comparison between this catalog and interferometry studies also shows that the GMCs are substructured below the Herschel resolution limit, suggesting that we are observing associations of GMCs. Following Gordon et al., we study the spatial structure of M31 by splitting the observed structure into a set of spiral arms and offset rings. We fit radii of 10.3 and 15.5 kpc to the two most prominent rings. We then fit a logarithmic spiral with a pitch angle of 8.°9 to the GMCs not associated with either ring. Last, we comment on the effects of deprojection on our results and investigate the effect different models for M31's inclination will have on the projection of an unperturbed spiral arm system.

  14. Multi-wavelength properties and smbh's masses of the isolated galaxies with active nuclei in the Local Universe

    NASA Astrophysics Data System (ADS)

    Vavilova, Iryna; Vasylenko, Anatolij; Babyk, Iuri; Pulatova, Nadya

    2016-07-01

    We apply the specially-oriented Astro-Space databases obtained with ground-based telescopes and space observatories to study the multi-wavelength spectral and physical properties of galaxies with active nuclei (AGNs), namely of isolated AGNs that are poorly investigated especially in X-rays. Such a study allowed us 1) to separate the internal evolution mechanisms from the environment influence and consider them as two separate processes related to fueling nuclear activity, 2) to explore absorption features and the X-ray continuum radiation from accretion disks around SMBHs (e.g. to select accretion models). In the case of detecting the Fe K emission line, it was possible to analyze the physical conditions in the AGNs innermost parts in more details. Using the SDSS spectral Hβ-line data we were able to estimate the SMBH masses of several isolated AGNs in the Local Universe, which are systematically lower than the SMBH masses of AGNs located in a dense environment. We present also the results of analysis of the spectral data obtained by XMM-Newton, Swift, Chandra, and INTEGRAL space observatories for several isolated AGNs from 2MIG catalogue, for which the available X-ray data were accessed. Among these objects are CGCG 179-005, NGC 6300, NGC 1050, NGC 2989, WKK 3050, ESO 438-009, ESO 317-038 and others. We determined corresponding spectral models and values of their parameters (spectral index, intrinsic absorption etc.). X-ray spectra for bright galaxies, NGC 6300 and Circinus, were analyzed up to 250 keV and their characteristics of emission features were determined in 6-7 keV range.

  15. LOCAL TADPOLE GALAXIES: DYNAMICS AND METALLICITY

    SciTech Connect

    Sanchez Almeida, J.; Munoz-Tunon, C.; Mendez-Abreu, J.; Elmegreen, D. M.; Elmegreen, B. G. E-mail: cmt@iac.es E-mail: elmegreen@vassar.edu

    2013-04-10

    Tadpole galaxies, with a bright peripheral clump on a faint tail, are morphological types unusual in the nearby universe but very common early on. Low mass local tadpoles were identified and studied photometrically in a previous work, which we complete here analyzing their chemical and dynamical properties. We measure H{alpha} velocity curves of seven local tadpoles, representing 50% of the initial sample. Five of them show evidence for rotation ({approx}70%), and a sixth target hints at it. Often the center of rotation is spatially offset with respect to the tadpole head (three out of five cases). The size and velocity dispersion of the heads are typical of giant H II regions, and three of them yield dynamical masses in fair agreement with their stellar masses as inferred from photometry. In four cases the velocity dispersion at the head is reduced with respect to its immediate surroundings. The oxygen metallicity estimated from [N II] {lambda}6583/H{alpha} often shows significant spatial variations across the galaxies ({approx}0.5 dex), being smallest at the head and larger elsewhere. The resulting chemical abundance gradients are opposite to the ones observed in local spirals, but agrees with disk galaxies at high redshift. We interpret the metallicity variation as a sign of external gas accretion (cold-flows) onto the head of the tadpole. The galaxies are low-metallicity outliers of the mass-metallicity relationship. In particular, two of the tadpole heads are extremely metal poor, with a metallicity smaller than a tenth of the solar value. These two targets are also very young (ages smaller than 5 Myr). All these results combined are consistent with the local tadpole galaxies being disks in early stages of assembling, with their star formation sustained by accretion of external metal-poor gas.

  16. Segregation properties of galaxies

    SciTech Connect

    Santiago, B.X.; Da Costa, L.N. )

    1990-10-01

    Using the recently completed Southern Sky Redshift Survey, in conjunction with measurements of the central surface brightness, the existence of segregation in the way galaxies of different morphology and surface brightness are distributed in space is investigated. Results indicate that there is some evidence that low surface brightness galaxies are more randomly distributed than brighter ones and that this effect is independent of the well-known tendency of early-type galaxies to cluster more strongly than spirals. Presuming that the observed clustering was established at the epoch of galaxy formation, it may provide circumstantial evidence for biased galaxy formation. 24 refs.

  17. Effect of bars on the galaxy properties

    NASA Astrophysics Data System (ADS)

    Vera, Matias; Alonso, Sol; Coldwell, Georgina

    2016-10-01

    Aims: With the aim of assessing the effects of bars on disk galaxy properties, we present an analysis of different characteristics of spiral galaxies with strong bars, weak bars and without bars. Methods: We identified barred galaxies from the Sloan Digital Sky Survey (SDSS). By visual inspection of SDSS images we classified the face-on spiral galaxies brighter than g< 16.5 mag into strong-bar, weak-bar, and unbarred galaxies. With the goal of providing an appropriate quantification of the influence of bars on galaxy properties, we also constructed a suitable control sample of unbarred galaxies with similar redshifts, magnitudes, morphology, bulge sizes, and local density environment distributions to those of barred galaxies. Results: We found 522 strong-barred and 770 weak-barred galaxies; this represents a bar fraction of 25.82% with respect to the full sample of spiral galaxies, in good agreement with several previous studies. We also found that strong-barred galaxies show lower efficiency in star formation activity and older stellar populations (as derived with the Dn(4000) spectral index) with respect to weak-barred and unbarred spirals from the control sample. In addition, there is a significant excess of strong-barred galaxies with red colors. The color-color and color-magnitude diagrams show that unbarred and weak-barred galaxies are more extended towards the blue zone, while strong-barred disk objects are mostly grouped in the red region. Strong-barred galaxies present an important excess of high metallicity values compared to unbarred and weak-barred disk objects, which show similar distributions. Regarding the mass-metallicity relation, we found that weak-barred and unbarred galaxies are fitted by similar curves, while strong-barred ones show a curve that falls abruptly with more significance in the range of low stellar masses (log (M∗/M⊙) < 10.0). These results would indicate that prominent bars produced an accelerating effect on the gas processing

  18. Stellar populations in local star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Perez-Gonzalez, P. G.

    2003-11-01

    The main goal of this thesis work is studying the main properties of the stellar populations embedded in a statistically complete sample of local active star-forming galaxies: the Universidad Complutense de Madrid (UCM) Survey of emission-line galaxies. This sample contains 191 local star-forming galaxies at an average redshift of 0.026. The survey was carried out using an objective-prism technique centered at the wavelength of the Halpha nebular emission-line (a common tracer of recent star formation). (continues)

  19. Local Group Galaxy Emission-line Survey

    NASA Astrophysics Data System (ADS)

    Blaha, Cindy; Baildon, Taylor; Mehta, Shail; Garcia, Edgar; Massey, Philip; Hodge, Paul W.

    2015-01-01

    We present the results of the Local Group Galaxy Emission-line Survey of Hα emission regions in M31, M33 and seven dwarf galaxies in (NGC6822, IC10, WLM, Sextans A and B, Phoenix and Pegasus). Using data from the Local Group Galaxy Survey (LGGS - see Massey et al, 2006), we used continuum-subtracted Ha emission line images to define emission regions with a faint flux limit of 10 -17 ergs-sec-1-cm-2above the background. We have obtained photometric measurements for roughly 7450 Hα emission regions in M31, M33 and five of the seven dwarf galaxies (no regions for Phoenix or Pegasus). Using these regions, with boundaries defined by Hα-emission flux limits, we also measured fluxes for the continuum-subtracted [OIII] and [SII] images and constructed a catalog of Hα fluxes, region sizes and [OIII]/ Hα and [SII]/ Hα line ratios. The HII region luminosity functions and size distributions for the spiral galaxies M31 and M33 are compared with those of the dwarf galaxies NGC 6822 and IC10. For M31 and M33, the average [SII]/ Hα and [OIII]/ Hα line ratios, plotted as a function of galactocentric radius, display a linear trend with shallow slopes consistent with other studies of metallicity gradients in these galaxies. The galaxy-wide averages of [SII]/ Hα line ratios correlate with the masses of the dwarf galaxies following the previously established dwarf galaxy mass-metallicity relationship. The slope of the luminosity functions for the dwarf galaxies varies with galaxy mass. The Carleton Catalog of this Local Group Emission-line Survey will be made available on-line.

  20. SUPERDENSE MASSIVE GALAXIES IN WINGS LOCAL CLUSTERS

    SciTech Connect

    Valentinuzzi, T.; D'Onofrio, M.; Fritz, J.; Poggianti, B. M.; Bettoni, D.; Fasano, G.; Moretti, A.; Omizzolo, A.; Varela, J.; Cava, A.; Couch, W. J.; Dressler, A.; Moles, M.; Kjaergaard, P.; Vanzella, E.

    2010-03-20

    Massive quiescent galaxies at z > 1 have been found to have small physical sizes, and hence to be superdense. Several mechanisms, including minor mergers, have been proposed for increasing galaxy sizes from high- to low-z. We search for superdense massive galaxies in the WIde-field Nearby Galaxy-cluster Survey (WINGS) of X-ray selected galaxy clusters at 0.04 < z < 0.07. We discover a significant population of superdense massive galaxies with masses and sizes comparable to those observed at high redshift. They approximately represent 22% of all cluster galaxies more massive than 3 x 10{sup 10} M{sub sun}, are mostly S0 galaxies, have a median effective radius (R{sub e} ) = 1.61 +- 0.29 kpc, a median Sersic index (n) = 3.0 +- 0.6, and very old stellar populations with a median mass-weighted age of 12.1 +- 1.3 Gyr. We calculate a number density of 2.9 x 10{sup -2} Mpc{sup -3} for superdense galaxies in local clusters, and a hard lower limit of 1.3 x 10{sup -5} Mpc{sup -3} in the whole comoving volume between z = 0.04 and z = 0.07. We find a relation between mass, effective radius, and luminosity-weighted age in our cluster galaxies, which can mimic the claimed evolution of the radius with redshift, if not properly taken into account. We compare our data with spectroscopic high-z surveys and find that-when stellar masses are considered-there is consistency with the local WINGS galaxy sizes out to z {approx} 2, while a discrepancy of a factor of 3 exists with the only spectroscopic z > 2 study. In contrast, there is strong evidence for a large evolution in radius for the most massive galaxies with M{sub *} > 4 x 10{sup 11} M{sub sun} compared to similarly massive galaxies in WINGS, i.e., the brightest cluster galaxies.

  1. The Far-Infrared Properties of the Most Isolated Galaxies

    NASA Astrophysics Data System (ADS)

    Lisenfeld, U.; Verdes-Montenegro, L.; Sulentic, J.; Leon, S.; Espada, D.; Bergond, G.; García, E.; Sabater, J.; Santander-Vela, J. D.; Verley, S.

    2007-05-01

    A long-standing question in galaxy evolution involves the role of nature (self-regulation) vs. nurture (environment) on the observed properties (and evolution) of galaxies. A collaboration centreed at the Instituto de Astrofisica de Andalucia (Granada, Spain) is trying to address this question by producing a observational database for a sample of 1050 isolated galaxies from the catalogue of Karachentseva (1973) with the overarching goal being the generation of a "zero-point" sample against which effects of environment on galaxies can be assessed. The AMIGA (Analysis of the Interstellar Medium of Isolated Galaxies) database (see www.iaa.es/AMIGA.html) will include optical, IR and radio line and continuum measures. The galaxies in the sample represent the most isolated galaxies in the local universe. In the present contribution, we will present the project, as well as the results of an analysis of the far-infrared (FIR) and molecular gas properties of this sample.

  2. Chemical abundances of massive stars in Local Group galaxies

    NASA Astrophysics Data System (ADS)

    Venn, Kim A.; Kaufer, Andreas; Tolstoy, Eline; Kudritzki, Rolf-Peter; Przybilla, Norbert; Smartt, Stephen J.; Lennon, Daniel J.

    The relative abundances of elements in galaxies can provide valuable information on the stellar and chemical evolution of a galaxy. While nebulae can provide abundances for a variety of light elements, stars are the only way to directly determine the abundances of iron-group and s-process and r-process elements in a galaxy. The new 8m and 10m class telescopes and high-efficiency spectrographs now make high-quality spectral observations of bright supergiants possible in dwarf galaxies in the Local Group. We have been concentrating on elemental abundances in the metal-poor dwarf irregular galaxies, NGC 6822, WLM, Sextants A, and GR 8. Comparing abundance ratios to those predicted from their star formation histories, determined from color-magnitude diagrams, and comparing those ratios between these galaxies can give us new insights into the evolution of these dwarf irregular galaxies. Iron-group abundances also allow us to examine the metallicities of the stars in these galaxies directly, which affects their inferred mass loss rates and predicted stellar evolution properties.

  3. Dynamics of galaxy structures in the Local Volume

    NASA Astrophysics Data System (ADS)

    Karachentsev, I. D.

    2016-10-01

    I consider a sample of `Updated Nearby Galaxy Catalog' that contains eight hundred objects within 11 Mpc. Environment of each galaxy is characterized by a tidal index Θ1 depending on separation and mass of the galaxy Main Disturber (=MD). The UNGC galaxies with a common MD are ascribed to its `suite' and ranked according to their Θ1. Fifteen the most populated suites contain more than half of the UNGC sample. The fraction of MDs among the brightest galaxies is almost 100% and drops to 50% at M_B = -18 mag. The observational properties of galaxies accumulated in UNGC are used to derive orbital masses of giant galaxies via motions of their satellites. The average orbital-to-stellar mass ratio for them is M orb M* ~= 30, corresponding to the mean local density of matter Ωm ~= 0.09, i.e 1/3 of the global cosmic one. The dark-to-stellar mass ratio for the Milky Way and M31 is typical for other neighboring giant galaxies.

  4. Isolated elliptical galaxies in the local Universe

    NASA Astrophysics Data System (ADS)

    Lacerna, I.; Hernández-Toledo, H. M.; Avila-Reese, V.; Abonza-Sane, J.; del Olmo, A.

    2016-04-01

    Context. We have studied a sample of 89 very isolated, elliptical galaxies at z < 0.08 and compared their properties with elliptical galaxies located in a high-density environment such as the Coma supercluster. Aims: Our aim is to probe the role of environment on the morphological transformation and quenching of elliptical galaxies as a function of mass. In addition, we elucidate the nature of a particular set of blue and star-forming isolated ellipticals identified here. Methods: We studied physical properties of ellipticals, such as color, specific star formation rate, galaxy size, and stellar age, as a function of stellar mass and environment based on SDSS data. We analyzed the blue and star-forming isolated ellipticals in more detail, through photometric characterization using GALFIT, and infer their star formation history using STARLIGHT. Results: Among the isolated ellipticals ≈20% are blue, ≲8% are star forming, and ≈10% are recently quenched, while among the Coma ellipticals ≈8% are blue and just ≲1% are star forming or recently quenched. There are four isolated galaxies (≈4.5%) that are blue and star forming at the same time. These galaxies, with masses between 7 × 109 and 2 × 1010 h-2 M⊙, are also the youngest galaxies with light-weighted stellar ages ≲1 Gyr and exhibit bluer colors toward the galaxy center. Around 30-60% of their present-day luminosity, but only <5% of their present-day mass, is due to star formation in the last 1 Gyr. Conclusions: The processes of morphological transformation and quenching seem to be in general independent of environment since most of elliptical galaxies are "red and dead", although the transition to the red sequence should be faster for isolated ellipticals. In some cases, the isolated environment seems to propitiate the rejuvenation of ellipticals by recent (<1 Gyr) cold gas accretion.

  5. Galaxy properties and the cosmic web in simulations

    NASA Astrophysics Data System (ADS)

    Metuki, Ofer; Libeskind, Noam I.; Hoffman, Yehuda; Crain, Robert A.; Theuns, Tom

    2015-01-01

    We seek to understand the relationship between galaxy properties and their local environment, which calls for a proper formulation of the notion of environment. We analyse the Galaxies-Intergalactic Medium Interaction Calculation suite of cosmological hydrodynamical simulations within the framework of the cosmic web as formulated by Hoffman et al., focusing on properties of simulated dark matter haloes and luminous galaxies with respect to voids, sheets, filaments, and knots - the four elements of the cosmic web. We find that the mass functions of haloes depend on environment, which drives other environmental dependence of galaxy formation. The web shapes the halo mass function, and through the strong dependence of the galaxy properties on the mass of their host haloes, it also shapes the galaxy-(web) environment dependence.

  6. HI in Local Group Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Grcevich, Jana; Putman, M. E.; Peek, J. E. G.

    2007-12-01

    The HI content of the newly discovered satellites of the Milky Way has not been previously studied. We use HIPASS (HI Parkes All Sky Survey), LAB (Leiden/Argentine/Bonn), and GALFA (Galactic Arecibo L-band Feed Array) survey data to explore HI in the environment of the newly discovered dwarf galaxies and add this information to what was previously known about HI in the dwarf spheroidal and lower mass dwarf irregular galaxies of the Local Group. All of the new satellites discovered in the Sloan Digital Sky Survey data have limits on their HI masses which range from < 13 M⊙ to 3 x 104 M⊙ except for Leo T, which has an HI mass of approximately 105 M⊙. We find that galaxies within 300 kpc of the Milky Way or Andromeda are all undetected in HI to low limits, or have ambiguous detections, while those further than 300 kpc are predominantly detected with masses > 105 M⊙. The most favored explanation for the lack of HI in dwarf galaxies at small galactocentric distances is ram pressure stripping of the gas in the dwarf galaxy by the larger galaxy's hot halo gas. The HI content will also be discussed in terms of the fuel it provides to the Milky Way and the star formation history of the dwarfs. Finally, we discuss the discovery in the GALFA data of discrete HI clouds with dynamical characteristics similar to known dwarf galaxies.

  7. HI in Local Group Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Grcevich, Jana; Putman, Mary; Peek, Joshua E. G.

    2008-08-01

    The HI content of the newly discovered satellites of the Milky Way has not been previously studied. We use HIPASS (HI Parkes All Sky Survey), LAB (Leiden/Argentine/Bonn), and GALFA (Galactic Arecibo L-band Feed Array) survey data to explore HI in the environment of the newly discovered dwarf galaxies and add this information to what was previously known about HI in the dwarf spheroidal and lower mass dwarf irregular galaxies of the Local Group. All of the new satellites discovered in the Sloan Digital Sky Survey data have limits on their HI masses which range from <13 Msolar to 3×104 Msolar except for Leo T, which has and HI mass of approximately 105 Msolar. We find that galaxies within 300 kpc of the Milky Way or Andromeda are all undetected in HI to low limits, or have ambiguous detections, while those further than 300 kpc are predominantly detected with masses >105 Msolar. The most favored explanation for the lack of HI in dwarf galaxies at small galactocentric distances is ram pressure stripping of the gas in the dwarf galaxy by the larger galaxy's hot halo gas. Finally, we discuss the discovery in the GALFA data of discrete HI clouds with characteristics similar to known dwarf galaxies.

  8. Local Analogs for High-redshift Galaxies: Resembling the Physical Conditions of the Interstellar Medium in High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Bian, Fuyan; Kewley, Lisa J.; Dopita, Michael A.; Juneau, Stephanie

    2016-05-01

    We present a sample of local analogs for high-redshift galaxies selected in the Sloan Digital Sky Survey (SDSS). The physical conditions of the interstellar medium (ISM) in these local analogs resemble those in high-redshift galaxies. These galaxies are selected based on their positions in the [O iii]/Hβ versus [N ii]/Hα nebular emission-line diagnostic diagram. We show that these local analogs share similar physical properties with high-redshift galaxies, including high specific star formation rates (sSFRs), flat UV continuums, and compact galaxy sizes. In particular, the ionization parameters and electron densities in these analogs are comparable to those in z ≃ 2–3 galaxies, but higher than those in normal SDSS galaxies by ≃0.6 dex and ≃0.9 dex, respectively. The mass–metallicity relation (MZR) in these local analogs shows ‑0.2 dex offset from that in SDSS star-forming galaxies at the low-mass end, which is consistent with the MZR of the z˜ 2{--}3 galaxies. We compare the local analogs in this study with those in other studies, including Lyman break analogs (LBA) and green pea (GP) galaxies. The analogs in this study share a similar star formation surface density with LBAs, but the ionization parameters and electron density in our analogs are higher than those in LBAs by factors of 1.5 and 3, respectively. The analogs in this study have comparable ionization parameters and electron densities to the GP galaxies, but our method can select galaxies in a wider redshift range. We find the high sSFR and SFR surface density can increase the electron density and ionization parameters, but still cannot fully explain the difference in ISM condition between nearby galaxies and the local analogs/high-redshift galaxies.

  9. Local Analogs for High-redshift Galaxies: Resembling the Physical Conditions of the Interstellar Medium in High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Bian, Fuyan; Kewley, Lisa J.; Dopita, Michael A.; Juneau, Stephanie

    2016-05-01

    We present a sample of local analogs for high-redshift galaxies selected in the Sloan Digital Sky Survey (SDSS). The physical conditions of the interstellar medium (ISM) in these local analogs resemble those in high-redshift galaxies. These galaxies are selected based on their positions in the [O iii]/Hβ versus [N ii]/Hα nebular emission-line diagnostic diagram. We show that these local analogs share similar physical properties with high-redshift galaxies, including high specific star formation rates (sSFRs), flat UV continuums, and compact galaxy sizes. In particular, the ionization parameters and electron densities in these analogs are comparable to those in z ≃ 2-3 galaxies, but higher than those in normal SDSS galaxies by ≃0.6 dex and ≃0.9 dex, respectively. The mass-metallicity relation (MZR) in these local analogs shows -0.2 dex offset from that in SDSS star-forming galaxies at the low-mass end, which is consistent with the MZR of the z˜ 2{--}3 galaxies. We compare the local analogs in this study with those in other studies, including Lyman break analogs (LBA) and green pea (GP) galaxies. The analogs in this study share a similar star formation surface density with LBAs, but the ionization parameters and electron density in our analogs are higher than those in LBAs by factors of 1.5 and 3, respectively. The analogs in this study have comparable ionization parameters and electron densities to the GP galaxies, but our method can select galaxies in a wider redshift range. We find the high sSFR and SFR surface density can increase the electron density and ionization parameters, but still cannot fully explain the difference in ISM condition between nearby galaxies and the local analogs/high-redshift galaxies.

  10. 'Direct' Gas-Phase Metallicities, Stellar Properties, and Local Environments of Emission-Line Galaxies at Redshifts Below 0.90

    NASA Technical Reports Server (NTRS)

    Ly, Chun; Malkan, Matthew A.; Nagao, Tohru; Kashikawa, Nobunari; Shimasaku, Kazuhiro; Hayashi, Masao

    2013-01-01

    Using deep narrow-band (NB) imaging and optical spectroscopy from the Keck telescope and the Multi Mirror Telescope (MMT), we identify a sample of 20 emission-line galaxies (ELGs) at z = 0.065-0.90 where the weak auroral emission line, [O iii] lambda4363, is detected at >=3sigma. These detections allow us to determine the gas-phase metallicity using the "direct" method. With electron temperature measurements, and dust attenuation corrections from Balmer decrements, we find that 4 of these low-mass galaxies are extremely metal-poor with 12+log(O/H) <= 7.65 or one-tenth solar. Our most metal-deficient galaxy has 12+log(O/H)= 7.24(+0.45 / -0.30) (95% confidence), similar to some of the lowest metallicity galaxies identified in the local universe. We find that our galaxies are all undergoing significant star formation with average specific star formation rate (SFR) of (100 Myra)(exp -1), and that they have high central SFR surface densities (average of 0.5 Solar M / yr/ sq. kpc). In addition, more than two-thirds of our galaxies have between one and four nearby companions within a projected radius of 100 kpc, which we find is an excess among star-forming galaxies at z =0.4 -- 0.85. We also find that the gas-phase metallicities for a given stellar mass and SFR lie systematically lower than the local stellar M-Z-(SFR) relation by approx. = 0.2 dex (2 sigma significance). These results are partly due to selection effects, since galaxies with strong star formation and low metallicity are more likely to yield [O iii] lambda4363 detections. Finally, the observed higher ionization parameter and high electron density suggest that they are lower redshift analogs to typical z approx. > 1 galaxies.

  11. Stellar halos around Local Group galaxies

    NASA Astrophysics Data System (ADS)

    McConnachie, Alan W.

    2016-08-01

    The Local Group is now home to 102 known galaxies and candidates, with many new faint galaxies continuing to be discovered. The total stellar mass range spanned by this population covers a factor of close to a billion, from the faintest systems with stellar masses of order a few thousand to the Milky Way and Andromeda, with stellar masses of order 1011 M ⊙. Here, I discuss the evidence for stellar halos surrounding Local Group galaxies spanning from dwarf scales (with the case of the Andromeda II dwarf spheroidal), though to intermediate mass systems (M33) and finishing with M31. Evidence of extended stellar populations and merging is seen across the luminosity function, indicating that the processes that lead to halo formation are common at all mass scales.

  12. Observing Dwarf Galaxies in the Local Universe

    NASA Astrophysics Data System (ADS)

    Simon, Joshua

    2016-03-01

    Dwarf galaxies in the Local Group are key probes of both dark matter and galaxy formation. They are the smallest, oldest, most dark matter-dominated, and least chemically enriched stellar systems currently known. However, despite two decades of major computational, theoretical, and observational advances in this field, we are still working toward a complete understanding of star and galaxy formation at the faint end of the galaxy luminosity function. In the last year, large sky surveys such as the Dark Energy Survey and Pan-STARRS have made an unprecedented series of discoveries, nearly doubling the population of Milky Way satellite galaxies that was known at the start of 2015. This increase in the number of nearby dwarfs may significantly improve the sensitivity of searches for dark matter annihilation radiation. Many of these new dwarfs are likely to have originated as satellites of the Magellanic Clouds, providing a unique opportunity to study the effect of galactic environment on the formation of the faintest dwarfs. I will provide an overview of recent discoveries and how they fit in to the previously known population of nearby dwarf galaxies, highlighting a few of the most interesting objects from the perspective of dark matter and stellar nucleosynthesis.

  13. Star Formation Properties of Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Hunter, D. A.; Elmegreen, B. G.

    2003-12-01

    What regulates star formation in gas-rich dwarf galaxies on global and local scales? To address this question, we have conducted a survey of a large sample of reasonably normal, relatively nearby, non-interacting galaxies without spiral arms. The sample includes 94 Im galaxies, 26 Blue Compact Dwarfs, and 20 Sm systems. The data consist of UBV and Hα images for the entire sample, and JHK images, HI maps, CO observations, and HII region spectrophotometry for a sub-sample. The Hα , UBV, and JHK image sets act as probes of star formation on three different times scales: Hα images trace the most recent star formation (≤10 Myrs) through the ionization of natal clouds by the short-lived massive stars; UBV, while a more complicated clue, integrates over the past Gyr; and JHK integrates over the lifetime of the galaxy where even in Im galaxies global JHK colors are characteristic of old stellar populations. These data are being used to determine the nature and distribution of the star formation activity, to characterize the interstellar medium out of which the clouds and stars are forming, and to develop models that describe the important processes that drive star formation in these tiny systems. Here we present the Hα data: integrated star formation rates, azimuthally-averaged Hα surface brightnesses, and extents of star formation, and explore the relationship of the star formation properties to other integrated parameters of the galaxies. One TI CCD used in this work was provided to Lowell by the National Science Foundation and another was on loan from the U. S. Naval Observatory in Flagstaff. The Hα filters were purchased with funds provided by a Small Research Grant from the American Astronomical Society, National Science Foundation grant AST-9022046, and grant 960355 from JPL. Funding for carrying out this work was provided by the Lowell Research Fund and by the National Science Foundation through grants AST-0204922 to DAH and AST-0205097 to BGE.

  14. Radio properties of fossil galaxy groups

    NASA Astrophysics Data System (ADS)

    Miraghaei, H.; Khosroshahi, H. G.

    2016-09-01

    We study 1.4 GHz radio properties of a sample of fossil galaxy groups using GMRT radio observations and the FIRST survey catalog. Fossil galaxy groups, having no recent major mergers in their dominant galaxies and also group scale mergers, give us the opportunity to investigate the effect of galaxy merger on AGN activity. In this work, we compare the radio properties of a rich sample of fossil groups with a sample of normal galaxy groups and clusters and show that the brightest group galaxies in fossil groups are under luminous at 1.4 GHz, relative to the general population of the brightest group galaxies, indicating that the dynamically relaxed nature of fossil groups has influenced the AGN activity in their dominant galaxy.

  15. Dust-obscured Galaxies in the Local Universe

    NASA Astrophysics Data System (ADS)

    Hwang, Ho Seong; Geller, Margaret J.

    2013-06-01

    We use Wide-field Infrared Survey Explorer (WISE), AKARI, and Galaxy Evolution Explorer (GALEX) data to select local analogs of high-redshift (z ~ 2) dust obscured galaxies (DOGs). We identify 47 local DOGs with S 12 μm/S 0.22 μm >= 892 and S 12 μm > 20 mJy at 0.05 < z < 0.08 in the Sloan Digital Sky Survey data release 7. The infrared (IR) luminosities of these DOGs are in the range 3.4 × 1010 (L ⊙) <~ L IR <~ 7.0 × 1011 (L ⊙) with a median L IR of 2.1 × 1011 (L ⊙). We compare the physical properties of local DOGs with a control sample of galaxies that have lower S 12 μm/S 0.22 μm but have similar redshift, IR luminosity, and stellar mass distributions. Both WISE 12 μm and GALEX near-ultraviolet (NUV) flux densities of DOGs differ from the control sample of galaxies, but the difference is much larger in the NUV. Among the 47 DOGs, 36% ± 7% have small axis ratios in the optical (i.e., b/a < 0.6), larger than the fraction among the control sample (17% ± 3%). There is no obvious sign of interaction for many local DOGs. No local DOGs have companions with comparable optical magnitudes closer than ~50 kpc. The large- and small-scale environments of DOGs are similar to the control sample. Many physical properties of local DOGs are similar to those of high-z DOGs, even though the IR luminosities of local objects are an order of magnitude lower than for the high-z objects: the presence of two classes (active galactic nuclei- and star formation-dominated) of DOGs, abnormal faintness in the UV rather than extreme brightness in the mid-IR, and diverse optical morphology. These results suggest a common underlying physical origin of local and high-z DOGs. Both seem to represent the high-end tail of the dust obscuration distribution resulting from various physical mechanisms rather than a unique phase of galaxy evolution.

  16. Dust-obscured galaxies in the local universe

    SciTech Connect

    Hwang, Ho Seong; Geller, Margaret J. E-mail: mgeller@cfa.harvard.edu

    2013-06-01

    We use Wide-field Infrared Survey Explorer (WISE), AKARI, and Galaxy Evolution Explorer (GALEX) data to select local analogs of high-redshift (z ∼ 2) dust obscured galaxies (DOGs). We identify 47 local DOGs with S {sub 12μm}/S {sub 0.22μm} ≥ 892 and S {sub 12μm} > 20 mJy at 0.05 < z < 0.08 in the Sloan Digital Sky Survey data release 7. The infrared (IR) luminosities of these DOGs are in the range 3.4 × 10{sup 10} (L {sub ☉}) ≲ L {sub IR} ≲ 7.0 × 10{sup 11} (L {sub ☉}) with a median L {sub IR} of 2.1 × 10{sup 11} (L {sub ☉}). We compare the physical properties of local DOGs with a control sample of galaxies that have lower S {sub 12μm}/S {sub 0.22μm} but have similar redshift, IR luminosity, and stellar mass distributions. Both WISE 12 μm and GALEX near-ultraviolet (NUV) flux densities of DOGs differ from the control sample of galaxies, but the difference is much larger in the NUV. Among the 47 DOGs, 36% ± 7% have small axis ratios in the optical (i.e., b/a < 0.6), larger than the fraction among the control sample (17% ± 3%). There is no obvious sign of interaction for many local DOGs. No local DOGs have companions with comparable optical magnitudes closer than ∼50 kpc. The large- and small-scale environments of DOGs are similar to the control sample. Many physical properties of local DOGs are similar to those of high-z DOGs, even though the IR luminosities of local objects are an order of magnitude lower than for the high-z objects: the presence of two classes (active galactic nuclei- and star formation-dominated) of DOGs, abnormal faintness in the UV rather than extreme brightness in the mid-IR, and diverse optical morphology. These results suggest a common underlying physical origin of local and high-z DOGs. Both seem to represent the high-end tail of the dust obscuration distribution resulting from various physical mechanisms rather than a unique phase of galaxy evolution.

  17. Properties of Galaxies and Groups: Nature versus Nurture

    NASA Astrophysics Data System (ADS)

    Niemi, Sami-Matias

    2011-09-01

    Due to the inherently nonlinear nature of gravity cosmological N-body simulations have become an invaluable tool when the growth of structure is being studied and modelled closer to the present epoch. Large simulations with high dynamical range have made it possible to model the formation and growth of cosmic structure with unprecedented accuracy. Moreover, galaxies, the basic building blocks of the Universe, can also be modelled in cosmological context. However, despite all the simulations and successes in recent decades, there are still many unanswered questions in the field of galaxy formation and evolution. One of the longest standing issue being the significance of the formation place and thus initial conditions to a galaxy's evolution in respect to environment, often formulated simply as "nature versus nurture" like in human development and psychology. Unfortunately, our understanding of galaxy evolution in different environments is still limited, albeit, for example, the morphology-density relation has shown that the density of the galaxy's local environment can affect its properties. Consequently, the environment should play a role in galaxy evolution, however despite the efforts, the exact role of the galaxy's local environment to its evolution remains open. This thesis introduction discusses briefly the background cosmology, cosmological N-body simulations and semi-analytical models. The second part is reserved for groups of galaxies, whether they are gravitationally bound, and what this may imply for galaxy evolution. The third part of the thesis concentrates on describing results of a case study of isolated field elliptical galaxies. The final chapter discusses another case study of luminous infra-red galaxies.

  18. Resolving the stellar halos of six massive disk galaxies beyond the Local Group

    NASA Astrophysics Data System (ADS)

    Monachesi, Antonela; Bell, Eric F.; Radburn-Smith, David J.; de Jong, Roelof S.; Bailin, Jeremy; Holwerda, Benne; Streich, David

    2016-08-01

    Models of galaxy formation in a hierarchical universe predict substantial scatter in the halo-to-halo stellar properties, owing to stochasticity in galaxies' merger histories. Currently, only few detailed observations of stellar halos are available, mainly for the Milky Way and M31. We present the stellar halo color/metallicity and density profiles of red giant branch stars out to ~60 kpc along the minor axis of six massive nearby Milky Way-like galaxies beyond the Local Group from the Galaxy Halos, Outer disks, Substructure, Thick disks and Star clusters (GHOSTS) HST survey. This enlargement of the sample of galaxies with observations of stellar halo properties is needed to understand the range of possible halo properties, i.e. not only the mean properties but also the halo-to-halo scatter, what a `typical' halo looks like, and how similar the Milky Way halo is to other halos beyond the Local Group.

  19. Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?

    NASA Astrophysics Data System (ADS)

    Sánchez-Conde, Miguel A.; Cannoni, Mirco; Zandanel, Fabio; Gómez, Mario E.; Prada, Francisco

    2011-12-01

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We

  20. Dark Matter Searches with Cherenkov Telescopes: Nearby Dwarf Galaxies or Local Galaxy Clusters?

    SciTech Connect

    Sanchez-Conde, Miguel A.; Cannoni, Mirco; Zandanel, Fabio; Gomez, Mario E.; Prada, Francisco; /IAA, Granada

    2012-06-06

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We

  1. Galaxy Group Properties in Observations and Simulations

    NASA Astrophysics Data System (ADS)

    Nurmi, Pasi

    2016-10-01

    In this project, we compare different properties of galaxy groups in cosmological N-body simulations and SDSS galaxy group catalogs. In the first part of the project (Nurmi et al. 2013) we compared the basic properties of the groups like the luminosity functions, group richness and velocity dispersion distributions and studied how good is the agreement between the mock group catalog and the SDSS group catalog. Here we continue the earlier study and use updated galaxy group catalog (SDSS DR10) and new simulation data (Guo et al. 2013). We reanalyse earlier group properties and include new properties in the analysis like group environment, star formation rates and group masses. Our analysis show that there are clear differences between the simulated and observed properties of galaxy groups, especially for small groups with a few members. Also, the high luminosities are clearly overestimated in the simulations compared with the SDSS group data.

  2. ORBITAL DEPENDENCE OF GALAXY PROPERTIES IN SATELLITE SYSTEMS OF GALAXIES

    SciTech Connect

    Hwang, Ho Seong; Park, Changbom E-mail: cbp@kias.re.k

    2010-09-01

    We study the dependence of satellite galaxy properties on the distance to the host galaxy and the orbital motion (prograde and retrograde orbits) using the Sloan Digital Sky Survey (SDSS) data. From SDSS Data Release 7, we find 3515 isolated satellite systems of galaxies at z < 0.03 that contain 8904 satellite galaxies. Using this sample, we construct a catalog of 635 satellites associated with 215 host galaxies whose spin directions are determined by our inspection of the SDSS color images and/or by spectroscopic observations in the literature. We divide satellite galaxies into prograde and retrograde orbit subsamples depending on their orbital motion with respect to the spin direction of the host. We find that the number of galaxies in prograde orbit is nearly equal to that of retrograde orbit galaxies: the fraction of satellites in prograde orbit is 50% {+-} 2%. The velocity distribution of satellites with respect to their hosts is found to be almost symmetric: the median bulk rotation of satellites is -1 {+-} 8 km s{sup -1}. It is found that the radial distribution of early-type satellites in prograde orbit is strongly concentrated toward the host while that of retrograde ones shows much less concentration. We also find the orbital speed of late-type satellites in prograde orbit increases as the projected distance to the host (R) decreases while the speed decreases for those in retrograde orbit. At R less than 0.1 times the host virial radius (R < 0.1r{sub vir,host}), the orbital speed decreases in both prograde and retrograde orbit cases. Prograde satellites are on average fainter than retrograde satellites for both early and late morphological types. The u - r color becomes redder as R decreases for both prograde and retrograde orbit late-type satellites. The differences between prograde and retrograde orbit satellite galaxies may be attributed to their different origin or the different strength of physical processes that they have experienced through

  3. MORPHOLOGY AND SIZE DIFFERENCES BETWEEN LOCAL AND HIGH-REDSHIFT LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Rujopakarn, Wiphu; Rieke, George H.; Eisenstein, Daniel J.; Juneau, Stephanie

    2011-01-10

    We show that the star-forming regions in high-redshift luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and submillimeter galaxies (SMGs) have similar physical scales to those in local normal star-forming galaxies. To first order, their higher infrared (IR) luminosities result from higher luminosity surface density. We also find a good correlation between the IR luminosity and IR luminosity surface density in starburst galaxies across over five orders of magnitude of IR luminosity from local normal galaxies to z {approx} 2 SMGs. The intensely star-forming regions of local ULIRGs are significantly smaller than those in their high-redshift counterparts and hence diverge significantly from this correlation, indicating that the ULIRGs found locally are a different population from the high-redshift ULIRGs and SMGs. Based on this relationship, we suggest that luminosity surface density should serve as a more accurate indicator for the IR emitting environment, and hence the observable properties, of star-forming galaxies than their IR luminosity. We demonstrate this approach by showing that ULIRGs at z {approx} 1 and a lensed galaxy at z {approx} 2.5 exhibit aromatic features agreeing with local LIRGs that are an order of magnitude less luminous, but have similar IR luminosity surface density. A consequence of this relationship is that the aromatic emission strength in star-forming galaxies will appear to increase at z>1 for a given IR luminosity compared to their local counterparts.

  4. Representing properties locally.

    PubMed

    Solomon, K O; Barsalou, L W

    2001-09-01

    Theories of knowledge such as feature lists, semantic networks, and localist neural nets typically use a single global symbol to represent a property that occurs in multiple concepts. Thus, a global symbol represents mane across HORSE, PONY, and LION. Alternatively, perceptual theories of knowledge, as well as distributed representational systems, assume that properties take different local forms in different concepts. Thus, different local forms of mane exist for HORSE, PONY, and LION, each capturing the specific form that mane takes in its respective concept. Three experiments used the property verification task to assess whether properties are represented globally or locally (e.g., Does a PONY have mane?). If a single global form represents a property, then verifying it in any concept should increase its accessibility and speed its verification later in any other concept. Verifying mane for PONY should benefit as much from having verified mane for LION earlier as from verifying mane for HORSE. If properties are represented locally, however, verifying a property should only benefit from verifying a similar form earlier. Verifying mane for PONY should only benefit from verifying mane for HORSE, not from verifying mane for LION. Findings from three experiments strongly supported local property representation and ruled out the interpretation that object similarity was responsible (e.g., the greater overall similarity between HORSE and PONY than between LION and PONY). The findings further suggest that property representation and verification are complicated phenomena, grounded in sensory-motor simulations.

  5. The void galaxy survey: Star formation properties

    NASA Astrophysics Data System (ADS)

    Beygu, B.; Kreckel, K.; van der Hulst, J. M.; Jarrett, T. H.; Peletier, R.; van de Weygaert, R.; van Gorkom, J. H.; Aragon-Calvo, M. A.

    2016-05-01

    We study the star formation properties of 59 void galaxies as part of the Void Galaxy Survey (VGS). Current star formation rates are derived from H α and recent star formation rates from near-UV imaging. In addition, infrared 3.4, 4.6, 12 and 22 μm Wide-field Infrared Survey Explorer emission is used as star formation and mass indicator. Infrared and optical colours show that the VGS sample displays a wide range of dust and metallicity properties. We combine these measurements with stellar and H I masses to measure the specific SFRs (SFR/M*) and star formation efficiencies ({SFR/{M }_H I}). We compare the star formation properties of our sample with galaxies in the more moderate density regions of the cosmic web, `the field'. We find that specific SFRs of the VGS galaxies as a function of stellar and H I mass are similar to those of the galaxies in these field regions. Their SFR α is slightly elevated than the galaxies in the field for a given total H I mass. In the global star formation picture presented by Kennicutt-Schmidt, VGS galaxies fall into the regime of low average star formation and correspondingly low H I surface density. Their mean {SFR α /{M}_{H I} and SFR α/M* are of the order of 10- 9.9 yr- 1. We conclude that while the large-scale underdense environment must play some role in galaxy formation and growth through accretion, we find that even with respect to other galaxies in the more mildly underdense regions, the increase in star formation rate is only marginal.

  6. A Submillimeter Survey of Dust Continuum Emission in Local Dust-Obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Jong Chul; Hwang, Ho Seong; Lee, Gwang-Ho

    2015-08-01

    Dusty star-forming galaxies are responsible for the bulk of cosmic star formation at 1galaxies is far from clear because of their extreme distances. The study of their local analogs helps us to improve understanding of the drivers of the intense star formation activity at high redshift. The submillimeter data on the 'Rayleigh-Jeans' side of the infrared spectral energy distributions (SEDs) of these galaxies are crucial for deriving the physical parameters of the dust content. We therefore conduct a submillimeter survey of local dust-obscured galaxies (DOGs) with the Caltech Submillimeter Observatory and the Submillimeter Array to study their dust properties. We determine the dust masses and temperatures for 16 local DOGs from the SED fit, and compare them with other dusty galaxies to understand a possible evolutionary link among them.

  7. Photometric Properties of Galaxies in Poor Clusters

    NASA Astrophysics Data System (ADS)

    Sharma, M.; Prabhu, T.

    We study several statistical properties of galaxies in four poor clusters of galaxies using optical photometry. We select these poor clusters as luminous, extended X-ray sources identified with poor galaxy systems in the EMSS catalogue of clusters of galaxies. The clusters are at moderate redshifts (0.08galaxy populations are clearly evolved, as traced by the tightness of their color--magnitude relations and accordance of the latter with those of the Virgo Cluster. The fraction of blue galaxies is similar to those of low-redshift richness 0 clusters and higher than those of richer clusters at similar redshifts. The luminosity functions (LFs) of the individual clusters are not significantly different from each other. Using these, we construct composite LFs in B, V , and R bands (to MV=-18). The faint-end of these LFs are flat, like the V-band LF of other (e.g., MKW/AWM) poor clusters, but steeper than the field LF in the R-band. In terms of the statistical properties of their member galaxies, poor clusters appear to be lower-mass extensions of their rich counterparts.

  8. Properties of satellite galaxies in nearby groups

    NASA Astrophysics Data System (ADS)

    Vennik, Jaan

    2016-10-01

    We studied the variation of stellar mass and various star-formation characteristics of satellite galaxies in a volume limited sample of nearby groups as a function of their group-centric distance and of their relative line-of-sight velocity in the group rest frame. We found clear radial dependencies, e.g. massive, red and passive satellites being distributed predominantly near the center of composite group. We also found some evidence of velocity modulation of star-forming properties of satellite galaxies near the group virial radius. We conclude that using kinematical data, it should be feasible to separate dynamical classes of bound, in-falling and 'backsplash' satellite galaxies.

  9. Far-infrared properties of cluster galaxies

    NASA Technical Reports Server (NTRS)

    Bicay, M. D.; Giovanelli, R.

    1987-01-01

    Far-infrared properties are derived for a sample of over 200 galaxies in seven clusters: A262, Cancer, A1367, A1656 (Coma), A2147, A2151 (Hercules), and Pegasus. The IR-selected sample consists almost entirely of IR normal galaxies, with Log of L(FIR) = 9.79 solar luminosities, Log of L(FIR)/L(B) = 0,79, and Log of S(100 microns)/S(60 microns) = 0.42. None of the sample galaxies has Log of L(FIR) greater than 11.0 solar luminosities, and only one has a FIR-to-blue luminosity ratio greater than 10. No significant differences are found in the FIR properties of HI-deficient and HI-normal cluster galaxies.

  10. Local Group dwarf galaxies: nature and nurture

    NASA Astrophysics Data System (ADS)

    Sawala, Till; Scannapieco, Cecilia; White, Simon

    2012-02-01

    We investigate the formation and evolution of dwarf galaxies in a high-resolution, hydrodynamical cosmological simulation of a Milky Way sized halo and its environment. Our simulation includes gas cooling, star formation, supernova feedback, metal enrichment and ultraviolet heating. In total, 90 satellites and more than 400 isolated dwarf galaxies are formed in the simulation, allowing a systematic study of the internal and environmental processes that determine their evolution. We find that 95 per cent of satellite galaxies are gas free at z= 0, and identify three mechanisms for gas loss: supernova feedback, tidal stripping and photoevaporation due to re-ionization. Gas-rich satellite galaxies are only found with total masses above ˜5 × 109 M⊙. In contrast, for isolated dwarf galaxies, a total mass of ˜109 M⊙ constitutes a sharp transition; less massive galaxies are predominantly gas free at z= 0, more massive, isolated dwarf galaxies are often able to retain their gas. In general, we find that the total mass of a dwarf galaxy is the main factor which determines its star formation, metal enrichment and its gas content, but that stripping may explain the observed difference in gas content between field dwarf galaxies and satellites with total masses close to 109 M⊙. We also find that a morphological transformation via tidal stripping of infalling, luminous dwarf galaxies whose dark matter is less concentrated than their stars cannot explain the high total mass-to-light ratios of the faint dwarf spheroidal galaxies.

  11. TWO LOCAL VOLUME DWARF GALAXIES DISCOVERED IN 21 cm EMISSION: PISCES A AND B

    SciTech Connect

    Tollerud, Erik J.; Geha, Marla C.; Grcevich, Jana; Putman, Mary E.; Stern, Daniel E-mail: marla.geha@yale.edu E-mail: mputman@astro.columbia.edu

    2015-01-01

    We report the discovery of two dwarf galaxies, Pisces A and B, from a blind 21 cm H I search. These were the only two galaxies found via optical imaging and spectroscopy of 22 H I clouds identified in the GALFA-H I survey as dwarf galaxy candidates. They have properties consistent with being in the Local Volume (<10 Mpc), and one has resolved stellar populations such that it may be on the outer edge of the Local Group (∼1 Mpc from M31). While the distance uncertainty makes interpretation ambiguous, these may be among the faintest star-forming galaxies known. Additionally, rough estimates comparing these galaxies to ΛCDM dark matter simulations suggest consistency in number density, implying that the dark matter halos likely to host these galaxies are primarily H I-rich. The galaxies may thus be indicative of a large population of dwarfs at the limit of detectability that are comparable to the faint satellites of the Local Group. Because they are outside the influence of a large dark matter halo to alter their evolution, these galaxies can provide critical anchors to dwarf galaxy formation models.

  12. The Connection between Galaxies and Dark Matter Structures in the Local Universe

    SciTech Connect

    Reddick, Rachel M.; Wechsler, Risa H.; Tinker, Jeremy L.; Behroozi, Peter S.

    2012-07-11

    We provide new constraints on the connection between galaxies in the local Universe, identified by the Sloan Digital Sky Survey (SDSS), and dark matter halos and their constituent substructures in the {Lambda}CDM model using WMAP7 cosmological parameters. Predictions for the abundance and clustering properties of dark matter halos, and the relationship between dark matter hosts and substructures, are based on a high-resolution cosmological simulation, the Bolshoi simulation. We associate galaxies with dark matter halos and subhalos using subhalo abundance matching, and perform a comprehensive analysis which investigates the underlying assumptions of this technique including (a) which halo property is most closely associated with galaxy stellar masses and luminosities, (b) how much scatter is in this relationship, and (c) how much subhalos can be stripped before their galaxies are destroyed. The models are jointly constrained by new measurements of the projected two-point galaxy clustering and the observed conditional stellar mass function of galaxies in groups. We find that an abundance matching model that associates galaxies with the peak circular velocity of their halos is in good agreement with the data, when scatter of 0.20 {+-} 0.03 dex in stellar mass at a given peak velocity is included. This confirms the theoretical expectation that the stellar mass of galaxies is tightly correlated with the potential wells of their dark matter halos before they are impacted by larger structures. The data put tight constraints on the satellite fraction of galaxies as a function of galaxy stellar mass and on the scatter between halo and galaxy properties, and rule out several alternative abundance matching models that have been considered. This will yield important constraints for galaxy formation models, and also provides encouraging indications that the galaxy - halo connection can be modeled with sufficient fidelity for future precision studies of the dark Universe.

  13. Locally Biased Galaxy Formation and Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Narayanan, Vijay K.; Berlind, Andreas A.; Weinberg, David H.

    2000-01-01

    We examine the influence of the morphology-density relation and a wide range of simple models for biased galaxy formation on statistical measures of large-scale structure. We contrast the behavior of local biasing models, in which the efficiency of galaxy formation is determined by the density, geometry, or velocity dispersion of the local mass distribution, with that of nonlocal biasing models, in which galaxy formation is modulated coherently over scales larger than the galaxy correlation length. If morphological segregation of galaxies is governed by a local morphology-density relation, then the correlation function of E/S0 galaxies should be steeper and stronger than that of spiral galaxies on small scales, as observed, while on large scales the E/S0 and spiral galaxies should have correlation functions with the same shape but different amplitudes. Similarly, all of our local bias models produce scale-independent amplification of the correlation function and power spectrum in the linear and mildly nonlinear regimes; only a nonlocal biasing mechanism can alter the shape of the power spectrum on large scales. Moments of the biased galaxy distribution retain the hierarchical pattern of the mass moments, but biasing alters the values and scale dependence of the hierarchical amplitudes S3 and S4. Pair-weighted moments of the galaxy velocity distribution are sensitive to the details of the bias prescription even if galaxies have the same local velocity distribution as the underlying dark matter. The nonlinearity of the relation between galaxy density and mass density depends on the biasing prescription and the smoothing scale, and the scatter in this relation is a useful diagnostic of the physical parameters that determine the bias. While the assumption that galaxy formation is governed by local physics leads to some important simplifications on large scales, even local biasing is a multifaceted phenomenon whose impact cannot be described by a single parameter or

  14. The Void Galaxy Survey: Morphology and Star Formation Properties of Void Galaxies

    NASA Astrophysics Data System (ADS)

    Beygu, Burcu; Kreckel, Kathryn; van der Hulst, Thijs; Peletier, Reynier; Jarrett, Tom; van de Weygaert, Rien; van Gorkom, Jacqueline H.; Aragón-Calvo, Miguel

    2016-10-01

    We present the structural and star formation properties of 59 void galaxies as part of the Void Galaxy Survey (VGS). Our aim is to study in detail the physical properties of these void galaxies and study the effect of the void environment on galaxy properties. We use Spitzer 3.6μ and B-band imaging to study the morphology and color of the VGS galaxies. For their star formation properties, we use Hα and GALEX near-UV imaging. We compare our results to a range of galaxies of different morphologies in higher density environments. We find that the VGS galaxies are in general disk dominated and star forming galaxies. Their star formation rates are, however, often less than 1 M⊙ yr-1. There are two early-type galaxies in our sample as well. In re versus MB parameter space, VGS galaxies occupy the same space as dwarf irregulars and spirals.

  15. Photometric Properties of Poor Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Sharma, M.; Prabhu, T. P.

    2002-12-01

    We study several statistical properties of galaxies in four poor clusters of galaxies using multi-color optical photometry obtained at the Vainu Bappu Telescope, India. The clusters, selected from the EMSS Catalog, are at moderate redshifts (0.08 < z < 0.25), of equivalent Abell richness R=0, and appear to be dynamically young. The early-type galaxy populations are clearly evolved, as traced by the tightness of the color-magnitude relations and the accordance of the latter with those of the Virgo cluster. The blue galaxy fractions are similar to those of R=0 clusters and higher than those of richer clusters at similar redshifts. The composite luminosity functions (LFs) in B, V, and R bands are flat at the faint end, similar to the V-band LF derived by Yamagata & Maehara for other (MKW/AWM) poor clusters but steeper than the R-band field LF derived by Lin et al. In terms of the statistical properties of their member galaxies, poor clusters appear to be lower-mass extensions of their rich counterparts. The brightest galaxies of three of these poor clusters appear to be luminous ellipticals with no incontrovertible signatures of a halo. It is likely that they were formed from multiple mergers early in the history of the clusters.

  16. ENVIRONMENTAL DEPENDENCE OF OTHER GALAXY PROPERTIES FOR THE SAME STAR FORMATION ACTIVITIES

    SciTech Connect

    Deng Xinfa; Bei Yang; He Jizhou; Tang Xiaoxun

    2010-01-01

    Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 6 above and below the value of M*, we have investigated the environmental dependence of other galaxy properties for the same star formation activities. Only in the luminous passive class, a strong environmental dependence of the g - r color is observed, but the environmental dependence of other properties in this class is very weak. In other classes, we can conclude that the local density dependence of luminosity, g - r color, concentration index ci, and morphologies for star-forming galaxies and passive ones is much weaker than that obtained in the volume-limited Main galaxy samples. This suggests that star formation activity is a galaxy property very predictive of the local environment. In addition, we also note that passive galaxies are more luminous, redder, highly concentrated, and preferentially 'early type'.

  17. Our Milky Way structure in the context of local galaxies

    NASA Astrophysics Data System (ADS)

    Shen, Juntai

    2015-08-01

    The Milky Way is the closest galaxy to us, and has been studied extensively due to its proximity. Understanding its structure and dynamics will help us understand spiral galaxies in general. I will review the latest research progress in the structure, kinematics, and dynamics of the Milky Way in the context of local galaxies. I will cover most structural components (the bulge/bar, disk, and spiral structures) and discuss the implications of some new results on the formation history of our home galaxy.

  18. The local radio-galaxy population at 20 GHz

    NASA Astrophysics Data System (ADS)

    Sadler, Elaine M.; Ekers, Ronald D.; Mahony, Elizabeth K.; Mauch, Tom; Murphy, Tara

    2014-02-01

    We have made the first detailed study of the high-frequency radio-source population in the local Universe, using a sample of 202 radio sources from the Australia Telescope 20 GHz (AT20G) survey identified with galaxies from the 6dF Galaxy Survey (6dFGS). The AT20G-6dFGS galaxies have a median redshift of z = 0.058 and span a wide range in radio luminosity, allowing us to make the first measurement of the local radio luminosity function at 20 GHz. Our sample includes some classical Fanaroff-Riley type I (FR I) and FR II radio galaxies, but most of the AT20G-6dFGS galaxies host compact (FR 0) radio active galactic nuclei which appear to lack extended radio emission even at lower frequencies. Most of these FR 0 sources show no evidence for relativistic beaming, and the FR 0 class appears to be a mixed population which includes young compact steep-spectrum and gigahertz peaked-spectrum radio galaxies. We see a strong dichotomy in the Wide-field Infrared Survey Explorer (WISE) mid-infrared colours of the host galaxies of FR I and FR II radio sources, with the FR I systems found almost exclusively in WISE `early-type' galaxies and the FR II radio sources in WISE `late-type' galaxies. The host galaxies of the flat- and steep-spectrum radio sources have a similar distribution in both K-band luminosity and WISE colours, though galaxies with flat-spectrum sources are more likely to show weak emission lines in their optical spectra. We conclude that these flat-spectrum and steep-spectrum radio sources mainly represent different stages in radio-galaxy evolution, rather than beamed and unbeamed radio-source populations.

  19. Massive stars in the galaxies of the Local Group

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    2013-07-01

    The star-forming galaxies of the Local Group act as our laboratories for testing massive star evolutionary models. In this review, I briefly summarize what we believe we know about massive star evolution, and the connection between OB stars, Luminous Blue Variables, yellow supergiants, red supergiants, and Wolf-Rayet stars. The difficulties and recent successes in identifying these various types of massive stars in the neighboring galaxies of the Local Group will be discussed.

  20. The chemical evolution of galaxies in the local volume

    NASA Astrophysics Data System (ADS)

    Croxall, Kevin V.

    2010-12-01

    The composition of the universe has greatly changed since the first matter condensed from the primordial soup of the Big Bang. As galaxies have grown and evolved over the past Hubble time, massive luminous galaxies have built up more heavy elements than their low mass counterparts. While sundry physical mechanisms have been proposed to account for this observed trend, the physical connection between galaxy mass and metallicity has evaded the understanding of astronomers for several decades. In order to gain a greater understanding of this metallicity-luminosity relation and the physical drivers behind the chemical evolution of galaxies, we have performed a detailed study of galaxies in both isolated and non-isolated environments: namely, galaxies in the local volume (D ≤ 5 Mpc) and galaxy members belonging to the M81 group. Our results from studying the M81 group imply that recent interactions among the central galaxies in this group, rather than mechanisms intrinsic to the galaxies, are likely responsible for the anomalously high abundances in three cluster members. While tidal interactions can alter the chemical make up the galaxies involved, the well established metallicity-luminosity relation indicates a more universal chemical evolution. To further explore this idea, we analyze galaxy abundances, stellar & gas distributions, and kinematics from both new and archival observations of forty-five low mass galaxies within 5 Mpc of the Milky Way. Our results indicate that these galaxies occupy a different mass-to-light ratio parameter space than their larger counter parts. Our study of the local volume explores the effects of various galaxy attributes such as mass, star formation rate, gas mass fraction, and the mass distribution that offer more concrete connections with the evolution of the system. We show that none of the attributes measured in this study exhibit more correlation with metallicity (measured via nebular oxygen abundances) than does the luminosity

  1. Star Formation at Low Metallicity in Local Dwarf Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce; Hunter, Deidre Ann; Rubio, Monica; Brinks, Elias; Cortés, Juan R.; Cigan, Phil

    2016-01-01

    The radial profiles of star formation rates and surface mass densities for gas and stars have been compiled for 20 local dwarf irregular galaxies and converted into disk scale heights and Toomre Q values. The scale heights are relatively large compared to the galaxy sizes (~0.6 times the local radii) and generally increase with radius in a flare. The gaseous Q values are high, ~4, at most radii and even higher for the stars. Star formation proceeds even with these high Q values in a normal exponential disk as viewed in the far ultraviolet. Such normal star formation suggests that Q is not relevant to star formation in dIrrs. The star formation rate per unit area always equals approximately the gas surface density divided by the midplane free fall time with an efficiency factor of about 1% that decreases systematically with radius in approximate proportion to the gas surface density. We view this efficiency variation as a result of a changing molecular fraction in a disk where atomic gas dominates both stars and molecules. In a related study, CO observations with ALMA of star-forming regions at the low metallicities of these dwarfs, which averages 13% solar, shows, in the case of the WLM galaxy, tiny CO clouds inside much larger molecular and atomic hydrogen envelopes. The CO cloud mass fraction within the molecular region is only one percent or so. Nevertheless, the CO clouds have properties that are similar to solar neighborhood clouds: they satisfy the size-linewidth relation observed in the LMC, SMC, and other local dwarfs where CO has been observed, and the same virial mass versus luminosity relation. This uniforming of CO cloud properties seems to be the result of a confining pressure from the weight of the overlying molecular and atomic shielding layers. Star formation at low metallicity therefore appears to be a three dimensional process independent of 2D instabilities involving Q, in highly atomic gas with relatively small CO cores, activated at a rate

  2. On the Recovery of Galaxy Properties from SED Fitting Solutions

    NASA Astrophysics Data System (ADS)

    Magris C., Gladis; Mateu P., Juan; Mateu, Cecilia; Bruzual A., Gustavo; Cabrera-Ziri, Ivan; Mejía-Narváez, Alfredo

    2015-01-01

    We explore the ability of four different inverse population synthesis codes to recover the physical properties of galaxies from their spectra by SED fitting. Three codes, DynBaS, TGASPEX, and GASPEX, have been implemented by the authors and are described in detail in the paper. STARLIGHT, the fourth code, is publicly available. DynBaS selects dynamically a different spectral basis to expand the spectrum of each target galaxy, and TGASPEX uses an unconstrained age basis, whereas GASPEX and STARLIGHT use for all fits a fixed spectral basis selected a priori by the code developers. Variable and unconstrained basis reflect the peculiarities of the fitted spectrum and allow for simple and robust solutions to the problem of extracting galaxy parameters from spectral fits. We assemble a Synthetic Spectral Atlas of Galaxies (SSAG),3 comprising 100,000 galaxy spectra corresponding to an equal number of star formation histories based on the recipe of Chen et al. We select a subset of 120 galaxies from SSAG with a color distribution similar to that of local galaxies in the seventh data release (DR7) of the Sloan Digital Sky Survey (SDSS), and produce 30 random noise realizations for each of these spectra. For each spectrum, we recover the mass, mean age, metallicity, internal dust extinction, and velocity dispersion characterizing the dominant stellar population in the problem galaxy. All methods produce almost-perfect fits to the target spectrum, but the recovered physical parameters can differ significantly. Our tests provide a quantitative measure of the accuracy and precision with which these parameters are recovered by each method. From a statistical point of view, all methods yield similar precisions, whereas DynBaS produces solutions with minimal systematic biases in the distributions of residuals for all of these parameters. We caution the reader that the results obtained in our consistency tests represent lower limits to the uncertainties in parameter determination

  3. Nearby Clumpy, Gas Rich, Star-forming Galaxies: Local Analogs of High-redshift Clumpy Galaxies

    NASA Astrophysics Data System (ADS)

    Garland, C. A.; Pisano, D. J.; Mac Low, M.-M.; Kreckel, K.; Rabidoux, K.; Guzmán, R.

    2015-07-01

    Luminous compact blue galaxies (LCBGs) have enhanced star formation rates (SFRs) and compact morphologies. We combine Sloan Digital Sky Survey data with H i data of 29 LCBGs at redshift z ∼ 0 to understand their nature. We find that local LCBGs have high atomic gas fractions (∼50%) and SFRs per stellar mass consistent with some high-redshift star-forming galaxies (SFGs). Many local LCBGs also have clumpy morphologies, with clumps distributed across their disks. Although rare, these galaxies appear to be similar to the clumpy SFGs commonly observed at z ∼ 1–3. Local LCBGs separate into three groups: (1) interacting galaxies (∼20%) (2) clumpy spirals (∼40%) and (3) non-clumpy, non-spirals with regular shapes and smaller effective radii and stellar masses (∼40%). It seems that the method of building up a high gas fraction, which then triggers star formation, is not the same for all local LCBGs. This may lead to a dichotomy in galaxy characteristics. We consider possible gas delivery scenarios and suggest that clumpy spirals, preferentially located in clusters and with companions, are smoothly accreting gas from tidally disrupted companions and/or intracluster gas enriched by stripped satellites. Conversely, as non-clumpy galaxies are preferentially located in the field and tend to be isolated, we suggest clumpy, cold streams, which destroy galaxy disks and prevent clump formation, as a likely gas delivery mechanism for these systems. Other possibilities include smooth cold streams, a series of minor mergers, or major interactions.

  4. NEARBY CLUMPY, GAS RICH, STAR-FORMING GALAXIES: LOCAL ANALOGS OF HIGH-REDSHIFT CLUMPY GALAXIES

    SciTech Connect

    Garland, C. A.; Pisano, D. J.; Rabidoux, K.; Low, M.-M. Mac; Kreckel, K.; Guzmán, R. E-mail: djpisano@mail.wvu.edu E-mail: mordecai@amnh.org E-mail: guzman@astro.ufl.edu

    2015-07-10

    Luminous compact blue galaxies (LCBGs) have enhanced star formation rates (SFRs) and compact morphologies. We combine Sloan Digital Sky Survey data with H i data of 29 LCBGs at redshift z ∼ 0 to understand their nature. We find that local LCBGs have high atomic gas fractions (∼50%) and SFRs per stellar mass consistent with some high-redshift star-forming galaxies (SFGs). Many local LCBGs also have clumpy morphologies, with clumps distributed across their disks. Although rare, these galaxies appear to be similar to the clumpy SFGs commonly observed at z ∼ 1–3. Local LCBGs separate into three groups: (1) interacting galaxies (∼20%); (2) clumpy spirals (∼40%); and (3) non-clumpy, non-spirals with regular shapes and smaller effective radii and stellar masses (∼40%). It seems that the method of building up a high gas fraction, which then triggers star formation, is not the same for all local LCBGs. This may lead to a dichotomy in galaxy characteristics. We consider possible gas delivery scenarios and suggest that clumpy spirals, preferentially located in clusters and with companions, are smoothly accreting gas from tidally disrupted companions and/or intracluster gas enriched by stripped satellites. Conversely, as non-clumpy galaxies are preferentially located in the field and tend to be isolated, we suggest clumpy, cold streams, which destroy galaxy disks and prevent clump formation, as a likely gas delivery mechanism for these systems. Other possibilities include smooth cold streams, a series of minor mergers, or major interactions.

  5. Measuring the Properties of Void Galaxies in Environmental COntext (ECO) using RESOLVE

    NASA Astrophysics Data System (ADS)

    Florez, Jonathan; Berlind, Andreas A.; Moffett, Amanda J.; Gonzalez, Roberto; Eckert, Kathleen D.; Kannappan, Sheila; Resolve

    2015-01-01

    We measure the environmental dependence of multiple galaxy properties inside the Environmental COntext survey focusing primarily on void galaxies for this project. We define void galaxies to be ~5% of galaxies having the lowest local density, where density is determined using the Nth nearest neighbor method. We examine the stellar mass, color, fractional stellar mass growth rate (FSMGR), fractional gas mass determined from a photometric gas fraction relation calibrated with the RESOLVE survey, and morphology distributions of the void galaxy population and compare them to those of galaxies in other large-scale structures (such as filaments or clusters). First, we show that our void galaxies typically have lower stellar masses than galaxies in denser environments, and they display the properties expected of a lower stellar mass population: they have late-types, are bluer, have higher FSMGR, and are more gas rich. Since color, star-formation, gas content, and morphology all correlate with stellar mass, we therefore move on to control for stellar mass and investigate the extent to which void galaxies are different at fixed mass. We show that void galaxies are indeed bluer and slightly more star forming at fixed stellar mass than galaxies in other environments. We also show that the ratio of blue early types to red early types is higher inside voids than in any other environment.

  6. A Multivariate Analysis of Galaxy Cluster Properties

    NASA Astrophysics Data System (ADS)

    Ogle, P. M.; Djorgovski, S.

    1993-05-01

    We have assembled from the literature a data base on on 394 clusters of galaxies, with up to 16 parameters per cluster. They include optical and x-ray luminosities, x-ray temperatures, galaxy velocity dispersions, central galaxy and particle densities, optical and x-ray core radii and ellipticities, etc. In addition, derived quantities, such as the mass-to-light ratios and x-ray gas masses are included. Doubtful measurements have been identified, and deleted from the data base. Our goal is to explore the correlations between these parameters, and interpret them in the framework of our understanding of evolution of clusters and large-scale structure, such as the Gott-Rees scaling hierarchy. Among the simple, monovariate correlations we found, the most significant include those between the optical and x-ray luminosities, x-ray temperatures, cluster velocity dispersions, and central galaxy densities, in various mutual combinations. While some of these correlations have been discussed previously in the literature, generally smaller samples of objects have been used. We will also present the results of a multivariate statistical analysis of the data, including a principal component analysis (PCA). Such an approach has not been used previously for studies of cluster properties, even though it is much more powerful and complete than the simple monovariate techniques which are commonly employed. The observed correlations may lead to powerful constraints for theoretical models of formation and evolution of galaxy clusters. P.M.O. was supported by a Caltech graduate fellowship. S.D. acknowledges a partial support from the NASA contract NAS5-31348 and the NSF PYI award AST-9157412.

  7. Nebular metallicities in two isolated local void dwarf galaxies

    SciTech Connect

    Nicholls, David C.; Jerjen, Helmut; Dopita, Michael A.; Basurah, Hassan

    2014-01-01

    Isolated dwarf galaxies, especially those situated in voids, may provide insight into primordial conditions in the universe and the physical processes that govern star formation in undisturbed stellar systems. The metallicity of H II regions in such galaxies is key to investigating this possibility. From the SIGRID sample of isolated dwarf galaxies, we have identified two exceptionally isolated objects, the Local Void galaxy [KK98]246 (ESO 461-G036) and another somewhat larger dwarf irregular on the edge of the Local Void, MCG-01-41-006 (HIPASS J1609-04). We report our measurements of the nebular metallicities in these objects. The first object has a single low luminosity H II region, while the second is in a more vigorous star forming phase with several bright H II regions. We find that the metallicities in both galaxies are typical for galaxies of this size, and do not indicate the presence of any primordial gas, despite (for [KK98]246) the known surrounding large reservoir of neutral hydrogen.

  8. STRUCTURES OF LOCAL GALAXIES COMPARED TO HIGH-REDSHIFT STAR-FORMING GALAXIES

    SciTech Connect

    Petty, Sara M.; De Mello, DuIlia F.; Gallagher, John S.; Gardner, Jonathan P.; Lotz, Jennifer M.; Matt Mountain, C.; Smith, Linda J.

    2009-08-15

    The rest-frame far-ultraviolet morphologies of eight nearby interacting and starburst galaxies (Arp 269, M 82, Mrk 8, NGC 520, NGC 1068, NGC 3079, NGC 3310, and NGC 7673) are compared with 54 galaxies at z {approx} 1.5 and 46 galaxies at z {approx} 4 observed in the Great Observatories Origins Deep Survey (GOODS) taken with the Advanced Camera for Surveys onboard the Hubble Space Telescope. The nearby sample is artificially redshifted to z {approx} 1.5 and 4 by applying luminosity and size scaling. We compare the simulated galaxy morphologies to real z {approx} 1.5 and 4 UV-bright galaxy morphologies. We calculate the Gini coefficient (G), the second-order moment of the brightest 20% of the galaxy's flux (M {sub 20}), and the Sersic index (n). We explore the use of nonparametric methods with two-dimensional profile fitting and find the combination of M {sub 20} with n an efficient method to classify galaxies as having merger, exponential disk, or bulge-like morphologies. When classified according to G and M {sub 20} 20/30% of real/simulated galaxies at z {approx} 1.5 and 37/12% at z {approx} 4 have bulge-like morphologies. The rest have merger-like or intermediate distributions. Alternatively, when classified according to the Sersic index, 70% of the z {approx} 1.5 and z {approx} 4 real galaxies are exponential disks or bulge-like with n>0.8, and {approx} 30% of the real galaxies are classified as mergers. The artificially redshifted galaxies have n values with {approx} 35% bulge or exponential at z {approx} 1.5 and 4. Therefore, {approx} 20%-30% of Lyman-break galaxies have structures similar to local starburst mergers, and may be driven by similar processes. We assume merger-like or clumpy star-forming galaxies in the GOODS field have morphological structure with values n < 0.8 and M {sub 20}> - 1.7. We conclude that Mrk 8, NGC 3079, and NGC 7673 have structures similar to those of merger-like and clumpy star-forming galaxies observed at z {approx} 1.5 and 4.

  9. The HST Snapshot Survey of Nearby Dwarf Galaxy Candidates. III. Resolved Dwarf Galaxies In and Beyond the Local Group

    NASA Astrophysics Data System (ADS)

    Grebel, E. K.; Seitzer, P.; Dolphin, A. E.; Geisler, D.; Guhathakurta, P.; Hodge, P. W.; Karachentsev, I. D.; Karachentseva, V. E.; Sarajedini, A.; Sharina, M. E.

    1999-12-01

    We present results for several nearby, resolved dwarf galaxies imaged with WFPC2 in the framework of our HST snapshot survey of nearby dwarf galaxy candidates (Seitzer et al., paper I in this series). All data presented here were analyzed with the automated photometry package HSTPHOT (Dolphin et al., paper IV in this series). Our closest target is the recently discovered Cassiopeia dwarf spheroidal (dSph) galaxy (Karachentsev & Karachentseva 1999, A&A, 341, 355), a new Local Group member and companion of M31 (Grebel & Guhathakurta 1999, ApJ, 511, 101). Our WFPC2 snapshot data reveal a pronounced red horizontal branch in Cas dSph. IC 5152 is a dwarf irregular (dIrr) just beyond the Local Group. Our data show a significant intermediate-age population with a strongly tilted asymptotic giant branch (AGB), a substantial young population, and a wide giant branch. Other nearby galaxies to be discussed include NGC 1560, ESO 471-G006, ESO 470-G018, and KK 035. Most of these galaxies are being resolved into stars for the first time. We describe their properties in detail and derive distances for all dwarfs with a well-defined tip of the red giant branch. Membership of these galaxies in nearby groups is discussed. Support for this work was provided by NASA through grant GO-08192.97A from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. EKG acknowledges support by NASA through grant HF-01108.01-98A from the Space Telescope Science Institute. EKG and IDK are supported by the Henri Chrétien International Research Grant administered by the American Astronomical Society. PG is an Alfred P. Sloan Research Fellow.

  10. Photometric and Morphological Properties of Galaxies at the North Galactic Pole

    NASA Astrophysics Data System (ADS)

    Odewahn, S. C.; Aldering, G.

    1994-12-01

    A two color survey of 9 fields of the first epoch Palomar Sky Survey, centered on the North Galactic Pole, has been performed with the Minnesota Automated Plate Scanner. Following photometric calibration using both direct comparison with galaxy surface photometry and a stellar PSF adjustment technique, an innovative automated classification method is used to establish catalogs of stars and galaxies to approximate magnitude limits of O=20.5 and E=20.0. Hubble type-dependent photometric properties such as mean integrated color, mean surface brightness, and concentration index are extracted from the O and E images of galaxies with an isophotal magnitude brighter than O = 20.5. The resultant photometric catalog of galaxies is used to study the large scale distribution of galaxies at the NGP with a variety of number count mapping methods. We primarily investigate the relationship between local galaxy number density and trends among type-dependent photometric properties in an effort to detect and quantify the well-known galaxy morphology-density relation. A multi-dimensional analysis of these quantities is performed using neural network pattern classifiers in an effort to perfect a viable galaxy morphology classifier for the APS POSS I material. We study the distribution of our automatically classified sample as a function of local galaxy number density.

  11. Metallicity gradients in local Universe galaxies: Time evolution and effects of radial migration

    NASA Astrophysics Data System (ADS)

    Magrini, Laura; Coccato, Lodovico; Stanghellini, Letizia; Casasola, Viviana; Galli, Daniele

    2016-04-01

    Context. Our knowledge of the shape of radial metallicity gradients in disc galaxies has recently improved. Conversely, the understanding of their time evolution is more complex, since it requires analysis of stellar populations with different ages or systematic studies of galaxies at different redshifts. In the local Universe, H ii regions and planetary nebulae (PNe) are important tools to investigate radial metallicity gradients in disc galaxies. Aims: We present an in-depth study of all nearby spiral galaxies (M33, M31, NGC 300, and M81) with direct-method nebular abundances of both populations, aiming at studying the evolution of their radial metallicity gradients. For the first time, we also evaluate the radial migration of PN populations. Methods: For the selected galaxies, we analysed H ii region and PN properties to: determine whether oxygen in PNe is a reliable tracer for past interstellar medium (ISM) composition; homogenise published datasets; estimate the migration of the oldest stellar populations; and determine the overall chemical enrichment and slope evolution. Results: We confirm that oxygen in PNe is a reliable tracer for past ISM metallicity. We find that PN gradients are flatter than or equal to those of H ii regions. When radial motions are negligible, this result provides a direct measurement of the time evolution of the gradient. For galaxies with dominant radial motions, we provide upper limits on the gradient evolution. Finally, the total metal content increases with time in all target galaxies, and early morphological types have a larger increment Δ(O/H) than late-type galaxies. Conclusions: Our findings provide important constraints to discriminate among different galactic evolutionary scenarios, favouring cosmological models with enhanced feedback from supernovae. The advent of extremely large telescopes allows us to include galaxies in a wider range of morphologies and environments, thus putting firmer constraints on galaxy formation

  12. The formation of Local Group planes of galaxies

    NASA Astrophysics Data System (ADS)

    Shaya, Ed J.; Tully, R. Brent

    2013-12-01

    The confinement of most satellite galaxies in the Local Group to thin planes presents a challenge to the theory of hierarchical galaxy clustering. The Pan-Andromeda Archaeological Survey (PAndAS) collaboration has identified a particularly thin configuration with kinematic coherence among companions of M31 and there have been long-standing claims that the dwarf companions to the Milky Way lie in a plane roughly orthogonal to the disc of our galaxy. This discussion investigates the possible origins of four Local Group planes: the plane similar, but not identical to that identified by the PAndAS collaboration, an adjacent slightly tilted plane and two planes in the vicinity of the Milky Way: one with very nearby galaxies and the other with more distant ones. Plausible orbits are found by using a combination of Numerical Action methods and a backward in time integration procedure. This investigation assumes that the companion galaxies formed at an early time in accordance with the standard cosmological model. For M31, M33, IC10 and Leo I, solutions are found that are consistent with measurements of their proper motions. For galaxies in planes, there must be commonalities in their proper motions, and this constraint greatly limits the number of physically plausible solutions. Key to the formation of the planar structures has been the evacuation of the Local Void and consequent build-up of the Local Sheet, a wall of this void. Most of the M31 companion galaxies were born in early-forming filamentary or sheet-like substrata that chased M31 out of the void. M31 is a moving target because of its attraction towards the Milky Way, and the result has been alignments stretched towards our galaxy. In the case of the configuration around the Milky Way, it appears that our galaxy was in a three-way competition for companions with M31 and Centaurus A. Only those within a modest band fell our way. The Milky Way's attraction towards the Virgo Cluster resulted in alignment along the

  13. FREQUENT SPIN REORIENTATION OF GALAXIES DUE TO LOCAL INTERACTIONS

    SciTech Connect

    Cen, Renyue

    2014-04-10

    We study the evolution of angular momenta of M {sub *} = 10{sup 10}-10{sup 12} M {sub ☉} galaxies utilizing large-scale ultra-high resolution cosmological hydrodynamic simulations and find that the spin of the stellar component changes direction frequently because of interactions with nearby systems, such as major mergers, minor mergers, significant gas inflows, and torques. The rate and nature of change of spin direction cannot be accounted for by large-scale tidal torques, because the rates of the latter fall short by orders of magnitude and because the apparent random swings of the spin direction are inconsistent with the alignment by linear density field. The implications for galaxy formation as well as the intrinsic alignment of galaxies are profound. Assuming the large-scale tidal field is the sole alignment agent, a new picture emerging is that intrinsic alignment of galaxies would be a balance between slow large-scale coherent torquing and fast spin reorientation by local interactions. What is still open is whether other processes, such as feeding galaxies with gas and stars along filaments or sheets, introduce coherence for spin directions of galaxies along the respective structures.

  14. Local starburst galaxies and their descendants. Statistics from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Bergvall, Nils; Marquart, Thomas; Way, Michael J.; Blomqvist, Anna; Holst, Emma; Östlin, Göran; Zackrisson, Erik

    2016-03-01

    Aims: Despite strong interest in the starburst phenomenon in extragalactic astronomy, the concept remains ill-defined. Here we use a strict definition of starburst to examine the statistical properties of starburst galaxies in the local universe. We also seek to establish links between starburst galaxies, post-starburst (hereafter postburst) galaxies, and active galaxies. Methods: Data were selected from the Sloan Digital Sky Survey DR7. We applied a novel method of treating dust attenuation and derive star formation rates, ages, and stellar masses assuming a two-component stellar population model. Dynamical masses are calculated from the width of the Hα line. These masses agree excellently with the photometric masses. The mass (gas+stars) range is ~109-1011.5ℳ⊙. As a selection criterion for starburst galaxies, we use, the birthrate parameter, b = SFR/ ⟨ SFR ⟩, requiring that b ≥ 3. For postburst galaxies, we use, the equivalent width of Hδ in absorption with the criterion EWHδ,abs ≥ 6 Å. Results: We find that only 1% of star-forming galaxies are starburst galaxies. They contribute 3-6% to the stellar production and are therefore unimportant for the local star formation activity. The median starburst age is 70 Myr roughly independent of mass, indicating that star formation is mainly regulated by local feedback processes. The b-parameter strongly depends on burst age. Values close to b = 60 are found at ages ~10 Myr, while almost no starbursts are found at ages >1 Gyr. The median baryonic burst mass fraction of sub-L∗ galaxies is 5% and decreases slowly towards high masses. The median mass fraction of the recent burst in the postburst sample is 5-10%. A smaller fraction of the postburst galaxies, however, originates in non-bursting galaxies. The age-mass distribution of the postburst progenitors (with mass fractions >3%) is bimodal with a break at logℳ(ℳ⊙) ~ 10.6, above which the ages are doubled. The starburst and postburst luminosity

  15. A COMPARISON OF THE CLUSTERING PROPERTIES BETWEEN GALAXIES AND GROUPS OF GALAXIES

    SciTech Connect

    Deng Xinfa

    2013-03-01

    In this study, I apply cluster analysis and perform comparative studies of clustering properties between galaxies and groups of galaxies. It is found that the number of objects N{sub max} of the richest system and the maximal length D{sub max} of the largest system for groups in all samples are apparently larger than ones for galaxies, and that galaxies preferentially form isolated, paired, and small systems, while groups preferentially form grouped and clustered systems. These results show that groups are more strongly clustered than galaxies, which is consistent with statistical results of the correlation function.

  16. Catalogues of isolated galaxies, isolated pairs, and isolated triplets in the local Universe

    NASA Astrophysics Data System (ADS)

    Argudo-Fernández, M.; Verley, S.; Bergond, G.; Duarte Puertas, S.; Ramos Carmona, E.; Sabater, J.; Fernández Lorenzo, M.; Espada, D.; Sulentic, J.; Ruiz, J. E.; Leon, S.

    2015-06-01

    Context. The construction of catalogues of galaxies and the a posteriori study of galaxy properties in relation to their environment have been hampered by scarce redshift information. The new 3-dimensional (3D) surveys permit small, faint, physically bound satellites to be distinguished from a background-projected galaxy population, giving a more comprehensive 3D picture of the surroundings. Aims: We aim to provide representative samples of isolated galaxies, isolated pairs, and isolated triplets for testing galaxy evolution and secular processes in low density regions of the local Universe, as well as to characterise their local and large-scale environments. Methods: We used spectroscopic data from the tenth data release of the Sloan Digital Sky Survey (SDSS-DR10) to automatically and homogeneously compile catalogues of 3702 isolated galaxies, 1240 isolated pairs, and 315 isolated triplets in the local Universe (z ≤ 0.080). To quantify the effects of their local and large-scale environments, we computed the projected density and the tidal strength for the brightest galaxy in each sample. Results: We find evidence of isolated pairs and isolated triplets that are physically bound at projected separations up to d ≤ 450 kpc with radial velocity difference Δν ≤ 160 km s-1, where the effect of the companion typically accounts for more than 98% of the total tidal strength affecting the central galaxy. For galaxies in the catalogues, we provide their positions, redshifts, and degrees of relation with their physical and large-scale environments. The catalogues are publicly available to the scientific community. Conclusions: For isolated galaxies, isolated pairs, and isolated triplets, there is no difference in their degree of interaction with the large-scale structure (up to 5 Mpc), which may suggest that they have a common origin in their formation and evolution. We find that most of them belong to the outer parts of filaments, walls, and clusters, and generally

  17. Feedback in the local Universe: Relation between star formation and AGN activity in early type galaxies

    NASA Astrophysics Data System (ADS)

    Vaddi, Sravani; O'Dea, Christopher; Baum, Stefi; Jones, Christine; Forman, William; Whitmore, Samantha; Ahmed, Rabeea; Pierce, Katherine; Leary, Sara

    2015-08-01

    Aim: We address the relation between star formation and AGN activity in a large sample of nearby early type (E and S0) galaxies. The redshift range of the galaxies is 0.0002galaxy evolution and formation. Evidence of AGN feedback is found in massive galaxies in galaxy clusters. However, how common AGN feedback is in the local universe and in small scale systems is still not evident.Methods: To answer this question, we carried out a multiple wavelength study of a sample of 231 early type galaxies which were selected to have an apparent K-band magnitude brighter than 13.5 and whose positions correlate with Chandra ACIS-I and ACIS-S sources. The galaxies in the sample are unbiased regarding their star formation and radio source properties. Using the archival observations at radio, IR and UV from VLA, WISE and GALEX respectively, we obtained the radio power, estimate FUV star formation rate (SFR) and other galaxy properties to study AGN activity and ongoing star formation.Results: The relationship between radio power and stellar mass shows that there is an upper envelope of radio power that is a steep function of stellar luminosity. This suggests that less massive galaxies have low radio power while massive galaxies are capable of hosting powerful radio sources. The Radio-MIR relation shows that galaxies with P>=1022 WHz-1 are potential candidates for being AGN. About ~ 7% of the sample show evidence of ongoing star formation with SFR ranging from 10-3 to 1 M⊙yr-1. These are also less massive and radio faint suggesting the absence of active accretion. There is nearly equal fraction of star forming galaxies in radio faint (P<1022 WHz-1) and radio bright galaxies (P>=1022 WHz-1) . Only ~ 5% of the galaxies in our sample have P>=1022 WHz-1 and most of them do not show evidence of bright accretion disks. We see a weak correlation and a dispersion of

  18. Galaxy and Mass Assembly (GAMA): merging galaxies and their properties

    NASA Astrophysics Data System (ADS)

    De Propris, Roberto; Baldry, Ivan K.; Bland-Hawthorn, Joss; Brough, Sarah; Driver, Simon P.; Hopkins, Andrew M.; Kelvin, Lee; Loveday, Jon; Phillipps, Steve; Robotham, Aaron S. G.

    2014-11-01

    We derive the close pair fractions and volume merger rates for galaxies in the Galaxy and Mass Assembly (GAMA) survey with -23 < Mr < -17 (ΩM = 0.27, ΩΛ = 0.73, H0 = 100 km s-1 Mpc-1) at 0.01 < z < 0.22 (look-back time of <2 Gyr). The merger fraction is approximately 1.5 per cent Gyr-1 at all luminosities (assuming 50 per cent of pairs merge) and the volume merger rate is ≈3.5 × 10-4 Mpc-3 Gyr-1. We examine how the merger rate varies by luminosity and morphology. Dry mergers (between red/spheroidal galaxies) are found to be uncommon and to decrease with decreasing luminosity. Fainter mergers are wet, between blue/discy galaxies. Damp mergers (one of each type) follow the average of dry and wet mergers. In the brighter luminosity bin (-23 < Mr < -20), the merger rate evolution is flat, irrespective of colour or morphology, out to z ˜ 0.2. The makeup of the merging population does not appear to change over this redshift range. Galaxy growth by major mergers appears comparatively unimportant and dry mergers are unlikely to be significant in the buildup of the red sequence over the past 2 Gyr. We compare the colour, morphology, environmental density and degree of activity (BPT class, Baldwin, Phillips & Terlevich) of galaxies in pairs to those of more isolated objects in the same volume. Galaxies in close pairs tend to be both redder and slightly more spheroid dominated than the comparison sample. We suggest that this may be due to `harassment' in multiple previous passes prior to the current close interaction. Galaxy pairs do not appear to prefer significantly denser environments. There is no evidence of an enhancement in the AGN fraction in pairs, compared to other galaxies in the same volume.

  19. The local hole revealed by galaxy counts and redshifts

    NASA Astrophysics Data System (ADS)

    Whitbourn, J. R.; Shanks, T.

    2014-01-01

    The redshifts of ≈250 000 galaxies are used to study the local hole and its associated peculiar velocities. The sample, compiled from the 6dF Galaxy Redshift Survey and Sloan Digital Sky Survey, provides wide sky coverage to a depth of ≈300 h-1 Mpc. We have therefore examined K- and r-limited galaxy redshift distributions and number counts to map the local density field. Comparing observed galaxy n(z) distributions to homogeneous models in three large regions of the high-latitude sky, we find evidence for underdensities ranging from ≈4-40 per cent in these regions to depths of ≈150 h-1 Mpc with the deepest underdensity being over the southern Galactic cap. Using the Galaxy and Mass Assembly survey, we then establish the normalization of galaxy counts at fainter magnitudes and thus confirm that the underdensity over all three fields at K < 12.5 is ≈15 ± 3 per cent. Finally, we further use redshift catalogues to map sky-averaged peculiar velocities over the same areas using the average redshift-magnitude, overline{z}(m), technique of Soneira. After accounting for the direct effect of the large-scale structure on overline{z}(m), we can then search for peculiar velocities. Taking all three regions into consideration, the data reject at the ≈4σ level the idea that we have recovered the cosmic microwave background rest frame in the volume probed. We therefore conclude that there is some consistent evidence from both counts and Hubble diagrams for a `local hole' with an ≈150 h-1 Mpc underdensity that deeper counts and redshifts in the northern Galactic cap suggest may extend to ≈300 h-1 Mpc.

  20. Void galaxy properties depending on void filament straightness

    NASA Astrophysics Data System (ADS)

    Shim, Junsup; Lee, Jounghun; Hoyle, Fiona

    2015-08-01

    We investigate the properties of galaxies belonging to the filaments in cosmic void regions, using the void catalogue constructed by Pan et al. (2012) from the SDSS DR7. To identify galaxy filaments within a void, voids with 30 or more galaxies are selected as a sample. We identify 3172 filaments in 1055 voids by applying the filament finding algorithm utilizing minimal spanning tree (MST) which is an unique linear pattern into which connects all the galaxies in a void. We study the correlations between galaxy properties and the specific size of filament which quantifies the degree of the filament straightness. For example, the average magnitude and the magnitude of the faintest galaxy in filament decrease as the straightness of the filament increases. We also find that the correlations become stronger in rich filaments with many member galaxies than in poor ones. We discuss a physical explanation to our findings and their cosmological implications.

  1. The Radio Properties of Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Hogan, M. T.

    2014-09-01

    Energetic feedback from the Active Galactic Nucleus (AGN) of the Brightest Cluster Galaxy (BCG) is required to prevent catastrophic cooling of the intra-cluster medium (ICM) in galaxy clusters. Evidence for this is seen through the inflation of cavities in the ICM by AGN-launched, radio-emitting jets, and understanding this process is an active area of research. Radio observations play an integral role in this, as they trace the active stages of the feedback cycle. Understanding the radio properties of BCGs is therefore paramount for understanding both galaxy clusters and AGN feedback processes globally. Within this thesis, the BCGs in a large (>700) sample of X-ray selected clusters are studied. We observe these BCGs with a wide variety of facilities, building a census of their radio properties across a range of frequencies, timescales and angular resolutions. Radio spectral energy distributions (SEDs) are built for over 200 BCGs, and then decomposed into two components; a core, attributable to ongoing nuclear activity, and a non-core, attributable to historical accretion. Both components are not only more common, but also significantly more powerful in cool-core (CC) clusters than non-cool core (NCC) clusters. However, it is the presence of an active core that shows BCGs in CC clusters are constantly `on' - explaining how they regulate their environments over gigayear timescales. We observe 35 currently active BCGs at high (15-353 GHz) radio frequencies, and monitor their variability. Self-absorbed, active components are found to be common at high frequency. Little variability is seen on < year timescales, although longer term variation of ~10% annually over few-decade timescales is observed. Evidence is presented for a hitherto unseen component in BCG spectra that may be attributable to a naked Advection Dominated Accretion Flow (ADAF). The milli-arcsecond scale radio properties of 59 sources are studied, with a large range of morphologies recovered although no

  2. The Reddening law outside the local group galaxies: The case of NGC 7552 and NGC 5236

    NASA Technical Reports Server (NTRS)

    Kinney, Anne L.; Calzetti, Daniela; Bica, Eduardo; Storchi-Bergmann, Thaisa

    1994-01-01

    The dust reddening law from the UV to the near-IR for the extended regions of galaxies is here derived from the spectral distributions of the starburst spiral galaxies NGC 7552 and NGC 5236. The centers of these galaxies have similar absorption and emission line spectra, differing only if the strength of their interstellar lines and in the continuum distribution, with NGC 7552 appearing more reddened than NGC 5236. The disk of NGC 7552 is more inclined, and there is evidence that its center is observed through additional foreground dust and gas clouds, as compared to the center of NGC 5236. While the galaxies can be expected to have similar dust content, they are known to have different dust path lengths to our line of sight. Therefore, differences in the shape of the spectra can be attributed mainly to the effects of dust, allowing us to probe for the first time the properties of the reddening law outside the local group of galaxies. We derive the reddening law based on the optical depth of the emission line of H Alpha and H Beta and also based on the continuum distribtuion. We find that the optical depth from the emission line regions are about twice the optical depth of the continuum regions. Thus, dereddening a starburst galaxy by scaling the Milky Way reddening laws to optical depths obtained from the H Alpha/H Beta line ratio overcompensates for the effect of dust.

  3. The Galaxy in Context: Structural, Kinematic, and Integrated Properties

    NASA Astrophysics Data System (ADS)

    Bland-Hawthorn, Joss; Gerhard, Ortwin

    2016-09-01

    Our Galaxy, the Milky Way, is a benchmark for understanding disk galaxies. It is the only galaxy whose formation history can be studied using the full distribution of stars from faint dwarfs to supergiants. The oldest components provide us with unique insight into how galaxies form and evolve over billions of years. The Galaxy is a luminous (L⋆) barred spiral with a central box/peanut bulge, a dominant disk, and a diffuse stellar halo. Based on global properties, it falls in the sparsely populated “green valley” region of the galaxy color-magnitude diagram. Here we review the key integrated, structural and kinematic parameters of the Galaxy, and point to uncertainties as well as directions for future progress. Galactic studies will continue to play a fundamental role far into the future because there are measurements that can only be made in the near field and much of contemporary astrophysics depends on such observations.

  4. Dwarf galaxies in the coma cluster: Star formation properties and evolution

    NASA Astrophysics Data System (ADS)

    Hammer, Derek M.

    The infall regions of galaxy clusters are unique laboratories for studying the impact of environment on galaxy evolution. This intermediate region links the low-density field environment and the dense core of the cluster, and is thought to host recently accreted galaxies whose star formation is being quenched by external processes associated with the cluster. In this dissertation, we measure the star formation properties of galaxies at the infall region of the nearby rich cluster of galaxies, Coma. We rely primarily on Ultraviolet (UV) data owing to its sensitivity to recent star formation and we place more emphasis on the properties of dwarf galaxies. Dwarf galaxies are good tracers of external processes in clusters but their evolution is poorly constrained as they are intrinsically faint and hence more challenging to detect. We make use of deep GALEX far-UV and near-UV observations at the infall region of the Coma cluster. This area of the cluster has supporting photometric coverage at optical and IR wavelengths in addition to optical spectroscopic data that includes deep redshift coverage of dwarf galaxies in Coma. Our GALEX observations were the deepest exposures taken for a local galaxy cluster. The depth of these images required alternative data analysis techniques to overcome systematic effects that limit the default GALEX pipeline analysis. Specifically, we used a deblending method that improved detection efficiency by a factor of ˜2 and allowed reliable photometry a few magnitudes deeper than the pipeline catalog. We performed deep measurements of the total UV galaxy counts in our field that were used to measure the source confusion limit for crowded GALEX fields. The star formation properties of Coma members were studied for galaxies that span from starbursts to passive galaxies. Star-forming galaxies in Coma tend to have lower specific star formation rates, on average, as compared to field galaxies. We show that the majority of these galaxies are likely

  5. LOCALIZED STARBURSTS IN DWARF GALAXIES PRODUCED BY THE IMPACT OF LOW-METALLICITY COSMIC GAS CLOUDS

    SciTech Connect

    Sánchez Almeida, J.; Muñoz-Tuñón, C.; Filho, M. E.; Elmegreen, B. G.; Elmegreen, D. M.; Pérez-Montero, E.; Vílchez, J. M.; Amorín, R.; Ascasibar, Y.; Papaderos, P.

    2015-09-10

    Models of galaxy formation predict that gas accretion from the cosmic web is a primary driver of star formation over cosmic history. Except in very dense environments where galaxy mergers are also important, model galaxies feed from cold streams of gas from the web that penetrate their dark matter halos. Although these predictions are unambiguous, the observational support has been indirect so far. Here, we report spectroscopic evidence for this process in extremely metal-poor galaxies (XMPs) of the local universe, taking the form of localized starbursts associated with gas having low metallicity. Detailed abundance analyses based on Gran Telescopio Canarias optical spectra of 10 XMPs show that the galaxy hosts have metallicities around 60% solar, on average, while the large star-forming regions that dominate their integrated light have low metallicities of some 6% solar. Because gas mixes azimuthally in a rotation timescale (a few hundred Myr), the observed metallicity inhomogeneities are only possible if the metal-poor gas fell onto the disk recently. We analyze several possibilities for the origin of the metal-poor gas, favoring the metal-poor gas infall predicted by numerical models. If this interpretation is correct, XMPs trace the cosmic web gas in their surroundings, making them probes to examine its properties.

  6. Localized Starbursts in Dwarf Galaxies Produced by the Impact of Low-metallicity Cosmic Gas Clouds

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, J.; Elmegreen, B. G.; Muñoz-Tuñón, C.; Elmegreen, D. M.; Pérez-Montero, E.; Amorín, R.; Filho, M. E.; Ascasibar, Y.; Papaderos, P.; Vílchez, J. M.

    2015-09-01

    Models of galaxy formation predict that gas accretion from the cosmic web is a primary driver of star formation over cosmic history. Except in very dense environments where galaxy mergers are also important, model galaxies feed from cold streams of gas from the web that penetrate their dark matter halos. Although these predictions are unambiguous, the observational support has been indirect so far. Here, we report spectroscopic evidence for this process in extremely metal-poor galaxies (XMPs) of the local universe, taking the form of localized starbursts associated with gas having low metallicity. Detailed abundance analyses based on Gran Telescopio Canarias optical spectra of 10 XMPs show that the galaxy hosts have metallicities around 60% solar, on average, while the large star-forming regions that dominate their integrated light have low metallicities of some 6% solar. Because gas mixes azimuthally in a rotation timescale (a few hundred Myr), the observed metallicity inhomogeneities are only possible if the metal-poor gas fell onto the disk recently. We analyze several possibilities for the origin of the metal-poor gas, favoring the metal-poor gas infall predicted by numerical models. If this interpretation is correct, XMPs trace the cosmic web gas in their surroundings, making them probes to examine its properties.

  7. Ultracompact Blue Dwarfs: Galaxy Formation in the Local Universe?

    NASA Astrophysics Data System (ADS)

    Corbin, Michael

    2004-07-01

    Recent observations suggest that very low-mass galaxies in the local universe are still in the process of formation. To investigate this issue we propose to obtain deep ACS HRC images in the U, V and I bands of a sample of 11 "ultracompact" blue dwarf galaxies {UCBDs} identified in the Sloan Digital Sky Survey. These objects are nearby {z < 0.009}, actively star-forming, and have extremely small angular and physical sizes {d < 6" and D < 1 kpc}. They also tend to reside in voids. Our WFPC2 images of the prototype object of this class, POX 186, reveal this tiny object to have a highly disturbed morphlogy indicative of a recent {within 10^8 yr} collision between two small { 100 pc} clumps of stars that could represent the long-sought building blocks predicted by the Press-Schechter model of hierarchical galaxy formation. This collision has also triggered the formation of a "super" star cluster {SSC} at the object's core that may be the progenitor of a globular cluster. POX 186 thus appears to be a very small dwarf galaxy in the process of formation. This exciting discovery strongly motivates HST imaging of a full sample of UCBDs in order to determine if they have morphologies similar to POX 186. HST images are essential for resolving the structure of these objects, including establishing the presence of SSCs. HST also offers the only way to determine their morphologies in the near UV. The spectra of the objects available from the SDSS will also allow us to measure their star formation rates, dust content and metallicities. In addition to potentially providing the first direct evidence of Press-Schechter building blocks, these data could yield insight into the relationship between galaxy and globular cluster formation, and will serve as a test of the recent "downsizing" model of galaxy formation in which the least massive objects are the last to form.

  8. Extended [C II] Emission in Local Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Díaz-Santos, T.; Armus, L.; Charmandaris, V.; Stacey, G.; Murphy, E. J.; Haan, S.; Stierwalt, S.; Malhotra, S.; Appleton, P.; Inami, H.; Magdis, G. E.; Elbaz, D.; Evans, A. S.; Mazzarella, J. M.; Surace, J. A.; van der Werf, P. P.; Xu, C. K.; Lu, N.; Meijerink, R.; Howell, J. H.; Petric, A. O.; Veilleux, S.; Sanders, D. B.

    2014-06-01

    We present Herschel/PACS observations of extended [C II] 157.7 μm line emission detected on ~1-10 kpc scales in 60 local luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey. We find that most of the extra-nuclear emission show [C II]/FIR ratios >=4 × 10-3, larger than the mean ratio seen in the nuclei, and similar to those found in the extended disks of normal star-forming galaxies and the diffuse interstellar medium of our Galaxy. The [C II] "deficits" found in the most luminous local LIRGs are therefore restricted to their nuclei. There is a trend for LIRGs with warmer nuclei to show larger differences between their nuclear and extra-nuclear [C II]/FIR ratios. We find an anti-correlation between [C II]/FIR and the luminosity surface density, ΣIR, for the extended emission in the spatially resolved galaxies. However, there is an offset between this trend and that found for the LIRG nuclei. We use this offset to derive a beam filling-factor for the star-forming regions within the LIRG disks of ~6% relative to their nuclei. We confront the observed trend to photo-dissociation region models and find that the slope of the correlation is much shallower than the model predictions. Finally, we compare the correlation found between [C II]/FIR and ΣIR with measurements of high-redshift starbursting IR-luminous galaxies.

  9. A z = 1.82 ANALOG OF LOCAL ULTRA-MASSIVE ELLIPTICAL GALAXIES

    SciTech Connect

    Onodera, M.; Daddi, E.; Gobat, R.; Arimoto, N.; Yamada, Y.; Renzini, A.; Mancini, C.; McCracken, H. J.; Capak, P.; Carollo, M.; Lilly, S.; Cimatti, A.; Giavalisco, M.; Ilbert, O.; Kong, X.; Motohara, K.; Ohta, K.; Sanders, D. B.; Scoville, N.

    2010-05-20

    We present observations of a very massive galaxy at z = 1.82 that show that its morphology, size, velocity dispersion, and stellar population properties are fully consistent with those expected for passively evolving progenitors of today's giant ellipticals. These findings are based on a deep optical rest-frame spectrum obtained with the Multi-Object InfraRed Camera and Spectrograph on the Subaru Telescope of a high-z passive galaxy candidate (pBzK) from the COSMOS field, for which we accurately measure its redshift of z = 1.8230 and obtain an upper limit on its velocity dispersion {sigma}{sub *} < 326 km s{sup -1}. By detailed stellar population modeling of both the galaxy broadband spectral energy distribution and the rest-frame optical spectrum, we derive a star formation-weighted age and formation redshift of t {sub sf} {approx_equal} 1-2 Gyr and z {sub form} {approx_equal} 2.5-4, and a stellar mass of M {sub *} {approx_equal} (3-4) x 10{sup 11} M {sub sun}. This is in agreement with a virial mass limit of M {sub vir} < 7 x 10{sup 11} M {sub sun}, derived from the measured {sigma}{sub *} value and stellar half-light radius, as well as with the dynamical mass limit based on the Jeans equations. In contrast to previously reported super-dense passive galaxies at z {approx} 2, the present galaxy at z = 1.82 appears to have both size and velocity dispersion similar to early-type galaxies in the local universe with similar stellar mass. This suggests that z {approx} 2 massive and passive galaxies may exhibit a wide range of properties, then possibly following quite different evolutionary histories from z {approx} 2 to z = 0.

  10. CORRELATIONS AMONG GALAXY PROPERTIES FROM THE SLOAN DIGITAL SKY SURVEY

    SciTech Connect

    Li Zhongmu; Mao Caiyan

    2013-07-01

    Galaxies are complex systems with many properties. Correlations among galaxy properties can supply important clues for studying the formation and evolution of galaxies. Using principal component analysis and least-squares fitting, this paper investigates the correlations among galactic parameters involving more properties (color, morphology, stellar population, and absolute magnitude) than previous studies. We use a volume-limited sample (whole sample) of 75,423 galaxies that was selected from the Sloan Digital Sky Survey Data Release 2 and divided into two subsamples (blue and red samples) using a critical color of (g - r) = 0.70 mag. In addition to recovering some previous results, we also obtain some new results. First, all separators for dividing galaxies into two groups can be related via good parameter-first principal component (PC1) correlations. A critical PC1 that indicates whether or not stellar age (or the evolution of a stellar population over time) is important can be used to separate galaxies. This suggests that a statistical parameter, PC1, is helpful in understanding the physical separators of galaxies. In addition, stellar age is shown to be unimportant for red galaxies, while both stellar age and mass are dominating parameters of blue galaxies. This suggests that the various numbers of dominating parameters of galaxies may result from the use of different samples. Finally, some parameters are shown to be correlated, and quantitative fits for a few correlations are obtained, e.g., log(t) = 8.57 + 1.65 (g - r) for the age (log t) and color (g - r) of blue galaxies and log (M{sub *}) = 4.31 - 0.30 M{sub r} for the stellar mass (log M{sub *}) and absolute magnitude (M{sub r}) of red galaxies. The median relationships between various parameter pairs are also presented for comparison.

  11. Properties of galaxies around the most massive SMBHs

    NASA Astrophysics Data System (ADS)

    Shirasaki, Yuji; Komiya, Yutaka; Ohishi, Masatoshi; Mizumoto, Yoshihiko

    2015-08-01

    We present result of the clustering analysis performed between AGNs and galaxies. AGN samples with redshift 0.1 - 1.0 were extracted from AGN properties catalogs which contain virial mass estimates of SMBHs. Galaxy samples were extracted from SDSS DR8 catalog and UKIDSS DR9 LAS catalog. The catalogs of SDSS and UKIDSS were merged and used to estimate the IR-opt color and IR magnitude in the rest frame by SED fitting. As we had no redshift information on the galaxy samples, stacking method was applied. We investigated the BH mass dependence of cross correlation length, red galaxy fraction at their environment, and luminosity function of galaxies. We found that the cross correlation length increase above M_BH >= 10^{8.2} Msol, and red galaxies dominate the environment of AGNs with M_BH >= 10^{9} Msol. This result indicates that the most massive SMBHs are mainly fueled by accretion of hot halo gas.

  12. Properties of galaxies around the most massive SMBHs

    NASA Astrophysics Data System (ADS)

    Shirasaki, Yuji; Komiya, Yutaka; Ohishi, Masatoshi; Mizumoto, Yoshihiko

    We present result of the clustering analysis performed between AGNs and galaxies. AGN samples with redshift 0.1-1.0 were extracted from AGN properties catalogs which contain virial mass estimates of SMBHs. Galaxy samples were extracted from SDSS DR8 catalog and UKIDSS DR9 LAS catalog. The catalogs of SDSS and UKIDSS were merged and used to estimate the IR-opt color and IR magnitude in the rest frame by SED fitting. As we had no redshift information on the galaxy samples, stacking method was applied. We investigated the BH mass dependence of cross correlation length, red galaxy fraction at their environment, and luminosity function of galaxies. We found that the cross correlation length increase above M BH >= 108.2 M ⊙, and red galaxies dominate the environment of AGNs with M BH >= 109 M ⊙. This result indicates that the most massive SMBHs are mainly fueled by accretion of hot halo gas.

  13. Optical and X-ray Properties of Groups of Galaxies

    NASA Astrophysics Data System (ADS)

    dell'Antonio, I. P.; Geller, M. J.; Fabricant, D.

    1992-12-01

    We study the optical and x-ray properties of 30 groups of galaxies observed with EINSTEIN. We have obtained redshifts for the galaxies in the group fields down to a limiting magnitude M_B<= 15.7. Typically this corresponds to ~ 18 redshifts per group. Our sample contains 14 MKW-AWM clusters, three of which are actually superpositions of two groups. We compare the velocity dispersions and virial masses we derive from the optical data with the x-ray luminosity and structure. We find remarkable correlations between the x-ray structure and optical galaxy positions. The x-ray emission associated with the galaxies is extended even in more distant groups. This emission is probably due to hot gas in the individual galaxy potentials, which implies that the poor clusters of galaxies are dynamically young. This is consistent with results from N-body simulations of group formation.

  14. The IR properties of ringed galaxies and the IRAS database

    NASA Technical Reports Server (NTRS)

    Buta, Ronald J.; Crocker, Deborah A.

    1993-01-01

    Our study of the Infrared Astronomy Satellite (IRAS) properties of ringed galaxies has been largely successful. We have identified what we think is the probable cause of the differences in the IRAS properties among non-interacting barred galaxies as the pattern speed of the bar. The key to identifying this parameter has been our focusing the study on outer-ringed galaxies where we know precisely what is present in the central regions (from available BVI CCD images in our library of images). The theory is that outer rings, through their morphology and other characteristics, can be identified with the outer Lindblad resonance, one of the major resonances in galaxy structure. Using a library of n-body simulations for comparison, we can reliably infer both low and high pattern speed galaxies from the appearance of outer rings and the existence of other ring features. It is clear that in some barred galaxies, the bar pattern speed is high enough to avoid an inner Lindblad resonance, hence such objects do not contain nuclear or circumnuclear star formation. The IRAS observations are most sensitive to nuclear star formation in early-type barred galaxies, and will thus select those barred galaxies where the pattern speed is low enough to allow an inner Lindblad resonance to exist. High pattern speed barred galaxies therefore weaken the correlation between bars and infrared excess. This finding helps to reconcile the inconsistent results found between different studies on the correlation between bars and far-IR emission.

  15. A WISE VIEW OF STAR FORMATION IN LOCAL GALAXY CLUSTERS

    SciTech Connect

    Chung, Sun Mi; Gonzalez, Anthony H.; Eisenhardt, Peter R.; Stern, Daniel; Stanford, Spencer A.; Brodwin, Mark; Jarrett, Thomas

    2011-12-10

    We present results from a systematic study of star formation in local galaxy clusters using 22 {mu}m data from the Wide-field Infrared Survey Explorer (WISE). The 69 systems in our sample are drawn from the Cluster Infall Regions Survey, and all have robust mass determinations. The all-sky WISE data enable us to quantify the amount of star formation, as traced by 22 {mu}m, as a function of radius well beyond R{sub 200}, and investigate the dependence of total star formation rate upon cluster mass. We find that the fraction of star-forming galaxies increases with cluster radius but remains below the field value even at 3R{sub 200}. We also find that there is no strong correlation between the mass-normalized total specific star formation rate and cluster mass, indicating that the mass of the host cluster does not strongly influence the total star formation rate of cluster members.

  16. Dwarfs and Giants in the local flows of galaxies.

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Emelyanov, N. V.; Karachentsev, I. D.

    We use recent Hubble Space Telescope data on nearby dwarf and giant galaxies to study the dynamical structure and evolutionary trends of the local expansion flows of galaxies. It is found that antigravity of dark energy dominates the force field of the flows and makes them expand with acceleration. It also cools the flows and introduces to them the nearly linear velocity-distance relation with the time-rate close to the global Hubble's factor. There are grounds to expect that this is the universal physical regularity that is common not only for the nearby flows we studied here, but also for all the expansion flows of various spatial scales from the 1 Mpc scale and up to the scale of the global cosmological expansion.

  17. Properties of an H I-selected galaxy sample

    NASA Technical Reports Server (NTRS)

    Szomoru, Arpad; Guhathakurta, Puragra; Van Gorkom, Jacqueline H.; Knapen, Johan H.; Weinberg, David H.; Fruchter, Andrew S.

    1994-01-01

    We analyze the properties of a sample of galaxies identified in a 21cm, H I-line survey of selected areas in the Perseus-Pisces supercluster and its foreground void. Twelve fields were observed in the supercluster, five of them (target fields) centered on optically bright galaxies, and the other seven (blank fields) selected to contain no bright galaxies within 45 min. of their centers. We detected nine previously uncatalogued, gas-rich galaxies, six of them in the target fields. We also detected H I from seven previously catalogued galaxies in these fields. Observations in the void covered the same volume as the 12 supercluster fields at the same H I-mass sensitivity, but no objects were detected. Combining out H I data with optical broadband and H alpha imaging, we conclude that the properties of H I-selected galaxies do not differ substantially from those of late-type galaxies found in optical surveys. In particular, the galaxies in our sample do not appear to be unusually faint for their H I mass, or for their circular velocity. We find tentative evidence for a connection between optical surface brightness and degree of isolation, in the sense that low surface brightness galaxies tend to be more isolated. The previously catalogued, optically bright galaxies in our survey volume dominate the total H I mass density and cross section; the uncatalogued galaxies contribute only approximately 19 percent of the mass and approximately 12 percent of the cross section. Thus, existing estimates of the density and cross section of neutral hydrogen, most of which are based on optically selected galaxy samples, are probably accurate. Such estimates can be used to compare the nearby universe to the high-redshift universe probed by quasar absorption lines.

  18. Rest-frame ultraviolet morphologies: connecting local galaxies with the epoch of disk formation

    NASA Astrophysics Data System (ADS)

    Fernandes Demello, Duilia; Soto, Emmaris

    2015-08-01

    At all redshifts rest-frame ultraviolet morphologies tend to be patchy and clumpy or extremely compact in nature. These morphological signatures could result from either merger interactions between two or multiple systems that trigger star formation, cloud collapse via gravitational instabilities in a gaseous disk that is fed by cold gas spiraling inwards along filamentary structures, or another mechanism still to be determined. Theoretical simulations of clumpy galaxy evolution suggest they could have evolved secularly through cold gas accretion onto rotating disks. Clumps in disks could have migrated to the center of the potential well of a galaxy and combined to form a bulge, or, if gravitationally unstable, could have dissipated forming the disk component. We are exploring potential correlations amongst different morphological properties at intermediate-z which is pivotal in bridging observations at high-z to the local extragalactic universe. We will show how flocculent galaxies, starburst galaxies and compact groups of galaxies may resemble clumpy disks at intermediate redshifts in the rest-frame UV.

  19. Towards a phylogenetic analysis of galaxy evolution: a case study with the dwarf galaxies of the Local Group

    NASA Astrophysics Data System (ADS)

    Fraix-Burnet, D.; Choler, P.; Douzery, E. J. P.

    2006-09-01

    Context: .The Hubble tuning-fork diagram has always been the preferred scheme for classifying galaxies. It is based only on morphology. In contrast, biologists have long taken the genealogical relatedness of living entities into account for classification purposes. Aims: .Assuming branching evolution of galaxies as a "descent with modification", we show here that the concepts and tools of phylogenetic systematics that are widely used in biology can be heuristically transposed to the case of galaxies. Methods: .This approach, which we call "astrocladistics", is applied to dwarf galaxies of the Local Group and provides the first evolutionary tree for real galaxies. Results: .The trees that we present here are solid enough to support the existence of a hierarchical organisation in the diversity of dwarf galaxies of the Local Group. They also show that these galaxies all stem from a common ancestral kind of object. We find that some kinds of dIrrs are progenitors of both dSphs and other kinds of dIrrs. We also identify three evolutionary groups, each one with its own characteristics and own evolution. Conclusions: .The present work opens a new way to analysing galaxy evolution and a path towards a new systematics of galaxies. Work on other galaxies in the Universe is in progress.

  20. The black hole mass function derived from local spiral galaxies

    SciTech Connect

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Daniel; Kennefick, Julia; Seigar, Marc S.; Lacy, Claud H. S.; Hartley, Matthew T.

    2014-07-10

    We present our determination of the nuclear supermassive black hole (SMBH) mass function for spiral galaxies in the local universe, established from a volume-limited sample consisting of a statistically complete collection of the brightest spiral galaxies in the southern (δ < 0°) hemisphere. Our SMBH mass function agrees well at the high-mass end with previous values given in the literature. At the low-mass end, inconsistencies exist in previous works that still need to be resolved, but our work is more in line with expectations based on modeling of black hole evolution. This low-mass end of the spectrum is critical to our understanding of the mass function and evolution of black holes since the epoch of maximum quasar activity. The sample is defined by a limiting luminosity (redshift-independent) distance, D{sub L} = 25.4 Mpc (z = 0.00572) and a limiting absolute B-band magnitude, M{sub B}=−19.12. These limits define a sample of 140 spiral galaxies, with 128 measurable pitch angles to establish the pitch angle distribution for this sample. This pitch-angle distribution function may be useful in the study of the morphology of late-type galaxies. We then use an established relationship between the logarithmic spiral arm pitch angle and the mass of the central SMBH in a host galaxy in order to estimate the mass of the 128 respective SMBHs in this volume-limited sample. This result effectively gives us the distribution of mass for SMBHs residing in spiral galaxies over a lookback time, t{sub L} ≤ 82.1 h{sub 67.77}{sup −1} Myr and contained within a comoving volume, V{sub C} = 3.37 × 10{sup 4} h{sub 67.77}{sup −3} Mpc{sup 3}. We estimate that the density of SMBHs residing in spiral galaxies in the local universe is ρ=5.54{sub −2.73}{sup +6.55} × 10{sup 4} h{sub 67.77}{sup 3} M{sub ☉} Mpc{sup –3}. Thus, our derived cosmological SMBH mass density for spiral galaxies is Ω{sub BH}=4.35{sub −2.15}{sup +5.14} × 10{sup –7} h{sub 67.77}. Assuming that

  1. Ultra-compact high velocity clouds in the ALFALFA HI survey: Candidate Local Group galaxies?

    NASA Astrophysics Data System (ADS)

    Adams, Elizabeth Ann Kovenz

    The increased sensitivity and spatial resolution of the ALFALFA HI survey has resulted in the detection of ultra-compact high velocity clouds (UCHVCs). These objects are good candidates to represent low mass gas-rich galaxies in the Local Group and Local Volume with stellar populations that are too faint to be detected in extant optical surveys. This idea is referred to as the "minihalo hypothesis". We identify the UCHVCs within the ALFALFA dataset via the use of a 3D matched filtering signal identification algorithm. UCHVCs are selected based on a compact size (< 30'), separation from Galactic HI (|upsilon LSR| > 120 km s-1) and isolation. Within the 40% complete ALFALFA survey (alpha.40), 59 UCHVCs are identified; 19 are in a most-isolated subset and are the best galaxy candidates. Due to the presence of large HVC complexes in the fall sky, most notably the Magellanic Stream, the association of UCHVCs with existing structure cannot be ruled out. In the spring sky, the spatial and kinematic distribution of the UCHVCs is consistent with simulations of dark matter halos within the Local Group. In addition, the HI properties of the UCHVCs (if placed at 1 Mpc) are consistent with both theoretical and observational predictions for low mass gas-rich galaxies. Importantly, the HI properties of the UCHVCs are consistent with those of two recently discovered low mass gas-rich galaxies in the Local Group and Local Volume, Leo T and Leo P. Detailed follow-up observations are key for addressing the minihalo hypothesis. High resolution HI observations can constrain the environment of a UCHVC and offer evidence for a hosting dark matter halo through evidence of rotation support and comparison to theoretical models. Observations of one UCHVC at high resolution (15'') reveal the presence of a clumpy HI distribution, similar to both low mass galaxies and circumgalactic compact HVCs. An extended envelope containing ˜50% of the HI flux is resolved out by the array configuration

  2. A UNIVERSAL, LOCAL STAR FORMATION LAW IN GALACTIC CLOUDS, NEARBY GALAXIES, HIGH-REDSHIFT DISKS, AND STARBURSTS

    SciTech Connect

    Krumholz, Mark R.; Dekel, Avishai; McKee, Christopher F. E-mail: dekel@phys.huji.ac.il

    2012-01-20

    Star formation laws are rules that relate the rate of star formation in a particular region, either an entire galaxy or some portion of it, to the properties of the gas, or other galactic properties, in that region. While observations of Local Group galaxies show a very simple, local star formation law in which the star formation rate per unit area in each patch of a galaxy scales linearly with the molecular gas surface density in that patch, recent observations of both Milky Way molecular clouds and high-redshift galaxies apparently show a more complicated relationship in which regions of equal molecular gas surface density can form stars at quite different rates. These data have been interpreted as implying either that different star formation laws may apply in different circumstances, that the star formation law is sensitive to large-scale galaxy properties rather than local properties, or that there are high-density thresholds for star formation. Here we collate observations of the relationship between gas and star formation rate from resolved observations of Milky Way molecular clouds, from kpc-scale observations of Local Group galaxies, and from unresolved observations of both disk and starburst galaxies in the local universe and at high redshift. We show that all of these data are in fact consistent with a simple, local, volumetric star formation law. The apparent variations stem from the fact that the observed objects have a wide variety of three-dimensional size scales and degrees of internal clumping, so even at fixed gas column density the regions being observed can have wildly varying volume densities. We provide a simple theoretical framework to remove this projection effect, and we use it to show that all the data, from small solar neighborhood clouds with masses {approx}10{sup 3} M{sub Sun} to submillimeter galaxies with masses {approx}10{sup 11} M{sub Sun }, fall on a single star formation law in which the star formation rate is simply {approx}1% of

  3. Indirect Evidence for Escaping Lyman Continuum Photons in Local Lyman Break Galaxy Analogs

    NASA Astrophysics Data System (ADS)

    Alexandroff, Rachael; Heckman, Timothy M.; Borthakur, Sanchayeeta; Overzier, Roderik

    2015-01-01

    A population of early star-forming galaxies is the leading candidate for the re-ionization of the universe. It is still unclear, however, what conditions and physical processes would enable a significant fraction of the ionizing photons to escape from these gas-rich galaxies. In addition, studies of high redshift galaxies have yet to uncover a large sample of galaxies with the required high escape fraction of ionizing photons.We have uncovered a sample of local analogs to high-redshift, star-forming Lyman Break Galaxies (LBGs) called Lyman Break Analogs (LBAs) by matching the Sloan Digital Sky Survey (SDSS) and Galaxy Evolution Explorer (GALEX) catalogs. These galaxies are remarkably similar to LBGs in their properties-- morphology, size, UV luminosity, SFR, mass, velocity dispersion, metallicity and dust content. We obtained HST COS far-UV spectroscopy plus ancillary multi-waveband data of a sample of 22 LBAs to look for indirect evidence of escaping ionizing radiation (leakiness).We measure three parameters: (1) the residual intensity in the cores of saturated interstellar low-ionization absorption-lines, which indicates incomplete covering by that gas in the galaxy. (2) The relative amount of blue-shifted Lyman alpha line emission, which can indicate the existence of holes in the neutral hydrogen on the front-side of the galaxy outflow, and (3) the relative weakness of the [SII] optical emission lines that trace matter-bounded HII regions. We find all three diagnostics agree well with one another. Finally, we find the strongest correlation between these leakiness indicators and both the compactness of the galactic star-forming region (size and star formation rate/area) and the speed of the galactic outflow. This suggests that extreme feedback- a high intensity of ionizing radiation and strong pressure from both radiation and a hot galactic wind- combines to create significant holes in the neutral gas. These results not only shed new light on the physical

  4. Formation, evolution and properties of isolated field elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Niemi, Sami-Matias; Heinämäki, Pekka; Nurmi, Pasi; Saar, Enn

    2010-06-01

    We study the properties, evolution and formation mechanisms of isolated field elliptical (IfE) galaxies. We create a `mock' catalogue of IfE galaxies from the Millennium Simulation Galaxy Catalogue, and trace their merging histories. The formation, identity and assembly redshifts of simulated isolated and non-isolated elliptical galaxies are studied and compared. Observational and numerical data are used to compare age, mass and the colour-magnitude relation. Our results, based on simulation data, show that almost 7 per cent of all elliptical galaxies brighter than -19mag in B band can be classified as IfE galaxies. Results also show that isolated elliptical galaxies have a rather flat luminosity function; a number density of ~3 × 10-6h3Mpc-3mag-1, throughout their B-band magnitudes. IfE galaxies show bluer colours than non-isolated elliptical galaxies and they appear younger, in a statistical sense, according to their mass-weighted age. IfE galaxies also form and assemble at lower redshifts compared to non-isolated elliptical galaxies. About 46 per cent of IfE galaxies have undergone at least one major merging event in their formation history, while the same fraction is only ~33 per cent for non-isolated ellipticals. Almost all (~98 per cent) isolated elliptical galaxies show merging activity during their evolution, pointing towards the importance of mergers in the formation of IfE galaxies. The mean time of the last major merging is at z ~ 0.6 or 6Gyr ago for isolated ellipticals, while non-isolated ellipticals experience their last major merging significantly earlier at z ~ 1.1 or 8Gyr ago. After inspecting merger trees of simulated IfE galaxies, we conclude that three different, yet typical, formation mechanisms can be identified: solitude, coupling and cannibalism. Our results also predict a previously unobserved population of blue, dim and light galaxies that fulfil observational criteria to be classified as IfE galaxies. This separate population comprises

  5. The Star Formation Properties of Void Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Moorman, Crystal; Vogeley, Michael S.

    2016-01-01

    We measure the star formation properties of two large samples of galaxies from the SDSS in large-scale cosmic voids on time scales of 10 Myr and 100 Myr, using Ha emission line strengths and GALEX FUV fluxes, respectively. The first sample consists of 109,818 optically selected galaxies. We find that void galaxies in this sample have higher specific star formation rates (SSFRs; star formation rates per unit stellar mass) than similar stellar mass galaxies in denser regions. The second sample is a subset of the optically selected sample containing 8070 galaxies with reliable S/N HI detections from ALFALFA. For the HI detected sample, SSFRs are similar regardless of large-scale environment. Investigating only the HI detected dwarf galaxies reveals a trend towards higher SSFRs in voids. Furthermore, we estimate the star formation rate per unit HI mass, known as the star formation efficiency (SFE) of a galaxy, as a function of environment. For the overall HI detected population, we notice no environmental dependence. Limiting the sample to dwarf galaxies again reveals a trend towards higher SFEs in voids. These results suggest that void environments provide a nurturing environment for dwarf galaxy evolution.

  6. The galaxy luminosity function and the Local Hole

    NASA Astrophysics Data System (ADS)

    Whitbourn, J. R.; Shanks, T.

    2016-06-01

    In a previous study Whitbourn & Shanks have reported evidence for a local void underdense by ≈15 per cent extending to 150-300 h-1 Mpc around our position in the Southern Galactic Cap (SGC). Assuming a local luminosity function they modelled K- and r-limited number counts and redshift distributions in the 6dFGS/2MASS and SDSS redshift surveys and derived normalized n(z) ratios relative to the standard homogeneous cosmological model. Here we test further these results using maximum likelihood techniques that solve for the galaxy density distributions and the galaxy luminosity function simultaneously. We confirm the results from the previous analysis in terms of the number density distributions, indicating that our detection of the `Local Hole' in the SGC is robust to the assumption of either our previous, or newly estimated, luminosity functions. However, there are discrepancies with previously published K- and r-band luminosity functions. In particular the r-band luminosity function has a steeper faint end slope than the r0.1 results of Blanton et al. but is consistent with the r0.1 results of Montero-Dorta & Prada and Loveday et al.

  7. Polarisation properties of Milky-Way-like galaxies

    NASA Astrophysics Data System (ADS)

    Sun, X. H.; Reich, W.

    2012-07-01

    Aims: We study the polarisation properties, magnetic field strength, and synchrotron emission scale-height of Milky-Way-like galaxies in comparison with other spiral galaxies. Methods: We used our 3D-emission model of the Milky Way Galaxy for viewing the Milky Way from outside at various inclinations in the way that spiral galaxies are observed. We analysed these Milky Way maps with techniques used to obtain the strength of magnetic fields, rotation measures (RMs), and scale-heights of synchrotron emission from observations of resolved galaxies and compared the results with the Milky Way model parameter. We also simulated a large sample of unresolved Milky-Way-like galaxies to study their statistical polarisation properties. Results: When seen edge-on, the synchrotron emission from the Milky Way has an exponential scale-height of about 0.74 kpc, which is much lower than the values obtained from previous models. We find that current analysis methods overestimate the scale-height of synchrotron emission of galaxies by about 10% at an inclination of 80° and about 40% at an inclination of 70° because of contamination from the disk. The observed RMs for face-on galaxies derived from high-frequency polarisation measurements approximate to the Faraday depths (FDs) when scaled by a factor of two. For edge-on galaxies, the observed RMs are indicative of the orientation of the large-scale magnetic field, but are not closely related with the FDs. Assuming energy equipartition between the magnetic field and particles for the Milky Way results in an average magnetic-field strength that is about twice as high as the intrinsic value for a K factor of 100. The number distribution of the integrated polarisation percentages of a large sample of unresolved Milky-Way-like galaxies peaks at about 4.2% at 4.8 GHz and at about 0.8% at 1.4 GHz. Integrated polarisation angles rotated by 90° align very well with the position angles of the major axes, implying that unresolved galaxies do

  8. Metallicity inhomogeneities in local star-forming galaxies as a sign of recent metal-poor gas accretion

    SciTech Connect

    Sánchez Almeida, J.; Morales-Luis, A. B.; Muñoz-Tuñón, C.; Méndez-Abreu, J.; Elmegreen, D. M.; Elmegreen, B. G. E-mail: abml@iac.es E-mail: elmegreen@vassar.edu E-mail: jma20@st-andrews.ac.uk

    2014-03-01

    We measure the oxygen metallicity of the ionized gas along the major axis of seven dwarf star-forming galaxies. Two of them, SDSSJ1647+21 and SDSSJ2238+14, show ≅0.5 dex metallicity decrements in inner regions with enhanced star formation activity. This behavior is similar to the metallicity drop observed in a number of local tadpole galaxies by Sánchez Almeida et al., and was interpreted as showing early stages of assembling in disk galaxies, with the star formation sustained by external metal-poor gas accretion. The agreement with tadpoles has several implications. (1) It proves that galaxies other than the local tadpoles present the same unusual metallicity pattern. (2) Our metallicity inhomogeneities were inferred using the direct method, thus discarding systematic errors usually attributed to other methods. (3) Taken together with the tadpole data, our findings suggest a threshold around one-tenth the solar value for the metallicity drops to show up. Although galaxies with clear metallicity drops are rare, the physical mechanism responsible for them may sustain a significant part of the star formation activity in the local universe. We argue that the star formation dependence of the mass-metallicity relationship, as well as other general properties followed by most local disk galaxies, is naturally interpreted as side effects of pristine gas infall. Alternatives to the metal-poor gas accretion are examined as well.

  9. THE EFFECT OF ENVIRONMENT ON MILKY-WAY-MASS GALAXIES IN A CONSTRAINED SIMULATION OF THE LOCAL GROUP

    SciTech Connect

    Creasey, Peter; Scannapieco, Cecilia; Nuza, Sebastián E.; Gottlöber, Stefan; Steinmetz, Matthias; Yepes, Gustavo

    2015-02-10

    In this Letter, we present, for the first time, a study of star formation rate (SFR), gas fraction, and galaxy morphology of a constrained simulation of the Milky Way (MW) and Andromeda (M31) galaxies compared to other MW-mass galaxies. By combining with unconstrained simulations, we cover a sufficient volume to compare these galaxies’ environmental densities ranging from the field to that of the Local Group (LG). This is particularly relevant as it has been shown that, quite generally, galaxy properties depend intimately upon their environment, most prominently when galaxies in clusters are compared to those in the field. For galaxies in loose groups such as the LG, however, environmental effects have been less clear. We consider the galaxy’s environmental density in spheres of 1200 kpc (comoving) and find that while environment does not appear to directly affect morphology, there is a positive trend with SFRs. This enhancement in star formation occurs systematically for galaxies in higher density environments, regardless whether they are part of the LG or in filaments. Our simulations suggest that the richer environment at megaparsec scales may help replenish the star-forming gas, allowing higher specific SFRs in galaxies such as the MW.

  10. Local starburst galaxies and their descendants. Statistics from the Sloan Digital Sky Survey

    NASA Technical Reports Server (NTRS)

    Bergvall, Nils; Marquart, Thomas; Way, Michael J.; Blomqvist, Anna; Holst, Emma; Ostlin, Goran; Zackrisson, Erik

    2016-01-01

    Despite strong interest in the starburst phenomenon in extragalactic astronomy, the concept remains ill-defined. Here we use a strict definition of starburst to examine the statistical properties of starburst galaxies in the local universe. We also seek to establish links between starburst galaxies, post-starburst (hereafter postburst) galaxies, and active galaxies. Data were selected from the Sloan Digital Sky Survey DR7. We applied a novel method of treating dust attenuation and derive star formation rates, ages, and stellar masses assuming a two-component stellar population model. Dynamical masses are calculated from the width of the H-alpha line. These masses agree excellently with the photometric masses. The mass (gas+stars) range is approximately 10( exp 9) - 10(exp 11.5) solar mass. As a selection criterion for starburst galaxies, we use, the birthrate parameter, b = SFR/SFR, requiring that b is greater than 3. For postburst galaxies, we use, the equivalent width of Hdelta in absorption with the criterion EW (sub Hdelta_abs) is greater than 6 A. Results. We find that only 1% of star-forming galaxies are starburst galaxies. They contribute 3-6% to the stellar production and are therefore unimportant for the local star formation activity. The median starburst age is 70 Myr roughly independent of mass, indicating that star formation is mainly regulated by local feedback processes. The b-parameter strongly depends on burst age. Values close to b = 60 are found at ages approximately 10 Myr, while almost no starbursts are found at ages greater than 1 Gyr. The median baryonic burst mass fraction of sub-L galaxies is 5% and decreases slowly towards high masses. The median mass fraction of the recent burst in the postburst sample is 5-10%. A smaller fraction of the postburst galaxies, however, originates in non-bursting galaxies. The age-mass distribution of the postburst progenitors (with mass fractions is greater than 3%) is bimodal with a break at logM(solar mass

  11. Properties of Disk Galaxies in a Hierarchical Formation Scenario

    NASA Astrophysics Data System (ADS)

    Avila-Reese, Vladimir; Firmani, Claudio

    2000-04-01

    We used galaxy evolutionary models in a hierarchical inside-out disk formation scenario to study the origin of the main local and global properties of disk galaxies as well as their correlations. We found that most of these properties and correlations are the result of three (cosmological) initial factors and their dispersions: the virial mass, the halo mass aggregation history (MAH), and the angular momentum given through the spin parameter lambda. The MAH determines mainly the halo structure and the integral color indexes while Lambda determines mainly the surface brightness and the bulge-to-disk ratio. We calculated star formation (SF) using a gravitational instability criterion and a self-regulation mechanism in the disk turbulent ISM. The efficiency of SF in this model is almost independent from the mass. We show that the luminosity- dependent dust absorption empirically determined by Wang & Heckman explains the observed color-magnitude and color Tully-Fisher (TF) relations without the necessity of introducing a mass-dependent SF efficiency. The disks in centrifugal equilibrium form within growing cold dark matter halos with a gas accretion rate proportional to the rate of the MAH. The disks present exponential surface density and brightness profiles, negative radial color index gradients, and nearly flat rotation curves. We also calculated the secular formation of a bulge due to gravitational instabilities in the stellar disk. The intensive properties of our models agree with the observational data and the trends of the Hubble sequence are reproduced. The predicted infrared TF and luminosity-radius relations also agree with observations. The main shortcomings of our inside-out hierarchical models are the excessive radial color gradients and the dark halo dominion in the rotation curve decompositions.

  12. The properties of fossil groups of galaxies

    NASA Astrophysics Data System (ADS)

    Eigenthaler, P.; Zeilinger, W. W.

    2009-12-01

    Numerical simulations as well as optical and X-ray observations over the last few years have shown that poor groups of galaxies can evolve to what is called a fossil group. Dynamical friction as the driving process leads to the coalescence of individual galaxies in ordinary poor groups leaving behind nothing more than a central, massive elliptical galaxy supposed to contain the merger history of the whole group. Due to merging timescales for less-massive galaxies and gas cooling timescales of the X-ray intragroup medium exceeding a Hubble time, a surrounding faint-galaxy population having survived this galactic cannibalism as well as an extended X-ray halo similar to that found in ordinary groups, is expected. Recent studies suggest that fossil groups are very abundant and could be the progenitors of brightest cluster galaxies (BCGs) in the centers of rich galaxy clusters. However, only a few objects are known to the literature. This article aims to summarize the results of observational fossil group research over the last few years and presents ongoing work by the authors. Complementary to previous research, the SDSS and RASS surveys have been cross-correlated to identify new fossil structures yielding 34 newly detected fossil group candidates. Observations with ISIS at the 4.2 m William Herschel Telescope on La Palma have been carried out to study the stellar populations of the central ellipticals of 6 fossil groups. In addition multi-object spectroscopy with VLTs VIMOS has been performed to study the shape of the OLF of one fossil system.

  13. Photometric Properties of Face-on Isolated Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Bahr, Alexander; Epstein, P.; Durbala, A.

    2011-05-01

    We want to quantify the relative role of nature versus nurture in defining the observed properties of galaxies. In simpler terms we would like to disentangle the ``genetic'’ and the environmental influences in shaping the morphology of galaxies. In order to do that one needs to firstly define a zero-order baseline, i.e., a sample of galaxies that have been minimally perturbed by neighbors in the last few billion years of their existence. Such a sample has been produced and refined in different stages in the context of the AMIGA international project (www.iaa.es/AMIGA.html). The recent catalogue ``The All-Sky Catalog of Isolated Galaxies Selected from 2MASS'’ (Karachentseva, V. E. et al. 2010) allows us to complete and enrich the initial sample constructed within AMIGA with new objects, thus enhancing the statistical relevance of our study. Our focus is to define a subset of isolated disk spiral galaxies. We constrain the sample selection by: 1) orientation, restricting to almost face-on galaxies and 2) availability of good photometric images in SDSS. The goal is to ``dissect'’ (decompose) these galaxies in major components (disk, bulge, bars, etc.) and to study the properties of the components in a statistical context. Having a reasonable representation of all morphological types, we aim to test the bimodality of bulges and bars. We present a progress report of our work.

  14. Far-infrared and dust properties of present-day galaxies in the EAGLE simulations

    NASA Astrophysics Data System (ADS)

    Camps, Peter; Trayford, James W.; Baes, Maarten; Theuns, Tom; Schaller, Matthieu; Schaye, Joop

    2016-10-01

    The Evolution and Assembly of GaLaxies and their Environments (EAGLE) cosmological simulations reproduce the observed galaxy stellar mass function and many galaxy properties. In this work, we study the dust-related properties of present-day EAGLE galaxies through mock observations in the far-infrared and submm wavelength ranges obtained with the 3D dust radiative transfer code SKIRT. To prepare an EAGLE galaxy for radiative transfer processing, we derive a diffuse dust distribution from the gas particles and we re-sample the star-forming gas particles and the youngest star particles into star-forming regions that are assigned dedicated emission templates. We select a set of redshift-zero EAGLE galaxies that matches the K-band luminosity distribution of the galaxies in the Herschel Reference Survey (HRS), a volume-limited sample of about 300 normal galaxies in the Local Universe. We find overall agreement of the EAGLE dust scaling relations with those observed in the HRS, such as the dust-to-stellar mass ratio versus stellar mass and versus NUV-r colour relations. A discrepancy in the f250/f350 versus f350/f500 submm colour-colour relation implies that part of the simulated dust is insufficiently heated, likely because of limitations in our sub-grid model for star-forming regions. We also investigate the effect of adjusting the metal-to-dust ratio and the covering factor of the photodissociation regions surrounding the star-forming cores. We are able to constrain the important dust-related parameters in our method, informing the calculation of dust attenuation for EAGLE galaxies in the UV and optical domain.

  15. Galex Catalog And Atlas Of Our Local Group Of Galaxies

    NASA Astrophysics Data System (ADS)

    Madore, Barry

    The NASA Galaxy Evolution Explorer (GALEX) mission contains the most comprehensive collection of ultraviolet imaging of Local Group galaxies likely to exist for decades. Unfortunately, this impressive resource will be under-utilized because the standard GALEX pipeline and source catalogs are not designed to properly measure point sources in crowded fields. We propose to solve this problem and unlock this great wealth of data obtained by NASA by constructing the GALEX Catalog and Atlas of Our Local Group Galaxies which shall include 49 GALEX observed Local Group members within 1.5 Mpc including the Large and Small Magellanic Clouds in their entirety. The PSF- fitting photometry method has already been tested and increases the number of detected point sources by 300% over the standard GALEX pipeline. Our catalogs will provide approximately 5-6 million point source measurements. We have also developed a novel method for producing wide field background-balanced mosaics of GALEX data. This has already been implemented for the Magellanic Clouds and the method will be applied to the other largest Local Group Members (M31 and M33). The Atlas images we produce will combine imaging data from all GALEX surveys to achieve maximum depth. Quality assurance of the images and catalogs will be done by the proposers in the course of undertaking a number of science-driven projects that require cross-matching the ultraviolet point sources of the Magellanic Clouds to similar resolution optical (MCPS) and infrared (SAGE) source catalogs. The Catalogs and Atlas (including the Magellanic Clouds cross-matched catalogs) will be made available to the astronomical community by providing them to the Mikulski Archive for Space Telescopes (MAST, the official GALEX archive) as a High Level Science Product as well as assimilated on an object-by- object basis into the NASA/IPAC Extragalactic Database (NED) and thereby made immediately accessible in VO-compatible format. This program will enhance

  16. ACTIVITY IN GALACTIC NUCLEI OF COMPACT GROUP GALAXIES IN THE LOCAL UNIVERSE

    SciTech Connect

    Sohn, Jubee; Lee, Myung Gyoon; Lee, Gwang-Ho; Hwang, Ho Seong; Lee, Jong Chul E-mail: mglee@astro.snu.ac.kr E-mail: hhwang@cfa.harvard.edu

    2013-07-10

    We study the nuclear activity of galaxies in local compact groups. We use a spectroscopic sample of 238 galaxies in 58 compact groups from the Sloan Digital Sky Survey data release 7 to estimate the fraction of active galactic nucleus (AGN) host galaxies in compact groups, and to compare it with those in cluster and field regions. We use emission-line ratio diagrams to identify AGN host galaxies and find that the AGN fraction of compact group galaxies is 17%-42% depending on the AGN classification method. The AGN fraction in compact groups is not the highest among the galaxy environments. This trend remains even if we use several subsamples segregated by galaxy morphology and optical luminosity. The AGN fraction for early-type galaxies decreases with increasing galaxy number density, but the fraction for late-type galaxies changes little. We find no mid-infrared detected AGN host galaxies in our sample of compact groups using Wide-field Infrared Survey Explorer data. These results suggest that the nuclear activity of compact group galaxies (mostly early types) is not strong because of lack of gas supply even though they may experience frequent galaxy-galaxy interactions and mergers that could trigger nuclear activity.

  17. Broad Hβ Emission-line Variability in a Sample of 102 Local Active Galaxies

    NASA Astrophysics Data System (ADS)

    Runco, Jordan N.; Cosens, Maren; Bennert, Vardha N.; Scott, Bryan; Komossa, S.; Malkan, Matthew A.; Lazarova, Mariana S.; Auger, Matthew W.; Treu, Tommaso; Park, Daeseong

    2016-04-01

    A sample of 102 local (0.02 ≤ z ≤ 0.1) Seyfert galaxies with black hole masses MBH > 107M⊙ was selected from the Sloan Digital Sky Survey (SDSS) and observed using the Keck 10 m telescope to study the scaling relations between MBH and host galaxy properties. We study profile changes of the broad Hβ emission line within the three to nine year time frame between the two sets of spectra. The variability of the broad Hβ emission line is of particular interest, not only because it is used to estimate MBH, but also because its strength and width are used to classify Seyfert galaxies into different types. At least some form of broad-line variability (in either width or flux) is observed in the majority (∼66%) of the objects, resulting in a Seyfert-type change for ∼38% of the objects, likely driven by variable accretion and/or obscuration. The broad Hβ line virtually disappears in 3/102 (∼3%) extreme cases. We discuss potential causes for these changing look active galactic nuclei. While similar dramatic transitions have previously been reported in the literature, either on a case-by-case basis or in larger samples focusing on quasars at higher redshifts, our study provides statistical information on the frequency of Hβ line variability in a sample of low-redshift Seyfert galaxies.

  18. Local Luminous Infrared Galaxies. II. Active Galactic Nucleus Activity from Spitzer/Infrared Spectrograph Spectra

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, Almudena; Pereira-Santaella, Miguel; Rieke, George H.; Rigopoulou, Dimitra

    2012-01-01

    We quantify the active galactic nucleus (AGN) contribution to the mid-infrared (mid-IR) and the total infrared (IR, 8-1000 μm) emission in a complete volume-limited sample of 53 local luminous infrared galaxies (LIRGs, L IR = 1011-1012 L ⊙). We decompose the Spitzer Infrared Spectrograph low-resolution 5-38 μm spectra of the LIRGs into AGN and starburst components using clumpy torus models and star-forming galaxy templates, respectively. We find that 50% (25/50) of local LIRGs have an AGN component detected with this method. There is good agreement between these AGN detections through mid-IR spectral decomposition and other AGN indicators, such as the optical spectral class, mid-IR spectral features, and X-ray properties. Taking all the AGN indicators together, the AGN detection rate in the individual nuclei of LIRGs is ~62%. The derived AGN bolometric luminosities are in the range L bol(AGN) = (0.4-50) × 1043 erg s-1. The AGN bolometric contribution to the IR luminosities of the galaxies is generally small, with 70% of LIRGs having L bol[AGN]/L IR <= 0.05. Only ~= 8% of local LIRGs have a significant AGN bolometric contribution L bol[AGN]/L IR > 0.25. From the comparison of our results with literature results of ultraluminous infrared galaxies (L IR = 1012-1013 L ⊙), we confirm that in the local universe the AGN bolometric contribution to the IR luminosity increases with the IR luminosity of the galaxy/system. If we add up the AGN bolometric luminosities we find that AGNs only account for 5%^{+8%}_{-3%} of the total IR luminosity produced by local LIRGs (with and without AGN detections). This proves that the bulk of the IR luminosity of local LIRGs is due to star formation activity. Taking the newly determined IR luminosity density of LIRGs in the local universe, we then estimate an AGN IR luminosity density of ΩAGN IR = 3 × 105 L ⊙ Mpc-3 in LIRGs. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet

  19. X-ray properties of normal galaxies

    NASA Technical Reports Server (NTRS)

    Fabbiano, G.

    1993-01-01

    In this paper I will first review briefly the results of the X-ray observations of early-type galaxies with the HEAO 2 (Eisnstein) satellite, published in the past ten years. I will then concentrate on more recent results stemming from a systematic re-analysis of the Einstein galaxy database, and I will also report on some very preliminary ROSAT results. Parts of this talk were given at the ESO Elba meeting on early-type galaxies in May 1992 and therefore there is a considerable overlap between this paper and that in the proceedings of that meeting. Some of this material was also reviewed by Fabbiano and Kim (1992) and Fabbiano (1992b).

  20. CONNECTING TRANSITIONS IN GALAXY PROPERTIES TO REFUELING

    SciTech Connect

    Kannappan, Sheila J.; Stark, David V.; Eckert, Kathleen D.; Moffett, Amanda J.; Norris, Mark A.; Weinberg-Wolf, Jennifer; Wei, Lisa H.; Fabricant, Daniel G.; Pisano, D. J.; Baker, Andrew J.; Vogel, Stuart N.; Laine, Seppo; Jogee, Shardha; Lepore, Natasha; Hough, Loren E.

    2013-11-01

    We relate transitions in galaxy structure and gas content to refueling, here defined to include both the external gas accretion and the internal gas processing needed to renew reservoirs for star formation. We analyze two z = 0 data sets: a high-quality ∼200 galaxy sample (the Nearby Field Galaxy Survey, data release herein) and a volume-limited ∼3000 galaxy sample with reprocessed archival data. Both reach down to baryonic masses ∼10{sup 9} M{sub ☉} and span void-to-cluster environments. Two mass-dependent transitions are evident: (1) below the 'gas-richness threshold' scale (V ∼ 125 km s{sup –1}), gas-dominated quasi-bulgeless Sd-Im galaxies become numerically dominant; while (2) above the 'bimodality' scale (V ∼ 200 km s{sup –1}), gas-starved E/S0s become the norm. Notwithstanding these transitions, galaxy mass (or V as its proxy) is a poor predictor of gas-to-stellar mass ratio M{sub gas}/M{sub *}. Instead, M{sub gas}/M{sub *} correlates well with the ratio of a galaxy's stellar mass formed in the last Gyr to its preexisting stellar mass, such that the two ratios have numerically similar values. This striking correspondence between past-averaged star formation and current gas richness implies routine refueling of star-forming galaxies on Gyr timescales. We argue that this refueling underlies the tight M{sub gas}/M{sub *} versus color correlations often used to measure 'photometric gas fractions'. Furthermore, the threshold and bimodality scale transitions reflect mass-dependent demographic shifts between three refueling regimes—accretion-dominated, processing-dominated, and quenched. In this picture, gas-dominated dwarfs are explained not by inefficient star formation but by overwhelming gas accretion, which fuels stellar mass doubling in ∼<1 Gyr. Moreover, moderately gas-rich bulged disks such as the Milky Way are transitional, becoming abundant only in the narrow range between the threshold and bimodality scales.

  1. AGN identification and host galaxies properties in the MOSDEF survey

    NASA Astrophysics Data System (ADS)

    Azadi, Mojegan; Coil, Alison L.; MOSDEF Team

    2016-06-01

    We present new results on the identification and host galaxy properties of X-ray, IR and optically-selected AGN at 1.4 < z < 3.8, using spectroscopic data from the on-going MOSDEF survey, which is obtaining rest-frame optical spectra of ~1,500 galaxies and AGN using the new Keck/MOSFIRE instrument. We find clear selection effects when identifying AGN at different wavelengths, in that optically-selected AGN are more likely to be found in galaxies with low SFR, while IR AGN are typically found in galaxies with higher SFR. There is also a bias against finding AGN at any wavelength in low mass galaxies. We find that optical AGN selection identifies less powerful AGN that may be obscured at other wavelengths. Combining the AGN we identify at different wavelengths, we find that AGN host galaxies have similar stellar age and dust content as inactive galaxies of the same stellar mass. Finally, we do not find a significant correlation between either SFR or stellar mass and L[OIII], which argues against the presence of strong AGN feedback.

  2. AGN Identification and Host Galaxy Properties in the MOSDEF Survey

    NASA Astrophysics Data System (ADS)

    Coil, Alison

    2016-08-01

    I will present new results on the identification and host galaxy properties of X-ray, IR, and optically-selected AGN at 1.4 < z < 3.8, using spectroscopic data from the on-going MOSDEF survey. MOSDEF is obtaining rest-frame optical spectra of ~1300 galaxies and AGN using the newly commissioned MOSFIRE instrument on Keck. We find clear selection biases when identifying AGN at different wavelengths, in that AGN at any wavelength are typically found in more massive galaxies, while optically-selected AGN are also more likely to be found in galaxies with low SFR, while IR AGN are typically found in galaxies with higher SFR. We also find that optical and X-ray AGN selection identifies AGN with a wider range of accretion rates than IR AGN selection. By combining AGN samples selected at different wavelengths, we find that AGN host galaxies have similar stellar age and dust content as inactive galaxies of the same stellar mass.

  3. Radio continuum observations of local star-forming galaxies using the Caltech Continuum Backend on the green bank telescope

    SciTech Connect

    Rabidoux, Katie; Pisano, D. J.; Kepley, Amanda A.; Johnson, Kelsey E.; Balser, Dana S.

    2014-01-01

    We observed radio continuum emission in 27 local (D < 70 Mpc) star-forming galaxies with the Robert C. Byrd Green Bank Telescope between 26 GHz and 40 GHz using the Caltech Continuum Backend. We obtained detections for 22 of these galaxies at all four sub-bands and four more marginal detections by taking the average flux across the entire bandwidth. This is the first detection (full or marginal) at these frequencies for 22 of these galaxies. We fit spectral energy distributions (SEDs) for all of the four sub-band detections. For 14 of the galaxies, SEDs were best fit by a combination of thermal free-free and nonthermal synchrotron components. Eight galaxies with four sub-band detections had steep spectra that were only fit by a single nonthermal component. Using these fits, we calculated supernova rates, total number of equivalent O stars, and star formation rates within each ∼23'' beam. For unresolved galaxies, these physical properties characterize the galaxies' recent star formation on a global scale. We confirm that the radio-far-infrared correlation holds for the unresolved galaxies' total 33 GHz flux regardless of their thermal fractions, though the scatter on this correlation is larger than that at 1.4 GHz. In addition, we found that for the unresolved galaxies, there is an inverse relationship between the ratio of 33 GHz flux to total far-infrared flux and the steepness of the galaxy's spectral index between 1.4 GHz and 33 GHz. This relationship could be an indicator of the timescale of the observed episode of star formation.

  4. THE ROLE OF MERGER STAGE ON GALAXY RADIO SPECTRA IN LOCAL INFRARED-BRIGHT STARBURST GALAXIES

    SciTech Connect

    Murphy, Eric J.

    2013-11-01

    An investigation of the steep, high-frequency (i.e., ν ∼ 12 GHz) radio spectra among a sample of 31 local infrared-bright starburst galaxies is carried out in light of their Hubble-Space-Telescope-based merger classifications. Radio data covering as many as 10 individual bands allow for spectral indices to be measured over three frequency bins between 0.15 and 32.5 GHz. Sources having the flattest spectral indices measured at ∼2 and 4 GHz, arising from large free-free optical depths among the densest starbursts, appear to be in ongoing through post-stage mergers. The spectral indices measured at higher frequencies (i.e., ∼12 GHz) are steepest for sources associated with ongoing mergers in which their nuclei are distinct, but share a common stellar envelope and/or exhibit tidal tails. These results hold after excluding potential active galactic nuclei based on their low 6.2 μm polycyclic aromatic hydrocarbon equivalent widths. Consequently, the low-, mid-, and high-frequency spectral indices each appear to be sensitive to the exact merger stage. It is additionally shown that ongoing mergers, whose progenitors are still separated and share a common envelope and/or exhibit tidal tails, also exhibit excess radio emission relative to what is expected given the far-infrared/radio correlation, suggesting that there may be a significant amount of radio emission that is not associated with ongoing star formation. The combination of these observations, along with high-resolution radio morphologies, leads to a picture in which the steep high-frequency radio spectral indices and excess radio emission arise from radio continuum bridges and tidal tails that are not associated with star formation, similar to what is observed for so-called 'taffy' galaxies. This scenario may also explain the seemingly low far-infrared/radio ratios measured for many high-z submillimeter galaxies, a number of which are merger-driven starbursts.

  5. Multicolor photometry of the merging galaxy cluster A2319: Dynamics and star formation properties

    SciTech Connect

    Yan, Peng-Fei; Yuan, Qi-Rong; Zhang, Li; Zhou, Xu E-mail: yuanqirong@njnu.edu.cn

    2014-05-01

    Asymmetric X-ray emission and a powerful cluster-scale radio halo indicate that A2319 is a merging cluster of galaxies. This paper presents our multicolor photometry for A2319 with 15 optical intermediate filters in the Beijing-Arizona-Taiwan-Connecticut (BATC) system. There are 142 galaxies with known spectroscopic redshifts within the viewing field of 58' × 58' centered on this rich cluster, including 128 member galaxies (called sample I). A large velocity dispersion in the rest frame, 1622{sub −70}{sup +91} km s{sup –1}, suggests merger dynamics in A2319. The contour map of projected density and localized velocity structure confirm the so-called A2319B substructure, at ∼10' northwest to the main concentration A2319A. The spectral energy distributions (SEDs) of more than 30,000 sources are obtained in our BATC photometry down to V ∼ 20 mag. A u-band (∼3551 Å) image with better seeing and spatial resolution, obtained with the Bok 2.3 m telescope at Kitt Peak, is taken to make star-galaxy separation and distinguish the overlapping contamination in the BATC aperture photometry. With color-color diagrams and photometric redshift technique, 233 galaxies brighter than h {sub BATC} = 19.0 are newly selected as member candidates after an exclusion of false candidates with contaminated BATC SEDs by eyeball-checking the u-band Bok image. The early-type galaxies are found to follow a tight color-magnitude correlation. Based on sample I and the enlarged sample of member galaxies (called sample II), subcluster A2319B is confirmed. The star formation properties of cluster galaxies are derived with the evolutionary synthesis model, PEGASE, assuming a Salpeter initial mass function and an exponentially decreasing star formation rate (SFR). A strong environmental effect on star formation histories is found in the manner that galaxies in the sparse regions have various star formation histories, while galaxies in the dense regions are found to have shorter SFR time

  6. KPNO 0.9m H(alpha) Imaging Survey of ``Transforming Galaxies" in Local Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Haines, Christopher; O'Sullivan, Ewan; Raychaudhury, Somak; Gargiulo, Adriana; Campusano, Luis

    2012-02-01

    We propose to use the KPNO 0.9-m telescope to obtain panoramic H(alpha) imaging of ~200 galaxies in two nearby (32, 35 Mpc) galaxy groups NGC 4261 and NGC 5353 from the CLoGS local group survey. In rich clusters ram-pressure stripping has been shown to be very effective at removing the gas contents and quenching star formation in infalling spiral galaxies. It is much less clear how galaxies are affected by the much lower ram pressures found in galaxy groups, or if other environmental processes begin to dominate. Given that >50% of galaxies in the local volume reside in groups, it is vital we gain new insights into which mechanisms drive the SFR-density relation in groups. The proposed H(alpha) imaging will allow us to resolve where star-formation is occuring in each galaxy. This can effectively discriminate between ram-pressure stripping characterized by truncated H(alpha) disks, the much gentler starvation mechanism which produces anemic spirals, and nuclear star-bursts triggered by low-velocity encounters which should be most frequent in groups.

  7. KPNO 0.9m H(alpha) Imaging Survey of ``Transforming Galaxies'' in Local Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Haines, Christopher; O'Sullivan, Ewan; Raychaudhury, Somak; Egami, Eiichi; Campusano, Luis

    2012-08-01

    We propose to use the KPNO 0.9-m telescope to obtain panoramic H(alpha) imaging of ~135 galaxies in ten nearby galaxy groups (60- 80 Mpc) from the Complete Local-Volume Groups Sample (CLoGS). In rich clusters ram-pressure stripping has been shown to be very effective at removing the gas contents and quenching star formation in infalling spiral galaxies. It is much less clear how galaxies are affected by the much lower ram pressures found in galaxy groups, or if other environmental processes begin to dominate. Given that >50% of galaxies in the local volume reside in groups, it is vital that we gain new insights into which mechanisms drive the SFR-density relation in groups. The proposed H(alpha) imaging will allow us to resolve where star-formation is occurring in each galaxy. This can effectively discriminate between ram-pressure stripping characterized by truncated H(alpha) disks, the much gentler starvation mechanism which produces anemic spirals, and nuclear starbursts triggered by low-velocity encounters and mergers which should be most frequent in groups.

  8. Properties of the Interstellar Medium in Star-Forming Galaxies at z ~ 1.4 Revealed with ALMA

    NASA Astrophysics Data System (ADS)

    Seko, Akifumi; Ohta, Kouji; Yabe, Kiyoto; Hatsukade, Bunyo; Akiyama, Masayuki; Iwamuro, Fumihide; Tamura, Naoyuki; Dalton, Gavin

    2016-03-01

    We conducted observations of 12CO(J = 5-4) and dust thermal continuum emission toward 20 star-forming galaxies on the main sequence at z ˜ 1.4 using ALMA to investigate the properties of the interstellar medium. The sample galaxies are chosen to trace the distributions of star-forming galaxies in diagrams of stellar mass versus star formation rate and stellar mass versus metallicity. We detected CO emission lines from 11 galaxies. The molecular gas mass is derived by adopting a metallicity-dependent CO-to-H2 conversion factor and assuming a CO(5-4)/CO(1-0) luminosity ratio of 0.23. Masses of molecular gas and its fractions (molecular gas mass/(molecular gas mass + stellar mass)) for the detected galaxies are in the ranges of (3.9-12) × 1010 M⊙ and 0.25-0.94, respectively; these values are significantly larger than those in local spiral galaxies. The molecular gas mass fraction decreases with increasing stellar mass; the relation holds for four times lower stellar mass than that covered in previous studies, and the molecular gas mass fraction decreases with increasing metallicity. Stacking analyses also show the same trends. Dust thermal emissions were clearly detected from two galaxies and marginally detected from five galaxies. Dust masses of the detected galaxies are (3.9-38) × 107 M⊙. We derived gas-to-dust ratios and found they are 3-4 times larger than those in local galaxies. The depletion times of molecular gas for the detected galaxies are (1.4-36) × 108 yr while the results of the stacking analysis show ˜3 × 108 yr. The depletion time tends to decrease with increasing stellar mass and metallicity though the trend is not so significant, which contrasts with the trends in local galaxies.

  9. Photometric and clustering properties of hydrodynamical galaxies in a cosmological volume: results at z = 0

    NASA Astrophysics Data System (ADS)

    Nuza, Sebastián E.; Dolag, Klaus; Saro, Alexandro

    2010-09-01

    In this work, we present results for the photometric and clustering properties of galaxies that arise in a Λ cold dark matter hydrodynamical simulation of the local Universe. The present-day distribution of matter was constructed to match the observed large-scale pattern of the IRAS 1.2-Jy galaxy survey. Our simulation follows the formation and evolution of galaxies in a cosmological sphere with a volume of ~1303h-3Mpc3 including supernova feedback, galactic winds, photoheating due to a uniform meta-galactic background and chemical enrichment of the gas and stellar populations. However, we do not consider active galactic nuclei. In the simulation, a total of ~20000 galaxies are formed above the resolution limit, and around 60 haloes are more massive than ~1014Msolar. Luminosities of the galaxies are calculated based on a stellar population synthesis model including the attenuation by dust, which is calculated from the cold gas left within the simulated galaxies. Environmental effects such as colour bimodality and differential clustering power of the hydrodynamical galaxies are qualitatively similar to observed trends. Nevertheless, the overcooling present in the simulations leads to too blue and overluminous brightest cluster galaxies (BCGs). To overcome this, we mimic the late-time suppression of star formation in massive haloes by ignoring recently formed stars with the aid of a simple post-processing recipe. In this way we find luminosity functions, both for field and for group/cluster galaxies, in better agreement with observations. Specifically, the BCGs then follow the observed luminosity-halo mass relation. However, in such a case, the colour bimodality is basically lost, pointing towards a more complex interplay of late suppression of star formation than what is given by the simple scheme adopted.

  10. THE ORIENTATIONS OF GALAXY GROUPS AND FORMATION OF THE LOCAL SUPERCLUSTER

    SciTech Connect

    Godlowski, Wlodzimierz; Flin, Piotr E-mail: sfflin@cyf-kr.edu.p

    2010-01-10

    We analyzed the orientation of galaxy groups in the Local Supercluster (LSC). It is strongly correlated with the distribution of neighboring groups in the scale up to about 20 Mpc. The group major axis is in alignment with both the line joining the two brightest galaxies and the direction toward the center of the LSC, i.e., Virgo cluster. These correlations suggest that two brightest galaxies were formed in filaments of matter directed toward the protosupercluster center. Afterward, the hierarchical clustering leads to aggregation of galaxies around these two galaxies. The groups are formed on the same or similarly oriented filaments. This picture is in agreement with the predictions of numerical simulations.

  11. THE WHIQII SURVEY: METALLICITIES AND SPECTROSCOPIC PROPERTIES OF LUMINOUS COMPACT BLUE GALAXIES

    SciTech Connect

    Tollerud, Erik J.; Barton, Elizabeth J.; Cooke, Jeff; Van Zee, Liese

    2010-01-10

    As part of the WIYN High Image Quality Indiana-Irvine (WHIQII) survey, we present 123 spectra of faint emission-line galaxies, selected to focus on intermediate redshift (0.4 approx< z approx< 0.8) galaxies with blue colors that appear physically compact on the sky. The sample includes 15 true Luminous Compact Blue Galaxies (LCBGs) and an additional 27 slightly less extreme emission-line systems. These galaxies represent a highly evolving class that may play an important role in the decline of star formation since z approx 1, but their exact nature and evolutionary pathways remain a mystery. Here, we use emission lines to determine metallicities and ionization parameters, constraining their intrinsic properties and state of star formation. Some LCBG metallicities are consistent with a 'bursting dwarf' scenario, while a substantial fraction of others are not, further confirming that LCBGs are a highly heterogeneous population but are broadly consistent with the intermediate redshift field. In agreement with previous studies, we observe overall evolution in the luminosity-metallicity relation at intermediate redshift. Our sample, and particularly the LCBGs, occupies a region in the empirical R{sub 23}-O{sub 32} plane that differs from luminous local galaxies and is more consistent with dwarf irregulars at the present epoch, suggesting that cosmic 'downsizing' is observable in even the most fundamental parameters that describe star formation. These properties for our sample are also generally consistent with lying between local galaxies and those at high redshift, as expected by this scenario. Surprisingly, our sample exhibits no detectable correlation between compactness and metallicity, strongly suggesting that at these epochs of rapid star formation, the morphology of compact star-forming galaxies is largely transient.

  12. Chandra Galaxy Atals - Global Hot Gas Properties

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Woo; Anderson, Craig; Burke, Douglas J.; Fabbiano, Giuseppina; Fruscione, Antonella; Lauer, Jennifer L.; McCollough, Michael L.; Morgan, Douglas; Mossman, Amy; O'Sullivan, Ewan; Paggi, Alessandro; Trinchieri, Ginevra

    2016-04-01

    The hot gas in early type galaxies (ETGs) plays a crucial role in understanding their formation and evolution. As the hot gas is often extended to the outskirts beyond the optical size, the large scale structural features identified by Chandra (including jets, cavities, cold fronts, filaments and tails) point to key evolutionary mechanisms, e.g., AGN feedback, merging history, accretion/stripping and star formation and its quenching. In our new project, the Chandra Galaxy Atlas, we systematically analyze the archival Chandra data of ~100 ETGs to study the hot ISM. Using uniformly derived data products with spatially resolved spectral information, we will present gas morphology, scaling relations and X-ray based mass profiles and address their implications.

  13. KILOPARSEC-SCALE PROPERTIES OF EMISSION-LINE GALAXIES

    SciTech Connect

    Hemmati, Shoubaneh; Miller, Sarah H.; Mobasher, Bahram; Nayyeri, Hooshang; Ferguson, Henry C.; Koekemoer, Anton M.; Guo, Yicheng; Koo, David C.

    2014-12-20

    We perform a detailed study of the resolved properties of emission-line galaxies at kiloparsec scales to investigate how small-scale and global properties of galaxies are related. We use a sample of 119 galaxies in the GOODS fields. The galaxies are selected to cover a wide range in morphologies over the redshift range 0.2 < z < 1.3. High resolution spectroscopic data from Keck/DEIMOS observations are used to fix the redshift of all the galaxies in our sample. Using the HST/ACS and HST/WFC3 imaging data taken as a part of the CANDELS project, for each galaxy, we perform spectral energy distribution fitting per resolution element, producing resolved rest-frame U – V color, stellar mass, star formation rate (SFR), age, and extinction maps. We develop a technique to identify ''regions'' of statistical significance within individual galaxies, using their rest-frame color maps to select red and blue regions, a broader definition for what are called ''clumps'' in other works. As expected, for any given galaxy, the red regions are found to have higher stellar mass surface densities and older ages compared to the blue regions. Furthermore, we quantify the spatial distribution of red and blue regions with respect to both redshift and stellar mass, finding that the stronger concentration of red regions toward the centers of galaxies is not a significant function of either redshift or stellar mass. We find that the ''main sequence'' of star-forming galaxies exists among both red and blue regions inside galaxies, with the median of blue regions forming a tighter relation with a slope of 1.1 ± 0.1 and a scatter of ∼0.2 dex compared to red regions with a slope of 1.3 ± 0.1 and a scatter of ∼0.6 dex. The blue regions show higher specific SFRs (sSFRs) than their red counterparts with the sSFR decreasing since z ∼ 1, driven primarily by the stellar mass surface densities rather than the SFRs at a given resolution element.

  14. Revealing the Properties of the Frontier Fields Galaxies

    NASA Astrophysics Data System (ADS)

    Wise, John

    2014-10-01

    The HST campaign Frontier Fields will discover an even larger sample of galaxies at redshifts greater than 6. We propose to make observational predictions for this high-redshift population, using a suite of high-resolution cosmological simulations, that will enable the correlation between key observables and the physical properties of the first galaxies in the universe. These simulations will have finished before Cycle 22, and this proposal focuses on the analysis of the simulated galaxies. The primary goal of this proposal is to constrain the following properties: {1} star formation histories and stellar populations, {2} nebular emission and dust extinction, {3} the faint end of the luminosity function, {4} cosmic variance, and {5} galaxy morphology and structure. We will make all of the analysis data products publicly available. We will also provide a Markov Chain Monte Carlo tool to the public that will calculate the most likely galaxy properties, such as stellar mass, metallicity, and ages, given a redshift, half-light radius, and magnitudes/spectra.

  15. Do galaxy global relationships emerge from local ones? I. The SDSS IV MaNGA surface mass density - metallicity relation

    NASA Astrophysics Data System (ADS)

    Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zhu, Guangtun B.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Law, David; Wake, David.; Green, Jenny E.; Bizyaev, Dmitry; Oravetz, Daniel; Simmons, Audrey; Malanushenko, Elena; Pan, Kaike; Roman Lopes, Alexandre; Lane, Richard R.

    2016-08-01

    We present the stellar surface mass density vs. gas metallicity (Σ★ - Z) relation for more than 500,000 spatially-resolved star-forming resolution elements (spaxels) from a sample of 653 disk galaxies included in the SDSS IV MaNGA survey. We find a tight relation between these local properties, with higher metallicities as the surface density increases. This relation extends over three orders of magnitude in the surface mass density and a factor of four in metallicity. We show that this local relationship can simultaneously reproduce two well-known properties of disk galaxies: their global mass-metallicity relationship and their radial metallicity gradients. We also find that the Σ★ - Z relation is largely independent of the galaxy's total stellar mass and specific star-formation rate (sSFR), except at low stellar mass and high sSFR. These results suggest that in the present-day universe local properties play a key role in determining the gas-phase metallicity in typical disk galaxies.

  16. Bar properties as seen in the Spitzer Survey of Stellar Structure in Galaxies

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik

    2015-03-01

    Bars serve a crucial signpost in galaxy evolution because they form quickly once a disk is sufficiently massive and dynamically cold. Although the bar fraction in the local Universe is well-established since the mid-60s, a variety of studies have concluded varying bar fractions due to different definitions of bars, use of low quality data or different sample selection. The Spitzer Survey of Stellar Structure in Galaxies (S4G) offers us the ideal data set for resolving this outstanding issue once and for all. S4G consists of over 2000 nearby galaxies chosen based on optical brightness, distance, galactic latitude and size in a 40 Mpc volume. With a 4 minute integration time per pixel over >1.5 × D25 diameter for each galaxy, the data provide the deepest, homogenous, mid-infrared (3.6 and 4.5 microns) data on the nearby Universe. The data are so deep that we are tracing stellar surface densities << 1 solar mass per square parsec. With these data we can confidently constrain the bar fraction and thus shed important light on the evolutionary state of galaxies as a function of mass, environment and other galaxy host properties.

  17. Optical Properties of Host Galaxies of Extragalactic Nuclear Water Masers

    NASA Astrophysics Data System (ADS)

    Zhu, Guangtun; Zaw, Ingyin; Blanton, Michael R.; Greenhill, Lincoln J.

    2011-12-01

    We study the optical properties of the host galaxies of nuclear 22 GHz (λ = 1.35 cm) water masers. To do so, we cross-match the galaxy sample surveyed for water maser emission (123 detections and 3806 non-detections) with the Sloan Digital Sky Survey (SDSS) low-redshift galaxy sample (z < 0.05). Out of 1636 galaxies with SDSS photometry, we identify 48 detections; out of the 1063 galaxies that also have SDSS spectroscopy, we identify 33 detections. We find that maser detection rate is higher at higher optical luminosity (MB ), larger velocity dispersion (σ), and higher [O III] λ5007 luminosity, with [O III] λ5007 being the dominant factor. These detection rates are essentially the result of the correlations of isotropic maser luminosity with all three of these variables. These correlations are natural if maser strength increases with central black hole mass and the level of active galactic nucleus (AGN) activity. We also find that the detection rate is higher in galaxies with higher extinction. Based on these results, we propose that maser surveys seeking to efficiently find masers should rank AGN targets by extinction-corrected [O III] λ5007 flux when available. This prioritization would improve maser detection efficiency, from an overall ~3% without pre-selection to ~16% for the strongest intrinsic [O III] λ5007 emitters, by a factor of ~5.

  18. Compact Groups of Galaxies with Complete Spectroscopic Redshifts in the Local Universe

    NASA Astrophysics Data System (ADS)

    Sohn, Jubee; Hwang, Ho Seong; Geller, Margaret J.; Diaferio, Antonaldo; Rines, Kenneth J.; Lee, Myung Gyoon; Lee, Gwang-Ho

    2015-12-01

    Dynamical analysis of compact groups provides important tests of models of compact group formation and evolution. By compiling 2066 redshifts from FLWO/FAST, from the literature, and from SDSS DR12 in the fields of compact groups in tet{McC09}, we construct the largest sample of compact groups with complete spectroscopic redshifts in the redshift range 0.01 < z < 0.22. This large redshift sample shows that the interloper fraction in the tet{McC09} compact group candidates is ˜ 42%. A secure sample of 332 compact groups includes 192 groups with four or more member galaxies and 140 groups with three members. The fraction of early-type galaxies in these compact groups is 62%, higher than for the original Hickson compact groups. The velocity dispersions of early- and late-type galaxies in compact groups change little with groupcentric radius; the radii sampled are less than 100 h^{-1} kpc, smaller than the radii typically sampled by members of massive clusters of galaxies. The physical properties of our sample compact groups include size, number density, velocity dispersion, and local environment; these properties slightly differ from those derived for the original Hickson compact groups and for the DPOSS II compact groups. Differences result from subtle differences in the way the group candidates were originally selected. The abundance of the compact groups changes little with redshift over the range covered by this sample. The approximate constancy of the abundance for this sample is a potential constraint on the evolution of compact groups on a few Gigayear timescale.

  19. A survey of the properties of early-type galaxies

    NASA Technical Reports Server (NTRS)

    Bregman, Joel N.; Roberts, M. S.; Hogg, D. E.

    1990-01-01

    A compilation of the properties of elliptical and early disk galaxies was completed. In addition to material from the literature, such as Infrared Astronomy Satellite (IRAS) fluxes, the compilation includes recent measurements of HI and CO, as well as a review of the x ray properties by Forman and Jones. The data are used to evaluate the gas content of early systems and to search for correlations with x ray emission. The interstellar medium in early-type galaxies is generally dominated by hot interstellar gas (T approx. 10 to the 7th power K; c.f. the review by Fabbiano 1989 and references therein). In addition, a significant fraction of these galaxies show infrared emission (Knapp, et al., 1989), optical emission lines, and visible dust. Sensitive studies in HI and CO of a number of these galaxies have been completed recently, resulting in several detections, particularly of the later types. Researchers wish to understand the connection among these different forms of the interstellar medium, and to examine the theoretical picture of the fate of the hot gas. To do so, they compiled observations of several forms of interstellar matter for a well-defined sample of early-type galaxies. Here they present a statistical analysis of this data base and discuss the implications of the results.

  20. Central galaxies in different environments: Do they have similar properties?

    SciTech Connect

    Lacerna, I.; Avila-Reese, V.; Hernández-Toledo, H. M.; Rodríguez-Puebla, A.

    2014-06-10

    We perform an exhaustive comparison among central galaxies from Sloan Digital Sky Survey catalogs in different local environments at 0.01 ≤ z ≤ 0.08. The central galaxies are separated into two categories: group centrals (host halos containing satellites) and field centrals (host halos without satellites). From the latter, we select two subsamples: isolated centrals and bright field centrals, both with the same magnitude limit. The stellar mass (M {sub s}) distributions of the field and group central galaxies are different, which explains why in general the field central galaxies are mainly located in the blue cloud/star-forming regions, whereas the group central galaxies are strongly biased to the red sequence/passive regions. The isolated centrals occupy the same regions as the bright field centrals since both populations have similar M {sub s} distributions. At parity of M {sub s}, the color and specific star formation rate (sSFR) distributions of the samples are similar, especially between field and group centrals. Furthermore, we find that the stellar-to-halo mass (M {sub s}-M {sub h}) relation of isolated galaxies does not depend on the color, sSFR, and morphological type. For systems without satellites, the M {sub s}-M {sub h} relation steepens at high halo masses compared to group centrals, which is a consequence of assuming a one-to-one relation between group total stellar mass and halo mass. Under the same assumption, the scatter around the M {sub s}-M {sub h} relation of centrals with satellites increases with halo mass. Our results suggest that the mass growth of central galaxies is mostly driven by the halo mass, with environment and mergers playing a secondary role.

  1. OT1_nlu_1: Herschel Spectroscopic Survey of Warm Molecular Gas in Local Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Lu, N.

    2010-07-01

    We propose to survey CO spectral line energy distribution (SLED), from J=4-3 up to J=13-12, on 93 local luminous infrared galaxies (LIRGs; L_{IR} > 1.0E11 L_{sun}) with Herschel SPIRE FTS spectrometer. These galaxies, plus 32 additional LIRGs that will have similar data from existing Herschel programs (mainly the HerCULES project), form a flux-limited subset of the Great Observatories All-Sky LIRGs Survey (GOALS) sample. Our proposal is built on the legacy of GOALS and extends beyond the existing Herschel HerCULES program, which emphasizes more on ULIRGs, to a much needed sample coverage of the more numerous and diverse population of less luminous LIRGs. The data from the proposed observations will not only provide much needed local LIRG templates for future ALMA studies of high-redshift counterparts, but also lend us a powerful diagnostic tool to probe the warm and dense molecular gas that are more closely related to the starburst or AGN activity in the nuclei of LIRGs. The data from this proposal will provide important statistical clues to the interplay between the cold and warm molecular gas, IR luminosity, star formation rate and efficiency, and the diverse properties of LIRGs. Specifically, using the homogeneous CO SLED data from this proposal, together with ground-base, low-order CO line data (mainly J=1-0) and other data that have been compiled for the GOALS sample, we will address the following questions: (1) What is the dominant nuclear power source in individual sample galaxy: starburst or AGN? (2) What are the typical physical properties of warm molecular gas in the nuclei of LIRGs? (3) How do the nuclear warm gas components correlate to the cold gas component, star formation rate and efficiency, dust temperature, etc? and (4) How does molecular gas excitation change along a merger sequence?

  2. Properties of the galaxy population in hydrodynamical simulations of clusters

    NASA Astrophysics Data System (ADS)

    Saro, A.; Borgani, S.; Tornatore, L.; Dolag, K.; Murante, G.; Biviano, A.; Calura, F.; Charlot, S.

    2006-11-01

    We present a study of the galaxy population predicted by hydrodynamical simulations of galaxy clusters. These simulations, which are based on the GADGET-2 TREE + SPH code, include gas cooling, star formation, a detailed treatment of stellar evolution and chemical enrichment, as well as supernova energy feedback in the form of galactic winds. As such, they can be used to extract the spectrophotometric properties of the simulated galaxies, which are identified as clumps in the distribution of star particles. Simulations have been carried out for a representative set of 19 cluster-sized haloes, having mass M200 in the range 5 × 1013-1.8 × 1015h-1Msolar. All simulations have been performed for two choices of the stellar initial mass function (IMF), namely using a standard Salpeter IMF with power-law index x = 1.35, and a top-heavy IMF with x = 0.95. In general, we find that several of the observational properties of the galaxy population in nearby clusters are reproduced fairly well by simulations. A Salpeter IMF is successful in accounting for the slope and the normalization of the colour-magnitude relation for the bulk of the galaxy population. In contrast, the top-heavy IMF produces too red galaxies, as a consequence of their exceedingly large metallicity. Simulated clusters have a relation between mass and optical luminosity, which generally agrees with observations, both in normalization and in slope. Also in keeping with observational results, galaxies are generally bluer, younger and more star forming in the cluster outskirts. However, we find that our simulated clusters have a total number of galaxies which is significantly smaller than the observed one, falling short by about a factor of 2-3. We have verified that this problem does not have an obvious numerical origin, such as lack of mass and force resolution. Finally, the brightest cluster galaxies are always predicted to be too massive and too blue, when compared to observations. This is due to gas

  3. Constraining particle dark matter using local galaxy distribution

    NASA Astrophysics Data System (ADS)

    Ando, Shin'ichiro; Ishiwata, Koji

    2016-06-01

    It has been long discussed that cosmic rays may contain signals of dark matter. In the last couple of years an anomaly of cosmic-ray positrons has drawn a lot of attentions, and recently an excess in cosmic-ray anti-proton has been reported by AMS-02 collaboration. Both excesses may indicate towards decaying or annihilating dark matter with a mass of around 1–10 TeV . In this article we study the gamma rays from dark matter and constraints from cross correlations with distribution of galaxies, particularly in a local volume. We find that gamma rays due to inverse-Compton process have large intensity, and hence they give stringent constraints on dark matter scenarios in the TeV scale mass regime. Taking the recent developments in modeling astrophysical gamma-ray sources as well as comprehensive possibilities of the final state products of dark matter decay or annihilation into account, we show that the parameter regions of decaying dark matter that are suggested to explain the excesses are excluded. We also discuss the constrains on annihilating scenarios.

  4. Properties of High Redshift Galaxies in the ELTs Era

    NASA Astrophysics Data System (ADS)

    Greggio, Laura; Gullieuszik, Marco; Falomo, Renato; Fantinel, Daniela; Uslenghi, Michela

    2015-08-01

    The extraordinary sensitivity and spatial resolution of the future Extremely Large Telescopes will allow us to characterize the photometric and structural properties of high redshift galaxies, in spite of their small size. In this contribution we present a quantitative analysis of these capabilities thorugh the generation of a large set of simulated images, and their subsequent analysis with GALFIT. In particular, we assess the accuracy with which it will be possible to measure the basic galaxy parameters: Sersic index, half light radius and total magnitude. The simulations adopt the expected performances of the near-IR imagers MICADO at the E-ELT for galaxies at z ~ 2 and z ~ 3, spanning a mass range from 10^9 to 10^11 solar masses, and whose sizes, magnitudes and colors are obtained from presently available scaling relations for high redshift objects. It turns out that with such future facility it will be possible to derive both accurate photometry and detailed morphology for very distant galaxies, that are mandatory to probe fundamental problems on the processes of galaxy formation and evolution. These results are also compared with the expected capabilities of NIRcam at JWST.

  5. The Dependence of Bar Fraction on Galaxy Properties

    NASA Astrophysics Data System (ADS)

    Erwin, Peter

    2009-05-01

    I present an analysis of how the fraction of galaxies with bars depends on galaxy properties, using the optical bar classifications of the RC3 catalog and data from the literature. The most striking result is a strong anti-correlation between bars and galaxy mass: the more massive a galaxy is, the less likely it is to host a bar. The trend is strongest when rotation velocity is used, which suggests that the halo mass might be the most important factor. For example, almost 90% of early-type spirals with Vrot < 150 km/s are barred; but the fraction drops to 40% by the time Vrot > 300 km/s. Bar fractions are systematically lower for S0 galaxies, even when the mass dependence is taken into account. I find no dependence of bar fraction on gas mass fraction, which may put constraints on models where high gas fractions are either necessary for bar persistence, or enhance bar weakening and destruction.

  6. Galaxies

    SciTech Connect

    Not Available

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented.

  7. RELATIONSHIP BETWEEN HUBBLE TYPE AND SPECTROSCOPIC CLASS IN LOCAL GALAXIES

    SciTech Connect

    Sanchez Almeida, J.; Aguerri, J. A. L.; Munoz-Tunon, C.; Huertas-Company, M. E-mail: jalfonso@iac.es E-mail: marc.huertas@obspm.fr

    2011-07-10

    We compare the Hubble type and the spectroscopic class of the galaxies with spectra in the Sloan Digital Sky Survey Data Release 7. As has long been known, elliptical galaxies tend to be red whereas spiral galaxies tend to be blue; however, this relationship presents a large scatter, which we measure and quantify in detail for the first time. We compare the Automatic Spectroscopic K-means-based classification (ASK) with most of the commonly used morphological classifications. Despite the degree of subjectivity involved in morphological classifications, all of them provide consistent results. Given a spectral class, the morphological type wavers with a standard deviation between 2 and 3 T types, and the same large dispersion characterizes the variability of spectral classes given a morphological type. The distributions of Hubble types for each ASK class are very skewed-they present long tails that extend to late morphological types in the red galaxies and to early morphological types in the blue spectroscopic classes. The scatter is not produced by problems with the classification and it remains when particular subsets are considered-low and high galaxy masses, low and high density environments, barred and non-barred galaxies, edge-on galaxies, small and large galaxies, or when a volume-limited sample is considered. A considerable fraction of red galaxies are spirals (40%-60%), but they never present very late Hubble types (Sd or later). Even though red spectra are not associated with ellipticals, most ellipticals do have red spectra: 97% of the ellipticals in the morphological catalog by Nair and Abraham used here for reference belong to ASK 0, 2, or 3; only 3% of the ellipticals are blue. The galaxies in the green valley class (ASK 5) are mostly spirals, and the active galactic nuclei class (ASK 6) presents a large scatter of Hubble types from E to Sd. We investigate variations with redshift using a volume-limited subsample mainly formed by luminous red galaxies

  8. 2D kinematical study in local luminous compact blue galaxies. Starburst origin in UCM2325+2318

    NASA Astrophysics Data System (ADS)

    Castillo-Morales, A.; Pérez-Gallego, J.; Gallego, J.; Guzmán, R.; Castander, F.; Garland, C.; Gruel, N.; Pisano, D. J.; Muñoz-Mateos, J. C.; Ocaña, F.; Zamorano, J.

    2013-05-01

    Luminous Compact Blue Galaxies (LCBGs) are small, but vigorously star forming galaxies. Their presence at different redshifts denotes their cosmological relevance and implies that local starburst galaxies, when properly selected, are unique laboratories for studying the complex ecosystem of the star formation process over time. We have selected a representative sample of 22 LCBGs from the SDSS and UCM databases which, although small, provides an excellent reference for comparison with current and future surveys of similar starbursts at high-z. We are carrying out a 2D optical spectroscopic study of this LCBG sample, including spatially resolved maps of kinematics, extinction, SFR and metallicity. This will help us to answer questions regarding the nature of these objects. In this poster we show our results on the kinematical study (Pérez-Gallego et al. 2011) which allows us to classify these galaxies into three different classes: rotating disk (RD) 48%, perturbed rotation (PR) 28% and complex kinematics (CK) 24%. We find 5% of objects show evidence of a recent major merger, 10% of a minor merger, and 45% of a companion. This argues in favor of ongoing interactions with close companions as a mechanism for the enhanced star formation activity in these galaxies. We find only 5% of objects with clear evidence of AGN activity, and 27% with kinematics consistent with SN-driven galactic winds. Therefore, a different mechanism may be responsible for quenching the star formation in LCBGs. The detailed analysis of the physical properties for each galaxy in the sample is on progress and we show in this poster the results on UCM2325+2318 as a prototype LCBG. Between the possible mechanisms to explain the starburst activity in this galaxy, our 2D spectroscopic data support the scenario of an on-going interaction with the possibility for clump B to be the dwarf satellite galaxy (Castillo-Morales et al. 2011, Pérez-Gallego et al. 2010).

  9. A Local Baseline of the Black Hole Mass Scaling Relations for Active Galaxies. I. Methodology and Results of Pilot Study

    NASA Astrophysics Data System (ADS)

    Bennert, Vardha Nicola; Auger, Matthew W.; Treu, Tommaso; Woo, Jong-Hak; Malkan, Matthew A.

    2011-01-01

    We present high-quality Keck/LRIS long-slit spectroscopy of a pilot sample of 25 local active galaxies selected from the SDSS (0.02 <=z <= 0.1; M BH>107 M sun) to study the relations between black hole mass (M BH) and host-galaxy properties. We determine stellar kinematics of the host galaxy, deriving stellar-velocity dispersion profiles and rotation curves from three spectral regions (including CaH&K, MgIb triplet, and Ca II triplet). In addition, we perform surface photometry on SDSS images, using a newly developed code for joint multi-band analysis. BH masses are estimated from the width of the Hβ emission line and the host-galaxy free 5100 Å active galactic nucleus (AGN) luminosity. Combining results from spectroscopy and imaging allows us to study four M BH scaling relations: M BH-σ, M BH-L sph, M BH-M sph,sstarf, and M BH-M sph,dyn. We find the following results. First, stellar-velocity dispersions determined from aperture spectra (e.g., SDSS fiber spectra or unresolved data from distant galaxies) can be biased, depending on aperture size, AGN contamination, and host-galaxy morphology. However, such a bias cannot explain the offset seen in the M BH-σ relation at higher redshifts. Second, while the CaT region is the cleanest to determine stellar-velocity dispersions, both the MgIb region, corrected for Fe II emission, and the CaHK region, although often swamped by the AGN power-law continuum and emission lines, can give results accurate to within a few percent. Third, the M BH scaling relations of our pilot sample agree in slope and scatter with those of other local active and inactive galaxies. In the next papers of the series we will quantify the scaling relations, exploiting the full sample of ~100 objects.

  10. Hα survey of the local volume: Isolated southern galaxies

    NASA Astrophysics Data System (ADS)

    Kaisin, S. S.; Kasparova, A. V.; Knyazev, A. Yu.; Karachentsev, I. D.

    2007-05-01

    We present our Hα observations of 11 isolated southern galaxies: SDIG, PGC 51659, E 222-010, E 272-025, E 137-018, IC 4662, Sag DIG, IC 5052, IC 5152, UGCA 438, and E 149-003, with distances from 1 to 7 Mpc. We have determined the total Hα fluxes from these galaxies. The star formation rates in these galaxies range from 10-1 (IC 4662) to 10-4 M ⊙ yr-1 (SDIG) and the gas depletion time at the observed star formation rates lies within the range from 1/6 to 24 Hubble times H 0 -1 .

  11. Understanding the Physical Conditions in Local Analogs of High-Redshift Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Spiewak, Renée; Erb, Dawn; Tremonti, Christina A.; Berg, Danielle

    2016-01-01

    Observations of strong nebular emission lines in high-redshift galaxies (z~2) can be illuminated through the use of analogous local galaxies (z<0.4), for which many more emission lines can be measured. The observed offset in the "BPT" ([N II]λ6584/Hα vs. [O III]λ5007/Hβ) nebular diagnostic diagram between the locus of high redshift galaxies and that of typical local galaxies indicates a change in the physical conditions of the galaxies with redshift; the cause of this offset is unknown, but it may be associated with the ionization parameter, the hardness of the ionizing spectrum, or the N/O abundance ratio. To study the offset, we have selected a sample of local galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey Data Release 12 (SDSS-III/BOSS DR12), which occupies the same space in the [N II]λ6584/Hα vs. [O III]λ5007/Hβ diagnostic diagram as the z~2 sample. Using a suite of >50 different emission lines, most of which are unavailable in analyses of higher redshift galaxies, and a novel method of improving the spectrophotometric calibration of BOSS data, we investigate the metallicity, ionization state, and abundance ratios of this offset sample in order to shed light on the physical conditions in galaxies in the early universe.

  12. Structural Properties and Evidence for Interactions in a Sample of Luminous Blue Compact Galaxies

    NASA Astrophysics Data System (ADS)

    Newton, Cassidy L.; Fanelli, M.; Marcum, P.

    2010-01-01

    Understanding the life cycles of galaxies over cosmic time is a primary effort in modern astrophysics. Here we explore the nature of luminous blue compact galaxies (LBCGs), a class of galaxy in the local (z < 0.05) universe exhibiting blue optical colors [(B-V) < 0.5], high luminosity (MB < -19), one or more high surface brightness regions, and moderate to high star formation rates [> 5 M(sun) per year]. LBCGs appear to be similar in their global properties to the early evolutionary phases of most galaxies, but are more amenable to detailed analysis due to their low redshifts. We describe an ultraviolet and optical investigation of a sample of 50 LBCGs using UBVR & Hα imagery obtained at McDonald Observatory, ultraviolet photometry from GALEX, and correlative data from IRAS, 2MASS, and SDSS. Using these data, we explore the evolutionary state of LBCGs. In particular, we determine the radial and azimuthal light distributions, explore the spatial extent of ionized gas (e.g., centrally- concentrated versus spatially diffuse), compare multiwavelength measures of the high-mass star formation rate, and quantify the interaction strength using a variety of merger diagnostics. Although selected independent of their environment, most systems display either a close companion or the signature of an interaction such as tails, bridges, and possible polar rings. Interpretation of the assembly history of LBCGs provides insight on massive galaxy evolution at earlier epochs.

  13. Redshift evolution of the dynamical properties of massive galaxies from SDSS-III/BOSS

    SciTech Connect

    Beifiori, Alessandra; Saglia, Roberto P.; Bender, Ralf; Senger, Robert; Thomas, Daniel; Maraston, Claudia; Steele, Oliver; Masters, Karen L.; Pforr, Janine; Tojeiro, Rita; Johansson, Jonas; Nichol, Robert C.; Chen, Yan-Mei; Wake, David; Bolton, Adam; Brownstein, Joel R.; Leauthaud, Alexie; Schneider, Donald P.; Skibba, Ramin; Pan, Kaike; and others

    2014-07-10

    We study the redshift evolution of the dynamical properties of ∼180, 000 massive galaxies from SDSS-III/BOSS combined with a local early-type galaxy sample from SDSS-II in the redshift range 0.1 ≤ z ≤ 0.6. The typical stellar mass of this sample is M{sub *} ∼2 × 10{sup 11} M{sub ☉}. We analyze the evolution of the galaxy parameters effective radius, stellar velocity dispersion, and the dynamical to stellar mass ratio with redshift. As the effective radii of BOSS galaxies at these redshifts are not well resolved in the Sloan Digital Sky Survey (SDSS) imaging we calibrate the SDSS size measurements with Hubble Space Telescope/COSMOS photometry for a sub-sample of galaxies. We further apply a correction for progenitor bias to build a sample which consists of a coeval, passively evolving population. Systematic errors due to size correction and the calculation of dynamical mass are assessed through Monte Carlo simulations. At fixed stellar or dynamical mass, we find moderate evolution in galaxy size and stellar velocity dispersion, in agreement with previous studies. We show that this results in a decrease of the dynamical to stellar mass ratio with redshift at >2σ significance. By combining our sample with high-redshift literature data, we find that this evolution of the dynamical to stellar mass ratio continues beyond z ∼ 0.7 up to z > 2 as M{sub dyn}/M{sub *} ∼(1 + z){sup –0.30±0.12}, further strengthening the evidence for an increase of M{sub dyn}/M{sub *} with cosmic time. This result is in line with recent predictions from galaxy formation simulations based on minor merger driven mass growth, in which the dark matter fraction within the half-light radius increases with cosmic time.

  14. Optical-to-virial velocity ratios of local disc galaxies from combined kinematics and galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Reyes, R.; Mandelbaum, R.; Gunn, J. E.; Nakajima, R.; Seljak, U.; Hirata, C. M.

    2012-10-01

    In this paper, we measure the optical-to-virial velocity ratios Vopt/V200c of disc galaxies in the Sloan Digital Sky Survey (SDSS) at a mean redshift of = 0.07 and with stellar masses 109 < M* < 1011 M⊙. Vopt/V200c, the ratio of the circular velocity measured at the optical radius of the disc (˜10 kpc) to that at the virial radius of the dark matter halo (˜150 kpc), is a powerful observational constraint on disc galaxy formation. It links galaxies to their dark matter haloes dynamically and constrains the total mass profile of disc galaxies over an order of magnitude in length scale. For this measurement, we combine Vopt derived from the Tully-Fisher relation (TFR) from Reyes et al. with V200c derived from halo masses measured with galaxy-galaxy lensing. In anticipation of this combination, we use similarly selected galaxy samples for both the TFR and lensing analysis. For three M* bins with lensing-weighted mean stellar masses of 0.6, 2.7 and 6.5 × 1010 M⊙, we find halo-to-stellar mass ratios M200c/M* = 41, 23 and 26, with 1σ statistical uncertainties of around 0.1 dex, and Vopt/V200c = 1.27 ± 0.08, 1.39 ± 0.06 and 1.27 ± 0.08 (1σ), respectively. Our results suggest that the dark matter and baryonic contributions to the mass within the optical radius are comparable, if the dark matter halo profile has not been significantly modified by baryons. The results obtained in this work will serve as inputs to and constraints on disc galaxy formation models, which will be explored in future work. Finally, we note that this paper presents a new and improved galaxy shape catalogue for weak lensing that covers the full SDSS Data Release 7 footprint.

  15. Redshift-Distance Survey of Early-Type Galaxies. I. Sample Selection, Properties, and Completeness

    NASA Astrophysics Data System (ADS)

    da Costa, L. N.; Bernardi, M.; Alonso, M. V.; Wegner, G.; Willmer, C. N. A.; Pellegrini, P. S.; Rité, C.; Maia, M. A. G.

    2000-07-01

    of the 7S and the recent Tully-Fisher surveys sampling a comparable volume. In subsequent papers of this series we intend to use the ENEAR sample by itself or in combination with the I-band field spiral (SFI) Tully-Fisher survey to analyze the properties of the local peculiar velocity field and to test how sensitive the results are to the different sampling of the galaxy distribution and to the distance relation used. We also anticipate that the homogeneous database assembled will be used for a variety of other applications and serve as a benchmark for similar studies at high redshift. Based on observations at Complejo Astronomico El Leoncito (CASLEO), operated under agreement between the Consejo Nacional de Investigaciones Cientí ficas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan; Cerro Totolo Interamerican Observatory (CTIO), operated by the National Optical Astronomical Observatories, under AURA; European Southern Observatory (ESO), partially under the ESO-ON agreement; Fred Lawrence Whipple Observatory (FLWO) Observatório do Pico dos Dias, operated by the Laboratório Nacional de Astrofísica (LNA) and the MDM Observatory at Kitt Peak.

  16. The morphological types of galaxies in the Local Supercluster

    NASA Astrophysics Data System (ADS)

    Bajan, K.; Flin, P.; Godłowski, W.

    2016-10-01

    On the basis of the Hyper - Leda Catalogue HyperLeda 8293 galaxies with heliocentric radial velocities below 2500 km s-1 were selected; 4570 had known morphological types (4366 had calculated b/a ratio). We checked the frequency of the distribution of various types in the LSC, finding spirals and irregulars most numerous, in accordance with expectations. The axial ratio of galaxy diameters of various types was studied, and the dependence of this parameter on the morphological type was noted.

  17. Hα3: an Hα imaging survey of HI selected galaxies from ALFALFA. II. Star formation properties of galaxies in the Virgo cluster and surroundings

    NASA Astrophysics Data System (ADS)

    Gavazzi, G.; Fumagalli, M.; Fossati, M.; Galardo, V.; Grossetti, F.; Boselli, A.; Giovanelli, R.; Haynes, M. P.

    2013-05-01

    Context. We present the analysis of Hα3, an Hα narrow-band imaging follow-up survey of 409 galaxies selected from the HI Arecibo Legacy Fast ALFA Survey (ALFALFA) in the Local Supercluster, including the Virgo cluster, in the region 11h < RA < 16h ; 4o < Dec < 16°; 350 < cz < 2000 km s-1. Aims: Taking advantage of Hα3, which provides the complete census of the recent massive star formation rate (SFR) in HI-rich galaxies in the local Universe and of ancillary optical data from SDSS we explore the relations between the stellar mass, the HI mass, and the current, massive SFR of nearby galaxies in the Virgo cluster. We compare these with those of isolated galaxies in the Local Supercluster, and we investigate the role of the environment in shaping the star formation properties of galaxies at the present cosmological epoch. Methods: By using the Hα hydrogen recombination line as a tracer of recent star formation, we investigated the relationships between atomic neutral gas and newly formed stars in different environments (cluster and field), for many morphological types (spirals and dwarfs), and over a wide range of stellar masses (107.5 to 1011.5 M⊙). To quantify the degree of environmental perturbation, we adopted an updated calibration of the HI deficiency parameter which we used to divide the sample into three classes: unperturbed galaxies (DefHI ≤ 0.3), perturbed galaxies (0.3 < DefHI < 0.9), and highly perturbed galaxies (DefHI ≥ 0.9). Results: Studying the mean properties of late-type galaxies in the Local Supercluster, we find that galaxies in increasing dense local galaxy conditions (or decreasing projected angular separation from M 87) show a significant decrease in the HI content and in the mean specific SFR, along with a progressive reddening of their stellar populations. The gradual quenching of the star formation occurs outside-in, consistently with the predictions of the ram pressure model. Once considered as a whole, the Virgo cluster is

  18. Constructing massive blue elliptical galaxies in the local universe

    NASA Astrophysics Data System (ADS)

    Haines, Tim

    Over cosmic time, galaxy mass assembly has transitioned from low-mass, star-forming disk galaxies to massive, quiescent elliptical galaxies. The merger hypothesis for the formation of new elliptical galaxies provides one physical explanation to the observed buildup of this population, a key prediction of which is a brief phase of morphological transformation from highly-disturbed remnant to blue elliptical. We study 12 plausible new ellipticals with varying degrees of morphological peculiarities visually selected from a larger parent sample of nearby (0.01 ≤ z ≤ 0.04), massive (M* ≥ 10 10 M⊙ ), concentrated (Petrosian R90/R50 ≥ 2.6), and optically blue galaxies from the SDSS DR4 catalog. Using integral field spectroscopy, we construct two-dimensional spectra of the stellar populations and azimuthally bin them into concentric annuli to determine the relative ages of the stellar populations as a function of radius. Using this data and conclusions from simulations, we seek to distinguish post-mergers from galaxies undergoing other modes of mass assembly. We find that 1/3 of our sample is consistent with having undergone a recent, gas-rich major merger. Another 1/3 of our sample is consistent with having undergone a 'frosting' of recent star formation. The final 1/3 of our sample is either inconsistent with or inconclusive of having undergone a recent, gas-rich major merger.

  19. Evidence for Black Hole Growth in Local Analogs to Lyman Break Galaxies

    NASA Technical Reports Server (NTRS)

    Jia, Jianjun; Ptak, Andrew; Heckman, Timothy M.; Overzier, Roderik A.; Hornschemeier, Ann; LaMassa, Stephanie M.

    2011-01-01

    We have used XMM-Newton to observe six Lyman break analogs (LBAs): members of the rare population of local galaxies that have properties that are very similar to distant Lyman break galaxies. Our six targets were specifically selected because they have optical emission-line properties that are intermediate between starbursts and Type 2 (obscured) active galactic nuclei (AGNs). Our new X-ray data provide an important diagnostic of the presence of an AGN. We find X-ray luminosities of order 10(sup 42) erg per second and ratios of X-ray to far-IR lummositles that are higher than values in pure starburst galaxies by factors ranging from approximately 3 to 30. This strongly suggests the presence of an AGN in at least some of the galaxies. The ratios of the luminosities of the hard (2-10 keV) X-ray to [O III] emission line are low by about an order of magnitude compared with Type 1 AGN, but are consistent with the broad range seen in Type 2 AGN. Either the AGN hard X-rays are significantly obscured or the [O III] emission is dominated by the starburst. We searched for an iron emission line at approximately 6.4 ke V, which is a key feature of obscured AGNs, but only detected emission at the approximately 2sigma level. Finally, we find that the ratios of the mid-infrared (24 micrometer) continuum to [O III]lambda 5007 luminosities in these LBAs are higher than the values for Type 2 AGN by an average of 0.8 dex. Combining all these clues, we conclude that an AGN is likely to be present, but that the bolometric luminosity is produced primarily by an intense starburst. If these black holes are radiating at the Eddington limit, their masses would lie in the range of 10(sup 5) - 10(sup 6) solar mass. These objects may offer ideal local laboratories to investigate the processes by which black holes grew in the early universe.

  20. Properties of galaxies in the disc central surface brightness gap

    NASA Astrophysics Data System (ADS)

    Sorce, Jenny G.; Creasey, Peter; Libeskind, Noam I.

    2016-01-01

    Intermediate surface brightness (ISB) galaxies are less numerous than their counterparts at high and low surface brightness (HSB and LSB). Investigating ISB characteristics from a sample from the Spitzer Survey of Stellar Structure in Galaxies survey, complete down to MB = -16, we find that they have intermediate stellar, gas and baryonic masses and on average as much gas as stars. They lie on the (baryonic) Tully-Fisher relation between HSBs and LSBs, although they present a higher scatter than the latter. Their stellar to baryonic mass ratios have intermediate values unlike their condensed baryonic fractions. By comparing their environments, as classified by the eigenvalues of the velocity shear tensor of local constrained simulations, ISBs have a 5-10 per cent probability higher (smaller) to be in sheets (filaments) with respect to HSBs and LSBs. Additionally, for galaxies in filaments (with close neighbours), the mass and μ0 are correlated at 2.5 (2)σ more than for those in sheets. ISBs live in regions where the divergence of the velocity field is smaller than where HSBs and LSBs live, a result at more than 50 per cent significance. ISBs may exist as an unstable transition state between LSBs and HSBs, the low flow activity environment maximally encouraging their formation. Interaction events altering the central baryon fraction could happen at a lower rate in these less dense environment, whilst in the higher density environments the LSBs are primarily satellite galaxies, whose accretion is sufficiently constrained that it fails to promote them to HSBs.

  1. Galaxy evolution in nearby galaxy groups - III. A GALEX view of NGC 5846, the largest group in the local universe

    NASA Astrophysics Data System (ADS)

    Marino, Antonietta; Mazzei, Paola; Rampazzo, Roberto; Bianchi, Luciana

    2016-06-01

    We explore the co-evolution of galaxies in nearby groups (Vhel ≤ 3000 km s-1) with a multiwavelength approach. We analyse GALEX far-UV (FUV) and near-UV (NUV) imaging, and Sloan Digital Sky Survey u, g, r, i, z data of groups spanning a large range of dynamical phases. We characterize the photometric properties of spectroscopically confirmed galaxy members and investigate the global properties of the groups through a dynamical analysis. Here, we focus on NGC 5846, the third most massive association of early-type galaxies (ETGs) after the Virgo and Fornax clusters. The group, composed of 90 members, is dominated by ETGs (about 80 per cent), and among ETGs about 40 per cent are dwarfs. Results are compared with those obtained for three groups in the LeoII cloud, which are radically different both in member-galaxy population and dynamical properties. The FUV-NUV cumulative colour distribution and the normalized UV luminosity function (LF) significantly differ due to the different fraction of late-type galaxy population. The UV LF of NGC 5846 resembles that of the Virgo cluster, however our analysis suggests that star formation episodes are still occurring in most of the group galaxies, including ETGs. The NUV-i colour distribution, the optical-UV colour-colour diagram, and NUV-r versus Mr colour-magnitude relation suggest that the gas contribution cannot be neglected in the evolution of ETG-type group members. Our analysis highlights that NGC 5846 is still in an active phase of its evolution, notwithstanding the dominance of dwarf and bright ETGs and its virialized configuration.

  2. Properties of early-type galaxies in a cosmological framework

    NASA Astrophysics Data System (ADS)

    Rosito, M. S.; Pedrosa, S. E.; Tissera, P. B.

    2016-08-01

    In this work, we aim to analyse the physical properties of elliptical galaxies within a cosmological framework. We use cosmological simulations that are part of the Fenix Project. These simulations were run using the code gadget-3 which includes metal-dependent radiative cooling, stochastic star formation, chemical and energetic supernovae feedback. We study the fundamental scaling relations and we achieved some preliminary results that are in good agreement with observations.

  3. METALLICITY DISTRIBUTION FUNCTIONS OF FOUR LOCAL GROUP DWARF GALAXIES

    SciTech Connect

    Ross, Teresa L.; Holtzman, Jon; Saha, Abhijit; Anthony-Twarog, Barbara J. E-mail: holtz@nmsu.edu

    2015-06-15

    We present stellar metallicities in Leo I, Leo II, IC 1613, and Phoenix dwarf galaxies derived from medium (F390M) and broad (F555W, F814W) band photometry using the Wide Field Camera 3 instrument on board the Hubble Space Telescope. We measured metallicity distribution functions (MDFs) in two ways, (1) matching stars to isochrones in color–color diagrams and (2) solving for the best linear combination of synthetic populations to match the observed color–color diagram. The synthetic technique reduces the effect of photometric scatter and produces MDFs 30%–50% narrower than the MDFs produced from individually matched stars. We fit the synthetic and individual MDFs to analytical chemical evolution models (CEMs) to quantify the enrichment and the effect of gas flows within the galaxies. Additionally, we measure stellar metallicity gradients in Leo I and II. For IC 1613 and Phoenix our data do not have the radial extent to confirm a metallicity gradient for either galaxy. We find the MDF of Leo I (dwarf spheroidal) to be very peaked with a steep metal-rich cutoff and an extended metal-poor tail, while Leo II (dwarf spheroidal), Phoenix (dwarf transition), and IC 1613 (dwarf irregular) have wider, less peaked MDFs than Leo I. A simple CEM is not the best fit for any of our galaxies; therefore we also fit the “Best Accretion Model” of Lynden-Bell. For Leo II, IC 1613, and Phoenix we find similar accretion parameters for the CEM even though they all have different effective yields, masses, star formation histories, and morphologies. We suggest that the dynamical history of a galaxy is reflected in the MDF, where broad MDFs are seen in galaxies that have chemically evolved in relative isolation and narrowly peaked MDFs are seen in galaxies that have experienced more complicated dynamical interactions concurrent with their chemical evolution.

  4. Mapping the Properties of Blue Compact Dwarf Galaxies by Means of Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cairós, L. M.; Caon, N.; Weilbacher, P.; Papaderos, P.; García-Lorenzo, B.

    Blue Compact Dwarf (BCD) galaxies are metal-poor and gas-rich systems undergoing intense, spatially extended star-forming activity. These galaxies offer a unique opportunity to investigate dwarf galaxy formation and evolution, and probe violent star formation and its implications on the chemical, dynamical and structural properties of low-mass extragalactic systems near and far. Several fundamental questions in BCD research, such as their star formation histories and the mechanisms that control their cyclic starburst activity, are still far from well understood. In order to improve our understanding on BCD evolution, we are carrying out a comprehensive Integral Field Spectroscopic (IFS) survey of a large sample of BCDs. Integral Field Unit (IFU) spectroscopy provides simultaneously spectral and spatial information, allowing, in just one shot, to study the morphology and evolutionary status of the stellar component, and the physical properties of the warm interstellar medium (e.g., extinction, chemical abundances, kinematics). This ongoing IFS survey will supply much needed local templates that will ease the interpretation of IFS data for intermediate and high-redshift star-forming galaxies.

  5. A homogeneous sample of binary galaxies: Basic observational properties

    NASA Technical Reports Server (NTRS)

    Karachentsev, I. D.

    1990-01-01

    A survey of optical characteristics for 585 binary systems, satisfying a condition of apparent isolation on the sky, is presented. Influences of various selection effects distorting the average parameters of the sample are noted. The pair components display mutual similarity over all the global properties: luminosity, diameter, morphological type, mass-to-luminosity ratio, angular momentum etc., which is not due only to selection effects. The observed correlations must be caused by common origin of pair members. Some features (nuclear activity, color index) could acquire similarity during synchronous evolution of double galaxies. Despite the observed isolation, the sample of double systems is seriously contaminated by accidental pairs, and also by members of groups and clusters. After removing false pairs estimates of orbital mass-to-luminosity ratio range from 0 to 30 f(solar), with the mean value (7.8 plus or minus 0.7) f(solar). Binary galaxies possess nearly circular orbits with a typical eccentrity e = 0.25, probably resulting from evolutionary selection driven by component mergers under dynamical friction. The double-galaxy population with space abundance 0.12 plus or minus 0.02 and characteristic merger timescale 0.2 H(exp -1) may significantly influence the rate of dynamical evolution of galaxies.

  6. HST Imaging of the Local Volume Dwarf Galaxies Pisces A and B: Prototypes for Local Group Dwarfs

    NASA Astrophysics Data System (ADS)

    Tollerud, Erik J.; Geha, Marla C.; Grcevich, Jana; Putman, Mary E.; Weisz, Daniel R.; Dolphin, Andrew E.

    2016-08-01

    We present observations of the Pisces A and B galaxies with the Advanced Camera for Surveys on the Hubble Space Telescope. Photometry from these images clearly resolves a red giant branch (RGB) for both objects, demonstrating that they are nearby dwarf galaxies. We describe a Bayesian inferential approach to determining the distance to these galaxies using the magnitude of the tip of the RGB, and then apply this approach to these galaxies. This reveals the distance to these galaxies as {5.64}-0.15+0.13 {{Mpc}} and {8.89}-0.85+0.75 {{Mpc}} for Pisces A and B, respectively, placing both within the Local Volume but not the Local Group (LG). We estimate the star formation histories of these galaxies, which suggests that they have recently undergone an increase in their star formation rates. Together these yield luminosities for Pisces A and B of {M}V=-{11.57}-0.05+0.06 and -12.9 ± 0.2, respectively, and estimated stellar masses of {log}({M}* /{M}⊙ )={7.0}-1.7+0.4 and {7.5}-1.8+0.3. We further show that these galaxies are likely at the boundary between nearby voids and higher-density filamentary structure. This suggests that they are entering a higher-density region from voids, where they would have experienced delayed evolution, consistent with their recent increased star formation rates. If this is indeed the case, they are useful for study as proxies of the galaxies that later evolved into typical LG satellite galaxies.

  7. Constraining ultracompact dwarf galaxy formation with galaxy clusters in the local universe

    NASA Astrophysics Data System (ADS)

    Pfeffer, J.; Hilker, M.; Baumgardt, H.; Griffen, B. F.

    2016-05-01

    We compare the predictions of a semi-analytic model for ultracompact dwarf galaxy (UCD) formation by tidal stripping to the observed properties of globular clusters (GCs) and UCDs in the Fornax and Virgo clusters. For Fornax we find the predicted number of stripped nuclei agrees very well with the excess number of GCs+UCDs above the GC luminosity function. GCs+UCDs with masses >107.3 M⊙ are consistent with being entirely formed by tidal stripping. Stripped nuclei can also account for Virgo UCDs with masses >107.3 M⊙ where numbers are complete by mass. For both Fornax and Virgo, the predicted velocity dispersions and radial distributions of stripped nuclei are consistent with that of UCDs within ˜50-100 kpc but disagree at larger distances where dispersions are too high and radial distributions too extended. Stripped nuclei are predicted to have radially biased anisotropies at all radii, agreeing with Virgo UCDs at clustercentric distances larger than 50 kpc. However, ongoing disruption is not included in our model which would cause orbits to become tangentially biased at small radii. We find the predicted metallicities and central black hole masses of stripped nuclei agree well with the metallicities and implied black hole masses of UCDs for masses >106.5 M⊙. The predicted black hole masses also agree well with that of M60-UCD1, the first UCD with a confirmed central black hole. These results suggest that observed GC+UCD populations are a combination of genuine GCs and stripped nuclei, with the contribution of stripped nuclei increasing towards the high-mass end.

  8. The Star Formation Histories of Local Group Dwarf Galaxies. III. Characterizing Quenching in Low-mass Galaxies

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; Holtzman, Jon; Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2015-05-01

    We explore the quenching of low-mass galaxies (104 ≲ {{M}\\star } ≲ 108 {{M}⊙ }) as a function of lookback time using the star formation histories (SFHs) of 38 Local Group dwarf galaxies. The SFHs were derived by analyzing color-magnitude diagrams of resolved stellar populations in archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. We find: (1) lower-mass galaxies quench earlier than higher-mass galaxies; (2) inside of Rvirial there is no correlation between a satellite’s current proximity to a massive host and its quenching epoch; and (3) there are hints of systematic differences in the quenching times of M31 and Milky Way (MW) satellites, although the sample size and uncertainties in the SFHs of M31 dwarfs prohibit definitive conclusions. Combined with results from the literature, we qualitatively consider the redshift evolution (z = 0-1) of the quenched galaxy fraction over ˜7 dex in stellar mass (104 ≲ {{M}\\star } ≲ 1011.5 {{M}⊙ }). The quenched fraction of all galaxies generally increases toward the present, with both the lowest and highest-mass systems exhibiting the largest quenched fractions at all redshifts. In contrast, galaxies between {{M}\\star } ˜ 108-1010 {{M}⊙ } have the lowest quenched fractions. We suggest that such intermediate-mass galaxies are the least efficient at quenching. Finally, we compare our quenching times with predictions for infall times for low-mass galaxies associated with the MW. We find that some of the lowest-mass satellites (e.g., CVn II, Leo IV) may have been quenched before infall, while higher-mass satellites (e.g., Leo I, Fornax) typically quench ˜1-4 Gyr after infall. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA constract NAS 5-26555.

  9. Testing different AGN tracers on a local sample of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Pozzi, F.

    2016-08-01

    I will present our new study on a local sample of Seyfert galaxies selected at 12 micron. This sample, given its plenty of information, both photometric and spectroscopic, is a perfect sample to compare, from a statistical point of view, different AGN selection criteria, and AGN derived intrinsic properties. In detail, I will compare AGN activity derived from SED-fitting technique, X-ray luminosity and AGN activity traced by high excitation IR lines, like [NeV] and [OIV]. Moreover, for one particular obscured X-ray Compton-thick source, thanks also to the availability of ALMA data, I will derive a self-consistent overview of the physics behind the emission in different bands,by taking advantage of the photoionization code CLOUDY.

  10. Galaxy populations in the Antlia cluster - III. Properties of faint early-type galaxies

    NASA Astrophysics Data System (ADS)

    Smith Castelli, Analía. V.; Cellone, Sergio A.; Faifer, Favio R.; Bassino, Lilia P.; Richtler, Tom; Romero, Gisela A.; Calderón, Juan Pablo; Caso, Juan Pablo

    2012-01-01

    We present a new analysis of the early-type galaxy population in the central region of the Antlia cluster, focusing on the faint systems such as dwarf ellipticals (dEs) and dwarf spheroidals (dSphs). The colour-magnitude relation (CMR) and the relation between luminosity and mean effective surface brightness for galaxies in the central region of Antlia have been previously studied in Paper I of the present series. Now we confirm 22 early-type galaxies as Antlia members, using Gemini-GMOS and Magellan-MIKE spectra. Among them, 15 are dEs from the FS90 Antlia Group catalogue, two belong to the rare type of compact ellipticals (cEs) and five are new faint dwarfs that had never been catalogued before. In addition, we present 16 newly identified low-surface-brightness galaxy candidates, almost half of them displaying morphologies consistent with being Antlia's counterparts of Local Group dSphs, which extend the faint luminosity limit of our study down to MB=-10.1(BT= 22.6) mag. With these new data, we built an improved CMR in the Washington photometric system, i.e. integrated T1 magnitudes versus (C-T1) colours, which extends ˜4 mag faintwards the limit of spectroscopically confirmed Antlia members. When only confirmed early-type members are considered, this relation extends over 10 mag in luminosity with no apparent change in slope or increase in colour dispersion towards its faint end. The intrinsic colour scatter of the relation is compared with those reported for other clusters of galaxies; we argue that it is likely that the large scatter of the CMR, usually reported at faint magnitudes, is mostly due to photometric errors along with an improper membership/morphological classification. The distinct behaviour of the luminosity versus mean effective surface brightness relation at the bright and faint ends is analysed, while it is confirmed that dE galaxies on the same relation present a very similar effective radius, regardless of their colour. The projected spatial

  11. Photometric Properties of the Most Massive High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Robertson, Brant; Li, Yuexing; Cox, Thomas J.; Hernquist, Lars; Hopkins, Philip F.

    2007-09-01

    We calculate the observable properties of the most massive high-redshift galaxies in the hierarchical formation scenario where stellar spheroid and supermassive black hole growth are fueled by gas-rich mergers. Combining high-resolution hydrodynamical simulations of the hierarchical formation of a z~6 quasar, stellar population synthesis models, template active galactic nucleus (AGN) spectra, prescriptions for interstellar and intergalactic absorption, and the response of modern telescopes, the photometric evolution of galaxies destined to host z~6 quasars is modeled at redshifts z~4-14. These massive galaxies, with enormous stellar masses of M*~1011.5-1012 Msolar and star formation rates of SFR~103-104 Msolar yr-1 at z>~7, satisfy a variety of photometric selection criteria based on Lyman break techniques, including V-band dropouts at z>~5, i-band dropouts at z>~6, and z-band dropouts at z>~7. The observability of the most massive high-redshift galaxies is assessed and compared with a wide range of existing and proposed photometric surveys, including the Sloan Digital Sky Survey (SDSS), Great Observatories Origins Deep Survey (GOODS)/Hubble Ultra Deep Field (HUDF), National Optical Astronomy Observatory Deep Wide-Field Survey (NDWFS), UKIRT Infared Deep Sky Survey (UKIDSS), Infrared Array Camera (IRAC) Shallow Survey, Ultradeep Visible and Infrared Survey Telescope for Astronomy (VISTA), Dark Universe Explorer (DUNE), Panoramic Survey Telescope and Rapid Response System (Pan-STARRS), Large Synoptic Survey Telescope (LSST), and Supernova/Acceleration Probe (SNAP). Massive stellar spheroids descended from z~6 quasars will likely be detected at z~4 by existing surveys, but owing to their low number densities the discovery of quasar progenitor galaxies at z>7 will likely require future surveys of large portions of the sky (>~0.5%) at wavelengths λ>~1 μm. The detection of rare, starbursting, massive galaxies at redshifts z>~6 would provide support for the

  12. The Star Formation History of the Local Group Dwarf Elliptical Galaxy NGC 185. I. Stellar Content

    NASA Astrophysics Data System (ADS)

    Martínez-Delgado, D.; Aparicio, A.

    1998-04-01

    We present VI CCD photometry of ~16,000 stars in a 7.2‧ x 7.2‧ field of the Local Group dwarf elliptical galaxy NGC 185. The resulting VI color-magnitude diagram reveals a dominant red giant branch population, an important number of luminous red stars located above the tip of the red giant branch, and a number of blue and yellow stars. Besides the nucleus, our field also covers a large, less crowded area of the galaxy. We show color-magnitude diagrams at six different distances from the nucleus. The red giant branch becomes substantially narrower at larger distances from the nucleus, while the photometry gets deeper. In this paper, we concentrate on investigating the contribution of the observational effects (mainly crowding) to this observed gradient. Although we cannot rule out here the possibility that this trend partially originates in a gradient of the characteristics of the stellar populations of the galaxy with radius, we show that a strong radial gradient exists in the observational effects that can mimic a gradient in the real properties (e.g., age, metallicity) of the stellar population. A distance modulus of m - M = 23.95 +/- 0.10 has been obtained from the tip of the red giant branch, in good agreement with previous estimates. The average stellar metallicity is estimated to be [Fe/H] = -1.43 +/- 0.15, and decreases for increasing galactocentric distance. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  13. ISO Lensing Studies: background galaxies and foreground cluster properties

    NASA Astrophysics Data System (ADS)

    Perez-Martinez, Ricardo

    2003-02-01

    A number of ISO programmes, totaling over 100 hours of observation time, made use of the gravitational lensing phenomenon to extend the sensitivity of ISO observations. Substantial results derived from those programmes have been published, or are in the peer review process, addressing the MIR properties of the background lensed galaxy population. These results, which have important implications for galaxy evolution, and which resolve a large fraction of the 15 and 7 μm infrared-background light, will be briefly summarised. But the data has much further potential. Little has been published to date concerning the implications of the ISO lensing data for the foreground clusters themselves, nor addressing the overlap between the observed ISO sources and lensed populations seen at X-Ray and Sub-mm wavelengths. We report briefly on an ongoing programme to systematically reassess the set of ISO observations of lensing galaxy clusters and to describe and compare the IR properties of the clusters themselves. The overlap between ISO source lists and recently published lists of X-Ray and Sub-mm sources in the same fields is under study.

  14. Dynamical Family Properties and Dark Halo Scaling Relations of Giant Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin; Kronawitter, Andi; Saglia, R. P.; Bender, Ralf

    2001-04-01

    Based on a uniform dynamical analysis of the line-profile shapes of 21 mostly luminous, slowly rotating, and nearly round elliptical galaxies, we have investigated the dynamical family relations and dark halo properties of ellipticals. Our results include: (i) The circular velocity curves (CVCs) of elliptical galaxies are flat to within ~=10% for R>~0.2Re. (ii) Most ellipticals are moderately radially anisotropic; their dynamical structure is surprisingly uniform. (iii) Elliptical galaxies follow a Tully-Fisher (TF) relation with marginally shallower slope than spiral galaxies, and vmaxc~=300 km s-1 for an L*B galaxy. At given circular velocity, they are ~1 mag fainter in B and ~0.6 mag in R and appear to have slightly lower baryonic mass than spirals, even for the maximum M/LB allowed by the kinematics. (iv) The luminosity dependence of M/LB indicated by the tilt of the fundamental plane (FP) is confirmed. The tilt of the FP is not caused by dynamical or photometric nonhomology, although the latter might influence the slope of M/L versus L. It can also not be due only to an increasing dark matter fraction with L for the range of IMF currently discussed. It is, however, consistent with stellar population models based on published metallicities and ages. The main driver is therefore probably metallicity, and a secondary population effect is needed to explain the K-band tilt. (v) These results make it likely that elliptical galaxies have nearly maximal M/LB (minimal halos). (vi) Despite the uniformly flat CVCs, there is a spread in the luminous to dark matter ratio and in cumulative M/LB(r). Some galaxies have no indication for dark matter within 2Re, whereas for others we obtain local M/LB-values of 20-30 at 2Re. (vii) In models with maximum stellar mass, the dark matter contributes ~10%-40% of the mass within Re. Equal interior mass of dark and luminous matter is predicted at ~2-4Re. (viii) Even in these maximum stellar mass models, the halo core densities and

  15. Optical-to-IR Photometric Properties of Lyman Break Galaxies in the HDF-North

    NASA Astrophysics Data System (ADS)

    Papovich, C.; Dickinson, M.; Ferguson, H.; NICMOS HDF--N GO Team

    1999-12-01

    We present the photometric properties of Lyman Break Galaxies (LBGs) in the Hubble Deep Field North (HDF--N) using deep seven--band photometry from WFPC2 (UBVI, Williams et al. 1996), NICMOS (JH, Dickinson et al. 2000), and newly derived Ks--band photometry from ground--based KPNO data (Dickinson 1997; Papovich & Dickinson 2000). For the 27 HDF galaxies with spectroscopic redshifts 2.0 ≲ z ≲ 3.5, our photometry spans rest frame wavelengths extending from the Lyman limit through rest--frame λ 0 ≳ 5000 Angstroms. In this poster, we compare the spectral energy distributions (SEDs) of the LBGs to empirical spectral templates from Kinney et al. (1996) and Coleman, Wu, & Weedman (1980), and to population synthesis models from Bruzual & Charlot (1996). We consider general constraints on galaxy ages, star formation histories, and extinction. By selection, the LBGs contain strong, blue UV continua. In general, they are well fit by local starburst templates. To fit the SEDs of specific galaxies, most require modest but non--zero reddening. At rest--frame optical wavelengths, many galaxies show evidence for significant contributions from longer lived (A and later) stars, but none appear to be dominated by old (red) stellar populations. In some cases, there may be significant broad band flux contributions from strong nebular emission lines ([N 2]+Hα , [O 3]+Hβ , [O 2]). We discuss the implications for the evolutionary history of these galaxies using these empirical results. Support for this work is provided by NASA through grant GO-07817.01-96A.

  16. Connecting The Interstellar Gas And Dust Properties Of Distant Galaxies

    NASA Astrophysics Data System (ADS)

    Kulkarni, Varsha

    The properties of interstellar gas and dust in distant galaxies are fundamental parameters in constraining galaxy evolution models. Quasar absorption systems (QASs), which trace intervening galaxies along the sightlines to luminous background quasars, provide invaluable tools to directly study gas and dust in distant normal galaxies. Recent studies of QASs have found interesting trends in both gas and dust properties, such as correlations in metallicity with redshift and dust depletions. Our Spitzer spectroscopic studies also indicate that silicate dust grains are present in QASs, and in fact, at a level higher than expected for diffuse gas in the Milky Way. Moreover, the silicate dust grains in these distant galaxies may be substantially more crystalline than those in the Milky Way interstellar medium. We now propose a comprehensive study of the gas and dust properties of all QASs with strong Ly-alpha and/or metal absorption lines that have adequate archival IR data to probe the study of dust. Our analysis will include data primarily from the NASA-supported Spitzer, Herschel, HST, and Keck Observatory archives, along with a small amount of VLT/SDSS archival data. Our specific goals are as follows: (1) We will measure a large range of metal absorption lines in high-resolution quasar spectra from Keck, HST, and VLT archives to uniformly determine the metallicity, dust depletions, ionization, and star formation rates in the foreground QASs. In particular, we will study the variations in these quantities with gas velocity, using Voigt profile fitting techniques to determine the velocity structure. This analysis will also allow us to quantify the kinematics of the absorbing gas. (2) We will use archival Spitzer IRS quasar spectra to search for and measure the strengths of the 10 and 18 micron silicate dust absorption features for a much larger sample of QASs than previously studied. (3) We will fit the observed silicate absorption features in the Spitzer archival

  17. CONNECTIONS BETWEEN GALAXY MERGERS AND STARBURST: EVIDENCE FROM THE LOCAL UNIVERSE

    SciTech Connect

    Luo, Wentao; Yang, Xiaohu; Zhang, Youcai E-mail: xyang@sjtu.edu.cn

    2014-07-01

    Major mergers and interactions between gas-rich galaxies with comparable masses are thought to be the main triggers of starburst. In this work, we study, for a large stellar mass range, the interaction rate of the starburst galaxies in the local universe. We focus independently on central and satellite star forming galaxies extracted from the Sloan Digital Sky Survey. Here the starburst galaxies are selected in the star formation rate (SFR) stellar mass plane with SFRs five times larger than the median value found for ''star forming'' galaxies of the same stellar mass. Through visual inspection of their images together with close companions determined using spectroscopic redshifts, we find that ∼50% of the ''starburst'' populations show evident merger features, i.e., tidal tails, bridges between galaxies, double cores, and close companions. In contrast, in the control sample we selected from the normal star forming galaxies, only ∼19% of galaxies are associated with evident mergers. The interaction rates may increase by ∼5% for the starburst sample and 2% for the control sample if close companions determined using photometric redshifts are considered. The contrast of the merger rate between the two samples strengthens the hypothesis that mergers and interactions are indeed the main causes of starburst.

  18. Herschel/SPIRE Submillimeter Spectra of Local Active Galaxies

    NASA Astrophysics Data System (ADS)

    Pereira-Santaella, Miguel; Spinoglio, Luigi; Busquet, Gemma; Wilson, Christine D.; Glenn, Jason; Isaak, Kate G.; Kamenetzky, Julia; Rangwala, Naseem; Schirm, Maximilien R. P.; Baes, Maarten; Barlow, Michael J.; Boselli, Alessandro; Cooray, Asantha; Cormier, Diane

    2013-05-01

    We present the submillimeter spectra from 450 to 1550 GHz of 11 nearby active galaxies observed with the SPIRE Fourier Transform Spectrometer (SPIRE/FTS) on board Herschel. We detect CO transitions from J up = 4 to 12, as well as the two [C I] fine structure lines at 492 and 809 GHz and the [N II]1461 GHz line. We used radiative transfer models to analyze the observed CO spectral line energy distributions. The FTS CO data were complemented with ground-based observations of the low-J CO lines. We found that the warm molecular gas traced by the mid-J CO transitions has similar physical conditions (n_H_2 \\sim 103.2-103.9 cm-3 and T kin ~ 300-800 K) in most of our galaxies. Furthermore, we found that this warm gas is likely producing the mid-IR rotational H2 emission. We could not determine the specific heating mechanism of the warm gas, however, it is possibly related to the star formation activity in these galaxies. Our modeling of the [C I] emission suggests that it is produced in cold (T kin < 30 K) and dense (n_H_2 \\gt 10^3 cm-3) molecular gas. Transitions of other molecules are often detected in our SPIRE/FTS spectra. The HF J = 1-0 transition at 1232 GHz is detected in absorption in UGC 05101 and in emission in NGC 7130. In the latter, near-infrared pumping, chemical pumping, or collisional excitation with electrons are plausible excitation mechanisms likely related to the active galactic nucleus of this galaxy. In some galaxies, few H2O emission lines are present. Additionally, three OH+ lines at 909, 971, and 1033 GHz are identified in NGC 7130.

  19. Selection and Physical Properties of High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Fang, G. W.

    2014-09-01

    Extremely Red Objects (EROs) and BzKs continue to attract considerable interest. It has been suggested that they may be the direct progenitors of present-day massive E/S0 galaxies, and can provide crucial constraints on the current galaxy formation and evolution models. Therefore, the key question is to measure the relative fraction of OGs (old galaxies) and DGs (young, and dusty starburst galaxies) in the sample of EROs. Many groups have been currently investigating the fractions of these two ERO populations using a variety of observational approaches, but the fraction of OGs and DGs from different surveys is different. In the meantime, a number of observations suggest that the epoch of z˜2 also plays an important role in galaxy formation and evolution for various reasons: the cosmic star formation rate density (SFRD) begins to drop at z˜2 from a flat plateau at higher redshifts; the morphological type mix of field galaxies changes remarkably at z˜2; the number density of QSOs has a peak at z˜2; and about 50% to 70% of the stellar mass assembly of galaxies took place in the redshift range 1properties of passive and star-forming galaxies at z˜2 in the AEGIS field, and (3) the mid-infrared spectroscopy and multi-wavelength study of ultraluminous infrared galaxies (ULIRGs) at z˜2 in the AEGIS field. Chapter 1 gives a brief review on the research progresses of EROs at z˜1, BzKs at z˜2, and ULIRGs at z˜2, respectively. In Chapter 2 we present a quantitative study of the classification of EROs in the UDF and COSMOS field. Our sample includes 5264 (COSMOS, K_{Vega} ≤19.2) and 24 EROs (UDF, K_{Vega}≤22.0) with (i-K)_{AB}≥2.45. Using the fitting method of spectral energy distribution (SED), [3.6]-[8.0] color, and the nonparametric measures of galaxy morphology, we classify EROs into two classes: DGs and OGs. We find

  20. The coevolution of galaxies and supermassive black holes: a local perspective.

    PubMed

    Heckman, Timothy M; Kauffmann, Guinevere

    2011-07-01

    One of the most fascinating discoveries in the past decade was that galaxies typically contain a centrally located black hole with a mass that is millions or even billions of times that of the Sun. There is now compelling evidence that we cannot understand how galaxies formed and evolved without understanding the life cycles of these supermassive black holes (and vice versa). We summarize the current understanding of this coevolution of galaxies and supermassive black holes (based largely on observations of the local, present-day universe) and describe prospects for the future.

  1. TIGHT CORRELATIONS BETWEEN MASSIVE GALAXY STRUCTURAL PROPERTIES AND DYNAMICS: THE MASS FUNDAMENTAL PLANE WAS IN PLACE BY z ∼ 2

    SciTech Connect

    Bezanson, Rachel; Van Dokkum, Pieter G.; Leja, Joel; Van de Sande, Jesse; Franx, Marijn; Kriek, Mariska

    2013-12-20

    The fundamental plane (FP) is an empirical relation between the size, surface brightness, and velocity dispersion of early-type galaxies. This relation has been studied extensively for early-type galaxies in the local universe to constrain galaxy formation mechanisms. The evolution of the zero point of this plane has been extended to high redshifts to study the luminosity evolution of massive galaxies, under the assumption of structural homology. In this work, we assess this assumption by replacing surface brightness with stellar mass density and present the evolution of the ''mass FP'' for massive, quiescent galaxies since z ∼ 2. By accounting for stellar populations, we thereby isolate and trace structural and dynamical evolution. Despite the observed dramatic evolution in the sizes and morphologies of massive galaxies since z ∼ 3, we find that quiescent galaxies lie on the mass FP out to z ∼ 2. In contrast with ∼1.4 dex evolution in the luminosity FP, average residuals from the z ∼ 0 mass FP are less than ∼0.15 dex since z ∼ 2. Assuming the Hyde and Bernardi mass FP slope, we find that this minimal offset scales as (1 + z){sup –0.095} {sup ±} {sup 0.043}. This result lends credence to previous studies that derived luminosity evolution from the FP. Therefore, despite their compact sizes and suggestions that massive galaxies are more disk-like at z ∼ 2, the relationship between their dynamics and structural properties are consistent with local early-type galaxies. Finally, we find no strong evidence for a tilt of the mass FP relative to the virial plane, but emphasize the need for full models including selection biases to fully investigate this issue.

  2. PACS photometry of the Herschel Reference Survey - far-infrared/submillimetre colours as tracers of dust properties in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Cortese, L.; Fritz, J.; Bianchi, S.; Boselli, A.; Ciesla, L.; Bendo, G. J.; Boquien, M.; Roussel, H.; Baes, M.; Buat, V.; Clemens, M.; Cooray, A.; Cormier, D.; Davies, J. I.; De Looze, I.; Eales, S. A.; Fuller, C.; Hunt, L. K.; Madden, S.; Munoz-Mateos, J.; Pappalardo, C.; Pierini, D.; Rémy-Ruyer, A.; Sauvage, M.; di Serego Alighieri, S.; Smith, M. W. L.; Spinoglio, L.; Vaccari, M.; Vlahakis, C.

    2014-05-01

    We present Herschel/PACS 100 and 160 μm integrated photometry for the 323 galaxies in the Herschel Reference Survey (HRS), a K-band, volume-limited sample of galaxies in the local Universe. Once combined with the Herschel/SPIRE observations already available, these data make the HRS the largest representative sample of nearby galaxies with homogeneous coverage across the 100-500 μm wavelength range. In this paper, we take advantage of this unique data set to investigate the properties and shape of the far-infrared/submillimetre spectral energy distribution in nearby galaxies. We show that, in the stellar mass range covered by the HRS (8 ≲ log (M*/M⊙) ≲ 12), the far-infrared/submillimetre colours are inconsistent with a single modified blackbody having the same dust emissivity index β for all galaxies. In particular, either β decreases or multiple temperature components are needed, when moving from metal-rich/gas-poor to metal-poor/gas-rich galaxies. We thus investigate how the dust temperature and mass obtained from a single modified blackbody depend on the assumptions made on β. We show that, while the correlations between dust temperature, galaxy structure and star formation rate are strongly model dependent, the dust mass scaling relations are much more reliable, and variations of β only change the strength of the observed trends.

  3. MCG 06-45-001 - Not a local group galaxy

    NASA Technical Reports Server (NTRS)

    Shore, Steven N.; Sage, Leslie J.

    1990-01-01

    Observations of (C-12)O and (C-13)O J = 1 to 0 for MCG 06-45-001 are examined. It is argued that two features of CO emission with velocities of 1 and 10 km/s indicate that the object is similar to the Galactic molecular clouds in the immediate vicinity, and not to a spiral galaxy as suggested previously. It is considered that CO emission cannot arise from a spiral galaxy at a distance of 2-5 Mpc and that the object is unlikely to be a nearby dwarf. The feature at 10 km/s is considered to arise from a molecular cloud associated with an H II region, which produces the observed IRAS flux.

  4. Robust automatic photometry of local galaxies from SDSS. Dissecting the color magnitude relation with color profiles

    NASA Astrophysics Data System (ADS)

    Consolandi, Guido; Gavazzi, Giuseppe; Fumagalli, Michele; Dotti, Massimo; Fossati, Matteo

    2016-06-01

    We present an automatic procedure to perform reliable photometry of galaxies on SDSS images. We selected a sample of 5853 galaxies in the Coma and Virgo superclusters. For each galaxy, we derive Petrosian g and i magnitudes, surface brightness and color profiles. Unlike the SDSS pipeline, our procedure is not affected by the well known shredding problem and efficiently extracts Petrosian magnitudes for all galaxies. Hence we derived magnitudes even from the population of galaxies missed by the SDSS which represents ~25% of all local supercluster galaxies and ~95% of galaxies with g < 11 mag. After correcting the g and i magnitudes for Galactic and internal extinction, the blue and red sequences in the color magnitude diagram are well separated, with similar slopes. In addition, we study (i) the color-magnitude diagrams in different galaxy regions, the inner (r ≤ 1 kpc), intermediate (0.2RPet ≤ r ≤ 0.3RPet) and outer, disk-dominated (r ≥ 0.35RPet)) zone; and (ii), we compute template color profiles, discussing the dependences of the templates on the galaxy masses and on their morphological type. The two analyses consistently lead to a picture where elliptical galaxies show no color gradients, irrespective of their masses. Spirals, instead, display a steeper gradient in their color profiles with increasing mass, which is consistent with the growing relevance of a bulge and/or a bar component above 1010 M⊙. Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A38

  5. The Metallicity Evolution of Blue Compact Dwarf Galaxies from the Intermediate Redshift to the Local Universe

    NASA Astrophysics Data System (ADS)

    Lian, Jianhui; Hu, Ning; Fang, Guanwen; Ye, Chengyun; Kong, Xu

    2016-03-01

    We present oxygen abundance measurements for 74 blue compact dwarf (BCD) galaxies in the redshift range of [0.2, 0.5] using the strong-line method. The spectra of these objects are taken using Hectospec on the Multiple Mirror Telescope. More than half of these BCDs had dust attenuation corrected using the Balmer decrement method. For comparison, we also selected a sample of 2023 local BCDs from the Sloan Digital Sky Survey (SDSS) database. Based on the local and intermediate-z BCD samples, we investigated the cosmic evolution of the metallicity, star formation rate (SFR), and Dn(4000) index. Compared with local BCDs, the intermediate-z BCDs had a systematically higher R23 ratio but a similar O32 ratio. Interestingly, no significant deviation in the mass-metallicity (MZ) relation was found between the intermediate-z and local BCDs. Besides the metallicity, the intermediate-z BCDs also exhibited an SFR distribution that was consistent with local BCDs, suggesting a weak dependence on redshift. The intermediate-z BCDs seemed to be younger than the local BCDs with lower Dn(4000) index values. The insignificant deviation in the mass-metallicity and mass-SFR relations between intermediate-z and local BCDs indicates that the relations between the global parameters of low-mass compact galaxies may be universal. These results from low-mass compact galaxies could be used to place important observational constraints on galaxy formation and evolution models.

  6. The Properties of IRAS Detected Mergers in the Local Universe

    NASA Astrophysics Data System (ADS)

    Carpineti, Alfredo; Kaviraj, S.; Clements, D. L.; Darg, D.; Hyde, A. K.; Lintott, C.

    2012-01-01

    Galaxy merging is a fundamental aspect of the standard hierarchical galaxy formation paradigm. We have used a large, homogeneous set of nearby mergers, selected through direct visual inspection of the entire SDSS using the GalaxyZoo project, to perform the first blind far-infrared (FIR) study of the local merger population. 3300+ mergers were cross-matched with the Imperial IRAS-FSC Redshift Catalogue, resulting in 606 FIR detections. The IRAS- detected mergers are typically more massive, with smaller separations, weaker tidal forces and bluer colours than their undetected counterparts. The IRAS-detected mergers are mostly (98%) spiral-spiral systems, with a median FIR luminosity of 1011 LSun and a median star-formation rate of around 15 MSun per year. They reside in low density environments but we find no dependence between group richness and their infrared properties. Their SFR seems to depend on the total mass of the system with little dependence on the mass ratio. Optical emission line ratios indicate that the AGN fraction increases with increasing FIR luminosity with a dramatic increase in the members that are ULIRGs . Comparing the typical separations of mergers that are LIRGs and those that are ULIRGs we estimate the timescale for this transition and find a value of (50 ± 16) Myr .

  7. The impact of galactic properties and environment on the quenching of central and satellite galaxies: a comparison between SDSS, Illustris and L-Galaxies

    NASA Astrophysics Data System (ADS)

    Bluck, Asa F. L.; Mendel, J. Trevor; Ellison, Sara L.; Patton, David R.; Simard, Luc; Henriques, Bruno M. B.; Torrey, Paul; Teimoorinia, Hossen; Moreno, Jorge; Starkenburg, Else

    2016-11-01

    We quantify the impact that a variety of galactic and environmental properties have on the quenching of star formation. We collate a sample of ˜400 000 central and ˜100 000 satellite galaxies from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7). Specifically, we consider central velocity dispersion (σc), stellar, halo, bulge and disc mass, local density, bulge-to-total ratio, groupcentric distance and galaxy-halo mass ratio. We develop and apply a new statistical technique to quantify the impact on the quenched fraction (fQuench) of varying one parameter, while keeping the remaining parameters fixed. For centrals, we find that the fQuench-σc relationship is tighter and steeper than for any other variable considered. We compare to the Illustris hydrodynamical simulation and the Munich semi-analytic model (L-Galaxies), finding that our results for centrals are qualitatively consistent with their predictions for quenching via radio-mode AGN feedback, hinting at the viability of this process in explaining our observational trends. However, we also find evidence that quenching in L-Galaxies is too efficient and quenching in Illustris is not efficient enough, compared to observations. For satellites, we find strong evidence that environment affects their quenched fraction at fixed central velocity dispersion, particularly at lower masses. At higher masses, satellites behave identically to centrals in their quenching. Of the environmental parameters considered, local density affects the quenched fraction of satellites the most at fixed central velocity dispersion.

  8. Luminous compact blue galaxies in the local Universe: A key reference for high-redshift studies

    NASA Astrophysics Data System (ADS)

    Pérez Gallego, J.; Guzmán, R.; Castander, F. J.; Garland, C. A.; Pisano, D. J.

    2005-05-01

    Luminous Compact Blue Galaxies (LCBGs) are high surface brightness starburst galaxies, bluer than a typical Sbc and brighter than ˜0.25Lstar. LCBGs have evolved more than any other galaxy class in the last ˜8 Gyr, and are a major contributor to the observed enhancement of the UV luminosity density of the Universe at z≤1. Despite the key role LCBGs may play in galaxy evolution, their statistical properties are still largely unknown. We have selected a complete sample of ˜25 LCBGs within 100 Mpc, after investigating over 106 nearby galaxies from the DR1 of the SDSS database. This sample, although small, provides an excellent reference for comparison with current and future surveys of similar galaxies at high redshift, including the population of Lyman-break galaxies. We present preliminary results of this study using 3D spectroscopic observations obtained over a very wide range in wavelength, using WIYN/DENSEPAK in the optical, FISICA in the infrared, and the VLA at cm wavelengths.

  9. Properties of The Brightest Cluster Galaxy and Its Host Cluster

    NASA Astrophysics Data System (ADS)

    Katayama, H.; Hayashida, K.; Takahara, F.

    2001-09-01

    We investigate the relation between the brightest cluster galaxy (BCG) and its host cluster. A BCG is a bright and massive elliptical galaxy in a cluster of galaxies. The luminosity of a BCG is 10 times larger than that of normal field galaxy and the mass of a BCG is about 1013Msolar which corresponds to that of galaxy group. In order to explain the origin of BCGs, the following three models are proposed: (1) star formation from cooling flow. In this model, intracluster gas gradually condenses at the center of the cluster and forms the BCG. (2) ``Galactic cannibalism'' or the accretion of smaller galaxies. In this model, dynamical friction accounts for the formation of the BCG. These two models predict the BCG evolves with the evolution of cluster. (3) Galaxy merging in the early history of the formation of the cluster. In this model, the property of BCGs is determined no later than cluster collapse. In any model, the formation of BCGs is related to the collapse and formation of its host cluster. The relation between the BCG and its host cluster was studied by Edge (1991). Edge (1991) found that the optical luminosity of the BCG is positively correlated with the X-ray luminosity and temperature of its host cluster. Edge (1991) concludes that these correlations indicate that the BCG responds to the overall cluster properties. In order to investigate the other relation between the BCG and its host cluster, we analyzed ROSAT archival data and compared the displacement between the X-ray peak and the BCG with the Z parameter of the fundamental relation found by Fujita and Takahara (1999). It is found that the displacement is larger with decreasing Z. Furthermore, the large Z clusters tend to have a regular X-ray profile, which implies a relaxed system. The fundamental parameter Z depends mainly on the virial density ρvir, and is considered to be related to the formation epoch of the cluster, i.e., large Z clusters are old clusters and small Z clusters are young

  10. THE NATURE OF THE SECOND PARAMETER IN THE IRX-{beta} RELATION FOR LOCAL GALAXIES

    SciTech Connect

    Grasha, Kathryn; Calzetti, Daniela; Andrews, Jennifer E.; Lee, Janice C.; Dale, Daniel A.

    2013-08-20

    We present an analysis of 98 galaxies of low-dust content, selected from the Spitzer Local Volume Legacy survey, aimed at examining the relation between the ultraviolet (UV) color and dust attenuation in normal star-forming galaxies. The IRX-{beta} diagram relates the total dust attenuation in a galaxy, traced by the far-IR (FIR) to UV ratio, to the observed UV color, indicated by {beta}. Previous research has indicated that while starburst galaxies exhibit a relatively tight IRX-{beta} relation, normal star-forming galaxies do not, and have a much larger spread in the total-IR to far-UV (FUV) luminosity for a fixed UV color. We examine the role that the age of the stellar population plays as the ''second parameter'' responsible for the observed deviation and spread of star-forming galaxies from the starburst relation. We model the FUV to FIR spectral energy distribution of each galaxy according to two broad bins of star formation history (SFH): constant and instantaneous burst. We find clear trends between stellar population mean age estimators (extinction-corrected FUV/NIR, U - B, and EW(H{alpha})) and the UV color {beta}; the trends are mostly driven by the galaxies best-described by instantaneous burst populations. We also find a significant correlation between {beta} and the mean age directly determined from the best-fit instantaneous models. As already indicated by other authors, the UV attenuation in star-forming galaxies may not be recovered with the UV color alone and is highly influenced by the stellar population's mean age and SFH. Overall, the scatter in the IRX-{beta} diagram is better correlated with {beta} than with the perpendicular distance, d{sub p}.

  11. Low surface brightness galaxies

    NASA Technical Reports Server (NTRS)

    Vanderhulst, J. M.; Deblok, W. J. G.; Mcgaugh, S. S.; Bothun, G. D.

    1993-01-01

    A program to investigate the properties of low surface brightness (LSB) galaxies involving surface photometry in U, B, V, R, I, and H-alpha, HI imaging with the Westerbork Synthesis Radio Telescope (WSRT) and the very large array (VLA) and spectrophotometry of H2 regions in LSB galaxies is underway. The goal is to verify the idea that LSB galaxies have low star formation rates because the local gas density falls below the critical density for star formation, and to study the stellar population and abundances in LSB galaxies. Such information should help understanding the evolutionary history of LSB galaxies. Some preliminary results are reported.

  12. The progenitors of local ultra-massive galaxies across cosmic time: from dusty star-bursting to quiescent stellar populations

    SciTech Connect

    Marchesini, Danilo; Marsan, Cemile Z.; Muzzin, Adam; Franx, Marijn; Stefanon, Mauro; Brammer, Gabriel G.; Vulcani, Benedetta; Fynbo, J. P. U.; Milvang-Jensen, Bo; Dunlop, James S.; Buitrago, Fernando

    2014-10-10

    Using the UltraVISTA catalogs, we investigate the evolution in the 11.4 Gyr since z = 3 of the progenitors of local ultra-massive galaxies (log (M {sub star}/M {sub ☉}) ≈ 11.8; UMGs), providing a complete and consistent picture of how the most massive galaxies at z = 0 have assembled. By selecting the progenitors with a semi-empirical approach using abundance matching, we infer a growth in stellar mass of 0.56{sub −0.25}{sup +0.35} dex, 0.45{sub −0.20}{sup +0.16} dex, and 0.27{sub −0.12}{sup +0.08} dex from z = 3, z = 2, and z = 1, respectively, to z = 0. At z < 1, the progenitors of UMGs constitute a homogeneous population of only quiescent galaxies with old stellar populations. At z > 1, the contribution from star-forming galaxies progressively increases, with the progenitors at 2 < z < 3 being dominated by massive (M {sub star} ≈ 2 × 10{sup 11} M {sub ☉}), dusty (A {sub V} ∼ 1-2.2 mag), star-forming (SFR ∼ 100-400 M {sub ☉} yr{sup –1}) galaxies with a large range in stellar ages. At z = 2.75, ∼15% of the progenitors are quiescent, with properties typical of post-starburst galaxies with little dust extinction and strong Balmer break, and showing a large scatter in color. Our findings indicate that at least half of the stellar content of local UMGs was assembled at z > 1, whereas the remaining was assembled via merging from z ∼ 1 to the present. Most of the quenching of the star-forming progenitors happened between z = 2.75 and z = 1.25, in good agreement with the typical formation redshift and scatter in age of z = 0 UMGs as derived from their fossil records. The progenitors of local UMGs, including the star-forming ones, never lived on the blue cloud since z = 3. We propose an alternative path for the formation of local UMGs that refines previously proposed pictures and that is fully consistent with our findings.

  13. On the fundamental properties of dynamically hot galaxies

    NASA Astrophysics Data System (ADS)

    Kritsuk, Alexei G.

    1997-01-01

    A two-component isothermal equilibrium model is applied to reproduce basic structural properties of dynamically hot stellar systems immersed in their massive dark haloes. The origin of the fundamental plane relation for giant ellipticals is naturally explained as a consequence of dynamical equilibrium in the context of the model. The existence of two galactic families displaying different behaviour in the luminosity-surface-brightness diagram is shown to be a result of a smooth transition from dwarfs, dominated by dark matter near the centre, to giants dominated by the luminous stellar component. The comparison of empirical scaling relations with model predictions suggests that probably a unique dissipative process was operating during the violent stage of development of stellar systems in the dark haloes, and the depth of the potential well controlled the observed luminosity of the resulting galaxies. The interpretation also provides some restrictions on the properties of dark haloes implied by the fundamental scaling laws.

  14. The JCMT nearby galaxies legacy survey - X. Environmental effects on the molecular gas and star formation properties of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Mok, Angus; Wilson, C. D.; Golding, J.; Warren, B. E.; Israel, F. P.; Serjeant, S.; Knapen, J. H.; Sánchez-Gallego, J. R.; Barmby, P.; Bendo, G. J.; Rosolowsky, E.; van der Werf, P.

    2016-03-01

    We present a study of the molecular gas properties in a sample of 98 H I - flux selected spiral galaxies within ˜25 Mpc, using the CO J = 3 - 2 line observed with the James Clerk Maxwell Telescope. We use the technique of survival analysis to incorporate galaxies with CO upper limits into our results. Comparing the group and Virgo samples, we find a larger mean H2 mass in the Virgo galaxies, despite their lower mean H I mass. This leads to a significantly higher H2 to H I ratio for Virgo galaxies. Combining our data with complementary Hα star formation rate measurements, Virgo galaxies have longer molecular gas depletion times compared to group galaxies, due to their higher H2 masses and lower star formation rates. We suggest that the longer depletion times may be a result of heating processes in the cluster environment or differences in the turbulent pressure. From the full sample, we find that the molecular gas depletion time has a positive correlation with the stellar mass, indicative of differences in the star formation process between low- and high-mass galaxies, and a negative correlation between the molecular gas depletion time and the specific star formation rate.

  15. A LOCAL BASELINE OF THE BLACK HOLE MASS SCALING RELATIONS FOR ACTIVE GALAXIES. I. METHODOLOGY AND RESULTS OF PILOT STUDY

    SciTech Connect

    Bennert, Vardha Nicola; Auger, Matthew W.; Treu, Tommaso; Woo, Jong-Hak; Malkan, Matthew A. E-mail: mauger@physics.ucsb.edu E-mail: woo@astro.snu.ac.kr

    2011-01-10

    We present high-quality Keck/LRIS long-slit spectroscopy of a pilot sample of 25 local active galaxies selected from the SDSS (0.02 {<=}z {<=} 0.1; M{sub BH}>10{sup 7} M{sub sun}) to study the relations between black hole mass (M{sub BH}) and host-galaxy properties. We determine stellar kinematics of the host galaxy, deriving stellar-velocity dispersion profiles and rotation curves from three spectral regions (including CaH and K, MgIb triplet, and Ca II triplet). In addition, we perform surface photometry on SDSS images, using a newly developed code for joint multi-band analysis. BH masses are estimated from the width of the H{beta} emission line and the host-galaxy free 5100 A active galactic nucleus (AGN) luminosity. Combining results from spectroscopy and imaging allows us to study four M{sub BH} scaling relations: M{sub BH}-{sigma}, M{sub BH}-L{sub sph}, M{sub BH}-M{sub sph,*}, and M{sub BH}-M{sub sph,dyn}. We find the following results. First, stellar-velocity dispersions determined from aperture spectra (e.g., SDSS fiber spectra or unresolved data from distant galaxies) can be biased, depending on aperture size, AGN contamination, and host-galaxy morphology. However, such a bias cannot explain the offset seen in the M{sub BH}-{sigma} relation at higher redshifts. Second, while the CaT region is the cleanest to determine stellar-velocity dispersions, both the MgIb region, corrected for Fe II emission, and the CaHK region, although often swamped by the AGN power-law continuum and emission lines, can give results accurate to within a few percent. Third, the M{sub BH} scaling relations of our pilot sample agree in slope and scatter with those of other local active and inactive galaxies. In the next papers of the series we will quantify the scaling relations, exploiting the full sample of {approx}100 objects.

  16. Local expansion flows of galaxies: quantifying acceleration effect of dark energy

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.

    2013-08-01

    The nearest expansion flow of galaxies observed around the Local group is studied as an archetypical example of the newly discovered local expansion flows around groups and clusters of galaxies in the nearby Universe. The flow is accelerating due to the antigravity produced by the universal dark energy background. We introduce a new acceleration measure of the flow which is the dimensionless ``acceleration parameter" Q (x) = x - x-2 depending on the normalized distance x only. The parameter is zero at the zero-gravity distance x = 1, and Q(x) ∝ x, when x ≫ 1. At the distance x = 3, the parameter Q = 2.9. Since the expansion flows have a self-similar structure in normalized variables, we expect that the result is valid as well for all the other expansion flows around groups and clusters of galaxies on the spatial scales from ˜ 1 to ˜ 10 Mpc everywhere in the Universe.

  17. X-Ray Properties of Lyman Break Galaxies in the Hubble Deep Field North Region

    NASA Technical Reports Server (NTRS)

    Nandra, K.; Mushotzky, R. F.; Arnaud, K.; Steidel, C. C.; Adelberger, K. L.; Gardner, J. P.; Teplitz, H. I.; Windhorst, R. A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We describe the X-ray properties of a large sample of z approximately 3 Lyman Break Galaxies (LBGs) in the region of the Hubble Deep Field North, derived from the 1 Ms public Chandra observation. Of our sample of 148 LBGs, four are detected individually. This immediately gives a measure of the bright AGN (active galactic nuclei) fraction in these galaxies of approximately 3 per cent, which is in agreement with that derived from the UV (ultraviolet) spectra. The X-ray color of the detected sources indicates that they are probably moderately obscured. Stacking of the remainder shows a significant detection (6 sigma) with an average luminosity of 3.5 x 10(exp 41) erg/s per galaxy in the rest frame 2-10 keV band. We have also studied a comparison sample of 95 z approximately 1 "Balmer Break" galaxies. Eight of these are detected directly, with at least two clear AGN based on their high X-ray luminosity and very hard X-ray spectra respectively. The remainder are of relatively low luminosity (< 10(exp 42) erg/s, and the X-rays could arise from either AGN or rapid star-formation. The X-ray colors and evidence from other wavebands favor the latter interpretation. Excluding the clear AGN, we deduce a mean X-ray luminosity of 6.6 x 10(exp 40) erg/s, a factor approximately 5 lower than the LBGs. The average ratio of the UV and X-ray luminosities of these star forming galaxies L(sub UV)/L (sub X), however, is approximately the same at z = 1 as it is at z = 3. This scaling implies that the X-ray emission follows the current star formation rate, as measured by the UV luminosity. We use our results to constrain the star formation rate at z approximately 3 from an X-ray perspective. Assuming the locally established correlation between X-ray and far-IR (infrared) luminosity, the average inferred star formation rate in each Lyman break galaxy is found to be approximately 60 solar mass/yr, in excellent agreement with the extinction-corrected UV estimates. This provides an external

  18. Infrared properties of z = 7 galaxies from cosmological simulations

    SciTech Connect

    Cen, Renyue; Kimm, Taysun

    2014-02-10

    Three-dimensional panchromatic dust radiative transfer calculations are performed on a set of 198 galaxies of stellar masses in the range of 5 × 10{sup 8} to 3 × 10{sup 10} M {sub ☉} from a cosmological hydrodynamic simulation (resolved at 29 h {sup –1} pc) at z ∼ 7. In a companion paper, the stellar mass and UV luminosity functions and the UV-optical and FUV-NUV colors are shown to be in good agreement with observations if a Small Magellanic Cloud type dust extinction curve is adopted. Here, we make useful predictions, self-consistently, of the infrared properties of these z ∼ 7 simulated galaxies that can be confronted with upcoming ALMA data. Our findings are as follows. (1) The effective radius in the rest-frame MIPS70 μm band is in the range of 80-400 pc proper for z = 7 galaxies with L {sub FIR} = 10{sup 11.3}-10{sup 12} L {sub ☉}. (2) The median of the peak wavelength of the far-infrared (FIR) spectral energy distribution is in the range of 45-60 μm, depending on the dust-to-metal ratio. (3) For star formation rate in the range of 3-100 M {sub ☉} yr{sup –1}, the median FIR to bolometric luminosity ratio is 60%-90%. (4) The FIR luminosity function displays a power law in the high end with a slope of –3.1 ± 0.4 instead of the usual exponential decline.

  19. Star-forming galaxies in low-redshift clusters: comparison of integrated properties of cluster and field galaxies

    NASA Astrophysics Data System (ADS)

    Bretherton, C. F.; James, P. A.; Moss, C.; Whittle, M.

    2010-12-01

    Aims: We investigate the effect of the cluster environment on the star formation properties of galaxies in 8 nearby Abell clusters. Methods: Star formation properties are determined for individual galaxies using the equivalent width of Hα+[Nii] line emission from narrow-band imaging. Equivalent width distributions are derived for each galaxy type in each of 3 environments - cluster, supercluster (outside the cluster virial radius) and field. The effects of morphological disturbance on star formation are also investigated. Results: We identify a population of early-type disk galaxies in the cluster population with enhanced star formation compared to their field counterparts. The enhanced cluster galaxies frequently show evidence of disturbance, and the disturbed galaxies show marginal evidence for a higher velocity dispersion, possibly indicative of an infalling population. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias; and with the Jacobus Kapteyn Telescope, which was operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  20. What have we learned from the XMM-Newton surveys of Local Group Galaxies?

    NASA Astrophysics Data System (ADS)

    Haberl, F.

    2016-06-01

    The study of X-ray source populations and diffuse X-ray emission in nearby galaxies is of major importance in understanding the X-ray output of more distant galaxies as well as learning about processes that occur on interstellar scales within our own Galaxy. Depending on the star formation history of the galaxies different types of X-ray sources dominate the total X-ray emission. With modern observatories like XMM-Newton the various classes of X-ray sources (high and low mass X-ray binaries, supernova remnants, super-soft sources) can be studied to the faintest end of their luminosity distribution in Local Group galaxies. XMM-Newton successfully surveyed the large spiral galaxies M31 and M33 and the star forming, irregular Magellanic Clouds. I'll summarise the most important results we have obtained from older populations like low mass X-ray binaries and classical novae in M31 to the younger populations of high mass X-ray binaries and supernova remnants in the Magellanic Clouds. I'll discuss still open questions in this field of research which can be addressed using the high sensitivity of the XMM-Newton instruments.

  1. Power spectrum tomography of dark matter annihilation with local galaxy distribution

    SciTech Connect

    Ando, Shin'ichiro

    2014-10-01

    Cross-correlating the gamma-ray background with local galaxy catalogs potentially gives stringent constraints on dark matter annihilation. We provide updated theoretical estimates of sensitivities to the annihilation cross section from gamma-ray data with Fermi telescope and 2MASS galaxy catalogs, by elaborating the galaxy power spectrum and astrophysical backgrounds, and adopting the Markov-Chain Monte Carlo simulations. In particular, we show that taking tomographic approach by dividing the galaxy catalogs into more than one redshift slice will improve the sensitivity by a factor of a few to several. If dark matter halos contain lots of bright substructures, yielding a large annihilation boost (e.g., a factor of ∼100 for galaxy-size halos), then one may be able to probe the canonical annihilation cross section for thermal production mechanism up to masses of ∼700 GeV. Even with modest substructure boost (e.g., a factor of ∼10 for galaxy-size halos), on the other hand, the sensitivities could still reach a factor of three larger than the canonical cross section for dark matter masses of tens to a few hundreds of GeV.

  2. H I IN LOCAL GROUP DWARF GALAXIES AND STRIPPING BY THE GALACTIC HALO

    SciTech Connect

    Grcevich, Jana; Putman, Mary E E-mail: mputman@astro.columbia.edu

    2009-05-01

    We examine the H I content and environment of all of the Local Group dwarf galaxies (M {sub tot} < 10{sup 10} M {sub sun}), including the numerous newly discovered satellites of the Milky Way and M31. All of the new dwarfs, with the exception of Leo T, have no detected H I. The majority of dwarf galaxies within {approx}270 kpc of the Milky Way or Andromeda are undetected in H I (<10{sup 4} M {sub sun} for Milky Way dwarfs), while those further than {approx}270 kpc are predominantly detected with masses {approx}10{sup 5} to 10{sup 8} M {sub sun}. Analytical ram-pressure arguments combined with velocities obtained via proper motion studies allow for an estimate of the halo density of the Milky Way at several distances. This halo density is constrained to be greater than 2x 10{sup -4}-3 x 10{sup -4} cm{sup -3} out to distances of at least 70 kpc. This is broadly consistent with theoretical models of the diffuse gas in a Milky Way-like halo and is consistent with this component hosting a large fraction of a galaxy's baryons. Accounting for completeness in the dwarf galaxy count, gasless dwarf galaxies could have provided at most 2.1 x 10{sup 8} M {sub sun} of H I gas to the Milky Way, which suggests that most of our Galaxy's star formation fuel does not come from accreted small satellites in the current era.

  3. The role of galaxy interaction in the SFR-M {sub *} relation: characterizing morphological properties of Herschel-selected galaxies at 0.2 < z < 1.5

    SciTech Connect

    Hung, Chao-Ling; Sanders, D. B.; Casey, C. M.; Lee, N.; Barnes, J. E.; Koss, M.; Larson, K. L.; Lockhart, K.; Man, A. W. S.; Mann, A. W.; Capak, P.; Kartaltepe, J. S.; Le Floc'h, E.; Riguccini, L.; Scoville, N.; Symeonidis, M.

    2013-12-01

    Galaxy interactions/mergers have been shown to dominate the population of IR-luminous galaxies (L {sub IR} ≳ 10{sup 11.6} L {sub ☉}) in the local universe (z ≲ 0.25). Recent studies based on the relation between galaxies' star formation rates and stellar mass (the SFR-M {sub *} relation or the {sup g}alaxy main sequence{sup )} have suggested that galaxy interaction/mergers may only become significant when galaxies fall well above the galaxy main sequence. Since the typical SFR at a given M {sub *} increases with redshift, the existence of the galaxy main sequence implies that massive, IR-luminous galaxies at high z may not necessarily be driven by galaxy interactions. We examine the role of galaxy interactions in the SFR-M {sub *} relation by carrying out a morphological analysis of 2084 Herschel-selected galaxies at 0.2 < z < 1.5 in the COSMOS field. Using a detailed visual classification scheme, we show that the fraction of 'disk galaxies' decreases and the fraction of 'irregular' galaxies increases systematically with increasing L {sub IR} out to z ≲ 1.5 and z ≲ 1.0, respectively. At L {sub IR} >10{sup 11.5} L {sub ☉}, ≳ 50% of the objects show evident features of strongly interacting/merger systems, where this percentage is similar to the studies of local IR-luminous galaxies. The fraction of interacting/merger systems also systematically increases with the deviation from the SFR-M {sub *} relation, supporting the view that galaxies falling above the main sequence are more dominated by mergers than the main-sequence galaxies. Meanwhile, we find that ≳ 18% of massive IR-luminous 'main-sequence galaxies' are classified as interacting systems, where this population may not evolve through the evolutionary track predicted by a simple gas exhaustion model.

  4. Soft X-ray properties of a spectroscopically selected sample of interacting and isolated Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Pfefferkorn, F.; Boller, Th.; Rafanelli, P.

    2001-03-01

    We present a catalogue of ROSAT detected sources in the sample of spectroscopically selected Seyfert 1 and Seyfert 2 galaxies of Rafanelli et al. (\\cite{Rafanelli95}). The catalogue contains 102 Seyfert 1 and 36 Seyfert 2 galaxies. The identification is based on X-ray contour maps overlaid on optical images taken from the Digitized Sky Survey. We have derived the basic spectral and timing properties of the X-ray detected Seyfert galaxies. For Seyfert 1 galaxies a strong correlation between photon index and X-ray luminosity is detected. We confirm the presence of generally steeper X-ray continua in narrow-line Seyfert 1 galaxies (NLS1s) compared to broad-line Seyfert 1 galaxies. Seyfert 2 galaxies show photon indices similar to those of NLS1s. Whereas a tendency for an increasing X-ray luminosity with increasing interaction strength is found for Seyfert 1 galaxies, such a correlation is not found for Seyfert 2 galaxies. For Seyfert 1 galaxies we found also a strong correlation for increasing far-infrared luminosity with increasing interaction strength. Both NLS1s and Seyfert 2 galaxies show the highest values of far-infrared luminosity compared to Seyfert 1 galaxies, suggesting that NLS1s and Seyfert 2 galaxies host strong (circumnuclear) star formation. For variable Seyfert galaxies we present the X-ray light curves obtained from the ROSAT All-Sky Survey and from ROSAT PSPC and HRI pointed observations. Besides the expected strong short- and long-term X-ray variability in Seyfert 1 galaxies, we find indications for X-ray flux variations in Seyfert 2 galaxies. All overlays can be retrieved via CDS anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)} or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/368/797

  5. The Local Group as a time machine: studying the high-redshift Universe with nearby galaxies

    NASA Astrophysics Data System (ADS)

    Boylan-Kolchin, Michael; Weisz, Daniel R.; Johnson, Benjamin D.; Bullock, James S.; Conroy, Charlie; Fitts, Alex

    2015-10-01

    We infer the UV luminosities of Local Group galaxies at early cosmic times (z ˜ 2 and z ˜ 7) by combining stellar population synthesis modelling with star formation histories derived from deep colour-magnitude diagrams constructed from Hubble Space Telescope (HST) observations. Our analysis provides a basis for understanding high-z galaxies - including those that may be unobservable even with the James Webb Space Telescope (JWST) - in the context of familiar, well-studied objects in the very low-z Universe. We find that, at the epoch of reionization, all Local Group dwarfs were less luminous than the faintest galaxies detectable in deep HST observations of blank fields. We predict that JWST will observe z ˜ 7 progenitors of galaxies similar to the Large Magellanic Cloud today; however, the HST Frontier Fields initiative may already be observing such galaxies, highlighting the power of gravitational lensing. Consensus reionization models require an extrapolation of the observed blank-field luminosity function (LF) at z ≈ 7 by at least 2 orders of magnitude in order to maintain reionization. This scenario requires the progenitors of the Fornax and Sagittarius dwarf spheroidal galaxies to be contributors to the ionizing background at z ˜ 7. Combined with numerical simulations, our results argue for a break in the UV LF from a faint-end slope of α ˜ -2 at MUV ≲ -13 to α ˜ -1.2 at lower luminosities. Applied to photometric samples at lower redshifts, our analysis suggests that HST observations in lensing fields at z ˜ 2 are capable of probing galaxies with luminosities comparable to the expected progenitor of Fornax.

  6. The complex evolutionary paths of local infrared bright galaxies: a high angular resolution mid-infrared view

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, A.; Poulton, R.; Roche, P. F.; Hernán-Caballero, A.; Aretxaga, I.; Martínez-Paredes, M.; Ramos Almeida, C.; Pereira-Santaella, M.; Díaz-Santos, T.; Levenson, N. A.; Packham, C.; Colina, L.; Esquej, P.; González-Martín, O.; Ichikawa, K.; Imanishi, M.; Rodríguez Espinosa, J. M.; Telesco, C.

    2016-08-01

    We investigate the evolutionary connection between local IR-bright galaxies (log LIR ≥ 11.4 L⊙) and quasars. We use high angular resolution (˜ 0.3-0.4 arcsec˜ few hundred parsecs) 8 - 13 μm ground-based spectroscopy to disentangle the AGN mid-IR properties from those of star formation. The comparison between the nuclear 11.3 μm PAH feature emission and that measured with Spitzer/IRS indicates that the star formation is extended over a few kpc in the IR-bright galaxies. The AGN contribution to the total IR luminosity of IR-bright galaxies is lower than in quasars. Although the dust distribution is predicted to change as IR-bright galaxies evolve to IR-bright quasars and then to optical quasars, we show that the AGN mid-IR emission of all the quasars in our sample is not significantly different. In contrast, the nuclear emission of IR-bright galaxies with low AGN contributions appears more heavily embedded in dust although there is no clear trend with the interaction stage or projected nuclear separation. This suggests that the changes in the distribution of the nuclear obscuring material may be taking place rapidly and at different interaction stages washing out the evidence of an evolutionary path. When compared to normal AGN, the nuclear star formation activity of quasars appears to be dimming whereas it is enhanced in some IR-bright nuclei, suggesting that the latter are in an earlier star-formation dominated phase.

  7. On the nature of local instabilities in rotating galactic coronae and cool cores of galaxy clusters

    SciTech Connect

    Nipoti, Carlo; Posti, Lorenzo

    2014-09-01

    A long-standing question is whether radiative cooling can lead to local condensation of cold gas in the hot atmospheres of galaxies and galaxy clusters. We address this problem by studying the nature of local instabilities in rotating, stratified, weakly magnetized, optically thin plasmas in the presence of radiative cooling and anisotropic thermal conduction. For both axisymmetric and nonaxisymmetric linear perturbations, we provide general equations which can be applied locally to specific systems to establish whether they are unstable and, in case of instability, to determine the kind of evolution (monotonically growing or overstable) and the growth rates of the unstable modes. We present results for models of rotating plasmas representative of Milky-Way-like galaxy coronae and cool-cores of galaxy clusters. We show that the unstable modes arise from a combination of thermal, magnetothermal, magnetorotational, and heat-flux-driven buoyancy instabilities. Local condensation of cold clouds tends to be hampered in cluster cool cores, while it is possible under certain conditions in rotating galactic coronae. If the magnetic field is sufficiently weak, then the magnetorotational instability is dominant even in these pressure-supported systems.

  8. Brightest cluster galaxies in the extended GMRT radio halo cluster sample. Radio properties and cluster dynamics

    NASA Astrophysics Data System (ADS)

    Kale, R.; Venturi, T.; Cassano, R.; Giacintucci, S.; Bardelli, S.; Dallacasa, D.; Zucca, E.

    2015-09-01

    Aims: First-ranked galaxies in clusters, usually referred to as brightest cluster galaxies (BCGs), show exceptional properties over the whole electromagnetic spectrum. They are the most massive elliptical galaxies and show the highest probability to be radio loud. Moreover, their special location at the centres of galaxy clusters raises the question of the role of the environment in shaping their radio properties. In the attempt to separate the effect of the galaxy mass and of the environment on their statistical radio properties, we investigate the possible dependence of the occurrence of radio loudness and of the fractional radio luminosity function on the dynamical state of the hosting cluster. Methods: We studied the radio properties of the BCGs in the Extended GMRT Radio Halo Survey (EGRHS), which consists of 65 clusters in the redshift range 0.2-0.4, with X-ray luminosity LX ≥ 5 × 1044 erg s-1, and quantitative information on their dynamical state from high-quality Chandra imaging. We obtained a statistical sample of 59 BCGs, which we divided into two classes, depending on whether the dynamical state of the host cluster was merging (M) or relaxed (R). Results: Of the 59 BCGs, 28 are radio loud and 31 are radio quiet. The radio-loud sources are favourably located in relaxed clusters (71%), while the reverse is true for the radio-quiet BCGs, which are mostly located in merging systems (81%). The fractional radio luminosity function for the BCGs in merging and relaxed clusters is different, and it is considerably higher for BCGs in relaxed clusters, where the total fraction of radio loudness reaches almost 90%, to be compared to the ~30% in merging clusters. For relaxed clusters, we found a positive correlation between the radio power of the BCGs and the strength of the cool core, consistent with previous studies on local samples. Conclusions: Our study suggests that the radio loudness of the BCGs strongly depends on the cluster dynamics; their fraction is

  9. A Multiscale Study of Polycyclic Aromatic Hydrocarbon Properties in Galaxies

    NASA Astrophysics Data System (ADS)

    Galliano, F.

    2009-01-01

    In the present contribution, I summarize a systematic study of ISO and Spitzer mid-IR spectra of Galactic regions and star forming galaxies. This study quantifies the relative variations of the main aromatic features inside spatially resolved objects as well as among the integrated spectra of 50 objects. Our analysis implies that the properties of the PAHs are remarkably universal throughout our sample and at different spatial scales. In addition, the relative variations of the band ratios, as large as one order of magnitude, are mainly controled by the fraction of ionized PAHs. In particular, I show that we can rule out both the modification of the PAH size distribution and the mid-IR extinction, as an explanation of these variations. High values of the I6.2/I11.3 ratio are found to be associated with the far-UV illuminated surface of PDRs, at the scale of an interstellar cloud, and associated with star formation activity, at the scale of a galaxy. Using a few well-studied Galactic regions, we provide an empirical relation between the I6.2/I11.3 ratio and the ionization/recombination ratio G_0/n_e√{Tgas}. Finally, I show that these trends are consistent with the detailed modeling of the PAH emission within photodissociation regions, taking into account the radiative transfer, the stochastic heating and the charge exchange between gas and dust.

  10. The middle infrared properties of OH megamaser host galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, J. S.; Wang, J. Z.; Di, G. X.; Zhu, Q. F.; Guo, Q.; Wang, J.

    2014-10-01

    We compiled all 119 OH maser galaxies (110 out of them are megamasers, i.e., LOH> 10 L⊙) published so far and cross-identified these OH masers with the Wide-Field Infrared Survey Explorer (WISE) catalog, to investigate the middle infrared (MIR) properties of OH maser galaxies. The WISE magnitude data at the 3.4, 4.6, 12 and 22 μm (W1 to W4) are collected for the OH maser sample and one control sample, which are non-detection sources. The color-color diagrams show that both OH megamaser (OHM) and non-OHM (ultra)luminous infrared galaxies ((U)LIRGs) are far away from the single blackbody model line and many of them can follow the path described by the power-law model. The active galaxy nuclei (AGN) fraction is about ~40% for both OHM and non-OHM (U)LIRGs, according to the AGN criteria W1 - W2 ≥ 0.8. Among the Arecibo survey sample, OHM sources tend to have a lower luminosity at short MIR wavelengths (e.g., 3.4 μm and 4.6 μm) than that of non-OHM sources, which should come from the low OHM fraction among the survey sample with large 3.4 μm and 4.6 μm luminosity. The OHM fraction tends to increase with cooler MIR colors (larger F22 μm/F3.4 μm). These may be good for sample selection when searching OH megamasers, such as excluding extreme luminous sources at short MIR wavelengths, choosing sources with cooler MIR colors. In the case of the power-law model, we derived the spectral indices for our samples. For the Arecibo survey sample, OHM (U)LIRGs tend to have larger spectral index α22-12 than non-OHM sources, which agrees with previous results. One significant correlation exists between the WISE infrared luminosity at 22μm and the color [W1]-[W4] for the Arecibo OHM hosts. These clues should provide suitable constraints on the sample selection for OH megamaser surveys by future advanced telescopes (e.g., FAST). In addition, the correlation of maser luminosity and the MIR luminosity of maser hosts tends to be non-significant, which may indirectly support

  11. Physical Properties of Emission-Line Galaxies at 2 from Near-Infrared Spectroscopy with Magellan FIRE

    NASA Astrophysics Data System (ADS)

    Masters, Daniel C.; McCarthy, P. J.; Malkan, M. A.; Siana, B. D.; Scarlata, C.; Hathi, N. P.; Atek, H.; Henry, A. L.; WISP Team

    2014-01-01

    We present results from near-infrared spectroscopy with Magellan FIRE of 26 strong emission-line galaxies at 2.2 and 1.5. The sample was selected from the WFC3 Infrared Spectroscopic Parallels (WISP) survey, which uses the near-infrared grism capability of the Hubble Space Telescope Wide Field Camera 3 to detect emission-line galaxies over 0.5 < z < 2.3. High-resolution ( 5000) follow-up spectroscopy with Magellan FIRE over 1.0--2.5 microns resolves important rest-frame optical emission lines, allowing us to measure physical properties such as dust obscuration, metal abundance, star formation rate, ionization parameter, and emission line kinematics. We also analyze the properties of composite spectra derived from the FIRE-observed sample. With this relatively large sample of rest-frame optical spectra we can make statistical inferences about the population of emission-line galaxies at 2. We find that the galaxies are low metallicity ( 1/5-1/2 Z_solar) as determined from the R23 calibration. The galaxies are low dust extinction on average (E(B-V 0.2) but with significant scatter. The dust-corrected H-alpha star formation rates range from ~10--150 M_sun yr^-1 with a mean of 50 M_su yr^-1. The average ionization parameter for the sample, log U ~ -2.5, is higher than typically found for star-forming galaxies in the local universe but consistent with those found in more intense starbursting regions in galaxies such as M82. Emission line velocity dispersions are measured to be 71 +- 38 km s^-1, in good agreement with other studies that have probed the H-alpha kinematics of star-forming galaxies at similar redshift. The galaxies are compact, with half-light radii of < 2 kpc, and ~50% show evidence for multiple structures or asymmetries in the WFC3 imaging. Based on the line velocity dispersions and the location of the galaxies on BPT diagnostic plots, there is little evidence for significant AGN contribution to most emission-line galaxies at 2.

  12. RELATIONS BETWEEN CENTRAL BLACK HOLE MASS AND TOTAL GALAXY STELLAR MASS IN THE LOCAL UNIVERSE

    SciTech Connect

    Reines, Amy E.; Volonteri, Marta

    2015-11-10

    Scaling relations between central black hole (BH) mass and host galaxy properties are of fundamental importance to studies of BH and galaxy evolution throughout cosmic time. Here we investigate the relationship between BH mass and host galaxy total stellar mass using a sample of 262 broad-line active galactic nuclei (AGNs) in the nearby universe (z < 0.055), as well as 79 galaxies with dynamical BH masses. The vast majority of our AGN sample is constructed using Sloan Digital Sky Survey spectroscopy and searching for Seyfert-like narrow-line ratios and broad Hα emission. BH masses are estimated using standard virial techniques. We also include a small number of dwarf galaxies with total stellar masses M{sub stellar} ≲ 10{sup 9.5} M{sub ⊙} and a subsample of the reverberation-mapped AGNs. Total stellar masses of all 341 galaxies are calculated in the most consistent manner feasible using color-dependent mass-to-light ratios. We find a clear correlation between BH mass and total stellar mass for the AGN host galaxies, with M{sub BH} ∝ M{sub stellar}, similar to that of early-type galaxies with dynamically detected BHs. However, the relation defined by the AGNs has a normalization that is lower by more than an order of magnitude, with a BH-to-total stellar mass fraction of M{sub BH}/M{sub stellar} ∼ 0.025% across the stellar mass range 10{sup 8} ≤ M{sub stellar}/M{sub ⊙} ≤ 10{sup 12}. This result has significant implications for studies at high redshift and cosmological simulations in which stellar bulges cannot be resolved.

  13. Physical Properties of Emission-line Galaxies at z ~ 2 from Near-infrared Spectroscopy with Magellan FIRE

    NASA Astrophysics Data System (ADS)

    Masters, Daniel; McCarthy, Patrick; Siana, Brian; Malkan, Mathew; Mobasher, Bahram; Atek, Hakim; Henry, Alaina; Martin, Crystal L.; Rafelski, Marc; Hathi, Nimish P.; Scarlata, Claudia; Ross, Nathaniel R.; Bunker, Andrew J.; Blanc, Guillermo; Bedregal, Alejandro G.; Domínguez, Alberto; Colbert, James; Teplitz, Harry; Dressler, Alan

    2014-04-01

    We present results from near-infrared spectroscopy of 26 emission-line galaxies at z ~ 2.2 and z ~ 1.5 obtained with the Folded-port InfraRed Echellette (FIRE) spectrometer on the 6.5 m Magellan Baade telescope. The sample was selected from the WFC3 Infrared Spectroscopic Parallels survey, which uses the near-infrared grism of the Hubble Space Telescope Wide Field Camera 3 (WFC3) to detect emission-line galaxies over 0.3 <~ z <~ 2.3. Our FIRE follow-up spectroscopy (R ~ 5000) over 1.0-2.5 μm permits detailed measurements of the physical properties of the z ~ 2 emission-line galaxies. Dust-corrected star formation rates for the sample range from ~5-100 M ⊙ yr-1 with a mean of 29 M ⊙ yr-1. We derive a median metallicity for the sample of 12 + log(O/H) = 8.34 or ~0.45 Z ⊙. The estimated stellar masses range from ~108.5-109.5 M ⊙, and a clear positive correlation between metallicity and stellar mass is observed. The average ionization parameter measured for the sample, log U ≈ -2.5, is significantly higher than what is found for most star-forming galaxies in the local universe, but similar to the values found for other star-forming galaxies at high redshift. We derive composite spectra from the FIRE sample, from which we measure typical nebular electron densities of ~100-400 cm-3. Based on the location of the galaxies and composite spectra on diagnostic diagrams, we do not find evidence for significant active galactic nucleus activity in the sample. Most of the galaxies, as well as the composites, are offset diagram toward higher [O III]/Hβ at a given [N II]/Hα, in agreement with other observations of z >~ 1 star-forming galaxies, but composite spectra derived from the sample do not show an appreciable offset from the local star-forming sequence on the [O III]/Hβ versus [S II]/Hα diagram. We infer a high nitrogen-to-oxygen abundance ratio from the composite spectrum, which may contribute to the offset of the high-redshift galaxies from the local star

  14. Investigating star formation properties of galaxies in massive clusters with Herschel and ALMA

    NASA Astrophysics Data System (ADS)

    Wu, John F.; Baker, Andrew J.; Aguirre, Paula; Barkats, D.; Halpern, Mark; Hilton, Matt; Hughes, John Patrick; Infante, Leopoldo; Lindner, Robert; Marriage, Tobias; Menanteau, Felipe; Sifon, Cristobal; Weiss, Axel; ACT Collaboration

    2016-01-01

    I will present results from an investigation of star formation properties of galaxies residing in two massive z ~ 1 clusters (including the 'El Gordo' merger) that were initially selected via their Sunyaev-Zeldovich decrements by the Atacama Cosmology Telescope (ACT) southern survey. This study uses new Herschel Space Observatory and Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 2 observations, which provide information about the dust and cold gas content of galaxies in our targeted clusters. We have detected CO (4-3) and [CI] in individual star-forming cluster galaxies, and also measured stacked continuum and spectral line fluxes at long (e.g., far-infrared, submillimeter, and radio) wavelengths. We use these results to explore the relations between star formation and local environment and cluster dynamical state.This work has been supported by (i) an award issued by JPL/Caltech in association with Herschel, which is a European Space Agency Cornerstone Mission with significant participation by NASA, and (ii) the National Science Foundation through award GSSP SOSPA2-018 from the National Radio Astronomy Observatory, which is operated under cooperative agreement by Associated Universities, Inc.

  15. SNLS: Relating the properties of type Ia supernovae to the stellar populations of their host galaxies

    NASA Astrophysics Data System (ADS)

    Sullivan, M.; Pritchet, C. J.; Le Borgne, D.; Hodsman, A.; Howell, D. A.; Astier, P.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R.; Conley, A.; Fabbro, S.; Fouchez, D.; Guy, J.; Hook, I.; Lafoux, H.; Neill, J. D.; Pain, R.; Palanque-Delabrouille, N.; Perrett, K.; Regnault, N.; Rich, J.; Taillet, R.; Baumont, S.; Bronder, J.; Filliol, M.; Perlmutter, S.; Tao, C.; SNLS Collaboration

    2005-12-01

    We examine the rates and properties of type Ia supernovae (SNe Ia) in relation to the physical parameters defining their host galaxy stellar populations. Using a sample of 114 spectroscopically confirmed SNe Ia discovered via the Supernova Legacy Survey (SNLS) distributed over 0.2galaxies - more vigorously star-forming galaxies have a higher SN Ia rate. Further, we identify a dependence of the SN rate on both the stellar mass and the current total SFRs of the host systems, suggesting SNe Ia can be generated from both very young and old stellar populations. We further demonstrate a dependence of SN light-curve shapes on the mean age of the stellar population from which the progenitor is drawn -- older systems preferentially host faster/dimmer SNe Ia, as observed in the local Universe. Though with current sample sizes, existing analysis techniques adequately account for these trends when using SNe Ia to constrain cosmological parameters, identifying and understanding the relationship between SNe Ia and their environments will lead to a future improved cosmological candle.

  16. THE L-{sigma} RELATION OF LOCAL H II GALAXIES

    SciTech Connect

    Bordalo, V.; Telles, E. E-mail: etelles@on.br

    2011-07-01

    For the first time we present a new data set of emission line widths for 118 star-forming regions in H II galaxies (HIIGs). This homogeneous set is used to investigate the L-{sigma} relation in conjunction with optical spectrophotometric observations. We were able to classify their nebular emission line profiles due to our high-resolution spectra. Peculiarities in the line profiles such as sharp lines, wings, asymmetries, and in some cases more than one component in emission were verified. From a new independent homogeneous set of spectrophotometric data, we derived physical condition parameters and performed statistical principal component analysis. We have investigated the potential role of metallicity (O/H), H{beta} equivalent width (W{sub H{beta}}), and ionization ratio [O III]/[O II] to account for the observational scatter of the L-{sigma} relation. Our results indicate that the L-{sigma} relation for HIIGs is more sensitive to the evolution of the current starburst event (short-term evolution) and dated by W{sub H}{beta} or even the [O III]/[O II] ratio. The long-term evolution measured by O/H also plays a potential role in determining the luminosity of the current burst for a given velocity dispersion and age as previously suggested. Additionally, galaxies showing Gaussian line profiles present tighter correlations indicating that they are the best targets for the application of the parametric relations as an extragalactic cosmological distance indicator. Best fits for a restricted homogeneous sample of 45 HIIGs provide us with a set of new extragalactic distance indicators with an rms scatter compatible with observational errors of {delta}log L{sub H}{alpha} = 0.2 dex or 0.5 mag. Improvements may still come from future optimized observational programs to reduce the observational uncertainties on the predicted luminosities of HIIGs in order to achieve the precision required for the application of these relations as tests of cosmological models.

  17. Stellar content of nearby galaxies. III - The local group spiral galaxy M33

    NASA Technical Reports Server (NTRS)

    Wilson, Christine D.; Madore, Barry F.; Freedman, Wendy L.

    1990-01-01

    BVRI CCD photometry is presented for stars brighter than V = 21 mag in four fields in the nearby spiral galaxy M33. V vs (B - V) and I vs (V - I) color-magnitude diagrams clearly show both a young stellar population (as indicated by the blue main sequence and red supergiant plumes) as well as an intermediate-age population of asymptotic giant branch stars. Deep photometry in the outer field (where crowding is less severe) reveals a population consistent in color and magnitude with the tip of the first red giant branch. The M33 distance modulus, 24.6 + or - 0.3 mag, derived from this Population II component is consistent with a recent redetermination of the distance modulus found from Population I Cepheid variables. Finally, some evidence is presented for a radial gradient in the average internal reddening for the fields in M33 reported here.

  18. VLT/VIMOS integral field spectroscopy of luminous and ultraluminous infrared galaxies: 2D kinematic properties

    NASA Astrophysics Data System (ADS)

    Bellocchi, Enrica; Arribas, Santiago; Colina, Luis; Miralles-Caballero, Daniel

    2013-09-01

    Context. (Ultra) Luminous infrared galaxies [(U)LIRGs] host the most extreme star-forming events in the present universe and are places where a significant fraction of the past star formation beyond z ~ 1 has occurred. The kinematic characterization of this population is important to constrain the processes that govern such events. Aims: We present and discuss the 2D kinematic properties of the ionized gas (Hα) in sample local (U)LIRGs, for which relatively high linear resolution and signal-to-noise (S/N) ratio can be obtained. Methods: We have obtained Very Large Telescope VIMOS optical integral field spectroscopy (IFS) for 38 local (z < 0.1) (U)LIRGs (31 LIRGs and 7 ULIRGs, 51 individual galaxies). This sample covers well the less studied LIRG luminosity range, and it includes the morphological types corresponding to the different phases along the merging process (i.e., isolated disks, interacting and merging systems). Results: The vast majority of objects have two main kinematically distinct components. One component (i.e., narrow or systemic) extends over the whole line-emitting region and is characterized by small-to-intermediate velocity dispersions (i.e., σ from 30 to 160 km s-1). The second component (broad) has a larger velocity dispersion (up to 320 km s-1); it is mainly found in the inner regions and is generally blueshifted with respect to the systemic component. The largest extensions and extreme kinematic properties are observed in interacting and merging systems, and they are likely associated with nuclear outflows. The systemic component traces the overall velocity field, showing a large variety of kinematic 2D structures, from very regular velocity patterns typical of pure rotating disks (29%) to kinematically perturbed disks (47%) and highly disrupted and complex velocity fields (24%). Thus, most of the objects (76%) are dominated by rotation. We find that rotation is more relevant in LIRGs than in ULIRGs. There is a clear correlation between

  19. Local Luminous Infrared Galaxies. III. Co-evolution of Black Hole Growth and Star Formation Activity?

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, Almudena; Pereira-Santaella, Miguel; Rieke, George H.; Diamond-Stanic, Aleksandar M.; Wang, Yiping; Hernán-Caballero, Antonio; Rigopoulou, Dimitra

    2013-03-01

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78 Mpc). We estimate typical BH masses of 3 × 107 M ⊙ using [Ne III] 15.56 μm and optical [O III] λ5007 gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs, the current SFR is taking place not only in the inner nuclear ~1.5 kpc region, as estimated from the nuclear 11.3 μm PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar active galactic nucleus (AGN) luminosities. However, the majority of the IR-bright galaxies in the revised-Shapley-Ames Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All of this suggests that in local LIRGs there is a distinct IR-bright star-forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407.

  20. LOCAL LUMINOUS INFRARED GALAXIES. III. CO-EVOLUTION OF BLACK HOLE GROWTH AND STAR FORMATION ACTIVITY?

    SciTech Connect

    Alonso-Herrero, Almudena; Hernan-Caballero, Antonio; Pereira-Santaella, Miguel; Rieke, George H.; Diamond-Stanic, Aleksandar M.; Wang Yiping; Rigopoulou, Dimitra

    2013-03-10

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78 Mpc). We estimate typical BH masses of 3 Multiplication-Sign 10{sup 7} M{sub Sun} using [Ne III] 15.56 {mu}m and optical [O III] {lambda}5007 gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs, the current SFR is taking place not only in the inner nuclear {approx}1.5 kpc region, as estimated from the nuclear 11.3 {mu}m PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar active galactic nucleus (AGN) luminosities. However, the majority of the IR-bright galaxies in the revised-Shapley-Ames Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All of this suggests that in local LIRGs there is a distinct IR-bright star-forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy.

  1. Physical properties from VLT spectroscopy of a sample of star-forming dwarf galaxies at intermediate redshift

    NASA Astrophysics Data System (ADS)

    Rodríguez-Muñoz, L.; Gallego, J.; Pérez-González, P. G.; Tresse, L.; Gil de Paz, A.; Barro, G.; Villar, V.; Le Fèvre, O.

    2013-05-01

    Dwarf galaxies remain as one of the most important and missing pieces of the great puzzle of formation and evolution of galaxies. Due to their low luminosities, their study has been mainly biased to the local universe or clusters, which hampers our knowledge of their redshift of formation and properties along the cosmological time, strong observational tests to recent models of formation and evolution of low-mass galaxies. Using the multiwavelength database RAINBOW, that provides photometric redshifts and masses estimations, we selected a representative sample of dwarf galaxies in the Chandra Deep Field-South (CDFS) within the redshift range 0.3properties of our dwarf galaxy sample.

  2. The photometric properties of galaxies in the early Universe

    NASA Astrophysics Data System (ADS)

    Wilkins, Stephen M.; Feng, Yu; Di-Matteo, Tiziana; Croft, Rupert; Stanway, Elizabeth R.; Bunker, Andrew; Waters, Dacen; Lovell, Christopher

    2016-08-01

    We use the large cosmological hydro-dynamic simulation BLUETIDES to predict the photometric properties of galaxies during the epoch of reionization (z = 8-15). These properties include the rest-frame UV to near-IR broad-band spectral energy distributions, the Lyman continuum (LyC) photon production, the UV star formation rate calibration, and intrinsic UV continuum slope. In particular we focus on exploring the effect of various modelling assumptions, including the assumed choice of stellar population synthesis (SPS) model, initial mass function, and the escape fraction of LyC photons, upon these quantities. We find that these modelling assumptions can have a dramatic effect on photometric properties leading to consequences for the accurate determination of physical properties from observations. For example, at z = 8 we predict that nebular emission can account for up to 50 per cent of the rest-frame R-band luminosity, while the choice of SPS model can change the LyC production rate up to a factor of ×2.

  3. Aperture corrections for disk galaxy properties derived from the CALIFA survey. Balmer emission lines in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Iglesias-Páramo, J.; Vílchez, J. M.; Galbany, L.; Sánchez, S. F.; Rosales-Ortega, F. F.; Mast, D.; García-Benito, R.; Husemann, B.; Aguerri, J. A. L.; Alves, J.; Bekeraité, S.; Bland-Hawthorn, J.; Catalán-Torrecilla, C.; de Amorim, A. L.; de Lorenzo-Cáceres, A.; Ellis, S.; Falcón-Barroso, J.; Flores, H.; Florido, E.; Gallazzi, A.; Gomes, J. M.; González Delgado, R. M.; Haines, T.; Hernández-Fernández, J. D.; Kehrig, C.; López-Sánchez, A. R.; Lyubenova, M.; Marino, R. A.; Mollá, M.; Monreal-Ibero, A.; Mourão, A.; Papaderos, P.; Rodrigues, M.; Sánchez-Blázquez, P.; Spekkens, K.; Stanishev, V.; van de Ven, G.; Walcher, C. J.; Wisotzki, L.; Zibetti, S.; Ziegler, B.

    2013-05-01

    This work investigates the effect of the aperture size on derived galaxy properties for which we have spatially-resolved optical spectra. We focus on some indicators of star formation activity and dust attenuation for spiral galaxies that have been widely used in previous work on galaxy evolution. We investigated 104 spiral galaxies from the CALIFA survey for which 2D spectroscopy with complete spatial coverage is available. From the 3D cubes we derived growth curves of the most conspicuous Balmer emission lines (Hα, Hβ) for circular apertures of different radii centered at the galaxy's nucleus after removing the underlying stellar continuum. We find that the Hα flux (f(Hα)) growth curve follows a well-defined sequence with aperture radius that shows a low dispersion around the median value. From this analysis, we derived aperture corrections for galaxies in different magnitude and redshift intervals. Once stellar absorption is properly accounted for, the f(Hα)/f(Hβ) ratio growth curve shows a smooth decline, pointing toward the absence of differential dust attenuation as a function of radius. Aperture corrections as a function of the radius are provided in the interval [0.3, 2.5]R50. Finally, the Hα equivalent-width (EW(Hα)) growth curve increases with the size of the aperture and shows a very high dispersion for small apertures. This prevents us from using reliable aperture corrections for this quantity. In addition, this result suggests that separating star-forming and quiescent galaxies based on observed EW(Hα) through small apertures will probably result in low EW(Hα) star-forming galaxies begin classified as quiescent.

  4. Stellar mass and color dependence of the three-point correlation function of galaxies in the local universe

    SciTech Connect

    Guo, Hong; Li, Cheng; Jing, Y. P.; Börner, Gerhard

    2014-01-10

    The three-point correlation function (3PCF) for galaxies provides an opportunity to measure the non-Gaussianity generated from nonlinear structure formation and also probes information about galaxy formation and evolution that is generally not available from the two-point correlation function (2PCF). We measure the 3PCF of the Sloan Digital Sky Survey DR7 main sample galaxies in both redshift and projected spaces on scales up to 40 h {sup –1} Mpc. We explore the dependence of the 3PCF on galaxy stellar mass and color in order to constrain the formation and evolution for galaxies of different properties. The study of the dependence on these properties also helps better constrain the relation between galaxy stellar mass and color and the properties of their hosting dark-matter halos. We focus on the study of the reduced 3PCF, Q, defined as the ratio between the 3PCF and the sum of the products of the 2PCFs. We find a very weak stellar-mass dependence of Q in both redshift and projected spaces. On small scales, more massive galaxies tend to have slightly higher amplitudes of Q. The shape dependence of Q is also weak on these small scales, regardless of stellar mass and color. The reduced 3PCF has a strong color dependence for the low-mass galaxies, while no significant dependence on color is found for the high-mass galaxies. Low-mass red galaxies have higher amplitudes and stronger shape dependence of the reduced 3PCF than the blue galaxies, implying that these low-mass red galaxies tend to populate filamentary structures. The linear galaxy bias model fails to interpret the color dependence of Q, emphasizing the importance of a nonvanishing quadratic bias parameter in the correct modeling of the galaxy color distribution.

  5. Friends-of-friends galaxy group finder with membership refinement. Application to the local Universe

    NASA Astrophysics Data System (ADS)

    Tempel, E.; Kipper, R.; Tamm, A.; Gramann, M.; Einasto, M.; Sepp, T.; Tuvikene, T.

    2016-04-01

    Context. Groups form the most abundant class of galaxy systems. They act as the principal drivers of galaxy evolution and can be used as tracers of the large-scale structure and the underlying cosmology. However, the detection of galaxy groups from galaxy redshift survey data is hampered by several observational limitations. Aims: We improve the widely used friends-of-friends (FoF) group finding algorithm with membership refinement procedures and apply the method to a combined dataset of galaxies in the local Universe. A major aim of the refinement is to detect subgroups within the FoF groups, enabling a more reliable suppression of the fingers-of-God effect. Methods: The FoF algorithm is often suspected of leaving subsystems of groups and clusters undetected. We used a galaxy sample built of the 2MRS, CF2, and 2M++ survey data comprising nearly 80 000 galaxies within the local volume of 430 Mpc radius to detect FoF groups. We conducted a multimodality check on the detected groups in search for subgroups. We furthermore refined group membership using the group virial radius and escape velocity to expose unbound galaxies. We used the virial theorem to estimate group masses. Results: The analysis results in a catalogue of 6282 galaxy groups in the 2MRS sample with two or more members, together with their mass estimates. About half of the initial FoF groups with ten or more members were split into smaller systems with the multimodality check. An interesting comparison to our detected groups is provided by another group catalogue that is based on similar data but a completely different methodology. Two thirds of the groups are identical or very similar. Differences mostly concern the smallest and largest of these other groups, the former sometimes missing and the latter being divided into subsystems in our catalogue. The catalogues are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  6. Mass-metallicity relation for local star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Zhong; Zhang, Shuang-Nan; Zhao, Yong-Heng; Zhang, Wei

    2016-04-01

    We investigate the evolution of the mass-metallicity (M-Z) relation with a large sample of 53 444 star-forming galaxies (SFGs) at 0.04 < z < 0.12, selected from the catalogue of Max-Planck-Institute for Astrophysics-John Hopkins University (MPA-JHU) emission-line measurements for the Sloan Digital Sky Survey Data Release 7. Regarding the sample of SFGs, we correct the observational bias and raise the aperture covering fractions to check the reliability of the metallicity evolution. (i) We show that the redshift evolution of the log (Hα) and log([O III]) luminosities is displayed in our sample. (ii) We find the metallicity evolution of ˜0.15 dex at log (M*/M⊙) ˜ 9.3 in SFGs at 0.04 < z < 0.12. (iii) After applying the luminosity thresholds of log (LHα) > 41.0 and log (L_[O III])>39.7, we find that the metallicity evolution is shown well, and that the evolution of the star formation rate (SFR) is still shown well under the latter luminosity threshold, but the evolution is not observed under the former. (iv) The evolution of the M-Z relation seems to disappear at about log (M*/M⊙) > 10.0 after applying the luminosity threshold of log (LHα) > 41.0 or log (L_[O III])>39.7. (v) We find α = 0.09 and α = 0.07 in the equation, μ = log M* - αlog (SFR), for log (LHα) > 41.0 and log (L_[O III])>39.7 samples, respectively, and these imply that the evolution of the M-Z relation might have a weaker dependence on the SFR in our sample.

  7. The Local Group: Our Galactic Neighborhood.

    ERIC Educational Resources Information Center

    Hodge, Paul

    1987-01-01

    Presents information on the properties and largest spirals of the Local Group galaxies. Explains the three categories of galaxies, identifies the brightest members of the Local Group, and discusses recent discoveries within the group. (ML)

  8. Local Effect of Space-Time Expansion ---- How Galaxies Form and Evolve

    NASA Astrophysics Data System (ADS)

    Yang, Jian Liang; Hua, He Yu

    2016-09-01

    generalize gravitational theory of central field to the expanding space-time, and realize the unification of structure of big scope space-time and physical phenomena of small scope, and reasonably and systematically explain gravitational anomalies of solar system such as extra receding rate of lunar orbit, the increase of astronomical unit, the secular change of day length, the earth's expansion as well as the extra acceleration of artificial aerocrafts and so on, which cannot be treated by current knowledge. Besides, it is disclosed that galaxies form from continued growth but not the assemblage of existent matter after big bang, new matter continuously creates in the interior of celestial bodies, celestial bodies, galaxies and space simultaneously enlarge at the same proportion, and it is the local effect of space-time expansion that determines formation and evolution of galaxies.

  9. On the recovery of the local group motion from galaxy redshift surveys

    SciTech Connect

    Nusser, Adi; Davis, Marc; Branchini, Enzo E-mail: mdavis@berkeley.edu

    2014-06-20

    There is an ∼150 km s{sup –1} discrepancy between the measured motion of the Local Group (LG) of galaxies with respect to the cosmic microwave background and the linear theory prediction based on the gravitational force field of the large-scale structure in full-sky redshift surveys. We perform a variety of tests which show that the LG motion cannot be recovered to better than 150-200 km s{sup –1} in amplitude and within ≈10° in direction. The tests rely on catalogs of mock galaxies identified in the Millennium simulation using semi-analytic galaxy formation models. We compare these results to the K{sub s} = 11.75 Two-Mass Galaxy Redshift Survey, which provides the deepest and most complete all-sky spatial distribution of galaxies with spectroscopic redshifts available thus far. In our analysis, we use a new concise relation for deriving the LG motion and bulk flow from the true distribution of galaxies in redshift space. Our results show that the main source of uncertainty is the small effective depth of surveys like the Two-Mass Redshift Survey (2MRS), which prevents a proper sampling of the large-scale structure beyond ∼100 h {sup –1} Mpc. Deeper redshift surveys are needed to reach the 'convergence scale' of ≈250 h {sup –1} Mpc in a ΛCDM universe. Deeper surveys would also mitigate the impact of the 'Kaiser rocket' which, in a survey like 2MRS, remains a significant source of uncertainty. Thanks to the quiet and moderate density environment of the LG, purely dynamical uncertainties of the linear predictions are subdominant at the level of ∼90 km s{sup –1}. Finally, we show that deviations from linear galaxy biasing and shot noise errors provide a minor contribution to the total error budget.

  10. The Subaru FMOS galaxy redshift survey (FastSound). II. The emission line catalog and properties of emission line galaxies

    NASA Astrophysics Data System (ADS)

    Okada, Hiroyuki; Totani, Tomonori; Tonegawa, Motonari; Akiyama, Masayuki; Dalton, Gavin; Glazebrook, Karl; Iwamuro, Fumihide; Ohta, Kouji; Takato, Naruhisa; Tamura, Naoyuki; Yabe, Kiyoto; Bunker, Andrew J.; Goto, Tomotsugu; Hikage, Chiaki; Ishikawa, Takashi; Okumura, Teppei; Shimizu, Ikkoh

    2016-06-01

    We present basic properties of ˜3300 emission line galaxies detected by the FastSound survey, which are mostly Hα emitters at z ˜ 1.2-1.5 in the total area of about 20 deg2, with the Hα flux sensitivity limit of ˜1.6 × 10-16 erg cm-2 s-1 at 4.5 σ. This paper presents the catalog of the FastSound emission lines and galaxies, which is open to the public. We also present basic properties of typical FastSound Hα emitters, which have Hα luminosities of 1041.8-1043.3 erg s-1, star formation rates (SFRs) of 20-500 M⊙ yr-1, and stellar masses of 1010.0-1011.3 M⊙. The 3D distribution maps for the four fields of Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) W1-4 are presented, clearly showing large scale clustering of galaxies at the scale of ˜100-600 comoving Mpc. Based on 1105 galaxies with detections of multiple emission lines, we estimate that the contamination of non-Hα lines is about 4% in the single-line emission galaxies, which is mostly [O III]λ5007. This contamination fraction is also confirmed by the stacked spectrum of all the FastSound spectra, in which Hα, [N II]λλ6548,6583, [S II]λλ6717,6731, and [O I]λλ6300,6364 are seen.

  11. Local density maxima - Progenitors of structure. [of galaxies

    NASA Technical Reports Server (NTRS)

    Hoffman, Y.; Shaham, J.

    1985-01-01

    Beginning with a short review of the observational data and of some previous theoretical ideas and numerical simulations, the question is addressed of how the large-scale structure that emerges around local density maxima depends on the nature of the primordial density perturbations field. The density contrast profile around local maxima is given, to a good approximation, by the primordial two-point correlation function. The mean number density of objects of a given core mass is calculated as a function of the primordial power spectrum, p(k). In an open universe, rich clusters should have halos steeper than galactic haloes. The observed structure is found to be consistent with omega-sub-zero less than 1.0 and n = -1.

  12. Improved system for object detection and star/galaxy classification via local subspace analysis.

    PubMed

    Liu, Zhi-Yong; Chiu, Kai-Chun; Xu, Lei

    2003-01-01

    The two traditional tasks of object detection and star/galaxy classification in astronomy can be automated by neural networks because the nature of the problems is that of pattern recognition. A typical existing system can be further improved by using one of the local Principal Component Analysis (PCA) models. Our analysis in the context of object detection and star/galaxy classification reveals that local PCA is not only superior to global PCA in feature extraction, but is also superior to gaussian mixture in clustering analysis. Unlike global PCA which performs PCA for the whole data set, local PCA applies PCA individually to each cluster of data. As a result, local PCA often outperforms global PCA for data of multi-modes. Moreover, since local PCA can effectively avoid the trouble of having to specify a large number of free elements of each covariance matrix of gaussian mixture, it can give a better description of local subspace structures of each cluster when applied on high dimensional data with small sample size. In this paper, the local PCA model proposed by Xu [IEEE Trans. Neural Networks 12 (2001) 822] under the general framework of Bayesian Ying Yang (BYY) normalization learning will be adopted. Endowed with the automatic model selection ability of BYY learning, the BYY normalization learning-based local PCA model can cope with those object detection and star/galaxy classification tasks with unknown model complexity. A detailed algorithm for implementation of the local PCA model will be proposed, and experimental results using both synthetic and real astronomical data will be demonstrated.

  13. Molecular Gas and Star Formation in Local Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Bureau, M.; Davis, T. A.; Alatalo, K.; Crocker, A. F.; Blitz, L.; Young, L. M.; Combes, F.; Bois, M.; Bournaud, F.; Cappellari, M.; Davies, R. L.; de Zeeuw, P. T.; Duc, P.-A.; Emsellem, E.; Khochfar, S.; Krajnović, D.; Kuntschner, H.; Lablanche, P.-Y.; McDermid, R. M.; Morganti, R.; Naab, T.; Oosterloo, T.; Sarzi, M.; Scott, N.; Serra, P.; Weijmans, A.

    2011-12-01

    The molecular gas content of local early-type galaxies is constrained and discussed in relation to their evolution. First, as part of the ATLAS3D survey, we present the first complete, large (260 objects), volume-limited single-dish survey of CO in normal local early-type galaxies. We find a surprisingly high detection rate of 22%, independent of luminosity and at best weakly dependent on environment. Second, the extent of the molecular gas is constrained with CO synthesis imaging, and a variety of morphologies is revealed. The kinematics of the molecular gas and stars are often misaligned, implying an external gas origin in over a third of the systems, although this behaviour is drastically diffferent between field and cluster environments. Third, many objects appear to be in the process of forming regular kpc-size decoupled disks, and a star formation sequence can be sketched by piecing together multi-wavelength information on the molecular gas, current star formation, and young stars. Last, early-type galaxies do not seem to systematically obey all our usual prejudices regarding star formation, following the standard Schmidt-Kennicutt law but not the far infrared-radio correlation. This may suggest a greater diversity in star formation processes than observed in disk galaxies. Using multiple molecular tracers, we are thus starting to probe the physical conditions of the cold gas in early-types.

  14. A multiwavelength and multiscale study of Luminous and Ultraluminous Infrared Galaxies in the local Universe

    NASA Astrophysics Data System (ADS)

    Herrero-Illana, Rubén

    2014-10-01

    This dissertation deals with the multiwavelength study of luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs, respectively) in the local Universe under different spatial scales. The work is focused on the properties of massive starbursts, the contribution of active galactic nuclei (AGN) and the interplay between both phenomena. The study of local (U)LIRGs is the best scenario where to understand the properties of these objects at cosmological distances, where their luminosity contribution dominates the cosmic infrared background. Our first approach to the study of (U)LIRGs consisted of a spectral line study in the millimeter range, obtained with the IRAM 30m radio-telescope in Pico Veleta, Granada of a subsample of 56 (U)LIRGs from the GOALS project sample. We observed and analyzed spectra of several molecular features, focusing in the study of carbon monoxide (CO), a well-known tracer of cold molecular gas. We explored the relation between them as well as the properties of molecular gas. Besides of the sample characterization, we confirmed the increase of the isotopic ratio 12CO/13CO with the dust temperature, explained by the 12CO optical depth decreasing with temperature. We have also studied the kinematics and gas distribution using the spectral profiles of several molecular transitions. In a second part of this thesis, we analyzed the central kiloparsec region of a sample of 12 LIRGs, stressing the importance of the multiwavelength approach, aimed at deriving the star formation processes of these galaxies, as well as to study the contribution of the putative AGN to the bolometric luminosity in our sample. For one of these LIRGs, NGC1614, we performed a deep multiwavelength study, including data from radio, infrared, optical and X-rays. These data allowed us to establish that the the IR emission in the circumnuclear region is completely dominated by a powerful starburst and, in case it hosts an AGN, its contribution is irrelevant. We also performed

  15. The MOSDEF Survey: Excitation Properties of z ˜ 2.3 Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Shapley, Alice E.; Reddy, Naveen A.; Kriek, Mariska; Freeman, William R.; Sanders, Ryan L.; Siana, Brian; Coil, Alison L.; Mobasher, Bahram; Shivaei, Irene; Price, Sedona H.; de Groot, Laura

    2015-03-01

    We present results on the excitation properties of z ˜ 2.3 galaxies using early observations from the MOSFIRE Deep Evolution Field (MOSDEF) Survey. With its coverage of the full suite of strong rest-frame optical emission lines, MOSDEF provides an unprecedented view of the rest-frame optical spectra of a representative sample of distant star-forming galaxies. We investigate the locations of z ˜ 2.3 MOSDEF galaxies in multiple emission-line diagnostic diagrams. These include the [O iii]λ5007/Hβ vs. [N ii]/Hα and [O iii]λ5007/Hβ vs. [S ii]λλ6717, 6731/Hα “BPT” diagrams, as well as the O32 vs. R23 excitation diagram. We recover the well-known offset in the star-forming sequence of high-redshift galaxies in the [O iii]λ5007/Hβ vs. [N ii]/Hα BPT diagram relative to Sloan Digital Sky Survey star-forming galaxies. However, the shift for our rest-frame optically selected sample is less significant than for rest-frame-UV selected and emission-line selected galaxies at z ˜ 2. Furthermore, we find that the offset is mass-dependent, only appearing within the low-mass half of the z ˜ 2.3 MOSDEF sample, where galaxies are shifted toward higher [N ii]/Hα at fixed [O iii]/Hβ. Within the [O iii]λ5007/Hβ vs. [S ii]/Hα and O32 vs. R23 diagrams, we find that z ˜ 2.3 galaxies are distributed like local ones, and therefore attribute the shift in the [O iii]λ5007/Hβ vs. [N ii]/Hα BPT diagram to elevated N/O abundance ratios among lower-mass ({{M}*}\\lt {{10}10} {{M}⊙ }) high-redshift galaxies. The variation in N/O ratios calls into question the use at high redshift of oxygen abundance indicators based on nitrogen lines, but the apparent invariance with redshift of the excitation sequence in the O32 vs. R23 diagram paves the way for using the combination of O32 and R23 as an unbiased metallicity indicator over a wide range in redshift. This indicator will allow for an accurate characterization of the shape and normalization of the mass

  16. The ATLAS3D project - XXI. Correlations between gradients of local escape velocity and stellar populations in early-type galaxies

    NASA Astrophysics Data System (ADS)

    Scott, Nicholas; Cappellari, Michele; Davies, Roger L.; Kleijn, Gijs Verdoes; Bois, Maxime; Alatalo, Katherine; Blitz, Leo; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2013-07-01

    We explore the connection between the local escape velocity, Vesc, and the stellar population properties in the ATLAS3D survey, a complete, volume-limited sample of nearby early-type galaxies. We make use of ugriz photometry to construct Multi-Gaussian Expansion models of the surface brightnesses of our galaxies. We are able to fit the full range of surface brightness profiles found in our sample, and in addition we reproduce the results of state-of-the-art photometry in the literature with residuals of 0.04 mag. We utilize these photometric models and SAURON integral-field spectroscopy, combined with Jeans dynamical modelling, to determine the local Vesc derived from the surface brightness. We find that the local Vesc is tightly correlated with the Mg b and Fe5015 line strengths and optical colours, and anti-correlated with the Hβ line strength. In the case of the Mg b and colour-Vesc relations we find that the relation within individual galaxies follows the global relation between different galaxies. We intentionally ignored any uncertain contribution due to dark matter since we are seeking an empirical description of stellar population gradients in early-type galaxies that is ideal for quantitative comparison with model predictions. We also make use of single stellar population (SSP) modelling to transform our line strength index measurements into the SSP-equivalent parameters age (t), metallicity ([Z/H]) and α-enhancement [α/Fe]. The residuals from the relation are correlated with age, [α/Fe], molecular gas mass and local environmental density. We identify a population of galaxies that occur only at low Vesc that exhibit negative gradients in the Mg b- and Colour-Vesc relations. These galaxies typically have young central stellar populations and contain significant amounts of molecular gas and dust. Combining these results with N-body simulations of binary mergers we use the Mg b-Vesc relation to constrain the possible number of dry mergers experienced by

  17. Properties of the Brightest Cluster Galaxy and Its Host Cluster

    NASA Astrophysics Data System (ADS)

    Katayama, Haruyoshi; Hayashida, Kiyoshi; Takahara, Fumio; Fujita, Yutaka

    2003-03-01

    We investigate the relation between the properties of brightest cluster galaxies (BCGs) and those of their host clusters. To quantify the properties of cluster hot gas, we employ the parameter Z of the fundamental plane of X-ray clusters. It is found that the offset of the BCG from the peak of cluster X-ray emission is larger for smaller Z clusters. The parameter Z (not the redshift z), which depends mainly on virial density ρvir, is considered to represent the formation epoch of a cluster. We thus consider that the offset of the BCG is correlated with the dynamical equilibrium state of its host cluster. On the contrary, no significant correlation is found between the absolute optical magnitude of the BCG and the parameter Z. If the extreme brightness of the BCG is acquired mainly in the course of cluster evolution by environmental effect, BCGs are expected to be brighter in large Z clusters. Our result is not consistent with this simplified view. On the contrary, it is possible that the extreme brightness of the BCG is likely to be determined in the early history of cluster collapse.

  18. The relation of dust and atomic gas properties of galaxies

    NASA Technical Reports Server (NTRS)

    Spitzak, John G.; Schneider, Stephen E.

    1992-01-01

    The way in which the neutral atomic hydrogen and far-IR emission from galaxies relate to their environments is shown. It is found that isolated and interacting galaxies display a fairly narrow range of a temperature-adjusted 'H I/100-micron index', suggesting that atomic gas-to-dust ratios are relatively constant among most galaxies. Isolated normal galaxies are used to develop a fiducial standard for the H I/100-micron index, against which galaxies in other environments are compared. Galaxies undergoing tidal interactions prove to have the same value for the index once the proper temperature adjustment is applied according to their FIR color. Applied to clusters, the H I/100-micron index shows a clear discrimination between galaxies whose H I is 'stripped' or 'unstripped', implying that there is about 6 times less H I in stripped galaxies relative to the 100-micron-emitting dust. The stripped galaxies also appear to have a slightly lower mean dust temperature, which is surprising since the stripping process might be expected to remove preferentially cooler than average dust from the outer disk.

  19. HST/WFC3 Near-Infrared Spectroscopy of Quenched and Mildly Star Forming Galaxies at 1.4 from WISPs: Stellar Population Properties

    NASA Astrophysics Data System (ADS)

    Bedregal, Alejandro; Scarlata, C.; WISP Survey Team

    2013-01-01

    We combine HST G102 and G141 near-IR grism spectroscopy with HST/UVIS, HST/WFC3 and Spitzer/IRAC[3.6 micron] photometry to assemble a sample of massive (M_star/M_sun = 11.0 dex) and rather passive galaxies at 1.4. After restricting to masses above 10.65 dex, this sample of 80 sources is the largest with homogeneous near-IR spectroscopy for this kind of galaxies at these redshifts. In contrast to the local Universe, we find the mass range above 10.65 dex is populated by galaxies with a wide range of properties. Although our color selection excludes from the sample typical SF massive galaxies, we still find two populations characterized by distinctive average luminosity-weighted ages and star-formation time-scales, but having similar mass and redshift distributions. The spectral energy distributions of Quenched galaxies (SSFR=<10^-2Gyr^-1) are well fitted with exponentially decreasing SFHs, and short star-formation timescales (tau=10-100Myr). They also show a wide distribution in ages, between 1 and 3 Gyrs. On the other hand, we also find a population of low SSFR galaxies (SSFR >10^-2Gyr.^-1) which show more extended SFHs (tau=0.1-1Gyr), being mostly old 3Gyr), and with higher A_V extinctions than the quenched galaxies. Given the stellar mass range covered by our SF galaxies, we find that their SFRs are low compared to normal SF galaxies at these redshifts (median SF 7M_sun yr^-1). We find that the old and massive population of mild-SF galaxies has properties inconsistent with them being a rejuvenated version of the quenched population at the same redshift. This possibly implies that the two samples originate from different mechanisms. In particular, the stellar-population properties of the quenched galaxies are consistent with being the result of gas-rich major mergers, well before the epoch of observation, and with a quick truncation of the SF after the merger. Instead, the properties of the old and mild-SF galaxies are in better agreement with a more extended

  20. Star Formation as a Function of Neutral Hydrogen Gas Density in Local Group Galaxies

    NASA Astrophysics Data System (ADS)

    Carlson, Erika K.; Madore, Barry F.; Freedman, Wendy L.

    2016-06-01

    We present a study of the efficiency and timescales of star formation as a function of local neutral hydrogen gas density in four Local Group galaxies: M33, NGC 6822, the LMC, and the SMC. In this work, we conceptualize the process of star formation as a cycle of two major phases - (1) a gas dynamics phase in which neutral hydrogen gas coalesces into clouds, and (2) a stellar phase in which stars have formed and interrupt further gas coalescence during their active lifetimes. By examining the spatial distribution and number densities of stars on maps of neutral hydrogen, we estimate the timescale of the gas coalescence phase relative to the timescale of the stellar phase and infer an efficiency of star formation as a function of neutral hydrogen gas density. From these timescales and efficiencies, we will calculate star formation rates as a function of neutral hydrogen gas density in these galaxies.

  1. Mocking the ECO and RESOLVE Surveys: Probing the Environmental Dependencies of Galaxy Properties

    NASA Astrophysics Data System (ADS)

    Berlind, Andreas A.; Florez, Jonathan; Calderon, Victor; Sinha, Manodeep; Moffett, Amanda J.; Eckert, Kathleen D.; Kannappan, Sheila; Stark, David; Baker, Ashley; RESOLVE Team

    2016-01-01

    We present mock catalogs for the RESOLVE survey and the associated Environmental COntext (ECO) catalog. The mock catalogs are constructed by populating dark matter halos in cosmological N-body simulations with galaxies using prescriptions that yield the same joint distributions of galaxy properties and overall clustering strength as seen in the ECO catalog. Specifically, we use a combination of Halo Occupation Distribution (HOD), Conditional Luminosity Function (CLF), and abundance matching techniques to connect mock galaxies to halos and we adopt different assumptions of how observable properties correlate with the properties of the underlying halos. We use the resulting mock catalogs to assess systematic errors in environmental metrics, such as errors in the inferred masses of galaxy groups that are due to group over-merging or fragmentation. We also use the mock catalogs to compare to an interesting trend that we find for galaxies that live in the 10% lowest density environments in ECO and RESOLVE. In the observations, we find that, at fixed stellar or baryonic mass, these galaxies in low density regions are bluer, more star forming, and more gas rich than galaxies residing in higher density environments. Some mock-making prescriptions are more successful than others in matching this observed trend, highlighting the power of mock catalogs to connect observations to the underlying relationships between galaxies and their dark matter halos. The RESOLVE survey is supported by NSF grant AST-0955368.

  2. Physical properties of galaxies: towards a consistent comparison between hydrodynamical simulations and SDSS

    NASA Astrophysics Data System (ADS)

    Guidi, Giovanni; Scannapieco, Cecilia; Walcher, Jakob; Gallazzi, Anna

    2016-10-01

    We study the effects of applying observational techniques to derive the properties of simulated galaxies, with the aim of making an unbiased comparison between observations and simulations. For our study, we used 15 galaxies simulated in a cosmological context using three different feedback and chemical enrichment models, and compared their z = 0 properties with data from the Sloan Digital Sky Survey (SDSS). We show that the physical properties obtained directly from the simulations without post-processing can be very different from those obtained mimicking observational techniques. In order to provide simulators a way to reliably compare their galaxies with SDSS data, for each physical property that we studied - colours, magnitudes, gas and stellar metallicities, mean stellar ages and star formation rates - we give scaling relations that can be easily applied to the values extracted from the simulations; these scalings have in general a high correlation, except for the gas oxygen metallicities. Our simulated galaxies are photometrically similar to galaxies in the blue sequence/green valley, but in general they appear older, passive and with lower metal content compared to most of the spirals in SDSS. As a careful assessment of the agreement/disagreement with observations is the primary test of the baryonic physics implemented in hydrodynamical codes, our study shows that considering the observational biases in the derivation of the galaxies' properties is of fundamental importance to decide on the failure/success of a galaxy formation model.

  3. Local Counterparts to High-Redshift Turbulent Galaxies: What are the Stellar Kinematics?

    NASA Astrophysics Data System (ADS)

    Bassett, Robert; Glazebrook, Karl; Fisher, David; Abraham, Roberto; Damjanov, Ivana

    2014-02-01

    We aim to measure the stellar kinematics of 4 low redshift turbulent, clumpy disks with the GMOS IFU. Recent observations of high redshift galaxies show that gaseous disks in high redshift (z 2) galaxies are turbulent. The source of this turbulence remains an open question. A possible scenario is that turbulent disks are fed by streams of cold gas, flowing along cosmic filaments, which drive the large H-alpha velocity dispersions and clumpy star formation observed (for example by the SINS survey). However, the recent discovery of low redshift disk galaxies with clumpy-high velocity dispersion disks shows that galaxies with similar properties to high-z clumpy disks can exists in absence of cold flows, therefore an alternate driver for turbulence seems likely to explain, at least these nearby galaxies. A contrasting scenario is that the turbulence is driven by feedback from extreme star formation originating from a thin stellar disk. These nearby star forming disks are very rare, yet they provide an oppurtunity to study clumpy disks with techniques which are impossible at high redshift (due to both resolution and surface brightness dimming). Here we propose one such study, to measure the stellar kinematics from Balmer absorption lines. If the stars and gas have similar velocity dispersion, this would favor externally driven turbulence by gas accretion (a rare thing in the low redshift Universe); conversely if the gas and stars have different dynamics then this would suggest that internally driven turbelence from feedback is a plausible scenario. We currently have GMOS IFU observations of two disk systems, and we propose here to extend our sample. To identify galaxies as disks we use lower resolution IFU emission line kinematics from AAO, surface photometry from UKIDSS and SDSS, and Halpha maps from Hubble Space Telescope.

  4. An Observational Limit on the Dwarf Galaxy Population of the Local Group

    NASA Astrophysics Data System (ADS)

    Whiting, Alan B.; Hau, George K. T.; Irwin, Mike; Verdugo, Miguel

    2007-02-01

    We present the results of an all-sky, deep optical survey for faint Local Group dwarf galaxies. Candidate objects were selected from the second Palomar Observatory Sky Survey and ESO/Science Research Council survey plates, and follow-up observations were performed to determine whether they were indeed overlooked members of the Local Group. Only two galaxies (Antlia and Cetus) were discovered this way out of 206 candidates. Based on internal and external comparisons, we estimate that our visual survey is more than 77% complete for objects larger than 1' in size and with a surface brightness greater than an extremely faint limit over the 72% of the sky not obstructed by the Milky Way. Our limit of sensitivity cannot be calculated exactly, but it is certainly fainter than 25 mag arcsec-2 in R, probably 25.5 and possibly approaching 26. We conclude that there are at most one or two Local Group dwarf galaxies fitting our observational criteria still undiscovered in the clear part of the sky, and roughly a dozen hidden behind the Milky Way. Our work places the ``missing satellite problem'' on a firm quantitative observational basis. We present detailed data on all our candidates, including surface brightness measurements.

  5. THE STELLAR-TO-HALO MASS RELATION OF LOCAL GALAXIES SEGREGATES BY COLOR

    SciTech Connect

    Rodríguez-Puebla, Aldo; Yang, Xiaohu; Foucaud, Sebastien; Jing, Y. P.; Avila-Reese, Vladimir; Drory, Niv

    2015-02-01

    By means of a statistical approach that combines different semi-empirical methods of galaxy-halo connection, we derive the stellar-to-halo mass relations (SHMR) of local blue and red central galaxies. We also constrain the fraction of halos hosting blue/red central galaxies and the occupation statistics of blue and red satellites as a function of halo mass, M {sub h}. For the observational input we use the blue and red central/satellite galaxy stellar mass functions and two-point correlation functions in the stellar mass range of 9 < log(M {sub *}/M {sub ☉}) <12. We find that: (1) the SHMR of central galaxies is segregated by color, with blue centrals having a SHMR above that of red centrals; at log(M {sub h}/M {sub ☉}) ∼12, the M {sub *}-to-M {sub h} ratio of the blue centrals is ≈0.05, which is ∼1.7 times larger than the value of red centrals. (2) The constrained scatters around the SHMRs of red and blue centrals are ≈0.14 and ≈0.11 dex, respectively. The scatter of the average SHMR of all central galaxies changes from ∼0.20 dex to ∼0.14 dex in the 11.3 < log(M {sub h}/M {sub ☉}) <15 range. (3) The fraction of halos hosting blue centrals at M{sub h}=10{sup 11} M {sub ☉} is 87%, but at 2 × 10{sup 12} M {sub ☉} decays to ∼20%, approaching a few percent at higher masses. The characteristic mass at which this fraction is the same for blue and red galaxies is M{sub h}≈7×10{sup 11} M {sub ☉}. Our results suggest that the SHMR of central galaxies at large masses is shaped by mass quenching. At low masses processes that delay star formation without invoking too strong supernova-driven outflows could explain the high M {sub *}-to-M {sub h} ratios of blue centrals as compared to those of the scarce red centrals.

  6. VizieR Online Data Catalog: Physical properties of VVDS galaxies (Lamareille+, 2009)

    NASA Astrophysics Data System (ADS)

    Lamareille, F.; Brinchmann, J.; Contini, T.; Walcher, C. J.; Charlot, S.; Perez-Montero, E.; Zamorani, G.; Pozzetti, L.; Bolzonella, M.; Garilli, B.; Paltani, S.; Bongiorno, A.; Le Fevre, O.; Bottini, D.; Le Brun, V.; Maccagni, D.; Scaramella, R.; Scodeggio, M.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Adami, C.; Arnouts, S.; Bardelli, S.; Cappi, A.; Ciliegi, P.; Foucaud, S.; Franzetti, P.; Gavignaud, I.; Guzzo, L.; Ilbert, O.; Iovino, A.; McCracken, H. J.; Marano, B.; Marinoni, C.; Mazure, A.; Meneux, B.; Merighi, R.; Pello, R.; Pollo, A.; Radovich, M.; Vergani, D.; Zucca, E.; Romano, A.; Grado, A.; Limatola, L.

    2009-01-01

    This catalog gives emission-line measurements and spectral indices for galaxies observed in the VIMOS/VLT Deep Survery (VVDS), together with derived physical properties such as stellar masses and metallicities. (3 data files).

  7. Neutral Hydrogen Clouds Near Early-Type Dwarf Galaxies of the Local Group

    NASA Astrophysics Data System (ADS)

    Bouchard, Antoine; Carignan, Claude; Staveley-Smith, Lister

    2006-06-01

    Parkes neutral hydrogen 21 cm line (H I) observations of the surroundings of nine early-type Local Group dwarfs are presented. We detected numerous H I clouds in the general direction of those dwarfs, and these clouds are often offset from the optical center of the galaxies. Although all the observed dwarfs, except Antlia, occupy phase-space regions where the high-velocity cloud (HVC) density is well above average, the measured offsets are smaller than one would expect from a fully random cloud distribution. Possible association is detected for 11 of the 16 investigated clouds, while for two galaxies, Sextans and Leo I, no H I was detected. The galaxies in which H I clouds were found not to coincide with the optical yet have a significant probability of being associated are the Sculptor dwarf, Tucana, LGS 3, Cetus, and Fornax. If the clouds are indeed associated, these galaxies have H I masses of MHI=2×105, 2×106, 7×105, 7×105, and 1×105 Msolar, respectively. However, neither ram pressure nor tidal stripping can easily explain the offsets. In some cases, large offsets are found where ram pressure should be the least effective.

  8. Environmental Effects on the ISM and Star Formation Properties of Nearby Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Mok, Angus; Wilson, Christine

    2015-08-01

    We present the results from a sample of HI flux-selected spiral galaxies within 25 Mpc from the JCMT Nearby Galaxies Legacy Survey (NGLS), subdivided into isolated, group, and Virgo cluster samples. The CO J=3-2 line was observed with the James Clerk Maxwell Telescope (JCMT), a tracer for the dense molecular gas linked to star formation. We combine the CO data with integrated star formation rates using H-alpha measurements and stellar masses from the S4G Survey in order to study the link between the gas and stars inside these galaxies. We find that while the mean atomic gas mass is lower for the Virgo galaxies compared to the isolated galaxies, the distributions of molecular gas masses are not significantly different between the three samples. The specific star formation rate is also lower for the Virgo sample, followed by the group and isolated galaxies. Finally, the molecular gas depletion time is longer for the Virgo galaxies compared to the group and isolated galaxies, which suggests the possible effects of environment on the galaxy's star formation properties.

  9. Indirect Evidence for Escaping Ionizing Photons in Local Lyman Break Galaxy Analogs

    NASA Astrophysics Data System (ADS)

    Alexandroff, Rachael M.; Heckman, Timothy M.; Borthakur, Sanchayeeta; Overzier, Roderik; Leitherer, Claus

    2015-09-01

    A population of early star-forming galaxies is the leading candidate for the re-ionization of the universe. It is still unclear, however, what conditions and physical processes would enable a significant fraction of the ionizing (Lyman continuum) photons to escape from these gas-rich galaxies. In this paper we present the results of the analysis of Hubble Space Telescope Cosmic Origins Spectrograph far-UV (FUV) spectroscopy plus ancillary multi-waveband data of a sample of 22 low-redshift galaxies that are good analogs to typical star-forming galaxies at high redshift. We measure three parameters that provide indirect evidence of the escape of ionizing radiation (leakiness): (1) the residual intensity in the cores of saturated interstellar low-ionization absorption lines, which indicates incomplete covering by that gas in the galaxy; (2) the relative amount of blueshifted Lyα line emission, which can indicate the existence of holes in the neutral hydrogen on the front-side of the galaxy outflow, and (3) the relative weakness of the [S ii] optical emission lines that trace matter-bounded H ii regions. We show that our residual intensity measures are only negligibly affected by infilling from resonance emission lines. We find all three diagnostics agree well with one another. We use these diagnostics to rank-order our sample in terms of likely leakiness, noting that a direct measure of escaping Lyman continuum has recently been made for one of the leakiest members of our sample. We then examine the correlations between our ranking and other proposed diagnostics of leakiness. We find a good correlation with the equivalent width of the Lyα emission line, but no significant correlations with either the flux ratio of the [O iii]/[O ii] emission lines or the ratio of star-formation rates derived from the (dust-corrected) FUV and Hα luminosities. Turning to galaxy properties, we find the strongest correlations with leakiness are with the compactness of the star

  10. Physical properties and evolutionary state of the Lyman alpha emitting starburst galaxy IRAS 08339+6517

    NASA Astrophysics Data System (ADS)

    Otí-Floranes, H.; Mas-Hesse, J. M.; Jiménez-Bailón, E.; Schaerer, D.; Hayes, M.; Östlin, G.; Atek, H.; Kunth, D.

    2014-06-01

    Context. Though Lyα emission is one of the most used tracers of massive star formation at high redshift, it is strongly affected by neutral gas radiation transfer effects. A correct understanding of these effects is required to properly quantify the star formation rate along the history of the Universe. Aims: We aim to parameterize the escape of Lyα photons as a function of the galaxy properties, in order to properly calibrate the Lyα luminosity as a tracer of star formation intensity at any age of the Universe. Methods: We have embarked on a program to study the properties of the Lyα emission (spectral profile, spatial distribution, relation to Balmer lines intensity,...) in a number of starburst galaxies in the Local Universe. The study is based on Hubble Space Telescope spectroscopic and imaging observations at various wavelengths, X-ray data, and ground-based spectroscopy, complemented with the use of evolutionary population synthesis models. Results: We present here the results obtained for one of those sources, IRAS 08339+6517, a strong Lyα emitter in the Local Universe, which is undergoing an intense episode of massive star formation. We have characterized the properties of the starburst, which transformed 1.4 × 108 M⊙ of gas into stars around 5-6 Myr ago. The mechanical energy released by the central super stellar cluster (SSC), located in the core of the starburst, has created a cavity devoid of gas and dust around it, leaving a clean path through which the UV continuum of the SSC is observed, with almost no extinction. While the average extinction affecting the stellar continuum is significantly larger out of the cavity, with E(B - V) = 0.15 on average, we have not found any evidence for regions with very large extinctions, which could be hiding some young, massive stars not contributing to the global UV continuum. The observed soft and hard X-ray emissions are consistent with this scenario, being originated by the interstellar medium heated by

  11. Identifying Local Group field galaxies that have interacted with the Milky Way

    NASA Astrophysics Data System (ADS)

    Teyssier, Maureen; Johnston, Kathryn V.; Kuhlen, Michael

    2012-11-01

    We distinguish between Local Group field galaxies that may have passed through the virial volume of the Milky Way, and those that have not, via a statistical comparison against populations of dark matter haloes in the Via Lactea II (VLII) simulation with known orbital histories. Analysis of VLII provides expectations for this escaped population: they contribute 13 per cent of the galactic population between 300 and 1500 kpc from the Milky Way, and hence we anticipate that about 7 of the 54 known Local Group galaxies in that distance range are likely to be Milky Way escapees. These objects can be of any mass below that of the Milky Way, and they are expected to have positive radial velocities with respect to the Milky Way. Comparison of the radius-velocity distributions of VLII populations and measurements of Local Group galaxies presents a strong likelihood that Tucana, Cetus, NGC 3109, Sextans A, Sextans B, Antlia, NGC 6822, Phoenix, Leo T and NGC 185 have passed through the Milky Way. Most of these dwarfs have a lower H I mass fraction than the majority of dwarfs lying at similar distances to either the Milky Way or M31. Indeed, several of these galaxies - especially those with lower masses - contain signatures in their morphology, star formation history and/or gas content indicative of evolution seen in simulations of satellite/parent galactic interactions. Our results offer strong support for scenarios in which dwarfs of different types form a sequence in morphology and gas content, with evolution along the sequence being driven by interaction history.

  12. SDSS-IV MaNGA: properties of galaxies with kinematically decoupled stellar and gaseous components

    NASA Astrophysics Data System (ADS)

    Jin, Yifei; Chen, Yanmei; Shi, Yong; Tremonti, C. A.; Bershady, M. A.; Merrifield, M.; Emsellem, E.; Fu, Hai; Wake, D.; Bundy, K.; Lin, Lihwai; Argudo-Fernandez, M.; Huang, Song; Stark, D. V.; Storchi-Bergmann, T.; Bizyaev, D.; Brownstein, J.; Chisholm, J.; Guo, Qi; Hao, Lei; Hu, Jian; Li, Cheng; Li, Ran; Masters, K. L.; Malanushenko, E.; Pan, Kaike; Riffel, R. A.; Roman-Lopes, A.; Simmons, A.; Thomas, D.; Wang, Lan; Westfall, K.; Yan, Renbin

    2016-11-01

    We study the properties of 66 galaxies with kinematically misaligned gas and stars from MaNGA survey. The fraction of kinematically misaligned galaxies varies with galaxy physical parameters, i.e. M*, SFR and sSFR. According to their sSFR, we further classify these 66 galaxies into three categories, 10 star-forming, 26 `Green Valley' and 30 quiescent ones. The properties of different types of kinematically misaligned galaxies are different in that the star-forming ones have positive gradient in Dn4000 and higher gas-phase metallicity, while the green valley/quiescent ones have negative Dn4000 gradients and lower gas-phase metallicity on average. There is evidence that all types of the kinematically misaligned galaxies tend to live in more isolated environment. Based on all these observational results, we propose a scenario for the formation of star-forming galaxies with kinematically misaligned gas and stars -- the progenitor accretes misaligned gas from a gas-rich dwarf or cosmic web, the cancellation of angular momentum from gas-gas collisions between the pre-existing gas and the accreted gas largely accelerates gas inflow, leading to fast centrally concentrated star formation. The higher metallicity is due to enrichment from this star formation. For the kinematically misaligned green valley and quiescent galaxies, they might be formed through gas-poor progenitors accreting kinematically misaligned gas from satellites which are smaller in mass.

  13. SDSS-IV MaNGA: Properties of galaxies with kinematically decoupled stellar and gaseous components

    NASA Astrophysics Data System (ADS)

    Jin, Yifei; Chen, Yanmei; Shi, Yong; Tremonti, C. A.; Bershady, M. A.; Merrifield, M.; Emsellem, E.; Fu, Hai; Wake, D.; Bundy, K.; Lin, Lihwai; Argudo-Fernandez, M.; Huang, Song; Stark, D. V.; Storchi-Bergmann, T.; Bizyaev, D.; Brownstein, J.; Chisholm, J.; Guo, Qi; Hao, Lei; Hu, Jian; Li, Cheng; Li, Ran; Masters, K. L.; Malanushenko, E.; Pan, Kaike; Riffel, R. A.; Roman-Lopes, A.; Simmons, A.; Thomas, D.; Wang, Lan; Westfall, K.; Yan, Renbin

    2016-08-01

    We study the properties of 66 galaxies with kinematically misaligned gas and stars from MaNGA survey. The fraction of kinematically misaligned galaxies varies with galaxy physical parameters, i.e. M★, SFR and sSFR. According to their sSFR, we further classify these 66 galaxies into three categories, 10 star-forming, 26 "Green Valley" and 30 quiescent ones. The properties of different types of kinematically misaligned galaxies are different in that the star-forming ones have positive gradient in Dn4000 and higher gas-phase metallicity, while the green valley/quiescent ones have negative Dn4000 gradients and lower gas-phase metallicity on average. There is evidence that all types of the kinematically misaligned galaxies tend to live in more isolated environment. Based on all these observational results, we propose a scenario for the formation of star forming galaxies with kinematically misaligned gas and stars - the progenitor accretes misaligned gas from a gas-rich dwarf or cosmic web, the cancellation of angular momentum from gas-gas collisions between the pre-existing gas and the accreted gas largely accelerates gas inflow, leading to fast centrally-concentrated star-formation. The higher metallicity is due to enrichment from this star formation. For the kinematically misaligned green valley and quiescent galaxies, they might be formed through gas-poor progenitors accreting kinematically misaligned gas from satellites which are smaller in mass.

  14. Local dark energy: HST evidence from the vicinity of the M81/M82 galaxy group

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Karachentsev, I. D.; Kashibadze, O. G.; Makarov, D. I.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.

    2007-10-01

    The Hubble Space Telescope observations of the nearby galaxy group M81/M82 and its vicinity indicate that the dynamics of the expansion outflow around the group is dominated by the antigravity of the dark energy background. The local density of dark energy in the area is estimated to be near the global dark energy density or perhaps exactly equal to it. This conclusion agrees well with our previous results for the Local Group vicinity and the vicinity of the Cen A/M83 group.

  15. Probing the dust properties of galaxies up to submillimetre wavelengths. I. The spectral energy distribution of dwarf galaxies using LABOCA

    NASA Astrophysics Data System (ADS)

    Galametz, M.; Madden, S.; Galliano, F.; Hony, S.; Schuller, F.; Beelen, A.; Bendo, G.; Sauvage, M.; Lundgren, A.; Billot, N.

    2009-12-01

    Aims. We study the dust properties of four low metallicity galaxies by modelling their spectral energy distributions. This modelling enables us to constrain the dust properties such as the mass, the temperature or the composition to characterise the global ISM properties in dwarf galaxies. Methods: We present 870 μm images of four low metallicity galaxies (NGC 1705, Haro 11, Mrk 1089 and UM 311) observed with the Large APEX BOlometer CAmera (LABOCA) on the Atacama Pathfinder EXperiment (APEX) telescope. We modeled their spectral energy distributions combining the submm observations of LABOCA, 2MASS, IRAS, Spitzer photometric data, and the IRS data for Haro 11. Results: We found that the PAH mass abundance is very low in these galaxies, 5 to 50 times lower than the PAH mass fraction of our Galaxy. We also found that a significant mass of dust is revealed when using submm constraints compared to that measured with only mid-IR to far-IR observations extending only to 160 μm. For NGC 1705 and Haro 11, an excess in submillimeter wavelengths was detected when we used our standard dust SED model. We rerun our SED procedure adding a cold dust component (10 K) to better describe the high 870 μm flux derived from LABOCA observations, which significantly improves the fit. We found that at least 70% of the dust mass of these two galaxies can reside in a cold dust component. We also showed that the subsequent dust-to-gas mass ratios, considering HI and CO observations, can be strikingly high for Haro 11 in comparison with what is usually expected for these low-metallicity environments. Furthermore, we derived the star formation rate of our galaxies and compared them to the Schmidt law. Haro 11 falls anomalously far from the Schmidt relation. These results may suggest that a reservoir of hidden gas could be present in molecular form not traced by the current CO observations. While there can be a significant cold dust mass found in Haro 11, the SED peaks at exceptionally short

  16. Dust properties of Lyman-break galaxies at z ~ 3

    NASA Astrophysics Data System (ADS)

    Álvarez-Márquez, J.; Burgarella, D.; Heinis, S.; Buat, V.; Lo Faro, B.; Béthermin, M.; López-Fortín, C. E.; Cooray, A.; Farrah, D.; Hurley, P.; Ibar, E.; Ilbert, O.; Koekemoer, A. M.; Lemaux, B. C.; Pérez-Fournon, I.; Rodighiero, G.; Salvato, M.; Scott, D.; Taniguchi, Y.; Vieira, J. D.; Wang, L.

    2016-03-01

    Context. Since the mid-1990s, the sample of Lyman-break galaxies (LBGs) has been growing thanks to the increasing sensitivities in the optical and in near-infrared telescopes for objects at z> 2.5. However, the dust properties of the LBGs are poorly known because the samples are small and/or biased against far-infrared (far-IR) or submillimeter (submm) observations. Aims: This work explores from a statistical point of view the far-IR and submm properties of a large sample of LBGs at z ~ 3 that cannot be individually detected from current far-IR observations. Methods: We select a sample of 22, 000 LBGs at 2.5 galaxies included in the sample allows us to split it into several bins as a function of UV luminosity (LFUV), UV continuum slope (βUV), and stellar mass (M∗) to better sample their variety. We stack in PACS (100 and 160 μm) images from PACS Evolution Probe survey (PEP), SPIRE (250, 350 and 500 μm) images from the Herschel Multi-tied Extragalactic Survey (HerMES) programs, and AzTEC (1.1 mm) images from the Atacama Submillimeter Telescope Experiment (ASTE). Our stacking procedure corrects the biases induced by galaxy clustering and incompleteness of our input catalogue in dense regions. Results: We obtain the full infrared spectral energy distributions (SED) of subsamples of LBGs and derive the mean IR luminosity as a function of LFUV, βUV, and M∗. The average IRX (or dust attenuation) is roughly constant over the LFUV range, with a mean of 7.9 (1.8 mag). However, it is correlated with βUV, AFUV = (3.15 ± 0.12) + (1.47 ± 0.14) βUV, and stellar mass, log (IRX) = (0.84 ± 0.11)log (M∗/ 1010.35) + 1.17 ± 0.05. We investigate using a statistically controlled stacking analysis as a function of (M∗, βUV), the dispersion of the IRX-βUV and IRX-M∗ plane. On the one hand, the dust attenuation shows a departure of up to 2.8 mag above the mean IRX-βUV relation when log (M

  17. Accounting for the dispersion in the x ray properties of early-type galaxies

    NASA Technical Reports Server (NTRS)

    White, Raymond E., III; Sarazin, Craig L.

    1990-01-01

    The x ray luminosities of early-type galaxies are correlated with their optical (e.g., blue) luminosities (L sub X approx. L sub B exp 1.6), but the x ray luminosities exhibit considerable scatter for a given optical luminosity L sub B. This dispersion in x ray luminosity is much greater than the dispersion of other properties of early-type galaxies (for a given L sub B), such as luminosity scale-length, velocity dispersion, color, and metallicity. Here, researchers consider several possible sources for the dispersion in x ray luminosity. Some of the scatter in x ray luminosity may result from stellar population variations between galaxies with similar L sub B. Since the x ray emitting gas is from accumulated stellar mass loss, the L sub X dispersion may be due to variations in integrated stellar mass loss rates. Another possible cause of the L sub X dispersion may be variations in the amount of cool material in the galaxies; cool gas may act as an energy sink for the hot gas. Infrared emission may be used to trace such cool material, so researchers look for a correlation between the infrared emission and the x ray emission of early-type galaxies at fixed L sub B. Velocity dispersion variations between galaxies of similar L sub B may also contribute to the L sub X dispersion. The most likely a priori source of the dispersion in L sub X is probably the varying amount of ram-pressure stripping in a range of galaxy environments. The hot gaseous halos of early-type galaxies can be stripped in encounters with other galaxies or with ambient cluster gas if the intracluster gas is sufficiently dense. Researchers find that the most likely cause of dispersion in the x ray properties of early type galaxies is probably the ram-pressure stripping of gaseous halos from galaxies. For a sample of 81 early-type galaxies with x ray luminosities or upper limits derived from Einstein Observatory observations (CFT) researchers calculated the cumulative distribution of angular distances

  18. Revisiting the Lyman Continuum Escape Crisis: Predictions for z > 6 from Local Galaxies

    NASA Astrophysics Data System (ADS)

    Faisst, Andreas L.

    2016-10-01

    The intrinsic escape fraction of ionizing Lyman continuum photons ({f}{{esc}}) is crucial to understanding whether galaxies are capable of reionizing the neutral hydrogen in the early universe at z > 6. Unfortunately, it is not possible to access {f}{{esc}} at z > 4 with direct observations, and the handful of measurements from low-redshift galaxies consistently find {f}{{esc}} < 10%, while at least {f}{{esc}} ˜ 10% is necessary for galaxies to dominate reionization. Here, we present the first empirical prediction of {f}{{esc}} at z > 6 by combining the (sparsely populated) relation between [{{O}} {{III}}]/[{{O}} {{II}}] and {f}{{esc}} with the redshift evolution of [{{O}} {{III}}]/[{{O}} {{II}}] as predicted from local high-z analogs selected by their Hα equivalent width. We find {f}{{esc}}={5.7}-3.3+8.3 % at z = 6 and {f}{{esc}}={10.4}-6.3+15.5 % at z = 9 for galaxies with {log}(M/{M}⊙ )˜ 9.0 (errors given as 1σ). However, there is a negative correlation with stellar mass and we find up to 50% larger {f}{{esc}} per 0.5 dex decrease in stellar mass. The population-averaged escape fraction increases according to {f}{{esc}}={f}{{esc,0}}{((1+z)/3)}α , with f esc,0 = (2.3 ± 0.05)% and α = 1.17 ± 0.02 at z > 2 for {log}(M/{M}⊙ )˜ 9.0. With our empirical prediction of {f}{{esc}} (thus fixing an important, previously unknown variable) and further reasonable assumptions on clumping factor and the production efficiency of Lyman continuum photons, we conclude that the average population of galaxies is just capable of reionizing the universe by z ˜ 6.

  19. Investigating the presence of 500 μm submillimeter excess emission in local star forming galaxies

    SciTech Connect

    Kirkpatrick, Allison; Calzetti, Daniela; Galametz, Maud; Kennicutt, Rob Jr.; Dale, Daniel; Aniano, Gonzalo; Sandstrom, Karin; Walter, Fabian; Armus, Lee; Crocker, Alison; Hinz, Joannah; Hunt, Leslie; Koda, Jin

    2013-11-20

    Submillimeter excess emission has been reported at 500 μm in a handful of local galaxies, and previous studies suggest that it could be correlated with metal abundance. We investigate the presence of an excess submillimeter emission at 500 μm for a sample of 20 galaxies from the Key Insights on Nearby Galaxies: a Far Infrared Survey with Herschel (KINGFISH) that span a range of morphologies and metallicities (12 + log (O/H) = 7.8-8.7). We probe the far-infrared (IR) emission using images from the Spitzer Space Telescope and Herschel Space Observatory in the wavelength range 24-500 μm. We model the far-IR peak of the dust emission with a two-temperature modified blackbody and measure excess of the 500 μm photometry relative to that predicted by our model. We compare the submillimeter excess, where present, with global galaxy metallicity and, where available, resolved metallicity measurements. We do not find any correlation between the 500 μm excess and metallicity. A few individual sources do show excess (10%-20%) at 500 μm; conversely, for other sources, the model overpredicts the measured 500 μm flux density by as much as 20%, creating a 500 μm 'deficit'. None of our sources has an excess larger than the calculated 1σ uncertainty, leading us to conclude that there is no substantial excess at submillimeter wavelengths at or shorter than 500 μm in our sample. Our results differ from previous studies detecting 500 μm excess in KINGFISH galaxies largely due to new, improved photometry used in this study.

  20. J-PLUS and the galaxy star formation rate in the local universe

    NASA Astrophysics Data System (ADS)

    Vilella, G.; Viironen, K.; López-Sanjuan, C.; Varela, J.; Cenarro, A. J.; J-PAS Team

    2015-05-01

    The Javalambre Physics of the Local Universe Survey (J-PLUS) is a large photometric survey that will cover ˜8000 deg^2 with a set of 5 broad filters (SDSS filter set) and 7 narrow ones. It will be carried out from the Observatorio Astrofísico de Javalambre (OAJ) at the Pico del Buitre, Teruel, Spain. In addition to its main goal, which is the photometric calibration of the J-PAS survey, it has been designed to acquire the Hα flux of the galaxies in the nearby Universe (z≤0.015) up to r˜23 (AB). In this poster we present a first approach to the methodology that will be used to obtain Hα fluxes from photometric data. We first explain different methodologies to recover this flux. To test these methodologies, we simulate observations of real star forming galaxies from SDSS spectra. We show that using the information of one or two broad filters and a narrow one would bias our results. To cope with that, we fit the whole observed spectral energy distribution to a simple stellar population template and isolate the excess of flux inside the Hα filter. This allows us to recover the desired flux with accuracy and without biases. With this information, the J-PLUS survey will allow us to reproduce the Hα luminosity function and derive the star formation rate of thousands of galaxies in the local universe.

  1. Galaxy populations in the Antlia cluster - I. Photometric properties of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Smith Castelli, Analía V.; Bassino, Lilia P.; Richtler, Tom; Cellone, Sergio A.; Aruta, Cristian; Infante, Leopoldo

    2008-06-01

    We present the first colour-magnitude relation (CMR) of early-type galaxies in the central region of the Antlia cluster, obtained from CCD wide-field photometry in the Washington photometric system. Integrated (C - T1) colours, T1 magnitudes, and effective radii have been measured for 93 galaxies (i.e. the largest galaxies sample in the Washington system till now) from the FS90 Antlia Group catalogue. Membership of 37 objects can be confirmed through new radial velocities and data collected from the literature. The resulting colour-magnitude diagram shows that early-type FS90 galaxies that are spectroscopically confirmed Antlia members or that were considered as definite members by FS90, follow a well-defined CMR that spans 9 mag in brightness with no apparent change of slope. This relation is very tight for the whole magnitude range but S0 galaxies show a larger dispersion, apparently due to a separation of ellipticals and S0s. Antlia displays a slope of -13.6 in a T1 versus (C - T1) diagram, in agreement with results for clusters like Fornax, Virgo, Coma and Perseus, which are dynamically different to Antlia. This fact might indicate that the build-up of the CMR in cluster of galaxies is more related to galaxies internal processes than to the influence of the environment. Interpreting the CMR as a luminosity-metallicity relation of old stellar systems, the metallicities of the Antlia galaxies define a global relation down to MV ~ -13. We also find, for early-type dwarfs, no clear relation between luminosity and effective radius, indicating a nearly constant mean effective radius of ~1 kpc. This value is also found in several samples of dwarf galaxies in Virgo and Coma. This paper is based on data obtained with the 4-m telescope at CTIO, Chile, with the 6.5-m Magellan telescopes at Las Campanas Observatory, Chile, and at CASLEO, operated under agreement between CONICET and the Universities of La Plata, Córdoba and San Juan, Argentina. E-mail: asmith

  2. Host Galaxy Properties of the Swift BAT Ultra Hard X-Ray Selected AGN

    NASA Technical Reports Server (NTRS)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-01-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) AGN with host galaxy optical data to date, with 185 nearby (z<0.05), moderate luminosity AGN from the Swift Burst Alert Telescope (BAT) sample. The BAT AGN host galaxies have intermediate optical colors (u -- r and g -- r) that are bluer than a comparison sample of inactive galaxies and optically selected AGN from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGN are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGN in massive galaxies (log Stellar Mass >10.5) have a 5 to 10 times higher rate of spiral morphologies than in SDSS AGN or inactive galaxies. We also see enhanced far-IR emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGN are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGN have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] Lambda 5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGN in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as whole. In agreement with the Unified Model of AGN, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGN suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  3. HOST GALAXY PROPERTIES OF THE SWIFT BAT ULTRA HARD X-RAY SELECTED ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-10-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) active galactic nucleus (AGN) with host galaxy optical data to date, with 185 nearby (z < 0.05), moderate luminosity AGNs from the Swift BAT sample. The BAT AGN host galaxies have intermediate optical colors (u - r and g - r) that are bluer than a comparison sample of inactive galaxies and optically selected AGNs from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGNs are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGNs in massive galaxies (log M{sub *} >10.5) have a 5-10 times higher rate of spiral morphologies than in SDSS AGNs or inactive galaxies. We also see enhanced far-infrared emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGNs are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGNs have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] {lambda}5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGNs in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as a whole. In agreement with the unified model of AGNs, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGNs suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  4. Polarization properties of localized structures in VCSELs

    NASA Astrophysics Data System (ADS)

    Averlant, Etienne; Tlidi, Mustapha; Ackemann, Thorsten; Thienpont, Hugo; Panajotov, Krassimir

    2016-04-01

    Broad area Vertical-Cavity Surface-Emitting Lasers (VCSELs) have peculiar polarization properties which are a field of study by itself.1-3 These properties have already been used for localized structure generation, in a simple configuration, where only one polarization component was used.4 Here, we present new experimental and theoretical results on the complex polarization behavior of localized structures generated in an optically-injected broad area VCSEL. A linear stability analysis of the spin-flip VCSEL model is performed for the case of broad area devices, in a restrained and experimentally relevant parameter set. Numerical simulations are performed, in one and two dimensions. They reveal existence of vector localized structures. These structures have a complex polarization state, which is not simply a linear polarization following the one of the optical injection. Experimental results confirm theoretical predictions. Applications of this work can lead to the encoding of small color images in the polarization state of an ensemble of localized structures at the surface of a broad area VCSEL.

  5. THE SPACE DENSITY OF EXTENDED ULTRAVIOLET (XUV) DISKS IN THE LOCAL UNIVERSE AND IMPLICATIONS FOR GAS ACCRETION ONTO GALAXIES

    SciTech Connect

    Lemonias, Jenna J.; Schiminovich, David; Thilker, David; Bianchi, Luciana; Wyder, Ted K.; Martin, D. Christopher; Seibert, Mark; Madore, Barry F.; Treyer, Marie A.; Heckman, Timothy M.; Rich, R. Michael

    2011-06-01

    We present results of the first unbiased search for extended ultraviolet (XUV)-disk galaxies undertaken to determine the space density of such galaxies. Our sample contains 561 local (0.001 < z < 0.05) galaxies that lie in the intersection of available Galaxy Evolution Explorer (GALEX) deep imaging (exposure time >1.5 x 10{sup 4} s) and Sloan Digital Sky Survey DR7 footprints. We explore modifications to the standard classification scheme for our sample that includes both disk- and bulge-dominated galaxies. Visual classification of each galaxy in the sample reveals an XUV-disk frequency of up to 20% for the most nearby portion of our sample. On average over the entire sample (out to z = 0.05) the frequency ranges from a hard limit of 4%-14%. The GALEX imaging allows us to detect XUV disks beyond 100 Mpc. The XUV regions around XUV-disk galaxies are consistently bluer than the main bodies. We find a surprisingly high frequency of XUV emission around luminous red (NUV-r > 5) and green valley (3 < NUV-r < 5) galaxies. The XUV-disk space density in the local universe is >(1.5-4.2) x 10{sup -3} Mpc{sup -3}. Using the XUV emission as an indicator of recent gas accretion, we estimate that the cold gas accretion rate onto these galaxies is >(1.7-4.6) x 10{sup -3} M{sub sun} Mpc{sup -3} yr{sup -1}. The number of XUV disks in the green valley and the estimated accretion rate onto such galaxies points to the intriguing possibility that 7%-18% of galaxies in this population are transitioning away from the red sequence.

  6. Properties of galaxies reproduced by a hydrodynamic simulation.

    PubMed

    Vogelsberger, M; Genel, S; Springel, V; Torrey, P; Sijacki, D; Xu, D; Snyder, G; Bird, S; Nelson, D; Hernquist, L

    2014-05-01

    Previous simulations of the growth of cosmic structures have broadly reproduced the 'cosmic web' of galaxies that we see in the Universe, but failed to create a mixed population of elliptical and spiral galaxies, because of numerical inaccuracies and incomplete physical models. Moreover, they were unable to track the small-scale evolution of gas and stars to the present epoch within a representative portion of the Universe. Here we report a simulation that starts 12 million years after the Big Bang, and traces 13 billion years of cosmic evolution with 12 billion resolution elements in a cube of 106.5 megaparsecs a side. It yields a reasonable population of ellipticals and spirals, reproduces the observed distribution of galaxies in clusters and characteristics of hydrogen on large scales, and at the same time matches the 'metal' and hydrogen content of galaxies on small scales.

  7. Properties of galaxies reproduced by a hydrodynamic simulation.

    PubMed

    Vogelsberger, M; Genel, S; Springel, V; Torrey, P; Sijacki, D; Xu, D; Snyder, G; Bird, S; Nelson, D; Hernquist, L

    2014-05-01

    Previous simulations of the growth of cosmic structures have broadly reproduced the 'cosmic web' of galaxies that we see in the Universe, but failed to create a mixed population of elliptical and spiral galaxies, because of numerical inaccuracies and incomplete physical models. Moreover, they were unable to track the small-scale evolution of gas and stars to the present epoch within a representative portion of the Universe. Here we report a simulation that starts 12 million years after the Big Bang, and traces 13 billion years of cosmic evolution with 12 billion resolution elements in a cube of 106.5 megaparsecs a side. It yields a reasonable population of ellipticals and spirals, reproduces the observed distribution of galaxies in clusters and characteristics of hydrogen on large scales, and at the same time matches the 'metal' and hydrogen content of galaxies on small scales. PMID:24805343

  8. An Observational Study on Physical Properties of the Molecular Gas in External Galaxies

    NASA Astrophysics Data System (ADS)

    Ao, Y. P.

    2011-01-01

    To study the physical properties of the molecular gas in luminous infrared galaxies (LIRGs), this thesis presents the preliminary results of a small local sample, a case study on a distant LIRG IRAS F10214+4724 at z=2.286 and another case study on a local LIRG ARP 302. The molecular gas in Perseus A, the cD galaxy in the center of the Perseus Cluster, is presented in high angular resolution observation to study the gas distribution and its kinematics. A small sample of 5 LIRGs was observed and the CO (J=3→2) mapping results reveal the gas distribution concentrated in the galactic centers or the centers of mergers and their overlapping regions. For NGC 3256, the maps in the CO (J=3→2), CO (J=4→3) and CO (J=7→6) transitions are obtained. Together with the measurements in the lower transitions from literatures, the peak of the spectral energy distribution (SED) of CO line was found between CO (J=5→4) and CO (J=6→5). With the radiation transfer model and the CO ladder, the gas density is constrained to n(H2)=103.7~104.1 cm-3 for a kinematic temperature T kin=40~45 K adopted from the literature. Local LIRG NGC 3256 shows the similar excitation conditions as the submillimeter galaxies (SMGs) in the early universe, further supporting the view that the SMGs are the same type of the local LIRGs, but only at the early epoch. The CI (3P2→3P1), CO (J=3→2), CO (J=4→3), CO (J=6→5) and CO (J=7→6) transitions as well as the dust continuum at 3 mm and 1 mm were detected towards the distant LIRG IRAS F10214+4724 at z=2.286. IRAS F10214+4724 now belongs to a sample of only 3 extragalactic sources at any redshift where both of the carbon fine structure lines have been detected. The source is spatially resolved by our CI (3P2→3P1) observation and we detect a velocity gradient along the east-west direction. The CI line ratio allows us to derive a carbon excitation temperature of 42+12-9 K. The carbon excitation in conjunction with the CO ladder and the dust

  9. Non-parametric star formation histories for four dwarf spheroidal galaxies of the Local Group

    NASA Astrophysics Data System (ADS)

    Hernandez, X.; Gilmore, Gerard; Valls-Gabaud, David

    2000-10-01

    We use recent Hubble Space Telescope colour-magnitude diagrams of the resolved stellar populations of a sample of local dSph galaxies (Carina, Leo I, Leo II and Ursa Minor) to infer the star formation histories of these systems, SFR(t). Applying a new variational calculus maximum likelihood method, which includes a full Bayesian analysis and allows a non-parametric estimate of the function one is solving for, we infer the star formation histories of the systems studied. This method has the advantage of yielding an objective answer, as one need not assume a priori the form of the function one is trying to recover. The results are checked independently using Saha's W statistic. The total luminosities of the systems are used to normalize the results into physical units and derive SN type II rates. We derive the luminosity-weighted mean star formation history of this sample of galaxies.

  10. Herschel-ATLAS: the surprising diversity of dust-selected galaxies in the local submillimetre Universe

    NASA Astrophysics Data System (ADS)

    Clark, C. J. R.; Dunne, L.; Gomez, H. L.; Maddox, S.; De Vis, P.; Smith, M. W. L.; Eales, S. A.; Baes, M.; Bendo, G. J.; Bourne, N.; Driver, S. P.; Dye, S.; Furlanetto, C.; Grootes, M. W.; Ivison, R. J.; Schofield, S. P.; Robotham, A. S. G.; Rowlands, K.; Valiante, E.; Vlahakis, C.; van der Werf, P.; Wright, A. H.; de Zotti, G.

    2015-09-01

    We present the properties of the first 250 μm blind sample of nearby galaxies (15 < D < 46 Mpc) containing 42 objects from the Herschel Astrophysical Terahertz Large Area Survey. Herschel's sensitivity probes the faint end of the dust luminosity function for the first time, spanning a range of stellar mass (7.4 < M⋆ < 11.3 log10 M⊙), star formation activity (-11.8 < SSFR < -8.9 log10 yr-1), gas fraction (3-96 per cent), and colour (0.6 < FUV-KS < 7.0 mag). The median cold dust temperature is 14.6 K, colder than in the Herschel Reference Survey (18.5 K) and Planck Early Release Compact Source Catalogue (17.7 K). The mean dust-to-stellar mass ratio in our sample is higher than these surveys by factors of 3.7 and 1.8, with a dust mass volume density of (3.7 ± 0.7) × 105 M⊙ Mpc-3. Counter-intuitively, we find that the more dust rich a galaxy, the lower its UV attenuation. Over half of our dust-selected sample are very blue in FUV-KS colour, with irregular and/or highly flocculent morphology; these galaxies account for only 6 per cent of the sample's stellar mass but contain over 35 per cent of the dust mass. They are the most actively star-forming galaxies in the sample, with the highest gas fractions and lowest UV attenuation. They also appear to be in an early stage of converting their gas into stars, providing valuable insights into the chemical evolution of young galaxies.

  11. Probing the dusty inhabitants of the Local Group Galaxies: JWST/MIRI colors of infrared stellar populations

    NASA Astrophysics Data System (ADS)

    Jones, Olivia; Meixner, Margaret

    2016-01-01

    The assembly of galaxies involves the life cycle of mass, metal enrichment and dust that JWST will probe. Detailed studies of nearby galaxies provides guidance for interpreting the more distant forming galaxies. JWST/MIRI will enable stellar population studies akin to work done with HST on the Local Group galaxies but over a new wavelength range. MIRI's imaging capability over nine photometric bands from 5 to 28 microns is particularly suited to survey stars with an infrared excess and to detangle the extinction or thermal emission from various species of dust. These dusty stellar populations include young stellar objects, evolved stars and supernovae that are bright in the infrared. Using the rich Spitzer-IRS spectroscopic dataset and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)-Spectroscopic survey of over a thousand objects in the Magellanic Clouds, we calculate the expected flux -densities and colors in the MIRI broadband filters for these prominent infrared sources. We uses these fluxes to illustrate what JWST will see in stellar population studies for other Local Group galaxies. JWST/MIRI observations of infrared sources in Local Group Galaxies will constrain the life cycle of galaxies through their dust emission. For example, how much of the interstellar dust is supplied by dying stars? Do the number of young stellar objects agree with star formation diagnostic for the galaxy? We discuss the locations of the post- and pre-main-sequence populations in MIRI color-color and color-magnitude space and examine which filters are best for identifying populations of sources. We connect these results to existing galaxies with HST data for instance Andromeda and M33.

  12. Ultraviolet Properties of Primeval Galaxies: Theoretical Models from Stellar Population Synthesis

    NASA Astrophysics Data System (ADS)

    Buzzoni, Alberto

    2002-03-01

    The ultraviolet luminosity evolution of star-forming galaxies is explored from the theoretical point of view, especially focusing on the theory of UV energetics in simple and composite stellar populations and its relationship to the star formation rate and other main evolutionary parameters. Galaxy emission below λ<3000 Å directly correlates with actual star formation, not depending on the total mass of the system. A straightforward calibration is obtained, in this sense, from the theoretical models at 1600, 2000, and 2800 Å, and a full comparison is carried out with IUE data and other balloon-borne observations for local galaxies. The claimed role of late-type systems as prevailing contributors to the cosmic UV background is reinforced by our results; at 2000 Å, Im irregulars are found in fact nearly 4 orders of magnitude brighter than ellipticals, per unit luminous mass. The role of dust absorption in the observation of high-redshift galaxies is assessed, comparing the model output and observed spectral energy distribution of local galaxy samples. Similar to what we observe in our own galaxy, a quick evolution in the dust environment might be envisaged in primeval galaxies, with an increasing fraction of luminous matter that would escape the regions of harder and ``clumpy'' dust absorption on a timescale of some 107 yr, comparable to the lifetime of stars of 5-10 Msolar.

  13. Ultra-flat galaxies selected from RFGC catalog. I. The sample properties

    NASA Astrophysics Data System (ADS)

    Karachentseva, V. E.; Kudrya, Yu. N.; Karachentsev, I. D.; Makarov, D. I.; Melnyk, O. V.

    2016-01-01

    We used the Revised Flat Galaxy Catalog (RFGC) to create a sample of ultra-flat galaxies (UFG) covering the whole northern and southern sky apart from theMilkyWay zone. It contains 817 spiral galaxies seen edge-on, selected into theUFG sample according to their apparent axial ratios ( a/b) B ≥ 10.0 and ( a/b) R ≥ 8.53 in the blue and red bands, respectively. Within this basic sample we fixed an exemplary sample of 441 UFG galaxies having the radial velocities of V LG < 10000 km s-1, Galactic latitude of | b |> 10° and the blue angular diameter of a B > 1.'0. According to the Schmidt test the exemplary sample of 441 galaxies is characterized by about (80-90)% completeness, what is quite enough to study different properties of the ultra-flat galaxies. We found that more than 3/4 of UFGs have the morphological types within the narrow range of T = 7± 1, i.e. the thinnest stellar disks occur among the Scd, Sd, and Sdm types. The average surface brightness of UFG galaxies tends to diminish towards the flattest bulge-less galaxies. Regularly shaped disks without signs of asymmetrymake up about 2/3 both among all the RFGC galaxies, and the UFG sample objects. About 60% of ultra-flat galaxies can be referred to dynamically isolated objects, while 30% of them probably belong to the scattered associations (filaments, walls), and only about 10% of them are dynamically dominating galaxies with respect to their neighbours.

  14. A comparative study of local galaxy clusters - I. Derived X-ray observables

    NASA Astrophysics Data System (ADS)

    Rozo, E.; Rykoff, E. S.; Bartlett, J. G.; Evrard, A.

    2014-02-01

    We examine systematic differences in the derived X-ray properties of galaxy clusters as reported by three different groups: Vikhlinin et al., Mantz et al. and Plank Collaboration. The sample overlap between any two pairs of works ranges between 16 to 28 galaxy clusters. We find systematic differences in most reported X-ray properties, including the total cluster mass, M500. The most extreme case is an average 45 ± 5 per cent difference in cluster mass between the Plank Collaboration and Mantz et al., for clusters at z > 0.13 (averaged over 16 clusters). These differences also induce differences in cluster observables defined within an R500 aperture. After accounting for aperture differences, we find very good agreement in gas mass estimates between the different groups. However, the soft-band X-ray luminosity, LX, core-excised spectroscopic temperature, TX, and gas thermal energy, YX = MgasTX display mean differences at the 5-15 per cent level. We also find that the low (z ≤ 0.13) and high (z ≥ 0.13) redshift galaxy cluster samples in Plank Collaboration appear to be systematically different: the YSZ/YX ratio for each of these two sub-samples is ln (YSZ/YX) = -0.06 ± 0.04 and ln (YSZ/YX) = 0.08 ± 0.04, respectively.

  15. Alignments of the galaxies in and around the Virgo cluster with the local velocity shear

    SciTech Connect

    Lee, Jounghun; Rey, Soo Chang; Kim, Suk

    2014-08-10

    Observational evidence is presented for the alignment between the cosmic sheet and the principal axis of the velocity shear field at the position of the Virgo cluster. The galaxies in and around the Virgo cluster from the Extended Virgo Cluster Catalog that was recently constructed by Kim et al. are used to determine the direction of the local sheet. The peculiar velocity field reconstructed from the Sloan Digital Sky Survey Data Release 7 is analyzed to estimate the local velocity shear tensor at the Virgo center. Showing first that the minor principal axis of the local velocity shear tensor is almost parallel to the direction of the line of sight, we detect a clear signal of alignment between the positions of the Virgo satellites and the intermediate principal axis of the local velocity shear projected onto the plane of the sky. Furthermore, the dwarf satellites are found to appear more strongly aligned than their normal counterparts, which is interpreted as an indication of the following. (1) The normal satellites and the dwarf satellites fall in the Virgo cluster preferentially along the local filament and the local sheet, respectively. (2) The local filament is aligned with the minor principal axis of the local velocity shear while the local sheet is parallel to the plane spanned by the minor and intermediate principal axes. Our result is consistent with the recent numerical claim that the velocity shear is a good tracer of the cosmic web.

  16. Type Ia Supernova Hubble Residuals and Host-Galaxy Properties

    SciTech Connect

    Nearby Supernova Factory; Kim, A. G.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Cellier-Holzem, F.; Childress, M.; Chotard, N.; Copin, Y.; Fakhouri, H. K.; Feindt, U.; Fleury, M.; Gangler, E.; Greskovic, P.; Guy, J.; Kowalski, M.; Lombardo, S.; Nordin, J.; Nugent, P.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Runge, K.; Saunders, C.; Scalzo, R.; Smadja, G.; Tao, C.; Thomas, R. C.; Weaver, B. A.

    2014-01-17

    Kim et al. (2013) [K13] introduced a new methodology for determining peak- brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spec- trophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ? 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at ? 1?, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement the Hubble residual step with host mass is 0.045 ? 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch param- eters: Steps at> 2? significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light- curve width and color around peak (similar to the∆m15 and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20 to 30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  17. Type Ia Supernova Hubble Residuals and Host-galaxy Properties

    NASA Astrophysics Data System (ADS)

    Kim, A. G.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Cellier-Holzem, F.; Childress, M.; Chotard, N.; Copin, Y.; Fakhouri, H. K.; Feindt, U.; Fleury, M.; Gangler, E.; Greskovic, P.; Guy, J.; Kowalski, M.; Lombardo, S.; Nordin, J.; Nugent, P.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Runge, K.; Saunders, C.; Scalzo, R.; Smadja, G.; Tao, C.; Thomas, R. C.; Weaver, B. A.

    2014-03-01

    Kim et al. introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ± 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at Lt1σ, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement of the Hubble residual step with the host mass is 0.045 ± 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: steps at >2σ significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light-curve width and color around peak (similar to the Δm 15 and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20-30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  18. Using Dwarf Spheroidal Satellites as Probes of Galaxy Properties

    NASA Astrophysics Data System (ADS)

    Choudhury, Abrar; Guhathakurta, P.; Gilbert, K. M.; Beaton, R. L.; Tollerud, E. J.; SPLASH Collaboration

    2012-01-01

    We present a Keck/DEIMOS spectroscopic study of fifteen dwarf spheroidal (dSph) satellites of the Andromeda galaxy. Our aim is to understand the properties of both the dSphs and Andromeda. Previously, detailed spectroscopic studies were carried out on six of these dSphs using smaller data sets, and limited spectroscopic studies were carried out on the remaining nine. The data sets analyzed in this research include more stars and higher quality data than those of previous studies. In order to accurately study the dSphs, we have developed a method that uses the stars’ velocities, metallicities, and projected distances from the center of each dSph to separate members from non-members of the dSphs. The resulting samples are expected to have a low fraction of contamination by non-members, which makes this method critical for all future studies of Andromeda dSphs. We calculate the mean radial velocities and velocity dispersions of the dSphs, and the new dSph velocity measurements are used to estimate Andromeda's dynamical mass. This mass estimate is more accurate than previous ones because it uses more dynamical tracers. The dSph-based mass estimate is corroborated by a different mass estimate based on the kinematics of Andromeda's field halo stars. This is the first time the mass of Andromeda has been calculated using its halo stars. Future steps will include calculating the dark matter content of the dSphs and comparing their chemical abundances to those of Andromeda's halo, which is made up of former dSphs. This research was supported by the Science Internship Program (SIP) at UCSC and the National Science Foundation.

  19. Type Ia supernova Hubble residuals and host-galaxy properties

    SciTech Connect

    Kim, A. G.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Fleury, M.; Guy, J.; Baltay, C.; Buton, C.; Feindt, U.; Greskovic, P.; Kowalski, M.; Childress, M.; Chotard, N.; Copin, Y.; Gangler, E. [Université de Lyon, F-69622 Lyon; Université de Lyon 1, Villeurbanne; CNRS and others

    2014-03-20

    Kim et al. introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ± 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at <<1σ, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement of the Hubble residual step with the host mass is 0.045 ± 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: steps at >2σ significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light-curve width and color around peak (similar to the Δm {sub 15} and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20-30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  20. The CALIFA survey across the Hubble sequence. Spatially resolved stellar population properties in galaxies

    NASA Astrophysics Data System (ADS)

    González Delgado, R. M.; García-Benito, R.; Pérez, E.; Cid Fernandes, R.; de Amorim, A. L.; Cortijo-Ferrero, C.; Lacerda, E. A. D.; López Fernández, R.; Vale-Asari, N.; Sánchez, S. F.; Mollá, M.; Ruiz-Lara, T.; Sánchez-Blázquez, P.; Walcher, C. J.; Alves, J.; Aguerri, J. A. L.; Bekeraité, S.; Bland-Hawthorn, J.; Galbany, L.; Gallazzi, A.; Husemann, B.; Iglesias-Páramo, J.; Kalinova, V.; López-Sánchez, A. R.; Marino, R. A.; Márquez, I.; Masegosa, J.; Mast, D.; Méndez-Abreu, J.; Mendoza, A.; del Olmo, A.; Pérez, I.; Quirrenbach, A.; Zibetti, S.

    2015-09-01

    Various different physical processes contribute to the star formation and stellar mass assembly histories of galaxies. One important approach to understanding the significance of these different processes on galaxy evolution is the study of the stellar population content of today's galaxies in a spatially resolved manner. The aim of this paper is to characterize in detail the radial structure of stellar population properties of galaxies in the nearby universe, based on a uniquely large galaxy sample, considering the quality and coverage of the data. The sample under study was drawn from the CALIFA survey and contains 300 galaxies observed with integral field spectroscopy. These cover a wide range of Hubble types, from spheroids to spiral galaxies, while stellar masses range from M⋆ ~ 109 to 7 × 1011 M⊙. We apply the fossil record method based on spectral synthesis techniques to recover the following physical properties for each spatial resolution element in our target galaxies: the stellar mass surface density (μ⋆), stellar extinction (AV), light-weighted and mass-weighted ages (⟨log age⟩L, ⟨log age⟩M), and mass-weighted metallicity (⟨log Z⋆⟩M). To study mean trends with overall galaxy properties, the individual radial profiles are stacked in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc, and Sd). We confirm that more massive galaxies are more compact, older, moremetal rich, and less reddened by dust. Additionally, we find that these trends are preserved spatially with the radial distance to the nucleus. Deviations from these relations appear correlated with Hubble type: earlier types are more compact, older, and more metal rich for a given M⋆, which is evidence that quenching is related to morphology, but not driven by mass. Negative gradients of ⟨log age⟩L are consistent with an inside-out growth of galaxies, with the largest ⟨log age⟩L gradients in Sb-Sbc galaxies. Further, the mean stellar ages of disks and bulges are

  1. A multiwavelength and multiscale study of Luminous and Ultraluminous Infrared Galaxies in the local Universe

    NASA Astrophysics Data System (ADS)

    Herrero-Illana, Rubén

    2014-10-01

    This dissertation deals with the multiwavelength study of luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs, respectively) in the local Universe under different spatial scales. The work is focused on the properties of massive starbursts, the contribution of active galactic nuclei (AGN) and the interplay between both phenomena. The study of local (U)LIRGs is the best scenario where to understand the properties of these objects at cosmological distances, where their luminosity contribution dominates the cosmic infrared background. Our first approach to the study of (U)LIRGs consisted of a spectral line study in the millimeter range, obtained with the IRAM 30m radio-telescope in Pico Veleta, Granada of a subsample of 56 (U)LIRGs from the GOALS project sample. We observed and analyzed spectra of several molecular features, focusing in the study of carbon monoxide (CO), a well-known tracer of cold molecular gas. We explored the relation between them as well as the properties of molecular gas. Besides of the sample characterization, we confirmed the increase of the isotopic ratio 12CO/13CO with the dust temperature, explained by the 12CO optical depth decreasing with temperature. We have also studied the kinematics and gas distribution using the spectral profiles of several molecular transitions. In a second part of this thesis, we analyzed the central kiloparsec region of a sample of 12 LIRGs, stressing the importance of the multiwavelength approach, aimed at deriving the star formation processes of these galaxies, as well as to study the contribution of the putative AGN to the bolometric luminosity in our sample. For one of these LIRGs, NGC1614, we performed a deep multiwavelength study, including data from radio, infrared, optical and X-rays. These data allowed us to establish that the the IR emission in the circumnuclear region is completely dominated by a powerful starburst and, in case it hosts an AGN, its contribution is irrelevant. We also performed

  2. Properties of the most metal-poor gas-rich LSB dwarf galaxies SDSS J0015+0104 and J2354-0005 residing in the Eridanus void

    NASA Astrophysics Data System (ADS)

    Pustilnik, S. A.; Martin, J.-M.; Lyamina, Y. A.; Kniazev, A. Y.

    2013-07-01

    SDSS J0015+0104 is the lowest metallicity low surface brightness dwarf (LSBD) galaxy known. The oxygen abundance in its H II region SDSS J001520.70+010436.9 (at ˜1.5 kpc from the galaxy centre) is 12+log (O/H) = 7.07 (Guseva et al.). This galaxy, at the distance of 28.4 Mpc, appears to reside deeply in the volume devoid of luminous massive galaxies, known as the Eridanus void. SDSS J235437.29-000501.6 is another Eridanus void LSBD galaxy, with parameter 12+log (O/H) = 7.36 (also Guseva et al.). We present the results of their H I observations with the Nançay Radio Telescope revealing their high ratios of M(H I)/LB ˜ 2.3. Based on the Sloan Digital Sky Survey images, we derived for both galaxies their radial surface brightness profiles and the main photometric parameters. Their colours and total magnitudes are used to estimate the galaxy stellar mass and ages. The related gas mass fractions, fg ˜ 0.98 and ˜0.97, and the extremely low metallicities (much lower than for their more typical counterparts with the same luminosity) indicate their unevolved status. We compare these Eridanus void LSBDs with several extreme LSBD galaxies residing in the nearby Lynx-Cancer void. Based on the combination of all their unusual properties, the two discussed LSBD galaxies are similar to the unusual LSBDs residing in the closer void. This finding presents additional evidence for the existence in voids of a sizeable fraction of low-mass unevolved galaxies. Their dedicated search might result in the substantial increase of the number of such objects in the local Universe and in the advancement of understanding their nature.

  3. Evidence for a ~300 Megaparsec Scale Under-density in the Local Galaxy Distribution

    NASA Astrophysics Data System (ADS)

    Keenan, R. C.; Barger, A. J.; Cowie, L. L.

    2013-09-01

    Galaxy counts and recent measurements of the luminosity density in the near-infrared have indicated the possibility that the local universe may be under-dense on scales of several hundred megaparsecs. The presence of a large-scale under-density in the local universe could introduce significant biases into the interpretation of cosmological observables, and, in particular, into the inferred effects of dark energy on the expansion rate. Here we measure the K-band luminosity density as a function of redshift to test for such a local under-density. For our primary sample in this study, we select galaxies from the UKIDSS Large Area Survey and use spectroscopy from the Sloan Digital Sky Survey (SDSS), the Two-degree Field Galaxy Redshift Survey, the Galaxy And Mass Assembly Survey (GAMA), and other redshift surveys to generate a K-selected catalog of ~35, 000 galaxies that is ~95% spectroscopically complete at K AB < 16.3 (K AB < 17 in the GAMA fields). To complement this sample at low redshifts, we also analyze a K-selected sample from the 2M++ catalog, which combines Two Micron All Sky Survey (2MASS) photometry with redshifts from the 2MASS redshift survey, the Six-degree Field Galaxy Redshift Survey, and the SDSS. The combination of these samples allows for a detailed measurement of the K-band luminosity density as a function of distance over the redshift range 0.01 < z < 0.2 (radial distances D ~ 50-800 h_{70}^{-1} Mpc). We find that the overall shape of the z = 0 rest-frame K-band luminosity function (M*-5log (h 70) = -22.15 ± 0.04 and α = -1.02 ± 0.03) appears to be relatively constant as a function of environment and distance from us. We find a local (z < 0.07, D < 300 h_{70}^{-1} Mpc) luminosity density that is in good agreement with previous studies. Beyond z ~ 0.07, we detect a rising luminosity density that reaches a value of roughly ~1.5 times higher than that measured locally at z > 0.1. This suggests that the stellar mass density as a function of

  4. EVIDENCE FOR A ∼300 MEGAPARSEC SCALE UNDER-DENSITY IN THE LOCAL GALAXY DISTRIBUTION

    SciTech Connect

    Keenan, R. C.; Barger, A. J.; Cowie, L. L.

    2013-09-20

    Galaxy counts and recent measurements of the luminosity density in the near-infrared have indicated the possibility that the local universe may be under-dense on scales of several hundred megaparsecs. The presence of a large-scale under-density in the local universe could introduce significant biases into the interpretation of cosmological observables, and, in particular, into the inferred effects of dark energy on the expansion rate. Here we measure the K-band luminosity density as a function of redshift to test for such a local under-density. For our primary sample in this study, we select galaxies from the UKIDSS Large Area Survey and use spectroscopy from the Sloan Digital Sky Survey (SDSS), the Two-degree Field Galaxy Redshift Survey, the Galaxy And Mass Assembly Survey (GAMA), and other redshift surveys to generate a K-selected catalog of ∼35, 000 galaxies that is ∼95% spectroscopically complete at K{sub AB} < 16.3 (K{sub AB} < 17 in the GAMA fields). To complement this sample at low redshifts, we also analyze a K-selected sample from the 2M++ catalog, which combines Two Micron All Sky Survey (2MASS) photometry with redshifts from the 2MASS redshift survey, the Six-degree Field Galaxy Redshift Survey, and the SDSS. The combination of these samples allows for a detailed measurement of the K-band luminosity density as a function of distance over the redshift range 0.01 < z < 0.2 (radial distances D ∼ 50-800 h{sub 70}{sup -1} Mpc). We find that the overall shape of the z = 0 rest-frame K-band luminosity function (M*-5log (h{sub 70}) = –22.15 ± 0.04 and α = –1.02 ± 0.03) appears to be relatively constant as a function of environment and distance from us. We find a local (z < 0.07, D < 300 h{sub 70}{sup -1} Mpc) luminosity density that is in good agreement with previous studies. Beyond z ∼ 0.07, we detect a rising luminosity density that reaches a value of roughly ∼1.5 times higher than that measured locally at z > 0.1. This suggests that the

  5. The star formation histories of local group dwarf galaxies. II. Searching for signatures of reionization

    SciTech Connect

    Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; Holtzman, Jon; Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2014-07-10

    We search for signatures of reionization in the star formation histories (SFHs) of 38 Local Group dwarf galaxies (10{sup 4} < M{sub *} < 10{sup 9} M{sub ☉}). The SFHs are derived from color-magnitude diagrams using archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. Only five quenched galaxies (And V, And VI, And XIII, Leo IV, and Hercules) are consistent with forming the bulk of their stars before reionization, when full uncertainties are considered. Observations of 13 of the predicted 'true fossils' identified by Bovill and Ricotti show that only two (Hercules and Leo IV) indicate star formation quenched by reionization. However, both are within the virial radius of the Milky Way and evidence of tidal disturbance complicates this interpretation. We argue that the late-time gas capture scenario posited by Ricotti for the low mass, gas-rich, and star-forming fossil candidate Leo T is observationally indistinguishable from simple gas retention. Given the ambiguity between environmental effects and reionization, the best reionization fossil candidates are quenched low mass field galaxies (e.g., KKR 25).

  6. A new estimation of manganese distribution for local dwarf spheroidal galaxies

    NASA Astrophysics Data System (ADS)

    Liu, Men-Quan; Wang, Zhong-Xiang

    2016-09-01

    The distribution of abundance for iron-peak elements in dwarf spheroidal galaxies (dSphs) is important for galaxy evolution and supernova (SN) nucleosynthesis. Nowadays, manganese (Mn) is one of the most observed iron-peak elements in local dSphs. Studies of its distributions allow us to derive and understand the evolution history of these dSphs. We improve a phenomenological model by a two-curve model including a new initial condition, that includes detailed calculations of SN explosion rates and yields. We compare the results with the observed Mn distribution data for three dSphs: Fornax, Sculpture and Sextans. We find that the model can describe the observed Fe and Mn distributions well simultaneously for the three dSphs. The results also indicate that the initial conditions should be determined by the low metallicity samples in the beginning time of the galaxies and the previous assumption of metellicity-dependant Mn yield of SNIa is not needed when a wide mass range of core-collapse SNe is included. Our method is applicable to the chemical evolution of other iron-peak elements in dSphs and can be modified to provide more detailed processes for the evolution of dSphs.

  7. The far-ultraviolet signature of the 'missing' baryons in the Local Group of galaxies.

    PubMed

    Nicastro, Fabrizio; Zezas, Andreas; Elvis, Martin; Mathur, Smita; Fiore, Fabrizio; Cecchi-Pestellini, Cesare; Burke, Douglas; Drake, Jeremy; Casella, Piergiorgio

    2003-02-13

    The number of baryons detected in the low-redshift (z < 1) Universe is far smaller than the number detected in corresponding volumes at higher redshifts. Simulations of the formation of structure in the Universe show that up to two-thirds of the 'missing' baryons may have escaped detection because of their high temperature and low density. One of the few ways to detect this matter directly is to look for its signature in the form of ultraviolet absorption lines in the spectra of background sources such as quasars. Here we show that the amplitude of the average velocity vector of 'high velocity' O vi (O5+) absorption clouds detected in a survey of ultraviolet emission from active galactic nuclei decreases significantly when the vector is transformed to the frames of the Galactic Standard of Rest and the Local Group of galaxies. At least 82 per cent of these absorbers are not associated with any 'high velocity' atomic hydrogen complex in our Galaxy, and are therefore likely to result from a primordial warm-hot intergalactic medium pervading an extended corona around the Milky Way or the Local Group. The total mass of baryons in this medium is estimated to be up to approximately 10(12) solar masses, which is of the order of the mass required to dynamically stabilize the Local Group.

  8. USING M DWARF SPECTRA TO MAP EXTINCTION IN THE LOCAL GALAXY

    SciTech Connect

    Jones, David O.; West, Andrew A.; Foster, Jonathan B.

    2011-08-15

    We use spectra of more than 56,000 M dwarfs from the Sloan Digital Sky Survey (SDSS) to create a high-latitude extinction map of the local Galaxy. Our technique compares spectra from the stars in the SDSS Data Release 7 M dwarf sample in low-extinction lines of sight, as determined by Schlegel et al., to other SDSS M dwarf spectra in order to derive improved distance estimates and accurate line-of-sight extinctions. Unlike most previous studies, which have used a two-color method to determine extinction, we fit extinction curves to fluxes across the spectral range from 5700 to 9200 A for every star in our sample. Our result is an A{sub V} map that extends from a few tens of pc to approximately 2 kpc away from the Sun. We also use a similar technique to create a map of R{sub V} values within approximately 1 kpc of the Sun and find that they are consistent with the widely accepted diffuse interstellar medium value of 3.1. Using our extinction data, we derive a dust scale height for the local Galaxy of 119 {+-} 15 pc and find evidence for a local dust cavity.

  9. On the local and global stability of spiral galaxies in modified gravity

    NASA Astrophysics Data System (ADS)

    Roshan, M.

    2016-09-01

    We study the local and global stability of self-gravitating disks in the context of modified gravity (MOG). MOG is a covariant generalization of general relativity and developed as an alternative for dark matter particles. On the other hand the stability of spiral galaxies is directly linked to the dark matter problem. Thus it seems necessary to study the astrophysical consequences of MOG from gravitational stability point of view. More specifically, we review the generalized version of the Toomre's stability criterion and present the result of some idealized N-body simulation for the global stability of self-gravitating disks.

  10. HIERARCHICAL STELLAR STRUCTURES IN THE LOCAL GROUP DWARF GALAXY NGC 6822

    SciTech Connect

    Gouliermis, Dimitrios A.; Walter, Fabian; Schmeja, Stefan; Klessen, Ralf S.; De Blok, W. J. G. E-mail: walter@mpia-hd.mpg.d E-mail: rklessen@ita.uni-heidelberg.d

    2010-12-20

    We present a comprehensive study of the star cluster population and the hierarchical structure in the clustering of blue stars with ages {approx}<500 Myr in the Local Group dwarf irregular galaxy NGC 6822. Our observational material comprises the most complete optical stellar catalog of the galaxy from imaging with the Suprime-Cam at the 8.2 m Subaru Telescope. We identify 47 distinct star clusters with the application of the nearest-neighbor density method to this catalog for a detection threshold of 3{sigma} above the average stellar density. The size distribution of the detected clusters can be very well approximated by a Gaussian with a peak at {approx}68 pc. The total stellar masses of the clusters are estimated by extrapolating the cumulative observed stellar mass function of all clusters to be in the range 10{sup 3}-10{sup 4} M{sub sun}. Their number distribution is fitted very well by a power law with index {alpha} {approx} 1.5 {+-} 0.7, which is consistent with the cluster mass functions of other Local Group galaxies and the cluster initial mass function. In addition to the detected star clusters of the galaxy, the application of the nearest-neighbor density method for various density thresholds, other than 3{sigma}, enabled the identification of stellar concentrations in various lengthscales. The stellar density maps constructed with this technique provide a direct proof of hierarchically structured stellar concentrations in NGC 6822, in the sense that smaller dense stellar concentrations are located inside larger and looser ones. We illustrate this hierarchy by the so-called dendrogram, or structure tree of the detected stellar structures, which demonstrates that most of the detected structures split up into several substructures over at least three levels. We quantify the hierarchy of these structures with the use of the minimum spanning tree method. We find that structures detected at 1, 2, and 3{sigma} density thresholds are hierarchically constructed

  11. GRB 080517: a local, low-luminosity gamma-ray burst in a dusty galaxy at z = 0.09

    NASA Astrophysics Data System (ADS)

    Stanway, Elizabeth R.; Levan, Andrew J.; Tanvir, Nial; Wiersema, Klaas; van der Horst, Alexander; Mundell, Carole G.; Guidorzi, Cristiano

    2015-02-01

    We present an analysis of the photometry and spectroscopy of the host galaxy of Swift-detected GRB 080517. From our optical spectroscopy, we identify a redshift of z = 0.089 ± 0.003, based on strong emission lines, making this a rare example of a very local, low-luminosity, long gamma-ray burst. The galaxy is detected in the radio with a flux density of S4.5 GHz = 0.22 ± 0.04 mJy - one of relatively few known gamma-ray bursts hosts with a securely measured radio flux. Both optical emission lines and a strong detection at 22 μm suggest that the host galaxy is forming stars rapidly, with an inferred star formation rate ˜16 M⊙ yr-1 and a high dust obscuration (E(B - V) > 1, based on sightlines to the nebular emission regions). The presence of a companion galaxy within a projected distance of 25 kpc, and almost identical in redshift, suggests that star formation may have been triggered by galaxy-galaxy interaction. However, fitting of the remarkably flat spectral energy distribution from the ultraviolet through to the infrared suggests that an older, 500 Myr post-starburst stellar population is present along with the ongoing star formation. We conclude that the host galaxy of GRB 080517 is a valuable addition to the still very small sample of well-studied local gamma-ray burst hosts.

  12. Properties of Galaxies Detected in Emission and Absorption with Background Quasars

    NASA Astrophysics Data System (ADS)

    Straka, Lorrie Ann

    The question of how galaxies evolve is a difficult one to answer. By studying galaxies hosting Damped (DLA) and sub-Damped Lyman-alpha (sub-DLA) systems, we hope to shed some light on the subject. DLA and sub-DLA systems contain the vast majority of neutral gas in the universe, making them ideal candidates for studies of primordial gas. However, it is unclear how these absorption systems relate to present day galaxies. Observations of these systems detected through absorption in background quasar spectra indicate the DLAs are metal poor and slowly evolving while their counterparts, the sub-DLAs, are highly enriched. In order to determine the relationship between galaxies detected in absorption and normal galaxies, we compile a sample of low redshift quasar galaxy pairs (QGP) detected in emission in quasar spectra. These emission detected galaxies are searched for absorption features that may indicate a connection to higher redshift galaxy absorption systems, including DLAs and sub-DLAs. While the roles of spectroscopy and imaging play equal parts in determining characteristics of these systems, focus here is placed on the broad-band imaging aspect, used to locate absorption host galaxies and determine their photometric properties. These properties can then be compared to the known properties of galaxies at other epochs. The role of the Sloan Digital Sky Survey has been paramount in this study. Presented here are two sets of data: high metallicity DLA and sub-DLA absorption systems at z > 0.4 and quasar-galaxy pairs selected in emission from the Sloan Digital Sky Survey at z < 0.4. Results show that the z < 0.4 sample has low star formation rate values and a high degree of reddening which is in good agreement with higher redshift samples of quasar absorbers and our z > 0.4 sample of DLAs and sub-DLAs. Morphologically, those galaxies selected by emission naturally tend to be late-type, while our sample of DLAs and sub-DLAs appears to be primarily early-type.

  13. The masses of local group dwarf spheroidal galaxies: The death of the universal mass profile

    SciTech Connect

    Collins, Michelle L. M.; Martin, Nicolas F.; Chapman, Scott C.; Irwin, Michael J.; Rich, R. M.; Ibata, Rodrigo A.; Bate, Nicholas F.; Lewis, Geraint F.; Peñarrubia, Jorge; Casey, Caitlin M.; Ferguson, Annette M. N.; Koch, Andreas; McConnachie, Alan W.; Tanvir, Nial

    2014-03-01

    We investigate the claim that all dwarf spheroidal galaxies (dSphs) reside within halos that share a common, universal mass profile as has been derived for dSphs of the galaxy. By folding in kinematic information for 25 Andromeda dSphs, more than doubling the previous sample size, we find that a singular mass profile cannot be found to fit all of the observations well. Further, the best-fit dark matter density profile measured solely for the Milky Way dSphs is marginally discrepant with that of the Andromeda dSphs (at just beyond the 1σ level), where a profile with lower maximum circular velocity, and hence mass, is preferred. The agreement is significantly better when three extreme Andromeda outliers, And XIX, XXI, and XXV, all of which have large half-light radii (≳ 600 pc) and low-velocity dispersions (σ {sub v} < 5 km s{sup –1}), are omitted from the sample. We argue that the unusual properties of these outliers are likely caused by tidal interactions with the host galaxy.

  14. THE CLUSTERING OF ALFALFA GALAXIES: DEPENDENCE ON H I MASS, RELATIONSHIP WITH OPTICAL SAMPLES, AND CLUES OF HOST HALO PROPERTIES

    SciTech Connect

    Papastergis, Emmanouil; Giovanelli, Riccardo; Haynes, Martha P.; Jones, Michael G.; Rodríguez-Puebla, Aldo E-mail: riccardo@astro.cornell.edu E-mail: jonesmg@astro.cornell.edu

    2013-10-10

    We use a sample of ≈6000 galaxies detected by the Arecibo Legacy Fast ALFA (ALFALFA) 21 cm survey to measure the clustering properties of H I-selected galaxies. We find no convincing evidence for a dependence of clustering on galactic atomic hydrogen (H I) mass, over the range M{sub H{sub I}} ≈ 10{sup 8.5}-10{sup 10.5} M{sub ☉}. We show that previously reported results of weaker clustering for low H I mass galaxies are probably due to finite-volume effects. In addition, we compare the clustering of ALFALFA galaxies with optically selected samples drawn from the Sloan Digital Sky Survey (SDSS). We find that H I-selected galaxies cluster more weakly than even relatively optically faint galaxies, when no color selection is applied. Conversely, when SDSS galaxies are split based on their color, we find that the correlation function of blue optical galaxies is practically indistinguishable from that of H I-selected galaxies. At the same time, SDSS galaxies with red colors are found to cluster significantly more than H I-selected galaxies, a fact that is evident in both the projected as well as the full two-dimensional correlation function. A cross-correlation analysis further reveals that gas-rich galaxies 'avoid' being located within ≈3 Mpc of optical galaxies with red colors. Next, we consider the clustering properties of halo samples selected from the Bolshoi ΛCDM simulation. A comparison with the clustering of ALFALFA galaxies suggests that galactic H I mass is not tightly related to host halo mass and that a sizable fraction of subhalos do not host H I galaxies. Lastly, we find that we can recover fairly well the correlation function of H I galaxies by just excluding halos with low spin parameter. This finding lends support to the hypothesis that halo spin plays a key role in determining the gas content of galaxies.

  15. Chemo-dynamical evolution of the Local Group dwarf galaxies: The origin of r-process elements

    NASA Astrophysics Data System (ADS)

    Hirai, Y.; Ishimaru, Y.; Saitoh, T. R.; Fujii, M. S.; Hidaka, J.; Kajino, T.

    2016-06-01

    The r-process elements such as Au, Eu, and U are observed in the extremely metal-poor stars in the Milky Way halo and the Local Group dwarf galaxies. However, the origin of r-process elements has not yet been identified. The abundance of r-process elements of stars in the Local Group galaxies provides clues to clarify early evolutionary history of galaxies. It is important to understand the chemical evolution of the Local Group dwarf galaxies which would be building blocks of the Milky Way. In this study, we perform a series of N-body/smoothed particle hydrodynamic simulations of dwarf galaxies. We show that neutron star mergers can reproduce the observation of r-process elements. We find that the effects of gas mixing processes including metals in the star-forming region of a typical scale of giant molecular clouds ¥sim 10-100 pc play significant roles in the early chemical enrichment of dwarf galaxies. We also find that the star formation rate of ˜ 10^{-3} M_{⊙}yr^{-1} in early epoch (<1 Gyr) of galactic halo evolution is necessary for these results. Our results suggest that neutron star mergers are a major site of r-process.

  16. Far-infrared properties of submillimeter and optically faint radio galaxies

    NASA Astrophysics Data System (ADS)

    Magnelli, B.; Lutz, D.; Berta, S.; Altieri, B.; Andreani, P.; Aussel, H.; Castañeda, H.; Cava, A.; Cepa, J.; Cimatti, A.; Daddi, E.; Dannerbauer, H.; Dominguez, H.; Elbaz, D.; Förster Schreiber, N.; Genzel, R.; Grazian, A.; Gruppioni, C.; Magdis, G.; Maiolino, R.; Nordon, R.; Pérez Fournon, I.; Pérez García, I.; Poglitsch, A.; Popesso, P.; Pozzi, F.; Riguccini, L.; Rodighiero, G.; Saintonge, A.; Santini, P.; Sanchez-Portal, M.; Shao, L.; Sturm, E.; Tacconi, L.; Valtchanov, I.; Wieprecht, E.; Wiezorrek, E.

    2010-07-01

    We use deep observations obtained with the Photodetector Array Camera and Spectrometer (PACS) onboard the Herschel Space Observatory to study the far-infrared (FIR) properties of submillimeter and optically faint radio galaxies (SMGs and OFRGs). From literature we compiled a sample of 35 securely identified SMGs and nine OFRGs located in the GOODS-N and the A2218 fields. This sample is cross-matched with our PACS 100 μm and 160 μm multi-wavelength catalogs based on sources-extraction using prior detections at 24 μm. About half of the galaxies in our sample are detected in at least the PACS 160 μm bandpass. The dust temperatures and the infrared luminosities of our galaxies are derived by fitting their PACS and SCUBA 850 μm (only the upper limits for the OFRGs) flux densities with a single modified (β = 1.5) black body function. The median dust temperature of our SMG sample is Tdust = 36±8 K while for our OFRG sample it is Tdust = 47±3 K. For both samples, median dust temperatures derived from Herschel data agree well with previous estimates. In particular, Chapman et al. (2005, ApJ, 622, 772) found a dust temperature of Tdust = 36±7 K for a large sample of SMGs assuming the validity of the FIR/radio correlation (i.e., q= log10(LFIR[W]/L1.4 GHz[W Hz-1] /3.75×1012)). The agreement between our studies confirms that the local FIR/radio correlation effectively holds at high redshift even though we find < q > = 2.17±0.19, a slightly lower value than that observed in local systems. The median infrared luminosities of SMGs and OFRGs are 4.6×1012 L⊙ and 2.6×1012 L⊙, respectively. We note that for both samples the infrared luminosity estimates from the radio part of the spectral energy distribution (SED) are accurate, while estimates from the mid-IR are considerably (~×3) more uncertain. Our observations confirm the remarkably high luminosities of SMGs and thus imply median star-formation rates of 960 M⊙ yr-1 for SMGs with S(850 μm)>5 mJy and 460 M⊙ yr

  17. A test of star formation laws in disk galaxies. II. Dependence on dynamical properties

    SciTech Connect

    Suwannajak, Chutipong; Tan, Jonathan C.; Leroy, Adam K.

    2014-05-20

    We use the observed radial profiles of the mass surface densities of total, Σ {sub g}, and molecular, Σ{sub H2}, gas, rotation velocity, and star formation rate (SFR) surface density, Σ{sub sfr}, of the molecular-rich (Σ{sub H2} ≥ Σ{sub HI}/2) regions of 16 nearby disk galaxies to test several star formation (SF) laws: a 'Kennicutt-Schmidt (K-S)' law, Σ{sub sfr}=A{sub g}Σ{sub g,2}{sup 1.5}; a 'Constant Molecular' law, Σ{sub sfr} = A {sub H2}Σ{sub H2,2}; the turbulence-regulated laws of Krumholz and McKee (KM05) and Krumholz, McKee, and Tumlinson (KMT09); a 'Gas-Ω' law, Σ{sub sfr}=B{sub Ω}Σ{sub g}Ω; and a shear-driven 'giant molecular cloud (GMC) Collision' law, Σ{sub sfr} = B {sub CC}Σ {sub g}Ω(1-0.7β), where β ≡ d ln v {sub circ}/d ln r. If allowed one free normalization parameter for each galaxy, these laws predict the SFR with rms errors of factors of 1.4-1.8. If a single normalization parameter is used by each law for the entire galaxy sample, then rms errors range from factors of 1.5-2.1. Although the Constant Molecular law gives the smallest rms errors, the improvement over the KMT, K-S, and GMC Collision laws is not especially significant, particularly given the different observational inputs that the laws utilize and the scope of included physics, which ranges from empirical relations to detailed treatment of interstellar medium processes. We next search for systematic variation of SF law parameters with local and global galactic dynamical properties of disk shear rate (related to β), rotation speed, and presence of a bar. We demonstrate with high significance that higher shear rates enhance SF efficiency per local orbital time. Such a trend is expected if GMC collisions play an important role in SF, while an opposite trend would be expected if the development of disk gravitational instabilities is the controlling physics.

  18. Local Luminous Infrared Galaxies. I. Spatially Resolved Observations with the Spitzer Infrared Spectrograph

    NASA Astrophysics Data System (ADS)

    Pereira-Santaella, Miguel; Alonso-Herrero, Almudena; Rieke, George H.; Colina, Luis; Díaz-Santos, Tanio; Smith, J.-D. T.; Pérez-González, Pablo G.; Engelbracht, Charles W.

    2010-06-01

    We present results from the Spitzer Infrared Spectrograph spectral mapping observations of 15 local luminous infrared galaxies (LIRGs). In this paper, we investigate the spatial variations of the mid-IR emission which includes fine structure lines, molecular hydrogen lines, polycyclic aromatic features (PAHs), continuum emission, and the 9.7 μm silicate feature. We also compare the nuclear and integrated spectra. We find that the star formation takes place in extended regions (several kpc) as probed by the PAH emission, as well as the [Ne II]12.81 μm and [Ne III]15.56 μm emissions. The behavior of the integrated PAH emission and 9.7 μm silicate feature is similar to that of local starburst galaxies. We also find that the minima of the [Ne III]15.56 μm/[Ne II]12.81 μm ratio tends to be located at the nuclei and its value is lower than that of H II regions in our LIRGs and nearby galaxies. It is likely that increased densities in the nuclei of LIRGs are responsible for the smaller nuclear [Ne III]15.56 μm/[Ne II]12.81 μm ratios. This includes the possibility that some of the most massive stars in the nuclei are still embedded in ultracompact H II regions. In a large fraction of our sample, the 11.3 μm PAH emission appears more extended than the dust 5.5 μm continuum emission. We find a dependency of the 11.3 μm PAH/7.7 μm PAH and [Ne II]12.81 μm/11.3 μm PAH ratios with the age of the stellar populations. Smaller and larger ratios, respectively, indicate recent star formation. The estimated warm (300 K local starbursts, and Seyfert galaxies. Finally we find that the [Ne II]12.81 μm velocity fields for most of the LIRGs in our sample are compatible with a rotating disk at ~kpc scales, and they are in a good agreement with Hα velocity fields. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet

  19. First-Ever Census of Variable Mira-Type Stars in Galaxy Outside the Local Group

    NASA Astrophysics Data System (ADS)

    2003-05-01

    First-Ever Census of Variable Mira-Type Stars in Galaxy Outsidethe Local Group Summary An international team led by ESO astronomer Marina Rejkuba [1] has discovered more than 1000 luminous red variable stars in the nearby elliptical galaxy Centaurus A (NGC 5128) . Brightness changes and periods of these stars were measured accurately and reveal that they are mostly cool long-period variable stars of the so-called "Mira-type" . The observed variability is caused by stellar pulsation. This is the first time a detailed census of variable stars has been accomplished for a galaxy outside the Local Group of Galaxies (of which the Milky Way galaxy in which we live is a member). It also opens an entirely new window towards the detailed study of stellar content and evolution of giant elliptical galaxies . These massive objects are presumed to play a major role in the gravitational assembly of galaxy clusters in the Universe (especially during the early phases). This unprecedented research project is based on near-infrared observations obtained over more than three years with the ISAAC multi-mode instrument at the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory . PR Photo 14a/03 : Colour image of the peculiar galaxy Centaurus A . PR Photo 14b/03 : Location of the fields in Centaurus A, now studied. PR Photo 14c/03 : "Field 1" in Centaurus A (visual light; FORS1). PR Photo 14d/03 : "Field 2" in Centaurus A (visual light; FORS1). PR Photo 14e/03 : "Field 1" in Centaurus A (near-infrared; ISAAC). PR Photo 14f/03 : "Field 2" in Centaurus A (near-infrared; ISAAC). PR Photo 14g/03 : Light variation of six variable stars in Centaurus A PR Photo 14h/03 : Light variation of stars in Centaurus A (Animated GIF) PR Photo 14i/03 : Light curves of four variable stars in Centaurus A. Mira-type variable stars Among the stars that are visible in the sky to the unaided eye, roughly one out of three hundred (0.3%) displays brightness variations and is referred to by astronomers as a

  20. Local SDSS galaxies in the Herschel Stripe 82 survey: a critical assessment of optically derived star formation rates

    NASA Astrophysics Data System (ADS)

    Rosario, D. J.; Mendel, J. T.; Ellison, S. L.; Lutz, D.; Trump, J. R.

    2016-04-01

    We study a set of 3319 galaxies in the redshift interval 0.04 < z < 0.15 with far-infrared (FIR) coverage from the Herschel Stripe 82 survey (HerS), and emission-line measurements, redshifts, stellar masses and star formation rates (SFRs) from the Sloan Digital Sky Survey (SDSS) (DR7) MPA/JHU data base. About 40 per cent of the sample are detected in the Herschel/SPIRE 250 μm band. Total infrared (TIR) luminosities derived from HerS and Wide-field Infrared Survey Explorer (WISE) photometry allow us to compare infrared and optical estimates of SFR with unprecedented statistics for diverse classes of galaxies. We find excellent agreement between TIR-derived and emission line-based SFRs for H II galaxies. Other classes, such as active galaxies and evolved galaxies, exhibit systematic discrepancies between optical and TIR SFRs. We demonstrate that these offsets are attributable primarily to survey biases and the large intrinsic uncertainties of the Dn4000- and colour-based optical calibrations used to estimate the SDSS SFRs of these galaxies. Using a classification scheme which expands upon popular emission-line methods, we demonstrate that emission-line galaxies with uncertain classifications include a population of massive, dusty, metal-rich star-forming systems that are frequently neglected in existing studies. We also study the capabilities of infrared selection of star-forming galaxies. FIR selection reveals a substantial population of galaxies dominated by cold dust which are missed by the long-wavelength WISE bands. Our results demonstrate that Herschel large-area surveys offer the means to construct large, relatively complete samples of local star-forming galaxies with accurate estimates of SFR that can be used to study the interplay between nuclear activity and star formation.

  1. Physical properties of emission-line galaxies at z ∼ 2 from near-infrared spectroscopy with Magellan fire

    SciTech Connect

    Masters, Daniel; Siana, Brian; Mobasher, Bahram; Domínguez, Alberto; McCarthy, Patrick; Blanc, Guillermo; Dressler, Alan; Malkan, Mathew; Ross, Nathaniel R.; Atek, Hakim; Henry, Alaina; Martin, Crystal L.; Rafelski, Marc; Colbert, James; Hathi, Nimish P.; Scarlata, Claudia; Bunker, Andrew J.; Bedregal, Alejandro G.; Teplitz, Harry

    2014-04-20

    We present results from near-infrared spectroscopy of 26 emission-line galaxies at z ∼ 2.2 and z ∼ 1.5 obtained with the Folded-port InfraRed Echellette (FIRE) spectrometer on the 6.5 m Magellan Baade telescope. The sample was selected from the WFC3 Infrared Spectroscopic Parallels survey, which uses the near-infrared grism of the Hubble Space Telescope Wide Field Camera 3 (WFC3) to detect emission-line galaxies over 0.3 ≲ z ≲ 2.3. Our FIRE follow-up spectroscopy (R ∼ 5000) over 1.0-2.5 μm permits detailed measurements of the physical properties of the z ∼ 2 emission-line galaxies. Dust-corrected star formation rates for the sample range from ∼5-100 M {sub ☉} yr{sup –1} with a mean of 29 M {sub ☉} yr{sup –1}. We derive a median metallicity for the sample of 12 + log(O/H) = 8.34 or ∼0.45 Z {sub ☉}. The estimated stellar masses range from ∼10{sup 8.5}-10{sup 9.5} M {sub ☉}, and a clear positive correlation between metallicity and stellar mass is observed. The average ionization parameter measured for the sample, log U ≈ –2.5, is significantly higher than what is found for most star-forming galaxies in the local universe, but similar to the values found for other star-forming galaxies at high redshift. We derive composite spectra from the FIRE sample, from which we measure typical nebular electron densities of ∼100-400 cm{sup –3}. Based on the location of the galaxies and composite spectra on diagnostic diagrams, we do not find evidence for significant active galactic nucleus activity in the sample. Most of the galaxies, as well as the composites, are offset diagram toward higher [O III]/Hβ at a given [N II]/Hα, in agreement with other observations of z ≳ 1 star-forming galaxies, but composite spectra derived from the sample do not show an appreciable offset from the local star-forming sequence on the [O III]/Hβ versus [S II]/Hα diagram. We infer a high nitrogen-to-oxygen abundance ratio from the composite spectrum, which

  2. STRUCTURE IN THE 3D GALAXY DISTRIBUTION. II. VOIDS AND WATERSHEDS OF LOCAL MAXIMA AND MINIMA

    SciTech Connect

    Way, M. J.; Gazis, P. R.; Scargle, Jeffrey D. E-mail: PGazis@sbcglobal.net

    2015-01-20

    The major uncertainties in studies of the multi-scale structure of the universe arise not from observational errors but from the variety of legitimate definitions and detection methods for individual structures. To facilitate the study of these methodological dependencies, we have carried out 12 different analyses defining structures in various ways. This has been done in a purely geometrical way by utilizing the HOP algorithm as a unique parameter-free method of assigning groups of galaxies to local density maxima or minima. From three density estimation techniques (smoothing kernels, Bayesian blocks, and self-organizing maps) applied to three data sets (the Sloan Digital Sky Survey Data Release 7, the Millennium simulation, and randomly distributed points) we tabulate information that can be used to construct catalogs of structures connected to local density maxima and minima. We also introduce a void finder that utilizes a method to assemble Delaunay tetrahedra into connected structures and characterizes regions empty of galaxies in the source catalog.

  3. Structure in the 3D Galaxy Distribution. II. Voids and Watersheds of Local Maxima and Minima

    NASA Astrophysics Data System (ADS)

    Way, M. J.; Gazis, P. R.; Scargle, Jeffrey D.

    2015-01-01

    The major uncertainties in studies of the multi-scale structure of the universe arise not from observational errors but from the variety of legitimate definitions and detection methods for individual structures. To facilitate the study of these methodological dependencies, we have carried out 12 different analyses defining structures in various ways. This has been done in a purely geometrical way by utilizing the HOP algorithm as a unique parameter-free method of assigning groups of galaxies to local density maxima or minima. From three density estimation techniques (smoothing kernels, Bayesian blocks, and self-organizing maps) applied to three data sets (the Sloan Digital Sky Survey Data Release 7, the Millennium simulation, and randomly distributed points) we tabulate information that can be used to construct catalogs of structures connected to local density maxima and minima. We also introduce a void finder that utilizes a method to assemble Delaunay tetrahedra into connected structures and characterizes regions empty of galaxies in the source catalog.

  4. Multi-dimensional analysis of the chemical and physical properties of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Rosales-Ortega, F. F.

    2010-06-01

    In this thesis, wide-field 2D spectroscopy is employed in order to characterise the nebular properties of late-type field galaxies. The observations performed for this dissertation represent the first endeavour to obtain full 2D coverage of the disks of a sample of nearby spiral galaxies, by the application of the Integral Field Spectroscopy (IFS) technique, under the PPAK IFS Nearby Galaxies Survey: PINGS. A self-consistent methodology is defined in terms of observation, data reduction and analysis techniques for this and upcoming IFS surveys, as well as providing a whole new set of IFS visualization and analysis software made available for the public domain (PINGSoft). The scientific analysis comprises the study of the integrated properties of the ionized gas and a detailed 2D study from the emission line spectra of four selected galaxies. Evidence is found suggesting that measurements of emission lines of classical HII regions are not only aperture, but spatial dependent, and therefore, the derived physical parameters and metallicity content may significantly depend on the morphology of the region, on the extraction aperture and on the signal-to-noise of the observed spectrum. Furthermore, observational evidence of non-linear multi-modal abundance gradients in normal spiral galaxies is found, consistent with a flattening in the innermost and outermost parts of the galactic discs, with important implications in terms of the chemical evolution of galaxies.

  5. Type Ia Supernova Properties as a Function of the Distance to the Host Galaxy in the SDSS-II SN Survey

    SciTech Connect

    Galbany, Lluis; et al.

    2012-08-20

    We use type-Ia supernovae (SNe Ia) discovered by the SDSS-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host galaxy center, using the distance as a proxy for local galaxy properties (local star-formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light-curves using both MLCS2k2 and SALT2, and determine color (AV, c) and light-curve shape (delta, x1) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4-sigma level) finding is that the average fitted AV from MLCS2k2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that SNe in elliptical galaxies tend to have narrower light-curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.

  6. IRAS observations of optically selected galaxies. I - The properties of the UGC redshift sample

    NASA Technical Reports Server (NTRS)

    Bothun, Gregory D.; Lonsdale, Carol J.; Rice, Walter

    1989-01-01

    The FIR properties of more than 2400 optically selected galaxies in the Uppsala General Catalog are examined. The galaxies were detected by IRAS at 60 and 100 microns and have measured redshifts. A simple radiative transfer model is presented to study the nature of dust-heating sources. It is shown that for many normal disk galaxies, dust heated by old disk stars competes with dust heated by UV photons from newly formed stars. It is found that the 60-micron/100-micron flux density ratio may be used as an indicator of the dominant dust-heating source. Scaling relations with galaxy size and mass are presented which make it possible to estimate the contributions of any cirrus-like component to the total FIR luminosity.

  7. Second launch of the Diffuse X-ray emission from the Local Galaxy (DXL) mission

    NASA Astrophysics Data System (ADS)

    Mohan Sapkota, Dhaka

    2016-04-01

    The Diffuse X-ray emission from the Local Galaxy (DXL) is a sounding rocket mission to study the Solar Wind Charge Exchange (SWCX) and Local Hot Bubble (LHB) X-ray emission. After a successful launch of December 2012, DXL’s capabilities were expanded by using two additional proportional counters and three unique filters for the launch of December 2015. Employing Be-, B- and C-based plastic filters, DXL mission re-scanned the Helium Focusing Cone for better spectral and positional information (to address the IBEX controversy). In this paper, we will review the upgraded mission hardware and performance, while sharing some preliminary results from the latest observation.Submitted for the DXL Collaboration

  8. A CATALOG OF ULTRA-COMPACT HIGH VELOCITY CLOUDS FROM THE ALFALFA SURVEY: LOCAL GROUP GALAXY CANDIDATES?

    SciTech Connect

    Adams, Elizabeth A. K.; Giovanelli, Riccardo; Haynes, Martha P. E-mail: riccardo@astro.cornell.edu

    2013-05-01

    We present a catalog of 59 ultra-compact high velocity clouds (UCHVCs) extracted from the 40% complete ALFALFA HI-line survey. The ALFALFA UCHVCs have median flux densities of 1.34 Jy km s{sup -1}, median angular diameters of 10', and median velocity widths of 23 km s{sup -1}. We show that the full UCHVC population cannot easily be associated with known populations of high velocity clouds. Of the 59 clouds presented here, only 11 are also present in the compact cloud catalog extracted from the commensal GALFA-HI survey, demonstrating the utility of this separate dataset and analysis. Based on their sky distribution and observed properties, we infer that the ALFALFA UCHVCs are consistent with the hypothesis that they may be very low mass galaxies within the Local Volume. In that case, most of their baryons would be in the form of gas, and because of their low stellar content, they remain unidentified by extant optical surveys. At distances of {approx}1 Mpc, the UCHVCs have neutral hydrogen (H I) masses of {approx}10{sup 5}-10{sup 6} M{sub Sun }, H I diameters of {approx}2-3 kpc, and indicative dynamical masses within the H I extent of {approx}10{sup 7}-10{sup 8} M{sub Sun }, similar to the Local Group ultra-faint dwarf Leo T. The recent ALFALFA discovery of the star-forming, metal-poor, low mass galaxy Leo P demonstrates that this hypothesis is true in at least one case. In the case of the individual UCHVCs presented here, confirmation of their extragalactic nature will require further work, such as the identification of an optical counterpart to constrain their distance.

  9. A Catalog of Ultra-compact High Velocity Clouds from the ALFALFA Survey: Local Group Galaxy Candidates?

    NASA Astrophysics Data System (ADS)

    Adams, Elizabeth A. K.; Giovanelli, Riccardo; Haynes, Martha P.

    2013-05-01

    We present a catalog of 59 ultra-compact high velocity clouds (UCHVCs) extracted from the 40% complete ALFALFA HI-line survey. The ALFALFA UCHVCs have median flux densities of 1.34 Jy km s-1, median angular diameters of 10', and median velocity widths of 23 km s-1. We show that the full UCHVC population cannot easily be associated with known populations of high velocity clouds. Of the 59 clouds presented here, only 11 are also present in the compact cloud catalog extracted from the commensal GALFA-HI survey, demonstrating the utility of this separate dataset and analysis. Based on their sky distribution and observed properties, we infer that the ALFALFA UCHVCs are consistent with the hypothesis that they may be very low mass galaxies within the Local Volume. In that case, most of their baryons would be in the form of gas, and because of their low stellar content, they remain unidentified by extant optical surveys. At distances of ~1 Mpc, the UCHVCs have neutral hydrogen (H I) masses of ~105-106 M ⊙, H I diameters of ~2-3 kpc, and indicative dynamical masses within the H I extent of ~107-108 M ⊙, similar to the Local Group ultra-faint dwarf Leo T. The recent ALFALFA discovery of the star-forming, metal-poor, low mass galaxy Leo P demonstrates that this hypothesis is true in at least one case. In the case of the individual UCHVCs presented here, confirmation of their extragalactic nature will require further work, such as the identification of an optical counterpart to constrain their distance.

  10. Reducing Local School Property Taxes: Recent Experiences in Michigan.

    ERIC Educational Resources Information Center

    Kearney, C. Philip

    1995-01-01

    Examines Michigan's attempt to abolish the school property tax and implications for New York State policymakers. Michigan substantially reduced the local property tax for local school operations, adopted a permanent set of tax and revenue limits, and devised a problematic assessment cap. Totally eliminating the local school property tax may be…

  11. The frequency and properties of young tidal dwarf galaxies in nearby gas-rich groups

    NASA Astrophysics Data System (ADS)

    Lee-Waddell, K.; Spekkens, K.; Chandra, P.; Patra, N.; Cuillandre, J.-C.; Wang, J.; Haynes, M. P.; Cannon, J.; Stierwalt, S.; Sick, J.; Giovanelli, R.

    2016-08-01

    We present high-resolution Giant Metrewave Radio Telescope (GMRT) H I observations and deep Canada-France-Hawaii Telescope (CFHT) optical imaging of two galaxy groups: NGC 4725/47 and NGC 3166/9. These data are part of a multi-wavelength unbiased survey of the gas-rich dwarf galaxy populations in three nearby interacting galaxy groups. The NGC 4725/47 group hosts two tidal knots and one dwarf irregular galaxy (dIrr). Both tidal knots are located within a prominent H I tidal tail, appear to have sufficient mass (Mgas ≈ 108 M⊙) to evolve into long-lived tidal dwarf galaxies (TDGs) and are fairly young in age. The NGC 3166/9 group contains a TDG candidate, AGC 208457, at least three dIrrs and four H I knots. Deep CFHT imaging confirms that the optical component of AGC 208457 is bluer - with a 0.28 mag g - r colour - and a few Gyr younger than its purported parent galaxies. Combining the results for these groups with those from the NGC 871/6/7 group reported earlier, we find that the H I properties, estimated stellar ages and baryonic content of the gas-rich dwarfs clearly distinguish tidal features from their classical counterparts. We optimistically identify four potentially long-lived tidal objects associated with three separate pairs of interacting galaxies, implying that TDGs are not readily produced during interaction events as suggested by some recent simulations. The tidal objects examined in this survey also appear to have a wider variety of properties than TDGs of similar mass formed in current simulations of interacting galaxies, which could be the result of pre- or post-formation environmental influences.

  12. Host-galaxy Properties of 32 Low-redshift Superluminous Supernovae from the Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Perley, D. A.; Quimby, R. M.; Yan, L.; Vreeswijk, P. M.; De Cia, A.; Lunnan, R.; Gal-Yam, A.; Yaron, O.; Filippenko, A. V.; Graham, M. L.; Laher, R.; Nugent, P. E.

    2016-10-01

    We present ultraviolet through near-infrared photometry and spectroscopy of the host galaxies of all superluminous supernovae (SLSNe) discovered by the Palomar Transient Factory prior to 2013 and derive measurements of their luminosities, star formation rates, stellar masses, and gas-phase metallicities. We find that Type I (hydrogen-poor) SLSNe (SLSNe I) are found almost exclusively in low-mass ({M}* \\lt 2× {10}9 {M}ȯ ) and metal-poor (12 + log10[O/H] \\lt 8.4) galaxies. We compare the mass and metallicity distributions of our sample to nearby galaxy catalogs in detail and conclude that the rate of SLSNe I as a fraction of all SNe is heavily suppressed in galaxies with metallicities ≳ 0.5 {Z}ȯ . Extremely low metallicities are not required and indeed provide no further increase in the relative SLSN rate. Several SLSN I hosts are undergoing vigorous starbursts, but this may simply be a side effect of metallicity dependence: dwarf galaxies tend to have bursty star formation histories. Type II (hydrogen-rich) SLSNe (SLSNe II) are found over the entire range of galaxy masses and metallicities, and their integrated properties do not suggest a strong preference for (or against) low-mass/low-metallicity galaxies. Two hosts exhibit unusual properties: PTF 10uhf is an SLSN I in a massive, luminous infrared galaxy at redshift z = 0.29, while PTF 10tpz is an SLSN II located in the nucleus of an early-type host at z = 0.04.

  13. Luminous Blue Compact Galaxies: Probes of galaxy assembly

    NASA Astrophysics Data System (ADS)

    Newton, Cassidy Louann

    The life cycles of galaxies over cosmic time is yet to be fully understood. How did galaxies evolve from their formative stages to the structures we observe today? This dissertation details the identification and analysis of a sample of Luminous Blue Compact Galaxies (LBCGs), a class of galaxy in the local (z < 0.05) universe exhibiting blue colors, high surface brightness, and high star formation rates. These systems appear to be very similar in their global properties to the early evolutionary phases of most galaxies, however their locality permits detailed investigation over a broad range of the electromagnetic spectrum in contrast to the smaller angular sizes and extreme faintness of distant galaxies. We use a combination of optical, ultraviolet, and infrared data to investigate a sample of LBCGs utilizing space and ground-based data.

  14. Probing The Stellar, Gaseous, And Dust Properties Of Galaxies Through Analysis Of Their Spectral Energy Distributions

    NASA Astrophysics Data System (ADS)

    Eufrasio, Rafael T.

    The spectral energy distributions (SEDs) of galaxies are shaped by their physical properties and they are our primary source of information on galaxies stellar, gaseous, and dust content. Nearby galaxies (less than 100 Mpc away) are spatially resolved by current telescopes from the ultraviolet (UV) to radio wavelengths, allowing the study of the SEDs of subgalactic regions. Such studies are necessary for deriving maps and spatial trends of the physical properties across a galaxy. In principle, the complex history of the formation, growth, and evolution of a galaxy or a region of a galaxy can be inferred from its radiative output. In practice, this task is complicated by the fact that a significant fraction of the star formation activity takes place in dust obscured regions, in which a significant fraction of the stellar radiative output is absorbed, scattered, and reradiated by the gas and dust in the interstellar medium (ISM). This reprocessing of the stellar radiation takes place in ionized interstellar gas regions (H II regions) surrounding massive hot stars, in diffuse atomic gas (H I regions), and in dense molecular clouds. For this work, we have analyzed two galaxies in detail, NGC 6872 and NGC 6946, also known as Condor and Fireworks Galaxy, respectively. The Condor galaxy is the largest-known spiral galaxy. It is part a group of galaxies, the Pavo group, with 12 other galaxies. It has, however, interacted in the past ~150 Myr with a smaller companion, previously believed to have shaped the physical extent of the giant spiral. We have performed detailed SED fitting from the UV to mid-infrared (mid-IR) to obtain star formation histories of seventeen sub-galactic regions across the Condor. These regions are large enough to be galaxies themselves, with 32.3 million light-years in diameter. We find that the Condor was already very massive before this interaction and that it was much less affected by the passage of the companion than previously thought. We also

  15. Segmented nanowires displaying locally controllable properties

    SciTech Connect

    Sutter, Eli Anguelova; Sutter, Peter Werner

    2013-03-05

    Vapor-liquid-solid growth of nanowires is tailored to achieve complex one-dimensional material geometries using phase diagrams determined for nanoscale materials. Segmented one-dimensional nanowires having constant composition display locally variable electronic band structures that are determined by the diameter of the nanowires. The unique electrical and optical properties of the segmented nanowires are exploited to form electronic and optoelectronic devices. Using gold-germanium as a model system, in situ transmission electron microscopy establishes, for nanometer-sized Au--Ge alloy drops at the tips of Ge nanowires (NWs), the parts of the phase diagram that determine their temperature-dependent equilibrium composition. The nanoscale phase diagram is then used to determine the exchange of material between the NW and the drop. The phase diagram for the nanoscale drop deviates significantly from that of the bulk alloy.

  16. AGN from HeII: AGN host galaxy properties & demographics

    NASA Astrophysics Data System (ADS)

    Baer, Rudolf E.; Schawinski, Kevin; Weigel, Anna

    2016-01-01

    We present an analysis of HeII emitting objects classified as AGN. In a sample of 81'192 galaxies taken from the seventh data release (DR7) of the Sloan Digital Sky Survey in the redshift interval 0.02 < z < 0.05 and with r < 17 AB mag, the Baldwin, Philips & Terlevitsch 1981 method (BPT) identifies 1029 objects as active galactic nuclei. By applying an analysis using HeII λ 4686 emission lines, based on Shirazi & Binchmann 2012, we have identified an additional 283 active galactic nuclei, which were missed by the BPT method. This represents an increase of over 25 %. The characteristics of the HeII selected AGN are different from the AGN found through the PBT; the colour - mass diagram and the colour histogram both show that HeII selected AGN are bluer. This new selection technique can help inform galaxy black hole coevolution scenarios.

  17. Structural Properties of Spherical Galaxies: a Semi-Analytical Approach

    NASA Astrophysics Data System (ADS)

    Simonneau, E.; Prada, F.

    2004-04-01

    Since the distribution of light measured along any galactocentric radius of an elliptical galaxy has the same functional form exp[-R1/n] (Sérsic profile) for almost all galaxies, and since this profile is the Abel integral of the luminous density, it looks worth-while to seek the way to derive the latter from the former. We propose in this paper a ''discrete ordinate'' method, which yields, for any value of n > 1, an explicit expression for the luminous density, ρL(r), that can be evaluated numerically to any required degree of precision. Once we have obtained such an expresion for the spatial density, ρL(r), we can compute straightforwardly the mass distribution, M(r), the potential, φ(r), and the velocity dispersions, σs2 (r), in space and on the observational plane, σp2(R).

  18. CARBON-RICH DUST PRODUCTION IN METAL-POOR GALAXIES IN THE LOCAL GROUP

    SciTech Connect

    Sloan, G. C.; Matsuura, M.; Lagadec, E.; Van Loon, J. Th.; Kraemer, K. E.; McDonald, I.; Zijlstra, A. A.; Groenewegen, M. A. T.; Wood, P. R.; Bernard-Salas, J.

    2012-06-20

    We have observed a sample of 19 carbon stars in the Sculptor, Carina, Fornax, and Leo I dwarf spheroidal galaxies with the Infrared Spectrograph on the Spitzer Space Telescope. The spectra show significant quantities of dust around the carbon stars in Sculptor, Fornax, and Leo I, but little in Carina. Previous comparisons of carbon stars with similar pulsation properties in the Galaxy and the Magellanic Clouds revealed no evidence that metallicity affected the production of dust by carbon stars. However, the more metal-poor stars in the current sample appear to be generating less dust. These data extend two known trends to lower metallicities. In more metal-poor samples, the SiC dust emission weakens, while the acetylene absorption strengthens. The bolometric magnitudes and infrared spectral properties of the carbon stars in Fornax are consistent with metallicities more similar to carbon stars in the Magellanic Clouds than in the other dwarf spheroidals in our sample. A study of the carbon budget in these stars reinforces previous considerations that the dredge-up of sufficient quantities of carbon from the stellar cores may trigger the final superwind phase, ending a star's lifetime on the asymptotic giant branch.

  19. It takes a supercluster to raise a galaxy

    NASA Astrophysics Data System (ADS)

    Lietzen, Heidi; Einasto, Maret

    2016-10-01

    The properties of galaxies depend on their environment: red, passive elliptical galaxies are usually located in denser environments than blue, star-forming spiral galaxies. This difference in galaxy populations can be detected at all scales from groups of galaxies to superclusters. In this paper, we will discuss the effect of the large-scale environment on galaxies. Our results suggest that galaxies in superclusters are more likely to be passive than galaxies in voids even when they belong to groups with the same richness. In addition, the galaxies in superclusters are also affected by the morphology of the supercluster: filament-type superclusters contain relatively more red, passive galaxies than spider-type superclusters. These results suggest that the evolution of a galaxy is not determined by its local environment alone, but the large-scale environment also affects.

  20. The Nuclear Near-Infrared Spectral Properties of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Mason, R. E.; Rodríguez-Ardila, A.; Martins, L.; Riffel, R.; González Martín, O.; Ramos Almeida, C.; Ruschel Dutra, D.; Ho, L. C.; Thanjavur, K.; Flohic, H.; Alonso-Herrero, A.; Lira, P.; McDermid, R.; Riffel, R. A.; Schiavon, R. P.; Winge, C.; Hoenig, M. D.; Perlman, E.

    2015-03-01

    We present spectra of the nuclear regions of 50 nearby (D = 1-92 Mpc, median = 20 Mpc) galaxies of morphological types E to Sm. The spectra, obtained with the Gemini Near-IR Spectrograph on the Gemini North telescope, cover a wavelength range of approximately 0.85-2.5 μm at R ˜ 1300-1800. There is evidence that most of the galaxies host an active galactic nucleus (AGN), but the range of AGN luminosities (log (L 2-10 keV [erg s-1]) = 37.0-43.2) in the sample means that the spectra display a wide variety of features. Some nuclei, especially the Seyferts, exhibit a rich emission-line spectrum. Other objects, in particular the type 2 Low Ionization Nuclear Emission Region galaxies, show just a few, weak emission lines, allowing a detailed view of the underlying stellar population. These spectra display numerous absorption features sensitive to the stellar initial mass function, as well as molecular bands arising in cool stars, and many other atomic absorption lines. We compare the spectra of subsets of galaxies known to be characterized by intermediate-age and old stellar populations, and find clear differences in their absorption lines and continuum shapes. We also examine the effect of atmospheric water vapor on the signal-to-noise ratio achieved in regions between the conventional NIR atmospheric windows, which are of potential interest to those planning observations of redshifted emission lines or other features affected by telluric H2O. Further exploitation of this data set is in progress, and the reduced spectra and data reduction tools are made available to the community.

  1. The nuclear near-infrared spectral properties of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Mason, Rachel; Ardila, Alberto; Martins, Lucimara; Riffel, Rogerio; Gonzalez-Martin, Omaira; Ramos Almeida, Christina; Ruschel Dutra, Daniel; Ho, Luis C.; Thanjavur, Karun; Flohic, Helene; Alonso-Herrero, Almudena; Lira, Paulina; McDermid, Richard; Riffel, Rogemar A.; Schiavon, Ricardo P.; Winge, Claudia; Perlman, Eric S.; Hoenig, Michael D.

    2015-01-01

    We present spectra of the nuclear regions of 50 nearby (D = 1 - 92 Mpc, median = 20 Mpc) galaxies of morphological types E to Sm. The spectra, obtained with the Gemini Near-IR Spectrograph on the Gemini North telescope, cover a wavelength range of approximately 0.85-2.5 μm at R˜1300-1800. There is evidence that most of the galaxies host an active galactic nucleus (AGN), but the range of AGN luminosities (log (L2-10 keV [erg s-1]) = 37.0-43.2) in the sample means that the spectra display a wide variety of features. Some nuclei, especially the Seyferts, exhibit a rich emission-line spectrum. Other objects, in particular the type 2 Low Ionisation Nuclear Emission Region galaxies, show just a few, weak emission lines, allowing a detailed view of the underlying stellar population. These spectra display numerous absorption features sensitive to the stellar initial mass function, as well as molecular bands arising in cool stars, and many other atomic absorption lines. We compare the spectra of subsets of galaxies known to be characterised by intermediate-age and old stellar populations, and find clear differences in their absorption lines and continuum shapes. We also examine the effect of atmospheric water vapor on the signal-to-noise ratio achieved in regions between the conventional NIR atmospheric windows, of potential interest to those planning observations of redshifted emission lines or other features affected by telluric H2O. Further exploitation of this data set is in progress, and the reduced spectra and data reduction tools are made available to the community.

  2. The Influence of Local and Large-Scale Environment on Galaxy Gas Reservoirs in the RESOLVE Survey

    NASA Astrophysics Data System (ADS)

    Stark, David V.; Kannappan, Sheila; Baker, Ashley; Berlind, Andreas A.; Burchett, Joseph; Eckert, Kathleen D.; Florez, Jonathan; Hall, Kirsten; Haynes, Martha P.; Giovanelli, Riccardo; Gonzalez, Roberto; Guynn, David; Hoversten, Erik A.; Leroy, Adam K.; Moffett, Amanda J.; Pisano, Daniel J.; Watson, Linda C.; Wei, Lisa H.; Resolve Team

    2015-01-01

    There is growing evidence to suggest galaxy gas reservoirs have been replenished over time, but a clear picture of how this process depends on local and large-scale environment is still an active area of research. I will present an analysis of galaxy gas content with respect to environment using the ~90% complete 21cm census for the volume-limited RESOLVE survey, which yields an unbiased inventory of HI masses (or strong upper limits < 5-10% of the stellar mass) for ~1550 galaxies with baryonic mass greater than 109 M⊙ in >50,000 cubic Mpc of the z=0 universe. We quantify large-scale environment via identification of cosmic web filaments and walls using a modified friends-of-friends technique, while also using photometric redshifts to identify additional potential companions around each galaxy. Combining this powerful data set with estimates of HI profile asymmetries and star formation histories, we examine whether there are local or large-scale environments where cold gas accretion is more effective. Specifically, we investigate whether galaxy interactions can induce enhanced HI content. We also explore whether galaxies residing in large-scale filaments or walls, where simulations show large-scale gas flows, display signatures of enhanced gas accretion relative to other large-scale environments. This project is supported by NSF funding for the RESOLVE survey (AST-0955368), the GBT Student Observing Support program, and a UNC Royster Society of Fellows Dissertation Completion Fellowship.

  3. First-Ever Census of Variable Mira-Type Stars in Galaxy Outside the Local Group

    NASA Astrophysics Data System (ADS)

    2003-05-01

    First-Ever Census of Variable Mira-Type Stars in Galaxy Outsidethe Local Group Summary An international team led by ESO astronomer Marina Rejkuba [1] has discovered more than 1000 luminous red variable stars in the nearby elliptical galaxy Centaurus A (NGC 5128) . Brightness changes and periods of these stars were measured accurately and reveal that they are mostly cool long-period variable stars of the so-called "Mira-type" . The observed variability is caused by stellar pulsation. This is the first time a detailed census of variable stars has been accomplished for a galaxy outside the Local Group of Galaxies (of which the Milky Way galaxy in which we live is a member). It also opens an entirely new window towards the detailed study of stellar content and evolution of giant elliptical galaxies . These massive objects are presumed to play a major role in the gravitational assembly of galaxy clusters in the Universe (especially during the early phases). This unprecedented research project is based on near-infrared observations obtained over more than three years with the ISAAC multi-mode instrument at the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory . PR Photo 14a/03 : Colour image of the peculiar galaxy Centaurus A . PR Photo 14b/03 : Location of the fields in Centaurus A, now studied. PR Photo 14c/03 : "Field 1" in Centaurus A (visual light; FORS1). PR Photo 14d/03 : "Field 2" in Centaurus A (visual light; FORS1). PR Photo 14e/03 : "Field 1" in Centaurus A (near-infrared; ISAAC). PR Photo 14f/03 : "Field 2" in Centaurus A (near-infrared; ISAAC). PR Photo 14g/03 : Light variation of six variable stars in Centaurus A PR Photo 14h/03 : Light variation of stars in Centaurus A (Animated GIF) PR Photo 14i/03 : Light curves of four variable stars in Centaurus A. Mira-type variable stars Among the stars that are visible in the sky to the unaided eye, roughly one out of three hundred (0.3%) displays brightness variations and is referred to by astronomers as a

  4. Galaxy population properties of the massive X-ray luminous galaxy cluster XDCP J0044.0-2033 at z = 1.58. Red-sequence formation, massive galaxy assembly, and central star formation activity

    NASA Astrophysics Data System (ADS)

    Fassbender, R.; Nastasi, A.; Santos, J. S.; Lidman, C.; Verdugo, M.; Koyama, Y.; Rosati, P.; Pierini, D.; Padilla, N.; Romeo, A. D.; Menci, N.; Bongiorno, A.; Castellano, M.; Cerulo, P.; Fontana, A.; Galametz, A.; Grazian, A.; Lamastra, A.; Pentericci, L.; Sommariva, V.; Strazzullo, V.; Šuhada, R.; Tozzi, P.

    2014-08-01

    Context. Recent observational progress has enabled the detection of galaxy clusters and groups out to very high redshifts and for the first time allows detailed studies of galaxy population properties in these densest environments in what was formerly known as the "redshift desert" at z> 1.5. Aims: We aim to investigate various galaxy population properties of the massive X-ray luminous galaxy cluster XDCP J0044.0-2033 at z = 1.58, which constitutes the most extreme currently known matter-density peak at this redshift. Methods: We analyzed deep VLT/HAWK-I near-infrared data with an image quality of 0.5'' and limiting Vega magnitudes (50% completeness) of 24.2 in J- and 22.8 in the Ks band, complemented by similarly deep Subaru imaging in i and V, Spitzer observations at 4.5 μm, and new spectroscopic observations with VLT/FORS 2. Results: We detect a cluster-associated excess population of about 90 galaxies, most of them located within the inner 30'' (250 kpc) of the X-ray centroid, which follows a centrally peaked, compact NFW galaxy surface-density profile with a concentration of c200 ≃ 10. Based on the Spitzer 4.5 μm imaging data, we measure a total enclosed stellar mass of M∗500 ≃ (6.3 ± 1.6) × 1012 M⊙ and a resulting stellar mass fraction of f∗,500 = M∗,500/M500 = (3.3 ± 1.4)%, consistent with local values. The total J- and Ks-band galaxy luminosity functions of the core region yield characteristic magnitudes J* and Ks* consistent with expectations from simple zf = 3 burst models. However, a detailed look at the morphologies and color distributions of the spectroscopically confirmed members reveals that the most massive galaxies are undergoing a very active mass-assembly epoch through merging processes. Consequently, the bright end of the cluster red sequence is not in place, while a red-locus population is present at intermediate magnitudes [Ks*, Ks* + 1.6], which is then sharply truncated at magnitudes fainter than Ks* + 1.6. The dominant

  5. A Local Baseline of the Black Hole Mass Scaling Relations for Active Galaxies. III.The MBH– Relation

    NASA Astrophysics Data System (ADS)

    Bennert, Vardha N.; Treu, Tommaso; Auger, Matthew W.; Cosens, Maren; Park, Daeseong; Rosen, Rebecca; Harris, Chelsea E.; Malkan, Matthew A.; Woo, Jong-Hak

    2015-08-01

    We create a baseline of the black hole (BH) mass ({M}{BH})—stellar-velocity dispersion (σ) relation for active galaxies, using a sample of 66 local (0.02\\lt z\\lt 0.09) Seyfert-1 galaxies, selected from the Sloan Digital Sky Survey (SDSS). Analysis of SDSS images yields AGN luminosities free of host-galaxy contamination, and morphological classification. 51/66 galaxies have spiral morphology. Out of these, 28 bulges have Sérsic index n\\lt 2 and are considered candidate pseudo-bulges, with eight being definite pseudo-bulges based on multiple classification criteria met. Only 4/66 galaxies show signs of interaction/merging. High signal-to-noise ratio Keck spectra provide the width of the broad Hβ emission line free of Fe ii emission and stellar absorption. AGN luminosity and Hβ line widths are used to estimate {M}{BH}. The Keck-based spatially resolved kinematics is used to determine stellar-velocity dispersion within the spheroid effective radius ({σ }{spat,{reff}}). We find that σ can vary on average by up to 40% across definitions commonly used in the literature, emphasizing the importance of using self-consistent definitions in comparisons and evolutionary studies. The {M}{BH}–σ relation for our Seyfert-1 galaxy sample has the same intercept and scatter as that of reverberation-mapped AGNs as well as that of quiescent galaxies, consistent with the hypothesis that our single epoch {M}{BH} estimator and sample selection function do not introduce significant biases. Barred galaxies, merging galaxies, and those hosting pseudo-bulges do not represent outliers in the {M}{BH}–σ relation. This is in contrast with previous work, although no firm conclusion can be drawn on this matter due to the small sample size and limited resolution of the SDSS images.

  6. STELLAR TIDAL STREAMS IN SPIRAL GALAXIES OF THE LOCAL VOLUME: A PILOT SURVEY WITH MODEST APERTURE TELESCOPES

    SciTech Connect

    MartInez-Delgado, David; Zibetti, Stefano; Rix, Hans-Walter; Gabany, R. Jay; Crawford, Ken; Majewski, Steven R.; McDavid, David A.; Fliri, Juergen; Carballo-Bello, Julio A.; Bardalez-Gagliuffi, Daniella C.; Trujillo, Ignacio; Penarrubia, Jorge; Chonis, Taylor S.; Madore, Barry; Schirmer, Mischa

    2010-10-15

    Within the hierarchical framework for galaxy formation, minor merging and tidal interactions are expected to shape all large galaxies to the present day. As a consequence, most seemingly normal disk galaxies should be surrounded by spatially extended stellar 'tidal features' of low surface brightness. As part of a pilot survey for such interaction signatures, we have carried out ultra deep, wide field imaging of eight isolated spiral galaxies in the Local Volume, with data taken at small (D = 0.1-0.5 m) robotic telescopes that provide exquisite surface brightness sensitivity ({mu}{sub lim}(V) {approx} 28.5 mag arcsec{sup -2}). This initial observational effort has led to the discovery of six previously undetected extensive (to {approx}30 kpc) stellar structures in the halos surrounding these galaxies, likely debris from tidally disrupted satellites. In addition, we confirm and clarify several enormous stellar over-densities previously reported in the literature, but never before interpreted as tidal streams. Even this pilot sample of galaxies exhibits strikingly diverse morphological characteristics of these extended stellar features: great circle-like features that resemble the Sagittarius stream surrounding the Milky Way, remote shells and giant clouds of presumed tidal debris far beyond the main stellar body, as well as jet-like features emerging from galactic disks. Together with presumed remains of already disrupted companions, our observations also capture surviving satellites caught in the act of tidal disruption. A qualitative comparison with available simulations set in a {Lambda}Cold Dark Matter cosmology (that model the stellar halo as the result of satellite disruption evolution) shows that the extraordinary variety of stellar morphologies detected in this pilot survey matches that seen in those simulations. The common existence of these tidal features around 'normal' disk galaxies and the morphological match to the simulations constitutes new evidence

  7. Gradients of stellar population properties and evolution clues in a nearby galaxy M101

    SciTech Connect

    Lin, Lin; Kong, Xu; Lin, Xuanbin; Mao, Yewei; Cheng, Fuzhen; Zou, Hu; Jiang, Zhaoji; Zhou, Xu E-mail: xkong@ustc.edu.cn

    2013-06-01

    Multiband photometric images from ultraviolet and optical to infrared are collected to derive spatially resolved properties of the nearby Scd-type galaxy M101. With evolutionary stellar population synthesis models, two-dimensional distributions and radial profiles of age, metallicity, dust attenuation, and star formation timescale in the form of the Sandage star formation history are obtained. When fitting with the models, we use the IRX-A {sub FUV} relation, found to depend on a second parameter of birth rate b (ratio of present- and past-averaged star formation rates), to constrain the dust attenuation. There are obvious parameter gradients in the disk of M101, which supports the theory of an 'inside-out' disk growth scenario. Two distinct disk regions with different gradients of age and color are discovered, similar to another late-type galaxy, NGC 628. The metallicity gradient of the stellar content is flatter than that of H II regions. The stellar disk is optically thicker inside than outside and the global dust attenuation of this galaxy is lower compared with galaxies of similar and earlier morphological type. We note that a variational star formation timescale describes the real star formation history of a galaxy. The timescale increases steadily from the center to the outskirt. We also confirm that the bulge in this galaxy is a disk-like pseudobulge, whose evolution is likely to be induced by some secular processes of the small bar which is relatively young, metal-rich, and contains much dust.

  8. Direct Detection of Lyman Continuum Escape from Local Starburst Galaxies with the Cosmic Origins Spectrograph

    NASA Astrophysics Data System (ADS)

    Leitherer, Claus; Hernandez, Svea; Lee, Janice C.; Oey, M. S.

    2016-05-01

    We report on the detection of Lyman continuum radiation in two nearby starburst galaxies. Tol 0440-381, Tol 1247-232, and Mrk 54 were observed with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. The three galaxies have radial velocities of ˜13,000 km s‑1, permitting a ˜35 Å window on the restframe Lyman continuum shortward of the Milky Way Lyman edge at 912 Å. The chosen instrument configuration using the G140L grating covers the spectral range from 912 to 2000 Å. We developed a dedicated background subtraction method to account for the temporal and spatial background variations of the detector, which is crucial at the low flux levels around 912 Å. This modified pipeline allowed us to significantly improve the statistical and systematic detector noise and will be made available to the community. We detect Lyman continuum in all three galaxies. However, we conservatively interpret the emission in Tol 0440-381 as an upper limit due to possible contamination by geocoronal Lyman series lines. We determined the current star formation properties from the far-ultraviolet continuum and spectral lines and used synthesis models to predict the Lyman continuum radiation emitted by the current population of hot stars. We discuss various model uncertainties such as, among others, atmospheres and evolution models. Lyman continuum escape fractions were derived from a comparison between the observed and predicted Lyman continuum fluxes. Tol 1247-232, Mrk 54, and Tol 0440-381 have absolute escape fractions of (4.5 ± 1.2)%, (2.5 ± 0.72)%, and <(7.1 ± 1.1)%, respectively.

  9. Direct Detection of Lyman Continuum Escape from Local Starburst Galaxies with the Cosmic Origins Spectrograph

    NASA Astrophysics Data System (ADS)

    Leitherer, Claus; Hernandez, Svea; Lee, Janice C.; Oey, M. S.

    2016-05-01

    We report on the detection of Lyman continuum radiation in two nearby starburst galaxies. Tol 0440-381, Tol 1247-232, and Mrk 54 were observed with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. The three galaxies have radial velocities of ˜13,000 km s-1, permitting a ˜35 Å window on the restframe Lyman continuum shortward of the Milky Way Lyman edge at 912 Å. The chosen instrument configuration using the G140L grating covers the spectral range from 912 to 2000 Å. We developed a dedicated background subtraction method to account for the temporal and spatial background variations of the detector, which is crucial at the low flux levels around 912 Å. This modified pipeline allowed us to significantly improve the statistical and systematic detector noise and will be made available to the community. We detect Lyman continuum in all three galaxies. However, we conservatively interpret the emission in Tol 0440-381 as an upper limit due to possible contamination by geocoronal Lyman series lines. We determined the current star formation properties from the far-ultraviolet continuum and spectral lines and used synthesis models to predict the Lyman continuum radiation emitted by the current population of hot stars. We discuss various model uncertainties such as, among others, atmospheres and evolution models. Lyman continuum escape fractions were derived from a comparison between the observed and predicted Lyman continuum fluxes. Tol 1247-232, Mrk 54, and Tol 0440-381 have absolute escape fractions of (4.5 ± 1.2)%, (2.5 ± 0.72)%, and <(7.1 ± 1.1)%, respectively.

  10. DEEP K{sub s} -NEAR-INFRARED SURFACE PHOTOMETRY OF 80 DWARF IRREGULAR GALAXIES IN THE LOCAL VOLUME

    SciTech Connect

    Fingerhut, Robin L.; McCall, Marshall L.; Argote, Mauricio; Cluver, Michelle E.; Nishiyama, Shogo; Rekola, Rami T. F.; Richer, Michael G.; Vaduvescu, Ovidiu; Woudt, Patrick A. E-mail: mccall@yorku.c E-mail: mcluver@ipac.caltech.ed E-mail: rareko@utu.f E-mail: ovidiuv@ing.iac.e

    2010-06-10

    We present deep near-infrared (K{sub s}) images and surface photometry for 80 dwarf irregular galaxies (dIs) within {approx}5 Mpc of the Milky Way. The galaxy images were obtained at five different facilities between 2004 and 2006. The image reductions and surface photometry have been performed using methods specifically designed for isolating faint galaxies from the high and varying near-infrared sky level. Fifty-four of the 80 dIs have surface brightness profiles which could be fit to a hyperbolic-secant (sech) function, while the remaining profiles could be fit to the sum of a sech and a Gaussian function. From these fits, we have measured central surface brightnesses, scale lengths, and integrated magnitudes. This survey is part of a larger study of the connection between large-scale structure and the global properties of dIs, the hypothesized building-blocks of more massive galaxies.

  11. Stellar Content and Recent Star Formation History of the Local Group Dwarf Irregular Galaxy IC 1613

    NASA Astrophysics Data System (ADS)

    Bernard, Edouard J.; Aparicio, Antonio; Gallart, Carme; Padilla-Torres, Carmen P.; Panniello, Maurizio

    2007-09-01

    We present resolved-star VI photometry of the Local Group dwarf irregular galaxy IC 1613 reaching I ~ 23.5, obtained with the wide-field camera at the 2.5 m Isaac Newton Telescope. A fit to the stellar density distribution shows an exponential profile of scale length 2.9' ± 0.1' and gives a central surface brightness μV,0 = 22.7 ± 0.6. The significant number of red giant branch (RGB) stars present in the outer part of our images (r > 16.5') indicates that the galaxy is actually more extended than previously estimated. A comparison of the color-magnitude diagrams (CMDs) as a function of galactocentric distance shows a clear gradient in the age of its population, the scale length increasing with age, while we find no evidence of a metallicity gradient from the width of the RGB. We present quantitative results of the recent star formation history from a synthetic CMD analysis using IAC-STAR. We find a mean star formation rate of (1.6 ± 0.8) × 10-3 Modot yr-1 kpc-2 in the central r lesssim 2.5' for the last 300 Myr. Based on observations made with the Isaac Newton Telescope, operated on the island of La Palma by the Isaac Newton Group, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  12. Planck early results. XI. Calibration of the local galaxy cluster Sunyaev-Zeldovich scaling relations

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartelmann, M.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bourdin, H.; Brown, M. L.; Bucher, M.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Chiang, C.; Chon, G.; Christensen, P. R.; Churazov, E.; Clements, D. L.; Colafrancesco, S.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; da Silva, A.; Dahle, H.; Danese, L.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dolag, K.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Fromenteau, S.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lanoux, J.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Liddle, A.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Marleau, F.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Piffaretti, R.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Schaefer, B. M.; Scott, D.; Seiffert, M. D.; Shellard, P.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; Valenziano, L.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, S. D. M.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2011-12-01

    We present precise Sunyaev-Zeldovich (SZ) effect measurements in the direction of 62 nearby galaxy clusters (z < 0.5) detected at high signal-to-noise in the first Planck all-sky data set. The sample spans approximately a decade in total mass, 2 × 1014 M⊙ < M500 < 2 × 1015 M⊙, where M500 is the mass corresponding to a total density contrast of 500. Combining these high quality Planck measurements with deep XMM-Newton X-ray data, we investigate the relations between DA2 Y500, the integrated Compton parameter due to the SZ effect, and the X-ray-derived gas mass Mg,500, temperature TX, luminosity LX,500, SZ signal analogue YX,500 = Mg,500 × TX, and total mass M500. After correction for the effect of selection bias on the scaling relations, we find results that are in excellent agreement with both X-ray predictions and recently-published ground-based data derived from smaller samples. The present data yield an exceptionally robust, high-quality local reference, and illustrate Planck's unique capabilities for all-sky statistical studies of galaxy clusters. Corresponding author: G. W. Pratt, e-mail: gabriel.pratt@cea.fr

  13. Physical properties of distant red galaxies in the COSMOS/UltraVISTA field

    NASA Astrophysics Data System (ADS)

    Ma, Zhongyang; Fang, Guanwen; Kong, Xu; Fan, Lulu

    2015-10-01

    We present a study on physical properties for a large distant red galaxy (DRG) sample, using the K-selected multi-band photometry catalog of the COSMOS/UltraVISTA field and the CANDELS near-infrared data. Our sample includes 4485 DRGs with (J - K)AB > 1.16 and KAB < 23.4 mag, and 132 DRGs have HST/WFC3 morphological measurements. The results of nonparametric measurements of DRG morphology are consistent with our rest-frame UVJ color classification; quiescent DRGs are generally compact while star-forming DRGs tend to have extended structures. We find the star formation rate (SFR) and the stellar mass of star-forming DRGs present tight "main sequence" relations in all redshift bins. Moreover, the specific SFR (sSFR) of DRGs increases with redshift in all stellar mass bins and DRGs with higher stellar masses generally have lower sSFRs, which indicates that galaxies were much more active on average in the past, and star formation contributes more to the mass growth of low-mass galaxies than to high-mass galaxies. The infrared-derived SFR dominates the total SFR of DRGs which occupy the high-mass range, implying that the J - K color criterion effectively selects massive and dusty galaxies. DRGs with higher M* generally have redder (U - V)rest colors, and the (U - V)rest colors of DRGs become bluer at higher redshifts, suggesting high-mass galaxies have higher internal dust extinctions or older stellar ages and they evolve with time. Finally, we find that DRGs have different overlap among extremely red objects, BzK galaxies, IRAC-selected extremely red objects, and high-z ultraluminous infrared galaxies, indicating that DRGs are not a special population and they can also be selected by other color criteria.

  14. HST/WFC3 Near-infrared Spectroscopy of Quenched Galaxies at z ~ 1.5 from the WISP Survey: Stellar Population Properties

    NASA Astrophysics Data System (ADS)

    Bedregal, A. G.; Scarlata, C.; Henry, A. L.; Atek, H.; Rafelski, M.; Teplitz, H. I.; Dominguez, A.; Siana, B.; Colbert, J. W.; Malkan, M.; Ross, N. R.; Martin, C. L.; Dressler, A.; Bridge, C.; Hathi, N. P.; Masters, D.; McCarthy, P. J.; Rutkowski, M. J.

    2013-12-01

    We combine Hubble Space Telescope (HST) G102 and G141 near-IR (NIR) grism spectroscopy with HST/WFC3-UVIS, HST/WFC3-IR, and Spitzer/IRAC [3.6 μm] photometry to assemble a sample of massive (log (M star/M ⊙) ~ 11.0) and quenched (specific star formation rate <0.01 Gyr-1) galaxies at z ~ 1.5. Our sample of 41 galaxies is the largest with G102+G141 NIR spectroscopy for quenched sources at these redshifts. In contrast to the local universe, z ~ 1.5 quenched galaxies in the high-mass range have a wide range of stellar population properties. We find that their spectral energy distributions (SEDs) are well fitted with exponentially decreasing star formation histories and short star formation timescales (τ <= 100 Myr). Quenched galaxies also show a wide distribution in ages, between 1 and 4 Gyr. In the (u - r)0-versus-mass space quenched galaxies have a large spread in rest-frame color at a given mass. Most quenched galaxies populate the z ~ 1.5 red sequence (RS), but an important fraction of them (32%) have substantially bluer colors. Although with a large spread, we find that the quenched galaxies on the RS have older median ages (3.1 Gyr) than the quenched galaxies off the RS (1.5 Gyr). We also show that a rejuvenated SED cannot reproduce the observed stacked spectra of (the bluer) quenched galaxies off the RS. We derive the upper limit on the fraction of massive galaxies on the RS at z ~ 1.5 to be <43%. We speculate that the young quenched galaxies off the RS are in a transition phase between vigorous star formation at z > 2 and the z ~ 1.5 RS. According to their estimated ages, the time required for quenched galaxies off the RS to join their counterparts on the z ~ 1.5 RS is of the order of ~1 Gyr. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  15. HST/WFC3 near-infrared spectroscopy of quenched galaxies at z ∼ 1.5 from the WISP survey: Stellar population properties

    SciTech Connect

    Bedregal, A. G.; Scarlata, C.; Rutkowski, M. J.; Henry, A. L.; Martin, C. L.; Atek, H.; Colbert, J. W.; Rafelski, M.; Teplitz, H. I.; Dominguez, A.; Siana, B.; Masters, D.; Malkan, M.; Ross, N. R.; Dressler, A.; Bridge, C.; Hathi, N. P.; McCarthy, P. J.

    2013-12-01

    We combine Hubble Space Telescope (HST) G102 and G141 near-IR (NIR) grism spectroscopy with HST/WFC3-UVIS, HST/WFC3-IR, and Spitzer/IRAC [3.6 μm] photometry to assemble a sample of massive (log (M {sub star}/M {sub ☉}) ∼ 11.0) and quenched (specific star formation rate <0.01 Gyr{sup –1}) galaxies at z ∼ 1.5. Our sample of 41 galaxies is the largest with G102+G141 NIR spectroscopy for quenched sources at these redshifts. In contrast to the local universe, z ∼ 1.5 quenched galaxies in the high-mass range have a wide range of stellar population properties. We find that their spectral energy distributions (SEDs) are well fitted with exponentially decreasing star formation histories and short star formation timescales (τ ≤ 100 Myr). Quenched galaxies also show a wide distribution in ages, between 1 and 4 Gyr. In the (u – r){sub 0}-versus-mass space quenched galaxies have a large spread in rest-frame color at a given mass. Most quenched galaxies populate the z ∼ 1.5 red sequence (RS), but an important fraction of them (32%) have substantially bluer colors. Although with a large spread, we find that the quenched galaxies on the RS have older median ages (3.1 Gyr) than the quenched galaxies off the RS (1.5 Gyr). We also show that a rejuvenated SED cannot reproduce the observed stacked spectra of (the bluer) quenched galaxies off the RS. We derive the upper limit on the fraction of massive galaxies on the RS at z ∼ 1.5 to be <43%. We speculate that the young quenched galaxies off the RS are in a transition phase between vigorous star formation at z > 2 and the z ∼ 1.5 RS. According to their estimated ages, the time required for quenched galaxies off the RS to join their counterparts on the z ∼ 1.5 RS is of the order of ∼1 Gyr.

  16. HST-WFC3 Near-Infrared Spectroscopy of Quenched Galaxies at zeta approx 1.5 from the WISP Survey: Stellar Populations Properties

    NASA Technical Reports Server (NTRS)

    Bedregal, A. G.; Scarlata, C.; Henry, A. L.; Atek, H.; Rafelski, M.; Teplitz, H. I.; Dominguez, A.; Siana, B.; Colbert, J. W.; Malkan, M.; Ross, N. R.; Martin, C. L.; Dressler, A.; Bridge, C.; Hathi, N. P.; Masters, D.; McCarthy, P. J.; Rutkowski, M. J.

    2013-01-01

    We combine Hubble Space Telescope (HST) G102 and G141 near-IR (NIR) grism spectroscopy with HST/WFC3- UVIS, HST/WFC3-IR, and Spitzer/IRAC [3.6 microns] photometry to assemble a sample of massive (log(Mstar/M solar mass) at approx 11.0) and quenched (specific star formation rate < 0.01 G/yr(exp -1) galaxies at zeta approx 1.5. Our sample of 41 galaxies is the largest with G102+G141 NIR spectroscopy for quenched sources at these redshifts. In contrast to the local universe, zeta approx 1.5 quenched galaxies in the high-mass range have a wide range of stellar population properties. We find that their spectral energy distributions (SEDs) are well fitted with exponentially decreasing star formation histories and short star formation timescales (tau less than or equal to 100 M/yr). Quenched galaxies also show a wide distribution in ages, between 1 and 4 G/yr. In the (u - r)0-versus-mass space quenched galaxies have a large spread in rest-frame color at a given mass. Most quenched galaxies populate the zeta appro. 1.5 red sequence (RS), but an important fraction of them (32%) have substantially bluer colors. Although with a large spread, we find that the quenched galaxies on the RS have older median ages (3.1 G/yr) than the quenched galaxies off the RS (1.5 G/yr). We also show that a rejuvenated SED cannot reproduce the observed stacked spectra of (the bluer) quenched galaxies off the RS. We derive the upper limit on the fraction of massive galaxies on the RS at zeta approx 1.5 to be <43%.We speculate that the young quenched galaxies off the RS are in a transition phase between vigorous star formation at zeta > 2 and the zeta approx 1.5 RS. According to their estimated ages, the time required for quenched galaxies off the RS to join their counterparts on the z approx. 1.5 RS is of the order of approx. 1G/yr.

  17. Revisiting the Scaling Relations of Black Hole Masses and Host Galaxy Properties

    NASA Astrophysics Data System (ADS)

    McConnell, Nicholas J.; Ma, Chung-Pei

    2013-02-01

    significant trend in the scatter with galaxy properties.

  18. SHELS: OPTICAL SPECTRAL PROPERTIES OF WISE 22 {mu}m SELECTED GALAXIES

    SciTech Connect

    Hwang, Ho Seong; Geller, Margaret J.; Kurtz, Michael J.; Fabricant, Daniel G.; Dell'Antonio, Ian P. E-mail: mgeller@cfa.harvard.edu E-mail: dfabricant@cfa.harvard.edu

    2012-10-10

    We use a dense, complete redshift survey, the Smithsonian Hectospec Lensing Survey (SHELS), covering a 4 deg{sup 2} region of a deep imaging survey, the Deep Lens Survey (DLS), to study the optical spectral properties of Wide-field Infrared Survey Explorer (WISE) 22 {mu}m selected galaxies. Among 507 WISE 22 {mu}m selected sources with (S/N){sub 22{mu}m} {>=} 3 ( Almost-Equal-To S{sub 22{mu}m} {approx}> 2.5 mJy), we identify the optical counterparts of 481 sources ({approx}98%) at R < 25.2 in the very deep, DLS R-band source catalog. Among them, 337 galaxies at R < 21 have SHELS spectroscopic data. Most of these objects are at z < 0.8. The infrared (IR) luminosities are in the range 4.5 Multiplication-Sign 10{sup 8}(L{sub Sun }) {approx}< L{sub IR} {approx}< 5.4 Multiplication-Sign 10{sup 12}(L{sub Sun }). Most 22 {mu}m selected galaxies are dusty star-forming galaxies with a small (<1.5) 4000 A break. The stacked spectra of the 22 {mu}m selected galaxies binned in IR luminosity show that the strength of the [O III] line relative to H{beta} grows with increasing IR luminosity. The optical spectra of the 22 {mu}m selected galaxies also show that there are some ({approx}2.8%) unusual galaxies with very strong [Ne III] {lambda}3869, 3968 emission lines that require hard ionizing radiation such as active galactic nuclei (AGNs) or extremely young massive stars. The specific star formation rates (sSFRs) derived from the 3.6 and 22 {mu}m flux densities are enhanced if the 22 {mu}m selected galaxies have close late-type neighbors. The sSFR distribution of the 22 {mu}m selected galaxies containing AGNs is similar to the distribution for star-forming galaxies without AGNs. We identify 48 dust-obscured galaxy candidates with large ({approx}> 1000) mid-IR to optical flux density ratio. The combination of deep photometric and spectroscopic data with WISE data suggests that WISE can probe the universe to z {approx} 2.

  19. Properties of Galaxy Dark Matter Halos from Weak Lensing

    NASA Astrophysics Data System (ADS)

    Hoekstra, Henk; Yee, H. K. C.; Gladders, Michael D.

    2004-05-01

    We present the results of a study of weak lensing by galaxies based on 45.5 deg2 of RC-band imaging data from the Red-Sequence Cluster Survey (RCS). We define a sample of lenses with 19.5galaxies with 21.5galaxy dark matter halos. We use a simple model in which the ellipticity of the halo is f times the observed ellipticity of the lens. We find a best-fit value of f=0.77+0.18-0.21, which suggests that the dark matter halos are somewhat rounder than the light distribution. The fact that we detect a significant flattening implies that the halos are well aligned with the light distribution. Given the average ellipticity of the lenses, this implies a halo ellipticity of =0.33+0.07-0.09, in fair agreement with results from numerical simulations of cold dark matter. We note that this result is formally a lower limit to the flattening, since the measurements imply a larger flattening if the halos are not aligned with the light distribution. Alternative theories of gravity (without dark matter) predict an isotropic lensing signal, which is excluded with 99.5% confidence. Hence, our results provide strong support for the existence of dark matter. We also study the average mass profile around the lenses, using a maximum likelihood analysis. We consider two models for the halo mass profile: a truncated isothermal sphere (TIS) and a Navarro-Frenk-White (NFW) profile. We adopt observationally motivated scaling relations between the lens luminosity and the velocity dispersion and the extent of the halo. The TIS model yields a best-fit velocity dispersion of σ=136+/-5+/-3 km s-1 (all errors are 68% confidence limits; the first error bar indicates the statistical uncertainty, whereas the second error bar indicates the systematic error) and a truncation radius s=185+30-28h-1 kpc for a galaxy with a fiducial luminosity of LB=1010h-2LB,solar (under the assumption that

  20. Adaptive density estimator for galaxy surveys

    NASA Astrophysics Data System (ADS)

    Saar, Enn

    2016-10-01

    Galaxy number or luminosity density serves as a basis for many structure classification algorithms. Several methods are used to estimate this density. Among them kernel methods have probably the best statistical properties and allow also to estimate the local sample errors of the estimate. We introduce a kernel density estimator with an adaptive data-driven anisotropic kernel, describe its properties and demonstrate the wealth of additional information it gives us about the local properties of the galaxy distribution.

  1. Linking dust emission to fundamental properties in galaxies: the low-metallicity picture

    NASA Astrophysics Data System (ADS)

    Rémy-Ruyer, A.; Madden, S. C.; Galliano, F.; Lebouteiller, V.; Baes, M.; Bendo, G. J.; Boselli, A.; Ciesla, L.; Cormier, D.; Cooray, A.; Cortese, L.; De Looze, I.; Doublier-Pritchard, V.; Galametz, M.; Jones, A. P.; Karczewski, O. Ł.; Lu, N.; Spinoglio, L.

    2015-10-01

    Aims: In this work, we aim to provide a consistent analysis of the dust properties from metal-poor to metal-rich environments by linking them to fundamental galactic parameters. Methods: We consider two samples of galaxies: the Dwarf Galaxy Survey (DGS) and the Key Insights on Nearby Galaxies: a Far-Infrared Survey with Herschel (KINGFISH), totalling 109 galaxies, spanning almost 2 dex in metallicity. We collect infrared (IR) to submillimetre (submm) data for both samples and present the complete data set for the DGS sample. We model the observed spectral energy distributions (SED) with a physically-motivated dust model to access the dust properties: dust mass, total-IR luminosity, polycyclic aromatic hydrocarbon (PAH) mass fraction, dust temperature distribution, and dust-to-stellar mass ratio. Results: Using a different SED model (modified black body), different dust composition (amorphous carbon in lieu of graphite), or a different wavelength coverage at submm wavelengths results in differences in the dust mass estimate of a factor two to three, showing that this parameter is subject to non-negligible systematic modelling uncertainties. We find half as much dust with the amorphous carbon dust composition. For eight galaxies in our sample, we find a rather small excess at 500 μm (≤1.5σ). We find that the dust SED of low-metallicity galaxies is broader and peaks at shorter wavelengths compared to more metal-rich systems, a sign of a clumpier medium in dwarf galaxies. The PAH mass fraction and dust temperature distribution are found to be driven mostly by the specific star formation rate, sSFR, with secondary effects from metallicity. The correlations between metallicity and dust mass or total-IR luminosity are direct consequences of the stellar mass-metallicity relation. The dust-to-stellar mass ratios of metal-rich sources follow the well-studied trend of decreasing ratio for decreasing sSFR. The relation is more complex for low-metallicity galaxies with high

  2. cluster-lensing: Tools for calculating properties and weak lensing profiles of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Ford, Jes

    2016-05-01

    The cluster-lensing package calculates properties and weak lensing profiles of galaxy clusters. Implemented in Python, it includes cluster mass-richness and mass-concentration scaling relations, and NFW halo profiles for weak lensing shear, the differential surface mass density ΔΣ(r), and for magnification, Σ(r). Optionally the calculation will include the effects of cluster miscentering offsets.

  3. Chemical history of isolated dwarf galaxies of the Local Group - I. dSphs: Cetus and Tucana

    NASA Astrophysics Data System (ADS)

    Avila-Vergara, N.; Carigi, L.; Hidalgo, S. L.; Durazo, R.

    2016-04-01

    For the first time, we obtain chemical evolution models (CEMs) for Tucana and Cetus, two isolated dwarf spheroidal galaxies of the Local Group. The CEMs have been built from the star formation histories (SFHs) and the metallicity histories, both obtained independently by the Local Cosmology from Isolated Dwarfs (LCID) project from deep colour-magnitude diagrams. Based on our models, we find that the chemical histories were complex and can be divided into different epochs and scenarios. In particular, during 75 per cent of the SFH, the galaxies behaved as closed boxes and, during the remaining 25 per cent, either received a lot of primordial gas by accretion or they lost metals through metal-rich winds. In order to discriminate between these two scenarios, abundances ratios in old stars are needed. At t ˜ 4.5 Gyr, the galaxies lost most of their gas due to a short-strong, well-mixed wind. We obtain very similar CEMs for both galaxies, although Cetus is twice as massive as Tucana. We conclude that the star formation in both galaxies began with only 1.5 per cent of the baryonic mass fraction predicted by Λ cold dark matter.

  4. PHYSICAL AND MORPHOLOGICAL PROPERTIES OF [O II] EMITTING GALAXIES IN THE HETDEX PILOT SURVEY

    SciTech Connect

    Bridge, Joanna S.; Gronwall, Caryl; Ciardullo, Robin; Hagen, Alex; Zeimann, Greg; Malz, A. I.; Schneider, Donald P. E-mail: caryl@astro.psu.edu E-mail: hagen@psu.edu E-mail: aimalz@psu.edu; and others

    2015-02-01

    The Hobby-Eberly Dark Energy Experiment pilot survey identified 284 [O II] λ3727 emitting galaxies in a 169 arcmin{sup 2} field of sky in the redshift range 0 < z < 0.57. This line flux limited sample provides a bridge between studies in the local universe and higher-redshift [O II] surveys. We present an analysis of the star formation rates (SFRs) of these galaxies as a function of stellar mass as determined via spectral energy distribution fitting. The [O II] emitters fall on the ''main sequence'' of star-forming galaxies with SFR decreasing at lower masses and redshifts. However, the slope of our relation is flatter than that found for most other samples, a result of the metallicity dependence of the [O II] star formation rate indicator. The mass-specific SFR is higher for lower mass objects, supporting the idea that massive galaxies formed more quickly and efficiently than their lower mass counterparts. This is confirmed by the fact that the equivalent widths of the [O II] emission lines trend smaller with larger stellar mass. Examination of the morphologies of the [O II] emitters reveals that their star formation is not a result of mergers, and the galaxies' half-light radii do not indicate evolution of physical sizes.

  5. The MUSIC of Galaxy Clusters - III. Properties, evolution and Y-M scaling relation of protoclusters of galaxies

    NASA Astrophysics Data System (ADS)

    Sembolini, Federico; De Petris, Marco; Yepes, Gustavo; Foschi, Emma; Lamagna, Luca; Gottlöber, Stefan

    2014-06-01

    In this work, we study the properties of protoclusters of galaxies by employing the MultiDark SImulations of galaxy Clusters (MUSIC) set of hydrodynamical simulations, featuring a sample of 282 resimulated clusters with available merger trees up to z = 4. We study the characteristics and redshift evolution of the mass and the spatial distribution for all the protoclusters, which we define as the most massive progenitors of the clusters identified at z = 0. We extend the study of the baryon content to redshifts larger than 1 also in terms of gas and stars budgets: no remarkable variations with redshift are discovered. Furthermore, motivated by the proven potential of Sunyaev-Zel'dovich surveys to blindly search for faint distant objects, we compute the scaling relation between total object mass and integrated Compton y-parameter. We find that the slope of this scaling law is steeper than what expected for a self-similarity assumption among these objects, and it increases with redshift mainly when radiative processes are included. We use three different criteria to account for the dynamical state of the protoclusters, and find no significant dependence of the scaling parameters on the level of relaxation. We exclude the dynamical state as the cause of the observed deviations from self-similarity in protoclusters.

  6. Multi-frequency properties of an narrow angle tail radio galaxy J 0037+18

    NASA Astrophysics Data System (ADS)

    Patra, Dusmanta; Chakrabarti, Sandip Kumar; Pal, Sabyasachi; Konar, Chiranjib

    2016-07-01

    We will present multi-frequency properties of narrow angle tailed radio galaxy J 0037+18 using data from Giant Metrewave Radio Telescope (GMRT) and Jansky Very Large Array (JVLA). The angle between two lobes is only 38 degree. We will discuss magnetic field and particle life time of the jet. Spectral properties of the source will be discussed. We also used optical and X-ray data to investigate host environment.

  7. MID-INFRARED DETERMINATION OF TOTAL INFRARED LUMINOSITY AND STAR FORMATION RATES OF LOCAL AND HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Rujopakarn, W.; Rieke, G. H.; Weiner, B. J.; Perez-Gonzalez, P.; Rex, M.; Walth, G. L.; Kartaltepe, J. S.

    2013-04-10

    We demonstrate estimating the total infrared luminosity, L(TIR), and star formation rates (SFRs) of star-forming galaxies at redshift 0 < z < 2.8 from single-band 24 {mu}m observations, using local spectral energy distribution (SED) templates without introducing additional free parameters. Our method is based on characterizing the SEDs of galaxies as a function of their L(TIR) surface density, which is motivated by the indications that the majority of IR luminous star-forming galaxies at 1 < z < 3 have extended star-forming regions, in contrast to the strongly nuclear concentrated, merger-induced starbursts in local luminous and ultraluminous IR galaxies. We validate our procedure for estimating L(TIR) by comparing the resulting L(TIR) with those measured from far-IR observations, such as those from Herschel in the Extended Chandra Deep Field South (ECDFS) and Hubble Deep Field North (HDFN), as well as L(TIR) measured from stacked far-IR observations at redshift 0 < z < 2.8. Active galactic nuclei were excluded using X-ray and 3.6-8.0 {mu}m observations, which are generally available in deep cosmological survey fields. The Gaussian fits to the distribution of the discrepancies between the L(TIR) measurements from single-band 24 {mu}m and Herschel observations in the ECDFS and HDFN samples have {sigma} < 0.1 dex, with {approx}10% of objects disagreeing by more than 0.2 dex. Since the 24 {mu}m estimates are based on SEDs for extended galaxies, this agreement suggests that {approx}90% of IR galaxies at high z are indeed much more physically extended than local counterparts of similar L(TIR), consistent with recent independent studies of the fractions of galaxies forming stars in the main-sequence and starburst modes, respectively. Because we have not introduced empirical corrections to enhance these estimates, in principle, our method should be applicable to lower luminosity galaxies. This will enable use of the 21 {mu}m band of the Mid-Infrared Instrument on board

  8. The Milky Way Bulge: Observed Properties and a Comparison to External Galaxies

    NASA Astrophysics Data System (ADS)

    Gonzalez, Oscar A.; Gadotti, Dimitri

    The Milky Way bulge offers a unique opportunity to investigate in detail the role that different processes such as dynamical instabilities, hierarchical merging, and dissipational collapse may have played in the history of the Galaxy formation and evolution based on its resolved stellar population properties. Large observation programs and surveys of the bulge are providing for the first time a look into the global view of the Milky Way bulge that can be compared with the bulges of other galaxies, and be used as a template for detailed comparison with models. The Milky Way has been shown to have a boxy/peanut (B/P) bulge and recent evidence seems to suggest the presence of an additional spheroidal component. In this review we summarize the global chemical abundances, kinematics and structural properties that allow us to disentangle these multiple components and provide constraints to understand their origin. The investigation of both detailed and global properties of the bulge now provide us with the opportunity to characterize the bulge as observed in models, and to place the mixed component bulge scenario in the general context of external galaxies. When writing this review, we considered the perspectives of researchers working with the Milky Way and researchers working with external galaxies. It is an attempt to approach both communities for a fruitful exchange of ideas.

  9. Internal kinematic and physical properties in a BCD galaxy: Haro 15 in detail

    NASA Astrophysics Data System (ADS)

    Firpo, V.; Bosch, G.; Hägele, G. F.; Díaz, A. I.; Morrell, N.

    2011-11-01

    We present a detailed study of the kinematic and physical properties of the ionized gas in multiple knots of the blue compact dwarf galaxy Haro 15. Using echelle and long slit spectroscopy data, obtained with different instruments at Las Campanas Observatory, we study the internal kinematic and physical conditions (electron density and temperature), ionic and total chemical abundances of several atoms, reddening and ionization structure. Applying direct and empirical methods for abundance determination, we perform a comparative analysis between these regions and in their different components. On the other hand, our echelle spectra show complex kinematics in several conspicuous knots within the galaxy. To perform an in-depth 2D spectroscopic study we complete this work with high spatial and spectral resolution spectroscopy using the Integral Field Unit mode on the Gemini Multi-Object Spectrograph instrument at the Gemini South telescope. With these data we are able to resolve the complex kinematical structure within star forming knots in Haro 15 galaxy.

  10. Clustering properties of g-selected galaxies at z ˜ 0.8

    NASA Astrophysics Data System (ADS)

    Favole, Ginevra; Comparat, Johan; Prada, Francisco; Yepes, Gustavo; Jullo, Eric; Niemiec, Anna; Kneib, Jean-Paul; Rodríguez-Torres, Sergio A.; Klypin, Anatoly; Skibba, Ramin A.; McBride, Cameron K.; Eisenstein, Daniel J.; Schlegel, David J.; Nuza, Sebastián E.; Chuang, Chia-Hsun; Delubac, Timothée; Yèche, Christophe; Schneider, Donald P.

    2016-10-01

    Current and future large redshift surveys, as the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey (SDSS-IV/eBOSS) or the Dark Energy Spectroscopic Instrument (DESI), will use emission-line galaxies (ELGs) to probe cosmological models by mapping the large-scale structure of the Universe in the redshift range 0.6 < z < 1.7. With current data, we explore the halo-galaxy connection by measuring three clustering properties of g-selected ELGs as matter tracers in the redshift range 0.6 < z < 1: (i) the redshift-space two-point correlation function using spectroscopic redshifts from the BOSS ELG sample and VIPERS; (ii) the angular two-point correlation function on the footprint of the CFHT-LS; (iii) the galaxy-galaxy lensing signal around the ELGs using the CFHTLenS. We interpret these observations by mapping them on to the latest high-resolution MultiDark Planck N-body simulation, using a novel (Sub)Halo-Abundance Matching technique that accounts for the ELG incompleteness. ELGs at z ˜ 0.8 live in haloes of (1 ± 0.5) × 1012 h-1M⊙ and 22.5 ± 2.5 per cent of them are satellites belonging to a larger halo. The halo occupation distribution of ELGs indicates that we are sampling the galaxies in which stars form in the most efficient way, according to their stellar-to-halo mass ratio.

  11. Building disc structure and galaxy properties through angular momentum: the DARK SAGE semi-analytic model

    NASA Astrophysics Data System (ADS)

    Stevens, Adam R. H.; Croton, Darren J.; Mutch, Simon J.

    2016-09-01

    We present the new semi-analytic model of galaxy evolution, DARK SAGE, a heavily modified version of the publicly available SAGE code. The model is designed for detailed evolution of galactic discs. We evolve discs in a series of annuli with fixed specific angular momentum, which allows us to make predictions for the radial and angular-momentum structure of galaxies. Most physical processes, including all channels of star formation and associated feedback, are performed in these annuli. We present the surface density profiles of our model spiral galaxies, both as a function of radius and specific angular momentum, and find that the discs naturally build a pseudo-bulge-like component. Our main results are focused on predictions relating to the integrated mass-specific angular momentum relation of stellar discs. The model produces a distinct sequence between these properties in remarkable agreement with recent observational literature. We investigate the impact Toomre disc instabilities have on shaping this sequence and find they are crucial for regulating both the mass and spin of discs. Without instabilities, high-mass discs would be systematically deficient in specific angular momentum by a factor of ˜2.5, with increased scatter. Instabilities also appear to drive the direction in which the mass-spin sequence of spiral galaxy discs evolves. With them, we find galaxies of fixed mass have higher specific angular momentum at later epochs.

  12. PROPERTIES OF NEARBY STARBURST GALAXIES BASED ON THEIR DIFFUSE GAMMA-RAY EMISSION

    SciTech Connect

    Paglione, Timothy A. D.; Abrahams, Ryan D.

    2012-08-20

    The physical relationship between the far-infrared and radio fluxes of star-forming galaxies has yet to be definitively determined. The favored interpretation, the 'calorimeter model', requires that supernova generated cosmic-ray (CR) electrons cool rapidly via synchrotron radiation. However, this cooling should steepen their radio spectra beyond what is observed, and so enhanced ionization losses at low energies from high gas densities are also required. Further, evaluating the minimum energy magnetic field strength with the traditional scaling of the synchrotron flux may underestimate the true value in massive starbursts if their magnetic energy density is comparable to the hydrostatic pressure of their disks. Gamma-ray spectra of starburst galaxies, combined with radio data, provide a less ambiguous estimate of these physical properties in starburst nuclei. While the radio flux is most sensitive to the magnetic field, the GeV gamma-ray spectrum normalization depends primarily on gas density. To this end, spectra above 100 MeV were constructed for two nearby starburst galaxies, NGC 253 and M82, using Fermi data. Their nuclear radio and far-infrared spectra from the literature are compared to new models of the steady-state CR distributions expected from starburst galaxies. Models with high magnetic fields, favoring galaxy calorimetry, are overall better fits to the observations. These solutions also imply relatively high densities and CR ionization rates, consistent with molecular cloud studies.

  13. Differences in the Structural Properties and Star-formation Rates of Field and Cluster Galaxies at z~1

    NASA Astrophysics Data System (ADS)

    Allen, Rebecca J.; Kacprzak, Glenn G.; Glazebrook, Karl; Tran, Kim-Vy H.; Spitler, Lee R.; Straatman, Caroline M. S.; Cowley, Michael; Nanayakkara, Themiya

    2016-07-01

    We investigate the dependence of galaxy sizes and star formation rates (SFRs) on their environment using a mass-limited sample of quiescent and star-forming galaxies with log(M */{M}ȯ ) ≥ 9.5 at \\bar{z}=0.92 selected from the NEWFIRM medium-band Survey (NMBS). Using the Galaxy Environment Evolution Collaboration 2 spectroscopic cluster catalog and the accurate photometric redshifts from the NMBS, we select quiescent and star-forming cluster (\\bar{σ }=490 km s‑1) galaxies within two virial radius, R vir, intervals of 2 > R vir > 0.5 and R vir < 0.5. Galaxies residing outside of the 2 R vir of both the cluster centers and the additional candidate over-densities are defined as our field sample. Galaxy structural parameters are measured from the COSMOS legacy Hubble Space Telescope/ACS F814W image. The sizes and Sérsic indices of quiescent field and cluster galaxies have the same distribution regardless of R vir. However, cluster star-forming galaxies within 0.5 R vir have lower mass-normalized average sizes by 16+/- 7 % , and a higher fraction of Sérsic indices with n\\gt 1, than field star-forming galaxies. The average SFRs of star-forming cluster galaxies show a trend of decreasing SFR with clustocentric radius. The mass-normalized average SFR of cluster star-forming galaxies is a factor of 2{--}2.5 (7{--}9σ ) lower than that of star-forming galaxies in the field. While we find no significant dependence on environment for quiescent galaxies, the properties of star-forming galaxies are affected, which could be the result of environment acting on their gas content.

  14. Differences in the Structural Properties and Star-formation Rates of Field and Cluster Galaxies at z~1

    NASA Astrophysics Data System (ADS)

    Allen, Rebecca J.; Kacprzak, Glenn G.; Glazebrook, Karl; Tran, Kim-Vy H.; Spitler, Lee R.; Straatman, Caroline M. S.; Cowley, Michael; Nanayakkara, Themiya

    2016-07-01

    We investigate the dependence of galaxy sizes and star formation rates (SFRs) on their environment using a mass-limited sample of quiescent and star-forming galaxies with log(M */{M}⊙ ) ≥ 9.5 at \\bar{z}=0.92 selected from the NEWFIRM medium-band Survey (NMBS). Using the Galaxy Environment Evolution Collaboration 2 spectroscopic cluster catalog and the accurate photometric redshifts from the NMBS, we select quiescent and star-forming cluster (\\bar{σ }=490 km s-1) galaxies within two virial radius, R vir, intervals of 2 > R vir > 0.5 and R vir < 0.5. Galaxies residing outside of the 2 R vir of both the cluster centers and the additional candidate over-densities are defined as our field sample. Galaxy structural parameters are measured from the COSMOS legacy Hubble Space Telescope/ACS F814W image. The sizes and Sérsic indices of quiescent field and cluster galaxies have the same distribution regardless of R vir. However, cluster star-forming galaxies within 0.5 R vir have lower mass-normalized average sizes by 16+/- 7 % , and a higher fraction of Sérsic indices with n\\gt 1, than field star-forming galaxies. The average SFRs of star-forming cluster galaxies show a trend of decreasing SFR with clustocentric radius. The mass-normalized average SFR of cluster star-forming galaxies is a factor of 2{--}2.5 (7{--}9σ ) lower than that of star-forming galaxies in the field. While we find no significant dependence on environment for quiescent galaxies, the properties of star-forming galaxies are affected, which could be the result of environment acting on their gas content.

  15. Variable stars in Local Group Galaxies - II. Sculptor dSph

    NASA Astrophysics Data System (ADS)

    Martínez-Vázquez, C. E.; Stetson, P. B.; Monelli, M.; Bernard, E. J.; Fiorentino, G.; Gallart, C.; Bono, G.; Cassisi, S.; Dall'Ora, M.; Ferraro, I.; Iannicola, G.; Walker, A. R.

    2016-08-01

    We present the identification of 634 variable stars in the Milky Way dSph satellite Sculptor based on archival ground-based optical observations spanning ˜24 years and covering ˜ 2.5 deg2. We employed the same methodologies as the "Homogeneous Photometry" series published by Stetson. In particular, we have identified and characterized the largest (536) RR Lyrae sample so far in a Milky Way dSph satellite. We have also detected four Anomalous Cepheids, 23 SX Phoenicis stars, five eclipsing binaries, three field variable stars, three peculiar variable stars located above the horizontal branch - near to the locus of BL Herculis - that we are unable to classify properly. Additionally we identify 37 Long Period Variables plus 23 probable variable stars, for which the current data do not allow us to determine the period. We report positions and finding charts for all the variable stars, and basic properties (period, amplitude, mean magnitude) and light curves for 574 of them. We discuss the properties of the RR Lyrae stars in the Bailey diagram, which supports the coexistence of subpopulations with different chemical compositions. We estimate the mean mass of Anomalous Cepheids (˜1.5M⊙) and SX Phoenicis stars (˜1M⊙). We discuss in detail the nature of the former. The connections between the properties of the different families of variable stars are discussed in the context of the star formation history of the Sculptor dSph galaxy.

  16. RR LYRAE VARIABLES IN THE LOCAL GROUP DWARF GALAXY NGC 147

    SciTech Connect

    Yang, S-C.; Sarajedini, Ata E-mail: ata@astro.ufl.ed

    2010-01-01

    We investigate the RR Lyrae (RRL) population in NGC 147, a dwarf satellite galaxy of M31 (Andromeda). We used both Thuan-Gunn g-band ground-based photometry from the literature and Hubble Space Telescope Wide Field Planetary Camera 2 archival data in the F555W and F814W passbands to investigate the pulsation properties of RRL variable candidates in NGC 147. These data sets represent the two extreme cases often found in RRL studies with respect to the phase coverage of the observations and the quality of the photometric measurements. Extensive artificial variable star tests for both cases were performed. We conclude that neither data set is sufficient to confidently determine the pulsation properties of the NGC 147 RRLs. Thus, while we can assert that NGC 147 contains RRL variables, and therefore a population older than approx10 Gyr, it is not possible at this time to use the pulsation properties of these RRLs to study other aspects of this old population. Our results provide a good reference for gauging the completeness of RRL variable detection in future studies.

  17. Variable stars in Local Group Galaxies - II. Sculptor dSph

    NASA Astrophysics Data System (ADS)

    Martínez-Vázquez, C. E.; Stetson, P. B.; Monelli, M.; Bernard, E. J.; Fiorentino, G.; Gallart, C.; Bono, G.; Cassisi, S.; Dall'Ora, M.; Ferraro, I.; Iannicola, G.; Walker, A. R.

    2016-11-01

    We present the identification of 634 variable stars in the Milky Way dwarf spheroidal (dSph) satellite Sculptor based on archival ground-based optical observations spanning ˜24 yr and covering ˜2.5 deg2. We employed the same methodologies as the `Homogeneous Photometry' series published by Stetson. In particular, we have identified and characterized one of the largest (536) RR Lyrae samples so far in a Milky Way dSph satellite. We have also detected four Anomalous Cepheids, 23 SX Phoenicis stars, five eclipsing binaries, three field variable stars, three peculiar variable stars located above the horizontal branch - near to the locus of BL Herculis - that we are unable to classify properly. Additionally, we identify 37 long period variables plus 23 probable variable stars, for which the current data do not allow us to determine the period. We report positions and finding charts for all the variable stars, and basic properties (period, amplitude, mean magnitude) and light curves for 574 of them. We discuss the properties of the RR Lyrae stars in the Bailey diagram, which supports the coexistence of subpopulations with different chemical compositions. We estimate the mean mass of Anomalous Cepheids (˜1.5 M⊙) and SX Phoenicis stars (˜1 M⊙). We discuss in detail the nature of the former. The connections between the properties of the different families of variable stars are discussed in the context of the star formation history of the Sculptor dSph galaxy.

  18. Low Surface Brightness Galaxies Selected from the 40% Sky Area of the ALFALFA H I Survey. I. Sample and Statistical Properties

    NASA Astrophysics Data System (ADS)

    Du, Wei; Wu, Hong; Lam, Man I.; Zhu, Yinan; Lei, Fengjie; Zhou, Zhimin

    2015-06-01

    The population of low surface brightness (LSB) galaxies, which are objects with central surface brightnesses at least one magnitude fainter than the night sky, is crucial for understanding the extremes of galactic formation and evolution of the universe. As LSB galaxies are mostly rich in gas (H i), the α.40 Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) sample is one of the best survey combinations to select a sample of them in the local universe. Since the sky backgrounds are systematically overestimated for galactic images by the SDSS photometric pipeline, particularly for luminous galaxies or galaxies with extended LSB outskirts, in this paper, we above all estimated the sky backgrounds of SDSS images accurately in both the g and r bands for each galaxy in the α.40 SDSS DR7 sample, using a precise method of sky subtraction. Once subtracting the sky background, we did surface photometry with the Kron elliptical aperture using the SExtractor software and fitted geometric parameters with an exponential profile model using the Galfit software for each galactic image in the α.40 SDSS DR7 sample. Based on the photometric and geometric results, we further calculated the B-band central surface brightness, {{μ }0}(B), for each galaxy and ultimately defined a sample of LSB galaxies consisting of 1129 galaxies with {{μ }0}(B) > 22.5 mag arcsec-2 and the axis ratio b/a > 0.3 from the 12,423 α.40 SDSS DR7 galaxies. This H i-selected sample of LSB galaxies is a relatively unbiased sample of gas-rich and disk-dominated LSB galaxies, which is complete both in H i observation and the optical magnitude within the limit of the SDSS DR7 photometric survey. This LSB galactic sample spans from 22.5 to 28.3 in {{μ }0}(B) with a fraction of 4% fainter than 25.0 mag arcsec-2 in B-band central surface brightness and distributes from -27.0 to -12.3 mag in absolute magnitude in the B band (M(B)), including the 43 faintest galaxies (M(B) > -17.3 mag). This sample is a blue LSB

  19. Low Surface Brightness Galaxies Selected from the 40% Sky Area of the ALFALFA H I Survey. I. Sample and Statistical Properties

    NASA Astrophysics Data System (ADS)

    Du, Wei; Wu, Hong; Lam, Man I.; Zhu, Yinan; Lei, Fengjie; Zhou, Zhimin

    2015-06-01

    The population of low surface brightness (LSB) galaxies, which are objects with central surface brightnesses at least one magnitude fainter than the night sky, is crucial for understanding the extremes of galactic formation and evolution of the universe. As LSB galaxies are mostly rich in gas (H i), the α.40 Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) sample is one of the best survey combinations to select a sample of them in the local universe. Since the sky backgrounds are systematically overestimated for galactic images by the SDSS photometric pipeline, particularly for luminous galaxies or galaxies with extended LSB outskirts, in this paper, we above all estimated the sky backgrounds of SDSS images accurately in both the g and r bands for each galaxy in the α.40 SDSS DR7 sample, using a precise method of sky subtraction. Once subtracting the sky background, we did surface photometry with the Kron elliptical aperture using the SExtractor software and fitted geometric parameters with an exponential profile model using the Galfit software for each galactic image in the α.40 SDSS DR7 sample. Based on the photometric and geometric results, we further calculated the B-band central surface brightness, {{μ }0}(B), for each galaxy and ultimately defined a sample of LSB galaxies consisting of 1129 galaxies with {{μ }0}(B) > 22.5 mag arcsec‑2 and the axis ratio b/a > 0.3 from the 12,423 α.40 SDSS DR7 galaxies. This H i-selected sample of LSB galaxies is a relatively unbiased sample of gas-rich and disk-dominated LSB galaxies, which is complete both in H i observation and the optical magnitude within the limit of the SDSS DR7 photometric survey. This LSB galactic sample spans from 22.5 to 28.3 in {{μ }0}(B) with a fraction of 4% fainter than 25.0 mag arcsec‑2 in B-band central surface brightness and distributes from ‑27.0 to ‑12.3 mag in absolute magnitude in the B band (M(B)), including the 43 faintest galaxies (M(B) > ‑17.3 mag). This sample is

  20. The Properties of Intracluster Light and the Halos of cD Galaxies

    NASA Astrophysics Data System (ADS)

    Feldmeier, John; Mihos, Chris; Morrison, Heather; Harding, Paul

    2002-02-01

    We propose deep imaging to continue our study of the intracluster light (ICL) and extended halos of cD galaxies in galaxy clusters as a function of cluster environment. The ICL is likely formed both from violent relaxation during cluster formation and from subsequent tidal stripping of cluster galaxies, so that its properties should be linked to the dynamical evolution of the cluster and to the distribution of dark matter in cluster galaxies. The structure of the ICL, therefore, should vary between clusters with different physical properties. Furthermore, the structure of cD halos - the deviation from or adherence to a pure R^1/4 law - may indicate whether these structures are formed predominantly during early cluster collapse or later infall and tidal stripping. To extend our studies, we will target six rich Abell clusters which span a range of Bautz-Morgan type, from cD- dominated type I clusters to type III clusters where the galaxy population is more uniform. In addition, we also plan to observe several MKW/AWM poor clusters to see how the properties of ICL vary as a function of cluster richness. This sample will allows us to probe how the properties of the ICL and cD halos vary over a range of cluster environments. We are requesting 7 dark nights on the 2.1m to reach (mu)_V=26.5 mag/sq arcsec in each cluster. This proposal received an average score of 8.40 last period but it was rejected due to scheduling constraints. We are therefore re- proposing for it this period.

  1. Star formation rates in isolated galaxies selected from the Two-Micron All-Sky Survey

    NASA Astrophysics Data System (ADS)

    Melnyk, O.; Karachentseva, V.; Karachentsev, I.

    2015-08-01

    We have considered the star formation properties of 1616 isolated galaxies from the 2MASS XSC (Extended Source Catalog) selected sample (2MIG) with the far-ultraviolet GALEX magnitudes. This sample was then compared with corresponding properties of isolated galaxies from the Local Orphan Galaxies (LOG) catalogue and paired galaxies. We found that different selection algorithms define different populations of isolated galaxies. The population of the LOG catalogue, selected from non-clustered galaxies in the Local Supercluster volume, mostly consists of low-mass spiral and late-type galaxies. The specific star formation rate (SSFR) upper limit in isolated and paired galaxies does not exceed the value of ˜dex(-9.4). This is probably common for galaxies of differing activity and environment (at least at z < 0.06). The fractions of quenched galaxies are nearly twice as high in the paired galaxy sample as in the 2MIG isolated galaxy sample. From the behaviour of (S)SFR versus M* relations we deduced that the characteristic value influencing evolutionary processes is the galaxy mass. However, the environmental influence is notable: paired massive galaxies with logM* > 11.5 have higher (S)SFR than isolated galaxies. Our results suggest that the environment helps to trigger the star formation in the highest mass galaxies. We found that the fraction of AGN in the paired sample is only a little higher than in our isolated galaxy sample. We assume that AGN phenomenon is probably defined by secular galaxy evolution.

  2. Insights into the content and spatial distribution of dust from the integrated spectral properties of galaxies

    NASA Astrophysics Data System (ADS)

    Chevallard, J.; Charlot, S.; Wandelt, B.; Wild, V.

    2013-07-01

    We present a new approach to investigate the content and spatial distribution of dust in structurally unresolved star-forming galaxies from the observed dependence of integrated spectral properties on galaxy inclination. Motivated by the observation that different stellar populations reside in different spatial components of nearby star-forming galaxies, we develop an innovative combination of generic models of radiative transfer in dusty media with a prescription for the spectral evolution of galaxies, via the association of different geometric components of galaxies with stars in different age ranges. We start by showing that a wide range of radiative transfer models all predict a quasi-universal relation between slope of the attenuation curve at any wavelength, from the ultraviolet to the near-infrared, and V-band attenuation optical depth in the diffuse interstellar medium (ISM), at all galaxy inclinations. This relation predicts steeper (shallower) dust attenuation curves than both the Calzetti and Milky Way curves at small (large) attenuation optical depths, which implies that geometry and orientation effects have a stronger influence on the shape of the attenuation curve than changes in the optical properties of dust grains. We use our new, combined radiative transfer and spectral evolution model to interpret the observed dependence of the Hα/Hβ ratio and ugrizYJH attenuation curve on inclination in a sample of about 23 000 nearby star-forming galaxies, which we correct for systematic biases by developing a general method based on importance sampling. From the exploration of the model parameter space by means of a Bayesian Markov chain Monte Carlo technique, we measure the central face-on B-band optical depth of this sample to be τB⊥ ≈ 1.8 ± 0.2 (corresponding to an angle-averaged {< hat{τ}^ISM_V> _θ }≈ 0.3). We also quantify the enhanced optical depth towards newly formed stars in their birth clouds, finding this to be significantly larger in

  3. Hα3: an Hα imaging survey of HI selected galaxies from ALFALFA. IV. Structure of galaxies in the Local and Coma superclusters

    NASA Astrophysics Data System (ADS)

    Fossati, M.; Gavazzi, G.; Savorgnan, G.; Fumagalli, M.; Boselli, A.; Gutiérrez, L.; Hernández Toledo, H.; Giovanelli, R.; Haynes, M. P.

    2013-05-01

    Context. We present the analysis of the galaxy structural parameters from Hα3, an Hα narrow-band imaging follow-up survey of ~800 galaxies selected from the HI Arecibo Legacy Fast ALFA Survey (ALFALFA) in the Local supercluster, including the Virgo cluster, and in the Coma supercluster. Aims: Taking advantage of Hα3, which provides the complete census of the recent star-forming, HI-rich galaxies in the local universe, we aim to investigate the structural parameters of the young (<10 Myr) and the old (>1 Gyr) stellar populations. By comparing the sizes of these stellar components, we investigated the spatial scale on which galaxies are growing at the present cosmological epoch and the role of the environment in quenching the star-formation activity. Methods: We computed the concentration, asymmetry, and clumpiness (CAS) structural parameters for recently born and old stars. To quantify the sizes we computed half-light radii and a new parameter dubbed EW/r based on the half-light radius of the Hα equivalent width map. To highlight the environmental perturbation, we adopt an updated calibration of the HI-deficiency parameter (DefHI) that we use to divide the sample in unperturbed galaxies (DefHI ≤ 0.3) and perturbed galaxies (DefHI > 0.3). Results: The concentration index computed in the r band depends on the stellar mass and on the Hubble type these variables are related because most massive galaxies are bulge dominated therefore highly concentrated. Going toward later spirals and irregulars the concentration index and the mass decrease along with the bulge-to-disk ratio. Blue compact dwarfs (BCDs) are an exception because they have similar mass, but they are more concentrated than dwarf irregulars. The asymmetry and the clumpiness increase along the spiral sequence up to Sc-Sd, but they decrease going in the dwarf regime, where the light distribution is smooth and more symmetric. When measured on Hα images, the CAS parameters show no obvious correlations with

  4. Evolved stars in the Local Group galaxies - I. AGB evolution and dust production in IC 1613

    NASA Astrophysics Data System (ADS)

    Dell'Agli, F.; Di Criscienzo, M.; Boyer, M. L.; García-Hernández, D. A.

    2016-08-01

    We used models of thermally pulsing asymptotic giant branch (AGB) stars, which also describe the dust-formation process in the wind, to interpret the combination of near- and mid-infrared photometric data of the dwarf galaxy IC 1613. This is the first time that this approach is extended to an environment different from the Milky Way and the Magellanic Clouds (MCs). Our analysis, based on synthetic population techniques, shows nice agreement between the observations and the expected distribution of stars in the colour-magnitude diagrams obtained with JHK and Spitzer bands. This allows a characterization of the individual stars in the AGB sample in terms of mass, chemical composition and formation epoch of the progenitors. We identify the stars exhibiting the largest degree of obscuration as carbon stars evolving through the final AGB phases, descending from 1-1.25 M⊙ objects of metallicity Z = 10-3 and from 1.5-2.5 M⊙ stars with Z = 2 × 10-3. Oxygen-rich stars constitute the majority of the sample (˜65 per cent), mainly low-mass stars (<2 M⊙) that produce a negligible amount of dust (≤10-7 M⊙ yr-1). We predict the overall dust-production rate from IC 1613, mostly determined by carbon stars, to be ˜6 × 10-7 M⊙ yr-1 with an uncertainty of 30 per cent. The capability of the current generation of models to interpret the AGB population in an environment different from the MCs opens the possibility to extend this kind of analysis to other Local Group galaxies.

  5. The Local Group Galaxy IC 1613 and its asymptotic giant branch variables

    NASA Astrophysics Data System (ADS)

    Menzies, John W.; Whitelock, Patricia A.; Feast, Michael W.

    2015-09-01

    JHKS photometry is presented from a 3-yr survey of the central regions of the Local Group dwarf irregular galaxy IC 1613. The morphologies of the colour-magnitude and colour-colour diagrams are discussed with particular reference to the supergiants and M- and C-type asymptotic giant branch (AGB) stars. Mean JHKS magnitudes, amplitudes and periods are given for five O-rich and nine C-rich Mira variables for which bolometric magnitudes are also estimated. A distance of 750 kpc ((m - M)0 = 24.37 ± 0.08 mag) is derived for IC 1613 by fitting a period-luminosity (PL) relation to the C-rich Miras. This is in agreement with values from the literature. The AGB stars exhibit a range of ages. A comparison with theoretical isochrones suggests that four luminous O-rich Miras are as young as 2 × 108 yr. One of these has a lithium absorption line in its spectrum, demonstrating that it is undergoing hot bottom burning (HBB). This supports the idea that HBB is the cause of the high luminosity of these AGB stars, which puts them above the fundamental PL relation. Further studies of similar stars, selected from their positions in the PL diagram, could provide insight into HBB. A much fainter, presumed O-rich, Mira is similar to those found in Galactic globular clusters. The C Miras are of intermediate age. The O-rich variables are not all recognized as O-rich, or even as AGB stars, on the basis of their J - KS colour. It is important to appreciate this when using near-infrared surveys to classify AGB stars in more distant galaxies.

  6. Who Said Red And Dead? A Gas Menagerie In Local Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Alatalo, Katherine A.; Davis, T. A.; Young, L. M.; Heiles, C.; Blitz, L.; Bureau, M.; Nyland, K.; Cappellari, M.; Emsellem, E.; Krajnović, D.; McDermid, R. M.; ATLAS3D Collaboration

    2012-01-01

    Molecular gas in early-type galaxies (ETGs) has been shown to be far more common than previously expected. In fact, at least 22% (60/259) contain a significant reservoir of molecular gas. To gain insight into the presence and prevalence of this unexpected gas, it is important to understand its timeline, where it originated, how it is evolving, and how long it will remain. Imaging of the molecular gas is essential addressing these issues. We present the CO maps of 31 ETGs in the ATLAS3D survey, imaged with the Combined Array for Research for Millimeter Astronomy (CARMA), the largest systematic survey of the cold ISM in ETGs to date. ETGs feature a rich variety of gas configurations, including disks, extended molecular rings, spiral arms, and disrupted merger remnants. The menagerie observed by CARMA illustrates that the various paths molecular gas takes in ETGs is complex and nuanced, ranging from objects undergoing an interaction to those with purely quiescent origins. We also detail the rich molecular story of NGC1266, and how it plays host to an AGN-driven molecular outflow, quenching its star-forming material within the next 100 Myr. The ATLAS3D survey is a complete volume-limited survey of 259 massive (Mgal > 6e9 Msuns) ellipticals and lenticulars within 42 Mpc. It provides the best constraints on the formation and evolution of local early-type galaxies through multi-wavelength studies. Support for CARMA construction was derived from the states of California, Illinois, and Maryland, the James S. McDonnell Foundation, the Gordon and Betty Moore Foundation, the Kenneth T. and Eileen L. Norris Foundation, the University of Chicago, the Associates of the California Institute of Technology, and the National Science Foundation. Ongoing CARMA development and operations are supported by the National Science Foundation under a cooperative agreement, and by the CARMA partner universities.

  7. Multi-Wavelength Study of Nearby Dwarf Galaxies: Properties of Low-Metallicity Interstellar Media

    NASA Astrophysics Data System (ADS)

    Galliano, Frédéric

    2004-04-01

    This thesis is devoted to the multi-wavelength observations and the modelling of dust, in nearby low-metallicity dwarf galaxies. The main motivations of this project are: (i) the study of dust properties - composition, size distribution, etc. - in non-solar interstellar media; (ii) the study of global spectral energy distributions of dwarf galaxies which are thought, due to their chemical youth, to be similar to primordial galaxies that we can not observe; and (iii) obtaining informations about the chemical evolution of these galaxies by studying the gas-to-dust mass ratio. I begin with the detailed study of mid-infrared ISO spectra of these galaxies. The main spectral characteristics that we outline are: (i) the weakness of the aromatic band emission, compared to what is observed in normal starburst galaxies; (ii) the similarity with Galactic HII region spectra - a steep very small grain continuum and prominent ionic lines. After that, we study the spectra of a more diversified sample - spiral, starburst, dwarf galaxies and HII regions - in order to plot the band ratios. The 6.2/11.3, 7.7/11.3 and 8.6/11.3 correlations are, for the first time, established on such a large sample. They show that dwarf galaxies occupy a particular region in this diagram, different than the one occupied by Galactic HII regions, inducing a different PAH structure - ionization, hydrogenation, size, etc. The second step of this project is the modelling of the spectral energy distributions of four dwarf galaxies (He 2-10, II Zw 40, NGC 1140, NG 1569), from ultraviolet to millimeter. In order to achieve this goal, I have added, to our own observations, data from the litterature. The modelling is done self-consistently, using constraints on dust emission, stellar radiation and on ionic lines. We synthesize the spectral energy distributions of these galaxies, as well as the corresponding extinction curves. The properties that we are able to outline are that: (i) the emission is dominated by

  8. Global-, local-, and intermediate-scale structures in prototype spiral galaxies

    NASA Technical Reports Server (NTRS)

    Roberts, William W., Jr.

    1993-01-01

    The relationship between galactic spiral structure and the matter in the underlying disk constitutes one of the central problems in galactic dynamics. In Bertin et al. (1989), disk matter characterized by a low-dispersive speed is shown to be capable of playing a key role in the generation of large-scale spiral structure. In Roberts et al. (1992), this self-gravitating, low-dispersion disk matter is shown to be capable of playing an essential role in the formation of structure on local and intermediate scales. Both in computed cases where large-scale spiral structure is present and in those where it is not, the same dominant physical processes and fundamental dynamical mechanisms are active on local scales. The new perception, in which large-scale and small-scale phenomena operate somewhat independently as evidenced in the computational studies, permits a range of flocculent, multiarmed, and grand design spiral types to be simulated. In particular, grand design galaxies with ragged appearances exhibiting spurs, arm branchings, and interarm bridges in addition to the major spiral arms, similar to those often observed, can be generated.

  9. Extreme emission-line galaxies out to z ~ 1 in zCOSMOS. I. Sample and characterization of global properties

    NASA Astrophysics Data System (ADS)

    Amorín, R.; Pérez-Montero, E.; Contini, T.; Vílchez, J. M.; Bolzonella, M.; Tasca, L. A. M.; Lamareille, F.; Zamorani, G.; Maier, C.; Carollo, C. M.; Kneib, J.-P.; Le Fèvre, O.; Lilly, S.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Bardelli, S.; Bongiorno, A.; Caputi, K.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kampczyk, P.; Knobel, C.; Kovač, K.; Le Borgne, J.-F.; Le Brun, V.; Mignoli, M.; Pellò, R.; Peng, Y.; Presotto, V.; Ricciardelli, E.; Silverman, J. D.; Tanaka, M.; Tresse, L.; Vergani, D.; Zucca, E.

    2015-06-01

    Context. The study of large and representative samples of low-metallicity star-forming galaxies at different cosmic epochs is of great interest to the detailed understanding of the assembly history and evolution of low-mass galaxies. Aims: We present a thorough characterization of a large sample of 183 extreme emission-line galaxies (EELGs) at redshift 0.11 ≤ z ≤ 0.93 selected from the 20k zCOSMOS bright survey because of their unusually large emission line equivalent widths. Methods: We use multiwavelength COSMOS photometry, HST-ACS I-band imaging, and optical zCOSMOS spectroscopy to derive the main global properties of star-forming EELGs, such as sizes, stellar masses, star formation rates (SFR), and reliable oxygen abundances using both "direct" and "strong-line" methods. Results: The EELGs are extremely compact (r50 ~ 1.3 kpc), low-mass (M∗ ~ 107-1010 M⊙) galaxies forming stars at unusually high specific star formation rates (sSFR ≡ SFR/M⋆ up to 10-7 yr-1) compared to main sequence star-forming galaxies of the same stellar mass and redshift. At rest-frame UV wavelengths, the EELGs are luminous and show high surface brightness and include strong Lyα emitters, as revealed by GALEX spectroscopy. We show that zCOSMOS EELGs are high-ionization, low-metallicity systems, with median 12+log (O/H) = 8.16 ± 0.21 (0.2 Z⊙) including a handful of extremely metal-deficient (<0.1 Z⊙) EELGs. While ~80% of the EELGs show non-axisymmetric morphologies, including clumpy and cometary or tadpole galaxies, we find that ~29% of them show additional low-surface-brightness features, which strongly suggests recent or ongoing interactions. As star-forming dwarfs in the local Universe, EELGs are most often found in relative isolation. While only very few EELGs belong to compact groups, almost one third of them are found in spectroscopically confirmed loose pairs or triplets. Conclusions: The zCOSMOS EELGs are galaxies caught in a transient and probably early period of

  10. Integral field spectroscopy of a sample of nearby galaxies. II. Properties of the H ii regions

    NASA Astrophysics Data System (ADS)

    Sánchez, S. F.; Rosales-Ortega, F. F.; Marino, R. A.; Iglesias-Páramo, J.; Vílchez, J. M.; Kennicutt, R. C.; Díaz, A. I.; Mast, D.; Monreal-Ibero, A.; García-Benito, R.; Bland-Hawthorn, J.; Pérez, E.; González Delgado, R.; Husemann, B.; López-Sánchez, Á. R.; Cid Fernandes, R.; Kehrig, C.; Walcher, C. J.; Gil de Paz, A.; Ellis, S.

    2012-10-01

    We analyse the spectroscopic properties of thousands of H ii regions identified in 38 face-on spiral galaxies. All galaxies were observed out to 2.4 effective radii using integral field spectroscopy (IFS) over the wavelength range ~3700 to ~6900 Å. The near uniform sample has been assembled from the PPAK IFS Nearby Galaxy (PINGS) survey and a sample described in Paper I. We develop a new automatic procedure to detect H ii regions, based on the contrast of the Hα intensity maps extracted from the datacubes. Once detected, the algorithm provides us with the integrated spectra of each individual segmented region. In total, we derive good quality spectroscopic information for ~2600 independent H ii regions/complexes. This is by far the largest H ii region survey of its kind. Our selection criteria and the use of 3D spectroscopy guarantee that we cover the regions in an unbiased way. A well-tested automatic decoupling procedure has been applied to remove the underlying stellar population, deriving the main properties (intensity, dispersion and velocity) of the strongest emission lines in the considered wavelength range (covering from [O ii] λ3727 to [S ii] λ6731). A final catalogue of the spectroscopic properties of H ii regions has been created for each galaxy, which includes information on morphology, spiral structure, gaskinematics, and surface brightness of the underlying stellar population. In the current study, we focus on the understanding of the average properties of the H ii regions and their radial distributions. We find a significant change in the ionisation characteristics of H ii regions within r < 0.25 re due to contamination from sources with different ionising characteristics, as we discuss. We find that the gas-phase oxygen abundance and the Hα equivalent width present a negative and positive gradient, respectively. The distribution of slopes is statistically compatible with a random Gaussian distribution around the mean value, if the radial

  11. Testing the modern merger hypothesis via the assembly of massive blue elliptical galaxies in the local Universe

    NASA Astrophysics Data System (ADS)

    Haines, Tim; McIntosh, D. H.; Sánchez, S. F.; Tremonti, C.; Rudnick, G.

    2015-07-01

    The modern merger hypothesis offers a method of forming a new elliptical galaxy through merging two equal-mass, gas-rich disc galaxies fuelling a nuclear starburst followed by efficient quenching and dynamical stabilization. A key prediction of this scenario is a central concentration of young stars during the brief phase of morphological transformation from highly disturbed remnant to new elliptical galaxy. To test this aspect of the merger hypothesis, we use integral field spectroscopy to track the stellar Balmer absorption and 4000-Å break strength indices as a function of galactic radius for 12 massive (M* ≥ 1010 M⊙), nearby (z ≤ 0.03), visually-selected plausible new ellipticals with blue-cloud optical colours and varying degrees of morphological peculiarities. We find that these index values and their radial dependence correlate with specific morphological features such that the most disturbed galaxies have the smallest 4000-Å break strengths and the largest Balmer absorption values. Overall, two-thirds of our sample are inconsistent with the predictions of the modern merger hypothesis. Of these eight, half exhibit signatures consistent with recent minor merger interactions. The other half have star formation histories similar to local, quiescent early-type galaxies. Of the remaining four galaxies, three have the strong morphological disturbances and star-forming optical colours consistent with being remnants of recent, gas-rich major mergers, but exhibit a weak, central burst consistent with forming ˜5 per cent of their stars. The final galaxy possesses spectroscopic signatures of a strong, centrally concentrated starburst and quiescent core optical colours indicative of recent quenching (i.e. a post-starburst signature) as prescribed by the modern merger hypothesis.

  12. Setting firmer constraints on the evolution of the most massive, central galaxies from their local abundances and ages

    NASA Astrophysics Data System (ADS)

    Buchan, Stewart; Shankar, Francesco

    2016-10-01

    There is still much debate surrounding how the most massive, central galaxies in the local universe have assembled their stellar mass, especially the relative roles of in situ growth versus later accretion via mergers. In this paper, we set firmer constraints on the evolutionary pathways of the most massive central galaxies by making use of empirical estimates on their abundances and stellar ages. The most recent abundance matching and direct measurements strongly favour that a substantial fraction of massive galaxies with Mstar>3 × 1011 M⊙ reside at the centre of clusters with mass Mhalo>3 × 1013 M⊙. Spectral analysis supports ages >10 Gyr, corresponding to a formation redshift zform>2. We combine these two pieces of observationally based evidence with the mass accretion history of their host dark matter haloes. We find that in these massive haloes, the stellar mass locked up in the central galaxy is comparable to, if not greater than, the total baryonic mass at zform. These findings indicate that either only a relatively minor fraction of their present-day stellar mass was formed in situ at zform, or that these massive, central galaxies form in the extreme scenario where almost all of the baryons in the progenitor halo are converted into stars. Interestingly, the latter scenario would not allow for any substantial size growth since the galaxy's formation epoch either via mergers or expansion. We show our results hold irrespective of systematic uncertainties in stellar mass, abundances, galaxy merger rates, stellar initial mass function, star formation rate and dark matter accretion histories.

  13. THE INFLUENCE OF RED SPIRAL GALAXIES ON THE SHAPE OF THE LOCAL K-BAND LUMINOSITY FUNCTION

    SciTech Connect

    Bonne, Nicolas J.; Brown, Michael J. I.; Jones, Heath; Pimbblet, Kevin A.

    2015-02-01

    We have determined K-band luminosity functions for 13,325 local universe galaxies as a function of morphology and color (for K {sub tot} ≤ 10.75). Our sample is drawn from the Two Micron All Sky Survey Extended Source Catalog, with all sample galaxies having measured morphologies and distances (including 4219 archival redshift-independent distances). The luminosity function for our total sample is in good agreement with previous works, but is relatively smooth at faint magnitudes (due to bulk flow distance corrections). We investigated the differences due to morphological and color selection using 5417 sample galaxies with NASA Sloan Atlas optical colors and find that red spirals comprise 20%-50% of all spirals with –25 ≤ M{sub K}  < –20. Fainter than M{sub K} = –24, red spirals are as common as early types, explaining the different faint end slopes (α = –0.87 and –1.00 for red and early-types, respectively). While we find red spirals comprise more than 50% of all M{sub K}  < –25 spiral galaxies, they do not dominate the bright end of the overall red galaxy luminosity function, which is dominated by early-type galaxies. The brightest red spirals have ongoing star formation and those without are frequently misclassified as early-types. The faintest ones have an appearance and Sérsic indices consistent with faded disks, rather than true bulge-dominated galaxies.

  14. Physical properties of AGN host galaxies as a probe of supermassive black hole feeding mechanisms

    NASA Astrophysics Data System (ADS)

    Gatti, M.; Lamastra, A.; Menci, N.; Bongiorno, A.; Fiore, F.

    2015-04-01

    Using an advanced semi-analytical model (SAM) for galaxy formation, we investigated the statistical effects of assuming two different mechanisms for triggering AGN activity on the properties of AGN host galaxies. We considered a first accretion mode where AGN activity is triggered by disk instabilities (DI) in isolated galaxies, and a second feeding mode where galaxy mergers and fly-by events (interactions, IT) are responsible for producing a sudden destabilization of large quantities of gas, causing the mass inflow onto the central supermassive black hole. The effects of including IT and DI modes in our SAM were studied and compared with observations separately to single out the regimes in which they might be responsible for triggering AGN activity. We obtained the following results: i) the predictions of our model concerning the stellar mass functions of AGN hosts point out that both DI and IT modes are able to account for the observed abundance of AGN host galaxies with M∗ ≲ 1011M⊙; for more massive hosts, the DI scenario predicts a much lower space density than the IT model in every redshift bin, lying below the observational estimates for redshift z > 0.8. ii) The analysis of the colour-magnitude diagram of AGN hosts for redshift z < 1.5 can provide a good observational test to effectively distinguish between DI and IT mode, since DIs are expected to yield AGN host galaxy colours skewed towards bluer colours, while in the IT scenario the majority of hosts are expected to reside in the red sequence. iii) While both IT and DI scenarios can account for AGN triggered in main sequence or starburst galaxies, DIs fail in triggering AGN activity in passive galaxies. The lack of DI AGN in passive hosts is rather insensitive to changes in the model describing the DI mass inflow, and it is mainly caused by the criterion for the onset of disk instabilities included in our SAM. iv) The two modes are characterized by a different duration of the AGN phase, with DIs

  15. Properties of damped Ly α absorption systems and star-forming galaxies in semi-analytic models at z = 2

    NASA Astrophysics Data System (ADS)

    Berry, Michael; Somerville, Rachel S.; Gawiser, Eric; Maller, Ariyeh H.; Popping, Gergö; Trager, Scott C.

    2016-05-01

    We investigate predictions from semi-analytic cosmological models of galaxy formation for the properties of star-forming galaxies (SFGs) and damped Ly α absorption systems (DLAS), and the relationship between these two populations. Our models reproduce fairly well the observed distributions of redshift, stellar mass, star formation rate (SFR), and dust extinction for z ˜ 2 SFGs. We predict that DLA hosts span a broad range of properties, with broad and relatively flat distributions of stellar and halo mass, SFR, and luminosity. The photometric colours of DLA host galaxies trace the colours of galaxies with similar luminosities, but the majority are much fainter than the limits of most existing surveys of SFGs. Generally, DLA host galaxies and SFGs at z = 2 follow similar trends between stellar mass, DLA cross-section, cold gas fraction, SFR, metallicity, and dust extinction as the global population of galaxies with the same stellar mass. Since DLAS select galaxies with larger cold gas masses, they tend to have larger cold gas fractions, lower metallicities, higher SFRs, and less dust extinction than galaxies at the same stellar mass. Our models reproduce the observed relations between impact parameter, column density, and metallicity, suggesting that the sizes of the gas discs giving rise to DLAS in our models are roughly correct. We find that molecular fractions and SFRs are in general significantly lower at the location of the DLA line of sight than the galaxy-averaged value.

  16. Major-Merger Galaxy Pairs at Z = 0: Dust Properties and Companion Morphology

    NASA Astrophysics Data System (ADS)

    Domingue, Donovan L.; Cao, Chen; Xu, C. Kevin; Jarrett, Thomas H.; Ronca, Joseph; Hill, Emily; Jacques, Allison

    2016-10-01

    We present an analysis of dust properties of a sample of close major-merger galaxy pairs selected by K s magnitude and redshift. The pairs represent the two populations of spiral-spiral (S+S) and mixed morphology spiral-elliptical (S+E). The Code Investigating GALaxy Emission software is used to fit dust models to the Two Micron All Sky Survey, Wide-Field Infrared Survey Explorer, and Herschel flux density measurements, and to derive the parameters describing the polycyclic aromatic hydrocarbons contribution, interstellar radiation field, and photodissociation regions. Model fits verify our previous Spitzer Space Telescope analysis that S+S and S+E pairs do not have the same level of enhancement of star formation and differ in dust composition. The spirals of mixed-morphology galaxy pairs do not exhibit the enhancements in interstellar radiation field and therefore dust temperature for spirals in S+S pairs in contrast to what would be expected according to standard models of gas redistribution due to encounter torques. This suggests the importance of the companion environment/morphology in determining the dust properties of a spiral galaxy in a close major-merger pair.

  17. HOST GALAXY PROPERTIES AND HUBBLE RESIDUALS OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY

    SciTech Connect

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Chotard, N.; Copin, Y.; Gangler, E. [Universite de Lyon, F-69622, Lyon; Universite de Lyon 1, Villeurbanne; CNRS and others

    2013-06-20

    We examine the relationship between Type Ia supernova (SN Ia) Hubble residuals and the properties of their host galaxies using a sample of 115 SNe Ia from the Nearby Supernova Factory. We use host galaxy stellar masses and specific star formation rates fitted from photometry for all hosts, as well as gas-phase metallicities for a subset of 69 star-forming (non-active galactic nucleus) hosts, to show that the SN Ia Hubble residuals correlate with each of these host properties. With these data we find new evidence for a correlation between SN Ia intrinsic color and host metallicity. When we combine our data with those of other published SN Ia surveys, we find the difference between mean SN Ia brightnesses in low- and high-mass hosts is 0.077 {+-} 0.014 mag. When viewed in narrow (0.2 dex) bins of host stellar mass, the data reveal apparent plateaus of Hubble residuals at high and low host masses with a rapid transition over a short mass range (9.8 {<=} log (M{sub *}/M{sub Sun }) {<=} 10.4). Although metallicity has been a favored interpretation for the origin of the Hubble residual trend with host mass, we illustrate how dust in star-forming galaxies and mean SN Ia progenitor age both evolve along the galaxy mass sequence, thereby presenting equally viable explanations for some or all of the observed SN Ia host bias.

  18. Spectral ageing properties of giant radio galaxy Pictor A

    NASA Astrophysics Data System (ADS)

    Patra, Dusmanta; Chakrabarti, Sandip Kumar; Pal, Sabyasachi; Konar, Chiranjib

    2016-07-01

    We present detailed multi-frequency observations of the strong southern FRII radio galaxy Pictor A. We use low frequency data of Giant Metrewave Radio Telescope (GMRT), starting from 150 MHz. We also use the high frequency available archival data from Jansky Very Large Array (JVLA). We have made radio images of this source at 150 MHz, 250 MHz, 325 MHz, 610 MHz, 1.4 GHz, 5 GHz and 8 GHz. The radio lobes are found to be nearly circular and very bright. A jet is also noticed connecting the hotspots with the nucleus in both lobes. The radio lobes have different spectral indices in the different parts of the lobes. We perform spectral ageing analysis of different parts of the lobes to study evolution of the jet/lobe. The spectral age is constrained by fitting the spectra with different spectral ageing models, e.g., Kardashev-Pacholczyk (KP), Jaffe-Perola(JP) and Continuous Injection (CI). We also studied the spectrum of individual lobes and any possible sign of spectral absorption due to Synchrotron self absorption. Synchrotron self absorption seems to have Been noticed towards low frequency region.

  19. Physical properties and evolution of GMCs in the Galaxy and the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Onishi, Toshikazu

    2015-08-01

    Most stars are born as clusters in Giant Molecular Clouds (hereafter GMCs), and therefore the understanding of the evolution of GMCs in a galaxy is one of the key issues to investigate the evolution of the galaxy. The recent state-of-the-art radio telescopes have been enabling us to reveal the distribution of GMCs extensively in the Galaxy as well as in the nearby galaxies, and the physical properties and the evolution of the GMCs leading to cluster formations are actively being investigated. Here we present a review of studies of spatially resolved GMCs in the Galaxy and in the Large Magellanic Cloud (LMC), aiming at providing a template of GMC properties. For the Galactic GMCs, we will focus on the recent extensive survey of GMCs along the Galactic plane; the recent studies suggest cloud-cloud collision as mechanism of massive star formation. For the extra galactic GMCs, we will present recent high-resolution observations of GMCs in the LMC.The LMC is among the nearest star-forming galaxy (distance ~ 50kpc) and is almost face-on. From these aspects, it is becoming the most popular region for studying interstellar medium over an entire galaxy. For molecular gas, the NANTEN covered the entire LMC with a spatial resolution of 40 pc, revealing 272 molecular clouds whose mass ranges from ~104 to ~107 M⊙, which is the first uniform sample of GMCs in a single galaxy. Our Spitzer SAGE and Herschel HERITAGE surveys show that the interstellar medium has much smaller scale structures; full of filamentary and shell-like structures. In order to resolve the filamentary distributions and pre-stellar cores we definitely need to resolve clouds at sub-pc resolutions with ALMA and to cover regions of active cluster formation which are to be selected based on the Spitzer and Hershel data. Our ALMA targets in Cycle 1 and Cycle 2 include N159, which is the most intense and concentrated molecular cloud as shown by the brightest CO J=3-2 source in the LMC, and GMCs with different

  20. Obscuration, orientation, and the infrared properties of radio-loud active galaxies

    NASA Technical Reports Server (NTRS)

    Heckman, Timothy M.; O'Dea, Christopher P.; Baum, Stefi A.; Laurikainen, Eija

    1994-01-01

    We report on a study of the mid- and far-infrared (MFIR) properties of several different classes of radio-loud active galactic nuclei (AGNs) using the IRAS database. Our goal is to try to improve the understanding of the possible relationships between the diverse classes of AGNs. The MFIR and radio properties of radio-loud AGNs are especially useful in this regard, since (excluding the blazar class, which we do not study here) the radio emission is thought to be emitted isotropically, and the radio and MFIR radiation should be much less affected by dust obscuration than radiation at shorter wavelengths. We have first compared samples of 3CR broad-line radio galaxies (BLRGs) and narrow-line radio galaxies (NLRGs) matched in radio flux and mean redshift. We find that the BLRGs are stronger than the NLRGs by a factor of 4-5 in their mid-IR emission but are similar to the NLRGs in the far-IR. This is qualitatively consistent with recent 'unification' models for NLRGs and BLRGs which invoke thermal MFIR emission from dusty 'obscuring tori,' but there may be an additional source of far-IR emission present in the more luminous broad-line objects (the radio-loud quasars) studied previously by Heckman, Chambers & Postman (1992). We have also compared samples of Fanaroff-Riley class I (FRI) and Fanaroff-Riley class II (FRII) radio galaxies matched in radio flux and redshift. The FRII galaxies are stronger MFIR emitters than the FRI galaxies by a factor of about 4. This is consistent with suggestions that the central engine in FRI galaxies produces relatively little radiant energy per unit jet power (expecially since we find that the weak MFIR emission from the FRI galaxies may not be powered by the AGN). Comparing samples of gigahertz-peaked spectrum (GPS) and compact steep spectrum (CSS) sources versus non-GPS-CSS sources, we find that the GPS-CSS and non-GPS-CSS sources have similar MFIR strengths. This suggests that the efficiency of the conversion of jet kinetic energy

  1. Supermassive Black Hole Binaries: Environment and Galaxy Host Properties of PTA and eLISA sources

    NASA Astrophysics Data System (ADS)

    Martinez Palafox, Eva

    2015-08-01

    Supermassive black hole (BH) binaries would comprise the strongest sources of gravitational waves (GW) once they reach ≪ 1pc separations, for both pulsar timing arrays (PTAs) and space based (SB) detectors. While BH binaries coalescences constitute a natural outcome of the cosmological standard model and galaxy mergers, their dynamical evolution is still poorly understood and therefore their abundances at different stages. We use a dynamical model for the decay of BH binaries coupled with a cosmological simulation and semi-empirical approaches to the occupation of haloes by galaxies and BHs, in order to follow the evolution of the properties distribution of galaxies hosting BH binaries candidates to decay due to GWs emission. Our models allow us to relax simplifying hypothesis about the binaries occupation in galaxies and their mass, as well as redshift evolution. Following previously proposed electromagnetic (EM) signatures of binaries in the subparsec regime, that include spectral features and variability, we model possible distributions of such signatures and alsoset upper limits to their lifespan. We found a bimodal distribution of hosts properties, corresponding to BH binaries suitable to be detected by PTA and the ones detectable only from space missions, as eLISA. Although it has been discussed that the peak of eLISA sources may happen at high z, we show that there must be a population of such sources in the nearby Universe that might show detectable EM signatures, representing an important laboratory for multimessenger astrophysics. We found a weak dependence of galaxy host properties on the binaries occupation, that can be traced back to the BH origin. The combination of the host correlations reported here with the expected EM signal, may be helpful to verify the presence of nearby GW candidates, and to distinguish them from ’regular’ intrinsic AGN variability.

  2. Prospects for exploring the local galaxies through the study of their high-energy gamma-ray emission

    NASA Technical Reports Server (NTRS)

    Ozel, Mehmet E.; Fichtel, Carl E.

    1988-01-01

    In the near future, high-energy (E greater than 20 MeV) gamma-ray astronomy offers the promise of a new means of examining the closest galaxies. Three local galaxies, the SMCs, LMCs, and M31, should be visible to the high-energy gamma-ray telescope on the Gamma Ray Observatory and the first two should be seen by GAMMA-1. It is expected that the intensity and the structure of both of the Magellanic Clouds can be examined in sufficient detail to study the cosmic-ray density and its variation, and, thereby, to determine the relevant scale of coupling for the cosmic rays and diffuse matter. With the assumptions of adequate sources and reasonable magnetic field strengths, both of which should likely be satisfied, very specific predictions of the gamma-ray emission can be made separating the three current cosmic-ray containment concepts, namely that it is on the scale of one to a few kiloparsec mass clustering, the whole galaxy, or some much larger scale. Further, because of the markedly different distributions of molecular and atomic hydrogen in the galaxies and the differences between the galaxies, an independent measure of the normalization of the diffuse molecular hydrogen density is possible.

  3. Regularity underlying complexity: a redshift-independent description of the continuous variation of galaxy-scale molecular gas properties in the mass-star formation rate plane

    SciTech Connect

    Sargent, M. T.; Daddi, E.; Béthermin, M.; Aussel, H.; Juneau, S.; Elbaz, D.; Hwang, H. S.; Da Cunha, E.

    2014-09-20

    Star-forming galaxies (SFGs) display a continuous specific star formation rate (sSFR) distribution, which can be approximated by two log-normal functions: one encompassing the galaxy main sequence (MS), and the other a rarer, starbursting population. Starburst (SB) sSFRs can be regarded as the outcome of a physical process (plausibly merging) taking the mathematical form of a log-normal boosting kernel that enhances star formation activity. We explore the utility of splitting the star-forming population into MS and SB galaxies—an approach we term the '2-Star Formation Mode' framework—for understanding their molecular gas properties. Star formation efficiency (SFE) and gas fraction variations among SFGs take a simple redshift-independent form, once these quantities are normalized to the corresponding values for average MS galaxies. SFE enhancements during SB episodes scale supra-linearly with the SFR increase, as expected for mergers. Consequently, galaxies separate more clearly into loci for SBs and normal galaxies in the Schmidt-Kennicutt plane than in (s)SFR versus M {sub *} space. SBs with large deviations (>10 fold) from the MS, e.g., local ULIRGs, are not average SBs, but are much rarer events whose progenitors had larger gas fractions than typical MS galaxies. Statistically, gas fractions in SBs are reduced two- to threefold compared to their direct MS progenitors, as expected for short-lived SFR boosts where internal gas reservoirs are depleted more quickly than gas is re-accreted from the cosmic web. We predict variations of the conversion factor α{sub CO} in the SFR-M {sub *} plane and we show that the higher sSFR of distant galaxies is directly related to their larger gas fractions.

  4. A Comprehensive Archival Search for Counterparts to Ultra-compact High-Velocity Clouds: Five Local Volume Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Sand, D. J.; Crnojević, D.; Bennet, P.; Willman, B.; Hargis, J.; Strader, J.; Olszewski, E.; Tollerud, E. J.; Simon, J. D.; Caldwell, N.; Guhathakurta, P.; James, B. L.; Koposov, S.; McLeod, B.; Morrell, N.; Peacock, M.; Salinas, R.; Seth, A. C.; Stark, D. P.; Toloba, E.

    2015-06-01

    We report five Local Volume dwarf galaxies (two of which are presented here for the first time) uncovered during a comprehensive archival search for optical counterparts to ultra-compact high-velocity clouds (UCHVCs). The UCHVC population of HI clouds are thought to be candidate gas-rich, low-mass halos at the edge of the Local Group and beyond, but no comprehensive search for stellar counterparts to these systems has been presented. Careful visual inspection of all publicly available optical and ultraviolet imaging at the position of the UCHVCs revealed six blue, diffuse counterparts with a morphology consistent with a faint dwarf galaxy beyond the Local Group. Optical spectroscopy of all six candidate dwarf counterparts show that five have an Hα-derived velocity consistent with the coincident HI cloud, confirming their association; the sixth diffuse counterpart is likely a background object. The size and luminosity of the UCHVC dwarfs is consistent with other known Local Volume dwarf irregular galaxies. The gas fraction ({{M}HI}/{{M}star}) of the five dwarfs are generally consistent with that of dwarf irregular galaxies in the Local Volume, although ALFALFA-Dw1 (associated with ALFALFA UCHVC HVC274.68+74.70-123) has a very high {{M}HI}/{{M}star} ˜ 40. Despite the heterogenous nature of our search, we demonstrate that the current dwarf companions to UCHVCs are at the edge of detectability due to their low surface brightness, and that deeper searches are likely to find more stellar systems. If more sensitive searches do not reveal further stellar counterparts to UCHVCs, then the dearth of such systems around the Local Group may be in conflict with ΛCDM simulations.

  5. A Comprehensive Archival Search for Counterparts to Ultra-Compact High Velocity Clouds: Five Local Volume Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Crnojevic, Denija; Sand, David J.

    2015-08-01

    We report the discovery of five Local Volume dwarf galaxies uncovered during a comprehensive archival search for optical counterparts to ultra-compact high velocity clouds (UCHVCs). The UCHVC population of HI clouds are thought to be candidate gas-rich, low mass halos at the edge of the Local Group and beyond, but no comprehensive search for stellar counterparts to these systems has been presented. Careful visual inspection of all publicly available optical and ultraviolet imaging at the position of the UCHVCs revealed six blue, diffuse counterparts with a morphology consistent with a faint dwarf galaxy beyond the Local Group. Optical spectroscopy of all six candidate dwarf counterparts show that five have an Halpha-derived velocity consistent with the coincident HI cloud, confirming their association; the sixth diffuse counterpart is likely a background object. The size and luminosity of the UCHVC dwarfs is consistent with other known Local Volume dwarf irregular galaxies. The gas fraction (M_HI/M_star) of the five dwarfs are generally consistent with that of dwarf irregular galaxies in the Local Volume, although ALFALFA-Dw1 (associated with ALFALFA UCHVC HVC274.68+74.70-123) has a very high M_HI/M_star~40. Despite the heterogenous nature of our search, we demonstrate that the current dwarf companions to UCHVCs are at the edge of detectability due to their low surface brightness, and that deeper searches are likely to find more stellar systems. If more sensitive searches do not reveal further stellar counterparts to UCHVCs, then the dearth of such systems around the Local Group may be in conflict with LambdaCDM simulations.

  6. The global and local stellar mass assembly histories of galaxies from the MaNGA survey

    NASA Astrophysics Data System (ADS)

    Ibarra-Medel, Hétor J.; Sánchez,, Sebastián F.; Avila-Reese, Vladimir; Hernández-Toledo, Héctor M., J.; González, J. Jesús; Drory, Niv; Bundy, Kevin; Bizyaev, Dmitry; Cano-Díaz, Mariana; Malanushenko, Elena; Pan, Kaike; Roman-Lopes, Alexandre; Thomas, Daniel

    2016-06-01

    By means of the fossil record method implemented through Pipe3D we reconstruct the global and radial stellar mass growth histories (MGHs) of a large sample of galaxies in the mass range 10^{8.5}M⊙-10^{11.5}M⊙ from the MaNGA survey. We find that: (1) The main driver of the global MGHs is mass, with more massive galaxies assembling their masses earlier (downsizing). (2) For most galaxies in their late evolutionary stages, the innermost regions formed earlier than the outermost ones (inside-out). This behaviour is stronger for blue/late-type galaxies.

  7. The dependence of X-ray AGN activity on host galaxy properties and environment

    NASA Astrophysics Data System (ADS)

    Tasse, C.; Röttgering, H.; Best, P. N.

    2011-01-01

    There is mounting evidence that active galactic nuclei (AGN) selected through optical emission lines or radio luminosities comprise two distinct AGN populations, whose activity is triggered by different processes. In two previous papers, we studied the host galaxies and environment of radio-loud AGN. In this third paper we study the properties of a sample of Type-2 AGN that were selected on the basis of their [2-10] keV X-ray luminosity. We find that the X-ray luminosity function is in good agreement with previous studies and that the fraction of galaxies hosting an X-ray AGN is a strong function of the stellar mass of the host galaxy. The shape of this fraction-mass relation is similar to the fraction of galaxies that are emission-line AGN, while it differs significantly from the relation observed for radio-selected AGN. The AGN in our sample tend to be located in underdense environments where galaxy mergers and interactions are likely to occur. For all host galaxy masses, the Type-2 AGN display a strong infrared excess at short (~3.5 μm) wavelengths, suggesting the presence of hot dust possibly associated with a hot dusty torus. These results add weight to the belief that the X-ray selection criteria identifies a population of AGN similar to the emission-line selected population but distinct from the radio population at high masses. Appendix A is only available in electronic form at http://www.aanda.org

  8. Characterizing Ultraviolet and Infrared Observational Properties for Galaxies. II. Features of Attenuation Law

    NASA Astrophysics Data System (ADS)

    Mao, Ye-Wei; Kong, Xu; Lin, Lin

    2014-07-01

    Variations in the attenuation law have a significant impact on observed spectral energy distributions for galaxies. As one important observational property for galaxies at ultraviolet and infrared wavelength bands, the correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color index (or ultraviolet spectral slope), i.e., the IRX-UV relation (or IRX-β relation), offered a widely used formula for correcting dust attenuation in galaxies, but the usability appears to be in doubt now because of considerable dispersion in this relation found by many studies. In this paper, on the basis of spectral synthesis modeling and spatially resolved measurements of four nearby spiral galaxies, we provide an interpretation of the deviation in the IRX-UV relation with variations in the attenuation law. From both theoretical and observational viewpoints, two components in the attenuation curve, the linear background and the 2175 Å bump, are suggested to be the parameters in addition to the stellar population age (addressed in the first paper of this series) in the IRX-UV function; different features in the attenuation curve are diagnosed for the galaxies in our sample. Nevertheless, it is often difficult to ascertain the attenuation law for galaxies in actual observations. Possible reasons for preventing the successful detection of the parameters in the attenuation curve are also discussed in this paper, including the degeneracy of the linear background and the 2175 Å bump in observational channels, the requirement for young and dust-rich systems to study, and the difficulty in accurate estimates of dust attenuations at different wavelength bands.

  9. Characterizing ultraviolet and infrared observational properties for galaxies. II. Features of attenuation law

    SciTech Connect

    Mao, Ye-Wei; Kong, Xu; Lin, Lin E-mail: xkong@ustc.edu.cn

    2014-07-01

    Variations in the attenuation law have a significant impact on observed spectral energy distributions for galaxies. As one important observational property for galaxies at ultraviolet and infrared wavelength bands, the correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color index (or ultraviolet spectral slope), i.e., the IRX-UV relation (or IRX-β relation), offered a widely used formula for correcting dust attenuation in galaxies, but the usability appears to be in doubt now because of considerable dispersion in this relation found by many studies. In this paper, on the basis of spectral synthesis modeling and spatially resolved measurements of four nearby spiral galaxies, we provide an interpretation of the deviation in the IRX-UV relation with variations in the attenuation law. From both theoretical and observational viewpoints, two components in the attenuation curve, the linear background and the 2175 Å bump, are suggested to be the parameters in addition to the stellar population age (addressed in the first paper of this series) in the IRX-UV function; different features in the attenuation curve are diagnosed for the galaxies in our sample. Nevertheless, it is often difficult to ascertain the attenuation law for galaxies in actual observations. Possible reasons for preventing the successful detection of the parameters in the attenuation curve are also discussed in this paper, including the degeneracy of the linear background and the 2175 Å bump in observational channels, the requirement for young and dust-rich systems to study, and the difficulty in accurate estimates of dust attenuations at different wavelength bands.

  10. THE IMPACT OF INTERACTIONS, BARS, BULGES, AND ACTIVE GALACTIC NUCLEI ON STAR FORMATION EFFICIENCY IN LOCAL MASSIVE GALAXIES

    SciTech Connect

    Saintonge, Amelie; Fabello, Silvia; Wang Jing; Catinella, Barbara; Tacconi, Linda J.; Genzel, Reinhard; Gracia-Carpio, Javier; Wuyts, Stijn; Kramer, Carsten; Moran, Sean; Heckman, Timothy M.; Schiminovich, David; Schuster, Karl

    2012-10-20

    Using atomic and molecular gas observations from the GASS and COLD GASS surveys and complementary optical/UV data from the Sloan Digital Sky Survey and the Galaxy Evolution Explorer, we investigate the nature of the variations in the molecular gas depletion time observed across the local massive galaxy population. The large and unbiased COLD GASS sample allows us for the first time to statistically assess the relative importance of galaxy interactions, bar instabilities, morphologies, and the presence of active galactic nuclei (AGNs) in regulating star formation efficiency. We find that both the H{sub 2} mass fraction and depletion time vary as a function of the distance of a galaxy from the main sequence traced by star-forming galaxies in the SFR-M {sub *} plane. The longest gas depletion times are found in below-main-sequence bulge-dominated galaxies ({mu}{sub *} >5 Multiplication-Sign 10{sup 8} M {sub Sun} kpc{sup -2}, C > 2.6) that are either gas-poor (M{sub H{sub 2}}/M {sub *} <1.5%) or else on average less efficient by a factor of {approx}2 than disk-dominated galaxies at converting into stars any cold gas they may have. We find no link between the presence of AGNs and these long depletion times. In the regime where galaxies are disk-dominated and gas-rich, the galaxies undergoing mergers or showing signs of morphological disruptions have the shortest molecular gas depletion times, while those hosting strong stellar bars have only marginally higher global star formation efficiencies as compared to matched control samples. Our interpretation is that the molecular gas depletion time variations are caused by changes in the ratio between the gas mass traced by the CO(1-0) observations and the gas mass in high-density star-forming cores (as traced by observations of, e.g., HCN(1-0)). While interactions, mergers, and bar instabilities can locally increase pressure and raise the ratio of efficiently star-forming gas to CO-detected gas (therefore lowering the CO

  11. Modeling the physical properties in the ISM of the low-metallicity galaxy NGC 4214

    NASA Astrophysics Data System (ADS)

    Dimaratos, A.; Cormier, D.; Bigiel, F.; Madden, S. C.

    2015-08-01

    We present a model for the interstellar medium of NGC 4214 with the objective to probe the physical conditions in the two main star-forming regions and their connection with the star formation activity of the galaxy. We used the spectral synthesis code Cloudy to model an H ii region and the associated photodissociation region (PDR) to reproduce the emission of mid- and far-infrared fine-structure lines from the Spitzer and Herschel space telescopes for these two regions. Input parameters of the model, such as elemental abundances and star formation history, are guided by earlier studies of the galaxy, and we investigated the effect of the mode in which star formation takes place (bursty or continuous) on the line emission. Furthermore, we tested the effect of adding pressure support with magnetic fields and turbulence on the line predictions. We find that this model can satisfactorily predict (within a factor of ~2) all observed lines that originate from the ionized medium ([S iv] 10.5 μm, [Ne iii] 15.6 μm, [S iii] 18.7 μm, [S iii] 33.5 μm, and [O iii] 88 μm), with the exception of [Ne ii] 12.8 μm and [N ii] 122 μm, which may arise from a lower ionization medium. In the PDR, the [O i] 63 μm, [O i] 145 μm, and [C ii] 157 μm lines are matched within a factor of ~5 and work better when weak pressure support is added to the thermal pressure or when the PDR clouds are placed farther away from the H ii regions and have covering factors lower than unity. Our models of the H ii region agree with different evolutionary stages found in previous studies, with a more evolved, diffuse central region, and a younger, more compact southern region. However, the local PDR conditions are averaged out on the 175 pc scales probed and do not reflect differences observed in the star formation properties of the two regions. Their increased porosity stands out as an intrinsic characteristic of the low-metallicity ISM, with the PDR covering factor tracing the evolution of the

  12. X-ray Binary Evolution and the Connection to Star Formation in Nearby Galaxies with the Chandra Local Volume Survey

    NASA Astrophysics Data System (ADS)

    Binder, Breanna Arlene

    X-ray binaries, especially those with a massive stellar companion, provide a unique probe through which one can study the end-points of high-mass stellar evolution while simultaneously tracing recent star formation. In this thesis, I analyze the high-mass X-ray binary populations of five nearby galaxies using matched observations from the Chandra X-ray Observatory and the Hubble Space Telescope. The global X-ray properties of the X-ray binary populations of these galaxies is correlated with the star formation histories of the host galaxies. Unlike previous studies of the X-ray--star formation connection, which corrects for contamination by background sources only in a statistical sense, I have developed a source classification scheme utilizing the resolved stellar populations from Hubble imaging to separate X-ray binary candidates from contaminating X-ray sources. This thesis validates the statistical corrective approach typically applied to more distant galaxies, where it is not possible to resolve individual stars. Additionally, the X-ray binary populations of these nearby galaxies is used to constrain models of massive star evolution. This includes an estimate of the fraction of massive evolved binaries that undergo an X-ray luminous phase, the characteristic timescale of the X-ray luminous phase, and the mass distribution of stellar companions in X-ray binaries.

  13. Semi-analytic models for the CANDELS survey: comparison of predictions for intrinsic galaxy properties

    SciTech Connect

    Lu, Yu; Wechsler, Risa H.; Somerville, Rachel S.; Croton, Darren; Porter, Lauren; Primack, Joel; Moody, Chris; Behroozi, Peter S.; Ferguson, Henry C.; Koo, David C.; Guo, Yicheng; Finlator, Kristian; Castellano, Marco; Sommariva, Veronica E-mail: rwechsler@stanford.edu

    2014-11-10

    We compare the predictions of three independently developed semi-analytic galaxy formation models (SAMs) that are being used to aid in the interpretation of results from the CANDELS survey. These models are each applied to the same set of halo merger trees extracted from the 'Bolshoi' high-resolution cosmological N-body simulation and are carefully tuned to match the local galaxy stellar mass function using the powerful method of Bayesian Inference coupled with Markov Chain Monte Carlo or by hand. The comparisons reveal that in spite of the significantly different parameterizations for star formation and feedback processes, the three models yield qualitatively similar predictions for the assembly histories of galaxy stellar mass and star formation over cosmic time. Comparing SAM predictions with existing estimates of the stellar mass function from z = 0-8, we show that the SAMs generally require strong outflows to suppress star formation in low-mass halos to match the present-day stellar mass function, as is the present common wisdom. However, all of the models considered produce predictions for the star formation rates (SFRs) and metallicities of low-mass galaxies that are inconsistent with existing data. The predictions for metallicity-stellar mass relations and their evolution clearly diverge between the models. We suggest that large differences in the metallicity relations and small differences in the stellar mass assembly histories of model galaxies stem from different assumptions for the outflow mass-loading factor produced by feedback. Importantly, while more accurate observational measurements for stellar mass, SFR and metallicity of galaxies at 1 < z < 5 will discriminate between models, the discrepancies between the constrained models and existing data of these observables have already revealed challenging problems in understanding star formation and its feedback in galaxy formation. The three sets of models are being used to construct catalogs of mock

  14. Effect of black holes in local dwarf spheroidal galaxies on gamma-ray constraints on dark matter annihilation

    NASA Astrophysics Data System (ADS)

    Gonzalez-Morales, Alma X.; Profumo, Stefano; Queiroz, Farinaldo S.

    2014-11-01

    Recent discoveries of optical signatures of black holes in dwarf galaxies indicates that low-mass galaxies can indeed host intermediate massive black holes. This motivates the assessment of the resulting effect on the host dark matter density profile, and the consequences for the constraints on the plane of the dark matter annihilation cross section versus mass, stemming from the nonobservation of gamma rays from local dwarf spheroidals with the Fermi Large Area Telescope. We compute the density profile using three different prescriptions for the black hole mass associated with a given spheroidal galaxy, and taking into account the cutoff to the density from dark matter pair-annihilation. We find that the limits on the dark matter annihilation rate from observations of individual dwarfs are enhanced by factors of a few up to 1 06 , depending on the specific galaxy, on the black hole mass prescription, and on the dark matter particle mass. We estimate limits from combined observations of a sample of 15 dwarfs, for a variety of assumptions on the dwarf black hole mass and on the dark matter density profile prior to adiabatic contraction. We find that if black holes are indeed present in local dwarf spheroidals, then, independent of assumptions, (i) the dark matter interpretation of the Galactic center gamma-ray excess would be conclusively ruled out, (ii) wino dark matter would be excluded up to masses of about 3 TeV, and (iii) vanilla thermal relic weakly interacting massive particles must be heavier than 100 GeV.

  15. INVESTIGATING THE CORE MORPHOLOGY-SEYFERT CLASS RELATIONSHIP WITH HUBBLE SPACE TELESCOPE ARCHIVAL IMAGES OF LOCAL SEYFERT GALAXIES

    SciTech Connect

    Rutkowski, M. J.; Hegel, P. R.; Kim, Hwihyun; Windhorst, R. A.; Tamura, Kazuyuki

    2013-07-01

    The unified model of active galactic nuclei (AGNs) has provided a successful explanation for the observed diversity of AGNs in the local universe. However, recent analysis of multi-wavelength spectral and image data suggests that the unified model is only a partial theory of AGNs, and may need to be augmented to remain consistent with all observations. Recent studies using high spatial resolution ground- and space-based observations of local AGNs show that Seyfert class and the ''core'' (r {approx}< 1 kpc) host-galaxy morphology are correlated. Currently, this relationship has only been established qualitatively, by visual inspection of the core morphologies of low-redshift (z < 0.035) Seyfert host galaxies. We re-establish this empirical relationship in Hubble Space Telescope optical imaging by visual inspection of a catalog of 85 local (D < 63 Mpc) Seyfert galaxies. We also attempt to re-establish the core morphology-Seyfert class relationship using an automated, non-parametric technique that combines both existing classification parameter methods (the adapted CAS and G-M {sub 20}) and a new method which implements the Source Extractor software for feature detection in unsharp-mask images. This new method is designed explicitly to detect dust features in the images. We use our automated approach to classify the morphology of the AGN cores and determine that Sy2 galaxies visually appear, on average, to have more dust features than Sy1. With the exception of this ''dustiness'' however, we do not measure a strong correlation between the dust morphology and the Seyfert class of the host galaxy using quantitative techniques. We discuss the implications of these results in the context of the unified model.

  16. Slow Quenching of Star Formation in OMEGAWINGS Clusters: Galaxies in Transition in the Local Universe

    NASA Astrophysics Data System (ADS)

    Paccagnella, A.; Vulcani, B.; Poggianti, B. M.; Moretti, A.; Fritz, J.; Gullieuszik, M.; Couch, W.; Bettoni, D.; Cava, A.; D'Onofrio, M.; Fasano, G.

    2016-01-01

    The star formation quenching depends on environment, but a full understanding of what mechanisms drive it is still missing. Exploiting a sample of galaxies with masses {M}*\\gt {10}9.8{M}⊙ , drawn from the WIde-field Nearby Galaxy-cluster Survey (WINGS) and its recent extension OMEGAWINGS, we investigate the star formation rate (SFR) as a function of stellar mass (M{}*) in galaxy clusters at 0.04\\lt z\\lt 0.07. We use non-member galaxies at 0.02 < z < 0.09 as a field control sample. Overall, we find agreement between the SFR-M{}* relation in the two environments, but detect a population of cluster galaxies with reduced SFRs, which is rare in the field. These transition galaxies are mainly found within the cluster virial radius (R200), but they impact on the SFR-M{}* relation only within 0.6R200. The ratio of transition to pure star-forming galaxies strongly depends on environment, being larger than 0.6 within 0.3R200 and rapidly decreasing with distance, while it is almost flat with M*. As galaxies move downward from the SFR-M{}* main sequence, they become redder and present older luminosity- and mass-weighted ages. These trends, together with the analysis of the star formation histories, suggest that transition galaxies have had a reduced SFR for the past 2-5 Gyr. Our results are consistent with the hypothesis that the interaction of galaxies with the intracluster medium via strangulation causes a gradual shut down of star formation, giving birth to an evolved population of galaxies in transition from being star forming to becoming passive.

  17. Evolution of galaxy properties across the peak of cosmic activity in cosmological hydrodynamics simulations

    NASA Astrophysics Data System (ADS)

    Devriendt, Julien

    2015-08-01

    In this talk I will review how numerical hydrodynamics simulations predict galaxies evolve in the redshift range 1properties (mass, size, morphology, star formation history).The discussion will be underpinned by recent efforts to measure the degree of alignment between galaxy spins and the large scale cosmic web filaments in which they are embedded. Relative contributions to property evolution will be split between major and minor, gas rich and gas poor mergers as well as smooth accretion, and quantitatively assessed. Finally, switching from nurture to nature, I will also discuss the role played by various feedback processes, whether of stellar origin or driven by active nuclei, in driving such changes or freezing them in.

  18. Properties of galaxies around AGNs with the most massive supermassive black holes revealed by clustering analysis

    NASA Astrophysics Data System (ADS)

    Shirasaki, Yuji; Komiya, Yutaka; Ohishi, Masatoshi; Mizumoto, Yoshihiko

    2016-04-01

    We present results of the clustering analysis between active galactic nuclei (AGNs) and galaxies at redshift 0.1-1.0, which was performed to investigate the properties of galaxies associated with the AGNs and reveal the nature of the fueling mechanism of supermassive black holes (SMBHs). We used 8059 AGNs/quasi-stellar objects (QSOs) for which virial masses of individual SMBHs were measured, and divided them into four mass groups.Cross-correlation analysis was performed to reconfirm our previous result that cross-correlation length increases with SMBH mass MBH; we obtained consistent results. A linear bias of AGN for each mass group was measured as 1.47 for MBH = 107.5-108.2 M⊙ and 3.08 for MBH = 109-1010 M⊙. The averaged color and luminosity distributions of galaxies around the AGNs/QSOs were also derived for each mass group. The galaxy color Dopt-IR was estimated from a spectral energy distribution (SED) constructed from a catalog derived by merging the Sloan Digital Sky Survey (SDSS) and the UKIRT Infrared Deep Sky Survey (UKIDSS) catalogs. The distributions of color and luminosity were derived by a subtraction method, which does not require redshift information of galaxies. The main results of this work are as follows. (1) A linear bias increases by a factor of two from the lower-mass group to the highest-mass group. (2) The environment around AGNs with the most massive SMBHs (MBH > 109 M⊙) is dominated by red sequence galaxies. (3) Marginal indication of decline in luminosity function at dimmer side of MIR > -19.5 is found for galaxies around AGNs with MBH = 108.2-109 M⊙ and nearest redshift group (z = 0.1-0.3). These results indicate that AGNs with the most massive SMBHs reside in haloes where a large fraction of galaxies have been transited to the red sequence. The accretion of hot halo gas as well as recycled gas from evolving stars can be one of the plausible mechanisms to fuel the SMBHs above ˜ 109 M⊙.

  19. Properties of Lya Emitters Around the Radio Galaxy MRC 0316-257

    SciTech Connect

    Venemans, B; Rottgering, H; Miley, G; Kurk, J; De Breuck, C; van Breugel, W; Carilli, C; Ford, H; Heckman, T; Pentericci, L; McCarthy, P

    2004-08-12

    Observations of the radio galaxy MRC 0316-257 at z = 3.13 and the surrounding field are presented. Using narrow- and broad-band imaging obtained with the VLT*, 92 candidate Ly{alpha} emitters with a rest-frame equivalent width of > 15 AngstromS were selected in a {approx} 7{prime} x 7{prime} field around the radio galaxy. Spectroscopy of 40 candidate emitters resulted in the discovery of 33 emission line galaxies of which 31 are Ly{alpha} emitters with redshifts similar to that of the radio galaxy, while the remaining two galaxies turned out to be [{omicron} II] emitters. The Ly{alpha} profiles had widths (FWHM) corresponding to 120-800 kms{sup -1},with a median of 260 kms{sup -1}. Where the signal-to-noise spectra was large enough, the Ly{alpha} profiles are found to be asymmetric, with apparent absorption troughs blueward of the profile peaks, indicative of absorption along the line of sight of an {Eta}{Iota} mass of 1-5000 {mu}{circle_dot}. Besides that of the radio galaxy and one of the emitters that is an QSO, the continuum of the emitters is faint, with luminosities ranging from 1.3 L{sub *} to < 0.03 L{sub *}.The colors of the confirmed emitters are, on average, very blue. The median UV continuum slope is {beta}=-1.65, bluer than the average slope of LBGs with Ly{alpha} emitters is 2.6 {Mu}{circle_dot}{sup -1} as measured by the Ly{alpha} emission line or < 3.9 {Mu}{circle_dot}{sup -1} as measured by the UV continuum. The properties of the Ly{alpha} galaxies (faint, blue and small) are consistent with young star forming galaxies which are nearly dust free. The density of Ly{alpha} emitting galaxies in the field around MRC 0316-257 is a factor of 3.3{sup +0.5}{sub -0.4} larger compared with the density of Ly{alpha} emitters at that redshift. The velocity distribution of the spectroscopically confirmed emitters has a dispersion of 640 km s{sup -1}, corresponding to a FWHM of 1510 km s{sup -1}, which is substantially smaller than the width of the narrow

  20. Comparing Local Starbursts to High-Redshift Galaxies: A Search for Lyman-Break Analogs

    NASA Technical Reports Server (NTRS)

    Petty, Sara M.; de Mello, Duila F.; Gallagher III, John S.; Gardner, Jonathan; Lotz, Jennifer M.; Mountain, C. Matt; Smith, Linda J.

    2008-01-01

    We compare the restframe far-ultraviolet (FUV) morphologies of 8 nearby interacting and starburst galaxies (Arp 269, M 82, Mrk 08, NGC 0520, NGC 1068, NGC 3079, NGC 3310, NGC 7673) with 54 galaxies at z approx.1.5 and 46 galaxies at z approx.4 in the Great Observatories Origins Deep Survey (GOODS) images taken with the Advanced Camera for Surveys onboard the Hubble Space Telescope. We calculate the Gini coefficient (G), the second order moment of 20% of the brightest pixels (M20), and the S ersic index (n). We find that 20% (11/54) of z approx.1.5 and 37% (17/46) of z approx.4 galaxies are bulge-like, using G and M20. We also find approx.70% of the z approx.1.5 and z approx.4 galaxies have exponential disks with n > 0.8. The 2D profile combined with the nonparametric methods provides more detail, concerning the nature of disturbed systems, such as merger and post-merger types. We also provide qualitative descriptions of each galaxy system and at each redshift. We conclude that Mrk 08, NGC 3079, and NGC 7673 have similar morphologies as the starburst FUV restframe galaxies and Lyman-break galaxies at z approx.1.5 and 4, and determine that they are Lyman-break analogs.

  1. Dark energy properties from large future galaxy surveys

    SciTech Connect

    Basse, Tobias; Bjælde, Ole Eggers; Hannestad, Steen; Hamann, Jan; Wong, Yvonne Y.Y. E-mail: oeb@phys.au.dk E-mail: sth@phys.au.dk

    2014-05-01

    We perform a detailed forecast on how well a Euclid-like survey will be able to constrain dark energy and neutrino parameters from a combination of its cosmic shear power spectrum, galaxy power spectrum, and cluster mass function measurements. We find that the combination of these three probes vastly improves the survey's potential to measure the time evolution of dark energy. In terms of a dark energy figure-of-merit defined as (σ(w{sub p})σ(w{sub a})){sup −1}, we find a value of 690 for Euclid-like data combined with Planck-like measurements of the cosmic microwave background anisotropies in a 10-dimensional cosmological parameter space, assuming a ΛCDM fiducial cosmology. For the more commonly used 7-parameter model, we find a figure-of-merit of 1900 for the same data combination. We consider also the survey's potential to measure dark energy perturbations in models wherein the dark energy is parameterised as a fluid with a nonstandard non-adiabatic sound speed, and find that in an optimistic scenario in which w{sub 0} deviates from -1 by as much as is currently observationally allowed, models with c-circumflex {sub s}{sup 2} = 10{sup −6} and c-circumflex {sub s}{sup 2} = 1 can be distinguished from one another at more than 2σ significance. We emphasise that constraints on the dark energy sound speed from cluster measurements are strongly dependent on the modelling of the cluster mass function; significantly weaker sensitivities ensue if we modify our model to include fewer features of nonlinear dark energy clustering. Finally, we find that the sum of neutrino masses can be measured with a 1σ precision of 0.015 eV, even in complex cosmological models in which the dark energy equation of state varies with time. The 1σ sensitivity to the effective number of relativistic species N{sub eff}{sup ml} is approximately 0.03, meaning that the small deviation of 0.046 from 3 in the standard value of N{sub eff}{sup ml} due to non-instantaneous decoupling and

  2. Filaments from the galaxy distribution and from the velocity field in the local universe

    NASA Astrophysics Data System (ADS)

    Libeskind, Noam I.; Tempel, Elmo; Hoffman, Yehuda; Tully, R. Brent; Courtois, Hélène

    2015-10-01

    The cosmic web that characterizes the large-scale structure of the Universe can be quantified by a variety of methods. For example, large redshift surveys can be used in combination with point process algorithms to extract long curvilinear filaments in the galaxy distribution. Alternatively, given a full 3D reconstruction of the velocity field, kinematic techniques can be used to decompose the web into voids, sheets, filaments and knots. In this Letter, we look at how two such algorithms - the Bisous model and the velocity shear web - compare with each other in the local Universe (within 100 Mpc), finding good agreement. This is both remarkable and comforting, given that the two methods are radically different in ideology and applied to completely independent and different data sets. Unsurprisingly, the methods are in better agreement when applied to unbiased and complete data sets, like cosmological simulations, than when applied to observational samples. We conclude that more observational data is needed to improve on these methods, but that both methods are most likely properly tracing the underlying distribution of matter in the Universe.

  3. The abundance properties of nearby late-type galaxies. I. The data

    SciTech Connect

    Pilyugin, L. S.; Grebel, E. K.; Kniazev, A. Y. E-mail: grebel@ari.uni-heidelberg.de

    2014-06-01

    We investigate the oxygen and nitrogen abundance distributions across the optical disks of 130 nearby late-type galaxies using around 3740 published spectra of H II regions. We use these data in order to provide homogeneous abundance determinations for all objects in the sample, including H II regions in which not all of the usual diagnostic lines were measured. Examining the relation between N and O abundances in these galaxies we find that the abundances in their centers and at their isophotal R {sub 25} disk radii follow the same relation. The variation in N/H at a given O/H is around 0.3 dex. We suggest that the observed spread in N/H may be partly caused by the time delay between N and O enrichment and the different star formation histories in galaxies of different morphological types and dimensions. We study the correlations between the abundance properties (central O and N abundances, radial O and N gradients) of a galaxy and its morphological type and dimension.

  4. K-Band Properties of Well-Sampled Groups of Galaxies

    NASA Astrophysics Data System (ADS)

    Ramella, Massimo; Boschin, Walter; Geller, Margaret J.; Mahdavi, Andisheh; Rines, Kenneth

    2004-11-01

    We use a sample of 55 groups and six clusters of galaxies ranging in mass from 7×1011 to 1.5×1015 Msolar to examine the correlation of the Ks-band luminosity with mass discovered by Lin and coauthors in 2003. We use the Two-Micron All-Sky Survey catalog and published redshifts to construct complete magnitude-limited redshift surveys of the groups. From these surveys we explore the IR photometric properties of groups members, including their IR color distribution and luminosity function. Although we find no significant difference between the group Ks luminosity function and the general field, there is a difference between the color distribution of luminous group members and their counterparts (generally background) in the field. There is a significant population of luminous galaxies with H-Ks>~0.35, which are rarely, if ever, members of the groups in our sample. The most luminous galaxies that populate the groups have a very narrow range of IR color. Over the entire mass range covered by our sample, the Ks luminosity increases with mass as LKs~M0.64+/-0.06, implying that the mass-to-light ratio in the Ks band increases with mass. The agreement between this result and earlier investigations of essentially nonoverlapping sets of systems shows that this window in galaxy formation and evolution is insensitive to the selection of the systems and to the details of the mass and luminosity computations.

  5. Tidal Interactions at the Edge of the Local Group: New Evidence for Tidal Features in the Antlia Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Penny, Samantha J.; Pimbblet, Kevin A.; Conselice, Christopher J.; Brown, Michael J. I.; Grützbauch, Ruth; Floyd, David J. E.

    2012-10-01

    Using deep B-band imaging down to ~μ B = 26 mag arcsec-2, we present evidence for tidal tails in the Antlia Dwarf galaxy, one of the most distant members of the Local Group. This elongation is in the direction of Antlia's nearest neighbor, the Magellanic-type NGC 3109. The tail is offset by <10° from a vector linking the centers of the two galaxies, indicative of interactions between the pair. Combined with the warped disk previously identified in NGC 3109, Antlia and NGC 3109 must be at a small separation for tidal features to be present in Antlia. We calculate that Antlia cannot be completely disrupted by NGC 3109 in a single interaction unless its orbit pericenter is <6 kpc; however, multiple interactions could significantly alter its morphology. Therefore despite being located right at the edge of the Local Group, environmental effects are playing an important role in Antlia's evolution.

  6. TIDAL INTERACTIONS AT THE EDGE OF THE LOCAL GROUP: NEW EVIDENCE FOR TIDAL FEATURES IN THE ANTLIA DWARF GALAXY

    SciTech Connect

    Penny, Samantha J.; Pimbblet, Kevin A.; Brown, Michael J. I.; Floyd, David J. E.; Conselice, Christopher J.; Gruetzbauch, Ruth

    2012-10-20

    Using deep B-band imaging down to {approx}{mu}{sub B} = 26 mag arcsec{sup -2}, we present evidence for tidal tails in the Antlia Dwarf galaxy, one of the most distant members of the Local Group. This elongation is in the direction of Antlia's nearest neighbor, the Magellanic-type NGC 3109. The tail is offset by <10 Degree-Sign from a vector linking the centers of the two galaxies, indicative of interactions between the pair. Combined with the warped disk previously identified in NGC 3109, Antlia and NGC 3109 must be at a small separation for tidal features to be present in Antlia. We calculate that Antlia cannot be completely disrupted by NGC 3109 in a single interaction unless its orbit pericenter is <6 kpc; however, multiple interactions could significantly alter its morphology. Therefore despite being located right at the edge of the Local Group, environmental effects are playing an important role in Antlia's evolution.

  7. THE LYMAN ALPHA MORPHOLOGY OF LOCAL STARBURST GALAXIES: RELEASE OF CALIBRATED IMAGES

    SciTech Connect

    Oestlin, Goeran; Hayes, Matthew; Kunth, Daniel; Atek, Hakim; Mas-Hesse, J. Miguel; Leitherer, Claus; Petrosian, Artashes E-mail: matthew.hayes@unige.ch

    2009-09-15

    We present reduced and calibrated high resolution Lyman-alpha (Ly{alpha}) images for a sample of six local star-forming galaxies. Targets were selected to represent a range in luminosity and metallicity and to include both known Ly{alpha} emitters and nonemitters. Far ultraviolet imaging was carried out with the Solar Blind Channel of the Advanced Camera for Surveys on the Hubble Space Telescope (HST) in the F122M (Ly{alpha} online) and F140LP (continuum) filters. The resulting Ly{alpha} images are the product of careful modeling of both the stellar and nebular continua, facilitated by supporting HST imaging at {lambda} {approx} 2200, 3300, 4400, 5500, H{alpha}, and 8000 A, combined with Starburst 99 evolutionary synthesis models, and prescriptions for dust extinction on the continuum. In all, the resulting morphologies in Ly{alpha}, H{alpha}, and UV continuum are qualitatively very different and we show that the bulk of Ly{alpha} emerges in a diffuse component resulting from resonant scattering events. Ly{alpha} escape fractions, computed from integrated H{alpha} luminosities and recombination theory, are found never to exceed 14%. Internal dust extinction is estimated in each pixel and used to correct Ly{alpha} fluxes. However, the extinction corrections are far too small (by factors from 2.6 to infinity) to reconcile the emerging global Ly{alpha} luminosities with standard recombination predictions. Surprisingly, when comparing the global equivalent widths of Ly{alpha} and H{alpha}, the two quantities appear to be anticorrelated, which may be due to the evolution of mechanical feedback from the starburst. This calls for caution in the interpretation of Ly{alpha} observations in terms of star formation rates. The images presented have a physical resolution 3 orders of magnitude better than attainable at high redshifts from the ground with current instrumentation and our images may therefore serve as useful templates for comparing with observations and modeling of

  8. A comparative study of local galaxy clusters - II. X-ray and SZ scaling relations

    NASA Astrophysics Data System (ADS)

    Rozo, E.; Evrard, A. E.; Rykoff, E. S.; Bartlett, J. G.

    2014-02-01

    We compare cluster scaling relations published for three different samples selected via X-ray and Sunyaev-Zel'dovich (SZ) signatures. We find tensions driven mainly by two factors: (i) systematic differences in the X-ray cluster observables used to derive the scaling relations and (ii) uncertainty in the modelling of how the gas mass of galaxy clusters scales with total mass. All scaling relations are in agreement after accounting for these two effects. We describe a multivariate scaling model that enables a fully self-consistent treatment of multiple observational catalogues in the presence of property covariance and apply this formalism when interpreting published results. The corrections due to scatter and observable covariance can be significant. For instance, our predicted YSZ-LX scaling relation differs from that derived using the naive `plug in' method by ≈25 per cent. Finally, we test the mass normalization for each of the X-ray data sets we consider by applying a space density consistency test: we compare the observed ROSAT-ESO Flux-Limited X-ray (REFLEX) luminosity function to expectations from published LX-M relations convolved with the mass function for a Wilkinson Microwave Anisotropy Probe 7 flat Λ cold dark matter model.

  9. The ACCEPT 2.0 database of galaxy cluster properties

    NASA Astrophysics Data System (ADS)

    Baldi, Alessandro; Donahue, Megan; Voit, Gerard Mark; Ettori, Stefano; Mahdavi, Andisheh

    2014-08-01

    The current public ACCEPT database of cluster properties includes radial profiles of temperature, electron density, entropy, and cooling time. With the new ACCEPT2 project we are currently doubling the number of clusters in ACCEPT and expanding the current suite of properties to include uniformly measured profiles of gas mass and hydrostatic equilibrium mass along with signatures of dynamical relaxation (centroid shift, power ratios, surface brightness concentration, temperature ratios) and global quantities such as core-excised temperatures, X-ray luminosities, and metallicities. We are presenting the first results obtained on the relationship between cool cores and dynamical relaxation, the reliability of hydrostatic mass profiles, and the dependence of the gas mass fraction on halo mass, redshift, and the degree of relaxation.

  10. VizieR Online Data Catalog: [NII]205um emission in local luminous IR galaxies (Zhao+, 2016)

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Lu, N.; Xu, C. K.; Gao, Y.; Lord, S. D.; Charmandaris, V.; Diaz-Santos, T.; Evans, A.; Howell, J.; Petric, A. O.; van der Werf, P. P.; Sanders, D. B.

    2016-05-01

    The primary sample studied in this paper is from the Herschel open time project Herschel Spectroscopic Survey of Warm Molecular Gas in Local Luminous Infrared Galaxies (OT1nlu1; PI: N. Lu). The observations were conducted with the Herschel SPIRE/FTS in its point source spectroscopy mode and high spectral resolution configuration, yielding a spectral resolution of 0.04/cm (or 1.2GHz) over the spectral coverage of 194-672um. (1 data file).

  11. Tracing black hole accretion with SED decomposition and IR lines: from local galaxies to the high-z Universe

    NASA Astrophysics Data System (ADS)

    Gruppioni, C.; Berta, S.; Spinoglio, L.; Pereira-Santaella, M.; Pozzi, F.; Andreani, P.; Bonato, M.; De Zotti, G.; Malkan, M.; Negrello, M.; Vallini, L.; Vignali, C.

    2016-06-01

    We present new estimates of AGN accretion and star formation (SF) luminosity in galaxies obtained for the local 12 μm sample of Seyfert galaxies (12MGS), by performing a detailed broad-band spectral energy distribution (SED) decomposition including the emission of stars, dust heated by SF and a possible AGN dusty torus. Thanks to the availability of data from the X-rays to the sub-millimetre, we constrain and test the contribution of the stellar, AGN and SF components to the SEDs. The availability of Spitzer-InfraRed Spectrograph (IRS) low-resolution mid-infrared (mid-IR) spectra is crucial to constrain the dusty torus component at its peak wavelengths. The results of SED fitting are also tested against the available information in other bands: the reconstructed AGN bolometric luminosity is compared to those derived from X-rays and from the high excitation IR lines tracing AGN activity like [Ne V] and [O IV]. The IR luminosity due to SF and the intrinsic AGN bolometric luminosity are shown to be strongly related to the IR line luminosity. Variations of these relations with different AGN fractions are investigated, showing that the relation dispersions are mainly due to different AGN relative contribution within the galaxy. Extrapolating these local relations between line and SF or AGN luminosities to higher redshifts, by means of recent Herschel galaxy evolution results, we then obtain mid- and far-IR line luminosity functions useful to estimate how many star-forming galaxies and AGN we expect to detect in the different lines at different redshifts and luminosities with future IR facilities (e.g. JWST, SPICA).

  12. The Herschel Dwarf Galaxy Survey. I. Properties of the low-metallicity ISM from PACS spectroscopy

    NASA Astrophysics Data System (ADS)

    Cormier, D.; Madden, S. C.; Lebouteiller, V.; Abel, N.; Hony, S.; Galliano, F.; Rémy-Ruyer, A.; Bigiel, F.; Baes, M.; Boselli, A.; Chevance, M.; Cooray, A.; De Looze, I.; Doublier, V.; Galametz, M.; Hughes, T.; Karczewski, O. Ł.; Lee, M.-Y.; Lu, N.; Spinoglio, L.

    2015-06-01

    Context. The far-infrared (FIR) lines are important tracers of the cooling and physical conditions of the interstellar medium (ISM) and are rapidly becoming workhorse diagnostics for galaxies throughout the universe. There are clear indications of a different behavior of these lines at low metallicity that needs to be explored. Aims: Our goal is to explain the main differences and trends observed in the FIR line emission of dwarf galaxies compared to more metal-rich galaxies, and how this translates in ISM properties. Methods: We present Herschel/PACS spectroscopic observations of the [C ii] 157 μm, [O i] 63 and 145 μm, [O iii] 88 μm, [N ii] 122 and 205 μm, and [N iii] 57 μm fine-structure cooling lines in a sample of 48 low-metallicity star-forming galaxies of the guaranteed time key program Dwarf Galaxy Survey. We correlate PACS line ratios and line-to-LTIR ratios with LTIR, LTIR/LB, metallicity, and FIR color, and interpret the observed trends in terms of ISM conditions and phase filling factors with Cloudy radiative transfer models. Results: We find that the FIR lines together account for up to 3 percent of LTIR and that star-forming regions dominate the overall emission in dwarf galaxies. Compared to metal-rich galaxies, the ratios of [O iii]88/[N ii]122 and [N iii]57/[N ii]122 are high, indicative of hard radiation fields. In the photodissociation region (PDR), the [C ii]157/[O i]63 ratio is slightly higher than in metal-rich galaxies, with a small increase with metallicity, and the [O i]145/[O i]63 ratio is generally lower than 0.1, demonstrating that optical depth effects should be small on the scales probed. The [O iii]88/[O i]63 ratio can be used as an indicator of the ionized gas/PDR filling factor, and is found to be ~4 times higher in the dwarfs than in metal-rich galaxies. The high [C ii]/LTIR, [O i]/LTIR, and [O iii]/LTIR ratios, which decrease with increasing LTIR and LTIR/LB, are interpreted as a combination of moderate far-UV fields and a low

  13. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES

    SciTech Connect

    Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P.; Yates, R. M.

    2013-02-15

    In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using {approx}150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses <10{sup 10} M {sub Sun }. There is a sharp transition in the relation at a stellar mass of 10{sup 10} M {sub Sun }. At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. The observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10{sup 10} M {sub Sun} is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.

  14. Mid-infrared properties of luminous infrared galaxies. II. Probing the dust and gas physics of the goals sample

    SciTech Connect

    Stierwalt, S.; Armus, L.; Diaz-Santos, T.; Marshall, J.; Haan, S.; Howell, J.; Murphy, E. J.; Inami, H.; Petric, A. O.; Charmandaris, V.; Evans, A. S.; Iwasawa, K.; Kim, D. C.; Rich, J. A.; Spoon, H. W. W.; U, V.

    2014-08-01

    The Great Observatories All-sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here, we present the results of a multi-component, spectral decomposition analysis of the low-resolution mid-infrared (MIR) Spitzer Infrared Spectrograph spectra from 5-38 μm of 244 LIRG nuclei. The detailed fits and high-quality spectra allow for characterization of the individual polycyclic aromatic hydrocarbon (PAH) features, warm molecular hydrogen emission, and optical depths for both silicate dust grains and water ices. We find that starbursting LIRGs, which make up the majority of the GOALS sample, are very consistent in their MIR properties (i.e., τ{sub 9.7μm}, τ{sub ice}, neon line ratios, and PAH feature ratios). However, as their EQW{sub 6.2{sub μm}} decreases, usually an indicator of an increasingly dominant active galactic nucleus (AGN), LIRGs cover a larger spread in these MIR parameters. The contribution from PAH emission to the total IR luminosity (L(PAH)/L(IR)) in LIRGs varies from 2%-29% and LIRGs prior to their first encounter show significantly higher L(PAH)/L(IR) ratios on average. We observe a correlation between the strength of the starburst (represented by IR8 = L{sub IR}/L{sub 8{sub μm}}) and the PAH fraction at 8 μm but no obvious link between IR8 and the 7.7 to 11.3 PAH ratio, suggesting that the fractional photodissociation region (PDR) emission, and not the overall grain properties, is associated with the rise in IR8 for galaxies off the starburst main sequence. We detect crystalline silicate features in ∼6% of the sample but only in the most obscure sources (s{sub 9.7{sub μm}} < –1.24). Ice absorption features are observed in ∼11% (56%) of GOALS LIRGs (ULIRGs) in sources with a range of silicate depths. Most GOALS LIRGs have L(H{sub 2})/L(PAH) ratios elevated above those observed for normal star-forming galaxies and exhibit a trend for increasing L(H{sub 2})/L

  15. Mid-infrared Properties of Luminous Infrared Galaxies. II. Probing the Dust and Gas Physics of the GOALS Sample

    NASA Astrophysics Data System (ADS)

    Stierwalt, S.; Armus, L.; Charmandaris, V.; Diaz-Santos, T.; Marshall, J.; Evans, A. S.; Haan, S.; Howell, J.; Iwasawa, K.; Kim, D. C.; Murphy, E. J.; Rich, J. A.; Spoon, H. W. W.; Inami, H.; Petric, A. O.; U, V.

    2014-08-01

    The Great Observatories All-sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here, we present the results of a multi-component, spectral decomposition analysis of the low-resolution mid-infrared (MIR) Spitzer Infrared Spectrograph spectra from 5-38 μm of 244 LIRG nuclei. The detailed fits and high-quality spectra allow for characterization of the individual polycyclic aromatic hydrocarbon (PAH) features, warm molecular hydrogen emission, and optical depths for both silicate dust grains and water ices. We find that starbursting LIRGs, which make up the majority of the GOALS sample, are very consistent in their MIR properties (i.e., τ9.7 μm, τice, neon line ratios, and PAH feature ratios). However, as their EQW6.2 μm decreases, usually an indicator of an increasingly dominant active galactic nucleus (AGN), LIRGs cover a larger spread in these MIR parameters. The contribution from PAH emission to the total IR luminosity (L(PAH)/L(IR)) in LIRGs varies from 2%-29% and LIRGs prior to their first encounter show significantly higher L(PAH)/L(IR) ratios on average. We observe a correlation between the strength of the starburst (represented by IR8 = L IR/L 8 μm) and the PAH fraction at 8 μm but no obvious link between IR8 and the 7.7 to 11.3 PAH ratio, suggesting that the fractional photodissociation region (PDR) emission, and not the overall grain properties, is associated with the rise in IR8 for galaxies off the starburst main sequence. We detect crystalline silicate features in ~6% of the sample but only in the most obscure sources (s 9.7 μm < -1.24). Ice absorption features are observed in ~11% (56%) of GOALS LIRGs (ULIRGs) in sources with a range of silicate depths. Most GOALS LIRGs have L(H2)/L(PAH) ratios elevated above those observed for normal star-forming galaxies and exhibit a trend for increasing L(H2)/L(PAH) ratio with increasing L(H2). While star formation appears to be the

  16. Using narrow-band J-PAS photometry to assess the properties of the stellar population in galaxies

    NASA Astrophysics Data System (ADS)

    Bruzual, Gustavo; Mejia-Narvaez, Alfredo; Magris C., Gladis

    2015-08-01

    We study the uncertainties and biases on the properties of the stellar population content of galaxies retrieved from narrow-band (J-PAS) photometry using the non-parametric method of spectral fitting dubbed DynBaS. We construct a star formation history library à la Chen et al. (2012), and then SED-fit a selection of synthetic spectra with observational properties similar to SDSS galaxies. We confront the results obtained from the photometric fits to those obtained from spectroscopic data for synthetic and real galaxies at various redshift ranges. Since no assumption on the star formation history is made, the so called template mismatch biases are naturally overcome. We find that biases in our estimations are the consequence of the several degeneracies between mass, age, metallicity, and internal dust extinction present in galaxy properties.

  17. Properties of submillimeter galaxies in the CANDELS-S goods-south field

    SciTech Connect

    Wiklind, Tommy; Dahlen, Tomas; Ferguson, Henry C.; Grogin, Norman A.; Koekemoer, Anton M.; Dickinson, Mark E.; Guo, Yicheng; Barro, Guillermo; Fontana, Adriano; Castellano, Marco; Davé, Romeel; Yan, Haojing; Acquaviva, Viviana; Ashby, Matthew L. N.; Caputi, Karina I.; Dekel, Avishai; Donley, Jennifer L.; and others

    2014-04-20

    We derive physical properties of 10 submillimeter galaxies located in the CANDELS coverage of the GOODS-S field. The galaxies were first identified as submillimeter sources with the LABOCA bolometer and subsequently targeted for 870 μm continuum observation with ALMA. The high angular resolution of the ALMA imaging allows secure counterparts to be identified in the CANDELS multiband data set. The CANDELS data provide deep photometric data from UV through near-infrared wavelengths. Using synthetic spectral energy distributions, we derive photometric redshifts, stellar masses, extinction, ages, and the star formation history. The redshift range is z = 1.65-4.76, with two of the galaxies located at z > 4. Two submillimeter galaxy (SMG) counterparts have stellar masses 2-3 orders of magnitude lower than the rest. The remaining SMG counterparts have stellar masses around 1 × 10{sup 11} M {sub ☉}. The stellar population in the SMGs is typically older than the expected duration of the submillimeter phase, suggesting that the star formation history of SMGs is more complex than a single burst. Non-parametric morphology indices suggest that the SMG counterparts are among the most asymmetric systems compared with galaxies of the same stellar mass and redshift. The Hubble Space Telescope images show that three of the SMGs are associated with ongoing mergers. The remaining counterparts are isolated. Estimating the dust and molecular gas mass from the submillimeter fluxes, and comparing with our stellar masses shows that the gas mass fraction of SMGs is ∼28% and that the final stellar mass is likely to be ∼(1-2) × 10{sup 11} M {sub ☉}.

  18. Photometric properties and scaling relations of early-type Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Liu, F. S.; Xia, X. Y.; Mao, Shude; Wu, Hong; Deng, Z. G.

    2008-03-01

    We investigate the photometric properties of the early-type Brightest Cluster Galaxies (BCGs) using a carefully selected sample of 85 BCGs from the C4 cluster catalogue with a redshift of less than 0.1. We perform accurate background subtractions and surface photometry for these BCGs to 25magarcsec-2 in the Sloan r band. By quantitatively analysing the gradient of the Petrosian profiles of BCGs, we find that a large fraction of BCGs have extended stellar envelopes in their outskirts; more luminous BCGs tend to have more extended stellar haloes that are likely to be connected with mergers. A comparison sample of elliptical galaxies was chosen with similar apparent magnitude and redshift ranges, for which the same photometric analysis procedure is applied. We find that BCGs have steeper size-luminosity (R ~ Lα) and Faber-Jackson (L ~ σβ) relations than the bulk of early-type galaxies. Furthermore, the power-law indices (α and β) in these relations increase as the isophotal limits become deeper. For isophotal limits from 22 to 25magarcsec-2, BCGs are usually larger than the bulk of early-type galaxies, and a large fraction (~49 per cent) of BCGs have discy isophotal shapes. The differences in the scaling relations are consistent with a scenario where the dynamical structure and formation route of BCGs may be different from the bulk of early-type galaxies; in particular dry (dissipationless) mergers may play a more important role in their formation. We highlight several possible dry merger candidates in our sample.

  19. Galaxy and mass assembly (GAMA): Mid-infrared properties and empirical relations from WISE

    SciTech Connect

    Cluver, M. E.; Jarrett, T. H.; Hopkins, A. M.; Gunawardhana, M. L. P.; Bauer, A. E.; Lara-López, M. A.; Driver, S. P.; Robotham, A. S. G.; Liske, J.; Taylor, E. N.; Alpaslan, M.; Baldry, I.; Brown, M. J. I.; Peacock, J. A.; Popescu, C. C.; Tuffs, R. J.; Bland-Hawthorn, J.; Colless, M.; Holwerda, B. W.; Leschinski, K.; and others

    2014-02-20

    The Galaxy And Mass Assembly (GAMA) survey furnishes a deep redshift catalog that, when combined with the Wide-field Infrared Survey Explorer (WISE), allows us to explore for the first time the mid-infrared properties of >110, 000 galaxies over 120 deg{sup 2} to z ≅ 0.5. In this paper we detail the procedure for producing the matched GAMA-WISE catalog for the G12 and G15 fields, in particular characterizing and measuring resolved sources; the complete catalogs for all three GAMA equatorial fields will be made available through the GAMA public releases. The wealth of multiwavelength photometry and optical spectroscopy allows us to explore empirical relations between optically determined stellar mass (derived from synthetic stellar population models) and 3.4 μm and 4.6 μm WISE measurements. Similarly dust-corrected Hα-derived star formation rates can be compared to 12 μm and 22 μm luminosities to quantify correlations that can be applied to large samples to z < 0.5. To illustrate the applications of these relations, we use the 12 μm star formation prescription to investigate the behavior of specific star formation within the GAMA-WISE sample and underscore the ability of WISE to detect star-forming systems at z ∼ 0.5. Within galaxy groups (determined by a sophisticated friends-of-friends scheme), results suggest that galaxies with a neighbor within 100 h {sup –1} kpc have, on average, lower specific star formation rates than typical GAMA galaxies with the same stellar mass.

  20. Physical properties of low-mass star-forming galaxies at intermediate redshifts (z <1)

    NASA Astrophysics Data System (ADS)

    Gallego, J.; Rodríguez-Muñoz, L.; Pacifici, C.; Tresse, L.; Charlot, S.; Gil de Paz, A.; Barro, G.; Villar, V.

    2015-05-01

    In this poster we present the physical properties of a sample of low-mass star-forming galaxies at intermediate redshifts (z<1). We selected a population of dwarf galaxies because dwarf galaxies play a key role in galaxy formation and evolution: (1) they resemble the first structures that hierarchical models predict to form first in the Universe (Dekel & Silk 1986) and that are responsible for the reionization process (Bouwens et al. 2012); and (2) the way or epoch they form and how they evolve are still open questions of modern astrophysics. We selected the sample on the CDFS field. Photometry (40 bands, from UV to far-IR) and preliminary photometric redshifts and stellar masses were obtained from RAINBOW database (Pérez-González et al. 2008). Morphology fom Griffith et al. (2012). Main selection was done by stellar mass, selecting those galaxies with stellar mass M_*<10^8 {M}_⊙. Spectroscopic redshifts were obtained from deep (4 h) MOS spectroscopy with the VIMOS spectrograph at VLT. The average spectrum is characterized by a faint, blue and flat continuum and strong emission lines, revealing that the systems are dominated by an undergoing star formation burst. SFRs and stellar masses are consistent with the SF main-squence over a 2 dex range. More massive objects show higher SFRs than low-mass objects, following the SF main sequence. Distant dwarfs and BCDs follow the overall star-forming sequence in the excitation-luminosity diagram, populating the high excitation, low metallicity and high strength region.

  1. Morphology and Molecular Gas Fractions of Local Luminous Infrared Galaxies as a Function of Infrared Luminosity and Merger Stage

    NASA Astrophysics Data System (ADS)

    Larson, K. L.; Sanders, D. B.; Barnes, J. E.; Ishida, C. M.; Evans, A. S.; U, V.; Mazzarella, J. M.; Kim, D.-C.; Privon, G. C.; Mirabel, I. F.; Flewelling, H. A.

    2016-07-01

    We present a new, detailed analysis of the morphologies and molecular gas fractions (MGFs) for a complete sample of 65 local luminous infrared galaxies from Great Observatories All-Sky Luminous Infrared Galaxies (LIRG) Survey using high resolution I-band images from The Hubble Space Telescope, the University of Hawaii 2.2 m Telescope and the Pan-STARRS1 Survey. Our classification scheme includes single undisturbed galaxies, minor mergers, and major mergers, with the latter divided into five distinct stages from pre-first pericenter passage to final nuclear coalescence. We find that major mergers of molecular gas-rich spirals clearly play a major role for all sources with {L}{IR}\\gt {10}11.5{L}ȯ ; however, below this luminosity threshold, minor mergers and secular processes dominate. Additionally, galaxies do not reach {L}{IR}\\gt {10}12.0{L}ȯ until late in the merger process when both disks are near final coalescence. The mean MGF ({MGF} = {M}{{{H}}2}/({M}* +{M}{{{H}}2})) for non-interacting and early-stage major merger LIRGs is 18 ± 2%, which increases to 33 ± 3%, for intermediate stage major merger LIRGs, consistent with the hypothesis that, during the early-mid stages of major mergers, most of the initial large reservoir of atomic gas (HI) at large galactocentric radii is swept inward where it is converted into molecular gas (H2).

  2. The merger fraction of active and inactive galaxies in the local Universe through an improved non-parametric classification

    NASA Astrophysics Data System (ADS)

    Cotini, Stefano; Ripamonti, Emanuele; Caccianiga, Alessandro; Colpi, Monica; Della Ceca, Roberto; Mapelli, Michela; Severgnini, Paola; Segreto, Alberto

    2013-05-01

    We investigate the possible link between mergers and the enhanced activity of supermassive black holes (SMBHs) at the centre of galaxies, by comparing the merger fraction of a local sample (0.003 ≤ z < 0.03) of active galaxies - 59 active galactic nuclei host galaxies selected from the All-Sky Swift Burst Alert Telescope (BAT) Survey - with an appropriate control sample (247 sources extracted from the HyperLeda catalogue) that has the same redshift distribution as the BAT sample. We detect the interacting systems in the two samples on the basis of non-parametric structural indexes of concentration (C), asymmetry (A), clumpiness (S), Gini coefficient (G) and second-order momentum of light (M20). In particular, we propose a new morphological criterion, based on a combination of all these indexes, that improves the identification of interacting systems. We also present a new software - PyCASSo (PYTHON CAS software) - for the automatic computation of the structural indexes. After correcting for the completeness and reliability of the method, we find that the fraction of interacting galaxies among the active population (20{^{+ 7}_{- 5}} per cent) exceeds the merger fraction of the control sample (4{^{+ 1.7}_{- 1.2}} per cent). Choosing a mass-matched control sample leads to equivalent results, although with slightly lower statistical significance. Our findings support the scenario in which mergers trigger the nuclear activity of SMBHs.

  3. Dissecting the Quasar Main Sequence: Insight from Host Galaxy Properties

    NASA Astrophysics Data System (ADS)

    Sun, Jiayi; Shen, Yue

    2015-05-01

    The diverse properties of broad-line quasars appear to follow a well-defined main sequence along which the optical Fe ii strength increases. It has been suggested that this sequence is mainly driven by the Eddington ratio (L/LEdd) of the black hole (BH) accretion. Shen & Ho demonstrated with quasar clustering analysis that the average BH mass decreases with increasing Fe ii strength when quasar luminosity is fixed, consistent with this suggestion. Here we perform an independent test by measuring the stellar velocity dispersion σ* (hence, the BH mass via the M-σ* relation) from decomposed host spectra in low-redshift Sloan Digital Sky Survey quasars. We found that at fixed quasar luminosity, σ* systematically decreases with increasing Fe ii strength, confirming that the Eddington ratio increases with Fe ii strength. We also found that at fixed luminosity and Fe ii strength, there is little dependence of σ* on the broad Hβ FWHM. These new results reinforce the framework that the Eddington ratio and orientation govern most of the diversity seen in broad-line quasar properties.

  4. DISSECTING THE QUASAR MAIN SEQUENCE: INSIGHT FROM HOST GALAXY PROPERTIES

    SciTech Connect

    Sun, Jiayi; Shen, Yue

    2015-05-01

    The diverse properties of broad-line quasars appear to follow a well-defined main sequence along which the optical Fe ii strength increases. It has been suggested that this sequence is mainly driven by the Eddington ratio (L/L{sub Edd}) of the black hole (BH) accretion. Shen and Ho demonstrated with quasar clustering analysis that the average BH mass decreases with increasing Fe ii strength when quasar luminosity is fixed, consistent with this suggestion. Here we perform an independent test by measuring the stellar velocity dispersion σ{sub *} (hence, the BH mass via the M–σ{sub *} relation) from decomposed host spectra in low-redshift Sloan Digital Sky Survey quasars. We found that at fixed quasar luminosity, σ{sub *} systematically decreases with increasing Fe ii strength, confirming that the Eddington ratio increases with Fe ii strength. We also found that at fixed luminosity and Fe ii strength, there is little dependence of σ{sub *} on the broad Hβ FWHM. These new results reinforce the framework that the Eddington ratio and orientation govern most of the diversity seen in broad-line quasar properties.

  5. Exploring the Dependence of Galaxy Properties on Group Halo Environment in RESOLVE

    NASA Astrophysics Data System (ADS)

    Baker, Ashley; Berlind, A. A.; Kannappan, S.; Moffett, A. J.; RESOLVE Team

    2014-01-01

    We discuss the development of a new halo mass metric based on group dynamics for the RESOLVE survey as well as its application to understanding the dependence of galaxy properties on environment. Methods and parameters for group finding and calculating dynamical mass are optimized on a mock catalog with similar redshift range to RESOLVE. We also develop additional metrics of the evolutionary state of the group. These methods are applied to a sample of galaxies in the B-semester footprint of the RESOLVE survey, which overlaps with SDSS Stripe 82, as well as the ECO catalog, a larger volume-limited survey that encloses the A-semester footprint of RESOLVE. Using both dynamical halo mass and halo evolutionary state to quantify environment, we study