Science.gov

Sample records for local group galaxy

  1. Local Group Galaxy Emission-line Survey

    NASA Astrophysics Data System (ADS)

    Blaha, Cindy; Baildon, Taylor; Mehta, Shail; Garcia, Edgar; Massey, Philip; Hodge, Paul W.

    2015-01-01

    We present the results of the Local Group Galaxy Emission-line Survey of Hα emission regions in M31, M33 and seven dwarf galaxies in (NGC6822, IC10, WLM, Sextans A and B, Phoenix and Pegasus). Using data from the Local Group Galaxy Survey (LGGS - see Massey et al, 2006), we used continuum-subtracted Ha emission line images to define emission regions with a faint flux limit of 10 -17 ergs-sec-1-cm-2above the background. We have obtained photometric measurements for roughly 7450 Hα emission regions in M31, M33 and five of the seven dwarf galaxies (no regions for Phoenix or Pegasus). Using these regions, with boundaries defined by Hα-emission flux limits, we also measured fluxes for the continuum-subtracted [OIII] and [SII] images and constructed a catalog of Hα fluxes, region sizes and [OIII]/ Hα and [SII]/ Hα line ratios. The HII region luminosity functions and size distributions for the spiral galaxies M31 and M33 are compared with those of the dwarf galaxies NGC 6822 and IC10. For M31 and M33, the average [SII]/ Hα and [OIII]/ Hα line ratios, plotted as a function of galactocentric radius, display a linear trend with shallow slopes consistent with other studies of metallicity gradients in these galaxies. The galaxy-wide averages of [SII]/ Hα line ratios correlate with the masses of the dwarf galaxies following the previously established dwarf galaxy mass-metallicity relationship. The slope of the luminosity functions for the dwarf galaxies varies with galaxy mass. The Carleton Catalog of this Local Group Emission-line Survey will be made available on-line.

  2. Reddening and Absorption Through Local Group Galaxies

    NASA Astrophysics Data System (ADS)

    Hodge, Paul

    1997-07-01

    This project involves a photometric study of galaxies seen through the bodies of several Local Group galaxies. The high resolution of WFPC2 images will be used with automated techniques to identify galaxies at various magnitude limits. For three different magnitude regimes we will use three different techniques for studying the optical effects of the dust content: 1} for the brighter galaxies the integrated colors will be determined and compared to those of similar Hubble types in the field, which follow a fairly narrow color- type relationship; 2} for a selection of galaxies that goes to somewhat fainter limits, we will be able to measure magnitudes in three colors, allowing us to determine reddening by comparison with the field galaxy color-color relations; and 3} the identified galaxies of all brightnesses will be counted, using automated techniques, and the counts will be compared to galaxy densities in the field. The goal is a map of the TOTAL extinction and reddening through the Local Group galaxies, which can be compared to maps of the HI, molecular gas and infrared radiation, so that astrophysical conclusions can be made.

  3. Neutral Hydrogen in Local Group Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Grcevich, Jana

    The gas content of the faintest and lowest mass dwarf galaxies provide means to study the evolution of these unique objects. The evolutionary histories of low mass dwarf galaxies are interesting in their own right, but may also provide insight into fundamental cosmological problems. These include the nature of dark matter, the disagreement between the number of observed Local Group dwarf galaxies and that predicted by lambda cold dark matter models, and the discrepancy between the observed census of baryonic matter in the Milky Way's environment and theoretical predictions. This thesis explores these questions by studying the neutral hydrogen (HI) component of dwarf galaxies. First, limits on the HI mass of the ultra-faint dwarfs are presented, and the HI content of all Local Group dwarf galaxies is examined from an environmental standpoint. We find that those Local Group dwarfs within 270 kpc of a massive host galaxy are deficient in HI as compared to those at larger galactocentric distances. Ram-pressure arguments are invoked, which suggest halo densities greater than 2-3 x 10-4 cm-3 out to distances of at least 70 kpc, values which are consistent with theoretical models and suggest the halo may harbor a large fraction of the host galaxy's baryons. We also find that accounting for the incompleteness of the dwarf galaxy count, known dwarf galaxies whose gas has been removed could have provided at most 2.1 x 108 M⊙ of HI gas to the Milky Way. Second, we examine the possibility of discovering unknown gas-rich ultra-faint galaxies in the Local Group using HI. The GALFA-HI Survey catalog is searched for compact, isolated HI clouds which are most similar to the expected HI characteristics of low mass dwarf galaxies. Fifty-one Local Group dwarf galaxy candidates are identified through column density, brightness temperature, and kinematic selection criteria, and their properties are explored. Third, we present hydrodynamic simulations of dwarf galaxies experiencing a

  4. Stellar halos around Local Group galaxies

    NASA Astrophysics Data System (ADS)

    McConnachie, Alan W.

    2016-08-01

    The Local Group is now home to 102 known galaxies and candidates, with many new faint galaxies continuing to be discovered. The total stellar mass range spanned by this population covers a factor of close to a billion, from the faintest systems with stellar masses of order a few thousand to the Milky Way and Andromeda, with stellar masses of order 1011 M ⊙. Here, I discuss the evidence for stellar halos surrounding Local Group galaxies spanning from dwarf scales (with the case of the Andromeda II dwarf spheroidal), though to intermediate mass systems (M33) and finishing with M31. Evidence of extended stellar populations and merging is seen across the luminosity function, indicating that the processes that lead to halo formation are common at all mass scales.

  5. The Local Group and Other Neighboring Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Karachentsev, I. D.

    2005-01-01

    Over the last few years, rapid progress has been made in distance measurements for nearby galaxies based on the magnitude of stars on the tip of the red giant branch. Current CCD surveys with the Hubble Space Telescope (HST) and large ground-based telescopes bring ~10% accurate distances for roughly a hundred galaxies within 5 Mpc. The new data on distances to galaxies situated in (and around) the nearest groups-the Local Group, M81 Group, Cen A/M83 Group, IC 342/Maffei Group, Sculptor filament, and Canes Venatici cloud-allowed us to determine their total mass from the radius of the zero-velocity surface, R0, which separates a group as bound against the homogeneous cosmic expansion. The values of R0 for the virialized groups turn out to be close each other, in the range of 0.9-1.3 Mpc. As a result, the total masses of the groups are close to each other, as well, yielding total mass to blue luminosity ratios of 10-40 Msolar L-1solar. The new total mass estimates are 3-5 times lower than old virial mass estimates of these groups. Because about half of galaxies in the Local volume belong to such loose groups, the revision of the amount of dark matter (DM) leads to a low local density of matter, Ωm~=0.04, which is comparable with the global baryonic fraction Ωb but much lower than the global density of matter, Ωm=0.27. To remove the discrepancy between the global and local quantities of Ωm, we assume the existence of two different DM components: (1) compact dark halos around individual galaxies and (2) a nonbaryonic dark matter ``ocean'' with ΩDM1~=0.07 and ΩDM2~=0.20, respectively. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  6. Local Group dwarf galaxies: nature and nurture

    NASA Astrophysics Data System (ADS)

    Sawala, Till; Scannapieco, Cecilia; White, Simon

    2012-02-01

    We investigate the formation and evolution of dwarf galaxies in a high-resolution, hydrodynamical cosmological simulation of a Milky Way sized halo and its environment. Our simulation includes gas cooling, star formation, supernova feedback, metal enrichment and ultraviolet heating. In total, 90 satellites and more than 400 isolated dwarf galaxies are formed in the simulation, allowing a systematic study of the internal and environmental processes that determine their evolution. We find that 95 per cent of satellite galaxies are gas free at z= 0, and identify three mechanisms for gas loss: supernova feedback, tidal stripping and photoevaporation due to re-ionization. Gas-rich satellite galaxies are only found with total masses above ˜5 × 109 M⊙. In contrast, for isolated dwarf galaxies, a total mass of ˜109 M⊙ constitutes a sharp transition; less massive galaxies are predominantly gas free at z= 0, more massive, isolated dwarf galaxies are often able to retain their gas. In general, we find that the total mass of a dwarf galaxy is the main factor which determines its star formation, metal enrichment and its gas content, but that stripping may explain the observed difference in gas content between field dwarf galaxies and satellites with total masses close to 109 M⊙. We also find that a morphological transformation via tidal stripping of infalling, luminous dwarf galaxies whose dark matter is less concentrated than their stars cannot explain the high total mass-to-light ratios of the faint dwarf spheroidal galaxies.

  7. Massive stars in the galaxies of the Local Group

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    2013-07-01

    The star-forming galaxies of the Local Group act as our laboratories for testing massive star evolutionary models. In this review, I briefly summarize what we believe we know about massive star evolution, and the connection between OB stars, Luminous Blue Variables, yellow supergiants, red supergiants, and Wolf-Rayet stars. The difficulties and recent successes in identifying these various types of massive stars in the neighboring galaxies of the Local Group will be discussed.

  8. Evolution of dwarf galaxy properties in local group environments

    NASA Astrophysics Data System (ADS)

    Arraki, Kenza Sigrid

    galaxy. We found that the inclusion of these relevant physical processes aligned the velocity functions and star formation histories of the dwarf galaxy populations closer to observations of the Local Group dwarf galaxies. By reproducing observations of dwarf galaxies we show how the inclusion of baryons in simulations relieves many of the discovered tensions between dark matter-only simulations and observations.

  9. HII regions in dwarf irregular galaxies of the local group

    NASA Technical Reports Server (NTRS)

    Hodge, Paul; Lee, Myung Gyoon

    1990-01-01

    Deep, narrowband H alpha Charge Coupled Device (CCD) surveys of HII regions were carried out in several dwarf irregular galaxies in and near the local group. Data are now complete for these galaxies: NGC 6822, GR 8, IC 10, IC 1613, Sextans A, Sextans B, and Sag Irr. Observations are complete for DDO 47, 53, 167, 168 and 187. Details of some of the results for the surveys completed so far are discussed. For NGC 6822, CCD survey at H alpha resulted in the detection of 145 HII regions in the local group irregular galaxy NGC 6822. Most of them are newly detected, faint surface-brightness objects. Positions, maps and dimensions are being published elsewhere. For GR 8, a deep narrowband H alpha imaging of the nearby dwarf irregular galaxy GR 8 revealed a total of 32 HII regions. Positions, H alpha luminosities, and sizes of these objects were determined. The H alpha luminosity function has the same shape as that for more luminous galaxies, except for size of sample effects. Most HII regions detected are at the very low luminosity end of the general luminosity function. For IC 10, a deep CCD narrowband H alpha imaging of the local group dwarf irregular galaxy IC 10 revealed a total of 144 HII regions. Positions, H alpha luminosities, and sizes of these objects were determined. The H alpha luminosity function has the same shape as that for more luminous galaxies.

  10. Dust Production in Local Group Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Zijlstra, Albert; Sloan, Greg; Bernard-Salas, Jeronimo; Blommaert, Joris A. D. L.; Cioni, Maria-Rosa; Devost, Daniel; Feast, Michael W.; Groenewegen, Martin A. T.; Habing, Harm; Hony, Sacha; Lagadec, Eric; Loup, Cecile; Matsuura, Mikako; Menzies, John W.; Sloan, Greg C.; Waters, L. B. F. M.; Whitelock, Patricia A.; Wood, Peter R.; van Loon, Jacco Th.

    2006-05-01

    The superwind phase on the Asymptotic Giant Branch is a crucial ingredient of stellar and galactic evolution. The superwind ejecta are responsible for much of the interstellar hydrogen of evolved galaxies, and are a dominant contributor to the dust input into the ISM. The superwind determines the final mass of stellar remnants, and therefore affects, e.g., the type-I supernova rate. The characteristics of the superwind are still very poorly known, especially at non-solar metallicities. Spitzer has contributed a large and invaluable dataset on Magellanic Cloud stars, measuring dust, molecular bands and allowing accurate mass-loss measurements. We now propose to extend the (age, metallicity) parameter range by observing a number of other Milky Way satellites. The carbon stars in these galaxies trace an older population than the Magellanic Clouds, and extend to much lower metallicities. They are therefore crucial to allow us to extrapolate the Magellanic Cloud measurements to metal-poor environments. We propose to acquire low-resolution spectra of stars in the Sagittarius dwarf galaxy, Carina, Sculptor and Fornax. The selected stars range in metallicity from -0.55 to -2.0, and in age from 5-8 Gyr. Two low-metallicity planetary nebulae in these galaxies are also included. We will study the dust continuum, dust minerals (SiC, MgS) and gas-phase molecular bands (especially acetylene). Mass loss rates will be determined using our dust models, and we will measure the fractional abundances of amorphous carbon dust and SiC grains. Only Spitzer can provide these crucial measurements of extra-galactic AGB stars. The result will be our first knowledge of mass loss efficiency, dust formation, and dust abundances, at low to very low metallicities. These data are necessary to obtain reliable models of mass loss and of stellar evolution.

  11. Chemical abundances of massive stars in Local Group galaxies

    NASA Astrophysics Data System (ADS)

    Venn, Kim A.; Kaufer, Andreas; Tolstoy, Eline; Kudritzki, Rolf-Peter; Przybilla, Norbert; Smartt, Stephen J.; Lennon, Daniel J.

    The relative abundances of elements in galaxies can provide valuable information on the stellar and chemical evolution of a galaxy. While nebulae can provide abundances for a variety of light elements, stars are the only way to directly determine the abundances of iron-group and s-process and r-process elements in a galaxy. The new 8m and 10m class telescopes and high-efficiency spectrographs now make high-quality spectral observations of bright supergiants possible in dwarf galaxies in the Local Group. We have been concentrating on elemental abundances in the metal-poor dwarf irregular galaxies, NGC 6822, WLM, Sextants A, and GR 8. Comparing abundance ratios to those predicted from their star formation histories, determined from color-magnitude diagrams, and comparing those ratios between these galaxies can give us new insights into the evolution of these dwarf irregular galaxies. Iron-group abundances also allow us to examine the metallicities of the stars in these galaxies directly, which affects their inferred mass loss rates and predicted stellar evolution properties.

  12. The Origin of the Galaxy and Local Group

    NASA Astrophysics Data System (ADS)

    Bland-Hawthorn, Joss; Freeman, Ken; Matteucci, Francesca

    This volume contains the updated and expanded lecture notes of the 37th Saas-Fee Advanced Course organised by the Swiss Society for Astrophysics and Astronomy. It offers the most comprehensive and up to date review of one of the hottest research topics in astrophysics - how our Milky Way galaxy formed. Joss Bland-Hawthorn & Ken Freeman lectured on Near Field Cosmology - The Origin of the Galaxy and the Local Group. Francesca Matteucci's chapter is on Chemical evolution of the Milky Way and its Satellites. As designed by the SSAA, books in this series - and this one too - are targeted at graduate and PhD students and young researchers in astronomy, astrophysics and cosmology. Lecturers and researchers entering the field will also benefit from the book. *%K Physics, Astrophysics, Near Field Cosmology, Galaxy, Local Group *%O Milky Way

  13. How Typical Are the Local Group Dwarf Galaxies?

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Dolphin, Andrew E.; Dalcanton, Julianne J.; Skillman, Evan D.; Holtzman, Jon; Williams, Benjamin F.; Gilbert, Karoline M.; Seth, Anil C.; Cole, Andrew; Gogarten, Stephanie M.; Rosema, Keith; Karachentsev, Igor D.; McQuinn, Kristen B. W.; Zaritsky, Dennis

    2011-12-01

    We compare the cumulative star formation histories (SFHs) of Local Group (LG) dwarf galaxies with those in the volume-limited ACS Nearby Galaxy Survey Treasury (ANGST) sample (D <~ 4 Mpc), in order to understand how typical the LG dwarf galaxies are relative to those in the nearby universe. The SFHs were derived in a uniform manner from high-quality optical color-magnitude diagrams constructed from Hubble Space Telescope imaging. We find that the mean cumulative SFHs of the LG dwarfs are comparable to the mean cumulative SFHs of the ANGST sample for the three different morphological types (dwarf spheroidals/ellipticals: dSph/dE; dwarf irregulars: dI; transition dwarfs: dTrans). We also discuss effects such as population gradients and systematic uncertainties in the stellar models that may influence the derived SFHs. Both the ANGST and LG dwarf galaxies show a consistent and strong morphology-density relationship, emphasizing the importance of environment in the evolution of dwarf galaxies. Specifically, we confirm that dIs are found at lower densities and higher luminosities than dSphs, within this large sample. We also find that dTrans are located in similar environments to those occupied by dwarf irregular galaxies, but have systematically lower luminosities that are more comparable to those of dwarf spheroidals. The similarity of the SFHs and morphology-density relationships of the LG and ANGST dwarf galaxies suggests that the LG dwarfs are a good representation of dwarf galaxies in the local universe. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  14. The formation of Local Group planes of galaxies

    NASA Astrophysics Data System (ADS)

    Shaya, Ed J.; Tully, R. Brent

    2013-12-01

    The confinement of most satellite galaxies in the Local Group to thin planes presents a challenge to the theory of hierarchical galaxy clustering. The Pan-Andromeda Archaeological Survey (PAndAS) collaboration has identified a particularly thin configuration with kinematic coherence among companions of M31 and there have been long-standing claims that the dwarf companions to the Milky Way lie in a plane roughly orthogonal to the disc of our galaxy. This discussion investigates the possible origins of four Local Group planes: the plane similar, but not identical to that identified by the PAndAS collaboration, an adjacent slightly tilted plane and two planes in the vicinity of the Milky Way: one with very nearby galaxies and the other with more distant ones. Plausible orbits are found by using a combination of Numerical Action methods and a backward in time integration procedure. This investigation assumes that the companion galaxies formed at an early time in accordance with the standard cosmological model. For M31, M33, IC10 and Leo I, solutions are found that are consistent with measurements of their proper motions. For galaxies in planes, there must be commonalities in their proper motions, and this constraint greatly limits the number of physically plausible solutions. Key to the formation of the planar structures has been the evacuation of the Local Void and consequent build-up of the Local Sheet, a wall of this void. Most of the M31 companion galaxies were born in early-forming filamentary or sheet-like substrata that chased M31 out of the void. M31 is a moving target because of its attraction towards the Milky Way, and the result has been alignments stretched towards our galaxy. In the case of the configuration around the Milky Way, it appears that our galaxy was in a three-way competition for companions with M31 and Centaurus A. Only those within a modest band fell our way. The Milky Way's attraction towards the Virgo Cluster resulted in alignment along the

  15. Neutral Gas Outside the Disks of Local Group Galaxies

    NASA Astrophysics Data System (ADS)

    Lockman, Felix J.

    2017-03-01

    Of the three kinds of neutral gas found outside the stellar disks of Local Group galaxies, only the products of interaction, like the Magellanic Stream, have a clearly understandable origin. Both the high-velocity clouds and the faint H I between M31 and M33 remain a mystery. New observations of the region between M31 and M33 with the Green Bank Telescope show that the H I there resides in clouds with a size and mass similar to that of dwarf galaxies, but without stars. These clouds might be products of an interaction, or condensations in the hot circumgalactic medium of M31, but both these models have difficulties. The prevalence of clouds like this in the Local Group remains to be determined.

  16. Planetary nebulae in the Magellanic Clouds and Local Group galaxies

    NASA Astrophysics Data System (ADS)

    Reid, Warren A.

    2012-08-01

    The Magellanic Clouds are close enough to the Milky Way to provide an excellent environment in which to study extragalactic PNe. Most of these PNe are bright enough to be spectroscopically observed and spatially resolved. With the latest high resolution detectors on today's large telescopes it is even possible to directly observe a large number of central stars. Magellanic Cloud (MC) PNe provide several astrophysical benefits including low overall extinction and a good sample size covering a large range of dynamic evolutionary timescales while the known distances provide a direct estimation of luminosity and physical dimensions. Multi-wavelength surveys are revealing intriguing differences between MC and Galactic PNe. Over the past 5 years there has been a substantial increase in the number of PNe discovered in the Large Magellanic Cloud (LMC) in particular. Deep surveys have allowed the faint end of the luminosity function to be investigated, finally providing a strong clue to its overall shape. In so doing, the surveys are approaching completeness, estimated at ~80% in the LMC (~120 deg2) and ~65% in the Small Magellanic Cloud (SMC) (~20 deg2). The number of galaxies comprising the Local Group (LG) and its outskirts has been growing steadily over the past 5 years and now numbers 48. Most of the 7 newly discovered galaxies are dwarf spheroidal (dSph) in structure and range from 7.6 to 755 kpc from the Milky Way. Nonetheless, there are no published searches for PNe in any of these galaxies to date. Apart from the LMC and Milky Way, the number of PN discoveries has been very modest and only one additional LG galaxy has been surveyed for PNe over the past 5 years. This paper provides the number of Local Group PNe currently known and estimates each galaxy's total PN population.

  17. Galex Catalog And Atlas Of Our Local Group Of Galaxies

    NASA Astrophysics Data System (ADS)

    Madore, Barry

    The NASA Galaxy Evolution Explorer (GALEX) mission contains the most comprehensive collection of ultraviolet imaging of Local Group galaxies likely to exist for decades. Unfortunately, this impressive resource will be under-utilized because the standard GALEX pipeline and source catalogs are not designed to properly measure point sources in crowded fields. We propose to solve this problem and unlock this great wealth of data obtained by NASA by constructing the GALEX Catalog and Atlas of Our Local Group Galaxies which shall include 49 GALEX observed Local Group members within 1.5 Mpc including the Large and Small Magellanic Clouds in their entirety. The PSF- fitting photometry method has already been tested and increases the number of detected point sources by 300% over the standard GALEX pipeline. Our catalogs will provide approximately 5-6 million point source measurements. We have also developed a novel method for producing wide field background-balanced mosaics of GALEX data. This has already been implemented for the Magellanic Clouds and the method will be applied to the other largest Local Group Members (M31 and M33). The Atlas images we produce will combine imaging data from all GALEX surveys to achieve maximum depth. Quality assurance of the images and catalogs will be done by the proposers in the course of undertaking a number of science-driven projects that require cross-matching the ultraviolet point sources of the Magellanic Clouds to similar resolution optical (MCPS) and infrared (SAGE) source catalogs. The Catalogs and Atlas (including the Magellanic Clouds cross-matched catalogs) will be made available to the astronomical community by providing them to the Mikulski Archive for Space Telescopes (MAST, the official GALEX archive) as a High Level Science Product as well as assimilated on an object-by- object basis into the NASA/IPAC Extragalactic Database (NED) and thereby made immediately accessible in VO-compatible format. This program will enhance

  18. Dark matter in the local group of galaxies

    NASA Astrophysics Data System (ADS)

    Morley, P. D.; Buettner, D. J.

    We describe the neutrino flavor (e = electron, μ = muon, τ = tau) masses as mi=e,μ,τ = m + Δmi with |Δmi| m < 1 and probably |Δmi| m ≪ 1. The quantity m is the degenerate neutrino mass. Because neutrino flavor is not a quantum number, this degenerate mass appears in the neutrino equation-of-state [P. D. Morley and D. J. Buettner, Int. J. Mod. Phys. D (2014), doi:10.1142/s0218271815500042.]. We apply a Monte Carlo computational physics technique to the Local Group (LG) of galaxies to determine an approximate location for a Dark Matter embedding Condensed Neutrino Object (CNO) [P. D. Morley and D. J. Buettner, Int. J. Mod. Phys. D (2016), doi:10.1142/s0218271816500899.]. The calculation is based on the rotational properties of the only spiral galaxies within the LG: M31, M33 and the Milky Way. CNOs could be the Dark Matter everyone is looking for and we estimate the CNO embedding the LG to have a mass 5.17 × 1015 M⊙ and a radius 1.316 Mpc, with the estimated value of m ≃ 0.8 eV/c2. The up-coming KATRIN experiment [https://www.katrin.kit.edu.] will either be the definitive result or eliminate condensed neutrinos as a Dark Matter candidate.

  19. THE PRESSURE PROFILES OF HOT GAS IN LOCAL GALAXY GROUPS

    SciTech Connect

    Sun, M.; Sarazin, C.; Sehgal, N.; Voit, G. M.; Donahue, M.; Jones, C.; Forman, W.; Vikhlinin, A.

    2011-02-01

    Recent measurements of the Sunyaev-Zel'dovich (SZ) angular power spectrum from the South Pole Telescope and the Atacama Cosmology Telescope demonstrate the importance of understanding baryon physics when using the SZ power spectrum to constrain cosmology. This is challenging since roughly half of the SZ power at l = 3000 is from low-mass systems with 10{sup 13} h {sup -1} M{sub sun} < M{sub 500} < 1.5 x 10{sup 14} h {sup -1} M{sub sun}, which are more difficult to study than systems of higher mass. We present a study of the thermal pressure content for a sample of local galaxy groups from Sun et al. The group Y{sub sph,500}-M{sub 500} relation agrees with the one for clusters derived by Arnaud et al. The group median pressure profile also agrees with the universal pressure profile for clusters derived by Arnaud et al. With this in mind, we briefly discuss several ways to alleviate the tension between the measured low SZ power and the predictions from SZ templates.

  20. Local Group

    NASA Astrophysics Data System (ADS)

    Mateo, M.; Murdin, P.

    2000-11-01

    Not long after EDWIN HUBBLE established that galaxies are `island universes' similar to our home galaxy, the MILKY WAY, he realized that a few of these external galaxies are considerably closer to us than any others. In 1936 he first coined the term `Local Group' in his famous book The Realm of the Nebulae to identify our nearest galactic neighbors. More than 60 yr later, the galaxies of the Loca...

  1. Resolving the Tip of the Red Giant Branch of Two New Candidate Local Group Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Tollerud, Erik

    2014-10-01

    We propose to use ACS/WFC to observe two faint dwarf galaxies recently discovered via their HI emission. Based on a blind HI search of 40 HI clumps from 7500 square degrees of the GALFA-HI survey, these two candidates are the only objects with optical counterparts. They show HI and Halpha emission consistent with nearby galaxies, and have blue stars that are barely resolved in ground-based optical imaging with good seeing. These resolved stars are consistent with the galaxies being at Local Group distances. If they are in the Local Group, these galaxies are both less luminous and more compact than the recently-discovered Leo P, also found first with HI observations. They may then also be the faintest known star-forming galaxies. The ground-based imaging leaves large distance uncertainty, however, because the tip of the red giant branch cannot be resolved. We propose one orbit per galaxy of ACS/WFC imaging in F606W and F814W to measure accurate TRGB distances and determine if they truly are Local Group galaxies. If so, these galaxies provide tests on both the efficacy of Lambda CDM in predicting the properties of dwarf galaxies in low density environments, and the lowest-luminosity data points on models of galaxy star formation.

  2. Strangers in the Night: Discovery of a Dwarf Spheroidal Galaxy on Its First Local Group Infall

    NASA Astrophysics Data System (ADS)

    Chapman, S. C.; Peñarrubia, J.; Ibata, R.; McConnachie, A.; Martin, N.; Irwin, M.; Blain, A.; Lewis, G. F.; Letarte, B.; Lo, K.; Ludlow, A.; O'neil, K.

    2007-06-01

    We present spectroscopic observations of the And XII dwarf spheroidal galaxy using DEIMOS/Keck II, showing it to be moving rapidly through the Local Group (-556 km s-1 heliocentric velocity, -281 km s-1 relative to Andromeda), falling into the Local Group from ~115 kpc beyond Andromeda's nucleus. And XII therefore represents a dwarf galaxy plausibly falling into the Local Group for the first time and never having experienced a dense galactic environment. From Green Bank Telescope observations, a limit on the H I gas mass of <3×103 Msolar suggests that And XII's gas could have been removed prior to experiencing the tides of the Local Group galaxies. Orbit models suggest that the dwarf is close to the escape velocity of M31 for published mass models. And XII is our best direct evidence for the late infall of satellite galaxies, a prediction of cosmological simulations.

  3. KPNO 0.9m H(alpha) Imaging Survey of ``Transforming Galaxies'' in Local Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Haines, Christopher; O'Sullivan, Ewan; Raychaudhury, Somak; Egami, Eiichi; Campusano, Luis

    2012-08-01

    We propose to use the KPNO 0.9-m telescope to obtain panoramic H(alpha) imaging of ~135 galaxies in ten nearby galaxy groups (60- 80 Mpc) from the Complete Local-Volume Groups Sample (CLoGS). In rich clusters ram-pressure stripping has been shown to be very effective at removing the gas contents and quenching star formation in infalling spiral galaxies. It is much less clear how galaxies are affected by the much lower ram pressures found in galaxy groups, or if other environmental processes begin to dominate. Given that >50% of galaxies in the local volume reside in groups, it is vital that we gain new insights into which mechanisms drive the SFR-density relation in groups. The proposed H(alpha) imaging will allow us to resolve where star-formation is occurring in each galaxy. This can effectively discriminate between ram-pressure stripping characterized by truncated H(alpha) disks, the much gentler starvation mechanism which produces anemic spirals, and nuclear starbursts triggered by low-velocity encounters and mergers which should be most frequent in groups.

  4. KPNO 0.9m H(alpha) Imaging Survey of ``Transforming Galaxies" in Local Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Haines, Christopher; O'Sullivan, Ewan; Raychaudhury, Somak; Gargiulo, Adriana; Campusano, Luis

    2012-02-01

    We propose to use the KPNO 0.9-m telescope to obtain panoramic H(alpha) imaging of ~200 galaxies in two nearby (32, 35 Mpc) galaxy groups NGC 4261 and NGC 5353 from the CLoGS local group survey. In rich clusters ram-pressure stripping has been shown to be very effective at removing the gas contents and quenching star formation in infalling spiral galaxies. It is much less clear how galaxies are affected by the much lower ram pressures found in galaxy groups, or if other environmental processes begin to dominate. Given that >50% of galaxies in the local volume reside in groups, it is vital we gain new insights into which mechanisms drive the SFR-density relation in groups. The proposed H(alpha) imaging will allow us to resolve where star-formation is occuring in each galaxy. This can effectively discriminate between ram-pressure stripping characterized by truncated H(alpha) disks, the much gentler starvation mechanism which produces anemic spirals, and nuclear star-bursts triggered by low-velocity encounters which should be most frequent in groups.

  5. Exercises for distance estimates of the Local Group galaxies using Cepheid variables.

    NASA Astrophysics Data System (ADS)

    Sato, F.

    This paper presentes exercises for distance estimates of the Local Group galaxies LMC, SMC, M31, and NGC 6822 by use of data of the Cepheid variables in them and those in our own Galaxy taken from various literatures. The exercises are suitable for students of senior high schools and /or of liberal arts course of universities.

  6. A redshift survey of IRAS galaxies. V - The acceleration on the Local Group

    NASA Technical Reports Server (NTRS)

    Strauss, Michael A.; Yahil, Amos; Davis, Marc; Huchra, John P.; Fisher, Karl

    1992-01-01

    The acceleration on the Local Group is calculated based on a full-sky redshift survey of 5288 galaxies detected by IRAS. A formalism is developed to compute the distribution function of the IRAS acceleration for a given power spectrum of initial perturbations. The computed acceleration on the Local Group points 18-28 deg from the direction of the Local Group peculiar velocity vector. The data suggest that the CMB dipole is indeed due to the motion of the Local Group, that this motion is gravitationally induced, and that the distribution of IRAS galaxies on large scales is related to that of dark matter by a simple linear biasing model.

  7. A redshift survey of IRAS galaxies. V - The acceleration on the Local Group

    NASA Technical Reports Server (NTRS)

    Strauss, Michael A.; Yahil, Amos; Davis, Marc; Huchra, John P.; Fisher, Karl

    1992-01-01

    The acceleration on the Local Group is calculated based on a full-sky redshift survey of 5288 galaxies detected by IRAS. A formalism is developed to compute the distribution function of the IRAS acceleration for a given power spectrum of initial perturbations. The computed acceleration on the Local Group points 18-28 deg from the direction of the Local Group peculiar velocity vector. The data suggest that the CMB dipole is indeed due to the motion of the Local Group, that this motion is gravitationally induced, and that the distribution of IRAS galaxies on large scales is related to that of dark matter by a simple linear biasing model.

  8. Chemical substructure and inhomogeneous mixing in Local Group dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Venn, K. A.

    Evidence for inhomogeneous mixing in the Carina, Draco, and Sculptor dwarf galaxies is examined from chemical abundance patterns. Inhomogeneous mixing at early times is indicated in the classical dwarf galaxies, though cannot be ascertained in ultra faint dwarfs. Mixing efficiencies can affect the early metallicity distribution function, the pre-enrichment levels in globular clusters, and also have an impact on the structure of dwarf systems at early times. Numerical models that include chemical evolution explicitly do a better job in reproducing the observations, and make interesting predictions for the nature of dwarf galaxies and their first stars at the earliest times.

  9. Outskirts of Local Group Dwarf Galaxies Revealed by Subaru Hyper Suprime-Cam

    NASA Astrophysics Data System (ADS)

    Komiyama, Yutaka

    2017-03-01

    Local Group galaxies are important targets since their stellar populations can be resolved, and their properties can be investigated in detail with the help of stellar evolutionary models. The newly-built instrument for the 8.2m Subaru Telescope, Hyper Suprime-Cam (HSC), which has a 1 Giga pixel CCD camera with 1.5 degrees field of view, is the best instrument for observing Local Group galaxies. We have carried out a survey for Local Group dwarf galaxies using HSC aiming to shed light on the outskirts of these galaxies. The survey covers target galaxies out beyond the tidal radii down to a depth unexplored by previous surveys. Thanks to the high spatial resolution and high sensitivity provided by the Subaru Telescope, we are able to investigate properties such as spatial distribution and stellar population from the very center of galaxies to the outskirts. In this article, I will show results for the dwarf irregular galaxy NGC 6822 and the dwarf spheroidal galaxy Ursa Minor.

  10. METALLICITY DISTRIBUTION FUNCTIONS OF FOUR LOCAL GROUP DWARF GALAXIES

    SciTech Connect

    Ross, Teresa L.; Holtzman, Jon; Saha, Abhijit; Anthony-Twarog, Barbara J. E-mail: holtz@nmsu.edu

    2015-06-15

    We present stellar metallicities in Leo I, Leo II, IC 1613, and Phoenix dwarf galaxies derived from medium (F390M) and broad (F555W, F814W) band photometry using the Wide Field Camera 3 instrument on board the Hubble Space Telescope. We measured metallicity distribution functions (MDFs) in two ways, (1) matching stars to isochrones in color–color diagrams and (2) solving for the best linear combination of synthetic populations to match the observed color–color diagram. The synthetic technique reduces the effect of photometric scatter and produces MDFs 30%–50% narrower than the MDFs produced from individually matched stars. We fit the synthetic and individual MDFs to analytical chemical evolution models (CEMs) to quantify the enrichment and the effect of gas flows within the galaxies. Additionally, we measure stellar metallicity gradients in Leo I and II. For IC 1613 and Phoenix our data do not have the radial extent to confirm a metallicity gradient for either galaxy. We find the MDF of Leo I (dwarf spheroidal) to be very peaked with a steep metal-rich cutoff and an extended metal-poor tail, while Leo II (dwarf spheroidal), Phoenix (dwarf transition), and IC 1613 (dwarf irregular) have wider, less peaked MDFs than Leo I. A simple CEM is not the best fit for any of our galaxies; therefore we also fit the “Best Accretion Model” of Lynden-Bell. For Leo II, IC 1613, and Phoenix we find similar accretion parameters for the CEM even though they all have different effective yields, masses, star formation histories, and morphologies. We suggest that the dynamical history of a galaxy is reflected in the MDF, where broad MDFs are seen in galaxies that have chemically evolved in relative isolation and narrowly peaked MDFs are seen in galaxies that have experienced more complicated dynamical interactions concurrent with their chemical evolution.

  11. Local group irregular galaxies LGS 3 and Pegasus

    SciTech Connect

    Christian, C.A.; Tully, R.B.

    1983-07-01

    The Galileo/IFA 500 x 500 CCD camera was used to resolve red giant stars in the gas-rich dwarf galaxy LGS 3 at magnitudes fainter than V = 21.8. Depending on whether these stars are >10/sup 9/ yr old or 10/sup 8/--10/sup 9/ yr old, the distance of the galaxy is 0.7--1.2 Mpc. Although H I gas has been detected in this system, there has been no significant star formation for at least the last 7 x 10/sup 7/ yr. The CM diagram of LGS 3 is compared with the CM diagrams of the Pegasus irregular galaxy discussed by Hoessel and Mould. A distance of 1.3 Mpc is suggested for Pegasus, rather than the larger distance preferred by Hoessel and Mould or the very much larger distance offered by Sandage and Tammann.

  12. THE STELLAR-TO-HALO MASS RELATION FOR LOCAL GROUP GALAXIES

    SciTech Connect

    Brook, C. B.; Cintio, A. Di; Knebe, A.; Yepes, G.; Gottlöber, S.; Hoffman, Y.; Garrison-Kimmel, S.

    2014-03-20

    We contend that a single power-law halo mass distribution is appropriate for direct matching to the stellar masses of observed Local Group dwarf galaxies, allowing the determination of the slope of the stellar mass-halo mass relation for low-mass galaxies. Errors in halo masses are well defined as the Poisson noise of simulated Local Group realizations, which we determine using local volume simulations. For the stellar mass range 10{sup 7} M {sub ☉}galaxies, we find that the stellar mass-halo mass relation follows a power law with slope of 3.1, significantly steeper than most values in the literature. This steep relation between stellar and halo masses would indicate that Local Group dwarf galaxies are hosted by dark matter halos with a small range of mass. Our methodology is robust down to the stellar mass to which the census of observed Local Group galaxies is complete, but the significant uncertainty in the currently measured slope of the stellar-to-halo mass relation will decrease dramatically if the Local Group completeness limit was 10{sup 6.5} M {sub ☉} or below, highlighting the importance of pushing such limit to lower masses and larger volumes.

  13. Metallicity Distribution Functions of Four Local Group Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Ross, Teresa L.; Holtzman, Jon; Saha, Abhijit; Anthony-Twarog, Barbara J.

    2015-06-01

    We present stellar metallicities in Leo I, Leo II, IC 1613, and Phoenix dwarf galaxies derived from medium (F390M) and broad (F555W, F814W) band photometry using the Wide Field Camera 3 instrument on board the Hubble Space Telescope. We measured metallicity distribution functions (MDFs) in two ways, (1) matching stars to isochrones in color-color diagrams and (2) solving for the best linear combination of synthetic populations to match the observed color-color diagram. The synthetic technique reduces the effect of photometric scatter and produces MDFs 30%-50% narrower than the MDFs produced from individually matched stars. We fit the synthetic and individual MDFs to analytical chemical evolution models (CEMs) to quantify the enrichment and the effect of gas flows within the galaxies. Additionally, we measure stellar metallicity gradients in Leo I and II. For IC 1613 and Phoenix our data do not have the radial extent to confirm a metallicity gradient for either galaxy. We find the MDF of Leo I (dwarf spheroidal) to be very peaked with a steep metal-rich cutoff and an extended metal-poor tail, while Leo II (dwarf spheroidal), Phoenix (dwarf transition), and IC 1613 (dwarf irregular) have wider, less peaked MDFs than Leo I. A simple CEM is not the best fit for any of our galaxies; therefore we also fit the “Best Accretion Model” of Lynden-Bell. For Leo II, IC 1613, and Phoenix we find similar accretion parameters for the CEM even though they all have different effective yields, masses, star formation histories, and morphologies. We suggest that the dynamical history of a galaxy is reflected in the MDF, where broad MDFs are seen in galaxies that have chemically evolved in relative isolation and narrowly peaked MDFs are seen in galaxies that have experienced more complicated dynamical interactions concurrent with their chemical evolution. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is

  14. Galaxy groups

    SciTech Connect

    Brent Tully, R.

    2015-02-01

    Galaxy groups can be characterized by the radius of decoupling from cosmic expansion, the radius of the caustic of second turnaround, and the velocity dispersion of galaxies within this latter radius. These parameters can be a challenge to measure, especially for small groups with few members. In this study, results are gathered pertaining to particularly well-studied groups over four decades in group mass. Scaling relations anticipated from theory are demonstrated and coefficients of the relationships are specified. There is an update of the relationship between light and mass for groups, confirming that groups with mass of a few times 10{sup 12}M{sub ⊙} are the most lit up while groups with more and less mass are darker. It is demonstrated that there is an interesting one-to-one correlation between the number of dwarf satellites in a group and the group mass. There is the suggestion that small variations in the slope of the luminosity function in groups are caused by the degree of depletion of intermediate luminosity systems rather than variations in the number per unit mass of dwarfs. Finally, returning to the characteristic radii of groups, the ratio of first to second turnaround depends on the dark matter and dark energy content of the universe and a crude estimate can be made from the current observations of Ω{sub matter}∼0.15 in a flat topology, with a 68% probability of being less than 0.44.

  15. MCG 06-45-001 - Not a local group galaxy

    NASA Technical Reports Server (NTRS)

    Shore, Steven N.; Sage, Leslie J.

    1990-01-01

    Observations of (C-12)O and (C-13)O J = 1 to 0 for MCG 06-45-001 are examined. It is argued that two features of CO emission with velocities of 1 and 10 km/s indicate that the object is similar to the Galactic molecular clouds in the immediate vicinity, and not to a spiral galaxy as suggested previously. It is considered that CO emission cannot arise from a spiral galaxy at a distance of 2-5 Mpc and that the object is unlikely to be a nearby dwarf. The feature at 10 km/s is considered to arise from a molecular cloud associated with an H II region, which produces the observed IRAS flux.

  16. The luminosity-specific Planetary Nebulae density in Local Group galaxies

    NASA Astrophysics Data System (ADS)

    Corradi, R. L. M.; Buzzoni, A.; Arnaboldi, M.

    The value of the α ratio, the number of PNe per unit bolometric luminosity in a galaxy, is computed using stellar population synthesis models covering the whole range of Hubble types of galaxies.Model predictions are compared with the PNe counts in the Local Group, which indicate a fairly constant value of α - between 1 and 6 PNe per 10^7 solar luminosities - along the Hubble sequence.

  17. VIMOS Integral Field Spectroscopy of Gaseous Nebulae in Local Group Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Held, E. V.; Gullieuszik, M.; Saviane, I.; Sabbadin, F.; Momany, Y.; Rizzi, L.; Bresolin, F.

    The study of very metal-poor dwarf irregular (dIrr) galaxies is fundamental to test the cosmological scenarios of galaxy formation. Among Local Group galaxies, Leo A and SagDIG are probably the most metal-poor dwarfs, as suggested by estimates of their nebular abundances based on the empirical method [I. Saviane, L. Rizzi, E.V. Held, F. Bresolin, Y. Momany in Astron. Astrophys. 390, 59 (2002); E.D. Skillman, R. Terlevich, J. Melnick in Mon. Not. R. Astron. Soc. 240, 563 (1989); L. van Zee, E.D. Skillman, M.P. Haynes in Astrophys. J. 637, 269 (2006)].

  18. RR Lyrae stars in local group galaxies. I. NGC 185

    SciTech Connect

    Saha, A.; Hoessel, J.G. Space Telescope Science Institute, Baltimore, MD Washburn Observatory, Madison, WI )

    1990-01-01

    Deep CCD images of NGC 185 taken with the 4-shooter on the Hale 5-m telescope have been processed to find and photometrically measure RR Lyrae stars. 176 variable stars have been found, of which 151 are surmised to be RR Lyrae stars. Finding charts, periods, and light curves are presented. The RR Lyrae stars in this galaxy have a very wide distribution of periods indicating a wide range of metallicity. The mean magnitudes of the RR Lyraes is determined to be 25.20 mag. A distance modulus of 23.79 is derived, based on the best currently available values of foreground extinction and mean absolute magnitudes of RR Lyrae stars. 33 refs.

  19. Local Group ultra-faint dwarf galaxies in the reionization era

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Boylan-Kolchin, Michael

    2017-07-01

    Motivated by the stellar fossil record of Local Group (LG) dwarf galaxies, we show that the star-forming ancestors of the faintest ultra-faint dwarf galaxies (UFDs; MV ˜ -2 or M⋆ ˜ 102 at z = 0) had ultraviolet (UV) luminosities of MUV ˜ -3 to -6 during reionization (z ˜ 6-10). The existence of such faint galaxies has substantial implications for early epochs of galaxy formation and reionization. If the faint-end slopes of the UV luminosity functions (UVLFs) during reionization are steep (α ≲ -2) to MUV ˜ -3, then (i) the ancestors of UFDs produced >50 per cent of UV flux from galaxies; (ii) galaxies can maintain reionization with escape fractions that are more than two times lower than currently adopted values; (iii) direct Hubble Space Telescope and James Webb Space Telescope observations may detect only ˜10-50 per cent of the UV light from galaxies; and (iv) the cosmic star formation history increases by ≳ 4-6 at z ≳ 6. Significant flux from UFDs, and resultant tensions with LG dwarf galaxy counts, is reduced if the high-redshift UVLF turns over. Independent of the UVLF shape, the existence of a large population of UFDs requires a non-zero luminosity function to MUV ˜ -3 during reionization.

  20. Friends-of-friends galaxy group finder with membership refinement. Application to the local Universe

    NASA Astrophysics Data System (ADS)

    Tempel, E.; Kipper, R.; Tamm, A.; Gramann, M.; Einasto, M.; Sepp, T.; Tuvikene, T.

    2016-04-01

    Context. Groups form the most abundant class of galaxy systems. They act as the principal drivers of galaxy evolution and can be used as tracers of the large-scale structure and the underlying cosmology. However, the detection of galaxy groups from galaxy redshift survey data is hampered by several observational limitations. Aims: We improve the widely used friends-of-friends (FoF) group finding algorithm with membership refinement procedures and apply the method to a combined dataset of galaxies in the local Universe. A major aim of the refinement is to detect subgroups within the FoF groups, enabling a more reliable suppression of the fingers-of-God effect. Methods: The FoF algorithm is often suspected of leaving subsystems of groups and clusters undetected. We used a galaxy sample built of the 2MRS, CF2, and 2M++ survey data comprising nearly 80 000 galaxies within the local volume of 430 Mpc radius to detect FoF groups. We conducted a multimodality check on the detected groups in search for subgroups. We furthermore refined group membership using the group virial radius and escape velocity to expose unbound galaxies. We used the virial theorem to estimate group masses. Results: The analysis results in a catalogue of 6282 galaxy groups in the 2MRS sample with two or more members, together with their mass estimates. About half of the initial FoF groups with ten or more members were split into smaller systems with the multimodality check. An interesting comparison to our detected groups is provided by another group catalogue that is based on similar data but a completely different methodology. Two thirds of the groups are identical or very similar. Differences mostly concern the smallest and largest of these other groups, the former sometimes missing and the latter being divided into subsystems in our catalogue. The catalogues are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  1. RR Lyrae stars in Local Group galaxies. IV - IC 1613

    NASA Astrophysics Data System (ADS)

    Saha, A.; Freedman, Wendy L.; Hoessel, John G.; Mossman, Amy E.

    1992-09-01

    Deep charge-coupled device images of a field in IC 1613 away from the star forming central regions were taken with the '4-shooter' on the Hale 5 m telescope, and processed to find photometrically measure variable stars. Fifteen RR Lyrae stars were found, and periods, light curves, and finding charts for them are presented. The mean magnitude of RR Lyrae stars in this galaxy is deduced to be 24.90 mag. Assuming the absolute g magnitude for RR Lyraes to be Mg = 0.73 mag, and using extinction Ag = 0.07 mag, a distance modulus of 24.10 +/- 0.27 mag is derived. The finding of RR Lyrae stars indicates the unambiguous presence of an old population. The distance modulus derived from them is smaller than that derived from the Cepheids by an amount which is dependent upon the RR Lyrae zero-point calibration adopted, and may be as large as 0.3 mag. The difference has the same sense and magnitude as the discrepancy in the LMC. The probable sources of the problem are discussed.

  2. RR Lyrae stars in local group galaxies. II. NGC 147

    SciTech Connect

    Saha, A.; Hoessel, J.G.; Mossman, A.E. Space Telescope Science Institute, Baltimore, MD Washburn Observatory, Madison, WI )

    1990-07-01

    Deep CCD images of NGC 147 taken with the 4-shooter on the Hale 5 m telescope have been processed to find and photometrically measure RR Lyrae stars. 36 variable stars have been found, of which 32 are surmised to be RR Lyrae stars. Finding charts, periods, and light curves are presented. The mean magnitude of the RR Lyraes is determined to be 25.25 mag. A distance modulus 23.92 is derived, based on the best currently available values of foreground extinction and mean absolute magnitudes of RR Lyrae stars. A wide range of periods is seen for the RR Lyrae stars, indicating a correspondingly wide range of metallicities for the stars in NGC 147. The distance modulus derived here places NGC 147 at a distance of 154 kpc from the center of M31, and in conjunction with the line sight velocities of these two galaxies, this implies a lower limit of 7.2 x 10 to the 11th solar masses for the mass of M31. 23 refs.

  3. A search for extragalactic pulsars in the local group galaxies IC 10 and Barnard’s galaxy

    NASA Astrophysics Data System (ADS)

    Noori, H. Al; Roberts, M. S. E.; Champion, D.; McLaughlin, M.; Ransom, Scott; Ray, P. S.

    2017-06-01

    As of today, more than 2500 pulsars have been found, nearly all in the Milky Way, with the exception of ∼28 pulsars in the Small and Large Magellanic Clouds. However, there have been few published attempts to search for pulsars deeper in our Galactic neighborhood. Two of the more promising Local Group galaxies are IC 10 and NGC 6822 (also known as Barnard’s Galaxy) due to their relatively high star formation rate and their proximity to our galaxy. IC 10 in particular, holds promise as it is the closest starburst galaxy to us and harbors an unusually high number of Wolf-Rayet stars, implying the presence of many neutron stars. We observed IC 10 and NGC 6822 at 820 MHz with the Green Bank Telescope for ∼15 and 5 hours respectively, and put a strong upper limit of 0.1 mJy on pulsars in either of the two galaxies. We also performed single pulse searches of both galaxies with no firm detections.

  4. THE OBSERVED PROPERTIES OF DWARF GALAXIES IN AND AROUND THE LOCAL GROUP

    SciTech Connect

    McConnachie, Alan W.

    2012-07-15

    Positional, structural, and dynamical parameters for all dwarf galaxies in and around the Local Group are presented, and various aspects of our observational understanding of this volume-limited sample are discussed. Over 100 nearby galaxies that have distance estimates reliably placing them within 3 Mpc of the Sun are identified. This distance threshold samples dwarfs in a large range of environments, from the satellite systems of the MW and M31, to the quasi-isolated dwarfs in the outer regions of the Local Group, to the numerous isolated galaxies that are found in its surroundings. It extends to, but does not include, the galaxies associated with the next nearest groups, such as Maffei, Sculptor, and IC 342. Our basic knowledge of this important galactic subset and their resolved stellar populations will continue to improve dramatically over the coming years with existing and future observational capabilities, and they will continue to provide the most detailed information available on numerous aspects of dwarf galaxy formation and evolution. Basic observational parameters, such as distances, velocities, magnitudes, mean metallicities, as well as structural and dynamical characteristics, are collated, homogenized (as far as possible), and presented in tables that will be continually updated to provide a convenient and current online resource. As well as discussing the provenance of the tabulated values and possible uncertainties affecting their usage, the membership and spatial extent of the MW sub-group, M31 sub-group, and the Local Group are explored. The morphological diversity of the entire sample and notable sub-groups is discussed, and timescales are derived for the Local Group members in the context of their orbital/interaction histories. The scaling relations and mean stellar metallicity trends defined by the dwarfs are presented, and the origin of a possible 'floor' in central surface brightness (and, more speculatively, stellar mean metallicity) at

  5. Mass of the Local Group from Proper Motions of Distant Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    van der Marel, Roeland

    2010-09-01

    The Local Group and its two dominant spirals, the Milky Way and M31, have become the benchmark for testing many aspects of cosmological and galaxy formation theories, due to many exciting new discoveries in the past decade. However, it is difficult to put results in a proper cosmological context, because our knowledge of the mass M of the Local Group remains uncertain by a factor 4. In units of 10^{12} solar masses, a spherical infall model for the zero-velocity surface gives M 1.3; the sum of estimates for the Milky Way and M31 masses gives M 2.6; and the Local Group Timing argument for the M31 orbit gives M 5.6. It is possible to discriminate between the proposed masses by calculating the orbits of galaxies at the edge of the Local Group, which requires knowledge of transverse velocity components. We therefore propose to use ACS/WFC to determine the proper motions of the 4 dwarf galaxies near the edge of the Local Group {Cetus, Leo A, Tucana, Sag DIG} for which deep first epoch data {with 5-7 year time baselines} already exist in the HST Archive. Our team has extensive expertise with HST astrometric science, and our past/ongoing work for, e.g., Omega Cen, LMC/SMC and M31 show that the necessary astrometric accuracy is within the reach of HST's demonstrated capabilities. We have developed, tested, and published a new technique that uses compact background galaxies as astrometric reference sources, and we have already reduced the first epoch data. The final predicted transverse velocity accuracy, 36 km/s when averaged over the sample, will be sufficient to discriminate between each of the proposed Local Group masses at 2-sigma significance {4-sigma between the most extreme values}. Our project will yield the most accurate Local Group mass determination to date, and only HST can achieve the required accuracy.

  6. Local dark energy: HST evidence from the vicinity of the M81/M82 galaxy group

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Karachentsev, I. D.; Kashibadze, O. G.; Makarov, D. I.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.

    2007-10-01

    The Hubble Space Telescope observations of the nearby galaxy group M81/M82 and its vicinity indicate that the dynamics of the expansion outflow around the group is dominated by the antigravity of the dark energy background. The local density of dark energy in the area is estimated to be near the global dark energy density or perhaps exactly equal to it. This conclusion agrees well with our previous results for the Local Group vicinity and the vicinity of the Cen A/M83 group.

  7. Kinematics of the ionized gas in the Local Group irregular galaxy IC 1613

    NASA Astrophysics Data System (ADS)

    Valdez-Gutiérrez, M.; Rosado, M.; Georgiev, L.; Borissova, J.; Kurtev, R.

    2001-01-01

    We present Hα and [S Ii] observations for the Local Group irregular galaxy IC 1613 using the PUMA scanning Fabry-Perot interferometer. Our goal is to analyze the kinematics of the ionized gas in the complex sample of superbubbles located in the whole extension of our field (10\\arcmin ), which includes most of the optical emission of this galaxy, and to study the inter-relationship between young stellar associations and nebulae based on a previous study that we have made on the stellar associations of the central region of this galaxy. The ionized gas in this galaxy is distributed in classical H Ii regions and in a series of superbubbles (also called giant shells) covering a large fraction of the optical extent of the galaxy. We present a catalog of kinematical properties of both the H Ii regions of this galaxy and the superbubbles. We have also compared the kinematics of the ionized gas in H Ii regions to search for possible dynamic differences between neutral and ionized gas.

  8. The Reddening law outside the local group galaxies: The case of NGC 7552 and NGC 5236

    NASA Technical Reports Server (NTRS)

    Kinney, Anne L.; Calzetti, Daniela; Bica, Eduardo; Storchi-Bergmann, Thaisa

    1994-01-01

    The dust reddening law from the UV to the near-IR for the extended regions of galaxies is here derived from the spectral distributions of the starburst spiral galaxies NGC 7552 and NGC 5236. The centers of these galaxies have similar absorption and emission line spectra, differing only if the strength of their interstellar lines and in the continuum distribution, with NGC 7552 appearing more reddened than NGC 5236. The disk of NGC 7552 is more inclined, and there is evidence that its center is observed through additional foreground dust and gas clouds, as compared to the center of NGC 5236. While the galaxies can be expected to have similar dust content, they are known to have different dust path lengths to our line of sight. Therefore, differences in the shape of the spectra can be attributed mainly to the effects of dust, allowing us to probe for the first time the properties of the reddening law outside the local group of galaxies. We derive the reddening law based on the optical depth of the emission line of H Alpha and H Beta and also based on the continuum distribtuion. We find that the optical depth from the emission line regions are about twice the optical depth of the continuum regions. Thus, dereddening a starburst galaxy by scaling the Milky Way reddening laws to optical depths obtained from the H Alpha/H Beta line ratio overcompensates for the effect of dust.

  9. What have we learned from the XMM-Newton surveys of Local Group Galaxies?

    NASA Astrophysics Data System (ADS)

    Haberl, F.

    2016-06-01

    The study of X-ray source populations and diffuse X-ray emission in nearby galaxies is of major importance in understanding the X-ray output of more distant galaxies as well as learning about processes that occur on interstellar scales within our own Galaxy. Depending on the star formation history of the galaxies different types of X-ray sources dominate the total X-ray emission. With modern observatories like XMM-Newton the various classes of X-ray sources (high and low mass X-ray binaries, supernova remnants, super-soft sources) can be studied to the faintest end of their luminosity distribution in Local Group galaxies. XMM-Newton successfully surveyed the large spiral galaxies M31 and M33 and the star forming, irregular Magellanic Clouds. I'll summarise the most important results we have obtained from older populations like low mass X-ray binaries and classical novae in M31 to the younger populations of high mass X-ray binaries and supernova remnants in the Magellanic Clouds. I'll discuss still open questions in this field of research which can be addressed using the high sensitivity of the XMM-Newton instruments.

  10. The Reddening law outside the local group galaxies: The case of NGC 7552 and NGC 5236

    NASA Technical Reports Server (NTRS)

    Kinney, Anne L.; Calzetti, Daniela; Bica, Eduardo; Storchi-Bergmann, Thaisa

    1994-01-01

    The dust reddening law from the UV to the near-IR for the extended regions of galaxies is here derived from the spectral distributions of the starburst spiral galaxies NGC 7552 and NGC 5236. The centers of these galaxies have similar absorption and emission line spectra, differing only if the strength of their interstellar lines and in the continuum distribution, with NGC 7552 appearing more reddened than NGC 5236. The disk of NGC 7552 is more inclined, and there is evidence that its center is observed through additional foreground dust and gas clouds, as compared to the center of NGC 5236. While the galaxies can be expected to have similar dust content, they are known to have different dust path lengths to our line of sight. Therefore, differences in the shape of the spectra can be attributed mainly to the effects of dust, allowing us to probe for the first time the properties of the reddening law outside the local group of galaxies. We derive the reddening law based on the optical depth of the emission line of H Alpha and H Beta and also based on the continuum distribtuion. We find that the optical depth from the emission line regions are about twice the optical depth of the continuum regions. Thus, dereddening a starburst galaxy by scaling the Milky Way reddening laws to optical depths obtained from the H Alpha/H Beta line ratio overcompensates for the effect of dust.

  11. Compact Groups of Galaxies with Complete Spectroscopic Redshifts in the Local Universe

    NASA Astrophysics Data System (ADS)

    Sohn, Jubee; Hwang, Ho Seong; Geller, Margaret J.; Diaferio, Antonaldo; Rines, Kenneth J.; Lee, Myung Gyoon; Lee, Gwang-Ho

    2015-12-01

    Dynamical analysis of compact groups provides important tests of models of compact group formation and evolution. By compiling 2066 redshifts from FLWO/FAST, from the literature, and from SDSS DR12 in the fields of compact groups in tet{McC09}, we construct the largest sample of compact groups with complete spectroscopic redshifts in the redshift range 0.01 < z < 0.22. This large redshift sample shows that the interloper fraction in the tet{McC09} compact group candidates is ˜ 42%. A secure sample of 332 compact groups includes 192 groups with four or more member galaxies and 140 groups with three members. The fraction of early-type galaxies in these compact groups is 62%, higher than for the original Hickson compact groups. The velocity dispersions of early- and late-type galaxies in compact groups change little with groupcentric radius; the radii sampled are less than 100 h^{-1} kpc, smaller than the radii typically sampled by members of massive clusters of galaxies. The physical properties of our sample compact groups include size, number density, velocity dispersion, and local environment; these properties slightly differ from those derived for the original Hickson compact groups and for the DPOSS II compact groups. Differences result from subtle differences in the way the group candidates were originally selected. The abundance of the compact groups changes little with redshift over the range covered by this sample. The approximate constancy of the abundance for this sample is a potential constraint on the evolution of compact groups on a few Gigayear timescale.

  12. The Star Formation Histories of Local Group Dwarf Galaxies. III. Characterizing Quenching in Low-mass Galaxies

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; Holtzman, Jon; Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2015-05-01

    We explore the quenching of low-mass galaxies (104 ≲ {{M}\\star } ≲ 108 {{M}⊙ }) as a function of lookback time using the star formation histories (SFHs) of 38 Local Group dwarf galaxies. The SFHs were derived by analyzing color-magnitude diagrams of resolved stellar populations in archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. We find: (1) lower-mass galaxies quench earlier than higher-mass galaxies; (2) inside of Rvirial there is no correlation between a satellite’s current proximity to a massive host and its quenching epoch; and (3) there are hints of systematic differences in the quenching times of M31 and Milky Way (MW) satellites, although the sample size and uncertainties in the SFHs of M31 dwarfs prohibit definitive conclusions. Combined with results from the literature, we qualitatively consider the redshift evolution (z = 0-1) of the quenched galaxy fraction over ˜7 dex in stellar mass (104 ≲ {{M}\\star } ≲ 1011.5 {{M}⊙ }). The quenched fraction of all galaxies generally increases toward the present, with both the lowest and highest-mass systems exhibiting the largest quenched fractions at all redshifts. In contrast, galaxies between {{M}\\star } ˜ 108-1010 {{M}⊙ } have the lowest quenched fractions. We suggest that such intermediate-mass galaxies are the least efficient at quenching. Finally, we compare our quenching times with predictions for infall times for low-mass galaxies associated with the MW. We find that some of the lowest-mass satellites (e.g., CVn II, Leo IV) may have been quenched before infall, while higher-mass satellites (e.g., Leo I, Fornax) typically quench ˜1-4 Gyr after infall. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA constract NAS 5-26555.

  13. HUBBLE SPACE TELESCOPE Observations of the Local Group Dwarf Galaxy Leo I

    NASA Astrophysics Data System (ADS)

    Gallart, Carme; Freedman, Wendy L.; Mateo, Mario; Chiosi, Cesare; Thompson, Ian B.; Aparicio, Antonio; Bertelli, Gianpaolo; Hodge, Paul W.; Lee, Myung G.; Olszewski, Edward W.; Saha, Abhijit; Stetson, Peter B.; Suntzeff, Nicholas B.

    1999-04-01

    We present deep HST F555W (V) and F814W (I) observations of a central field in the Local Group dwarf spheroidal (dSph) galaxy Leo I. The resulting color-magnitude diagram (CMD) reaches I~=26 and reveals the oldest ~=10-15 Gyr old turnoffs. Nevertheless, a horizontal branch is not obvious in the CMD. Given the low metallicity of the galaxy, this likely indicates that the first substantial star formation in the galaxy may have been somehow delayed in Leo I in comparison with the other dSph satellites of the Milky Way. The subgiant region is well and uniformly populated from the oldest turnoffs up to the 1 Gyr old turnoff, indicating that star formation has proceeded in a continuous way, with possible variations in intensity but no big gaps between successive bursts, over the galaxy's lifetime. The structure of the red clump of core He-burning stars is consistent with the large amount of intermediate-age population inferred from the main sequence and the subgiant region. In spite of the lack of gas in Leo I, the CMD clearly shows star formation continuing until 1 Gyr ago and possibly until a few hundred Myr ago in the central part of the galaxy.

  14. On the recovery of the local group motion from galaxy redshift surveys

    SciTech Connect

    Nusser, Adi; Davis, Marc; Branchini, Enzo E-mail: mdavis@berkeley.edu

    2014-06-20

    There is an ∼150 km s{sup –1} discrepancy between the measured motion of the Local Group (LG) of galaxies with respect to the cosmic microwave background and the linear theory prediction based on the gravitational force field of the large-scale structure in full-sky redshift surveys. We perform a variety of tests which show that the LG motion cannot be recovered to better than 150-200 km s{sup –1} in amplitude and within ≈10° in direction. The tests rely on catalogs of mock galaxies identified in the Millennium simulation using semi-analytic galaxy formation models. We compare these results to the K{sub s} = 11.75 Two-Mass Galaxy Redshift Survey, which provides the deepest and most complete all-sky spatial distribution of galaxies with spectroscopic redshifts available thus far. In our analysis, we use a new concise relation for deriving the LG motion and bulk flow from the true distribution of galaxies in redshift space. Our results show that the main source of uncertainty is the small effective depth of surveys like the Two-Mass Redshift Survey (2MRS), which prevents a proper sampling of the large-scale structure beyond ∼100 h {sup –1} Mpc. Deeper redshift surveys are needed to reach the 'convergence scale' of ≈250 h {sup –1} Mpc in a ΛCDM universe. Deeper surveys would also mitigate the impact of the 'Kaiser rocket' which, in a survey like 2MRS, remains a significant source of uncertainty. Thanks to the quiet and moderate density environment of the LG, purely dynamical uncertainties of the linear predictions are subdominant at the level of ∼90 km s{sup –1}. Finally, we show that deviations from linear galaxy biasing and shot noise errors provide a minor contribution to the total error budget.

  15. On the Recovery of the Local Group Motion from Galaxy Redshift Surveys

    NASA Astrophysics Data System (ADS)

    Nusser, Adi; Davis, Marc; Branchini, Enzo

    2014-06-01

    There is an ~150 km s-1 discrepancy between the measured motion of the Local Group (LG) of galaxies with respect to the cosmic microwave background and the linear theory prediction based on the gravitational force field of the large-scale structure in full-sky redshift surveys. We perform a variety of tests which show that the LG motion cannot be recovered to better than 150-200 km s-1 in amplitude and within ≈10° in direction. The tests rely on catalogs of mock galaxies identified in the Millennium simulation using semi-analytic galaxy formation models. We compare these results to the Ks = 11.75 Two-Mass Galaxy Redshift Survey, which provides the deepest and most complete all-sky spatial distribution of galaxies with spectroscopic redshifts available thus far. In our analysis, we use a new concise relation for deriving the LG motion and bulk flow from the true distribution of galaxies in redshift space. Our results show that the main source of uncertainty is the small effective depth of surveys like the Two-Mass Redshift Survey (2MRS), which prevents a proper sampling of the large-scale structure beyond ~100 h -1 Mpc. Deeper redshift surveys are needed to reach the "convergence scale" of ≈250 h -1 Mpc in a ΛCDM universe. Deeper surveys would also mitigate the impact of the "Kaiser rocket" which, in a survey like 2MRS, remains a significant source of uncertainty. Thanks to the quiet and moderate density environment of the LG, purely dynamical uncertainties of the linear predictions are subdominant at the level of ~90 km s-1. Finally, we show that deviations from linear galaxy biasing and shot noise errors provide a minor contribution to the total error budget.

  16. Local Group Dwarf Galaxies in the LCDM Cosmology: Theory Meets Observations

    NASA Astrophysics Data System (ADS)

    Tollerud, Erik Jon

    2012-05-01

    Dwarf galaxies include some of the most extreme low-luminosity objects in the universe, and provide important windows into a wide variety of processes in galaxy formation and evolution. In this thesis, I describe a series of comparisons between observations of dwarf galaxies and predictions of the ΛCDM concordance cosmology, with a focus on Local Group satellites. I first correct the Milky Way satellite luminosity function for luminosity bias under the assumption of a typical ΛCDM satellite distribution, finding consistency with the observations and a prediction of possibly hundreds of faint Milky Way satellites. I also describe a new technique to connect the luminous properties of these satellites (as well as brighter galaxies) to their expected dark matter halo properties. I further consider the brightest Milky Way satellite, the Large Magellanic cloud (LMC), in a cosmological context by comparing it to similar galaxies in the Sloan Digital Sky Survey (SDSS). This shows that ΛCDM n-body simulations provide a good match to observations of such satellites. I also show that, while LMC-like satellites are not uncommon, the LMC is unusual in how blue it is, especially given that the SDSS satellites are significantly redder than typical galaxies of their size. Finally, I present a large new data for faint satellites of M31, the nearest galaxy similar to the Milky Way, providing a second data point for detailed studies of faint satellite systems. I also shows that its satellites are very similar in their general properties to that of the Milky Way satellites.

  17. Is the Pegasus Dwarf Galaxy a Member of the Local Group?

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon

    1995-10-01

    Deep VI CCD photometry of the Pegasus dwarf irregular galaxy shows that tip of the red giant branch (RGB) is located at I = 21.15+-0.10 mag and (V-I) = 1.58+-0.03. Using the I magnitude of the tip of the RGB(TRGB), the distance modulus of the Pegasus galaxy is estimated to be (m-M)o = 25.13+-0.11 mag(corresponding to a distance of d = 1060+-50kpc). This result is in a good agreement with the recent distance estimate based on the TRGB method by Aparicio[1994, ApJ, 437, L27], (m-M)o = 24.9 (d = 950kpc). However, our distance estimate is much smaller than that based on the Cepheid variable candidates by Hoessel et al.[1990, AJ, 100, 1151], (m-M)o = 26.22+-0.20(d = 1750+-160 kpc) mag. The color-magnitude diagram illustrates that the Cepheid candidates used by Hoessel et al. are not located in the Cepheid instability strip, but in the upper part of the giant branch. This result shows that the Cepheid candidates studied by Hoessel et al. are probably not Cepheids, but other types of variable stars. Taking the average of our distance estimate and Aparicio's, the distance to the Pegasus galaxy is d = 1000+-80 kpc. Considering the distance and velocity of the Pegasus galaxy with respect to the center of the Local Group, we conclude that the Pegasus galaxy is probably a member of the Local Group.

  18. Dwarf galaxy planes: the discovery of symmetric structures in the Local Group

    NASA Astrophysics Data System (ADS)

    Pawlowski, Marcel S.; Kroupa, Pavel; Jerjen, Helmut

    2013-11-01

    Both major galaxies in the Local Group (LG) are surrounded by thin planes of mostly co-orbiting satellite galaxies, the vast polar structure (VPOS) around the Milky Way (MW) and the Great Plane of Andromeda (GPoA) around M31. We summarize the current knowledge concerning these structures and compare their relative orientations by re-determining their properties in a common coordinate system. The existence of similar, coherent structures around both major LG galaxies motivates an investigation of the distribution of the more distant non-satellite galaxies in the LG. This results in the discovery of two planes (diameters of 1-2 Mpc) which contain almost all nearby non-satellite galaxies. The two LG planes are surprisingly symmetric. They are inclined by only 20° relative to the galactic disc of M31, are similarly thin (heights of ≈60 kpc) and have near-to-identical offsets from the MW and from M31. They are inclined relative to each other by 35°. Comparing the plane orientations with each other and with additional features reveals indications for an intimate connection between the VPOS and the GPoA. They are both polar with respect to the MW, have similar orbital directions and are inclined by about 45°±7° relative to each other. The Magellanic Stream approximately aligns with the VPOS and the GPoA, but also shares its projected position and line-of-sight velocity trend with a part of the dominating structure of non-satellite dwarf galaxies. In addition, the recent proper motion measurement of M31 indicates a prograde orbit of the MW-M31 system, the VPOS and the GPoA. The alignment with other features such as the Supergalactic Plane and the overdensity in hypervelocity stars are discussed as well. We end with a short summary of the currently proposed scenarios trying to explain the LG galaxy structures as either originating from cosmological structures or from tidal debris of a past galaxy encounter. We emphasize that there currently exists no full detailed

  19. Probing the Histories of Local Group Dwarf Galaxies with Pulsating Variable Stars

    NASA Astrophysics Data System (ADS)

    Ordoñez, Antonio J.; Sarajedini, Ata

    2017-01-01

    I have identified and characterized the Cepheid and RR Lyrae variables in several Local Group dwarf galaxies using archival Hubble Space Telescope imaging. Template light curve fitting routines have been applied to the observations in order to accurately characterize the properties of these variable stars. The pulsation properties of these stars help to constrain their masses and ages, which in turn shed light on the evolution of their respective host systems. I will summarize what this work has yielded in the context of dwarf galaxy evolution and the accretion history of the Milky Way halo. I will also discuss simulated observations on artificial light curves which we have used to characterize different observing strategies and analysis techniques for studies of pulsating variable stars.

  20. The Araucaria Project: Precise distances to Local Group galaxies from near-infrared photometry of RR Lyrae stars

    NASA Astrophysics Data System (ADS)

    Karczmarek, Paulina

    2017-09-01

    We present results of the Araucaria Project's investigation of RR Lyrae stars as distance indicators in nearby galaxies. With an aid of near-infrared period-luminositymetallicity relations available in the literature we determined distance moduli to five Local Group galaxies with the uncertainty of about 5%.

  1. The statistical challenge of constraining the low-mass IMF in Local Group dwarf galaxies

    NASA Astrophysics Data System (ADS)

    El-Badry, Kareem; Weisz, Daniel R.; Quataert, Eliot

    2017-06-01

    We use Monte Carlo simulations to explore the statistical challenges of constraining the characteristic mass (mc) and width (σ) of a lognormal sub-solar initial mass function (IMF) in Local Group dwarf galaxies using direct star counts. For a typical Milky Way (MW) satellite (MV = -8), jointly constraining mc and σ to a precision of ≲ 20 per cent requires that observations be complete to ≲ 0.2 M⊙, if the IMF is similar to the MW IMF. A similar statistical precision can be obtained if observations are only complete down to 0.4 M⊙, but this requires measurement of nearly 100× more stars, and thus, a significantly more massive satellite (MV ˜ -12). In the absence of sufficiently deep data to constrain the low-mass turnover, it is common practice to fit a single-sloped power law to the low-mass IMF, or to fit mc for a lognormal while holding σ fixed. We show that the former approximation leads to best-fitting power-law slopes that vary with the mass range observed and can largely explain existing claims of low-mass IMF variations in MW satellites, even if satellite galaxies have the same IMF as the MW. In addition, fixing σ during fitting leads to substantially underestimated uncertainties in the recovered value of mc (by a factor of ˜4 for typical observations). If the IMFs of nearby dwarf galaxies are lognormal and do vary, observations must reach down to ˜mc in order to robustly detect these variations. The high-sensitivity, near-infrared capabilities of the James Webb Space Telescope and Wide-Field Infrared Survey Telescope have the potential to dramatically improve constraints on the low-mass IMF. We present an efficient observational strategy for using these facilities to measure the IMFs of Local Group dwarf galaxies.

  2. The far-ultraviolet signature of the 'missing' baryons in the Local Group of galaxies.

    PubMed

    Nicastro, Fabrizio; Zezas, Andreas; Elvis, Martin; Mathur, Smita; Fiore, Fabrizio; Cecchi-Pestellini, Cesare; Burke, Douglas; Drake, Jeremy; Casella, Piergiorgio

    2003-02-13

    The number of baryons detected in the low-redshift (z < 1) Universe is far smaller than the number detected in corresponding volumes at higher redshifts. Simulations of the formation of structure in the Universe show that up to two-thirds of the 'missing' baryons may have escaped detection because of their high temperature and low density. One of the few ways to detect this matter directly is to look for its signature in the form of ultraviolet absorption lines in the spectra of background sources such as quasars. Here we show that the amplitude of the average velocity vector of 'high velocity' O vi (O5+) absorption clouds detected in a survey of ultraviolet emission from active galactic nuclei decreases significantly when the vector is transformed to the frames of the Galactic Standard of Rest and the Local Group of galaxies. At least 82 per cent of these absorbers are not associated with any 'high velocity' atomic hydrogen complex in our Galaxy, and are therefore likely to result from a primordial warm-hot intergalactic medium pervading an extended corona around the Milky Way or the Local Group. The total mass of baryons in this medium is estimated to be up to approximately 10(12) solar masses, which is of the order of the mass required to dynamically stabilize the Local Group.

  3. ANCIENT STARS BEYOND THE LOCAL GROUP: RR LYRAE VARIABLES AND BLUE HORIZONTAL BRANCH STARS IN SCULPTOR GROUP DWARF GALAXIES

    SciTech Connect

    Da Costa, G. S.; Jerjen, H.; Rejkuba, M.; Grebel, E. K.

    2010-01-10

    We have used Hubble Space Telescope Advanced Camera for Surveys images to generate color-magnitude diagrams that reach below the magnitude of the horizontal branch in the Sculptor Group dwarf galaxies ESO294-010 and ESO410-005. In both diagrams, blue horizontal branch stars are unambiguously present, a signature of the existence of an ancient stellar population whose age is comparable to that of the Galactic halo globular clusters. The result is reinforced by the discovery of numerous RR Lyrae variables in both galaxies. The occurrence of these stars is the first direct confirmation of the existence of ancient stellar populations beyond the Local Group and indicates that star formation can occur at the earliest epochs even in low-density environments.

  4. A search for CO in the Local Group dwarf irregular galaxy WLM

    NASA Astrophysics Data System (ADS)

    Taylor, C. L.; Klein, U.

    2001-02-01

    We present 12CO J = 1-> 0 and J = 2-> 1 observations of the low metallicity (12 + log(O/H) = 7.74) Local Group dwarf irregular galaxy WLM made with the 15 m SEST and 14 m FCRAO telescopes. Despite the presence a number of HII regions, we find no CO emission. We obtain low upper limits on the integrated intensity (I_CO<= 0.18 K km s-1 for CO (1->0)). The non-detection is consistent with the result of Taylor, Kobulnicky & Skillman (\\cite{TKS}), that dwarf galaxies below a metallicity of ~ 7.9 are not detected in CO emission. WLM shows that this trend continues for low metallicity galaxies even as their metallicities approach 7.9. These results are consistent with the models of the metal poor ISM by Norman & Spaans (\\cite{NS}). By comparing our CO data with observations of star formation in WLM, we find evidence for a high CO to H_2 conversion factor.

  5. Carbon star survey in the Local Group. VII. NGC 3109 a galaxy without a stellar halo

    NASA Astrophysics Data System (ADS)

    Demers, S.; Battinelli, P.; Letarte, B.

    2003-11-01

    We present a CFH12K wide field survey of the carbon star population in and around NGC 3109. Carbon stars, the brightest members of the intermediate-age population, were found nearly exclusively in and near the disk of NGC 3109, ruling out the existence of an extensive intermediate-age halo like the one found in NGC 6822. Over 400 carbon stars identified have = -4.71, confirming the nearly universality of mean magnitude of C star populations in Local Group galaxies. Star counts over the field reveal that NGC 3109 is a truncated disk shaped galaxy without an extensive stellar halo. The minor axis star counts reach the foreground density between 4' and 5', a distance that can be explained by an inclined disk rather than a spheroidal halo. We calculate a global C/M ratio of 1.75 +/- 0.20, a value expected for such a metal poor galaxy. The complete Table 2 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/410/795

  6. The star formation histories of local group dwarf galaxies. II. Searching for signatures of reionization

    SciTech Connect

    Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; Holtzman, Jon; Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2014-07-10

    We search for signatures of reionization in the star formation histories (SFHs) of 38 Local Group dwarf galaxies (10{sup 4} < M{sub *} < 10{sup 9} M{sub ☉}). The SFHs are derived from color-magnitude diagrams using archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. Only five quenched galaxies (And V, And VI, And XIII, Leo IV, and Hercules) are consistent with forming the bulk of their stars before reionization, when full uncertainties are considered. Observations of 13 of the predicted 'true fossils' identified by Bovill and Ricotti show that only two (Hercules and Leo IV) indicate star formation quenched by reionization. However, both are within the virial radius of the Milky Way and evidence of tidal disturbance complicates this interpretation. We argue that the late-time gas capture scenario posited by Ricotti for the low mass, gas-rich, and star-forming fossil candidate Leo T is observationally indistinguishable from simple gas retention. Given the ambiguity between environmental effects and reionization, the best reionization fossil candidates are quenched low mass field galaxies (e.g., KKR 25).

  7. Search for high-energy γ-ray emission from galaxies of the Local Group with Fermi/LAT

    NASA Astrophysics Data System (ADS)

    Lenain, J.-P.; Walter, R.

    2011-11-01

    Context. With the discovery of high-energy γ-ray emission from the Andromeda galaxy (M 31) by the Fermi/LAT collaboration, normal galaxies begin to arise from the shadows for the first time, providing insight into cosmic ray acceleration in external galaxies. Aims: We search for high-energy γ-ray emission from those galaxies in the Local Group that have so far not been investigated: M 81, M 83, IC 342, Maffei 1, Maffei 2, and M 94. Methods.Fermi/LAT public data from August 4, 2008 to January 1, 2011 were analysed for these galaxies. We compared the results to other starburst and normal galaxies detected so far at high energies: the Magellanic clouds, M 31, and the starburst galaxies M 82 and NGC 253. Results: No significant detection is found in the data for the sources in our sample, and we derive upper limits on their photon flux. After comparing the results to other Local Group objects, we find that the derived upper limits are fully compatible with expectations from cosmic rays interacting with the interstellar medium within the host galaxies. In the case of M 33 and M 83, a detection in Fermi/LAT data should be imminent. The expected fluxes for the other sources in the sample are below the sensitivity of Fermi/LAT, even after 10 years of observation. Collective emission from compact objects in the host galaxies is also found to be negligible compared to the expected emission from cosmic ray interactions.

  8. A census of AGB stars in Local Group galaxies. II. NGC 185 and NGC 147

    NASA Astrophysics Data System (ADS)

    Nowotny, W.; Kerschbaum, F.; Olofsson, H.; Schwarz, H. E.

    2003-05-01

    We present results of our ongoing photometric survey of Local Group galaxies, using a four filter technique based on the method of Wing (\\cite{Wing71}) to identify and characterise the late-type stellar content. Two narrow band filters centred on spectral features of TiO and CN allow us to distinguish between AGB stars of different chemistries [M-type (O-rich) and C-type (C-rich)]. The major parts of two dwarf galaxies of the M 31 subgroup - NGC 185 and NGC 147 - were observed. From photometry in V and i we estimate the tip of the RGB, and derive distance moduli respectively. With additional photometric data in the narrow band filters TiO and CN we identify 154 new AGB carbon stars in NGC 185 and 146 in NGC 147. C/M ratios are derived, as well as mean absolute magnitudes , bolometric magnitudes M_bol, luminosity functions, and the spatial/radial distributions of the C stars in both galaxies. Based on observations made with the Nordic Optical Telescope operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. Table A.1 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strabg.fr/cgi-bin/qcat?J/A+A/403/93

  9. Scaling relations and the fundamental line of the local group dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Woo, Joanna; Courteau, Stéphane; Dekel, Avishai

    2008-11-01

    We study the scaling relations between global properties of dwarf galaxies in the local group. In addition to quantifying the correlations between pairs of variables, we explore the `shape' of the distribution of galaxies in log parameter space using standardized principal component analysis, the analysis is performed first in the 3D structural parameter space of stellar mass M*, internal velocity V and characteristic radius R* (or surface brightness μ*). It is then extended to a 4D space that includes a stellar population parameter such as metallicity Z or star formation rate . We find that the local group dwarfs basically define a one-parameter `fundamental line' (FL), primarily driven by stellar mass, M*. A more detailed inspection reveals differences between the star formation properties of dwarf irregulars (dI's) and dwarf ellipticals (dE's), beyond the tendency of the latter to be more massive. In particular, the metallicities of dI's are typically lower by a factor of 3 at a given M* and they grow faster with increasing M*, showing a tighter FL in the 4D space for the dE's. The structural scaling relations of dI's resemble those of the more massive spirals, but the dI's have lower star formation rates for a given M* which also grow faster with increasing M*. On the other hand, the FL of the dE's departs from the fundamental plane of bigger ellipticals. While the one-parameter nature of the FL and the associated slopes of the scaling relations are consistent with the general predictions of supernova feedback from Dekel & Woo, the differences between the FL's of the dE's and the dI's remain a challenge and should serve as a guide for the secondary physical processes responsible for these two types.

  10. First-Ever Census of Variable Mira-Type Stars in Galaxy Outside the Local Group

    NASA Astrophysics Data System (ADS)

    2003-05-01

    First-Ever Census of Variable Mira-Type Stars in Galaxy Outsidethe Local Group Summary An international team led by ESO astronomer Marina Rejkuba [1] has discovered more than 1000 luminous red variable stars in the nearby elliptical galaxy Centaurus A (NGC 5128) . Brightness changes and periods of these stars were measured accurately and reveal that they are mostly cool long-period variable stars of the so-called "Mira-type" . The observed variability is caused by stellar pulsation. This is the first time a detailed census of variable stars has been accomplished for a galaxy outside the Local Group of Galaxies (of which the Milky Way galaxy in which we live is a member). It also opens an entirely new window towards the detailed study of stellar content and evolution of giant elliptical galaxies . These massive objects are presumed to play a major role in the gravitational assembly of galaxy clusters in the Universe (especially during the early phases). This unprecedented research project is based on near-infrared observations obtained over more than three years with the ISAAC multi-mode instrument at the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory . PR Photo 14a/03 : Colour image of the peculiar galaxy Centaurus A . PR Photo 14b/03 : Location of the fields in Centaurus A, now studied. PR Photo 14c/03 : "Field 1" in Centaurus A (visual light; FORS1). PR Photo 14d/03 : "Field 2" in Centaurus A (visual light; FORS1). PR Photo 14e/03 : "Field 1" in Centaurus A (near-infrared; ISAAC). PR Photo 14f/03 : "Field 2" in Centaurus A (near-infrared; ISAAC). PR Photo 14g/03 : Light variation of six variable stars in Centaurus A PR Photo 14h/03 : Light variation of stars in Centaurus A (Animated GIF) PR Photo 14i/03 : Light curves of four variable stars in Centaurus A. Mira-type variable stars Among the stars that are visible in the sky to the unaided eye, roughly one out of three hundred (0.3%) displays brightness variations and is referred to by astronomers as a

  11. THE EFFECT OF ENVIRONMENT ON MILKY-WAY-MASS GALAXIES IN A CONSTRAINED SIMULATION OF THE LOCAL GROUP

    SciTech Connect

    Creasey, Peter; Scannapieco, Cecilia; Nuza, Sebastián E.; Gottlöber, Stefan; Steinmetz, Matthias; Yepes, Gustavo

    2015-02-10

    In this Letter, we present, for the first time, a study of star formation rate (SFR), gas fraction, and galaxy morphology of a constrained simulation of the Milky Way (MW) and Andromeda (M31) galaxies compared to other MW-mass galaxies. By combining with unconstrained simulations, we cover a sufficient volume to compare these galaxies’ environmental densities ranging from the field to that of the Local Group (LG). This is particularly relevant as it has been shown that, quite generally, galaxy properties depend intimately upon their environment, most prominently when galaxies in clusters are compared to those in the field. For galaxies in loose groups such as the LG, however, environmental effects have been less clear. We consider the galaxy’s environmental density in spheres of 1200 kpc (comoving) and find that while environment does not appear to directly affect morphology, there is a positive trend with SFRs. This enhancement in star formation occurs systematically for galaxies in higher density environments, regardless whether they are part of the LG or in filaments. Our simulations suggest that the richer environment at megaparsec scales may help replenish the star-forming gas, allowing higher specific SFRs in galaxies such as the MW.

  12. Evolved stars in the Local Group galaxies - I. AGB evolution and dust production in IC 1613

    NASA Astrophysics Data System (ADS)

    Dell'Agli, F.; Di Criscienzo, M.; Boyer, M. L.; García-Hernández, D. A.

    2016-08-01

    We used models of thermally pulsing asymptotic giant branch (AGB) stars, which also describe the dust-formation process in the wind, to interpret the combination of near- and mid-infrared photometric data of the dwarf galaxy IC 1613. This is the first time that this approach is extended to an environment different from the Milky Way and the Magellanic Clouds (MCs). Our analysis, based on synthetic population techniques, shows nice agreement between the observations and the expected distribution of stars in the colour-magnitude diagrams obtained with JHK and Spitzer bands. This allows a characterization of the individual stars in the AGB sample in terms of mass, chemical composition and formation epoch of the progenitors. We identify the stars exhibiting the largest degree of obscuration as carbon stars evolving through the final AGB phases, descending from 1-1.25 M⊙ objects of metallicity Z = 10-3 and from 1.5-2.5 M⊙ stars with Z = 2 × 10-3. Oxygen-rich stars constitute the majority of the sample (˜65 per cent), mainly low-mass stars (<2 M⊙) that produce a negligible amount of dust (≤10-7 M⊙ yr-1). We predict the overall dust-production rate from IC 1613, mostly determined by carbon stars, to be ˜6 × 10-7 M⊙ yr-1 with an uncertainty of 30 per cent. The capability of the current generation of models to interpret the AGB population in an environment different from the MCs opens the possibility to extend this kind of analysis to other Local Group galaxies.

  13. The Local Group Galaxy IC 1613 and its asymptotic giant branch variables

    NASA Astrophysics Data System (ADS)

    Menzies, John W.; Whitelock, Patricia A.; Feast, Michael W.

    2015-09-01

    JHKS photometry is presented from a 3-yr survey of the central regions of the Local Group dwarf irregular galaxy IC 1613. The morphologies of the colour-magnitude and colour-colour diagrams are discussed with particular reference to the supergiants and M- and C-type asymptotic giant branch (AGB) stars. Mean JHKS magnitudes, amplitudes and periods are given for five O-rich and nine C-rich Mira variables for which bolometric magnitudes are also estimated. A distance of 750 kpc ((m - M)0 = 24.37 ± 0.08 mag) is derived for IC 1613 by fitting a period-luminosity (PL) relation to the C-rich Miras. This is in agreement with values from the literature. The AGB stars exhibit a range of ages. A comparison with theoretical isochrones suggests that four luminous O-rich Miras are as young as 2 × 108 yr. One of these has a lithium absorption line in its spectrum, demonstrating that it is undergoing hot bottom burning (HBB). This supports the idea that HBB is the cause of the high luminosity of these AGB stars, which puts them above the fundamental PL relation. Further studies of similar stars, selected from their positions in the PL diagram, could provide insight into HBB. A much fainter, presumed O-rich, Mira is similar to those found in Galactic globular clusters. The C Miras are of intermediate age. The O-rich variables are not all recognized as O-rich, or even as AGB stars, on the basis of their J - KS colour. It is important to appreciate this when using near-infrared surveys to classify AGB stars in more distant galaxies.

  14. Molecular and atomic gas in the Local Group galaxy M 33

    NASA Astrophysics Data System (ADS)

    Gratier, P.; Braine, J.; Rodriguez-Fernandez, N. J.; Schuster, K. F.; Kramer, C.; Xilouris, E. M.; Tabatabaei, F. S.; Henkel, C.; Corbelli, E.; Israel, F.; van der Werf, P. P.; Calzetti, D.; Garcia-Burillo, S.; Sievers, A.; Combes, F.; Wiklind, T.; Brouillet, N.; Herpin, F.; Bontemps, S.; Aalto, S.; Koribalski, B.; van der Tak, F.; Wiedner, M. C.; Röllig, M.; Mookerjea, B.

    2010-11-01

    We present high-resolution large-scale observations of the molecular and atomic gas in the Local Group galaxy M 33. The observations were carried out using the HEterodyne Receiver Array (HERA) at the 30 m IRAM telescope in the CO(2-1) line, achieving a resolution of 12” × 2.6 km s-1, enabling individual giant molecular clouds (GMCs) to be resolved. The observed region is 650 square arcminutes mainly along the major axis and out to a radius of 8.5 kpc, and covers entirely the 2' × 40' radial strip observed with the HIFI and PACS Spectrometers as part of the HERM33ES Herschel key program. The achieved sensitivity in main-beam temperature is 20-50 mK at 2.6 km s-1 velocity resolution. The CO(2-1) luminosity of the observed region is 1.7±0.1 × 107 K km s-1 pc2 and is estimated to be 2.8±0.3 × 107 K km s-1 pc2 for the entire galaxy, corresponding to H2 masses of 1.9 × 108 Msun and 3.3 × 108 Msun respectively (including He), calculated with N(H2)/ICO(1-0) twice the Galactic value due to the half-solar metallicity of M 33. The H i 21 cm VLA archive observations were reduced, and the mosaic was imaged and cleaned using the multi-scale task in the CASA software package, yielding a series of datacubes with resolutions ranging from 5” to 25”. The H i mass within a radius of 8.5 kpc is estimated to be 1.4 × 109 Msun. The azimuthally averaged CO surface brightness decreases exponentially with a scale length of 1.9±0.1 kpc whereas the atomic gas surface density is constant at ΣH I = 6±2 Msun pc-2 deprojected to face-on. For an N(H2)/ICO(1-0) conversion factor twice that of the Milky Way, the central kiloparsec H2 surface density is ΣH2 = 8.5±0.2 Msun pc-2. The star formation rate per unit molecular gas (SF efficiency, the rate of transformation of molecular gas into stars), as traced by the ratio of CO to Hα and FIR brightness, is constant with radius. The SFE, with a N(H2)/ICO(1-0) factor twice galactic, appears 2-4 times greater than for large spiral

  15. Chemical analysis of carbon stars in the Local Group. II. The Carina dwarf spheroidal galaxy

    NASA Astrophysics Data System (ADS)

    Abia, C.; de Laverny, P.; Wahlin, R.

    2008-04-01

    Aims:We present new results of our ongoing chemical study of carbon stars in Local Group galaxies to test the critical dependence of s-process nucleosynthesis on the stellar metallicity. Methods: We collected optical spectra with the VLT/UVES instrument of two carbon stars found in the Carina Dwarf Spheroidal (dSph) galaxy, namely ALW-C6 and ALW-C7. We performed a full chemical analysis using the new generation of hydrostatic, spherically symmetric carbon-rich model atmospheres and the spectral synthesis method in LTE. Results: The luminosities, atmosphere parameters and chemical composition of ALW-C6 and ALW-C7 are compatible with these stars being in the TP-AGB phase undergoing third dredge-up episodes, although their extrinsic nature (external pollution in a binary stellar system) cannot be definitively excluded. Our chemical analysis shows that the metallicity of both stars agree with the average metallicity ([Fe/H] -1.8 dex) previously derived for this satellite galaxy from the analysis of both low resolution spectra of RGB stars and the observed colour magnitude diagrams. ALW-C6 and ALW-C7 present strong s-element enhancements, [ s/Fe] = +1.6, +1.5, respectively. These enhancements and the derived s-process indexes [ ls/Fe] , [ hs/Fe] and [ hs/ls] are compatible with theoretical s-process nucleosynthesis predictions in low mass AGB stars ( 1.5 M_⊙) on the basis that the 13C(α,n)16O is the main source of neutrons. Furthermore, the analysis of C2 and CN bands reveals a large carbon enhancement (C/O 7 and 5, respectively), much larger than the values typically found in galactic AGB carbon stars (C/O 1{-}2). This is also in agreement with the theoretical prediction that AGB carbon stars are formed more easily through third dredge-up episodes as the initial stellar metallicity drops. However, theoretical low-mass AGB models apparently fail to simultaneously fit the observed s-element and carbon enhancements. On the other hand, Zr is found to be less enhanced in

  16. Chemical history of isolated dwarf galaxies of the Local Group - I. dSphs: Cetus and Tucana

    NASA Astrophysics Data System (ADS)

    Avila-Vergara, N.; Carigi, L.; Hidalgo, S. L.; Durazo, R.

    2016-04-01

    For the first time, we obtain chemical evolution models (CEMs) for Tucana and Cetus, two isolated dwarf spheroidal galaxies of the Local Group. The CEMs have been built from the star formation histories (SFHs) and the metallicity histories, both obtained independently by the Local Cosmology from Isolated Dwarfs (LCID) project from deep colour-magnitude diagrams. Based on our models, we find that the chemical histories were complex and can be divided into different epochs and scenarios. In particular, during 75 per cent of the SFH, the galaxies behaved as closed boxes and, during the remaining 25 per cent, either received a lot of primordial gas by accretion or they lost metals through metal-rich winds. In order to discriminate between these two scenarios, abundances ratios in old stars are needed. At t ˜ 4.5 Gyr, the galaxies lost most of their gas due to a short-strong, well-mixed wind. We obtain very similar CEMs for both galaxies, although Cetus is twice as massive as Tucana. We conclude that the star formation in both galaxies began with only 1.5 per cent of the baryonic mass fraction predicted by Λ cold dark matter.

  17. New probable dwarf galaxies in northern groups of the Local Supercluster

    NASA Astrophysics Data System (ADS)

    Karachentsev, I. D.; Karachentseva, V. E.; Huchtmeier, W. K.

    2007-08-01

    We have searched for nearby dwarf galaxies in 27 northern groups with characteristic distances 8 15 Mpc based on the Second Palomar Sky Survey prints. In a total area of about 2000 square degrees, we have found 90 low-surface-brightness objects, more than 60% of which are absent from known catalogs and lists. We have classified most of these objects (˜80%) as irregular dwarf systems. The first 21-cm line observations of the new objects with the 100-m Effelsberg radio telescope showed that the typical linear diameters (1 2 kpc), internal motions (˜30 km s-1), and hydrogen masses (˜2 × 107 M ⊙) of the new galaxies correspond to those expected for the dwarf population of nearby groups.

  18. Galaxy And Mass Assembly (GAMA): Gas Fueling of Spiral Galaxies in the Local Universe. I. The Effect of the Group Environment on Star Formation in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Norberg, P.; Robotham, A. S. G.; Liske, J.; Andrae, E.; Baldry, I. K.; Gunawardhana, M.; Kelvin, L. S.; Madore, B. F.; Seibert, M.; Taylor, E. N.; Alpaslan, M.; Brown, M. J. I.; Cluver, M. E.; Driver, S. P.; Bland-Hawthorn, J.; Holwerda, B. W.; Hopkins, A. M.; Lopez-Sanchez, A. R.; Loveday, J.; Rushton, M.

    2017-03-01

    We quantify the effect of the galaxy group environment (for group masses of 1012.5–1014.0 M ⊙) on the current star formation rate (SFR) of a pure, morphologically selected sample of disk-dominated (i.e., late-type spiral) galaxies with redshift ≤0.13. The sample embraces a full representation of quiescent and star-forming disks with stellar mass M * ≥ 109.5 M ⊙. We focus on the effects on SFR of interactions between grouped galaxies and the putative intrahalo medium (IHM) of their host group dark matter halos, isolating these effects from those induced through galaxy–galaxy interactions, and utilizing a radiation transfer analysis to remove the inclination dependence of derived SFRs. The dependence of SFR on M * is controlled for by measuring offsets Δlog(ψ *) of grouped galaxies about a single power-law relation in specific SFR, {\\psi }* \\propto {M}* -0.45+/- 0.01, exhibited by non-grouped “field” galaxies in the sample. While a small minority of the group satellites are strongly quenched, the group centrals and a large majority of satellites exhibit levels of ψ * statistically indistinguishable from their field counterparts, for all M *, albeit with a higher scatter of 0.44 dex about the field reference relation (versus 0.27 dex for the field). Modeling the distributions in Δlog(ψ *), we find that (i) after infall into groups, disk-dominated galaxies continue to be characterized by a similar rapid cycling of gas into and out of their interstellar medium shown prior to infall, with inflows and outflows of ∼1.5–5 x SFR and ∼1–4 x SFR, respectively; and (ii) the independence of the continuity of these gas flow cycles on M * appears inconsistent with the required fueling being sourced from gas in the circumgalactic medium on scales of ∼100 kpc. Instead, our data favor ongoing fueling of satellites from the IHM of the host group halo on ∼Mpc scales, i.e., from gas not initially associated with the galaxies upon infall. Consequently

  19. TIDAL INTERACTIONS AT THE EDGE OF THE LOCAL GROUP: NEW EVIDENCE FOR TIDAL FEATURES IN THE ANTLIA DWARF GALAXY

    SciTech Connect

    Penny, Samantha J.; Pimbblet, Kevin A.; Brown, Michael J. I.; Floyd, David J. E.; Conselice, Christopher J.; Gruetzbauch, Ruth

    2012-10-20

    Using deep B-band imaging down to {approx}{mu}{sub B} = 26 mag arcsec{sup -2}, we present evidence for tidal tails in the Antlia Dwarf galaxy, one of the most distant members of the Local Group. This elongation is in the direction of Antlia's nearest neighbor, the Magellanic-type NGC 3109. The tail is offset by <10 Degree-Sign from a vector linking the centers of the two galaxies, indicative of interactions between the pair. Combined with the warped disk previously identified in NGC 3109, Antlia and NGC 3109 must be at a small separation for tidal features to be present in Antlia. We calculate that Antlia cannot be completely disrupted by NGC 3109 in a single interaction unless its orbit pericenter is <6 kpc; however, multiple interactions could significantly alter its morphology. Therefore despite being located right at the edge of the Local Group, environmental effects are playing an important role in Antlia's evolution.

  20. The High Velocity Galaxy Challenge to ΛCDM in the Local Group

    NASA Astrophysics Data System (ADS)

    Banik, Indranil

    2017-06-01

    In the Local Group (LG), Andromeda (M31) is approaching the Milky Way (MW) at ˜110 km/s despite the large scale cosmic expansion. To turn it around locally to this extent, their combined mass must lie in a narrow range of values. This constrains the gravitational field in the LG as there are no other objects of similar masses. We have conducted calculations solving test particle trajectories in this gravitational field using a 2D dynamical model including Cen A and the LMC (MNRAS, 459, 2237). Although few objects have radial velocities (RVs) much below the predictions of the best-fitting model, some have RVs much above them, sometimes by as much as 100 km/s. This situation persists even when we used a 3D model including perturbers and satellites (MNRAS, 467, 2180).The observations may be explained by a past close flyby of the MW and M31, which arises in Modified Newtonian Dynamics (MOND) but not ΛCDM. In this context, a simplified calculation suggests that the recently discovered plane of satellites around the MW and a similar plane around M31 could be explained by a past MW-M31 flyby, but only if they orbit within a particular plane. We used this information in a more detailed MOND simulation of the flyby and its effect on the rest of the LG, treating it as a cloud of ˜3×105 test particles. The high speeds of the MW and M31 at pericentre allow for efficient gravitational slingshots of these particles. Those flung out to the greatest distance tend to lie very close to the MW-M31 orbital plane, probably because the greatest impulses occur for objects flung out almost parallel to the motion of the perturber.I will describe this simulation and recent work (Arxiv: 1701.06559) showing that LG dwarfs with the most anomalously high RVs (relative to our 3D model) indeed lie close to a plane oriented similarly to our expected MW-M31 orbital plane based on considering their satellite systems. This plane of distant LG dwarfs passes within 140 kpc of the MW and M31 and

  1. Local Universe Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Carignan, Claude

    2015-08-01

    One of the outstanding problems in cosmology is addressing the "small-scale crisis" and understanding structure formation at the smallest scales. Standard Lambda Cold Dark Matter cosmological simulations of Milky Way-size DM halos predict many more DM sub-halos than the number of dwarf galaxies observed. This is the so-called Missing Satellites Problem. The most popular interpretation of the Missing Satellites Problem is that the smallest dark matter halos in the universe are extremely inefficient at forming stars. The virialized extent of the Milky Way's halo should contain ~500 satellites, while only ˜100 satellites and dwarfs are observed in the whole Local Group. Despite the large amount of theoretical work and new optical observations, the discrepancy, even if reduced, still persists between observations and hierarchical models, regardless of the model parameters. It may be possible to find those isolated ultra-faint missing dwarf galaxies via their neutral gas component, which is one of the goals we are pursuing with the SKA precursor KAT-7 in South Africa, and soon with the SKA pathfinder MeerKAT.

  2. The matter distribution in the local Universe as derived from galaxy groups in SDSS DR12 and 2MRS

    NASA Astrophysics Data System (ADS)

    Saulder, Christoph; van Kampen, Eelco; Chilingarian, Igor V.; Mieske, Steffen; Zeilinger, Werner W.

    2016-11-01

    Context. Friends-of-friends algorithms are a common tool to detect galaxy groups and clusters in large survey data. In order to be as precise as possible, they have to be carefully calibrated using mock catalogues. Aims: We create an accurate and robust description of the matter distribution in the local Universe using the most up-to-date available data. This will provide the input for a specific cosmological test planned as follow-up to this work, and will be useful for general extragalactic and cosmological research. Methods: We created a set of galaxy group catalogues based on the 2MRS and SDSS DR12 galaxy samples using a friends-of-friends based group finder algorithm. The algorithm was carefully calibrated and optimised on a new set of wide-angle mock catalogues from the Millennium simulation, in order to provide accurate total mass estimates of the galaxy groups taking into account the relevant observational biases in 2MRS and SDSS. Results: We provide four different catalogues: (i) a 2MRS based group catalogue; (ii) an SDSS DR12 based group catalogue reaching out to a redshift z = 0.11 with stellar mass estimates for 70% of the galaxies; (iii) a catalogue providing additional fundamental plane distances for all groups of the SDSS catalogue that host elliptical galaxies; (iv) a catalogue of the mass distribution in the local Universe based on a combination of our 2MRS and SDSS catalogues. Conclusions: While motivated by a specific cosmological test, three of the four catalogues that we produced are well suited to act as reference databases for a variety of extragalactic and cosmological science cases. Our catalogue of fundamental plane distances for SDSS groups provides further added value to this paper. The full catalogues (Tables A.1 to A.8) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A14

  3. X-ray Source Population Study of the Local Group Galaxy M 31

    NASA Astrophysics Data System (ADS)

    Stiele, Holger

    2010-11-01

    This dissertation presents the analysis of a large and deep XMM-Newton survey of the second large Local Group spiral galaxy M31. The survey observations, taken between June 2006 and February 2008, together with re-analysed archival observations from June 2000 to July 2004 cover, for the first time, the whole D25 ellipse of M 31 with XMM-Newton down to a limiting luminosity of ˜10^35 erg s-1 in the 0.2-4.5 keV band. The main goal of the thesis was a study of the different source populations of M 31 that can be observed in X-rays. Therefore a catalogue was created, which contains all 1 948 sources detected in the 0.2 - 12.0 keV range. 961 of these sources were detected in X-rays for the first time. Source classification and identification was based on X-ray hardness ratios, spatial extent of the sources, and by cross correlating with catalogues in the X-ray, optical, infrared and radio wavelengths. An additional classification criterion was the long-term temporal variability of the sources in X-rays. This variability allows us to distinguish between X-ray binaries and active galactic nuclei. Furthermore, supernova remnant classifications of previous studies that did not use long-term variability as a classification criterion, could be validated. Including previous Chandra and ROSAT observations in the long-term variability study allowed me to detect additional transient or at least highly variable sources, which are good candidates for being X-ray binaries. Fourteen of the 40 supersoft source (SSS) candidates correlated with optical novae and therefore can be considered the supersoft emission of the optical novae. Among them is the first nova/SSS detected in a globular cluster of M 31. Correlations with previous ROSAT and Chandra studies revealed that only three SSSs are visible for at least one decade. This result underlines the strong long-term variability found for the class of SSSs. In addition the correlations demonstrated that strict selection criteria have to

  4. Local normal galaxies

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.

    1990-01-01

    In the near future, high energy (E greater than 20 MeV) gamma ray astronomy offers the promise of a new means of examining the closest galaxies. Two and possibly three local galaxies, the Small and Large Magellanic Clouds and M31, should be visible to the high energy gamma ray telescope on the Gamma Ray Observatory, and the first should be seen by GAMMA-1. With the assumptions of adequate cosmic ray production and reasonable magnetic field strengths, both of which should likely be satisfied, specific predictions of the gamma ray emission can be made separating the concepts of the galactic and universal nature of cosmic rays. A study of the synchrotron radiation from the Large Magellanic Cloud (LMC) suggests that the cosmic ray density is similar to that in the local region of our galaxy, but not uniform. It is hoped the measurements will be able to verify this independent of assumptions about the magnetic fields in the LMC.

  5. Monitoring survey of pulsating giant stars in the Local Group galaxies: survey description, science goals, target selection

    NASA Astrophysics Data System (ADS)

    Saremi, E.; Javadi, A.; van Loon, J. Th; Khosroshahi, H.; Abedi, A.; Bamber, J.; Hashemi, S. A.; Nikzat, F.; Molaei Nezhad, A.

    2017-06-01

    The population of nearby dwarf galaxies in the Local Group constitutes a complete galactic environment, perfect suited for studying the connection between stellar populations and galaxy evolution. In this study, we are conducting an optical monitoring survey of the majority of dwarf galaxies in the Local Group, with the Isaac Newton Telescope (INT), to identify long period variable stars (LPVs). These stars are at the end points of their evolution and therefore their luminosity can be directly translated into their birth masses; this enables us to reconstruct the star formation history. By the end of the monitoring survey, we will have performed observations over ten epochs, spaced approximately three months apart, and identified long-period, dust-producing AGB stars; five epochs of data have been obtained already. LPVs are also the main source of dust; in combination with Spitzer Space Telescope images at mid-IR wavelengths we will quantify the mass loss, and provide a detailed map of the mass feedback into the interstellar medium. We will also use the amplitudes in different optical passbands to determine the radius variations of the stars, and relate this to their mass loss.

  6. THE ARAUCARIA PROJECT. INFRARED TIP OF THE RED GIANT BRANCH DISTANCES TO FIVE DWARF GALAXIES IN THE LOCAL GROUP

    SciTech Connect

    Gorski, Marek; Pietrzynski, Grzegorz; Gieren, Wolfgang E-mail: pietrzyn@astrouw.edu.pl

    2011-06-15

    We have obtained accurate near-infrared photometry of the tip of the red giant branch (TRGB) in the Local Group galaxies Sculptor, NGC 6822, NGC 3109, IC 1613, and WLM. We have used the derived TRGB magnitudes together with the absolute magnitude calibration of the near-infrared TRGB magnitude of Valenti et al. to determine the distances of these five galaxies. The statistical errors in the distance moduli are typically 4%. The systematic uncertainties are dominated by the knowledge of the mean metallicities of the red giant branches and are in the range of 5%-8%. We observe a slight (2%) systematic difference between the distances derived from the J and K bands, respectively, which is within the 1{sigma} errors of the distances. We compare the new distances derived in this paper with other recent distance determinations for our target galaxies and find excellent agreement. In particular, the near-infrared TRGB distances to the four dwarf irregular galaxies in the sample agree to better than 5% in each case with their Cepheid distances obtained from infrared photometry, indicating that there is no appreciable systematic offset between these two fundamental techniques using old and young stellar populations, respectively.

  7. Resolving the stellar outskirts of six Milky Way-like galaxies beyond the Local Group

    NASA Astrophysics Data System (ADS)

    Monachesi, A.; Bell, E. F.; Radburn-Smith, D. J.; Harmsen, B.; de Jong, R. S.; Bailin, J.; Holwerda, B. W.; Streich, D.

    2017-03-01

    Models of galaxy formation in a hierarchical universe predict substantial scatter in the halo-to-halo stellar properties, owing to stochasticity in galaxies' merger histories. Currently, only few detailed observations of galaxy's halos are available, mainly for the Milky Way and M31. The Galaxy Halos, Outer disks, Substructure, Thick disks and Star clusters (GHOSTS) HST survey is the largest study to date of the resolved stellar populations in the outskirts of disk galaxies and its observations offer a direct test of model predictions. Here we present the results we obtain for six highly inclined nearby Milky Way-mass spiral galaxies. We find a great diversity in the properties of their stellar halos.

  8. The star formation histories of local group dwarf galaxies. I. Hubble space telescope/wide field planetary camera 2 observations

    SciTech Connect

    Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; Holtzman, Jon; Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2014-07-10

    We present uniformly measured star formation histories (SFHs) of 40 Local Group (LG) dwarf galaxies based on color-magnitude diagram (CMD) analysis from archival Hubble Space Telescope imaging. We demonstrate that accurate SFHs can be recovered from CMDs that do not reach the oldest main sequence turn-off (MSTO), but emphasize that the oldest MSTO is critical for precisely constraining the earliest epochs of star formation. We find that: (1) the average lifetime SFHs of dwarf spheroidals (dSphs) can be approximated by an exponentially declining SFH with τ ∼ 5 Gyr; (2) lower luminosity dSphs are less likely to have extended SFHs than more luminous dSphs; (3) the average SFHs of dwarf irregulars (dIrrs), transition dwarfs, and dwarf ellipticals can be approximated by the combination of an exponentially declining SFH (τ ∼ 3-4 Gyr) for lookback ages >10-12 Gyr ago and a constant SFH thereafter; (4) the observed fraction of stellar mass formed prior to z = 2 ranges considerably (80% for galaxies with M < 10{sup 5} M{sub ☉} to 30% for galaxies with M > 10{sup 7} M{sub ☉}) and is largely explained by environment; (5) the distinction between 'ultra-faint' and 'classical' dSphs is arbitrary; (6) LG dIrrs formed a significantly higher fraction of stellar mass prior to z = 2 than the Sloan Digital Sky Survey galaxies from Leitner and the SFHs from the abundance matching models of Behroozi et al. This may indicate higher than expected star formation efficiencies at early times in low mass galaxies. Finally, we provide all the SFHs in tabulated electronic format for use by the community.

  9. The Local Group: Our Galactic Neighborhood.

    ERIC Educational Resources Information Center

    Hodge, Paul

    1987-01-01

    Presents information on the properties and largest spirals of the Local Group galaxies. Explains the three categories of galaxies, identifies the brightest members of the Local Group, and discusses recent discoveries within the group. (ML)

  10. The Local Group: Our Galactic Neighborhood.

    ERIC Educational Resources Information Center

    Hodge, Paul

    1987-01-01

    Presents information on the properties and largest spirals of the Local Group galaxies. Explains the three categories of galaxies, identifies the brightest members of the Local Group, and discusses recent discoveries within the group. (ML)

  11. New Cepheid distances to nearby galaxies based on BVRI CCD photometry. II - The local group galaxy M33

    NASA Technical Reports Server (NTRS)

    Freedman, Wendy L.; Wilson, Christine D.; Madore, Barry F.

    1991-01-01

    A true distance modulus to the nearby spiral galaxy M33 has been determined based on CCD photometry obtained at BVRI wavelengths. M33 is presently one of five nearby galaxies used in the calibration of the IR Tully-Fisher relation, and thereby in the determination of the Hubble constant. Using period-luminosity relations at several wavelengths offers the advantage that the distance moduli derived can be corrected for the effects of interstellar extinction. These data indicate that there is internal reddening affecting the Cepheid photometry in M33 which must be accounted for if a true distance modulus is to be obtained for this galaxy. Adopting a true distance modulus to the LMC of 18.5 mag, the new CCD data yield a true distance to M33 of 24.64 + or - 0.09 mag, corresponding to a linear distance of 840 kpc. A mean value of the total color excess (foreground and internal) for the Cepheids in M33 is estimated to be E(B - V) = 0.10 + or - 0.09 mag, assuming a value for the total mean LMC Cepheid color excess of 0.10 mag.

  12. New Cepheid distances to nearby galaxies based on BVRI CCD photometry. II - The local group galaxy M33

    NASA Technical Reports Server (NTRS)

    Freedman, Wendy L.; Wilson, Christine D.; Madore, Barry F.

    1991-01-01

    A true distance modulus to the nearby spiral galaxy M33 has been determined based on CCD photometry obtained at BVRI wavelengths. M33 is presently one of five nearby galaxies used in the calibration of the IR Tully-Fisher relation, and thereby in the determination of the Hubble constant. Using period-luminosity relations at several wavelengths offers the advantage that the distance moduli derived can be corrected for the effects of interstellar extinction. These data indicate that there is internal reddening affecting the Cepheid photometry in M33 which must be accounted for if a true distance modulus is to be obtained for this galaxy. Adopting a true distance modulus to the LMC of 18.5 mag, the new CCD data yield a true distance to M33 of 24.64 + or - 0.09 mag, corresponding to a linear distance of 840 kpc. A mean value of the total color excess (foreground and internal) for the Cepheids in M33 is estimated to be E(B - V) = 0.10 + or - 0.09 mag, assuming a value for the total mean LMC Cepheid color excess of 0.10 mag.

  13. VizieR Online Data Catalog: Dwarf galaxy planes in Local Group (Pawlowski+, 2013)

    NASA Astrophysics Data System (ADS)

    Pawlowski, M. S.; Kroupa, P.; Jerjen, H.

    2014-09-01

    The analysis presented in the following is based on the catalogue of nearby galaxies as compiled by McConnachie (2012AJ....144....4M, Cat. J/AJ/144/4) (see also Mateo, 1998ARA&A..36..435M). It includes information on all known galaxies within 3Mpc from the Sun, which have distance estimates based on resolved stellar populations. We use the galaxy positions, radial distances and line-of-sight velocities of the LG galaxies as provided by the most recent online version of the tables by McConnachie (2012AJ....144....4M, https://www.astrosci.ca/users/alan/NearbyDwarfsDatabase.html, Version 2013/Jun/17). To this we add the recently published line-of-sight velocity for Andromeda XXIX (Tollerud et al., 2013ApJ...768...50T) for which no velocities are provided in the catalogue yet. (1 data file).

  14. Fermi Large Area Telescope observations of Local Group galaxies: detection of M 31 and search for M 33

    DOE PAGES

    Abdo, A. A.

    2010-11-01

    Context. Cosmic rays (CRs) can be studied through the galaxy-wide gamma-ray emission that they generate when propagating in the interstellar medium. The comparison of the diffuse signals from different systems may inform us about the key parameters in CR acceleration and transport. Aims. We aim to determine and compare the properties of the cosmic-ray-induced gamma-ray emission of several Local Group galaxies. Methods. We use 2 years of nearly continuous sky-survey observations obtained with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope to search for gamma-ray emission from M 31 and M 33. We compare the results with thosemore » for the Large Magellanic Cloud, the Small Magellanic Cloud, the Milky Way, and the starburst galaxies M 82 and NGC 253. Results. We detect a gamma-ray signal at 5σ significance in the energy range 200 MeV–20 GeV that is consistent with originating from M 31. The integral photon flux above 100 MeV amounts to (9.1 ± 1.9stat ± 1.0sys) × 10-9 ph cm-2 s-1. We find no evidence for emission from M 33 and derive an upper limit on the photon flux >100 MeV of 5.1 × 10-9 ph cm-2 s-1 (2σ). Comparing these results to the properties of other Local Group galaxies, we find indications of a correlation between star formation rate and gamma-ray luminosity that also holds for the starburst galaxies. Conclusions. The gamma-ray luminosity of M 31 is about half that of the Milky Way, which implies that the ratio between the average CR densities in M 31 and the Milky Way amounts to ξ = 0.35 ± 0.25. The observed correlation between gamma-ray luminosity and star formation rate suggests that the flux of M 33 is not far below the current upper limit from the LAT observations.« less

  15. LOCAL GROUP DWARF ELLIPTICAL GALAXIES. II. STELLAR KINEMATICS TO LARGE RADII IN NGC 147 AND NGC 185

    SciTech Connect

    Geha, M.; Van der Marel, R. P.; Kalirai, J.; Guhathakurta, P.; Kirby, E. N.

    2010-03-01

    We present kinematic and metallicity profiles for the M 31 dwarf elliptical (dE) satellite galaxies NGC 147 and NGC 185. The profiles represent the most extensive spectroscopic radial coverage for any dE galaxy, extending to a projected distance of 8 half-light radii (8r{sub eff} {approx} 14'). We achieve this coverage via Keck/DEIMOS multislit spectroscopic observations of 520 and 442 member red giant branch stars in NGC 147 and NGC 185, respectively. In contrast to previous studies, we find that both dEs have significant internal rotation. We measure a maximum rotational velocity of 17 +- 2 km s{sup -1} for NGC 147 and 15 +- 5 km s{sup -1} for NGC 185. While both rotation profiles suggest a flattening in the outer regions, there is no indication that we have reached the radius of maximum rotation velocity. The velocity dispersions decrease gently with radius with average dispersions of 16 +- 1 km s{sup -1} and 24 +- 1 km s{sup -1} for NGC 147 and NGC 185, respectively. The average metallicities for NGC 147 and NGC 185 are [Fe/H] = -1.1 +- 0.1 and [Fe/H] = -1.3 +- 0.1, respectively; both dEs have internal metallicity dispersions of 0.5 dex, but show no evidence for a radial metallicity gradient. We construct two-{integral} axisymmetric dynamical models and find that the observed kinematical profiles cannot be explained without modest amounts of non-baryonic dark matter. We measure central mass-to-light ratios of M/L{sub V} = 4.2 +- 0.6 and M/L{sub V} = 4.6 +- 0.6 for NGC 147 and NGC 185, respectively. Both dE galaxies are consistent with being primarily flattened by their rotational motions, although some anisotropic velocity dispersion is needed to fully explain their observed shapes. The velocity profiles of all three Local Group dEs (NGC 147, NGC 185, and NGC 205) suggest that rotation is more prevalent in the dE galaxy class than previously assumed, but often manifests only at several times the effective radius. Since all dEs outside the Local Group have been

  16. Fermi Large Area Telescope observations of Local Group galaxies: detection of M 31 and search for M 33

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cannon, A.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Dermer, C. D.; de Angelis, A.; de Palma, F.; Digel, S. W.; Silva, E. Do Couto E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Favuzzi, C.; Fegan, S. J.; Fortin, P.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Harding, A. K.; Hayashi, K.; Hayashida, M.; Hays, E.; Healey, S. E.; Jean, P.; Jóhannesson, G.; Johnson, A. S.; Johnson, R. P.; Johnson, T. J.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kerr, M.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Martin, P.; Mazziotta, M. N.; Mehault, J.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Pepe, M.; Persic, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Ritz, S.; Romani, R. W.; Sadrozinski, H. F.-W.; Saz Parkinson, P. M.; Sgrò, C.; Siskind, E. J.; Smith, D. A.; Smith, P. D.; Spandre, G.; Spinelli, P.; Strickman, M. S.; Strigari, L.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Ziegler, M.

    2010-11-01

    Context. Cosmic rays (CRs) can be studied through the galaxy-wide gamma-ray emission that they generate when propagating in the interstellar medium. The comparison of the diffuse signals from different systems may inform us about the key parameters in CR acceleration and transport. Aims: We aim to determine and compare the properties of the cosmic-ray-induced gamma-ray emission of several Local Group galaxies. Methods: We use 2 years of nearly continuous sky-survey observations obtained with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope to search for gamma-ray emission from M 31 and M 33. We compare the results with those for the Large Magellanic Cloud, the Small Magellanic Cloud, the Milky Way, and the starburst galaxies M 82 and NGC 253. Results: We detect a gamma-ray signal at 5σ significance in the energy range 200 MeV-20 GeV that is consistent with originating from M 31. The integral photon flux above 100 MeV amounts to (9.1 ± 1.9stat ± 1.0sys) × 10-9 ph cm-2 s-1. We find no evidence for emission from M 33 and derive an upper limit on the photon flux >100 MeV of 5.1 × 10-9 ph cm-2 s-1 (2σ). Comparing these results to the properties of other Local Group galaxies, we find indications of a correlation between star formation rate and gamma-ray luminosity that also holds for the starburst galaxies. Conclusions: The gamma-ray luminosity of M 31 is about half that of the Milky Way, which implies that the ratio between the average CR densities in M 31 and the Milky Way amounts to ξ = 0.35 ± 0.25. The observed correlation between gamma-ray luminosity and star formation rate suggests that the flux of M 33 is not far below the current upper limit from the LAT observations. Appendix A is only available in electronic form at http://www.aanda.org

  17. On the spin bias of satellite galaxies in the local group-like environment

    SciTech Connect

    Lee, Jounghun; Lemson, Gerard E-mail: lemson@mpa-garching.mpg.de

    2013-05-01

    We utilize the Millennium-II simulation databases to study the spin bias of dark subhalos in the Local Group-like systems which have two prominent satellites with comparable masses. Selecting the group-size halos with total mass similar to that of the Local Group (LG) from the friends-of-friends halo catalog and locating their subhalos from the substructure catalog, we determine the most massive (main) and second to the most massive (submain) ones among the subhalos hosted by each selected halo. When the dimensionless spin parameter (λ) of each subhalo is derived from its specific angular momentum and circular velocity at virial radius, a signal of correlation is detected between the spin parameters of the subhalos and the main-to-submain mass ratios of their host halos at z = 0: the higher main-to-submain mass ratio a host halo has, the higher mean spin parameter its subhalos have. It is also found that the correlations exist even for the subhalo progenitors at z = 0.5 and 1. Our interpretation of this result is that the subhalo spin bias is not a transient effect but an intrinsic property of a LG-like system with higher main-to- submain mass ratio, caused by stronger anisotropic stress in the region. A cosmological implication of our result is also discussed.

  18. VizieR Online Data Catalog: Galaxy groups and clouds in the local universe (Makarov+, 2011)

    NASA Astrophysics Data System (ADS)

    Makarov, D.; Karachentsev, I.

    2014-10-01

    We use the HyperLEDA (Paturel et al., 2003, http://atlas.obs-hp.fr/hyperleda/) and the NED (http://ned.ipac.caltech.edu) data bases as the main sources of data on radial velocities, apparent magnitudes, morphological types and other parameters of galaxies. (1 data file).

  19. First OB-stars in the iron-poor local group galaxy Sextans A

    NASA Astrophysics Data System (ADS)

    Camacho, I.; García, M.; Herrero, A.

    2015-05-01

    Massive stars are crucial to understand the chemical and dynamical evolution of the Universe. Our knowledge of their physics at sub-SMC metallicities, dominant in the early Universe, is still in its infancy, due to the lack of proper observations and analyses. We have started a programme to observe stars in nearby galaxies with metallicities below that of the SMC. For this purpose, we have developed photometric criteria which allowed us to set a list of blue massive candidates in Sextans A, a galaxy with a metallicity of [Fe/H]= -1.85. We have secured OSIRIS@GTC spectra of these candidates and have discovered six O-type and seven early-B stars, which constitutes the first atlas of blue massive stars in this galaxy. Using FASTWIND model atmospheres, we have obtained the main physical parameters of the O-type stars (effective temperature, gravity, wind strength and He content).This is the lowest metallicity for which an observational temperature scale of O-stars has been stablished. This work is part of the PhD of I. Camacho aimed at the identification, classification and analysis of massive OB stars in low metallicity galaxies.

  20. Morphological Peculiarities of Distant and Local Galaxies

    NASA Astrophysics Data System (ADS)

    Wu, K. L.; Faber, S. M.; Lauer, T. R.

    1997-12-01

    Detailed images from the Hubble Space Telescope (HST) have sparked a surge of interest in morphological peculiarities in both distant and local galaxies. Several groups have developed criteria by which to classify peculiarities in galaxy morphology (e.g., Abraham et al. 1996, Naim et al. 1997). In order to study peculiar galaxies at high redshifts, it is crucial to have a solid understanding of both the morphological peculiarities in local galaxies and the appearance of local galaxies if they were observed at higher redshifts. We are developing several algorithms to quantify the types and degree of peculiarity seen in galaxy morphology. These algorithms, or peculiarity indices, are sensitive to several different types of features. The indices are applied initially to two samples: (1) a local galaxy sample, comprised of a subset of the Frei, et al. 1996 ``Catalog of Nearby Galaxies,'' along with several merger candidates from Hibbard & van Gorkom 1996 and from a run on the Lick Observatory Nickel 40-inch telescope by one of the authors (KLW); and (2) a sample of simulated z ~ 0.8 galaxies. The images of the local galaxies are resampled, and noise is added, to reflect the sampling and noise levels found in the Hubble Deep Field (HDF). The galaxy sizes and surface brightnesses are cosmologically shifted to simulate observations of these galaxies through the HST F814W ( ~ I) filter at z ~ 0.8. This study expands upon previous work by providing a realistic view of which local morphological features we can expect to measure robustly when observed at high redshifts with the current observational technology. We also demonstrate the effectiveness of our peculiarity indices in differentiating between ``normal'' (i.e., Hubble Sequence type) galaxies and ``peculiar'' galaxies at these two epochs.

  1. Dwarf galaxies in the Local Group: cornerstones for stellar astrophysics and cosmology

    NASA Astrophysics Data System (ADS)

    Bono, G.; Stetson, P. B.; Monelli, M.; Fabrizio, M.; Sanna, N.; Nonino, M.; Walker, A. R.; Bresolin, F.; Buonanno, R.; Caputo, F.; Castellani, M.; Corsi, C. E.; Dall'Ora, M.; Ferraro, I.; François, P.; Iannicola, G.; Matsunaga, M.; Pulone, L.; Romaniello, M.; Storm, J.; Thévenin, F.

    2010-12-01

    Dwarf galaxies have been the crossroad of significant theoretical and observational efforts, but we still lack firm constraints concerning their formation and evolution. They are also fundamental laboratories to investigate the impact of the environment on star formation and on chemical evolution in stellar systems that are order of magnitudes smaller than giant galaxies. We present some recent results concerning the dwarf spheroidal Carina and the dwarf irregular IC10. In particular, we focus our attention on the evolutionary properties of their stellar populations using accurate and deep color-magnitude diagrams. We also briefly discuss the impact that the transition from old, low-mass (horizontal branch) to intermediate-age (red clump) helium burning stars has in constraining the star formation history of complex stellar systems.

  2. Chemo-Dynamical Evolution of r-process Elements in the Local Group Galaxies

    NASA Astrophysics Data System (ADS)

    Hirai, Yutaka; Ishimaru, Yuhri; Saitoh, Takayuki R.; Fujii, Michiko S.; Hidaka, Jun; Kajino, Toshitaka

    The astrophysical site(s) of r-process is not yet identified over half a century. Astronomical high dispersion observations have shown that extremely metal-poor (EMP) stars in the Milky Way (MW) halo have large star-to-star dispersions in the abundance of r-process elements. Binary neutron star mergers (NSMs) are one of the most promising sites of r-process. However, several studies suggested that it is difficult to reproduce the dispersions by NSMs due to their long merger times and low rates. In this study, we performed a series of N-body/smoothed particle hydrodynamic simulations of dwarf galaxies. We show that NSMs can explain the dispersions with long merger times (˜100 Myr). We find that the metallicity of our simulated galaxies does not correlate with time in their early phase due to slow chemical enrichment. This slow chemical enrichment produces [Eu/Fe] distribution which is consistent with the observation. Our results suggest that stars in the MW halo formed with a low star formation rate of less than 10 - 3M ȯ yr-1, which is common for typical dwarf galaxies in the MW. Our simulations support the scenario that early enrichment of the MW halo occurred in the framework of hierarchical structure formation.

  3. Optical Imaging of Local Group Galaxy Candidates from the ALFALFA Survey

    NASA Astrophysics Data System (ADS)

    Adams, Elizabeth; Cannon, John; Giovanelli, Riccardo; Haynes, Martha; Rhode, Katherine; Salzer, John

    2013-02-01

    Giovanelli etal (2010) identified within the dataset of the ALFALFA HI survey a small set of ultra-compact high velocity clouds (UCHVCs). If placed at distances of 1 Mpc, these clouds show the structural characteristics of the gas-bearing ``minihalos'' proposed by Sternberg et al. (2002) but could easily be too optically faint and distant to have been discovered by existing optical surveys. It was recently discovered (Giovanelli etal 2012; Rhode etal 2012) that a low velocity (cz +260 km/s), narrow line width, compact HI cloud detected by the ALFALFA survey is, in fact, a very nearby (0.5 Mpc textless D textless 1.5 Mpc), optically faint but star-forming, low mass galaxy, termed Leo P. This validates the hypothesis that some of the ALFALFA UCHVCs may be such isolated, very low mass dark matter halos. Too faint and distant to have been detected in existing optical surveys, Leo P is the first ultrafaint dwarf galaxy discovered by its HI signature, and its existence strongly argues that other very low mass and (nearly) starless objects are included among the ALFALFA UCHVCs. This proposal requests deep optical observations of the very best ALFALFA candidate low mass galaxies to search for optical counterparts to constrain their distance and stellar populations.

  4. THE ACS LCID PROJECT. IV. DETECTION OF THE RED GIANT BRANCH BUMP IN ISOLATED GALAXIES OF THE LOCAL GROUP

    SciTech Connect

    Monelli, M.; Hidalgo, S. L; Aparicio, A.; Gallart, C.; Cassisi, S.; Bernard, E. J.; Skillman, E. D. E-mail: carme@iac.e E-mail: shidalgo@iac.e E-mail: ejb@roe.ac.u

    2010-08-01

    We report the detection and analysis of the red giant branch (RGB) luminosity function bump in a sample of isolated dwarf galaxies in the Local Group. We have designed a new analysis approach comparing the observed color-magnitude diagrams (CMDs) with theoretical best-fit CMDs derived from precise estimates of the star formation histories of each galaxy. This analysis is based on studying the difference between the V magnitude of the RGB bump and the horizontal branch at the level of the RR Lyrae instability strip ({Delta}V {sup bump}{sub HB}) and we discuss here a technique for reliably measuring this quantity in complex stellar systems. By using this approach, we find that the difference between the observed and predicted values of {Delta}V {sup bump}{sub HB} is +0.13 {+-} 0.14 mag. This is smaller, by about a factor of 2, than the well-known discrepancy between theory and observation at low metallicity commonly derived for Galactic globular clusters (GCs). This result is confirmed by a comparison between the adopted theoretical framework and empirical estimates of the {Delta}V {sup bump}{sub HB} parameter for both a large database of Galactic GCs and for four other dwarf spheroidal galaxies for which this estimate is available in the literature. We also investigate the strength of the RGB bump feature (R{sub bump}), and find very good agreement between the observed and theoretically predicted R{sub bump} values. This agreement supports the reliability of the evolutionary lifetimes predicted by theoretical models of the evolution of low-mass stars.

  5. CARBON-RICH DUST PRODUCTION IN METAL-POOR GALAXIES IN THE LOCAL GROUP

    SciTech Connect

    Sloan, G. C.; Matsuura, M.; Lagadec, E.; Van Loon, J. Th.; Kraemer, K. E.; McDonald, I.; Zijlstra, A. A.; Groenewegen, M. A. T.; Wood, P. R.; Bernard-Salas, J.

    2012-06-20

    We have observed a sample of 19 carbon stars in the Sculptor, Carina, Fornax, and Leo I dwarf spheroidal galaxies with the Infrared Spectrograph on the Spitzer Space Telescope. The spectra show significant quantities of dust around the carbon stars in Sculptor, Fornax, and Leo I, but little in Carina. Previous comparisons of carbon stars with similar pulsation properties in the Galaxy and the Magellanic Clouds revealed no evidence that metallicity affected the production of dust by carbon stars. However, the more metal-poor stars in the current sample appear to be generating less dust. These data extend two known trends to lower metallicities. In more metal-poor samples, the SiC dust emission weakens, while the acetylene absorption strengthens. The bolometric magnitudes and infrared spectral properties of the carbon stars in Fornax are consistent with metallicities more similar to carbon stars in the Magellanic Clouds than in the other dwarf spheroidals in our sample. A study of the carbon budget in these stars reinforces previous considerations that the dredge-up of sufficient quantities of carbon from the stellar cores may trigger the final superwind phase, ending a star's lifetime on the asymptotic giant branch.

  6. Local Group Cosmology

    NASA Astrophysics Data System (ADS)

    Martínez-Delgado, David

    2013-11-01

    List of contributors; List of participants; Preface; Acknowledgments; Abbreviations; 1. The formation of the Milky Way in the CDM paradigm Ken Freeman; 2. Dark matter content and tidal effects in Local Group dwarf galaxies Steven R. Majewski; 3. Notes on the missing satellites problem James Bullock; 4. The Milky Way satellite galaxies Pavel Kroupa; 5. Stellar tidal streams Rodrigo Ibata; 6. Tutorial: the analysis of colour-magnitude diagrams David Valls-Gabaud; 7. Tutorial: modeling tidal streams using N-body simulations Jorge Peñarrubia.

  7. The Oldest Stars of the Extremely Metal-Poor Local Group Dwarf Irregular Galaxy Leo A

    NASA Astrophysics Data System (ADS)

    Schulte-Ladbeck, Regina E.; Hopp, Ulrich; Drozdovsky, Igor O.; Greggio, Laura; Crone, Mary M.

    2002-08-01

    We present deep Hubble Space Telescope (HST) single-star photometry of Leo A in B, V, and I. Our new field of view is offset from the centrally located field observed by Tolstoy et al. in order to expose the halo population of this galaxy. We report the detection of metal-poor red horizontal branch stars, which demonstrate that Leo A is not a young galaxy. In fact, Leo A is as least as old as metal-poor Galactic Globular Clusters that exhibit red horizontal branches and are considered to have a minimum age of about 9 Gyr. We discuss the distance to Leo A and perform an extensive comparison of the data with stellar isochrones. For a distance modulus of 24.5, the data are better than 50% complete down to absolute magnitudes of 2 or more. We can easily identify stars with metallicities between 0.0001 and 0.0004, and ages between about 5 and 10 Gyr, in their post-main-sequence phases, but we lack the detection of main-sequence turnoffs that would provide unambiguous proof of ancient (>10 Gyr) stellar generations. Blue horizontal branch stars are above the detection limits but difficult to distinguish from young stars with similar colors and magnitudes. Synthetic color-magnitude diagrams show it is possible to populate the blue horizontal branch in the halo of Leo A. The models also suggest ~50% of the total astrated mass in our pointing to be attributed to an ancient (>10 Gyr) stellar population. We conclude that Leo A started to form stars at least about 9 Gyr ago. Leo A exhibits an extremely low oxygen abundance, only 3% of solar, in its ionized interstellar medium. The existence of old stars in this very oxygen-deficient galaxy illustrates that a low oxygen abundance does not preclude a history of early star formation. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  8. Probing the Dark Matter Content of Local Group Dwarf Spheroidal Galaxies with FLAMES

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark I.; Kleyna, Jan T.; Gilmore, Gerard F.; Evans, N. Wyn; Koch, Andreas; Grebel, Eva K.; Wyse, Rosemary F. G.; Harbeck, Daniel R.

    2006-06-01

    We present preliminary kinematic results from our VLT programme of spectroscopic observations in the Carina dwarf spheroidal galaxy using the FLAMES multi-object spectrograph. These new data suggest that the dark matter halo of this galaxy has a uniform density core. The implications for our understanding of the nature of the dark matter are discussed. Z% Aaronson M. 1983, ApJ 266, L11 Belokurov V. et al. 2006, ApJL, submitted, astro-ph/0604355 Goerdt T. et al. 2006, MNNRAS 368, 1073 Harbeck D. et al. 2001, AJ 122, 3092 Kleyna J. T. et al. 2001, ApJ 564, L115 Kleyna J. T. et al. 2003, ApJ 588, L21 Koch A. et al. 2006a, The Messenger 123, 38 Koch A. et al. 2006b, AJ 131, 895 Majewski S. R. et al. 2005, AJ 130, 2677 Martin N. et al. 2006, MNRAS 367, L69 Mateo M. et al. 1993, AJ 105, 510 Mateo M. 1997, ASP Conf. Ser. 116, 259 Mateo M. et al. 1998, AJ 116, 2315 Monelli M. et al. 2003, AJ 126, 218 Munoz R. R. et al. 2005, ApJ 631, L137 Shetrone M. D. et al. 2001, ApJ 548, 592 Tolstoy E. et al. 2006, The Messenger 123, 33 Wilkinson M. I. et al. 2002, MNRAS 330, 778 Wilkinson M. I. et al. 2004, MNRAS 611, L21 Wilkinson M. I. et al. 2006, in proceedings of XXIst IAP meeting, EDP sciences, astro-ph/0602186 Willman B. et al. 2005, ApJ 626, L85 Wyse R. F. G. et al. 2006, ApJ 639, L13 Zucker D. B. et al. 2006, ApJ 643, L103

  9. Isolated galaxies, pairs, and groups of galaxies

    NASA Technical Reports Server (NTRS)

    Kuneva, I.; Kalinkov, M.

    1990-01-01

    The authors searched for isolated galaxies, pairs and groups of galaxies in the CfA survey (Huchra et al. 1983). It was assumed that the distances to galaxies are given by R = V/H sub o, where H sub o = 100 km s(exp -1) Mpc(exp -1) and R greater than 6 Mpc. The searching procedure is close to those, applied to find superclusters of galaxies (Kalinkov and Kuneva 1985, 1986). A sphere with fixed radius r (asterisk) is described around each galaxy. The mean spatial density in the sphere is m. Let G (sup 1) be any galaxy and G (sup 2) be its nearest neighbor at a distance R sub 2. If R sub 2 exceeds the 95 percent quintile in the distribution of the distances of the second neighbors, then G (sup 1) is an isolated galaxy. Let the midpoint of G (sup 1) and G (sup 2) be O sub 2 and r sub 2=R sub 2/2. For the volume V sub 2, defined with the radius r sub 2, the density D sub 2 less than k mu, the galaxy G (sup 2) is a single one and the procedure for searching for pairs and groups, beginning with this object is over and we have to pass to another object. Here the authors present the groups - isolated and nonisolated - with n greater than 3, found in the CfA survey in the Northern galactic hemisphere. The parameters used are k = 10 and r (asterisk) = 5 Mpc. Table 1 contains: (1) the group number, (2) the galaxy, nearest to the multiplet center, (3) multiplicity n, (4) the brightest galaxy if it is not listed in (2); (5) and (6) are R.A. and Dec. (1950), (7) - mean distance D in Mpc. Further there are the mean density rho (8) of the multiplet (galaxies Mpc (exp -3), (9) the density rho (asterisk) for r (asterisk) = 5 Mpc and (10) the density rho sub g for the group with its nearest neighbor. The parenthesized digits for densities in the last three columns are powers of ten.

  10. Constraining the Nature of Dark Matter with the Star-formation History of the Faintest Local Group Dwarf Galaxy Satellites

    NASA Astrophysics Data System (ADS)

    Chau, Alice; Mayer, Lucio; Governato, Fabio

    2017-08-01

    Λ warm dark matter (ΛWDM), realized by collisionless particles of 1-3 keV, has been proposed as an alternative scenario to Λ-Cold-Dark Matter (ΛCDM) for the dwarf galaxy scale discrepancies. We present an approach to test the viability of such WDM models using star-formation histories (SFHs) of the dwarf spheroidal galaxies (dSphs) in the Local Group. We compare their high-time-resolution SFHs with the collapse redshift of their dark halos in CDM and WDM. Collapse redshift is inferred after determining the subhalo infall mass. This is based on the dwarf current mass inferred from stellar kinematics, combined with cosmological simulation results on subhalo evolution. WDM subhalos close to the filtering mass scale, forming significantly later than CDM, are the most difficult to reconcile with early truncation of star formation (z ≥ 3). The ultra-faint dwarfs (UFDs) provide the most stringent constraints. Using six UFDs and eight classical dSphs, we show that a 1 keV particle is strongly disfavored, consistently with other reported methods. Excluding other models is only hinted for a few UFDs. Other UFDs for which the lack of robust constraints on halo mass prevents us from carrying out our analysis rigorously, show a very early onset of star formation that will strengthen the constraints delivered by our method in the future. We discuss the various caveats, notably the low number of dwarfs with accurately determined SFHs and the uncertainties when determining the subhalo infall mass, most notably the baryonic physics. Our preliminary analysis may serve as a pathfinder for future investigations that will combine accurate SFHs for local dwarfs with direct analysis of WDM simulations with baryons.

  11. Variable stars in Local Group Galaxies - II. Sculptor dSph

    NASA Astrophysics Data System (ADS)

    Martínez-Vázquez, C. E.; Stetson, P. B.; Monelli, M.; Bernard, E. J.; Fiorentino, G.; Gallart, C.; Bono, G.; Cassisi, S.; Dall'Ora, M.; Ferraro, I.; Iannicola, G.; Walker, A. R.

    2016-11-01

    We present the identification of 634 variable stars in the Milky Way dwarf spheroidal (dSph) satellite Sculptor based on archival ground-based optical observations spanning ˜24 yr and covering ˜2.5 deg2. We employed the same methodologies as the `Homogeneous Photometry' series published by Stetson. In particular, we have identified and characterized one of the largest (536) RR Lyrae samples so far in a Milky Way dSph satellite. We have also detected four Anomalous Cepheids, 23 SX Phoenicis stars, five eclipsing binaries, three field variable stars, three peculiar variable stars located above the horizontal branch - near to the locus of BL Herculis - that we are unable to classify properly. Additionally, we identify 37 long period variables plus 23 probable variable stars, for which the current data do not allow us to determine the period. We report positions and finding charts for all the variable stars, and basic properties (period, amplitude, mean magnitude) and light curves for 574 of them. We discuss the properties of the RR Lyrae stars in the Bailey diagram, which supports the coexistence of subpopulations with different chemical compositions. We estimate the mean mass of Anomalous Cepheids (˜1.5 M⊙) and SX Phoenicis stars (˜1 M⊙). We discuss in detail the nature of the former. The connections between the properties of the different families of variable stars are discussed in the context of the star formation history of the Sculptor dSph galaxy.

  12. Galaxy Groups within 3500 km s-1

    NASA Astrophysics Data System (ADS)

    Kourkchi, Ehsan; Tully, R. Brent

    2017-01-01

    We present an algorithm to find nearby galaxy groups within 3,500 km s-1 (~45 Mpc). Our algorithm is based on the direct observed scaling relations that relate luminosity, velocity dispersion and dimensions of groups. Using these scaling relations, in an iterative process, galaxies with almost the same radial velocities and in close angular proximity fall into groups. Since peculiar velocities and Hubble expansion rate are comparable at these local distances, radial velocities are not very good proxies for galaxies distances. Therefore, further manual investigations of the identified groups is inevitable to discard interlopers and/or to resolve confusing cases in crowded regions. The goal of this study is to explore the nature of smallest galaxy groups and to investigate the halo mass function below 8x1012 solar mass.

  13. Two Local Dwarf Galaxies Discovered in HI

    NASA Astrophysics Data System (ADS)

    Tollerud, Erik Jon

    2015-01-01

    We report the discovery of two dwarf galaxies from a blind 21 cm HI search. The galaxies were identified via optical imaging and spectroscopy of a set of HI clumps identified in the GALFA-HI survey. They have properties consistent with being in the Local Volume (<10Mpc), and one has stars well-resolved enough that it may be on the outer edge of the Local Group (~1 Mpc from M31). While the distance uncertainly makes application and interpretation ambiguous, they are likely some of the faintest starforming galaxies known. They hence may be the 'tip of the iceberg', representing a large population of faint dwarfs comparable to the satellites of the Local Group.

  14. Stellar Astrophysics for the Local Group

    NASA Astrophysics Data System (ADS)

    Aparicio, A.; Herrero, A.; Sánchez, F.

    2011-06-01

    1. Fundamentals of stellar evolution theory: understanding the HRD C. Chiosi; 2. Observations of the most luminous stars in local group galaxies P. Massey; 3. Quantitative spectroscopy of the brightest blue supergiant stars in galaxies R. P. Kudritzki; 4. Calibration of the extragalactic distance scale B. F. Madore and W. L. Freedman; 5. Dwarf galaxies G. S. Da Costa; 6. Resolved stellar populations of the luminous galaxies in the local group M. Mateo; 7. Chemical evolution of the ISM in nearby galaxies E. D. Skillman; 8. Populations of massive stars and the interstellar medium C. Leitherer.

  15. Unusually gas-rich central galaxies in small groups

    NASA Astrophysics Data System (ADS)

    Janowiecki, Steven; xGASS Team

    2017-01-01

    Observations of gas in galaxies have shown dramatic differences between rich clusters and isolated field environments. However, pre-processing in intermediate group environments is expected to be responsible for much of the transformation between gas-rich blue and gas-poor red galaxies. We investigate this by taking advantage of the deepest observations to date of atomic and molecular gas in local galaxies from the GASS and COLD GASS surveys and their extensions to low stellar masses. This sample is uniquely suited to quantify gas and star formation properties of galaxies across environments, reaching the gas-poor regime of groups and clusters. We find that central galaxies in small groups are unusually gas rich and star-forming, compared to isolated galaxies. Below log Mst/Msun = 10, gas-poor group central galaxies are rare. We suggest that these central galaxies are being fed by the filaments of the cosmic web.

  16. Angular momentum in the Local Group

    SciTech Connect

    Dunn, A.; Laflamme, R.

    1994-04-01

    We briefly review models for the Local Group and the acquisition of its angular momentum. We describe early attempts to understand the origin of the spin of the galaxies discussing the hypothesis that the Local Group has little angular momentum. Finally we show that using Peebles` least action principle there should be a rather large amount of orbital angular momentum compared to the magnitude of the spin of its galaxies. Therefore the Local Group cannot be thought as tidally isolated. Using Peebles` trajectories we give a possible set of trajectories for Local Group galaxies which would predict their spin.

  17. Identification of dusty massive stars in star-forming dwarf irregular galaxies in the Local Group with mid-IR photometry

    NASA Astrophysics Data System (ADS)

    Britavskiy, N. E.; Bonanos, A. Z.; Mehner, A.; Boyer, M. L.; McQuinn, K. B. W.

    2015-12-01

    Context. Increasing the statistics of spectroscopically confirmed evolved massive stars in the Local Group enables the investigation of the mass loss phenomena that occur in these stars in the late stages of their evolution. Aims: We aim to complete the census of luminous mid-IR sources in star-forming dwarf irregular (dIrr) galaxies of the Local Group. To achieve this we employed mid-IR photometric selection criteria to identify evolved massive stars, such as red supergiants (RSGs) and luminous blue variables (LBVs), by using the fact that these types of stars have infrared excess due to dust. Methods: The method is based on 3.6 μm and 4.5 μm photometry from archival Spitzer Space Telescope images of nearby galaxies. We applied our criteria to four dIrr galaxies: Pegasus, Phoenix, Sextans A, and WLM, selecting 79 point sources that we observed with the VLT/FORS2 spectrograph in multi-object spectroscopy mode. Results: We identified 13 RSGs, of which 6 are new discoveries, as well as two new emission line stars, and one candidate yellow supergiant. Among the other observed objects we identified carbon stars, foreground giants, and background objects, such as a quasar and an early-type galaxy that contaminate our survey. We use the results of our spectroscopic survey to revise the mid-IR and optical selection criteria for identifying RSGs from photometric measurements. The optical selection criteria are more efficient in separating extragalactic RSGs from foreground giants than mid-IR selection criteria, but the mid-IR selection criteria are useful for identifying dusty stars in the Local Group. This work serves as a basis for further investigation of the newly discovered dusty massive stars and their host galaxies. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 090.D-0009 and 091.D-0010.Appendix A is available in electronic form at http://www.aanda.org

  18. The ACS LCID Project. XI. On the Early Time Resolution of SFHs of Local Group Dwarf Galaxies: Comparing the Effects of Reionization in Models with Observations

    NASA Astrophysics Data System (ADS)

    Aparicio, Antonio; Hidalgo, Sebastian L.; Skillman, Evan; Cassisi, Santi; Mayer, Lucio; Navarro, Julio; Cole, Andrew; Gallart, Carme; Monelli, Matteo; Weisz, Daniel; Bernard, Edouard; Dolphin, Andrew; Stetson, Peter

    2016-05-01

    The analysis of the early star formation history (SFH) of nearby galaxies, obtained from their resolved stellar populations, is relevant as a test for cosmological models. However, the early time resolution of observationally derived SFHs is limited by several factors. Thus, direct comparison of observationally derived SFHs with those derived from theoretical models of galaxy formation is potentially biased. Here we investigate and quantify this effect. For this purpose, we analyze the duration of the early star formation activity in a sample of four Local Group dwarf galaxies and test whether they are consistent with being true fossils of the pre-reionization era; i.e., if the quenching of their star formation occurred before cosmic reionization by UV photons was completed. Two classical dSph (Cetus and Tucana) and two dTrans (LGS-3 and Phoenix) isolated galaxies with total stellar masses between 1.3× {10}6 and 7.2× {10}6 {M}⊙ have been studied. Accounting for time resolution effects, the SFHs peak as much as 1.25 Gyr earlier than the optimal solutions. Thus, this effect is important for a proper comparison of model and observed SFHs. It is also shown that none of the analyzed galaxies can be considered a true fossil of the pre-reionization era, although it is possible that the outer regions of Cetus and Tucana are consistent with quenching by reionization. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #10505.

  19. A TREASURY STUDY OF STAR-FORMING REGIONS IN THE LOCAL GROUP. I. HST PHOTOMETRY OF YOUNG POPULATIONS IN SIX DWARF GALAXIES

    SciTech Connect

    Bianchi, Luciana; Efremova, Boryana; Hodge, Paul; Massey, Philip; Olsen, K. A. G.

    2012-03-15

    We present a comprehensive study of young stellar populations in six dwarf galaxies in or near the Local Group: Phoenix, Pegasus, Sextans A, Sextans B, WLM, and NGC 6822. Their star-forming regions, selected from GALEX wide-field far-UV imaging, were imaged (at sub-pc resolution) with the WFPC2 camera on board the Hubble Space Telescope (HST) in six bandpasses from far-UV to I to detect and characterize their hot massive star content. This study is part of HST treasury survey program HST-GO-11079; the general data characteristics and reduction procedures are detailed in this paper and results are presented for the first six galaxies. From a total of 180 HST images, we provide catalogs of the multi-band stellar photometry and derive the physical parameters of massive stars by analyzing it with model-atmosphere colors. We use the results to infer ages, number of massive stars, extinction, and spatial characteristics of the young stellar populations. The hot massive star content varies largely across our galaxy sample, from an inconspicuous presence in Phoenix and Pegasus to the highest relative abundance of young massive stars in Sextans A and WLM. Albeit to a largely varying extent, most galaxies show a very young population (a few Myrs, except for Phoenix), and older ones (a few 10{sup 7} years in Sextans A, Sextans B, NGC 6822, and WLM, {approx}10{sup 8}yr in Phoenix and Pegasus), suggesting discrete bursts of recent star formation in the mapped regions. The hot massive star content (indicative of the young populations) broadly correlates with the total galaxy stellar mass represented by the integrated optical magnitude, although it varies by a factor of {approx}3 between Sextans A, WLM, and Sextans B, which have similar M{sub V}. Extinction properties are also derived.

  20. A Treasury Study of Star-forming Regions in the Local Group. I. HST Photometry of Young Populations in Six Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Bianchi, Luciana; Efremova, Boryana; Hodge, Paul; Massey, Philip; Olsen, K. A. G.

    2012-03-01

    We present a comprehensive study of young stellar populations in six dwarf galaxies in or near the Local Group: Phoenix, Pegasus, Sextans A, Sextans B, WLM, and NGC 6822. Their star-forming regions, selected from GALEX wide-field far-UV imaging, were imaged (at sub-pc resolution) with the WFPC2 camera on board the Hubble Space Telescope (HST) in six bandpasses from far-UV to I to detect and characterize their hot massive star content. This study is part of HST treasury survey program HST-GO-11079; the general data characteristics and reduction procedures are detailed in this paper and results are presented for the first six galaxies. From a total of 180 HST images, we provide catalogs of the multi-band stellar photometry and derive the physical parameters of massive stars by analyzing it with model-atmosphere colors. We use the results to infer ages, number of massive stars, extinction, and spatial characteristics of the young stellar populations. The hot massive star content varies largely across our galaxy sample, from an inconspicuous presence in Phoenix and Pegasus to the highest relative abundance of young massive stars in Sextans A and WLM. Albeit to a largely varying extent, most galaxies show a very young population (a few Myrs, except for Phoenix), and older ones (a few 107 years in Sextans A, Sextans B, NGC 6822, and WLM, ~108yr in Phoenix and Pegasus), suggesting discrete bursts of recent star formation in the mapped regions. The hot massive star content (indicative of the young populations) broadly correlates with the total galaxy stellar mass represented by the integrated optical magnitude, although it varies by a factor of ~3 between Sextans A, WLM, and Sextans B, which have similar MV . Extinction properties are also derived.

  1. Faint Dwarf Galaxies in Hickson Compact Group 90

    NASA Astrophysics Data System (ADS)

    Ordenes-Briceño, Y.; Taylor, M. A.; Puzia, T. H.; Muñoz, R. P.

    2017-07-01

    We report the discovery of a very diverse set of five low-surface brightness (LSB) dwarf galaxy candidates in Hickson Compact Group 90 (HCG 90) detected in deep U- and I-band images obtained with VLT/VIMOS. These are the first LSB dwarf galaxy candidates found in a compact group of galaxies, which share properties with dwarf galaxies found throughout the Local Volume and in nearby galaxy clusters such as Fornax. Among them, we find a pair of candidates with ˜2 kpc projected separation and a nucleated dwarf candidate, with nucleus size of reff≅46-63 pc.

  2. Radio properties of fossil galaxy groups

    NASA Astrophysics Data System (ADS)

    Miraghaei, H.; Khosroshahi, H. G.

    2016-09-01

    We study 1.4 GHz radio properties of a sample of fossil galaxy groups using GMRT radio observations and the FIRST survey catalog. Fossil galaxy groups, having no recent major mergers in their dominant galaxies and also group scale mergers, give us the opportunity to investigate the effect of galaxy merger on AGN activity. In this work, we compare the radio properties of a rich sample of fossil groups with a sample of normal galaxy groups and clusters and show that the brightest group galaxies in fossil groups are under luminous at 1.4 GHz, relative to the general population of the brightest group galaxies, indicating that the dynamically relaxed nature of fossil groups has influenced the AGN activity in their dominant galaxy.

  3. Fermi Large Area Telescope observations of Local Group galaxies: detection of M 31 and search for M 33

    SciTech Connect

    Abdo, A. A.

    2010-11-01

    Context. Cosmic rays (CRs) can be studied through the galaxy-wide gamma-ray emission that they generate when propagating in the interstellar medium. The comparison of the diffuse signals from different systems may inform us about the key parameters in CR acceleration and transport. Aims. We aim to determine and compare the properties of the cosmic-ray-induced gamma-ray emission of several Local Group galaxies. Methods. We use 2 years of nearly continuous sky-survey observations obtained with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope to search for gamma-ray emission from M 31 and M 33. We compare the results with those for the Large Magellanic Cloud, the Small Magellanic Cloud, the Milky Way, and the starburst galaxies M 82 and NGC 253. Results. We detect a gamma-ray signal at 5σ significance in the energy range 200 MeV–20 GeV that is consistent with originating from M 31. The integral photon flux above 100 MeV amounts to (9.1 ± 1.9stat ± 1.0sys) × 10-9 ph cm-2 s-1. We find no evidence for emission from M 33 and derive an upper limit on the photon flux >100 MeV of 5.1 × 10-9 ph cm-2 s-1 (2σ). Comparing these results to the properties of other Local Group galaxies, we find indications of a correlation between star formation rate and gamma-ray luminosity that also holds for the starburst galaxies. Conclusions. The gamma-ray luminosity of M 31 is about half that of the Milky Way, which implies that the ratio between the average CR densities in M 31 and the Milky Way amounts to ξ = 0.35 ± 0.25. The observed correlation between gamma-ray luminosity and star formation rate suggests that the flux of M 33 is not far below the current upper limit from the LAT observations.

  4. Submillimeter continuum emission from galaxies - Star formation and the interstellar medium in the local group dwarf IC 10

    SciTech Connect

    Thronson, H.A. Jr.; Hunter, D.A.; Casey, S.; Harper, D.A. Lowell Observatory, Flagstaff, AZ Yerkes Observatory, Williams Bay, WI )

    1990-05-01

    Far-infrared (95 and 160 micron) maps and visual broad-band and line images of the nearby, luminous irregular galaxy IC 10 are discussed. Observations of the dust emission make it possible to constrain the total mass of gas and the rate of star formation derived for the galaxy. The total star-formation rate is estimated to be about 0.15 solar mass/yr, and the e-folding time for exhaustion of the interstellar gas due to the star formation is only a few billion years. To determine the source of the cool dust in emission at approximately 100-250 microns from many galaxies, 60, 100, and 160 micron photometry, obtained previously, is compared; and CO, H I, and dust emission is correlated. Based on the correlation between the various cool components of the interstellar medium, it is concluded that the likely location of the dust that dominates the emission at about 160, and possibly 100, microns is within both the diffuse atomic gas and in surface layers of molecular clouds. 57 refs.

  5. The Circular Velocity Function of Group Galaxies

    NASA Astrophysics Data System (ADS)

    Abramson, Louis E.; Williams, Rik J.; Benson, Andrew J.; Kollmeier, Juna A.; Mulchaey, John S.

    2014-09-01

    A robust prediction of ΛCDM cosmology is the halo circular velocity function (CVF), a dynamical cousin of the halo mass function. The correspondence between theoretical and observed CVFs is uncertain, however: cluster galaxies are reported to exhibit a power-law CVF consistent with N-body simulations, but that of the field is distinctly Schechter-like, flattened compared to ΛCDM expectations at circular velocities v c <~ 200 km s-1. Groups offer a powerful probe of the role environment plays in this discrepancy as they bridge the field and clusters. Here, we construct the CVF for a large, mass- and multiplicity-complete sample of group galaxies from the Sloan Digital Sky Survey. Using independent photometric v c estimators, we find no transition from field to ΛCDM-shaped CVF above v c = 50 km s-1 as a function of group halo mass. All groups with 12.4 <~ log M halo/M ⊙ <~ 15.1 (Local Group analogs to rich clusters) display similar Schechter-like CVFs marginally suppressed at low v c compared to that of the field. Conversely, some agreement with N-body results emerges for samples saturated with late-type galaxies, with isolated late-types displaying a CVF similar in shape to ΛCDM predictions. We conclude that the flattening of the low-v c slope in groups is due to their depressed late-type fractions—environment affecting the CVF only to the extent that it correlates with this quantity—and that previous cluster analyses may suffer from interloper contamination. These results serve as useful benchmarks for cosmological simulations of galaxy formation.

  6. The circular velocity function of group galaxies

    SciTech Connect

    Abramson, Louis E.; Williams, Rik J.; Benson, Andrew J.; Kollmeier, Juna A.; Mulchaey, John S.

    2014-09-20

    A robust prediction of ΛCDM cosmology is the halo circular velocity function (CVF), a dynamical cousin of the halo mass function. The correspondence between theoretical and observed CVFs is uncertain, however: cluster galaxies are reported to exhibit a power-law CVF consistent with N-body simulations, but that of the field is distinctly Schechter-like, flattened compared to ΛCDM expectations at circular velocities v {sub c} ≲ 200 km s{sup –1}. Groups offer a powerful probe of the role environment plays in this discrepancy as they bridge the field and clusters. Here, we construct the CVF for a large, mass- and multiplicity-complete sample of group galaxies from the Sloan Digital Sky Survey. Using independent photometric v {sub c} estimators, we find no transition from field to ΛCDM-shaped CVF above v {sub c} = 50 km s{sup –1} as a function of group halo mass. All groups with 12.4 ≲ log M {sub halo}/M {sub ☉} ≲ 15.1 (Local Group analogs to rich clusters) display similar Schechter-like CVFs marginally suppressed at low v {sub c} compared to that of the field. Conversely, some agreement with N-body results emerges for samples saturated with late-type galaxies, with isolated late-types displaying a CVF similar in shape to ΛCDM predictions. We conclude that the flattening of the low-v {sub c} slope in groups is due to their depressed late-type fractions—environment affecting the CVF only to the extent that it correlates with this quantity—and that previous cluster analyses may suffer from interloper contamination. These results serve as useful benchmarks for cosmological simulations of galaxy formation.

  7. Variable Stars in Local Group Galaxies. III. And VII, NGC 147, and NGC 185: Insight into the Building Blocks of the M31 Halo

    NASA Astrophysics Data System (ADS)

    Monelli, M.; Fiorentino, G.; Bernard, E. J.; Martínez-Vázquez, C. E.; Bono, G.; Gallart, C.; Dall'Ora, M.; Stetson, P. B.

    2017-06-01

    We present the discovery of 1568 RR Lyrae stars in three of the most luminous M31 satellites: And VII (573), NGC 147 (177), and NGC 185 (818). We use their properties to study the formation history of Local Group spiral haloes, and in particular, to infer about the nature of their possible building blocks by comparison with available data for RR Lyrae stars in the halo and in a sample of satellites of M31 and the Milky Way. We find that the brightest satellites and the halos of both galaxies host a number of High Amplitude Short Period (HASP) RR Lyrae variable stars, which are missing in the faintest satellites. HASP variable stars have been shown by Fiorentino et al. to be tracers of a population of stars as metal-rich as [Fe/H] ≃ -1.5 and older than ≃ 10 {Gyr}. This suggests that the metal-rich M31 and MW halo component, which manifests through the HASP phenomenon, comes from massive dwarf galaxy building blocks, as the low-mass dwarfs did not chemically enrich fast enough to produce them. All detected variable stars are new discoveries; in particular, this work presents the first detections of RR Lyrae stars in And VII. Moreover, a number of candidate Anomalous Cepheids, and binary and long-period variable stars have been detected. We provide pulsation properties (period, amplitude, mean magnitude), light curves, and time series photometry for all of the variable stars in the three galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #10430 and #11724.

  8. Fossils of reionization in the local group

    SciTech Connect

    Gnedin, Nickolay Y.; Kravtsov, Andrey V.; /KICP, Chicago /Chicago U., EFI /Chicago U., Astron. Astrophys. Ctr.

    2006-01-01

    We use a combination of high-resolution gas dynamics simulations of high-redshift dwarf galaxies and dissipationless simulations of a Milky Way sized halo to estimate the expected abundance and spatial distribution of the dwarf satellite galaxies that formed most of their stars around z {approx} 8 and evolved only little since then. Such galaxies can be considered as fossils of the reionization era, and studying their properties could provide a direct window into the early, pre-reionization stages of galaxy formation. We show that 5-15% of the objects existing at z {approx} 8 do indeed survive until the present in the MW like environment without significant evolution. This implies that it is plausible that the fossil dwarf galaxies do exist in the Local Group. Because such galaxies form their stellar systems early during the period of active merging and accretion, they should have spheroidal morphology regardless of their current distance from the host galaxy. We show that both the expected luminosity function and spatial distribution of dark matter halos which are likely to host fossil galaxies agree reasonably well with the observed distributions of the luminous (L{sub V} > 10{sup 6} Lsun) Local Group fossil candidates near the host galaxy (d<200 kpc). However, the predicted abundance is substantially larger (by a factor of 2-3) for fainter galaxies (L{sub V} < 10{sup 6} Lsun) at larger distances (d>300 kpc). We discuss several possible explanations for this discrepancy.

  9. The Local Dwarf GALAXIES:BUILDING Blocks of Massive Ones? I.THE Fornax Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Nykytyuk, T. V.

    A chemical evolution of the Local Group dwarf galaxy Fornax is considered in the framework of the merger scenario. We suppose a galactic stellar halo to be formed as separate fragments which then merge; thus, we can calculate the set of such the fragments to reproduce the observed metallicity distribution function of a galaxy. Accordingly, if dwarf galaxies were such the systems, which, once merged, have formed massive galaxies, we need to obtain only one fragment to reproduce the observed metallicity distribution function of a dwarf galaxy. To test this assumption, the stellar metallicity distribution functions of Fornax was calculated in the framework of the merger scenario. The more than one fragment was obtained for galaxy under consideration; thus, it is unlikely the systems similar to Fornax to be building blocks of massive galaxies.

  10. Morphological Peculiarity Indices of Local and Distant Galaxies

    NASA Astrophysics Data System (ADS)

    Wu, K. L.; Faber, S. M.; Lauer, T. R.

    1998-12-01

    Detailed images from the Hubble Space Telescope (HST) have sparked a surge of interest in morphological peculiarities in both distant and local galaxies. Several groups have developed criteria by which to automatically classify galaxy morphology (e.g., Abraham et al. 1996, Naim et al. 1997). In order to study peculiar galaxies at high redshifts, it is crucial to have a solid understanding of both the morphological peculiarities in local galaxies and the appearance of these features when observed at higher redshifts. We are developing several algorithms, or peculiarity indices, to quantify the types and degree of peculiarity seen in galaxy morphology. It is not our aim to classify galaxies on the ``normal'' Hubble Sequence. The focus of this work is an asymmetry index, which is a variation of that presented by Abraham et al. 1996. The indices are applied initially to two samples: (1) a local galaxy sample, comprised of the Frei, et al. 1996 ``Catalog of Nearby Galaxies,'' along with several merger candidates from two runs on the Lick Observatory Nickel 40-inch telescope by one of the authors (KLW); and (2) simulations of the above sample of galaxies cosmologically shifted to z ~ 0.8. This study expands upon previous work by providing a realistic view of which local morphological features we can expect to measure robustly when observed at high redshifts with the current observational technology.

  11. Observational properties of compact groups of galaxies

    NASA Technical Reports Server (NTRS)

    Hickson, Paul

    1990-01-01

    Compact groups are small, relatively isolated, systems of galaxies with projected separations comparable to the diameters of the galaxies themselves. Two well-known examples are Stephan's Quintet (Stephan, 1877) and Seyfert's Sextet (Seyfert 1948a,b). In groups such as these, the apparent space density of galaxies approaches 10(exp 6) Mpc(sub -3), denser even than the cores of rich clusters. The apparent unlikeliness of the chance occurrence of such tight groupings lead Ambartsumyan (1958, 1975) to conclude that compact groups must be physically dense systems. This view is supported by clear signs of galaxy interactions that are seen in many groups. Spectroscopic observations reveal that typical relative velocities of galaxies in the groups are comparable to their internal stellar velocities. This should be conducive to strong gravitational interactions - more so than in rich clusters, where galaxy velocities are typically much higher. This suggests that compact groups could be excellent laboratories in which to study galaxy interactions and their effects. Compact groups often contain one or more galaxies whose redshift differs greatly from those of the other group members. If these galaxies are at the same distance as the other members, either entire galaxies are being ejected at high velocities from these groups, or some new physical phenomena must be occurring. If their redshifts are cosmological, we must explain why so many discordant galaxies are found in compact groups. In recent years much progress has been made in addressing these questions. Here, the author discusses the current observational data on compact groups and their implications.

  12. Examining the Offset Between Nebular and Stellar Oxygen Abundances in the Local Group Dwarf Irregular Galaxy WLM

    NASA Astrophysics Data System (ADS)

    Skillman, E. D.; Lee, H.; Venn, K. A.

    2004-12-01

    New optical spectra of 13 H II regions in WLM were obtained with the EFOSC2 instrument on the 3.6-m telescope at La Silla. From measurements of the temperature-sensitive [O III]λ 4363 Å emission line, we derive a mean oxygen abundance of 12+log(O/H) = 7.83 ± 0.06, which corresponds to [O/H] = -0.83 dex, or 15% of the solar value. Our reported nebular oxygen abundance agrees with values published in the literature, and is marginally consistent with the mean stellar magnesium abundance [Mg/H] = -0.62. However, there is still a 0.62 dex discrepancy between the oxygen abundance derived for the A-type supergiant star WLM 15 ([O/H] = -0.21) and the nebular value. There may be a connection between the position of WLM 15, the location of a second H I peak, and regions of higher internal extinction on the southeast side of the galaxy. E. D. S. and H. L. acknowledge partial support from a NASA LTSARP grant NAG 5--9221 and from the University of Minnesota. K. A. V. thanks the National Science Foundation for support through a CAREER award AST 99--84073.

  13. ROSAT observations of compact groups of galaxies

    NASA Technical Reports Server (NTRS)

    Pildis, Rachel A.; Bregman, Joel N.; Evrard, August E.

    1995-01-01

    We have systematically analyzed a sample of 13 new and archival ROSAT Position Sensitive Proportional Counter (PSPC) observations of compact groups of galaxies: 12 Hickson compact groups plus the NCG 2300 group. We find that approximately two-thirds of the groups have extended X-ray emission and, in four of these, the emission is resolved into diffuse emission from gas at a temperature of kT approximately 1 keV in the group potential. All but one of the groups with extended emission have a spiral fraction of less than 50%. The baryon fraction of groups with diffuse emission is 5%-19%, similar to the values in clusters of galaxies. However, with a single exception (HCG 62), the gas-to-stellar mass ratio in our groups has a median value near 5%, somewhat greater than the values for individual early-type galaxies and two orders of magnitude than in clusters of galaxies. The X-ray luminosities of individual group galaxies are comparable to those of similar field galaxies, although the L(sub X)-L(sub B) relation for early-type galaxies may be flatter in compact groups than in the field.

  14. The chemical evolution of galaxies in the local volume

    NASA Astrophysics Data System (ADS)

    Croxall, Kevin V.

    2010-12-01

    The composition of the universe has greatly changed since the first matter condensed from the primordial soup of the Big Bang. As galaxies have grown and evolved over the past Hubble time, massive luminous galaxies have built up more heavy elements than their low mass counterparts. While sundry physical mechanisms have been proposed to account for this observed trend, the physical connection between galaxy mass and metallicity has evaded the understanding of astronomers for several decades. In order to gain a greater understanding of this metallicity-luminosity relation and the physical drivers behind the chemical evolution of galaxies, we have performed a detailed study of galaxies in both isolated and non-isolated environments: namely, galaxies in the local volume (D ≤ 5 Mpc) and galaxy members belonging to the M81 group. Our results from studying the M81 group imply that recent interactions among the central galaxies in this group, rather than mechanisms intrinsic to the galaxies, are likely responsible for the anomalously high abundances in three cluster members. While tidal interactions can alter the chemical make up the galaxies involved, the well established metallicity-luminosity relation indicates a more universal chemical evolution. To further explore this idea, we analyze galaxy abundances, stellar & gas distributions, and kinematics from both new and archival observations of forty-five low mass galaxies within 5 Mpc of the Milky Way. Our results indicate that these galaxies occupy a different mass-to-light ratio parameter space than their larger counter parts. Our study of the local volume explores the effects of various galaxy attributes such as mass, star formation rate, gas mass fraction, and the mass distribution that offer more concrete connections with the evolution of the system. We show that none of the attributes measured in this study exhibit more correlation with metallicity (measured via nebular oxygen abundances) than does the luminosity

  15. Small galaxy groups: defining selection criteria

    NASA Astrophysics Data System (ADS)

    Duplancic, F.; Alonso, S.; Coldwell, G.; Garcia Lambas, D.

    2017-10-01

    The present work presents a homogeneous selection criteria of small galaxy groups defined as systems with at least two and up to six members, compact and isolated, favoring mergers between galaxies. The definition of homogeneous selection criteria is the starting point for a comparative study of this type of systems, exempt of possible biases derived from differences in the selection function.

  16. Dynamical theory of dense groups of galaxies

    NASA Technical Reports Server (NTRS)

    Mamon, Gary A.

    1990-01-01

    It is well known that galaxies associate in groups and clusters. Perhaps 40% of all galaxies are found in groups of 4 to 20 galaxies (e.g., Tully 1987). Although most groups appear to be so loose that the galaxy interactions within them ought to be insignificant, the apparently densest groups, known as compact groups appear so dense when seen in projection onto the plane of the sky that their members often overlap. These groups thus appear as dense as the cores of rich clusters. The most popular catalog of compact groups, compiled by Hickson (1982), includes isolation among its selection critera. Therefore, in comparison with the cores of rich clusters, Hickson's compact groups (HCGs) appear to be the densest isolated regions in the Universe (in galaxies per unit volume), and thus provide in principle a clean laboratory for studying the competition of very strong gravitational interactions. The $64,000 question here is then: Are compact groups really bound systems as dense as they appear? If dense groups indeed exist, then one expects that each of the dynamical processes leading to the interaction of their member galaxies should be greatly enhanced. This leads us to the questions: How stable are dense groups? How do they form? And the related question, fascinating to any theorist: What dynamical processes predominate in dense groups of galaxies? If HCGs are not bound dense systems, but instead 1D change alignments (Mamon 1986, 1987; Walke & Mamon 1989) or 3D transient cores (Rose 1979) within larger looser systems of galaxies, then the relevant question is: How frequent are chance configurations within loose groups? Here, the author answers these last four questions after comparing in some detail the methods used and the results obtained in the different studies of dense groups.

  17. Redshift differences of galaxies in nearby groups

    NASA Technical Reports Server (NTRS)

    Harrison, E. R.

    1975-01-01

    It is reported that galaxies in nearby groups exhibit anomalous nonvelocity redshifts. In this discussion, (1) four classes of nearby groups of galacies are analyzed, and no significant nonvelocity redshift effect is found; and (2) it is pointed out that transverse velocities (i.e., velocities transverse to the line of sight of the main galaxy, or center of mass) contribute components to the redshift measurements of companion galaxies. The redshifts of galaxies in nearby groups of appreciable angular size are considerably affected by these velocity projection effects. The transverse velocity contributions average out in rich, isotropic groups, and also in large samples of irregular groups of low membership, as in the four classes referred to in (1), but can introduce apparent discrepancies in small samples (as studied by Arp) of nearby groups of low membership.

  18. Star Formation in Compact Groups of Galaxies

    NASA Astrophysics Data System (ADS)

    Paramo, Jorge

    We propose to obtain NUV and FUV images of a sample of nearby compact groups and their neighborhoods with the GALEX imaging facility. The main goals for this proposal are: (1) explore whether a relationship between the total star formation rates and the evolutionary state of the group holds, and also to explore the existence of interaction induced nuclear starburst activity in compact group galaxies; (2) study the super star clusters content of the systems in our sample and the relationship to the group properties; (3) search for extended star forming regions in the intragroup medium and (4) perform a morphological multiwavelength study of the sample galaxies in order to quantitatively describe the induced star formation activity with morphological criteria. A sample of field galaxies (already available) will be used to investigate the role of the compact group environment on the UV properties of our sample of compact group galaxies.

  19. Redshift differences of galaxies in nearby groups

    NASA Technical Reports Server (NTRS)

    Harrison, E. R.

    1975-01-01

    It is reported that galaxies in nearby groups exhibit anomalous nonvelocity redshifts. In this discussion, (1) four classes of nearby groups of galacies are analyzed, and no significant nonvelocity redshift effect is found; and (2) it is pointed out that transverse velocities (i.e., velocities transverse to the line of sight of the main galaxy, or center of mass) contribute components to the redshift measurements of companion galaxies. The redshifts of galaxies in nearby groups of appreciable angular size are considerably affected by these velocity projection effects. The transverse velocity contributions average out in rich, isotropic groups, and also in large samples of irregular groups of low membership, as in the four classes referred to in (1), but can introduce apparent discrepancies in small samples (as studied by Arp) of nearby groups of low membership.

  20. Galaxy Groups in the 2Mass Redshift Survey

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Yang, Xiaohu; Shi, Feng; Mo, H. J.; Tweed, Dylan; Wang, Huiyuan; Zhang, Youcai; Li, Shijie; Lim, S. H.

    2016-11-01

    A galaxy group catalog is constructed from the 2MASS Redshift Survey (2MRS) with the use of a halo-based group finder. The halo mass associated with a group is estimated using a “GAP” method based on the luminosity of the central galaxy and its gap with other member galaxies. Tests using mock samples show that this method is reliable, particularly for poor systems containing only a few members. On average, 80% of all the groups have completeness \\gt 0.8, and about 65% of the groups have zero contamination. Halo masses are estimated with a typical uncertainty of ∼ 0.35 {dex}. The application of the group finder to the 2MRS gives 29,904 groups from a total of 43,246 galaxies at z≤slant 0.08, with 5286 groups having two or more members. Some basic properties of this group catalog is presented, and comparisons are made with other group catalogs in overlap regions. With a depth to z∼ 0.08 and uniformly covering about 91% of the whole sky, this group catalog provides a useful database to study galaxies in the local cosmic web, and to reconstruct the mass distribution in the local universe.

  1. Alignment of galaxies relative to their local environment in SDSS-DR8

    NASA Astrophysics Data System (ADS)

    Hirv, A.; Pelt, J.; Saar, E.; Tago, E.; Tamm, A.; Tempel, E.; Einasto, M.

    2017-03-01

    Aims: We study the alignment of galaxies relative to their local environment in SDSS-DR8 and, using these data, we discuss evolution scenarios for different types of galaxies. Methods: We defined a vector field of the direction of anisotropy of the local environment of galaxies. We summed the unit direction vectors of all close neighbours of a given galaxy in a particular way to estimate this field. We found the alignment angles between the spin axes of disc galaxies, or the minor axes of elliptical galaxies, and the direction of anisotropy. The distributions of cosines of these angles are compared to the random distributions to analyse the alignment of galaxies. Results: Sab galaxies show perpendicular alignment relative to the direction of anisotropy in a sparse environment, for single galaxies and galaxies of low luminosity. Most of the parallel alignment of Scd galaxies comes from dense regions, from 2...3 member groups and from galaxies with low luminosity. The perpendicular alignment of S0 galaxies does not depend strongly on environmental density nor luminosity; it is detected for single and 2...3 member group galaxies, and for main galaxies of 4...10 member groups. The perpendicular alignment of elliptical galaxies is clearly detected for single galaxies and for members of ≤10 member groups; the alignment increases with environmental density and luminosity. Conclusions: We confirm the existence of fossil tidally induced alignment of Sab galaxies at low z. The alignment of Scd galaxies can be explained via the infall of matter to filaments. S0 galaxies may have encountered relatively massive mergers along the direction of anisotropy. Major mergers along this direction can explain the alignment of elliptical galaxies. Less massive, but repeated mergers are possibly responsible for the formation of elliptical galaxies in sparser areas and for less luminous elliptical galaxies.

  2. NEARBY CLUMPY, GAS RICH, STAR-FORMING GALAXIES: LOCAL ANALOGS OF HIGH-REDSHIFT CLUMPY GALAXIES

    SciTech Connect

    Garland, C. A.; Pisano, D. J.; Rabidoux, K.; Low, M.-M. Mac; Kreckel, K.; Guzmán, R. E-mail: djpisano@mail.wvu.edu E-mail: mordecai@amnh.org E-mail: guzman@astro.ufl.edu

    2015-07-10

    Luminous compact blue galaxies (LCBGs) have enhanced star formation rates (SFRs) and compact morphologies. We combine Sloan Digital Sky Survey data with H i data of 29 LCBGs at redshift z ∼ 0 to understand their nature. We find that local LCBGs have high atomic gas fractions (∼50%) and SFRs per stellar mass consistent with some high-redshift star-forming galaxies (SFGs). Many local LCBGs also have clumpy morphologies, with clumps distributed across their disks. Although rare, these galaxies appear to be similar to the clumpy SFGs commonly observed at z ∼ 1–3. Local LCBGs separate into three groups: (1) interacting galaxies (∼20%); (2) clumpy spirals (∼40%); and (3) non-clumpy, non-spirals with regular shapes and smaller effective radii and stellar masses (∼40%). It seems that the method of building up a high gas fraction, which then triggers star formation, is not the same for all local LCBGs. This may lead to a dichotomy in galaxy characteristics. We consider possible gas delivery scenarios and suggest that clumpy spirals, preferentially located in clusters and with companions, are smoothly accreting gas from tidally disrupted companions and/or intracluster gas enriched by stripped satellites. Conversely, as non-clumpy galaxies are preferentially located in the field and tend to be isolated, we suggest clumpy, cold streams, which destroy galaxy disks and prevent clump formation, as a likely gas delivery mechanism for these systems. Other possibilities include smooth cold streams, a series of minor mergers, or major interactions.

  3. Properties of Galaxies and Groups: Nature versus Nurture

    NASA Astrophysics Data System (ADS)

    Niemi, Sami-Matias

    2011-09-01

    Due to the inherently nonlinear nature of gravity cosmological N-body simulations have become an invaluable tool when the growth of structure is being studied and modelled closer to the present epoch. Large simulations with high dynamical range have made it possible to model the formation and growth of cosmic structure with unprecedented accuracy. Moreover, galaxies, the basic building blocks of the Universe, can also be modelled in cosmological context. However, despite all the simulations and successes in recent decades, there are still many unanswered questions in the field of galaxy formation and evolution. One of the longest standing issue being the significance of the formation place and thus initial conditions to a galaxy's evolution in respect to environment, often formulated simply as "nature versus nurture" like in human development and psychology. Unfortunately, our understanding of galaxy evolution in different environments is still limited, albeit, for example, the morphology-density relation has shown that the density of the galaxy's local environment can affect its properties. Consequently, the environment should play a role in galaxy evolution, however despite the efforts, the exact role of the galaxy's local environment to its evolution remains open. This thesis introduction discusses briefly the background cosmology, cosmological N-body simulations and semi-analytical models. The second part is reserved for groups of galaxies, whether they are gravitationally bound, and what this may imply for galaxy evolution. The third part of the thesis concentrates on describing results of a case study of isolated field elliptical galaxies. The final chapter discusses another case study of luminous infra-red galaxies.

  4. SUPERDENSE MASSIVE GALAXIES IN WINGS LOCAL CLUSTERS

    SciTech Connect

    Valentinuzzi, T.; D'Onofrio, M.; Fritz, J.; Poggianti, B. M.; Bettoni, D.; Fasano, G.; Moretti, A.; Omizzolo, A.; Varela, J.; Cava, A.; Couch, W. J.; Dressler, A.; Moles, M.; Kjaergaard, P.; Vanzella, E.

    2010-03-20

    Massive quiescent galaxies at z > 1 have been found to have small physical sizes, and hence to be superdense. Several mechanisms, including minor mergers, have been proposed for increasing galaxy sizes from high- to low-z. We search for superdense massive galaxies in the WIde-field Nearby Galaxy-cluster Survey (WINGS) of X-ray selected galaxy clusters at 0.04 < z < 0.07. We discover a significant population of superdense massive galaxies with masses and sizes comparable to those observed at high redshift. They approximately represent 22% of all cluster galaxies more massive than 3 x 10{sup 10} M{sub sun}, are mostly S0 galaxies, have a median effective radius (R{sub e} ) = 1.61 +- 0.29 kpc, a median Sersic index (n) = 3.0 +- 0.6, and very old stellar populations with a median mass-weighted age of 12.1 +- 1.3 Gyr. We calculate a number density of 2.9 x 10{sup -2} Mpc{sup -3} for superdense galaxies in local clusters, and a hard lower limit of 1.3 x 10{sup -5} Mpc{sup -3} in the whole comoving volume between z = 0.04 and z = 0.07. We find a relation between mass, effective radius, and luminosity-weighted age in our cluster galaxies, which can mimic the claimed evolution of the radius with redshift, if not properly taken into account. We compare our data with spectroscopic high-z surveys and find that-when stellar masses are considered-there is consistency with the local WINGS galaxy sizes out to z {approx} 2, while a discrepancy of a factor of 3 exists with the only spectroscopic z > 2 study. In contrast, there is strong evidence for a large evolution in radius for the most massive galaxies with M{sub *} > 4 x 10{sup 11} M{sub sun} compared to similarly massive galaxies in WINGS, i.e., the brightest cluster galaxies.

  5. Andromeda Galaxy

    NASA Image and Video Library

    2003-12-10

    This image is from NASA Galaxy Evolution Explorer is an observation of the large galaxy in Andromeda, Messier 31. The Andromeda galaxy is the most massive in the local group of galaxies that includes our Milky Way.

  6. Dynamical properties of compact groups of galaxies

    NASA Technical Reports Server (NTRS)

    Hickson, Paul; De Oliveira, Claudia M.; Huchra, John P.; Palumbo, Giorgio G.

    1992-01-01

    Radial velocities are presented for 457 galaxies in the 100 Hickson compact groups. More than 84 percent of the galaxies measured have velocities within 1000 km/s of the median velocity in the group. Ninety-two groups have at least three accordant members, and 69 groups have at least four. The radial velocities of these groups range from 1380 to 42,731 km/s with a median of 8889 km/s, corresponding to a median distance of 89/h Mpc. The apparent space density of these systems ranges from 300 to as much as 10 exp 8 sq h/sq Mpc, which exceeds the densities in the centers of rich clusters. The median projected separation between galaxies is 39/h kpc, comparable to the sizes of the galaxies themselves. A significant correlation is found between crossing time and the fraction of gas-rich galaxies in the groups, and a weak anticorrelation is found between crossing time and the luminosity contrast of the first-ranked galaxy.

  7. The Role of Host Galaxy for the Environmental Dependence of Active Nuclei in Local Galaxies

    NASA Astrophysics Data System (ADS)

    Davies, Richard I.; Hicks, E. K. S.; Erwin, P.; Burtscher, L.; Contursi, A.; Genzel, R.; Janssen, A.; Koss, M.; Lin, M.-Y.; Lutz, D.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Ricci, C.; Riffel, R.; Riffel, R. A.; Rosario, D.; Schartmann, M.; Schnorr-Müller, A.; Shimizu, T.; Sternberg, A.; Sturm, E.; Storchi-Bergmann, T.; Tacconi, L.; Veilleux, S.

    2017-01-01

    We discuss the environment of local hard X-ray selected active galaxies, with reference to two independent group catalogues. We find that the fraction of these AGN in S0 host galaxies decreases strongly as a function of galaxy group size (halo mass) - which contrasts with the increasing fraction of galaxies of S0 type in denser environments. However, there is no evidence for an environmental dependence of AGN in spiral galaxies. Because most AGN are found in spiral galaxies, this dilutes the signature of environmental dependence for the population as a whole. We argue that the differing results for AGN in disk-dominated and bulge-dominated galaxies is related to the source of the gas fuelling the AGN, and so may also impact the luminosity function, duty cycle, and obscuration. We find that there is a significant difference in the luminosity function for AGN in spiral and S0 galaxies, and tentative evidence for some difference in the fraction of obscured AGN.

  8. The role of host galaxy for the environmental dependence of active nuclei in local galaxies

    NASA Astrophysics Data System (ADS)

    Davies, Richard I.; Hicks, E. K. S.; Erwin, P.; Burtscher, L.; Contursi, A.; Genzel, R.; Janssen, A.; Koss, M.; Lin, M.-Y.; Lutz, D.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Ricci, C.; Riffel, R.; Riffel, R. A.; Rosario, D.; Schartmann, M.; Schnorr-Müller, A.; Shimizu, T.; Sternberg, A.; Sturm, E.; Storchi-Bergmann, T.; Tacconi, L.; Veilleux, S.

    2017-04-01

    We discuss the environment of local hard X-ray selected active galaxies, with reference to two independent group catalogues. We find that the fraction of these AGN in S0 host galaxies decreases strongly as a function of galaxy group size (halo mass) - which contrasts with the increasing fraction of galaxies of S0 type in denser environments. However, there is no evidence for an environmental dependence of AGN in spiral galaxies. Because most AGN are found in spiral galaxies, this dilutes the signature of environmental dependence for the population as a whole. We argue that the differing results for AGN in disc-dominated and bulge-dominated galaxies are related to the source of the gas fuelling the AGN, and so may also impact the luminosity function, duty cycle and obscuration. We find that there is a significant difference in the luminosity function for AGN in spiral and S0 galaxies, and tentative evidence for some difference in the fraction of obscured AGN.

  9. Galaxies Die in Groups: An IRAC Autopsy

    NASA Astrophysics Data System (ADS)

    Wilman, D. J.; Pierini, D.; Tyler, K.; McGee, S. L.; Oemler, A., Jr.; Morris, S. L.; Balogh, M. L.; Bower, R. G.; Mulchaey, J. S.

    2008-10-01

    The most massive galaxies in the Universe are also the oldest. To overturn this apparent contradiction with hierarchical growth models, we focus on the group-scale haloes which host most of these galaxies. Our z˜0.4 group sample is selected in redshift space from the CNOC2 redshift survey. A stellar mass selected M_{*} ≲ 2×10^{10}M_{⊙} sample is constructed using IRAC observations. A sensitive Mid InfraRed (MIR) IRAC colour is used to isolate passive galaxies. It produces a bimodal distribution, in which passive galaxies (highlighted by morphological early-types) define a tight MIR colour sequence (Infrared Passive Sequence, IPS). This is due to stellar atmospheric emission from old stellar populations. Significantly offset from the IPS are galaxies where reemission by dust boosts emission at λ_{obs}=8 micron. We term them InfraRed-Excess galaxies whether star formation and/or AGN activity are present. They include all known morphological late-types. The fraction of InfraRed Excess galaxies, f(IRE) drops with M_{*}, such that f(IRE)=0.5 at a ``crossover mass'' of M_{cr}˜ 1.3×10^{11}M_{⊙}. Within our optically-defined group sample there is a strong and consistent deficit in f(IRE) at all masses, but most clearly at M_{*} ≲ 10^{11}M_{⊙}. Suppression of star formation must mainly occur in groups, and the observed trend of f(IRE) with M_{*} can be explained if suppression of M_{*} ≲ 10^{11}M_{⊙} galaxies occurs primarily in the group environment.

  10. What galaxy masses perturb the local cosmic expansion?

    NASA Astrophysics Data System (ADS)

    Peñarrubia, Jorge; Fattahi, Azadeh

    2017-06-01

    We use 12 cosmological N-body simulations of Local Group systems (the apostle models) to inspect the relation between the virial mass of the main haloes (Mvir,1 and Mvir,2), the mass derived from the relative motion of the halo pair (Mtim), and that inferred from the local Hubble flow (Mlhf). We show that within the spherical collapse model (SCM), the correspondence between the three mass estimates is exact, i.e. Mlhf = Mtim = Mvir,1 + Mvir,2. However, comparison with apostle simulations reveals that, contrary to what the SCM states, a relatively large fraction of the mass that perturbs the local Hubble flow and drives the relative trajectory of the main galaxies is not contained within Rvir, and that the amount of 'extravirial' mass tends to increase in galaxies with a slow accretion rate. In contrast, modelling the peculiar velocities around the Local Group returns an unbiased constraint on the virial mass ratio of the main galaxy pair. Adopting the outer halo profile found in N-body simulations, which scales as ρ ˜ R-4 at R ≳ Rvir, indicates that the galaxy masses perturbing the local Hubble flow roughly correspond to the asymptotically convergent (total) masses of the individual haloes. We show that estimates of Mvir based on the dynamics of tracers at R ≫ Rvir require a priori information on the internal matter distribution and the growth rate of the main galaxies, both of which are typically difficult to quantify.

  11. The Missing Satellite Problem Outside of the Local Group

    NASA Astrophysics Data System (ADS)

    Tanaka, Masayuki; Chiba, Masashi; Komiyama, Yutaka; Tanaka, Mikito; Okamoto, Sakurako; Okamoto, Takashi

    2017-03-01

    We report on the first results from our pilot observation of nearby galaxies with Hyper Suprime-Cam. We have observed two galaxies with mass similar to that of the Milky Way Galaxy and measured the abundance of their satellite galaxies in order to address the missing satellite problem outside of the Local Group. We find that (1) the abundance of dwarf galaxies is smaller by a factor of two than the prediction from one of the current hydro-dynamical simulations and (2) there is a large halo to halo scatter. Our results highlight the importance of a statistical sample of nearby galaxies to address the missing satellite problem.

  12. Studying the dwarf galaxies in nearby groups of galaxies: Spectroscopic and photometric data

    NASA Astrophysics Data System (ADS)

    Hopp, U.; Vennik, J.

    2014-11-01

    Galaxy evolution by interaction-driven transformation is probably highly efficient in groups of galaxies. Dwarf galaxies with their shallow potential are expected to reflect the interaction most prominently in their observable structure. The major aim of this series of papers is to establish a data base which allows to study the impact of group interaction onto the morphology and star-forming properties of dwarf galaxies. Firstly, we present our selection rules for target groups and the morphological selection method of target dwarf member candidates. Secondly, the spectroscopic follow-up observations with the HET are presented. Thirdly, we applied own reduction methods based on adaptive filtering to derive surface photometry of the candidates. The spectroscopic follow-up indicate a dwarf identification success rate of roughly 55 %, and a group member success rate of about 33 %. A total of 17 new low surface-brightness members is presented. For all candidates, total magnitudes, colours, and light distribution parameters are derived and discussed in the context of scaling relations. We point out short comings of the SDSS standard pipeline for surface photometry for these dim objects. We conclude that our selection strategy is rather efficient to obtain a sample of dim, low surface brightness members of groups of galaxies within the Virgo super-cluster. The photometric scaling relation in these X-ray dim, rather isolated groups does not significantly differ from those of the galaxies within the local volume.

  13. CONFIRMATION OF FAINT DWARF GALAXIES IN THE M81 GROUP

    SciTech Connect

    Chiboucas, Kristin; Jacobs, Bradley A.; Tully, R. Brent; Karachentsev, Igor D. E-mail: bjacobs@ifa.hawaii.edu E-mail: ikar@luna.sao.ru

    2013-11-01

    We have followed up on the results of a 65 deg{sup 2} CFHT/MegaCam imaging survey of the nearby M81 Group searching for faint and ultra-faint dwarf galaxies. The original survey turned up 22 faint candidate dwarf members. Based on two-color HST ACS/WFC and WFPC2 photometry, we now confirm 14 of these as dwarf galaxy members of the group. Distances and stellar population characteristics are discussed for each. To a completeness limit of M{sub r{sup '}}= -10, we find a galaxy luminosity function slope of –1.27 ± 0.04 for the M81 Group. In this region, there are now 36 M81 Group members known, including 4 blue compact dwarfs; 8 other late types including the interacting giants M81, NGC 3077, and M82; 19 early type dwarfs; and at least 5 potential tidal dwarf galaxies. We find that the dSph galaxies in M81 appear to lie in a flattened distribution, similar to that found for the Milky Way and M31. One of the newly discovered dSph galaxies has properties similar to the ultra-faint dwarfs being found in the Local Group with a size R{sub e} ∼ 100 pc and total magnitude estimates M{sub r{sup '}}= -6.8 and M{sub I} ∼ –9.1.

  14. Lyman Alpha Blobs: Seeds of Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Hall, Agnar; Prescott, Moire

    2017-01-01

    Recently, evidence has been mounting that giant Lyman alpha (Lya) nebulae, or "blobs," at high redshift are coincident with regions of galaxy overdensity and likely the progenitors of galaxy groups. These Lya blobs are rare structures found at roughly 1 < z < 6 which have typical diameters of ~100 kpc and Lya luminosities of ~10^42 to 10^44 erg s^-1. Using Hubble Space Telescope (HST) imaging, we explore the environments of three systematically-selected blobs at 1.5 < z < 2.5. Comparing the total surface density of galaxies in a region centered on the blob to the average surface density of galaxies in the field, we find that all three blobs exhibit significant overdensity (up to a factor of 5-10). After narrowing down which galaxies are most likely to be associated with each Lya blob, we confirm that the raw overdensities are enhanced and find evidence of a luminosity gap in at least one of the three systems studied. These results suggest that Lya blobs offer new insight into the early phases of galaxy group and cluster formation.

  15. Surface Photometry of Local Volume Galaxies

    NASA Astrophysics Data System (ADS)

    Sakai, Shoko; van Zee, Liese; Lee, Janice C.; Kennicutt, Robert C.; Funes, Jose G.

    2009-08-01

    We propose to obtain UBVR images of a statistically complete sample of spiral and irregular galaxies in the Local Volume Legacy (LVL) survey to investigate the correlation between past star formation activity and other physical properties such as SFR, dust content, and metallicity. The proposed optical imaging observations of 34 galaxies (27 southern, 7 northern) will be combined with existing UV, H(alpha), and IR observations, and will serve to nearly complete the optical imaging coverage of the full LVL sample of 258 galaxies. As expected for a volume limited sample, the majority of galaxies targeted here are low luminosity dwarf galaxies. The observed optical colors, in addition to optical-IR colors, will be compared with stellar population models to estimate the past history of star formation in these low mass galaxies and to provide constraints on the stellar mass-to-light ratios. The observed surface photometry will also allow us to study the photometric properties, the morphology, and spatial distributions of the different stellar populations in these low mass systems.

  16. The Local Group as an Astrophysical Laboratory

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Brown, Thomas M.

    2006-05-01

    1. History of the Local Group S. van den Bergh; 2. Primordial nucleosynthesis G. Steigman; 3. Galactic structure R. F. G. Wyse; 4. The Large Magellanic Cloud: structure and kinematics R. P. van der Marel; 5. The Local Group as an astrophysical laboratory for massive star feedback M. S. Oey; 6. Hot gas in the Local Group and low-redshift intergalactic medium K. R. Sembach; 7. Stages of satellite accretion M. E. Putman; 8. The star formation history in the Andromeda halo T. M. Brown; 9. Bulge populations in the Local Group R. M. Rich; 10. The Local Group as a laboratory for the chemical evolution of galaxies D. R. Garnett; 11. Massive stars in the Local Group: Star formation and stellar evolution P. Massey; 12. Massive young clusters in the Local Group J. Maíz-Apellániz; 13. Magellanic Cloud planetary nebulae as probes of stellar evolution and populations L. Stanghellini; 14. The old globular clusters: or, life among the ruins W. E. Harris; 15. Chemical evolution models of Local Group galaxies M. Tosi.

  17. The Local Group as an Astrophysical Laboratory

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Brown, Thomas M.

    2011-04-01

    1. History of the Local Group S. van den Bergh; 2. Primordial nucleosynthesis G. Steigman; 3. Galactic structure R. F. G. Wyse; 4. The Large Magellanic Cloud: structure and kinematics R. P. van der Marel; 5. The Local Group as an astrophysical laboratory for massive star feedback M. S. Oey; 6. Hot gas in the Local Group and low-redshift intergalactic medium K. R. Sembach; 7. Stages of satellite accretion M. E. Putman; 8. The star formation history in the Andromeda halo T. M. Brown; 9. Bulge populations in the Local Group R. M. Rich; 10. The Local Group as a laboratory for the chemical evolution of galaxies D. R. Garnett; 11. Massive stars in the Local Group: Star formation and stellar evolution P. Massey; 12. Massive young clusters in the Local Group J. Maíz-Apellániz; 13. Magellanic Cloud planetary nebulae as probes of stellar evolution and populations L. Stanghellini; 14. The old globular clusters: or, life among the ruins W. E. Harris; 15. Chemical evolution models of Local Group galaxies M. Tosi.

  18. Choirs H I galaxy groups: The metallicity of dwarf galaxies

    SciTech Connect

    Sweet, Sarah M.; Drinkwater, Michael J.; Meurer, Gerhardt; Bekki, Kenji; Dopita, Michael A.; Nicholls, David C.; Kilborn, Virginia

    2014-02-10

    We present a recalibration of the luminosity-metallicity relation for gas-rich, star-forming dwarfs to magnitudes as faint as M{sub R} ∼ –13. We use the Dopita et al. metallicity calibrations to calibrate the relation for all the data in this analysis. In metallicity-luminosity space, we find two subpopulations within a sample of high-confidence Sloan Digital Sky Survey (SDSS) DR8 star-forming galaxies: 52% are metal-rich giants and 48% are metal-medium galaxies. Metal-rich dwarfs classified as tidal dwarf galaxy (TDG) candidates in the literature are typically of metallicity 12 + log(O/H) = 8.70 ± 0.05, while SDSS dwarfs fainter than M{sub R} = –16 have a mean metallicity of 12 + log(O/H) = 8.28 ± 0.10, regardless of their luminosity, indicating that there is an approximate floor to the metallicity of low-luminosity galaxies. Our hydrodynamical simulations predict that TDGs should have metallicities elevated above the normal luminosity-metallicity relation. Metallicity can therefore be a useful diagnostic for identifying TDG candidate populations in the absence of tidal tails. At magnitudes brighter than M{sub R} ∼ –16, our sample of 53 star-forming galaxies in 9 H I gas-rich groups is consistent with the normal relation defined by the SDSS sample. At fainter magnitudes, there is an increase in dispersion of the metallicity of our sample, suggestive of a wide range of H I content and environment. In our sample, we identify three (16% of dwarfs) strong TDG candidates (12 + log(O/H) > 8.6) and four (21%) very metal-poor dwarfs (12 + log(O/H) < 8.0), which are likely gas-rich dwarfs with recently ignited star formation.

  19. LOCAL TADPOLE GALAXIES: DYNAMICS AND METALLICITY

    SciTech Connect

    Sanchez Almeida, J.; Munoz-Tunon, C.; Mendez-Abreu, J.; Elmegreen, D. M.; Elmegreen, B. G. E-mail: cmt@iac.es E-mail: elmegreen@vassar.edu

    2013-04-10

    Tadpole galaxies, with a bright peripheral clump on a faint tail, are morphological types unusual in the nearby universe but very common early on. Low mass local tadpoles were identified and studied photometrically in a previous work, which we complete here analyzing their chemical and dynamical properties. We measure H{alpha} velocity curves of seven local tadpoles, representing 50% of the initial sample. Five of them show evidence for rotation ({approx}70%), and a sixth target hints at it. Often the center of rotation is spatially offset with respect to the tadpole head (three out of five cases). The size and velocity dispersion of the heads are typical of giant H II regions, and three of them yield dynamical masses in fair agreement with their stellar masses as inferred from photometry. In four cases the velocity dispersion at the head is reduced with respect to its immediate surroundings. The oxygen metallicity estimated from [N II] {lambda}6583/H{alpha} often shows significant spatial variations across the galaxies ({approx}0.5 dex), being smallest at the head and larger elsewhere. The resulting chemical abundance gradients are opposite to the ones observed in local spirals, but agrees with disk galaxies at high redshift. We interpret the metallicity variation as a sign of external gas accretion (cold-flows) onto the head of the tadpole. The galaxies are low-metallicity outliers of the mass-metallicity relationship. In particular, two of the tadpole heads are extremely metal poor, with a metallicity smaller than a tenth of the solar value. These two targets are also very young (ages smaller than 5 Myr). All these results combined are consistent with the local tadpole galaxies being disks in early stages of assembling, with their star formation sustained by accretion of external metal-poor gas.

  20. The Next Generation Virgo Cluster Survey. VII. The Intrinsic Shapes of Low-luminosity Galaxies in the Core of the Virgo Cluster, and a Comparison with the Local Group

    NASA Astrophysics Data System (ADS)

    Sánchez-Janssen, Rubén; Ferrarese, Laura; MacArthur, Lauren A.; Côté, Patrick; Blakeslee, John P.; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Durrell, Patrick; Gwyn, Stephen; McConnacchie, Alan W.; Boselli, Alessandro; Courteau, Stéphane; Emsellem, Eric; Mei, Simona; Peng, Eric; Puzia, Thomas H.; Roediger, Joel; Simard, Luc; Boyer, Fred; Santos, Matthew

    2016-03-01

    We investigate the intrinsic shapes of low-luminosity galaxies in the central 300 kpc of the Virgo Cluster using deep imaging obtained as part of the Next Generation Virgo Cluster Survey (NGVS). We build a sample of nearly 300 red-sequence cluster members in the yet-unexplored -14 < Mg < -8 mag range, and we measure their apparent axis ratios, q, through Sérsic fits to their two-dimensional light distribution, which is well described by a constant ellipticity parameter. The resulting distribution of apparent axis ratios is then fit by families of triaxial models with normally distributed intrinsic ellipticities, E = 1 - C/A, and triaxialities, T = (A2 - B2)/(A2 - C2). We develop a Bayesian framework to explore the posterior distribution of the model parameters, which allows us to work directly on discrete data, and to account for individual, surface-brightness-dependent axis ratio uncertainties. For this population we infer a mean intrinsic ellipticity \\bar{E} = {0.43}-0.02+0.02 and a mean triaxiality \\bar{T} = {0.16}-0.06+0.07. This implies that faint Virgo galaxies are best described as a family of thick, nearly oblate spheroids with mean intrinsic axis ratios 1:0.94:0.57. The core of Virgo lacks highly elongated low-luminosity galaxies, with 95% of the population having q > 0.45. We additionally attempt a study of the intrinsic shapes of Local Group (LG) satellites of similar luminosities. For the LG population we infer a slightly larger mean intrinsic ellipticity \\bar{E} = {0.51}-0.06+0.07, and the paucity of objects with round apparent shapes translates into more triaxial mean shapes, 1:0.76:0.49. Numerical studies that follow the tidal evolution of satellites within LG-sized halos are in good agreement with the inferred shape distributions, but the mismatch for faint galaxies in Virgo highlights the need for more adequate simulations of this population in the cluster environment. We finally compare the intrinsic shapes of NGVS low-mass galaxies with

  1. Properties of intra-group stars and galaxies in galaxy groups: `normal' versus `fossil' groups

    NASA Astrophysics Data System (ADS)

    Sommer-Larsen, Jesper

    2006-06-01

    Cosmological [cold dark matter (ΛCDM)] TreeSPH simulations of the formation and evolution of 12 galaxy groups of virial mass ~1014Msolar have been performed. The simulations invoke star formation, chemical evolution with non-instantaneous recycling, metallicity-dependent radiative cooling, strong star-burst driven galactic super-winds and effects of a meta-galactic ultraviolet (UV) field. The intra-group (IG) stars are found to contribute 12-45 per cent of the total group B-band luminosity at z = 0. The lowest fractions are found for groups with only a small difference between the R-band magnitudes of the first and second ranked group galaxy (Δm12,R <~ 0.5), the larger fractions are typical of `fossil' groups (FGs, Δm12,R >= 2). A similar conclusion is obtained from BVRIJK surface brightness profiles of the IG star populations. The IG stars in the four FGs are found to be older than the ones in the eight `normal' groups (non-FGs), on average by about 0.3-0.5 Gyr. The typical colour of the IG stellar population is B - R = 1.4-1.5, for both types of systems in good agreement with observations. The mean iron abundance of the IG stars is slightly sub-solar in the central part of the groups (r ~ 100 kpc) decreasing to about 40 per cent solar at about half the virial radius. The IG stars are α-element enhanced with a trend of [O/Fe] increasing with r and an overall [O/Fe] ~ 0.45 dex, indicative of dominant enrichment from Type II supernovae. The abundance properties are similar for both types of systems. The velocity distributions of the IG stars are, at r >~ 30 kpc, significantly more radially anisotropic for FGs than for the non-FGs; this also holds for the velocity distributions of the group galaxies. This indicates that an important characteristic determining whether a group becomes fossil or not, apart from its formation time, as discussed by D'Onghia et al., is the `initial' velocity distribution of the group galaxies. For FGs, one can dynamically infer the

  2. Nearby groups of galaxies in the Hercules-Bootes constellations

    NASA Astrophysics Data System (ADS)

    Karachentsev, I. D.; Kashibadze, O. G.; Karachentseva, V. E.

    2017-04-01

    We consider a sample of 412 galaxies with radial velocities $V_{\\rm LG} < 2500$ km s$^{-1}$ situated in the sky region of ${\\rm RA}=13^h\\hspace{-0.4em}.\\,0$ ... $19^h\\hspace{-0.4em}.\\,0$, ${\\rm Dec}=+10^{\\circ}$ ... $+40^{\\circ}$ between the Local Void and the Supergalactic plane. One hundred and eighty-one of them have individual distance estimates. Peculiar velocities of the galaxies as a function of Supergalactic latitude SGB show signs of Virgocentric infall at $SGB < 10^{\\circ}$ and motion from the Local Void at $SGB > 60^{\\circ}$. A half of the Hercules-Bootes galaxies belong to 17 groups and 29 pairs, with the richest group around NGC5353. A typical group is characterized by the velocity dispersion of $67$ km s$^{-1}$, the harmonic radius of $182$ kpc, the stellar mass of $4.3 \\times10^{10} M_{\\odot}$ and the virial-to-stellar mass ratio of $32$. The binary galaxies have the mean radial velocity difference of $37$ km s$^{-1}$, the projected separation of $96$ kpc, the mean integral stellar mass of $2.6\\times 10^9 M_{\\odot}$ and the mean virial-to-stellar mass ratio of about $8$. The total dark-matter-to-stellar mass ratio in the considered sky region amounts to $37$ being almost the same as that in the Local Volume.

  3. Interacting Group of Galaxies Known as Stephan Quintet

    NASA Image and Video Library

    2005-05-05

    This ultraviolet image from NASA Galaxy Evolution Explorer is of the interacting group of galaxies known as Stephan Quintet NGC 7317, NGC 7318A, NGC 7318B, NGC 7319, NGC 7320, lower left. Of the five galaxies in this tightly packed group, NGC 7320 (the large spiral in the group) is probably a foreground galaxy and not associated with the other four. The spiral galaxy in the upper right is NGC 7331. http://photojournal.jpl.nasa.gov/catalog/PIA07905

  4. Segregation effects in DEEP2 galaxy groups

    NASA Astrophysics Data System (ADS)

    Nascimento, R. S.; Ribeiro, A. L. B.; Lopes, P. A. A.

    2017-01-01

    We investigate segregation phenomena in galaxy groups in the range of 0.2 < z < 1. We study a sample of groups selected from the 4th Data Release of the DEEP2 galaxy redshift survey. We used only groups with at least eight members within a radius of 4 Mpc. Outliers were removed with the shifting gapper techinque and, then, the virial properties were estimated for each group. The sample was divided into two stacked systems: low(z ≤ 0.6) and high (z > 0.6) redshift groups. Assuming that the colour index (U - B)0 can be used as a proxy for the galaxy type, we found that the fraction of blue (star-forming) objects is higher in the high-z sample, with blue objects being dominant at MB > -19.5 for both samples, and red objects being dominant at MB < -19.5 only for the low-z sample. Also, the radial variation of the red fraction indicates that there are more red objects with R < R200 in the low-z sample than in the high-z sample. Our analysis indicates statistical evidence of kinematic segregation, at the 99 per cent c.l., for the low-z sample: redder and brighter galaxies present lower velocity dispersions than bluer and fainter ones. We also find a weaker evidence for spatial segregation between red and blue objects, at the 70 per cent c.l. The analysis of the high-z sample reveals a different result: red and blue galaxies have velocity dispersion distributions not statistically distinct, although redder objects are more concentrated than the bluer ones at the 95 per cent c.l. From the comparison of blue/red and bright/faint fractions, and considering the approximate lookback time-scale between the two samples (˜3 Gyr), our results are consistent with a scenario where bright red galaxies had time to reach energy equipartition, while faint blue/red galaxies in the outskirts infall to the inner parts of the groups, thus reducing spatial segregation from z ˜ 0.8 to z ˜ 0.4.

  5. Red Supergiants in the Local Group

    NASA Astrophysics Data System (ADS)

    Levesque, E. M.

    2013-05-01

    Galaxies in the Local Group span a factor of 15 in metallicity, ranging from the super-solar M 31 to the Wolf-Lundmark-Melotte (WLM) galaxy, which is the lowest-metallicity (0.1 Z⊙) Local Group galaxy currently forming stars. Studies of massive star populations across this broad range of environments have revealed important metal-licity-dependent evolutionary trends, allowing us to test the accuracy of stellar evolutionary tracks at these metallicities for the first time. The RSG population is particularly valuable as a key mass-losing phase of moderately massive stars and a source of core-collapse supernova progenitors. By reviewing recent work on the RSG populations in the Local Group, we are able to quantify limits on these stars' effective temperatures and masses and probe the relationship between RSG mass loss behaviors and host environments. Extragalactic surveys of RSGs have also revealed several unusual RSGs that display signs of unusual spectral variability and dust production, traits that may potentially also correlate with the stars' host environments. I will present some of the latest work that has advanced our understanding of RSGs in the Local Group, and consider the many new questions posed by our ever-evolving picture of these stars.

  6. THE SUPPRESSION OF STAR FORMATION AND THE EFFECT OF THE GALAXY ENVIRONMENT IN LOW-REDSHIFT GALAXY GROUPS

    SciTech Connect

    Rasmussen, Jesper; Mulchaey, John S.; Bai, Lei; Ponman, Trevor J.; Raychaudhury, Somak; Dariush, Ali

    2012-10-01

    Understanding the interaction between galaxies and their surroundings is central to building a coherent picture of galaxy evolution. Here we use Galaxy Evolution Explorer imaging of a statistically representative sample of 23 galaxy groups at z Almost-Equal-To 0.06 to explore how local and global group environments affect the UV properties and dust-corrected star formation rates (SFRs) of their member galaxies. The data provide SFRs out to beyond 2R{sub 200} in all groups, down to a completeness limit and limiting galaxy stellar mass of 0.06 M{sub Sun} yr{sup -1} and 1 Multiplication-Sign 10{sup 8} M{sub Sun }, respectively. At fixed galaxy stellar mass, we find that the fraction of star-forming group members is suppressed relative to the field out to an average radius of R Almost-Equal-To 1.5 Mpc Almost-Equal-To 2R{sub 200}, mirroring results for massive clusters. For the first time, we also report a similar suppression of the specific SFR within such galaxies, on average by 40% relative to the field, thus directly revealing the impact of the group environment in quenching star formation within infalling galaxies. At fixed galaxy density and stellar mass, this suppression is stronger in more massive groups, implying that both local and global group environments play a role in quenching. The results favor an average quenching timescale of {approx}> 2 Gyr and strongly suggest that a combination of tidal interactions and starvation is responsible. Despite their past and ongoing quenching, galaxy groups with more than four members still account for at least {approx}25% of the total UV output in the nearby universe.

  7. Intracluster Light in Galaxy Groups and Clusters

    NASA Astrophysics Data System (ADS)

    DeMaio, Tahlia; Gonzalez, Anthony; Zabludoff, Ann I.; Zaritsky, Dennis F.

    2016-01-01

    We present recent results from our study on the origin and assembly history of the intracluster starlight (ICL) for a sample of 29 galaxy groups and clusters with 3x1013groups and clusters show clear negative color gradients. Such negative colour (and equivalently, metallicity) gradients can arise from tidal stripping of L* galaxies and/or the disruption of dwarf galaxies, but not major mergers with the brightest cluster galaxy (BCG). We also find ICL luminosities of 3-9 L* in the range 10 < r < 110 kpc for these clusters. Dwarf disruption alone cannot explain the total luminosity of the ICL and remain consistent with the observed evolution in the faint-end slope of the luminosity function. The results of our study are suggestive of a formation history in which the ICL is built-up by a combination of stripping of L* galaxies and/or dwarf disruption and disfavor significant contribution by major mergers with the BCG.This sample of groups and clusters is the largest with HST/WFC3 data for ICL analysis that spans two orders of magnitude in halo mass at redshifts >0.3. Because of this we can investigate how the ICL color profile changes as a function of cluster mass for the first time, as well as expand previous studies of the changing fraction of cluster luminosity that is contained in the BCG+ICL as a function of halo mass. We present our preliminary results and describe our next steps using this sample to investigate the intracluster light in massive halos.

  8. Evolution of Group Galaxies from the First Red-Sequence Cluster Survey

    NASA Astrophysics Data System (ADS)

    Li, I. H.; Yee, H. K. C.; Hsieh, B. C.; Gladders, M.

    2012-04-01

    We study the evolution of the red-galaxy fraction (f red) in 905 galaxy groups with 0.15 <= z < 0.52. The galaxy groups are identified by the "probability friends-of-friends" algorithm from the first Red-Sequence Cluster Survey (RCS1) photometric-redshift sample. There is a high degree of uniformity in the properties of the red sequence of the group galaxies, indicating that the luminous red-sequence galaxies in the groups are already in place by z ~ 0.5 and that they have a formation epoch of z >~ 2. In general, groups at lower redshifts exhibit larger f red than those at higher redshifts, showing a group Butcher-Oemler effect. We investigate the evolution of f red by examining its dependence on four parameters, one of which can be classified as intrinsic and three of which can be classified as environmental: galaxy stellar mass (M *), total group stellar mass (M *, grp, a proxy for group halo mass), normalized group-centric radius (r grp), and local galaxy density (Σ5). We find that M * is the dominant parameter such that there is a strong correlation between f red and galaxy stellar mass. Furthermore, the dependence of f red on the environmental parameters is also a strong function of M *. Massive galaxies (M * >~ 1011 M ⊙) show little dependence of f red on r grp, M *, grp, and Σ5 over the redshift range. The dependence of f red on these parameters is primarily seen for galaxies with lower masses, especially for M * <~ 1010.6 M ⊙. We observe an apparent "group down-sizing" effect, in that galaxies in lower-mass halos, after controlling for galaxy stellar mass, have lower f red. We find a dependence of f red on both r grp and Σ5 after the other parameters are controlled. At a fixed r grp, there is a significant dependence of f red on Σ5, while r grp gradients of f red are seen for galaxies in similar Σ5 regions. This indicates that galaxy group environment has a residual effect over that of local galaxy density (or vice versa), and both parameters need

  9. Faint dwarf galaxies in Hickson Compact Group 90*

    NASA Astrophysics Data System (ADS)

    Ordenes-Briceño, Yasna; Taylor, Matthew A.; Puzia, Thomas H.; Muñoz, Roberto P.; Eigenthaler, Paul; Georgiev, Iskren Y.; Goudfrooij, Paul; Hilker, Michael; Lançon, Ariane; Mamon, Gary; Mieske, Steffen; Miller, Bryan W.; Peng, Eric W.; Sánchez-Janssen, Rubén

    2016-12-01

    We report the discovery of a very diverse set of five low-surface brightness (LSB) dwarf galaxy candidates in Hickson Compact Group 90 (HCG 90) detected in deep U- and I-band images obtained with Very Large Telescope/Visible Multi-Object Spectrograph. These are the first LSB dwarf galaxy candidates found in a compact group of galaxies. We measure spheroid half-light radii in the range 0.7 ≲ reff/kpc ≲ 1.5 with luminosities of -11.65 ≲ MU ≲ -9.42 and -12.79 ≲ MI ≲ -10.58 mag, corresponding to a colour range of (U - I)0 ≃ 1.1-2.2 mag and surface brightness levels of μU ≃ 28.1 mag arcsec-2 and μI ≃ 27.4 mag arcsec-2. Their colours and luminosities are consistent with a diverse set of stellar population properties. Assuming solar and 0.02 Z⊙ metallicities we obtain stellar masses in the range M*|Z⊙ ≃ 105.7 - 6.3 M⊙ and M_{*}|_{0.02 Z_{⊙} ≃ 10^{6.3-8} M_{⊙}. Three dwarfs are older than 1 Gyr, while the other two significantly bluer dwarfs are younger than ˜2 Gyr at any mass/metallicity combination. Altogether, the new LSB dwarf galaxy candidates share properties with dwarf galaxies found throughout the Local Volume and in nearby galaxy clusters such as Fornax. We find a pair of candidates with ˜2 kpc projected separation, which may represent one of the closest dwarf galaxy pairs found. We also find a nucleated dwarf candidate, with a nucleus size of reff ≃ 46-63 pc and magnitude MU, 0 = -7.42 mag and (U - I)0 = 1.51 mag, which is consistent with a nuclear stellar disc with a stellar mass in the range 104.9 - 6.5 M⊙.

  10. ISM Properties of Local Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Diaz-Santos, Tanio; Armus, Lee; Stierwalt, Sabrina; Elbaz, David; Malhotra, Sangeeta

    2015-08-01

    Luminous and Ultra-luminous Infrared Galaxies ((U)LIRGs) represent the most important galaxy population at redshifts z > 1 as they account for more than 50% of all star formation produced in the Universe at those epochs; and encompass what it is called the main-sequence (MS) of star-forming galaxies. Investigating their local counterparts -low luminosity LIRGs- is therefore key to understand the physical properties and phases of their inter-stellar medium (ISM) - a task that is rather challenging in the distant Universe. On the other hand, high-z star-bursting (out of the MS) systems, although small in number, account for a modest yet still significant fraction of the total energy production. Here I present far-IR line emission observations ([CII]158μm, [OI]63μm, [OIII]88μm and [NII]122μm) obtained with Herschel for two large samples of nearby LIRGs: The Great Observatories All-sky LIRG Survey (GOALS), a sample of more than 240 relatively cold LIRGs, and a survey of 30 LIRGs selected to have very warm mid- to far-IR colors, suggestive of an ongoing intense nuclear starburst and/or an AGN. Using photo-dissociation region (PDR) models we derive the basic characteristics of the ISM (ionization intensity and density) for both samples and study differences among systems as a function of AGN activity, merger stage, dust temperature, and compactness of the starburst - parameters that are thought to control the life cycle of galaxies moving in and out of the MS, locally and at high-z.

  11. Pseudo bulges in galaxy groups: the role of environment in secular evolution

    NASA Astrophysics Data System (ADS)

    Mishra, Preetish K.; Wadadekar, Yogesh; Barway, Sudhanshu

    2017-05-01

    We examine the dependence of the fraction of galaxies containing pseudo bulges on environment for a flux limited sample of ˜5000 galaxies from the Sloan Digital Sky Survey (SDSS). We have separated bulges into classical and pseudo bulge categories based on their position on the Kormendy diagram. Pseudo bulges are thought to be formed by internal processes and are a result of secular evolution in galaxies. We attempt to understand the dependence of secular evolution on environment and morphology. Dividing our sample of disc + bulge galaxies based on group membership into three categories: central and satellite galaxies in groups and isolated field galaxies, we find that pseudo bulge fraction is almost equal for satellite and field galaxies. Fraction of pseudo bulge hosts in central galaxies is almost half of the fraction of pseudo bulges in satellite and field galaxies. This trend is also valid when only galaxies are considered only spirals or S0. Using the projected fifth nearest neighbour density as measure of local environment, we look for the dependence of pseudo bulge fraction on environmental density. Satellite and field galaxies show very weak or no dependence of pseudo bulge fraction on environment. However, fraction of pseudo bulges hosted by central galaxies decreases with increase in local environmental density. We do not find any dependence of pseudo bulge luminosity on environment. Our results suggest that the processes that differentiate the bulge types are a function of environment while processes responsible for the formation of pseudo bulges seem to be independent of environment.

  12. Pseudo bulges in galaxy groups: the role of environment in secular evolution

    NASA Astrophysics Data System (ADS)

    Mishra, Preetish K.; Wadadekar, Yogesh; Barway, Sudhanshu

    2017-01-01

    We examine the dependence of the fraction of galaxies containing pseudo bulges on environment for a flux limited sample of ˜5000 SDSS galaxies. We have separated bulges into classical and pseudo bulge categories based on their position on the Kormendy diagram. Pseudo bulges are thought to be formed by internal processes and are a result of secular evolution in galaxies. We attempt to understand the dependence of secular evolution on environment and morphology. Dividing our sample of disc+bulge galaxies based on group membership into three categories: central and satellite galaxies in groups and isolated field galaxies, we find that pseudo bulge fraction is almost equal for satellite and field galaxies. Fraction of pseudo bulge hosts in central galaxies is almost half of the fraction of pseudo bulges in satellite and field galaxies. This trend is also valid when only galaxies are considered only spirals or S0. Using the projected fifth nearest neighbour density as measure of local environment, we look for the dependence of pseudo bulge fraction on environmental density. Satellite and field galaxies show very weak or no dependence of pseudo bulge fraction on environment. However, fraction of pseudo bulges hosted by central galaxies decreases with increase in local environmental density. We do not find any dependence of pseudo bulge luminosity on environment. Our results suggest that the processes that differentiate the bulge types are a function of environment while processes responsible for the formation of pseudo bulges seem to be independent of environment.

  13. Local analogs of high-redshift galaxies: Interstellar medium conditions

    NASA Astrophysics Data System (ADS)

    Bian, Fuyan; Kewley, Lisa J.; Dopita, Michael A.; Juneau, Stephanie

    2017-03-01

    Local analog galaxies play an important role in understanding the properties of high-redshift galaxies. We present a method to select a type of local analog that closely resembles the ionized interstellar medium conditions in high-redshift galaxies. These galaxies are selected based on their locations in the [O III]/Hβ versus [N II]/Hα nebular emission-line diagnostic diagram. The ionization parameters and electron densities in these analogs are comparable to those in z ~= 2 - 3 galaxies, but higher than those in normal SDSS galaxies by ~= 0.6 dex and ~= 0.9 dex, respectively. We find that the high sSFR and SFR surface density can enhance the electron densities and the ionization parameters, but still cannot fully explain the difference in ISM condition between nearby galaxies and the local analogs/high-redshift galaxies.

  14. The global warming of group satellite galaxies

    NASA Astrophysics Data System (ADS)

    Yozin, C.; Bekki, K.

    2016-08-01

    Recent studies adopting λRe, a proxy for specific angular momentum, have highlighted how early-type galaxies (ETGs) are composed of two kinematical classes for which distinct formation mechanisms can be inferred. With upcoming surveys expected to obtain λRe from a broad range of environments (e.g. SAMI, MaNGA), we investigate in this numerical study how the λRe-ɛe distribution of fast-rotating dwarf satellite galaxies reflects their evolutionary state. By combining N-body/SPH simulations of progenitor disc galaxies (stellar mass ≃109 M⊙), their cosmologically-motivated sub-halo infall history and a characteristic group orbit/potential, we demonstrate the evolution of a satellite ETG population driven by tidal interactions (e.g. harassment). As a general result, these satellites remain intrinsically fast-rotating oblate stellar systems since their infall as early as z = 2; mis-identifications as slow rotators often arise due to a bar/spiral lifecycle which plays an integral role in their evolution. Despite the idealistic nature of its construction, our mock λRe-ɛe distribution at z < 0.1 reproduces its observational counterpart from the ATLAS3D/SAURON projects. We predict therefore how the observed λRe-ɛe distribution of a group evolves according to these ensemble tidal interactions.

  15. Mass dependent galaxy transformation mechanisms in the complex environment of SuperGroup Abell 1882

    NASA Astrophysics Data System (ADS)

    Sengupta, Aparajita

    We present our data and results from panchromatic photometry and optical spectrometry of the nearest (extremely rich) filamentary large scale structure, SuperGroup Abell 1882. It is a precursor of a cluster and is an inevitable part of the narrative in the study of galaxy transformations. There has been strong empirical evidence over the past three decades that galaxy environment affects galaxy properties. Blue disky galaxies transform into red bulge-like galaxies as they traverse into the deeper recesses of a cluster. However, we have little insight into the story of galaxy evolution in the early stages of cluster formation. Besides, in relaxed clusters that have been studied extensively, several evolutionary mechanisms take effect on similar spatial and temporal scales, making it almost impossible to disentangle different local and global mechanisms. A SuperGroup on the other hand, has a shallower dark-matter potential. Here, the accreting galaxies are subjected to evolutionary mechanisms over larger time and spatial scales. This separates processes that are otherwise superimposed in rich cluster-filament interfaces. As has been found from cluster studies, galaxy color and morphology tie very strongly with local galaxy density even in a complex and nascent structure like Abell 1882. Our major results indicate that there is a strong dependence of galaxy transformations on the galaxy masses themselves. Mass- dependent evolutionary mechanisms affect galaxies at different spatial scales. The galaxy color also varies with radial projected distance from the assumed center of the structure for a constant local galaxy density, indicating the underlying large scale structure as a second order evolutionary driver. We have looked for clues to the types of mechanisms that might cause the transformations at various mass regimes. We have found the thoroughly quenched low mass galaxies confined to the groups, whereas there are evidences of intermediate-mass quenched galaxies

  16. Star Formation and Environment in Compact Groups of Galaxies

    NASA Astrophysics Data System (ADS)

    Iglesias-Páramo, J.; Vílchez, J. M.

    H &alpha luminosities are presented in order to study the Star Formation Rates (SFRs) of a sample of galaxies in compact groups from Hickson's (1982) catalogue. Although the comparison of the SFRs of the disk galaxies in our sample with those of a sample of field galaxies yielded no difference between the average SFRs for disk galaxies in compact groups and in the field, environmental effects seem to influence the H &alpha luminosities of late and early-type galaxies in compact groups. No relationship was found between the total normalized H &alpha luminosities of the groups and some dynamical parameters, indicating that the dynamical state of the group does not influence the SFR of the group. The lack of dominant interaction induced starbursts in our sample is compatible with a scenario for compact groups of galaxies in which the dark matter of the group is arranged in a common halo, thereby preventing a fast collapse of the galaxies.

  17. Study of the global environment of small galaxy groups

    NASA Astrophysics Data System (ADS)

    Duplancic, F.; Dávila, F.; Coldwell, G.

    2017-07-01

    The present work presents a study of the global density environment of small galaxy groups. To this end we use a catalog of small galaxy systems constructed from the 10th Data Release of the Sloan Digital Sky Survey. To characterize the global environment of small galaxy groups we use different estimators, including the number of significant neighbors within a fixed aperture, the distance to the nearest neighbor and the number density profile of these systems. In order to perform a comparative study, we select different categories of systems considering galaxy pairs, triplets of galaxies and groups with at least four member galaxies. We found differences between the global environment of pairs compared to triplet of galaxies and groups. Galaxy pairs inhabit environments of lower global density than triplets and groups which are located in higher global density regions. This result is in agreement with different studies in the literature which propose that triplets of galaxies and compact groups have similarities in their fundamental properties and are different from galaxy pairs. Our findings suggest that the global density environment of small galaxy groups plays a fundamental role in the characterization of the main properties of these systems and their member galaxies.

  18. A COMPARISON OF THE CLUSTERING PROPERTIES BETWEEN GALAXIES AND GROUPS OF GALAXIES

    SciTech Connect

    Deng Xinfa

    2013-03-01

    In this study, I apply cluster analysis and perform comparative studies of clustering properties between galaxies and groups of galaxies. It is found that the number of objects N{sub max} of the richest system and the maximal length D{sub max} of the largest system for groups in all samples are apparently larger than ones for galaxies, and that galaxies preferentially form isolated, paired, and small systems, while groups preferentially form grouped and clustered systems. These results show that groups are more strongly clustered than galaxies, which is consistent with statistical results of the correlation function.

  19. The Local Group: the ultimate deep field

    NASA Astrophysics Data System (ADS)

    Boylan-Kolchin, Michael; Weisz, Daniel R.; Bullock, James S.; Cooper, Michael C.

    2016-10-01

    Near-field cosmology - using detailed observations of the Local Group and its environs to study wide-ranging questions in galaxy formation and dark matter physics - has become a mature and rich field over the past decade. There are lingering concerns, however, that the relatively small size of the present-day Local Group (˜2 Mpc diameter) imposes insurmountable sample-variance uncertainties, limiting its broader utility. We consider the region spanned by the Local Group's progenitors at earlier times and show that it reaches 3 arcmin ≈ 7 comoving Mpc in linear size (a volume of ≈350 Mpc3) at z = 7. This size at early cosmic epochs is large enough to be representative in terms of the matter density and counts of dark matter haloes with Mvir(z = 7) ≲ 2 × 109 M⊙. The Local Group's stellar fossil record traces the cosmic evolution of galaxies with 103 ≲ M⋆(z = 0)/M⊙ ≲ 109 (reaching M1500 > -9 at z ˜ 7) over a region that is comparable to or larger than the Hubble Ultra-Deep Field (HUDF) for the entire history of the Universe. In the JWST era, resolved stellar populations will probe regions larger than the HUDF and any deep JWST fields, further enhancing the value of near-field cosmology.

  20. Integrated HI emission in galaxy groups and clusters

    NASA Astrophysics Data System (ADS)

    Ai, Mei; Zhu, Ming; Fu, Jian

    2017-09-01

    The integrated HI emission from hierarchical structures such as groups and clusters of galaxies can be detected by FAST at intermediate redshifts. Here we propose to use FAST to study the evolution of the global HI content of clusters and groups over cosmic time by measuring their integrated HI emissions. We use the Virgo Cluster as an example to estimate the detection limit of FAST, and have estimated the integration time to detect a Virgo type cluster at different redshifts (from z = 0.1 to z = 1.5).We have also employed a semi-analytic model (SAM) to simulate the evolution of HI contents in galaxy clusters. Our simulations suggest that the HI mass of a Virgo-like cluster could be 2–3 times higher and the physical size could be more than 50% smaller when redshift increases from z = 0.3 to z = 1. Thus the integration time could be reduced significantly and gas rich clusters at intermediate redshifts can be detected by FAST in less than 2 hours of integration time. For the local Universe, we have also used SAM simulations to create mock catalogs of clusters to predict the outcomes from FAST all sky surveys. Comparing with the optically selected catalogs derived by cross matching the galaxy catalogs from the SDSS survey and the ALFALFA survey, we find that the HI mass distribution of the mock catalog with 20 s of integration time agrees well with that of observations. However, the mock catalog with 120 s of integration time predicts many more groups and clusters that contain a population of low mass HI galaxies not detected by the ALFALFA survey. A future deep HI blind sky survey with FAST would be able to test such prediction and set constraints on the numerical simulation models. The observational strategy and sample selections for future FAST observations of galaxy clusters at high redshifts are also discussed.

  1. New low surface brightness dwarf galaxies in the Centaurus group

    NASA Astrophysics Data System (ADS)

    Müller, Oliver; Jerjen, Helmut; Binggeli, Bruno

    2017-01-01

    Context. The distribution of satellite galaxies around the Milky Way and Andromeda and their correlation in phase space pose a major challenge to the standard ΛCDM model of structure formation. Other nearby groups of galaxies are now being scrutinized to test for the ubiquity of the phenomenon. Aims: We conducted an extensive CCD imaging survey for faint, unresolved dwarf galaxies of very low surface brightness in the whole Centaurus group region, encompassing the Cen A and M 83 subgroups lying at a distance of roughly 4 and 5 Mpc, respectively. The aim is to significantly increase the sample of known Centaurus group members down to a fainter level of completeness, serving as a basis for future studies of the 3D structure of the group. Methods: Following our previous survey of 60 square degrees covering the M 83 subgroup, we extended and completed our survey of the Centaurus group region by imaging another 500 square degrees area in the g and r bands with the wide-field Dark Energy Survey camera at the 4 m Blanco telescope at CTIO. The surface brightness limit reached for unresolved dwarf galaxies is μr ≈ 29 mag arcsec-2. The faintest suspected Centaurus members found have mr ≈ 19.5 mag or Mr ≈ -8.8 mag at the mean distance of the group. The images were enhanced using different filtering techniques. Results: We found 41 new dwarf galaxy candidates, which together with the previously discovered 16 dwarf candidates in the M 83 subgroup amounts to almost a doubling of the number of known galaxies in the Centaurus complex, if the candidates are confirmed. We carried out surface photometry in g and r, and report the photometric parameters derived therefrom, for all new candidates as well as previously known members in the surveyed area. The photometric properties of the candidates, when compared to those of Local Group dwarfs and previously known Centaurus dwarfs, suggest membership in the Centaurus group. The sky distribution of the new objects is generally

  2. THE EPOCH OF ASSEMBLY OF TWO GALAXY GROUPS: A COMPARATIVE STUDY

    SciTech Connect

    Nichols, Matthew; Bland-Hawthorn, Joss

    2013-10-01

    Nearby galaxy groups of comparable mass to the Local Group show global variations that reflect differences in their evolutionary history. Satellite galaxies in groups have higher levels of gas deficiency as the distance to their host decreases. The well established gas-deficiency profile of the Local Group reflects an epoch of assembly starting at z ∼< 10. We investigate whether this gas-deficiency profile can be used to determine the epoch of assembly for other nearby groups. We choose the M81 group as this has the most complete inventory, both in terms of membership and multi-wavelength observations. We expand our earlier evolutionary model of satellite dwarf galaxies to not only confirm this result for the Local Group but also show that the more gas-rich M81 group is likely to have assembled at a later time (z ∼< 1-3) than the Local Group.

  3. Evolution of Galaxy Groups in the Illustris Simulation

    NASA Astrophysics Data System (ADS)

    Raouf, Mojtaba; Khosroshahi, Habib G.; Dariush, A.

    2016-06-01

    We present the first study of the evolution of galaxy groups in the Illustris simulation. We focus on dynamically relaxed and unrelaxed galaxy groups representing dynamically evolved and evolving galaxy systems, respectively. The evolutionary state of a group is probed from its luminosity gap and separation between the brightest group galaxy and the center of mass of the group members. We find that the Illustris simulation overproduces galaxy systems with a large luminosity gap, known as fossil systems, in comparison to observations and the probed semi-analytical predictions. However, this simulation is just as successful as the probed semi-analytic model in recovering the correlation between luminosity gap and offset of the luminosity centroid. We find evolutionary tracks based on luminosity gap that indicate that a group with a large luminosity gap is rooted in one with a small luminosity gap, regardless of the position of the brightest group galaxy within the halo. This simulation helps to explore, for the first time, the black hole mass and its accretion rate in galaxy groups. For a given stellar mass of the brightest group galaxies, the black hole mass is larger in dynamically relaxed groups with a lower rate of mass accretion. We find this to be consistent with the latest observational studies of radio activity in the brightest group galaxies in fossil groups. We also find that the intragalactic medium in dynamically evolved groups is hotter for a given halo mass than that in evolving groups, again consistent with earlier observational studies.

  4. The field LMXB populations of local early-type galaxies

    NASA Astrophysics Data System (ADS)

    Peacock, Mark; Zepf, Steve E.; Kundu, Arunav; Maccarone, Thomas J.; Lehmer, Bret; Maraston, Claudia; Gonzalez, Anthony H.; Eufrasio, Rafael T.; Coulter, Daniel

    2017-08-01

    We present the results of our ongoing study of the low mass X-ray binary (LMXB) populations of local early-type galaxies. By combining deep Chandra observations with HST optical mosaics, we have determined the field LMXB populations of nine local early-type galaxies. We use these data to determine the specific frequency of LMXBs in these galaxies, n_x (the number of LMXBs per stellar K-band light). We find that the shape of the XLF is similar among these galaxies, but also find a significant variation in the scaling. We test for correlations between n_x and galaxy: velocity dispersion; metallicity and Mg abundance; globular cluster specific frequency; and proposed IMF variation. No significant correlations are observed and we note the need to expand the sample of galaxies further to understand the underlying reason for variations in the formation efficiency of LMXBs in these galaxies.

  5. Understanding the unique assembly history of central group galaxies

    SciTech Connect

    Vulcani, Benedetta; Bundy, Kevin; Lackner, Claire; Leauthaud, Alexie; Treu, Tommaso; Mei, Simona; Coccato, Lodovico; Kneib, Jean Paul; Auger, Matthew; Nipoti, Carlo

    2014-12-10

    Central galaxies (CGs) in massive halos live in unique environments with formation histories closely linked to that of the host halo. In local clusters, they have larger sizes (R{sub e} ) and lower velocity dispersions (σ) at fixed stellar mass M {sub *}, and much larger R{sub e} at a fixed σ than field and satellite galaxies (non-CGs). Using spectroscopic observations of group galaxies selected from the COSMOS survey, we compare the dynamical scaling relations of early-type CGs and non-CGs at z ∼ 0.6 to distinguish possible mechanisms that produce the required evolution. CGs are systematically offset toward larger R{sub e} at fixed σ compared to non-CGs with similar M {sub *}. The CG R{sub e} -M {sub *} relation also shows differences, primarily driven by a subpopulation (∼15%) of galaxies with large R{sub e} , while the M {sub *}-σ relations are indistinguishable. These results are accentuated when double Sérsic profiles, which better fit light in the outer regions of galaxies, are adopted. They suggest that even group-scale CGs can develop extended components by these redshifts that can increase total R{sub e} and M {sub *} estimates by factors of ∼2. To probe the evolutionary link between our sample and cluster CGs, we also analyze two cluster samples at z ∼ 0.6 and z ∼ 0. We find similar results for the more massive halos at comparable z, but much more distinct CG scaling relations at low-z. Thus, the rapid, late-time accretion of outer components, perhaps via the stripping and accretion of satellites, would appear to be a key feature that distinguishes the evolutionary history of CGs.

  6. The coronal parameters of local Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Marinucci, A.; Tortosa, A.; NuSTAR AGN Physics Working Group

    2016-05-01

    One of the open problems for AGN is the nature of the primary X-ray emission: It is likely due to Comptonization of soft UV photons, but the optical depth and temperature of the emitting corona were largely unknown before the launch of the Nuclear Spectroscopic Telescope Array (NuSTAR). It is the first focusing hard X-ray telescope on orbit, ∼ 100 times more sensitive in the 10-79 keV band compared to previous observatories, enabling the study of AGN at high energies with high precision. We present and discuss the results on the hot corona parameters of active galactic nuclei that have been recently measured with NuSTAR (often in coordination with XMM-Newton, Suzaku, or wift) with unprecedented accuracy, in a number of local Seyfert galaxies.

  7. The coronal parameters of local Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Marinucci, A.

    2015-07-01

    One of the open problems for AGN is the nature of the primary X-ray emission: it is likely due to Comptonization of soft UV photons, but the optical depth and temperature of the emitting corona were largely unknown before the launch of NuSTAR. The Nuclear Spectroscopic Telescope Array (NuSTAR) is the first focusing X-ray telescope on orbit, ˜ 100 times more sensitive in the 10-80 keV band compared to previous observatories, enabling the study of AGN at high energies with high precision. We will present and discuss the results on the hot corona parameters of Active Galactic Nuclei that have been recently measured with NuSTAR (often in coordination with XMM-Newton or Suzaku) with unprecedented accuracy, in a number of local Seyfert galaxies.

  8. TWO LOCAL VOLUME DWARF GALAXIES DISCOVERED IN 21 cm EMISSION: PISCES A AND B

    SciTech Connect

    Tollerud, Erik J.; Geha, Marla C.; Grcevich, Jana; Putman, Mary E.; Stern, Daniel E-mail: marla.geha@yale.edu E-mail: mputman@astro.columbia.edu

    2015-01-01

    We report the discovery of two dwarf galaxies, Pisces A and B, from a blind 21 cm H I search. These were the only two galaxies found via optical imaging and spectroscopy of 22 H I clouds identified in the GALFA-H I survey as dwarf galaxy candidates. They have properties consistent with being in the Local Volume (<10 Mpc), and one has resolved stellar populations such that it may be on the outer edge of the Local Group (∼1 Mpc from M31). While the distance uncertainty makes interpretation ambiguous, these may be among the faintest star-forming galaxies known. Additionally, rough estimates comparing these galaxies to ΛCDM dark matter simulations suggest consistency in number density, implying that the dark matter halos likely to host these galaxies are primarily H I-rich. The galaxies may thus be indicative of a large population of dwarfs at the limit of detectability that are comparable to the faint satellites of the Local Group. Because they are outside the influence of a large dark matter halo to alter their evolution, these galaxies can provide critical anchors to dwarf galaxy formation models.

  9. The Evolution of Central Group Galaxies in Hydrodynamical Simulations

    NASA Astrophysics Data System (ADS)

    Feldmann, R.; Carollo, C. M.; Mayer, L.; Renzini, A.; Lake, G.; Quinn, T.; Stinson, G. S.; Yepes, G.

    2010-01-01

    We trace the evolution of central galaxies in three ~1013 M sun galaxy groups simulated at high resolution in cosmological hydrodynamical simulations. In all three cases, the evolution in the group potential leads, at z = 0, to central galaxies that are massive, gas-poor early-type systems supported by stellar velocity dispersion and which resemble either elliptical or S0 galaxies. Their z ~ 2-2.5 main progenitors are massive (M * ~ (3-10) × 1010 M sun), star-forming (20-60 M sun yr-1) galaxies which host substantial reservoirs of cold gas (~5 × 109 M sun) in extended gas disks. Our simulations thus show that star-forming galaxies observed at z ~ 2 are likely the main progenitors of central galaxies in galaxy groups at z = 0. At z ~ 2 the stellar component of all galaxies is compact, with a half-mass radius <1 kpc. The central stellar density stays approximatively constant from such early epochs down to z = 0. Instead, the galaxies grow inside out, by acquiring a stellar envelope outside the innermost ~2 kpc. Consequently the density within the effective radius decreases by up to 2 orders of magnitude. Both major and minor mergers contribute to most (70+20 -15%) of the mass accreted outside the effective radius and thus drive an episodical evolution of the half-mass radii, particularly below z = 1. In situ star formation and secular evolution processes contribute to 14+18 -9% and 16+6 -11%, respectively. Overall, the simulated galaxies grow by a factor ~4-5 in mass and size since redshift z ~ 2. The short cooling time in the center of groups can foster a "hot accretion" mode. In one of the three simulated groups this leads to a dramatic rejuvenation of the central group galaxy at z < 1, affecting its morphology, kinematics, and colors. This episode is eventually terminated by a group-group merger. Mergers also appear to be responsible for the suppression of cooling flows in the other two groups. Passive stellar evolution and minor galaxy mergers gradually restore

  10. 3D structure of nearby groups of galaxies

    NASA Astrophysics Data System (ADS)

    Makarova, L.; Makarov, D.; Klypin, A.; Gottlöber, S.

    2016-10-01

    Using high accuracy distance estimates, we study the three-dimensional distribution of galaxies in five galaxy groups at a distance less than 5 Mpc from the Milky Way. Due to proximity of these groups our sample of galaxies is nearly complete down to extremely small dwarf galaxies with absolute magnitudes M B = -12. We find that the average number-density profile of the groups shows a steep power-law decline dn/dV ˜ R-3 at distances R=(100-500) kpc consistent with predictions of the standard cosmological model. We also find that there is no indication of a truncation or a cutoff in the density at the expected virial radius: the density profile extends at least to 1.5 Mpc. Vast majority of galaxies within 1.5 Mpc radius around group centres are gas-rich star-forming galaxies. Early-type galaxies are found only in the central ˜ 300 kpc region. Lack of dwarf spheroidal and dwarf elliptical galaxies in the field and in the outskirts of large groups is a clear indication that these galaxies experienced morphological transformation when they came close to the central region of forming galaxy group.

  11. A Survey of Local Group Galaxies Currently Forming Stars: UBVRI Photometry of Stars in Seven Dwarfs and a Comparison with the Entire Sample

    NASA Astrophysics Data System (ADS)

    Massey, Philip; Olsen, K. A.; Hodge, P. W.; Jacoby, G. H.; McNeill, R. T.; Smith, R. C.; Strong, S. B.

    2006-12-01

    Studies of the resolved stellar content of nearby galaxies provide the only direct way of determining the effect that metallicity (and other environmental factors) play in the formation and evolution of massive stars. Using the 4-m telescopes at Kitt Peak and Cerro Tololo, we have completed a UBVRI survey of stars in M31 and M33 (Massey et al 2006 AJ, 131, 2478) and the seven dwarfs, IC10, NGC 6822, WLM, Sextans B, Sextans A, Pegasus, and Phoenix (newly presented here). In all, we have obtained photometry of 606,547 stars (in B, V, and R, with many having U and/or I as well.) We expect that these data and images will serve as the "finding charts" for 8-m spectroscopic studies for decades to come. Here we provide comparisons of the CMDs of these galaxies with those of the Magellanic Clouds, and derive improved values of reddenings using the blue supergiants. Plus, of course, we include some incredibly pretty pictures.

  12. The extended structure of the dwarf irregular galaxies Sextans A and Sextans B. Signatures of tidal distortion in the outskirts of the Local Group

    NASA Astrophysics Data System (ADS)

    Bellazzini, M.; Beccari, G.; Fraternali, F.; Oosterloo, T. A.; Sollima, A.; Testa, V.; Galleti, S.; Perina, S.; Faccini, M.; Cusano, F.

    2014-06-01

    We present a detailed study of the stellar and H i structure of the dwarf irregular galaxies Sextans A and Sextans B, members of the NGC 3109 association. We use newly obtained deep (r ≃ 26.5) and wide-field g and r photometry to extend the surface brightness (SB) profiles of the two galaxies down to μV ≃ 31.0 mag/arcsec2. We find that both galaxies are significantly more extended than previously traced with surface photometry, out to ~4 kpc from their centres along their major axes. Older stars are found to have more extended distribution than younger populations. We obtain the first estimate of the mean metallicity for the old stars in Sex B, from the colour distribution of the red giant branch, ⟨[Fe/H]⟩ = -1.6. The SB profiles show significant changes of slope and cannot be fitted with a single Sérsic model. Both galaxies have HI discs as massive as their respective stellar components. In both cases the H i discs display solid-body rotation with maximum amplitude of ~50 km s-1 (albeit with significant uncertainty due to the poorly constrained inclination), implying a dynamical mass ~109 M⊙, a mass-to-light ratio M / LV ~ 25, and a dark-to-baryonic mass ratio of ~10. The distribution of the stellar components is more extended than the gaseous disc in both galaxies. We find that the main, approximately round, stellar body of Sex A is surrounded by an elongated low-SB stellar halo that can be interpreted as a tidal tail, similar to that found in another member of the same association (Antlia). We discuss these, as well as other evidence of tidal disturbance, in the framework of a past passage of the NGC 3109 association close to the Milky Way, which has been hypothesised by several authors and is also supported by the recently discovered filamentary configuration of the association itself. Appendices are available in electronic form at http://www.aanda.orgTable of stellar photometry is only available at the CDS via anonymous ftp to http

  13. The prevalence of dwarf galaxy compact groups over cosmic time

    NASA Astrophysics Data System (ADS)

    Wiens, Christopher

    2017-01-01

    Galaxy interactions are critical to the evolution of the universe, influencing everything from star formation to the structure of the known universe. By studying galaxy interactions through computer simulations, we are instantaneously able to observe processes that normally take billions of years. “Compact groups” are extremely dense assemblies of at least 3 but typically no more than 10 galaxies that are interacting gravitationally. These groups yield much information about galaxy interactions and mergers in dense environments but are difficult to observe at high redshifts. Compact groups of only dwarf galaxies probe a regime of galaxy evolution that has been hypothesized to be common in the early universe. Here we investigate the populations of such dwarf galaxy compact groups in the Millennium II simulation. Millennium II is a massive n-body simulation of cold dark matter particles on a time scale equivalent to the known universe; allowing us to access to high redshift galaxies and the ability to track their descendants. Our preliminary findings indicate that these dwarf galaxy compact groups do exist in the Millennium II simulation. In the simulation, there is a non-inconsequential number of dwarf compact groups with an evolutionary track that mirrors the more massive compact groups with a peak in groups around a redshift of 2.

  14. The star formation histories of Hickson compact group galaxies

    NASA Astrophysics Data System (ADS)

    Plauchu-Frayn, I.; Del Olmo, A.; Coziol, R.; Torres-Papaqui, J. P.

    2012-10-01

    Aims: We study the star formation fistory (SFH) of 210 galaxy members of 55 Hickson compact groups (HCG) and 309 galaxies from the Catalog of Isolated Galaxies (CIG). The SFH traces the variation of star formation over the lifetime of a galaxy, and consequently yields a snapshot picture of its formation. Comparing the SFHs in these extremes in galaxy density allows us to determine the main effects of compact groups (CG) on the formation of galaxies. Methods: We fit our spectra using the spectral synthesis code STARLIGHT and obtained the stellar population contents and mean stellar ages of HCG and CIG galaxies in three different morphological classes: early-type galaxies (EtG), early-type spirals (EtS), and late-type spirals (LtS). Results: We find that EtG and EtS galaxies in HCG show higher contents of old and intermediate stellar populations as well as an important deficit of the young stellar population, which clearly implies an older average stellar age in early galaxies in HCG. For LtS galaxies we find similar mean values for the stellar content and age in the two samples. However, we note that LtS can be split into two subclasses, namely old and young LtS. In HCG we find a higher fraction of young LtS than in the CIG sample, in addition, most of these galaxies belong to groups in which most of the galaxies are also young and actively forming stars. The specific star formation rate (SSFR) of spiral galaxies in the two samples differ. The EtS in HCG show lower SSFR values, while LtS peak at higher values compared with their counterparts in isolation. We also measured the shorter star formation time scale (SFTS) in HCG galaxies, which indicates that they have a shorter star formation activity than CIG galaxies. We take these observations as evidence that galaxies in CG have evolved more rapidly than galaxies in isolation, regardless of their morphology. Our observations are consistent with the hierarchical galaxy formation model, which states that CGs are

  15. The Fossils of the First Galaxies in the Local Universe

    NASA Astrophysics Data System (ADS)

    Bovill, Mia Sauda

    We argue that, at least a fraction of the newly discovered population of ultra-faint dwarfs in the Local Group constitute the fossil relics of a once ubiquitous population of dwarf galaxies formed before reionization with maximum circular velocities, vmax < 20 km s -1, where vmax ˜ M 1/3. To follow the evolution and distribution of the fossils of the first galaxies on Local Volume, 5 - 10 Mpc, scales, we have developed a new method for generating initial conditions for ΛCDM N-body simulations which provides the necessary dynamic range. The initial distribution of particles represents the position, velocity and mass distribution of the dark and luminous ha- los extracted from pre-reionization simulations. We find that ultra-faint dwarfs have properties compatible with well preserved fossils of the first galaxies and are able to reproduce the observed luminosity-metallicity relation. However, because the brightest pre-reionization dwarfs form preferentially in overdense regions, they have merged into non-fossil halos with vmax > 20-30 km s-1. Hence, we find a luminosity threshold of true-fossils of 106 Lsolar, casting doubts on the classification of some classical dSphs as fossils. We also argue that the ultra-faints at R < 50 kpc, have had their stellar properties significantly modified by tides, and that a large population of fossils remains undetected due to log(Sigma V) < -1.4. Next, we show that fossils of the first galaxies have galactocentric distributions and cumulative luminosity func- tions consistent with observations. We predict there are ˜ 300 luminous satellites orbiting within Rvir of the Milky Way, ˜ 50-70% of which are fossils. Despite our multidimensional agreement at low luminosities, our primordial model produces an overabundance of bright dwarf satellites (LV > 105 Lsolar), with this "bright satellite problem" most evident in the outer parts of the Milky Way. We estimate that, although relatively bright (LV > 105 Lsolar), these ghostly

  16. Correlation functions for pairs and groups of galaxies

    NASA Technical Reports Server (NTRS)

    Kalinkov, M.; Kuneva, I.

    1990-01-01

    There are many studies on the correlation functions of galaxies, of clusters of galaxies, even of superclusters (e.g., Groth and Peebles 1977; Davies and Peebles 1983; Kalinkov and Kuneva 1985, 1986; Bahcall 1988 and references therein) but not so many on pairs and groups of galaxies. Results of the calculations of two-point correlation fuctions for some catalogs of pairs and groups of galaxies are given. It is assumed that the distances to pairs and groups of galaxies are given by their mean redshifts according to R = sigma (sup n, sub i-1) V sub i/nH (sub 0), where n is the number of galaxies in the system and H sub 0 = 100 km s(exp -1) Mpc(exp -1).

  17. The Hα kinematics of interacting galaxies in 12 compact groups

    NASA Astrophysics Data System (ADS)

    Torres-Flores, S.; Amram, P.; Mendes de Oliveira, C.; Plana, H.; Balkowski, C.; Marcelin, M.; Olave-Rojas, D.

    2014-08-01

    We present new Fabry-Perot observations for a sample of 42 galaxies located in 12 compact groups of galaxies: HCG 1, HCG 14, HCG 25, HCG 44, HCG 53, HCG 57, HCG 61, HCG 69, HCG 93, VV 304, LGG 455 and Arp 314. From the 42 observed galaxies, a total of 26 objects are spiral galaxies, which range from Sa to Im morphological types. The remaining 16 objects are E, S0 and S0a galaxies. Using these observations, we have derived velocity maps, monochromatic and velocity dispersion maps for 24 galaxies, where 18 are spiral, three are S0a, two are S0 and one is an Im galaxy. From the 24 velocity fields obtained, we could derive rotation curves for 15 galaxies; only two of them exhibit rotation curves without any clear signature of interactions. Based on kinematic information, we have evaluated the evolutionary stage of the different groups of the current sample. We identify groups that range from having no Hα emission to displaying an extremely complex kinematics, where their members display strongly perturbed velocity fields and rotation curves. In the case of galaxies with no Hα emission, we suggest that past galaxy interactions removed their gaseous components, thereby quenching their star formation. However, we cannot discard that the lack of Hα emission is linked with the detection limit for some of our observations.

  18. The Role of Groups in the Evolution of Galaxies at Intermediate Redshifts

    NASA Astrophysics Data System (ADS)

    Mulchaey, John

    2003-07-01

    Groups are the most common environment experienced by galaxies, yet they remain the least studied. The tidal fields and dynamical friction encountered by galaxies in groups probably holds the key to understanding the role of environment in driving the evolution of galaxies since z ~ 1. To study the evolution of galaxies in the group environment, we propose the first unbiased HST study of groups at moderate redshifts. Unlike previous HST group samples, that relied on radio or X-ray properties, our kinematically selected sample is drawn from a large redshift survey and is not biased towards unusually dense groups. HST imaging is essential to determine the morphology of galaxies in these systems and contrast this with the properties of galaxies in denser and more evolved groups and rich clusters at these epochs. HST data are also required to adequately compare the properties of groups at intermediate redshifts with local group samples derived from the 2df and Sloan surveys. We will combine the HST images with deep ground-based observations to study how morphologies and stellar populations of galaxies in groups have evolved in time. These observations are key to understanding the decline in the volume averaged star formation rate in the universe.

  19. Magnetic fields in Local Group dwarf irregulars

    NASA Astrophysics Data System (ADS)

    Chyży, K. T.; Weżgowiec, M.; Beck, R.; Bomans, D. J.

    2011-05-01

    Aims: We wish to clarify whether strong magnetic fields can be effectively generated in typically low-mass dwarf galaxies and to assess the role of dwarf galaxies in the magnetization of the Universe. Methods: We performed a search for radio emission and magnetic fields in an unbiased sample of 12 Local Group (LG) irregular and dwarf irregular galaxies with the 100-m Effelsberg telescope at 2.64 GHz. Three galaxies were detected. A higher frequency (4.85 GHz) was used to search for polarized emission in five dwarfs that are the most luminous ones in the infrared domain, of which three were detected. Results: Magnetic fields in LG dwarfs are weak, with a mean value of the total field strength of <4.2 ± 1.8 μG, three times lower than in the normal spirals. The strongest field among all LG dwarfs of 10 μG (at 2.64 GHz) is observed in the starburst dwarf IC 10. The production of total magnetic fields in dwarf systems appears to be regulated mainly by the star-formation surface density (with the power-law exponent of 0.30 ± 0.04) or by the gas surface density (with the exponent 0.47 ± 0.09). In addition, we find systematically stronger fields in objects of higher global star-formation rate. The dwarf galaxies follow a similar far-infrared relationship (with a slope of 0.91 ± 0.08) to that determined for high surface brightness spiral galaxies. The magnetic field strength in dwarf galaxies does not correlate with their maximum rotational velocity, indicating that a small-scale rather than a large-scale dynamo process is responsible for producting magnetic fields in dwarfs. If magnetization of the Universe by galactic outflows is coeval with its metal enrichment, we show that more massive objects (such as Lyman break galaxies) can efficiently magnetize the intergalactic medium with a magnetic field strength of about 0.8 nG out to a distance of 160-530 kpc at redshifts 5-3, respectively. Magnetic fields that are several times weaker and shorter magnetization

  20. The Milky Way, the Local Group & the IR Tully-Fisher Diagram

    NASA Technical Reports Server (NTRS)

    Malhotra, S.; Spergel, D.; Rhoads, J.; Li, J.

    1996-01-01

    Using the near infrared fluxes of local group galaxies derived from Cosmic Background Explorer/Diffuse Infrared Background Experiment band maps and published Cepheid distances, we construct Tully-Fisher diagrams for the Local Group.

  1. VizieR Online Data Catalog: Sample of Compact Group (CG) galaxies (Scudder+, 2012)

    NASA Astrophysics Data System (ADS)

    Scudder, J. M.; Ellison, S. L.; Mendel, J. T.

    2013-04-01

    We construct a sample of 75863 star-forming galaxies with robust metallicity and star formation rate (SFR) measurements from the Sloan Digital Sky Survey Data Release 7, from which we select a clean sample of compact group (CG) galaxies. The CGs are defined to be close configurations of at least four galaxies that are otherwise apparently isolated. Our selection results in a sample of 112 spectroscopically identified CG galaxies, which can be further divided into groups that are either embedded within a larger structure, such as a cluster or large group, or truly isolated systems. The CGs then serve as a probe into the influence of large-scale environment on a galaxy's evolution, while keeping the local density fixed at high values. W (2 data files).

  2. Morphology and luminosity segregation of galaxies in nearby loose groups

    NASA Astrophysics Data System (ADS)

    Girardi, M.; Rigoni, E.; Mardirossian, F.; Mezzetti, M.

    2003-08-01

    We study morphology and luminosity segregation of galaxies in loose groups. We analyze the two catalogs of groups identified in the Nearby Optical Galaxy (NOG) sample, by means of hierarchical and percolation ``friends-of-friends'' methods (HG and PG catalogs, respectively). In the first part of our analysis we consider 387 and 436 groups of HG and PG and compare morphology- (luminosity-) weighted to unweighted group properties: velocity dispersion, mean pairwise distance, and mean groupcentric distance of member galaxies. The second part of our analysis is based on two ensemble systems, one for each catalog, built by suitably combining together galaxies of all groups (1584 and 1882 galaxies for HG and PG groups). We find that earlier-type (brighter) galaxies are more clustered and lie closer to the group centers, both in position and in velocity, than later-type (fainter) galaxies. Spatial segregations are stronger than kinematical segregations. These effects are generally detected at the >˜ 3-sigma level. Luminosity segregation is shown to be independent of morphology segregation. Our main conclusions are strengthened by the detection of segregation in both hierarchical and percolation catalogs. Our results agree with a continuum of segregation properties of galaxies in systems, from low-mass groups to massive clusters.

  3. The XMM view of the outskirts of galaxy groups

    NASA Astrophysics Data System (ADS)

    Gastaldello, F.

    2016-06-01

    I will present the results of XMM observations on the outskirts of the bright galaxy group NGC 5044 addressing mass, entropy and metal abundances. I will discuss the results that XMM can achieve by exploring the outskirts of groups providing a complementary and fundamental piece of informations to the scenario emerging for the more massive clusters of galaxies.

  4. VizieR Online Data Catalog: Friends-of-friends galaxy group finder (Tempel+, 2016)

    NASA Astrophysics Data System (ADS)

    Tempel, E.; Kipper, R.; Tamm, A.; Gramann, M.; Einasto, M.; Sepp, T.; Tuvikene, T.

    2016-01-01

    To delineate galaxy groups in the local Universe, we used galaxy data from the extragalactic distance database (EDD2; Tully et al., 2009AJ....138..323T). The sample encompasses three datasets. As the main source, we used the Two Micron All Sky Survey (Skrutskie et al. 2006AJ....131.1163S, Cat. VII/233) Redshift Survey (2MRS) galaxies brighter than 11.75 mag in the Ks band (for a description of the catalogue, see Huchra et al., 2012, Cat. J/ApJS/199/26). We only used galaxies that are securely off the Galactic plane: Galactic latitude |b|>5°. Since the galaxy sample becomes extremely sparse farther away, we only used galaxies with a cosmic microwave background (CMB) corrected redshift z=0...0.1 (up to 430Mpc). This selection restricts our 2MRS sample to 43480 galaxies. For our analysis, we complemented the main 2MRS sample with two other sources. From the CosmicFlows-2 survey that contains 8198 galaxies with redshift-independent distance estimates (CF2; Tully et al., 2013, Cat. J/AJ/146/86), we added 3627 (of these, 2799 galaxies do not have a measured Ks magnitude). In addition, we made use of the 2M++ catalogue Lavaux & Hudson (2011, Cat. J/MNRAS/416/2840), which combines elements from the 2MRS, the 6DF Galaxy Survey (Jones et al. 2009MNRAS.399..683J, Cat. VII/259), and the Sloan Digital Sky Survey (York et al., 2000AJ....120.1579Y). Of the 64745 galaxies of the 2M++, we added 31271 galaxies down to Ks<12.54, which extends the sample well beyond the 2MRS magnitude limit. Our final galaxy dataset includes 78378 galaxies. (4 data files).

  5. Midlife Crises in Dwarf Galaxies in the NGC 5353/4 Group

    NASA Astrophysics Data System (ADS)

    Tully, R. Brent; Trentham, Neil

    2008-04-01

    This third paper in a series about the dwarf galaxy populations in groups within the Local Supercluster concerns the intermediate mass (2.1 × 1013 M sun) NGC 5353/4 Group with a core dominated by S0 systems and a periphery of mostly spiral systems. Dwarf galaxies are strongly concentrated toward the core. The mass-to-light ratio M/LR = 105 M sun/L sun is a factor of 3 lower than for the two groups studied earlier in the series. The properties of the group suggest it is much less dynamically evolved than those two groups of early-type galaxies. By comparison, the NGC 5353/4 Group lacks superluminous systems but has a large fraction of intermediate-luminosity galaxies; or equivalently, a luminosity function with a flatter faint-end slope. The luminosity function for the NGC 5353/4 Group should steepen as the intermediate-luminosity galaxies merge. Evidence for the ongoing collapse of the group is provided by the unusually large incidence of star-formation activity in small galaxies with early morphological types. The pattern in the distribution of galaxies with activity suggests a succession of infall events. Residual gas in dwarfs that enter the group is used up in sputtering events. The resolution of midlife crises is exhaustion.

  6. An infrared imaging study of galaxies in the local universe

    NASA Technical Reports Server (NTRS)

    Grauer, Albert D.; Rieke, Marcia J.; Mcleod, Kim K.

    1995-01-01

    This poster was a preliminary report on a survey of galaxies in the local universe at J and K using a NICMOS3 256 x 256 infrared photometric camera attached to the 61 inch telescope on Mt. Bigelow. Deep images are being obtained for a representative sample of galaxies in the Uppsala General Catalogue. Structural and color parameters are determined for a wide variety of galactic types. These data should prove to be valuable in characterizing stellar populations within disks and bulges, determining if IR-active galaxies have unusual global as well as- nuclear properties, and understanding the effects of evolution and redshift dimming in distant galaxies.

  7. The luminosity function of galaxies in compact groups

    NASA Technical Reports Server (NTRS)

    Ribeiro, A. L. B.; De Carvalho, R. R.; Zepf, S. E.

    1994-01-01

    We use counts of faint galaxies in the regions of compact groups to extend the study of the luminosity function of galaxies in compact groups to absolute magnitudes as faint as M(sub B) = -14.5 + 5 log h. We find a slope of the faint end of the luminosity function of approximately alpha = -0.8, with a formal uncertainty of 0.15. This slope is not significantly different from that found for galaxies in other environments. Our results do not support previous suggestions of a dramatic underabundance of intrinsically faint galaxies in compact groups, which were based on extrapolations from fits at brighter magnitudes. The normal faint-end slope of the luminosity function in compact groups is in agreement with previous evidence that most galaxies in compact groups have not been dramatically affected by recent merging.

  8. Automatic Detection of Galaxy Groups by Probabilistic Hough Transform

    NASA Astrophysics Data System (ADS)

    Ibrahem, R. T.; Tino, P.; Pearson, R. J.; Ponman, T. J.; Babul, A.

    2015-12-01

    Galaxy groups play a significant role in explaining the evolution of the universe. Given the amounts of available survey data, automated discovery of galaxy groups is of utmost interest. We introduce a novel methodology, based on probabilistic Hough transform, for finding galaxy groups embedded in a rich background. The model takes advantage of a typical signature pattern of galaxy groups known as "fingers-of-God". It also allows us to include prior astrophysical knowledge as an inherent part of the method. The proposed method is first tested in large scale controlled experiments with 2-D patterns and then verified on 3-D realistic mock data (comparing with the well-known friends-of-friends method used in astrophysics). The experiments suggest that our methodology is a promising new candidate for galaxy group finders developed within a machine learning framework.

  9. Dwarf galaxies in the dynamically evolved NGC 1407 Group

    NASA Astrophysics Data System (ADS)

    Trentham, Neil; Tully, R. Brent; Mahdavi, Andisheh

    2006-07-01

    The NGC 1407 Group stands out among nearby structures by its properties that suggest it is massive and evolved. It shares properties with entities that have been called fossil groups: the 1.4m differential between the dominant elliptical galaxy and the second brightest galaxy comes close to satisfying the definition that has been used to define the fossil class. There are few intermediate-luminosity galaxies, but a large number of dwarfs in the group. We estimate there are 250 group members to the depth of our survey. The slope of the faint end of the luminosity function (reaching MR = -12) is α = -1.35. Velocities for 35 galaxies demonstrate that this group with one dominant galaxy has a mass of 7 × 1013Msolar and M/LR = 340Msolar/Lsolar. Two galaxies in close proximity to NGC 1407 have very large blueshifts. The most notable is the second brightest galaxy, NGC 1400, with a velocity of -1072 km s-1 with respect to the group mean. We report the detection of X-ray emission from this galaxy and from the group.

  10. Exploring X-Ray Binary Populations in Compact Group Galaxies with Chandra

    NASA Astrophysics Data System (ADS)

    Tzanavaris, P.; Hornschemeier, A. E.; Gallagher, S. C.; Lenkić, L.; Desjardins, T. D.; Walker, L. M.; Johnson, K. E.; Mulchaey, J. S.

    2016-02-01

    We obtain total galaxy X-ray luminosities, LX, originating from individually detected point sources in a sample of 47 galaxies in 15 compact groups of galaxies (CGs). For the great majority of our galaxies, we find that the detected point sources most likely are local to their associated galaxy, and are thus extragalactic X-ray binaries (XRBs) or nuclear active galactic nuclei (AGNs). For spiral and irregular galaxies, we find that, after accounting for AGNs and nuclear sources, most CG galaxies are either within the ±1σ scatter of the Mineo et al. LX-star formation rate (SFR) correlation or have higher LX than predicted by this correlation for their SFR. We discuss how these “excesses” may be due to low metallicities and high interaction levels. For elliptical and S0 galaxies, after accounting for AGNs and nuclear sources, most CG galaxies are consistent with the Boroson et al. LX-stellar mass correlation for low-mass XRBs, with larger scatter, likely due to residual effects such as AGN activity or hot gas. Assuming non-nuclear sources are low- or high-mass XRBs, we use appropriate XRB luminosity functions to estimate the probability that stochastic effects can lead to such extreme LX values. We find that, although stochastic effects do not in general appear to be important, for some galaxies there is a significant probability that high LX values can be observed due to strong XRB variability.

  11. Exploring X-Ray Binary Populations in Compact Group Galaxies With Chandra

    NASA Technical Reports Server (NTRS)

    Tzanavaris, P.; Hornschemeier, A. E..; Gallagher, S. C.; Lenkic, L.; Desjardins, T. D.; Walker, L. M.; Johnson, K. E.; Mulchaey, J. S.

    2016-01-01

    We obtain total galaxy X-ray luminosities, LX, originating from individually detected point sources in a sample of 47 galaxies in 15 compact groups of galaxies (CGs). For the great majority of our galaxies, we find that the detected point sources most likely are local to their associated galaxy, and are thus extragalactic X-ray binaries (XRBs) or nuclear active galactic nuclei (AGNs). For spiral and irregular galaxies, we find that, after accounting for AGNs and nuclear sources, most CG galaxies are either within the +/-1s scatter of the Mineo et al. LX-star formation rate (SFR) correlation or have higher LX than predicted by this correlation for their SFR. We discuss how these "excesses" may be due to low metallicities and high interaction levels. For elliptical and S0 galaxies, after accounting for AGNs and nuclear sources, most CG galaxies are consistent with the Boroson et al. LX-stellar mass correlation for low-mass XRBs, with larger scatter, likely due to residual effects such as AGN activity or hot gas. Assuming non-nuclear sources are low- or high-mass XRBs, we use appropriate XRB luminosity functions to estimate the probability that stochastic effects can lead to such extreme LX values. We find that, although stochastic effects do not in general appear to be important, for some galaxies there is a significant probability that high LX values can be observed due to strong XRB variability.

  12. Exploring X-Ray Binary Populations in Compact Group Galaxies With Chandra

    NASA Technical Reports Server (NTRS)

    Tzanavaris, P.; Hornschemeier, A. E..; Gallagher, S. C.; Lenkic, L.; Desjardins, T. D.; Walker, L. M.; Johnson, K. E.; Mulchaey, J. S.

    2016-01-01

    We obtain total galaxy X-ray luminosities, LX, originating from individually detected point sources in a sample of 47 galaxies in 15 compact groups of galaxies (CGs). For the great majority of our galaxies, we find that the detected point sources most likely are local to their associated galaxy, and are thus extragalactic X-ray binaries (XRBs) or nuclear active galactic nuclei (AGNs). For spiral and irregular galaxies, we find that, after accounting for AGNs and nuclear sources, most CG galaxies are either within the +/-1s scatter of the Mineo et al. LX-star formation rate (SFR) correlation or have higher LX than predicted by this correlation for their SFR. We discuss how these "excesses" may be due to low metallicities and high interaction levels. For elliptical and S0 galaxies, after accounting for AGNs and nuclear sources, most CG galaxies are consistent with the Boroson et al. LX-stellar mass correlation for low-mass XRBs, with larger scatter, likely due to residual effects such as AGN activity or hot gas. Assuming non-nuclear sources are low- or high-mass XRBs, we use appropriate XRB luminosity functions to estimate the probability that stochastic effects can lead to such extreme LX values. We find that, although stochastic effects do not in general appear to be important, for some galaxies there is a significant probability that high LX values can be observed due to strong XRB variability.

  13. Late-type Galaxies in the Local Universe

    NASA Astrophysics Data System (ADS)

    Courteau, Stephane

    2015-08-01

    The interpretation of galaxy properties and galaxy evolution at all wavelengths and redshifts requires a uniform local foil upon which most scaling relations or evolutionary trends may be compared. We review those basic properties of nearby late-type galaxies such as colour gradients, stellar populations, dynamical and surface density profiles, and their intrinsic biases. Some robust correlations between structural parameters like the luminosity, circular speed, and size show rather small scatter, hinting at well-regulated galaxy formation processes. However, a major challenge to understanding these scaling relations, and ultimately galaxy formation and evolution, is the elusive interplay between visible and dark matter. The latest derivations of galaxy scaling relations and their link with modern cosmological models are briefly discussed.

  14. Galaxy groups in the low-redshift Universe

    NASA Astrophysics Data System (ADS)

    Lim, S. H.; Mo, H. J.; Lu, Yi; Wang, Huiyuan; Yang, Xiaohu

    2017-09-01

    We apply a halo-based group finder to four large redshift surveys, the 2MRS (Two Micron All-Sky Redshift Survey), 6dFGS (Six-degree Field Galaxy Survey), SDSS (Sloan Digital Sky Survey) and 2dFGRS (Two-degree Field Galaxy Redshift Survey), to construct group catalogues in the low-redshift Universe. The group finder is based on that of Yang et al. but with an improved halo mass assignment so that it can be applied uniformly to various redshift surveys of galaxies. Halo masses are assigned to groups according to proxies based on the stellar mass/luminosity of member galaxies. The performances of the group finder in grouping galaxies according to common haloes and in halo mass assignments are tested using realistic mock samples constructed from hydrodynamical simulations and empirical models of galaxy occupation in dark matter haloes. Our group finder finds ∼94 per cent of the correct true member galaxies for 90-95 per cent of the groups in the mock samples; the halo masses assigned by the group finder are un-biased with respect to the true halo masses, and have a typical uncertainty of ∼0.2 dex. The properties of group catalogues constructed from the observational samples are described and compared with other similar catalogues in the literature.

  15. Kinematics of compact groups and morphologies of the member galaxies

    NASA Technical Reports Server (NTRS)

    Mendesdeoliveira, Claudia; Hickson, Paul

    1993-01-01

    We present the results of a kinematical and morphological study of galaxies in the Hickson compact groups. The redshift survey of 457 galaxies has been completed. The great majority of the galaxies have velocities within about 1000 km/s(exp -1) of the median velocity of the group. The velocities of the groups range from 1380 to 41731 km/s(exp -1) with a median of 8889 km/s(exp -1), corresponding to a median distance of 89 h(exp -1)Mpc. With the addition of the radial velocity selection criterion, a relatively large sample of physically dense compact groups was defined. The nature of the velocity dispersion-morphology relation (Hickson, Kindl and Huchra 1989, hereafter HKH) is investigated. This is the tendency of groups with high velocity dispersions to contain fewer late type galaxies. We find that this strong correlation is not due to any sample selection effects. The morphology concordance in compact groups (HKH), which is the trend for galaxies in a group to have similar morphological types, can be fully explained by the velocity dispersion-morphology correlation. A significant correlation is found between crossing time and the fraction of gas-rich galaxies in the groups. Groups with short crossing times typically contain fewer late-type galaxies. This may be evidence that significant dynamical evolution has occurred in these groups.

  16. The isolated dSph galaxy KKs3 in the local Hubble flow

    NASA Astrophysics Data System (ADS)

    Karachentsev, I. D.; Kniazev, A. Yu.; Sharina, M. E.

    2015-09-01

    We present SALT spectroscopy of a globular cluster in the center of the nearby isolated dSph galaxy KKs3 situated at a distance of 2.12 Mpc. Its heliocentric radial velocity is 316 ± 7 km s-1 that corresponds to V_LG = 112 km s-1 in the Local Group (LG) reference frame. We use its distance and velocity along with the data on other 35 field galaxies in the proximity of the LG to trace the local Hubble flow. The following basic properties of the local field galaxies are briefly discusse: morphology, absolute magnitudes, average surface brightnesses, specific star formation rates, and hydrogen mass-to-stellar mass ratios. Surprisingly, the sample of the neighboring isolated galaxies displays no signs of compression under the influence of the expanding Local Void.

  17. Isolated elliptical galaxies in the local Universe

    NASA Astrophysics Data System (ADS)

    Lacerna, I.; Hernández-Toledo, H. M.; Avila-Reese, V.; Abonza-Sane, J.; del Olmo, A.

    2016-04-01

    Context. We have studied a sample of 89 very isolated, elliptical galaxies at z < 0.08 and compared their properties with elliptical galaxies located in a high-density environment such as the Coma supercluster. Aims: Our aim is to probe the role of environment on the morphological transformation and quenching of elliptical galaxies as a function of mass. In addition, we elucidate the nature of a particular set of blue and star-forming isolated ellipticals identified here. Methods: We studied physical properties of ellipticals, such as color, specific star formation rate, galaxy size, and stellar age, as a function of stellar mass and environment based on SDSS data. We analyzed the blue and star-forming isolated ellipticals in more detail, through photometric characterization using GALFIT, and infer their star formation history using STARLIGHT. Results: Among the isolated ellipticals ≈20% are blue, ≲8% are star forming, and ≈10% are recently quenched, while among the Coma ellipticals ≈8% are blue and just ≲1% are star forming or recently quenched. There are four isolated galaxies (≈4.5%) that are blue and star forming at the same time. These galaxies, with masses between 7 × 109 and 2 × 1010 h-2 M⊙, are also the youngest galaxies with light-weighted stellar ages ≲1 Gyr and exhibit bluer colors toward the galaxy center. Around 30-60% of their present-day luminosity, but only <5% of their present-day mass, is due to star formation in the last 1 Gyr. Conclusions: The processes of morphological transformation and quenching seem to be in general independent of environment since most of elliptical galaxies are "red and dead", although the transition to the red sequence should be faster for isolated ellipticals. In some cases, the isolated environment seems to propitiate the rejuvenation of ellipticals by recent (<1 Gyr) cold gas accretion.

  18. Supermassive black holes in local galaxies

    NASA Astrophysics Data System (ADS)

    Bender, Ralf; Saglia, Roberto P.

    2007-01-01

    Over the past decade we have learned that probably all ellipticals and bulges of galaxies contain central supermassive black holes (SMBH). SMBH masses correlate well with the luminosities, and in turn the stellar masses of the bulges harboring them, with about 0.15% of the bulge mass being found in the SMBH. Pure disk galaxies, on the other hand, do not, in general, seem to contain SMBHs. Here we review the best cases for SMBH detection in galaxies, discuss methods and associated uncertainties, summarize correlations between SMBH masses and host galaxy properties, and finally address possible future developments. To cite this article: R. Bender, R.P. Saglia, C. R. Physique 8 (2007).

  19. Galaxy groups in the 2dF Galaxy Redshift Survey: luminosity and mass statistics

    NASA Astrophysics Data System (ADS)

    Martínez, H. J.; Zandivarez, A.; Merchán, M. E.; Domínguez, M. J. L.

    2002-12-01

    Several statistics are applied to groups and galaxies in groups in the 2° Field Galaxy Redshift Survey. First, we estimate the luminosity functions for different subsets of galaxies in groups. The results are well fitted by a Schechter function with parameters M*- 5 log (h) =-19.90 +/- 0.03 and α=-1.13 +/- 0.02 for all galaxies in groups, which is quite consistent with the results of Norberg et al. for field galaxies. When considering the four different spectral types defined by Madgwick et al. we find that the characteristic magnitude is typically brighter than in the field. We also observe a steeper value, α=-0.76 +/- 0.03, of the faint end slope for low star-forming galaxies when compared with the corresponding field value. This steepening is more conspicuous, α=-1.10 +/- 0.06, for those galaxies in more massive groups than that obtained in the lower-mass subset, . Secondly, we compute group total luminosities using the prescriptions of Moore, Frenk & White. We define a flux-limited group sample using a new statistical tool developed by Rauzy. The resulting group sample is used to determine the group luminosity function and we find a good agreement with previous determinations and semi-analytical models. Finally, the group mass function for the flux-limited sample is derived. An excellent agreement is obtained when comparing our determination with analytical predictions over two orders of magnitude in mass.

  20. Groups of galaxies in the ROSAT north ecliptic pole survey

    NASA Technical Reports Server (NTRS)

    Henry, J. Patrick

    1994-01-01

    The X-ray properties of groups of galaxies are presented. Their distribution of luminosity and temperature appears to be associated with the extrapolation of these distributions from rich clusters of galaxies. The properties of the ensemble of groups of galaxies are almost totally unknown. Only a few X-ray observations of groups that were selected by optical methods were published so far. A sample of eight groups with 'z' inferior to 0.04, of which three have 'z' inferior to 0.03 was investigated. The temperature and the luminosity functions at one point were determined.

  1. Stellar populations in local star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Perez-Gonzalez, P. G.

    2003-11-01

    The main goal of this thesis work is studying the main properties of the stellar populations embedded in a statistically complete sample of local active star-forming galaxies: the Universidad Complutense de Madrid (UCM) Survey of emission-line galaxies. This sample contains 191 local star-forming galaxies at an average redshift of 0.026. The survey was carried out using an objective-prism technique centered at the wavelength of the Halpha nebular emission-line (a common tracer of recent star formation). (continues)

  2. THE RELATION BETWEEN GALAXY MORPHOLOGY AND ENVIRONMENT IN THE LOCAL UNIVERSE: AN RC3-SDSS PICTURE

    SciTech Connect

    Wilman, David J.; Erwin, Peter

    2012-02-20

    We present results of an analysis of the local (z {approx} 0) morphology-environment relation for 911 bright (M{sub B} < -19) galaxies, based on matching classical RC3 morphologies with the Sloan Digital Sky Survey based group catalog of Yang et al., which includes halo mass estimates. This allows us to study how the relative fractions of spirals, lenticulars, and ellipticals depend on halo mass over a range of 10{sup 11.7}-10{sup 14.8} h{sup -1} M{sub Sun }, from isolated single-galaxy halos to massive groups and low-mass clusters. We pay particular attention to how morphology relates to central versus satellite status (where 'central' galaxies are the most massive within their halo). The fraction of galaxies which are elliptical is a strong function of stellar mass; it is also a strong function of halo mass, but only for central galaxies. We interpret this as evidence for a scenario where elliptical galaxies are always formed, probably via mergers, as central galaxies within their halos, with satellite ellipticals being previously central galaxies accreted onto a larger halo. The overall fraction of galaxies which are S0 increases strongly with halo mass, from {approx}10% to {approx}70%. Here, too, we find striking differences between the central and satellite populations. 20% {+-} 2% of central galaxies with stellar masses M{sub *} > 10{sup 10.5} M{sub Sun} are S0 regardless of halo mass, but satellite S0 galaxies are only found in massive (>10{sup 13} h{sup -1} M{sub Sun }) halos, where they are 69% {+-} 4% of the M{sub *} > 10{sup 10.5} M{sub Sun} satellite population. This suggests two channels for forming S0 galaxies: one which operates for central galaxies and another which transforms lower-mass (M{sub *} {approx}< 10{sup 11} M{sub Sun }) accreted spirals into satellite S0 galaxies in massive halos. Analysis of finer morphological structure (bars and rings in disk galaxies) shows some trends with stellar mass, but none with halo mass; this is consistent

  3. The Relation between Galaxy Morphology and Environment in the Local Universe: An RC3-SDSS Picture

    NASA Astrophysics Data System (ADS)

    Wilman, David J.; Erwin, Peter

    2012-02-01

    We present results of an analysis of the local (z ~ 0) morphology-environment relation for 911 bright (MB < -19) galaxies, based on matching classical RC3 morphologies with the Sloan Digital Sky Survey based group catalog of Yang et al., which includes halo mass estimates. This allows us to study how the relative fractions of spirals, lenticulars, and ellipticals depend on halo mass over a range of 1011.7-1014.8 h -1 M ⊙, from isolated single-galaxy halos to massive groups and low-mass clusters. We pay particular attention to how morphology relates to central versus satellite status (where "central" galaxies are the most massive within their halo). The fraction of galaxies which are elliptical is a strong function of stellar mass; it is also a strong function of halo mass, but only for central galaxies. We interpret this as evidence for a scenario where elliptical galaxies are always formed, probably via mergers, as central galaxies within their halos, with satellite ellipticals being previously central galaxies accreted onto a larger halo. The overall fraction of galaxies which are S0 increases strongly with halo mass, from ~10% to ~70%. Here, too, we find striking differences between the central and satellite populations. 20% ± 2% of central galaxies with stellar masses M * > 1010.5 M ⊙ are S0 regardless of halo mass, but satellite S0 galaxies are only found in massive (>1013 h -1 M ⊙) halos, where they are 69% ± 4% of the M * > 1010.5 M ⊙ satellite population. This suggests two channels for forming S0 galaxies: one which operates for central galaxies and another which transforms lower-mass ( M * <~ 1011 M ⊙) accreted spirals into satellite S0 galaxies in massive halos. Analysis of finer morphological structure (bars and rings in disk galaxies) shows some trends with stellar mass, but none with halo mass; this is consistent with other recent studies which indicate that bars are not strongly influenced by galaxy environment. Radio sources in high

  4. EVOLUTION OF GROUP GALAXIES FROM THE FIRST RED-SEQUENCE CLUSTER SURVEY

    SciTech Connect

    Li, I. H.; Yee, H. K. C.; Hsieh, B. C.; Gladders, M. E-mail: hyee@astro.utoronto.ca E-mail: gladders@oddjob.uchicago.edu

    2012-04-20

    We study the evolution of the red-galaxy fraction (f{sub red}) in 905 galaxy groups with 0.15 {<=} z < 0.52. The galaxy groups are identified by the 'probability friends-of-friends' algorithm from the first Red-Sequence Cluster Survey (RCS1) photometric-redshift sample. There is a high degree of uniformity in the properties of the red sequence of the group galaxies, indicating that the luminous red-sequence galaxies in the groups are already in place by z {approx} 0.5 and that they have a formation epoch of z {approx}> 2. In general, groups at lower redshifts exhibit larger f{sub red} than those at higher redshifts, showing a group Butcher-Oemler effect. We investigate the evolution of f{sub red} by examining its dependence on four parameters, one of which can be classified as intrinsic and three of which can be classified as environmental: galaxy stellar mass (M{sub *}), total group stellar mass (M{sub *,grp}, a proxy for group halo mass), normalized group-centric radius (r{sub grp}), and local galaxy density ({Sigma}{sub 5}). We find that M{sub *} is the dominant parameter such that there is a strong correlation between f{sub red} and galaxy stellar mass. Furthermore, the dependence of f{sub red} on the environmental parameters is also a strong function of M{sub *}. Massive galaxies (M{sub *} {approx}> 10{sup 11} M{sub Sun }) show little dependence of f{sub red} on r{sub grp}, M{sub *,grp}, and {Sigma}{sub 5} over the redshift range. The dependence of f{sub red} on these parameters is primarily seen for galaxies with lower masses, especially for M{sub *} {approx}< 10{sup 10.6} M{sub Sun }. We observe an apparent 'group down-sizing' effect, in that galaxies in lower-mass halos, after controlling for galaxy stellar mass, have lower f{sub red}. We find a dependence of f{sub red} on both r{sub grp} and {Sigma}{sub 5} after the other parameters are controlled. At a fixed r{sub grp}, there is a significant dependence of f{sub red} on {Sigma}{sub 5}, while r{sub grp

  5. The M 101 group complex: new dwarf galaxy candidates and spatial structure

    NASA Astrophysics Data System (ADS)

    Müller, Oliver; Scalera, Roberto; Binggeli, Bruno; Jerjen, Helmut

    2017-06-01

    Context. The fine details of the large-scale structure in the local Universe provide important empirical benchmarks for testing cosmological models of structure formation. Dwarf galaxies are key object for such studies. Aims: Our aim was to enlarge the sample of known dwarf galaxies in the local Universe. We performed a search for faint unresolved low-surface-brightness dwarf galaxies in the M 101 group complex, including the region around the major spiral galaxies M 101, M 51, and M 63 lying at a distance of 7.0, 8.6, and 9.0 Mpc, respectively. The new dwarf galaxy sample can be used in a first step to test for significant substructure in the 2D distribution and in a second step to study the spatial distribution of the galaxy complex. Methods: Using filtering algorithms we surveyed 330 square degrees of imaging data obtained from the Sloan Digital Sky Survey. The images were visually inspected. The spatial distribution of known galaxies and candidates was analyzed and the system transformed into a M 101 eigenframe using the geometrical alignment of the group. Results: We discovered 15 new dwarf galaxies and carried out surface photometry in the g and r bands. The similarity of the photometric properties of these dwarfs to those of Local Group dwarfs suggest membership to the M 101 group complex. The sky distribution of the candidates follows the thin planar structure outlined by the known members of the three subgroups. The 3 Mpc long filamentary structure has a rms thickness of 67 kpc. The planar structure of the embedded M 101 subgroup is even thinner, with rms = 46 kpc. The formation of this structure might be due to the expansion of the bordering Local Void. Other implications are discussed as well. Conclusions: We show the viability of SDSS data to extend the sample of dwarfs in the local Universe and test cosmological models on small scales.

  6. Are Fossil Groups Early-forming Galaxy Systems?

    NASA Astrophysics Data System (ADS)

    Kundert, A.; D'Onghia, E.; Aguerri, J. A. L.

    2017-08-01

    Using the Illustris cosmological simulation, we investigate the origin of fossil groups in the {M}200={10}13{--}{10}13.5 {M}⊙ {h}-1 mass regime. We examine the formation of the two primary features of fossil groups: the large magnitude gap between their two brightest galaxies and their exceptionally luminous brightest group galaxy (BGG). For fossils and nonfossils identified at z = 0, we find no difference in their halo mass assembly histories at early times, departing from previous studies. However, we do find a significant difference in the recent accretion history of fossil and nonfossil halos; in particular, fossil groups show a lack of recent accretion and have in majority assembled 80% of their {M}200(z=0) mass before z˜ 0.4. For fossils, massive satellite galaxies accreted during this period have enough time to merge with the BGG by the present day, producing a more massive central galaxy. In addition, the lack of recent group accretion prevents replenishment of the bright satellite population, allowing for a large magnitude gap to develop within the past few Gyr. We thus find that the origin of the magnitude gap and overmassive BGG of fossils in Illustris depends on the recent accretion history of the groups and merger history of the BGGs after their collapse at z˜ 1. This indicates that selecting galaxy groups by their magnitude gap does not guarantee obtaining either early-forming galaxy systems or undisturbed central galaxies.

  7. The Connection between Galaxies and Dark Matter Structures in the Local Universe

    SciTech Connect

    Reddick, Rachel M.; Wechsler, Risa H.; Tinker, Jeremy L.; Behroozi, Peter S.

    2012-07-11

    We provide new constraints on the connection between galaxies in the local Universe, identified by the Sloan Digital Sky Survey (SDSS), and dark matter halos and their constituent substructures in the {Lambda}CDM model using WMAP7 cosmological parameters. Predictions for the abundance and clustering properties of dark matter halos, and the relationship between dark matter hosts and substructures, are based on a high-resolution cosmological simulation, the Bolshoi simulation. We associate galaxies with dark matter halos and subhalos using subhalo abundance matching, and perform a comprehensive analysis which investigates the underlying assumptions of this technique including (a) which halo property is most closely associated with galaxy stellar masses and luminosities, (b) how much scatter is in this relationship, and (c) how much subhalos can be stripped before their galaxies are destroyed. The models are jointly constrained by new measurements of the projected two-point galaxy clustering and the observed conditional stellar mass function of galaxies in groups. We find that an abundance matching model that associates galaxies with the peak circular velocity of their halos is in good agreement with the data, when scatter of 0.20 {+-} 0.03 dex in stellar mass at a given peak velocity is included. This confirms the theoretical expectation that the stellar mass of galaxies is tightly correlated with the potential wells of their dark matter halos before they are impacted by larger structures. The data put tight constraints on the satellite fraction of galaxies as a function of galaxy stellar mass and on the scatter between halo and galaxy properties, and rule out several alternative abundance matching models that have been considered. This will yield important constraints for galaxy formation models, and also provides encouraging indications that the galaxy - halo connection can be modeled with sufficient fidelity for future precision studies of the dark Universe.

  8. The properties of infrared galaxies in the local universe

    NASA Technical Reports Server (NTRS)

    Soifer, B. T.; Neugebauer, G.

    1991-01-01

    The 60-micron selected IRAS Bright Galaxy Sample is used as a starting point to derive additional complete flux-limited samples of extragalactic objects at 12, 25, and 100 microns. With these complete samples the luminosity functions at all IRAS wavelengths are derived for the local universe. These luminosity functions are used to determine the infrared emission of the local universe. The maximum in the energy output of galaxies occurs at 100 microns. The infrared emission of galaxies at 12 and 25 micron represents about 30 percent of the total infrared luminosity in the local universe. The mean infrared colors of infrared selected galaxies vary systematically with infrared luminosity; the ratio S sub nu (60 microns)/S sub nu(100 microns) increases and S sub nu(12 microns)/S sub nu(25 microns) decreases with increasing infrared luminosity.

  9. The 2dF Galaxy Redshift Survey: the clustering of galaxy groups

    NASA Astrophysics Data System (ADS)

    Padilla, Nelson D.; Baugh, Carlton M.; Eke, Vincent R.; Norberg, Peder; Cole, Shaun; Frenk, Carlos S.; Croton, Darren J.; Baldry, Ivan K.; Bland-Hawthorn, Joss; Bridges, Terry; Cannon, Russell; Colless, Matthew; Collins, Chris; Couch, Warrick; Dalton, Gavin; De Propris, Roberto; Driver, Simon P.; Efstathiou, George; Ellis, Richard S.; Glazebrook, Karl; Jackson, Carole; Lahav, Ofer; Lewis, Ian; Lumsden, Stuart; Maddox, Steve; Madgwick, Darren; Peacock, John A.; Peterson, Bruce A.; Sutherland, Will; Taylor, Keith

    2004-07-01

    We measure the clustering of galaxy groups in the 2dFGRS Percolation-Inferred Galaxy Group (2PIGG) catalogue. The 2PIGG sample has 28 877 groups with at least two members. The clustering amplitude of the full 2PIGG catalogue is weaker than that of 2dFGRS galaxies, in agreement with theoretical predictions. We have subdivided the 2PIGG catalogue into samples that span a factor of ~ 25 in median total luminosity. Our correlation function measurements span an unprecedented range of clustering strengths, connecting the regimes probed by groups fainter than L* galaxies and rich clusters. There is a steady increase in clustering strength with group luminosity; the most luminous groups are 10 times more strongly clustered than the full 2PIGG catalogue. We demonstrate that the 2PIGG results are in very good agreement with the clustering of groups expected in the ΛCDM model.

  10. Scaling relations in early-type galaxies belonging to groups

    NASA Astrophysics Data System (ADS)

    Khosroshahi, Habib G.; Raychaudhury, Somak; Ponman, Trevor J.; Miles, Trevor A.; Forbes, Duncan A.

    2004-04-01

    We present a photometric analysis of a large sample of early-type galaxies in 16 nearby groups, imaged with the Wide-Field Camera on the Isaac Newton Telescope. Using a two-dimensional surface brightness decomposition routine, we fit Sersic (r1/n) and exponential models to their bulge and disc components, respectively. Dividing the galaxies into three subsamples according to the X-ray luminosities of their parent groups, we compare their photometric properties. Galaxies in X-ray luminous groups tend to be larger and more luminous than those in groups with undetected or low X-ray luminosities, but no significant differences in n are seen. Both normal and dwarf elliptical galaxies in the central regions of groups are found to have cuspier profiles than their counterparts in group outskirts. Structural differences between dwarf and normal elliptical galaxies are apparent in terms of an offset between their `photometric planes' in the space of n, re and μ0. Dwarf ellipticals are found to populate a surface, with remarkably low scatter, in this space with significant curvature, somewhat similar to the surfaces of constant entropy proposed by Màrquez et al. Normal ellipticals are offset from this distribution in a direction of higher specific entropy. This may indicate that the two populations are distinguished by the action of galaxy merging on larger galaxies.

  11. Probing the intra-group medium of a z = 0.28 galaxy group

    NASA Astrophysics Data System (ADS)

    Bielby, R.; Crighton, N. H. M.; Fumagalli, M.; Morris, S. L.; Stott, J. P.; Tejos, N.; Cantalupo, S.

    2017-06-01

    We present new MUSE observations of a galaxy group probed by a background quasar. The quasar sightline passes between multiple z = 0.28 galaxies, whilst showing at the same redshift low-ionized metal line species, including Ca ii, Mg i, Mg ii and Fe ii. Based on the galaxy redshifts measured from the MUSE data, we estimate the galaxies to be part of a small galaxy group with a halo mass of ≈6 × 1012 M⊙. We use the MUSE data to reveal the two-dimensional dynamical properties of the gas and stars in the group galaxies, and relate these to the absorber kinematics. With these data, we consider a number of scenarios for the nature of the gas probed by the sightline absorbers: a corotating gas halo associated with a single galaxy within the group; outflowing material from a single group member powered by recent star-formation; and cool dense gas associated with an intra-group medium. We find that the dynamics, galaxy impact parameters, star formation rates and the absorber strength suggest that the cool gas cannot be clearly associated with any single galaxy within the group. Instead, we find that the observations are consistent with a superposition of cool gas clouds originating with the observed galaxies as they fall into the group potential, and are now likely in the process of forming the intra-group medium.

  12. Distribution of Satellite Galaxies in High-redshift Groups

    NASA Astrophysics Data System (ADS)

    Wang, Yougang; Park, Changbom; Hwang, Ho Seong; Chen, Xuelei

    2010-08-01

    We use galaxy groups at redshifts between 0.4 and 1.0 selected from the Great Observatories Origins Deep Survey to study the color-morphological properties of satellite galaxies and investigate possible alignment between the distribution of the satellites and the orientation of their central galaxy. We confirm the bimodal color and morphological-type distribution for satellite galaxies at this redshift range: the red and blue classes correspond to the early and late morphological types, respectively, and the early-type satellites are on average brighter than the late-type ones. Furthermore, there is a morphological conformity between the central and satellite galaxies: the fraction of early-type satellites in groups with an early-type central is higher than those with a late-type central galaxy. This effect is stronger at smaller separations from the central galaxy. We find a marginally significant signal of alignment between the major axis of the early-type central galaxy and its satellite system, while for the late-type centrals no significant alignment signal is found. We discuss the alignment signal in the context of shape evolution of groups.

  13. Likelihood analysis of the Local Group acceleration

    NASA Astrophysics Data System (ADS)

    Schmoldt, I.; Branchini, E.; Teodoro, L.; Efstathiou, G.; Frenk, C. S.; Keeble, O.; McMahon, R.; Maddox, S.; Oliver, S.; Rowan-Robinson, M.; Saunders, W.; Sutherland, W.; Tadros, H.; White, S. D. M.

    1999-04-01

    We compute the acceleration of the Local Group using 11 206 IRAS galaxies from the recently completed all-sky PSCz redshift survey. Measuring the acceleration vector in redshift space generates systematic uncertainties caused by the redshift-space distortions in the density field. We therefore assign galaxies to their real-space positions by adopting a non-parametric model for the velocity field that relies solely on the linear gravitational instability (GI) and linear biasing hypotheses. Remaining systematic contributions to the measured acceleration vector are corrected for by using PSCz mock catalogues from N-body experiments. The resulting acceleration vector points ~15 away from the CMB dipole apex, with a remarkable alignment between small- and large-scale contributions. A considerable fraction (~65 per cent) of the measured acceleration is generated within 40 h^-1 Mpc, with a non-negligible contribution from scales between 90 and 140 h^-1 Mpc, after which the acceleration amplitude seems to have converged. The local group acceleration from PSCz appears to be consistent with the one determined from the IRAS 1.2-Jy galaxy catalogue once the different contributions from shot noise have been taken into account. The results are consistent with the gravitational instability hypothesis and do not indicate any strong deviations from the linear biasing relation on large scales. A maximum-likelihood analysis of the cumulative PSCz dipole is performed within a radius of 150 h^-1 Mpc, in which we account for non-linear effects, shot noise and finite sample size. The aim is to constrain the beta=Omega^0.6/b parameter and the power spectrum of density fluctuations. We obtain beta=0.70^+0.35_-0.2 at 1sigma confidence level. The likelihood analysis is not very sensitive to the shape of the power spectrum, because of the rise in the amplitude of the dipole beyond 40 h^-1 Mpc and the increase in shot noise on large scales. There is, however, a weak indication that within the

  14. The DEEP2 Galaxy Redshift Survey: The Voronoi-Delaunay Method Catalog of Galaxy Groups

    SciTech Connect

    Gerke, Brian F.; Newman, Jeffrey A.; Davis, Marc; Marinoni, Christian; Yan, Renbin; Coil, Alison L.; Conroy, Charlie; Cooper, Michael C.; Faber, S.M.; Finkbeiner, Douglas P.; Guhathakurta, Puragra; Kaiser, Nick; Koo, David C.; Phillips, Andrew C.; Weiner, Benjamin J.; /Maryland U.

    2012-02-14

    We use the first 25% of the DEEP2 Galaxy Redshift Survey spectroscopic data to identify groups and clusters of galaxies in redshift space. The data set contains 8370 galaxies with confirmed redshifts in the range 0.7 {<=} z {<=} 1.4, over one square degree on the sky. Groups are identified using an algorithm (the Voronoi-Delaunay Method) that has been shown to accurately reproduce the statistics of groups in simulated DEEP2-like samples. We optimize this algorithm for the DEEP2 survey by applying it to realistic mock galaxy catalogs and assessing the results using a stringent set of criteria for measuring group-finding success, which we develop and describe in detail here. We find in particular that the group-finder can successfully identify {approx}78% of real groups and that {approx}79% of the galaxies that are true members of groups can be identified as such. Conversely, we estimate that {approx}55% of the groups we find can be definitively identified with real groups and that {approx}46% of the galaxies we place into groups are interloper field galaxies. Most importantly, we find that it is possible to measure the distribution of groups in redshift and velocity dispersion, n({sigma}, z), to an accuracy limited by cosmic variance, for dispersions greater than 350 km s{sup -1}. We anticipate that such measurements will allow strong constraints to be placed on the equation of state of the dark energy in the future. Finally, we present the first DEEP2 group catalog, which assigns 32% of the galaxies to 899 distinct groups with two or more members, 153 of which have velocity dispersions above 350 km s{sup -1}. We provide locations, redshifts and properties for this high-dispersion subsample. This catalog represents the largest sample to date of spectroscopically detected groups at z {approx} 1.

  15. The hELENa project - I. Stellar populations of early-type galaxies linked with local environment and galaxy mass

    NASA Astrophysics Data System (ADS)

    Sybilska, A.; Lisker, T.; Kuntschner, H.; Vazdekis, A.; van de Ven, G.; Peletier, R.; Falcón-Barroso, J.; Vijayaraghavan, R.; Janz, J.

    2017-09-01

    We present the first in a series of papers in The role of Environment in shaping Low-mass Early-type Nearby galaxies (hELENa) project. In this paper, we combine our sample of 20 low-mass early types (dEs) with 258 massive early types (ETGs) from the ATLAS3D survey - all observed with the SAURON integral field unit - to investigate early-type galaxies' stellar population scaling relations and the dependence of the population properties on local environment, extended to the low-σ regime of dEs. The ages in our sample show more scatter at lower σ values, indicative of less massive galaxies being affected by the environment to a higher degree. The shape of the age-σ relations for cluster versus non-cluster galaxies suggests that cluster environment speeds up the placing of galaxies on the red sequence. While the scaling relations are tighter for cluster than for the field/group objects, we find no evidence for a difference in average population characteristics of the two samples. We investigate the properties of our sample in the Virgo cluster as a function of number density (rather than simple clustrocentric distance) and find that dE ages correlate with the local density such that galaxies in regions of lower density are younger, likely because they are later arrivals to the cluster or have experienced less pre-processing in groups, and consequently used up their gas reservoir more recently. Overall, dE properties correlate more strongly with density than those of massive ETGs, which was expected as less massive galaxies are more susceptible to external influences.

  16. Compact configurations within small evolving groups of galaxies

    NASA Astrophysics Data System (ADS)

    Mamon, G. A.

    Small virialized groups of galaxies are evolved with a gravitational N-body code, where the galaxies and a diffuse background are treated as single particles, but with mass and luminosity profiles attached, which enbles the estimation of parameters such as internal energies, half-mass radii, and the softened potential energies of interaction. The numerical treatment includes mergers, collisional stripping, tidal limitation by the mean-field of the background (evaluated using a combination of instantaneous and impulsive formulations), galaxy heating from collisons, and background heating from dynamical friction. The groups start out either as dense as appear the groups in Hickson's (1982) catalog, or as loose as appear those in Turner and Gott's (1976a) catalog, and they are simulated many times (usually 20) with different initial positions and velocities. Dense groups of galaxies with massive dark haloes coalesce into a single galaxy and lose their compact group appearance in approximately 3 group half-mass crossing times, while dense groups of galaxies without massive haloes survive the merger instability for 15 half-mass crossing times (in a more massive background to keep the same total group mass).

  17. The HI Content of Galaxies as a Function of Local Density and Large-Scale Environment

    NASA Astrophysics Data System (ADS)

    Thoreen, Henry; Cantwell, Kelly; Maloney, Erin; Cane, Thomas; Brough Morris, Theodore; Flory, Oscar; Raskin, Mark; Crone-Odekon, Mary; ALFALFA Team

    2017-01-01

    We examine the HI content of galaxies as a function of environment, based on a catalogue of 41527 galaxies that are part of the 70% complete Arecibo Legacy Fast-ALFA (ALFALFA) survey. We use nearest-neighbor methods to characterize local environment, and a modified version of the algorithm developed for the Galaxy and Mass Assembly (GAMA) survey to classify large-scale environment as group, filament, tendril, or void. We compare the HI content in these environments using statistics that include both HI detections and the upper limits on detections from ALFALFA. The large size of the sample allows to statistically compare the HI content in different environments for early-type galaxies as well as late-type galaxies. This work is supported by NSF grants AST-1211005 and AST-1637339, the Skidmore Faculty-Student Summer Research program, and the Schupf Scholars program.

  18. Dynamics of galaxy structures in the Local Volume

    NASA Astrophysics Data System (ADS)

    Karachentsev, I. D.

    2016-10-01

    I consider a sample of `Updated Nearby Galaxy Catalog' that contains eight hundred objects within 11 Mpc. Environment of each galaxy is characterized by a tidal index Θ1 depending on separation and mass of the galaxy Main Disturber (=MD). The UNGC galaxies with a common MD are ascribed to its `suite' and ranked according to their Θ1. Fifteen the most populated suites contain more than half of the UNGC sample. The fraction of MDs among the brightest galaxies is almost 100% and drops to 50% at M_B = -18 mag. The observational properties of galaxies accumulated in UNGC are used to derive orbital masses of giant galaxies via motions of their satellites. The average orbital-to-stellar mass ratio for them is M orb M* ~= 30, corresponding to the mean local density of matter Ωm ~= 0.09, i.e 1/3 of the global cosmic one. The dark-to-stellar mass ratio for the Milky Way and M31 is typical for other neighboring giant galaxies.

  19. Galaxy formation with local photoionization feedback - I. Methods

    NASA Astrophysics Data System (ADS)

    Kannan, R.; Stinson, G. S.; Macciò, A. V.; Hennawi, J. F.; Woods, R.; Wadsley, J.; Shen, S.; Robitaille, T.; Cantalupo, S.; Quinn, T. R.; Christensen, C.

    2014-01-01

    We present a first study of the effect of local photoionizing radiation on gas cooling in smoothed particle hydrodynamics simulations of galaxy formation. We explore the combined effect of ionizing radiation from young and old stellar populations. The method computes the effect of multiple radiative sources using the same tree algorithm as used for gravity, so it is computationally efficient and well resolved. The method foregoes calculating absorption and scattering in favour of a constant escape fraction for young stars to keep the calculation efficient enough to simulate the entire evolution of a galaxy in a cosmological context to the present day. This allows us to quantify the effect of the local photoionization feedback through the whole history of a galaxy's formation. The simulation of a Milky Way-like galaxy using the local photoionization model forms ˜40 per cent less stars than a simulation that only includes a standard uniform background UV field. The local photoionization model decreases star formation by increasing the cooling time of the gas in the halo and increasing the equilibrium temperature of dense gas in the disc. Coupling the local radiation field to gas cooling from the halo provides a preventive feedback mechanism which keeps the central disc light and produces slowly rising rotation curves without resorting to extreme feedback mechanisms. These preliminary results indicate that the effect of local photoionizing sources is significant and should not be ignored in models of galaxy formation.

  20. Dwarf Galaxy Discoveries from the KMTNet Supernova Program. I. The NGC 2784 Galaxy Group

    NASA Astrophysics Data System (ADS)

    Park, Hong Soo; Moon, Dae-Sik; Zaritsky, Dennis; Pak, Mina; Lee, Jae-Joon; Kim, Sang Chul; Kim, Dong-Jin; Cha, Sang-Mok

    2017-10-01

    We present BVI surface photometry of 31 dwarf galaxy candidates discovered in a deep image stack from the KMTNet Supernova Program of ∼30 square degrees centered on the nearby NGC 2784 galaxy group. Our final images have a 3σ surface brightness detection limit of {μ }V≈ 28.5 mag arcsec‑2. The faintest central surface brightness that we measure is {μ }0,V=26.1 mag arcsec‑2. If these candidates are at the distance of NGC 2784, then they have absolute magnitudes greater than {M}V=-9.5 mag and effective radii larger than 170 pc. Their radial number density decreases exponentially with distance from the center of NGC 2784 until it flattens beyond a radius of 0.5 Mpc. We interpret the baseline density level to represent the background contamination and estimate that 22 of the 31 new candidates are dwarf members of the group. The candidate’s average color, < {(B-V)}0> ≈ 0.7, and Sérsic structural parameters are consistent with those parameters for the dwarf populations of other groups. We find that the central population of dwarfs is redder and brighter than the rest of the population. The measured faint-end slope of the luminosity function, α ≈ -1.33, is steeper than that of the Local Group, but consistent with published results for other groups. Such comparisons are complicated by systematic differences among different studies, but will be simpler when the KMTNet survey, which will provide homogenous data for 15–20 groups, is completed. Based on data collected at KMTNet Telescopes.

  1. The Impact of Encounters on the Members of Local Group Analogs. A View from GALEX

    NASA Astrophysics Data System (ADS)

    Buson, L. M.; Bettoni, D.; Bianchi, L.; Buzzoni, A.; Marino, A.; Rampazzo, R.

    2009-03-01

    The bright galaxy population of the Local Group Analog (LGA) LGG 225 has been imaged with the Galaxy Evolution Explorer (GALEX) through its Far- and Near-UV wavebands. A significant fraction of the group members appear to underwent recent/on-going interaction episodes that strongly disturbed overall galaxy morphology. UV-bright regions, sites of intense star formation activity accompanied by intense dust extinction, mark the galaxy outskirts forming irregular structures and tails. Compared to the Local Group, LGG 225 seems thus to be experiencing a more intense and active evolutionary phase.

  2. Star-forming galaxies in the local universe

    NASA Astrophysics Data System (ADS)

    Smith, Linda J.; Knapen, Johan H.

    2006-04-01

    Actively star-forming galaxies are an important component of the local universe. They provide a unique opportunity to study the violent star-formation events that were much more prevalent at higher redshifts, probably triggered by the merging of galaxies. Advances arising from new satellite and ground-based observations, as well as sophisticated modelling techniques, were discussed at the RAS Specialist Discussion Meeting held on 9 December 2005, summarized by Linda J Smith and Johan H Knapen.

  3. Population studies in groups and clusters of galaxies. III. A catalog of galaxies in five nearby groups

    SciTech Connect

    Ferguson, H.C.; Sandage, A. Mount Wilson and Las Campanas Observatories, Pasadena, CA Space Telescope Science Institute, Baltimore, MD )

    1990-07-01

    Five nearby groups of galaxies have been surveyed using large-scale plates from the 2.5 m duPont Telescope at Las Campanas Observatory. Catalogs of galaxies brighter than B(T) = 20 are presented for the Leo, Dorado, NGC 1400, NGC 5044, and Antlia groups. A total of 1044 galaxies are included, from visual inspection of 14 plates, covering 31 deg square. Galaxies have been classified in the extended Hubble system, and group memberships have been assigned based on velocity (where available) and morphology. About half the galaxies listed are likely members of one of the nearby groups. The catalogs are complete to B(T) = 18, although the completeness limits vary slightly from group to group. Based on King model fits to the surface density profiles, the core radii of the groups range from 0.3 to 1 Mpc, and central densities range from 120 to 1900 galaxies Mpc exp-3 brighter than M(BT) = -12.5. Dynamical analysis indicates that all of the groups are likely to be gravitationally bound. 64 refs.

  4. Examining the Center: Positions, Dominance, and Star Formation Rates of Most Massive Group Galaxies at Intermediate Redshift

    NASA Astrophysics Data System (ADS)

    Connelly, Jennifer L.; Parker, Laura C.; McGee, Sean; Mulchaey, John S.; Finoguenov, Alexis; Balogh, Michael; Wilman, David; Group Environment Evolution Collaboration

    2015-01-01

    The group environment is believed to be the stage for many galaxy transformations, helping evolve blue star-forming galaxies to red passive ones. In local studies of galaxy clusters, the central member is usually a single dominant giant galaxy at the center of the potential with little star formation thought to be the result of galaxy mergers. In nearby groups, a range of morphologies and star formation rates are observed and the formation history is less clear. Further, the position and dominance of the central galaxy cannot be assumed in groups, which are less massive and evolved than clusters. To understand the connections between global group properties and properties of the central group galaxy at intermediate redshift, we examine galaxy groups from the Group Environment and Evolution Collaboration (GEEC) catalog, including both optically- and X-ray-selected groups at redshift z~0.4. The sample is diverse, containing a range in overall mass and evolutionary state. The number of groups is significant, membership is notably complete, and measurements span the IR to the UV allowing the properties of the members to be connected to those of the host groups. Having investigated trends in the global group properties previously, including mass and velocity substructure, we turn our attention now to the galaxy populations, focusing on the central regions of these systems. The most massive and second most massive group galaxies are identified by their stellar mass. The positions of the most massive galaxies (MMGs) are determined with respect to both the luminosity-weighted and X-ray center. Star formation rates are used to explore the fraction of passive/quiescent versus star-forming MMGs and the dominance of the MMGs in our group sample is also tested. Determinations of these characteristics and trends constitute the important first steps toward a detailed understanding of the relationships between the properties of host groups and their most massive galaxies and the

  5. The APOSTLE simulations: solutions to the Local Group's cosmic puzzles

    NASA Astrophysics Data System (ADS)

    Sawala, Till; Frenk, Carlos S.; Fattahi, Azadeh; Navarro, Julio F.; Bower, Richard G.; Crain, Robert A.; Dalla Vecchia, Claudio; Furlong, Michelle; Helly, John. C.; Jenkins, Adrian; Oman, Kyle A.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom; Trayford, James; White, Simon D. M.

    2016-04-01

    The Local Group galaxies offer some of the most discriminating tests of models of cosmic structure formation. For example, observations of the Milky Way (MW) and Andromeda satellite populations appear to be in disagreement with N-body simulations of the `lambda cold dark matter' (ΛCDM) model: there are far fewer satellite galaxies than substructures in CDM haloes (the `missing satellites' problem); dwarf galaxies seem to avoid the most massive substructures (the `too-big-to-fail' problem); and the brightest satellites appear to orbit their host galaxies on a thin plane (the `planes of satellites' problem). Here we present results from APOSTLE (A Project Of Simulating The Local Environment), a suite of cosmological hydrodynamic simulations of 12 volumes selected to match the kinematics of the Local Group (LG) members. Applying the EAGLE code to the LG environment, we find that our simulations match the observed abundance of LG galaxies, including the satellite galaxies of the MW and Andromeda. Due to changes to the structure of haloes and the evolution in the LG environment, the simulations reproduce the observed relation between stellar mass and velocity dispersion of individual dwarf spheroidal galaxies without necessitating the formation of cores in their dark matter profiles. Satellite systems form with a range of spatial anisotropies, including one similar to the MWs, confirming that such a configuration is not unexpected in ΛCDM. Finally, based on the observed velocity dispersion, size, and stellar mass, we provide estimates of the maximum circular velocity for the haloes of nine MW dwarf spheroidals.

  6. HSTPROMO and the Dynamics of the Local Group

    NASA Astrophysics Data System (ADS)

    Besla, Gurtina

    2016-05-01

    Our understanding of the dynamics of our Local Group of galaxies has changed dramatically over the past few years owing to significant advancements in astrometry and our theoretical understanding of galaxy structure. I will provide an overview of key contributions by the Hubble Space Telescope to this evolving picture. In particular, I will highlight the HSTPROMO team’s proper motion measurements of key players in the Local Group, such as the fastest (Leo I) and most massive (LMC and SMC) satellites of the Milky Way and the first ever direct proper motion measurement of M31. These results have met with controversy, challenging preconceived notions of the orbital dynamics of key components of the Local Group. I will further highlight the importance of HST’s continued role in this field in the era of Gaia.

  7. Characterizing Dust Attenuation in Local Star Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Battisti, Andrew; Calzetti, Daniela; Chary, Ranga-Ram

    2017-01-01

    The dust attenuation for a sample of ~10000 local (z ≤ 0.1) star forming galaxies is constrained as a function of their physical properties. We utilize aperture-matched multi-wavelength data from the UV-to-NIR, available from the Galaxy Evolution Explorer, the Sloan Digital Sky Survey, the United Kingdom Infrared Telescope, and the Two Micron All-Sky Survey, to ensure that regions of comparable size in each galaxy are being analyzed. We characterize the dust attenuation through the slope of the UV flux density and the Balmer decrement (Hα/Hβ). The observed relationship between these quantities is similar to the local starburst relation and is not seen to vary strongly with galactic properties. We derive the total attenuation curve over the range 1250 Å < λ < 28500 Å and find that a single attenuation curve is effective for characterizing the majority of galaxies in our sample. This attenuation curve is slightly lower in the far-UV than local starburst galaxies, by roughly 15%, but appears similar at longer wavelengths and has a normalization of RV = 3.7±0.4 (V-band). This indicates that a single attenuation curve is reasonable for wide application in the local Universe.

  8. Structures of Local Galaxies Compared to High-Redshift Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Petty, Sara M.; de Mello, Duília F.; Gallagher, John S., III; Gardner, Jonathan P.; Lotz, Jennifer M.; Mountain, C. Matt; Smith, Linda J.

    2009-08-01

    The rest-frame far-ultraviolet morphologies of eight nearby interacting and starburst galaxies (Arp 269, M 82, Mrk 8, NGC 520, NGC 1068, NGC 3079, NGC 3310, and NGC 7673) are compared with 54 galaxies at z ~ 1.5 and 46 galaxies at z ~ 4 observed in the Great Observatories Origins Deep Survey (GOODS) taken with the Advanced Camera for Surveys onboard the Hubble Space Telescope. The nearby sample is artificially redshifted to z ~ 1.5 and 4 by applying luminosity and size scaling. We compare the simulated galaxy morphologies to real z ~ 1.5 and 4 UV-bright galaxy morphologies. We calculate the Gini coefficient (G), the second-order moment of the brightest 20% of the galaxy's flux (M 20), and the Sérsic index (n). We explore the use of nonparametric methods with two-dimensional profile fitting and find the combination of M 20 with n an efficient method to classify galaxies as having merger, exponential disk, or bulge-like morphologies. When classified according to G and M 20 20/30% of real/simulated galaxies at z ~ 1.5 and 37/12% at z ~ 4 have bulge-like morphologies. The rest have merger-like or intermediate distributions. Alternatively, when classified according to the Sérsic index, 70% of the z ~ 1.5 and z ~ 4 real galaxies are exponential disks or bulge-like with n>0.8, and ~ 30% of the real galaxies are classified as mergers. The artificially redshifted galaxies have n values with ~ 35% bulge or exponential at z ~ 1.5 and 4. Therefore, ~ 20%-30% of Lyman-break galaxies have structures similar to local starburst mergers, and may be driven by similar processes. We assume merger-like or clumpy star-forming galaxies in the GOODS field have morphological structure with values n < 0.8 and M 20> - 1.7. We conclude that Mrk 8, NGC 3079, and NGC 7673 have structures similar to those of merger-like and clumpy star-forming galaxies observed at z ~ 1.5 and 4.

  9. Fossil Groups in the Local Universe

    NASA Technical Reports Server (NTRS)

    OSullivan, Ewan

    2005-01-01

    The two galaxies observed as part of this project were originally selected as fossil group candidates because of their isolation from other galaxies and their apparent high X-ray luminosity and extended X-ray emission. However, the X-ray data available was minimal, being drawn from the ROSAT All-Sky Survey. We have performed an initial analysis of the XMM data from both galaxies and found that their gaseous halos are smaller, cooler, and less luminous than expected. In the case of NGC 57, the RASS estimate of extent and luminosity was biased because of a previously unidentified background group which is visible in the XMM data to one side of the galaxy. In the case of IC 153 1, the contribution from background point sources near the galaxy appears to be to blame. This suggests that both galaxies should be reclassified as isolated ellipticals. Such systems are very rare, and currently poorly understood; for comparison, there are now 6-10 known fossil groups, but only one isolated elliptical with useful X-ray data. We are currently re-analyzing the data for the two galaxies to take advantage of the calibration improvements of SAS 6.1, and to include calculations of the mass profiles of the two systems. A paper is currently in preparation dealing with the X-ray properties and environment of the galaxies, and we expect to submit this to the Astrophysical Journal within the next two months. Multi-band optical imaging of the field surrounding NGC 57 has been acquired to confirm its isolated status and provide more information on the background group. IC 1531 was accepted as a target in Chandra cycle 6 as part of a related proposal, and we intend to add this new observation to our XMM data when it becomes available. A second paper is planned to include the results of this combined analysis.

  10. The red-sequence of 72 WINGS local galaxy clusters

    NASA Astrophysics Data System (ADS)

    Valentinuzzi, T.; Poggianti, B. M.; Fasano, G.; D'Onofrio, M.; Moretti, A.; Ramella, M.; Biviano, A.; Fritz, J.; Varela, J.; Bettoni, D.; Vulcani, B.; Moles, M.; Couch, W. J.; Dressler, A.; Kjærgaard, P.; Omizzolo, A.; Cava, A.

    2011-12-01

    We study the color - magnitude red sequence and blue fraction of 72 X-ray selected galaxy clusters at z = 0.04-0.07 from the WINGS survey, searching for correlations between the characteristics of the red sequence (RS) and the environment. We consider the slope and scatter of the red sequence, the number ratio of red luminous-to-faint galaxies, the blue fraction, and the fractions of ellipticals, S0s, and spirals that compose the RS. None of these quantities correlate with the cluster velocity dispersion, X-ray luminosity, number of cluster substructures, BCG prevalence over next brightest galaxies, and the spatial concentration of ellipticals. The properties of the RS, instead, depend strongly on local galaxy density. Higher density regions have a smaller RS scatter, a higher luminous-to-faint ratio, a lower blue fraction, and a lower spiral fraction on the RS. Our results clearly illustrate the prominent effect of the local density in setting the epoch when galaxies become passive and join the red sequence, as opposed to the mass of the galaxy host structure.

  11. Stellar systems in the direction of the Hickson Compact Group 44. I. Low surface brightness galaxies

    NASA Astrophysics Data System (ADS)

    Smith Castelli, A. V.; Faifer, F. R.; Escudero, C. G.

    2016-11-01

    Context. In spite of the numerous studies of low-luminosity galaxies in different environments, there is still no consensus about their formation scenario. In particular, a large number of galaxies displaying extremely low-surface brightnesses have been detected in the last year, and the nature of these objects is under discussion. Aims: In this paper we report the detection of two extended low-surface brightness (LSB) objects (μeffg' ≃ 27 mag) found, in projection, next to NGC 3193 and in the zone of the Hickson Compact Group (HCG) 44, respectively. Methods: We analyzed deep, high-quality, GEMINI-GMOS images with ELLIPSE within IRAF in order to obtain their brightness profiles and structural parameters. We also searched for the presence of globular clusters (GC) in these fields. Results: We have found that, if these LSB galaxies were at the distances of NGC 3193 and HCG 44, they would show sizes and luminosities similar to those of the ultra-diffuse galaxies (UDGs) found in the Coma cluster and other associations. In that case, their sizes would be rather larger than those displayed by the Local Group dwarf spheroidal (dSph) galaxies. We have detected a few unresolved sources in the sky zone occupied by these galaxies showing colors and brightnesses typical of blue globular clusters. Conclusions: From the comparison of the properties of the galaxies presented in this work with those of similar objects reported in the literature, we have found that LSB galaxies display sizes covering a quite extended continous range (reff 0.3-4.5 kpc), in contrast to "normal" early-type galaxies, which show reff 1.0 kpc with a low dispersion. This fact might point to different formation processes for both types of galaxies.

  12. ASKAP H I imaging of the galaxy group IC 1459

    NASA Astrophysics Data System (ADS)

    Serra, P.; Koribalski, B.; Kilborn, V.; Allison, J. R.; Amy, S. W.; Ball, L.; Bannister, K.; Bell, M. E.; Bock, D. C.-J.; Bolton, R.; Bowen, M.; Boyle, B.; Broadhurst, S.; Brodrick, D.; Brothers, M.; Bunton, J. D.; Chapman, J.; Cheng, W.; Chippendale, A. P.; Chung, Y.; Cooray, F.; Cornwell, T.; DeBoer, D.; Diamond, P.; Forsyth, R.; Gough, R.; Gupta, N.; Hampson, G. A.; Harvey-Smith, L.; Hay, S.; Hayman, D. B.; Heywood, I.; Hotan, A. W.; Hoyle, S.; Humphreys, B.; Indermuehle, B.; Jacka, C.; Jackson, C. A.; Jackson, S.; Jeganathan, K.; Johnston, S.; Joseph, J.; Kamphuis, P.; Leach, M.; Lenc, E.; Lensson, E.; Mackay, S.; Marquarding, M.; Marvil, J.; McClure-Griffiths, N.; McConnell, D.; Meyer, M.; Mirtschin, P.; Neuhold, S.; Ng, A.; Norris, R. P.; O'Sullivan, J.; Pathikulangara, J.; Pearce, S.; Phillips, C.; Popping, A.; Qiao, R. Y.; Reynolds, J. E.; Roberts, P.; Sault, R. J.; Schinckel, A. E. T.; Shaw, R.; Shimwell, T. W.; Staveley-Smith, L.; Storey, M.; Sweetnam, A. W.; Troup, E.; Tzioumis, A.; Voronkov, M. A.; Westmeier, T.; Whiting, M.; Wilson, C.; Wong, O. I.; Wu, X.

    2015-09-01

    We present H I imaging of the galaxy group IC 1459 carried out with six antennas of the Australian Square Kilometre Array Pathfinder equipped with phased-array feeds. We detect and resolve H I in 11 galaxies down to a column density of ˜1020 cm-2 inside a ˜6 deg2 field and with a resolution of ˜1 arcmin on the sky and ˜8 km s-1 in velocity. We present H I images, velocity fields and integrated spectra of all detections, and highlight the discovery of three H I clouds - two in the proximity of the galaxy IC 5270 and one close to NGC 7418. Each cloud has an H I mass of ˜109 M⊙ and accounts for ˜15 per cent of the H I associated with its host galaxy. Available images at ultraviolet, optical and infrared wavelengths do not reveal any clear stellar counterpart of any of the clouds, suggesting that they are not gas-rich dwarf neighbours of IC 5270 and NGC 7418. Using Parkes data, we find evidence of additional extended, low-column-density H I emission around IC 5270, indicating that the clouds are the tip of the iceberg of a larger system of gas surrounding this galaxy. This result adds to the body of evidence on the presence of intragroup gas within the IC 1459 group. Altogether, the H I found outside galaxies in this group amounts to several times 109 M⊙, at least 10 per cent of the H I contained inside galaxies. This suggests a substantial flow of gas in and out of galaxies during the several billion years of the group's evolution.

  13. Local expansion flows of galaxies: quantifying acceleration effect of dark energy

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.

    2013-08-01

    The nearest expansion flow of galaxies observed around the Local group is studied as an archetypical example of the newly discovered local expansion flows around groups and clusters of galaxies in the nearby Universe. The flow is accelerating due to the antigravity produced by the universal dark energy background. We introduce a new acceleration measure of the flow which is the dimensionless ``acceleration parameter" Q (x) = x - x-2 depending on the normalized distance x only. The parameter is zero at the zero-gravity distance x = 1, and Q(x) ∝ x, when x ≫ 1. At the distance x = 3, the parameter Q = 2.9. Since the expansion flows have a self-similar structure in normalized variables, we expect that the result is valid as well for all the other expansion flows around groups and clusters of galaxies on the spatial scales from ˜ 1 to ˜ 10 Mpc everywhere in the Universe.

  14. Morphological classification of local luminous infrared galaxies

    NASA Astrophysics Data System (ADS)

    Psychogyios, A.; Charmandaris, V.; Diaz-Santos, T.; Armus, L.; Haan, S.; Howell, J.; Le Floc'h, E.; Petty, S. M.; Evans, A. S.

    2016-06-01

    We present analysis of the morphological classification of 89 luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey (GOALS) sample, using non-parametric coefficients and compare their morphology as a function of wavelength. We rely on images that were obtained in the optical (B- and I-band) as well as in the infrared (H-band and 5.8 μm). Our classification is based on the calculation of Gini and the second order of light (M20) non-parametric coefficients, which we explore as a function of stellar mass (M⋆), infrared luminosity (LIR), and star formation rate (SFR). We investigate the relation between M20, the specific SFR (sSFR) and the dust temperature (Tdust) in our galaxy sample. We find that M20 is a better morphological tracer than Gini, as it allows us to distinguish systems that were formed by double systems from isolated and post-merger LIRGs. The effectiveness of M20 as a morphological tracer increases with increasing wavelength, from the B to H band. In fact, the multi-wavelength analysis allows us to identify a region in the Gini-M20 parameter space where ongoing mergers reside, regardless of the band used to calculate the coefficients. In particular, when measured in the H band, a region that can be used to identify ongoing mergers, with minimal contamination from LIRGs in other stages. We also find that, while the sSFR is positively correlated with M20 when measured in the mid-infrared, i.e. star-bursting galaxies show more compact emission, it is anti-correlated with the B-band-based M20. We interpret this as the spatial decoupling between obscured and unobscured star formation, whereby the ultraviolet/optical size of an LIRG experience an intense dust-enshrouded central starburst that is larger that in the mid-infrared since the contrast between the nuclear to the extended disk emission is smaller in the mid-infrared. This has important implications for high redshift surveys of dusty sources, where sizes of galaxies

  15. Measurable relationship between bright galaxies and their faint companions in WHL J085910.0+294957, a galaxy cluster at z = 0.30: vestiges of infallen groups?

    SciTech Connect

    Lee, Joon Hyeop; Lee, Hye-Ran; Kim, Minjin; Seon, Kwang-Il; Kim, Sang Chul; Yang, Soung-Chul; Ree, Chang Hee; Lee, Jong Chul; Jeong, Hyunjin; Ko, Jongwan; Choi, Changsu

    2014-08-20

    The properties of satellite galaxies are closely related to their host galaxies in galaxy groups. In cluster environments, on the other hand, the interaction between close neighbors is known to be limited. Our goal is to examine the relationships between host and satellite galaxies in the harsh environment of a galaxy cluster. To achieve this goal, we study a galaxy cluster WHL J085910.0+294957 at z = 0.30 using deep images obtained with CQUEAN CCD camera mounted on the 2.1 m Otto Struve Telescope. After member selection based on the scaling relations of photometric and structural parameters, we investigate the relationship between bright (M{sub i} ≤ –18) galaxies and their faint (–18 < M{sub i} ≤ –15) companions. The weighted mean color of faint companion galaxies shows no significant dependence (<1σ to bootstrap uncertainties) on cluster-centric distance and local luminosity density as well as the luminosity and concentration of an adjacent bright galaxy. However, the weighted mean color shows marginal dependence (∼2.2σ) on the color of an adjacent bright galaxy when the sample is limited to bright galaxies with at least two faint companions. By using a permutation test, we confirm that the correlation in color between bright galaxies and their faint companions in this cluster is statistically significant with a confidence level of 98.7%. The statistical significance increases if we additionally remove non-members using the Sloan Digital Sky Survey photometric redshift information (∼2.6σ and 99.3%). Our results suggest three possible scenarios: (1) vestiges of infallen groups, (2) dwarf capturing, and (3) tidal tearing of bright galaxies.

  16. Measurable Relationship between Bright Galaxies and Their Faint Companions in WHL J085910.0+294957, a Galaxy Cluster at z = 0.30: Vestiges of Infallen Groups?

    NASA Astrophysics Data System (ADS)

    Lee, Joon Hyeop; Lee, Hye-Ran; Kim, Minjin; Seon, Kwang-Il; Kim, Sang Chul; Yang, Soung-Chul; Ree, Chang Hee; Lee, Jong Chul; Jeong, Hyunjin; Ko, Jongwan; Choi, Changsu

    2014-08-01

    The properties of satellite galaxies are closely related to their host galaxies in galaxy groups. In cluster environments, on the other hand, the interaction between close neighbors is known to be limited. Our goal is to examine the relationships between host and satellite galaxies in the harsh environment of a galaxy cluster. To achieve this goal, we study a galaxy cluster WHL J085910.0+294957 at z = 0.30 using deep images obtained with CQUEAN CCD camera mounted on the 2.1 m Otto Struve Telescope. After member selection based on the scaling relations of photometric and structural parameters, we investigate the relationship between bright (Mi <= -18) galaxies and their faint (-18 < Mi <= -15) companions. The weighted mean color of faint companion galaxies shows no significant dependence (<1σ to bootstrap uncertainties) on cluster-centric distance and local luminosity density as well as the luminosity and concentration of an adjacent bright galaxy. However, the weighted mean color shows marginal dependence (~2.2σ) on the color of an adjacent bright galaxy when the sample is limited to bright galaxies with at least two faint companions. By using a permutation test, we confirm that the correlation in color between bright galaxies and their faint companions in this cluster is statistically significant with a confidence level of 98.7%. The statistical significance increases if we additionally remove non-members using the Sloan Digital Sky Survey photometric redshift information (~2.6σ and 99.3%). Our results suggest three possible scenarios: (1) vestiges of infallen groups, (2) dwarf capturing, and (3) tidal tearing of bright galaxies.

  17. Galaxy And Mass Assembly (GAMA): estimating galaxy group masses via caustic analysis

    NASA Astrophysics Data System (ADS)

    Alpaslan, Mehmet; Robotham, Aaron S. G.; Driver, Simon; Norberg, Peder; Peacock, John A.; Baldry, Ivan; Bland-Hawthorn, Joss; Brough, Sarah; Hopkins, Andrew M.; Kelvin, Lee S.; Liske, Jochen; Loveday, Jon; Merson, Alexander; Nichol, Robert C.; Pimbblet, Kevin

    2012-11-01

    We have generated complementary halo mass estimates for all the groups in the Galaxy And Mass Assembly Galaxy Group Catalogue (GAMA G3Cv1) using a modified caustic mass estimation algorithm, originally developed by Diaferio & Geller. We calibrate the algorithm by applying it on a series of nine GAMA mock galaxy light cones and investigate the effects of using different definitions for group centre and size. We select the set of parameters that provide median-unbiased mass estimates when tested on mocks, and generate mass estimates for the real group catalogue. We find that on average, the caustic mass estimates agree with dynamical mass estimates within a factor of 2 in 90.8 ± 6.1 per cent groups and compare equally well to velocity dispersion based mass estimates for both high- and low-multiplicity groups over the full range of masses probed by the G3Cv1.

  18. Comparing the clustering of galaxies and galaxy group by using the SDSS DR7

    NASA Astrophysics Data System (ADS)

    Wang, Yiran; Brunner, R. J.

    2014-01-01

    By using the angular two-point correlation function, we measure the clustering strength of a clean sample of galaxies (explored in Wang, Brunner, & Dolence 2013) for the Sloan Digital Sky Survey Data Release Seven. By using these same data, we first find isolated pairs, triplets, quads, and larger groups of galaxies, and subsequently measure the clustering of these subsamples. We find the clustering strength increases with groups size, which supports the halo model of galaxy clustering and demonstrates the efficacy of our isolated group catalog for general studies such as the galaxy merger rate. Finally, we explore the effects of galaxy spectral type and photometric redshift on the clustering behavior of these galaxy group samples. References: Blake, C., Collister, A., Lahav, O. 2008, MNRAS, 385, 1257 Hickson, P. 1982, ApJ, 255, 382 Ross, A. J., Brunner, R. J. 2009, MNRAS, 399, 878 Wang Y., Brunner R. J., Dolence J. C. 2013, MNRAS, 432, 1961 Zehavi, I., et al. 2004, ApJ, 608, 16

  19. SPIDER - IX. Classifying galaxy groups according to their velocity distribution

    NASA Astrophysics Data System (ADS)

    Ribeiro, A. L. B.; de Carvalho, R. R.; Trevisan, M.; Capelato, H. V.; La Barbera, F.; Lopes, P. A. A.; Schilling, A. C.

    2013-09-01

    We introduce a new method to study the velocity distribution of galaxy systems, the Hellinger Distance (HD), designed for detecting departures from a Gaussian velocity distribution. Testing different approaches to measure normality of a distribution, we conclude that HD is the least vulnerable method to type I and II statistical errors. We define a relaxed galactic system as the one with unimodal velocity distribution and a normality deviation below a critical value (HD < 0.05). In this work, we study the Gaussian nature of the velocity distribution of the Berlind group sample, and of the FoF groups from the Millennium simulation. For the Berlind group sample (z < 0.1), 67 per cent of the systems are classified as relaxed, while for the Millennium sample we find 63 per cent (z = 0). We verify that in multi-modal groups the average mass of modes in high-multiplicity (N ≥ 20) systems are significantly larger than in low-multiplicity ones (N < 20), suggesting that groups experience a mass growth at an increasing virialization rate towards z = 0, with larger systems accreting more massive subunits. We also investigate the connection between galaxy properties ([Fe/H], Age, eClass, g - r, Rpetro and <μpetro>) and the Gaussianity of the velocity distribution of the groups. Bright galaxies (Mr ≤ -20.7) residing in the inner and outer regions of groups do not show significant differences in the listed quantities regardless if the group has a Gaussian (G) or a Non-Gaussian (NG) velocity distribution. However, the situation is significantly different when we examine the faint galaxies (-20.7 < Mr ≤ -17.9). In G groups, there is a remarkable difference between the galaxy properties of the inner and outer galaxy populations, testifying how the environment is affecting the galaxies. Instead, in NG groups there is no segregation between the properties of galaxies in the inner and outer regions, showing that the properties of these galaxies still reflect the physical

  20. The Tully-Fisher relations for Hickson compact group galaxies

    NASA Astrophysics Data System (ADS)

    Torres-Flores, S.; Mendes de Oliveira, C.; Plana, H.; Amram, P.; Epinat, B.

    2013-07-01

    We used K-band photometry, maximum rotational velocities derived from Fabry-Perot data and H I observed and predicted masses to study, for the first time, the K band, stellar and baryonic Tully-Fisher relations for galaxies in Hickson compact groups. We compared these relations with the ones defined for galaxies in less dense environments from the Gassendi HAlpha survey of Spirals and from a sample of gas-rich galaxies. We find that most of the Hickson compact group galaxies lie on the K-band Tully-Fisher relation defined by field galaxies with a few low-mass outliers, namely HCG 49b and HCG 96c, which appear to have had strong recent burst of star formation. The stellar Tully-Fisher relation for compact group galaxies presents a similar dispersion to that of the K-band relation, and it has no significant outliers when a proper computation of the stellar mass is done for the strongly star-forming galaxies. The scatter in these relations can be reduced if the gaseous component is taken into account, i.e. if a baryonic Tully-Fisher relation is considered. In order to explain the positions of the galaxies off the K-band Tully-Fisher relation, we favour a scenario in which their luminosities are brightened due to strong star formation or AGN activity. We argue that strong bursts of star formation can affect the B- and K-band luminosities of HCG 49b and HCG 96c and in the case of the latter also AGN activity may affect the K-band magnitude considerably, without affecting their total masses.

  1. Fitting the SEDs of Galaxies in the Local Volume

    NASA Astrophysics Data System (ADS)

    Johnson, B. D.

    2011-06-01

    The distribution of the Hα/UV flux ratio in local, low-luminosity galaxies is suggestive of a varying high-mass end of the Initial Mass Function (IMF), though several additional effects may be responsible. I describe the fitting of population synthesis models with an invariant IMF to the Spectral Energy Distributions of a subset of the Local Volume Legacy (LVL) sample. I pay special attention to the types of star formation histories and dust properties required to match simultaneously the UV and Hα fluxes of these low luminosity galaxies, under the assumption that the IMF does not vary. The observed SEDs to be fit include UV, optical, and IR broadband photometry from GALEX, SDSS, and Spitzer respectively, as well as narrowband Hα photometry from the 11Mpc Survey. Of special importance is the observed thermal Far-IR emission, which places a useful constraint on the dust attenuation. I find that recently ended bursts adequately describe the UV through Far-IR SED of ≲10% of the sample, while the rest, including some galaxies with 'low' Hα/UV flux ratios, are well fit by a smooth or continuous recent star formation history. I consider the physical properties of local volume galaxies, derived from indicators that are not sensitive to the upper IMF, and find the suggestion of a large spread in specific star formation rate at low stellar mass, possibly indicating a range of long-term star formation history in these galaxies.

  2. THE DEEP2 GALAXY REDSHIFT SURVEY: THE VORONOI-DELAUNAY METHOD CATALOG OF GALAXY GROUPS

    SciTech Connect

    Gerke, Brian F.; Newman, Jeffrey A.; Davis, Marc; Coil, Alison L.; Cooper, Michael C.; Dutton, Aaron A.; Faber, S. M.; Guhathakurta, Puragra; Koo, David C.; Phillips, Andrew C.; Noeske, Kai; Rosario, David J.; Weiner, Benjamin J.; Willmer, Christopher N. A.; Yan, Renbin

    2012-05-20

    We present a public catalog of galaxy groups constructed from the spectroscopic sample of galaxies in the fourth data release from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Galaxy Redshift Survey, including the Extended Groth Strip (EGS). The catalog contains 1165 groups with two or more members in the EGS over the redshift range 0 < z < 1.5 and 1295 groups at z > 0.6 in the rest of DEEP2. Twenty-five percent of EGS galaxies and fourteen percent of high-z DEEP2 galaxies are assigned to galaxy groups. The groups were detected using the Voronoi-Delaunay method (VDM) after it has been optimized on mock DEEP2 catalogs following similar methods to those employed in Gerke et al. In the optimization effort, we have taken particular care to ensure that the mock catalogs resemble the data as closely as possible, and we have fine-tuned our methods separately on mocks constructed for the EGS and the rest of DEEP2. We have also probed the effect of the assumed cosmology on our inferred group-finding efficiency by performing our optimization on three different mock catalogs with different background cosmologies, finding large differences in the group-finding success we can achieve for these different mocks. Using the mock catalog whose background cosmology is most consistent with current data, we estimate that the DEEP2 group catalog is 72% complete and 61% pure (74% and 67% for the EGS) and that the group finder correctly classifies 70% of galaxies that truly belong to groups, with an additional 46% of interloper galaxies contaminating the catalog (66% and 43% for the EGS). We also confirm that the VDM catalog reconstructs the abundance of galaxy groups with velocity dispersions above {approx}300 km s{sup -1} to an accuracy better than the sample variance, and this successful reconstruction is not strongly dependent on cosmology. This makes the DEEP2 group catalog a promising probe of the growth of cosmic structure that can potentially be used for cosmological tests.

  3. The ESO slice project (ESP) galaxy redshift survey VI. Groups of galaxies

    NASA Astrophysics Data System (ADS)

    Ramella, M.; Zamorani, G.; Zucca, E.; Stirpe, G. M.; Vettolani, G.; Balkowski, C.; Blanchard, A.; Cappi, A.; Cayatte, V.; Chincarini, G.; Collins, C.; Guzzo, L.; MacGillivray, H.; Maccagni, D.; Maurogordato, S.; Merighi, R.; Mignoli, M.; Pisani, A.; Proust, D.; Scaramella, R.

    1999-02-01

    In this paper we identify objectively and analyze groups of galaxies in the recently completed ESP survey (23(h) 23(m) <= alpha_ {1950} <= 01(h) 20(m) and 22(h) 30(m) <= alpha_ {1950} <= 22(h) 52(m) ; -40(o) 45' <= delta_ {1950} <= -39(o) 45'). We find 231 groups above the number overdensity threshold delta rho /rho =80 in the redshift range 5000 km s(-1) <= cz <= 60000 km s(-1). These groups contain 1250 members, 40.5% of the 3085 ESP galaxies within the same cz range. The median velocity dispersion (corrected for measurement errors and computed at the redshift of the group) is sigma_ {ESP,median} = 194 km s(-1). We show that our result is reliable in spite of the particular geometry of the ESP survey (two rows of tangent circular fields of radius theta = 15 arcmin), which causes most systems to be only partially surveyed. In general, we find that the properties of ESP groups are consistent with those of groups in shallower (and wider) catalogs (e.g. CfA2N and SSRS2). As in shallower catalogs, ESP groups trace very well the geometry of the large scale structure. Our results are of particular interest because the depth of the ESP survey allows us to sample group properties over a large number of structures. We also compare luminosity function and spectral properties of galaxies that are members of groups with those of isolated galaxies. We find that galaxies in groups have a brighter M(*) with respect to non-member galaxies; the slope alpha is the same, within the errors, in the two cases. We find that 34% (467/1360) of ESP galaxies with detectable emission lines are members of groups. The fraction of galaxies without detectable emission lines in groups is significantly higher: 45% (783/1725). More generally, we find a gradual decrease of the fraction of emission line galaxies among members of systems of increasing richness. This result confirms that the morphology-density relation found for clusters also extends toward systems of lower density. Based on

  4. Compact Galaxy Groups: A Multi-wavelength Perspective Into Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Konstantopoulos, Iraklis; HCG Collaboration

    2011-01-01

    Galaxies are seldom found in isolation. As a small unit of large clusters, individual members are subject to the volition of their groupings and evolve most commonly through interactions and mergers. In the parameter-space between too many friends and none at all lie compact galaxy groups. The ones classified by Hickson (1982; Hickson compact groups, or HCGs) share the distinctive characteristics of low membership, isolation and high density. They exhibit low velocity dispersions, which which lead to prolonged interactions, when such events occur, or quasi-secular evolution, when they do not. They are also HI-deficient, to a very intriguing extent. I will be discussing multi-wavelength observations of a sample of 12 HCGs in the context of galaxy evolution in general. For example, in HCG 7 we observed the strengthening of interactions due to the complexity of the tidal field, in a system that is likely headed toward a dry merger. In the low mass grouping of HCG 31 we recorded morphological transformation reminiscent of the intermediate redshift universe, with multiple simultaneous interactions leading to the build-up of a gaseous intra-group medium. These results, along with many more, allow us to examine the overall themes that arise from the study of the aforementioned dozen: the usage of gas; the possibility of rapid morphological transformation of compact group galaxies; and the role of groups as the tail end of the galaxy clustering N-distribution.

  5. Exploring the Escape of Hydrogen Ionizing Photons from Local Galaxies

    NASA Astrophysics Data System (ADS)

    Davis, Jesse A.; Rosenberg, Jessica L.; Venkatesan, Aparna; Cannon, John M.; Salzer, John Joseph

    2016-01-01

    role of dwarf galaxies in the ionization of the local IGM and cosmic reionization.

  6. The formation of compact groups of galaxies. I: Optical properties

    NASA Technical Reports Server (NTRS)

    Diaferio, Antonaldo; Geller, Margaret J.; Ramella, Massimo

    1994-01-01

    The small crossing time of compact groups of galaxies (t(sub cr)H(sub 0) approximately less than 0.02) makes it hard to understand why they are observable at all. Our dissipationless N-body simulations show that within a single rich collapsing group compact groups of galaxies continually form. The mean lifetime of a particular compact configuration if approximately 1 Gyr. On this time scale, members may merge and/or other galaxies in the loose group may join the compact configuration. In other words, compact configurations are continually replaced by new systems. The frequency of this process explains the observability of compact groups. Our model produces compact configurations (compact groups (CG's) with optical properties remarkably similar to Hickson's (1982) compact groups (HCG's): (1) CG's have a frequency distribution of members similar to that of HCG's; (2) CG's are approximately equals 10 times as dense as loose groups; (3) CG's have dynamical properties remarkably similar to those of HCG's; (4) most of the galaxy members of CG's are not merger remnants. The crucial aspect of the model is the relationship between CG's and the surrounding rich loose group. Our model predicts the frequency of occurrence of CG's. A preliminary analysis of 18 rich loose groups is consistent with the model prediction. We suggest further observational tests of the model.

  7. The dependence of galaxy group star formation rates and metallicities on large-scale environment

    NASA Astrophysics Data System (ADS)

    Scudder, Jillian M.; Ellison, Sara L.; Mendel, J. Trevor

    2012-07-01

    We construct a sample of 75 863 star-forming galaxies with robust metallicity and star formation rate (SFR) measurements from the Sloan Digital Sky Survey Data Release 7, from which we select a clean sample of compact group (CG) galaxies. The CGs are defined to be close configurations of at least four galaxies that are otherwise apparently isolated. Our selection results in a sample of 112 spectroscopically identified CG galaxies, which can be further divided into groups that are either embedded within a larger structure, such as a cluster or large group, or truly isolated systems. The CGs then serve as a probe into the influence of large-scale environment on a galaxy's evolution, while keeping the local density fixed at high values. We find that the SFRs of star-forming galaxies in CGs are significantly different between isolated and embedded systems. Galaxies in isolated systems show significantly enhanced SFR, relative to a control sample matched in mass and redshift, a trend not seen in the embedded systems. Galaxies in isolated systems exhibit a median SFR enhancement at a fixed stellar mass of +0.07 ± 0.03 dex. These dependences on large-scale environment are small in magnitude relative to the apparent influence of local-scale effects found in previous studies, but the significance of the difference in SFRs between our two samples constrains the effect of large-scale environment to be non-zero. We find no significant change in the gas-phase interstellar metallicity for either the isolated or embedded CG sample relative to their controls. However, simulated samples that include artificial offsets indicate that we are only sensitive to metallicity changes of log O/H> 0.13 dex (at 99 per cent confidence), which is considerably larger than the typical metallicity differences seen in previous environmental studies.

  8. Multi-wavelengths studies of fossil galaxy groups

    NASA Astrophysics Data System (ADS)

    Khosroshahi, H. G.

    2016-09-01

    Fossil systems are understood to be the end product of galaxy mergers within groups and clusters. Their halo morphology points to their relaxed/virialised nature, thus allowing them to employed as observational probes for the evolution of cosmic structures, their thermodynamics and dark matter distribution. Cosmological simulations, and their underlying models, are broadly consistent with the early formation epoch for fossils. In a series of studies we have looked into the dark matter, IGM and galaxy properties, across a wide range of wavelengths, from X-ray through optical and IR to the Radio, to achieve a better understating of fossil systems, the attributed halo age, IGM heating and their AGNs and use them as laboratories to probe galaxy formation models. We combine luminosity gap with luminosity segregation to identify the most dynamically relaxed systems which allows us to reveal brand new connections between galaxies and their environments.

  9. On the Formation of Elliptical Galaxies via Mergers in Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Taranu, Dan; Dubinski, John; Yee, Howard K. C.

    2015-08-01

    Giant elliptical galaxies have long been thought to form through gas-rich "major" mergers of two roughly equal-mass spiral galaxies. However, ellipticals are often found at the centers of groups and are likely to have undergone several significant mergers since z=2. We test the hypothesis that ellipticals form through multiple, mainly minor and dry mergers in groups, using hundreds of N-body simulations of mergers in groups of three to twenty-five spirals (Taranu et al. 2013).Realistic mock observations of the central merger remnants show that they have similar surface brightness profiles to local ellipticals. The size-luminosity and velocity dispersion-luminosity relations have modest (~0.1 dex) scatter, with similar slopes; however, most remnants are too large and have too low dispersions for their luminosities. Some remnants show substantial (v/σ > 0.1) rotational support, but most are slow rotators with v/σ << 0.5.Ellipticals also follow a tight "fundamental plane" scaling relation between size R, mean surface brightness μ and velocity dispersion σ: R ∝ σ^a μ^b. This relation has small (<0.06 dex) scatter and significantly different coefficients from the expected scaling (a "tilt"). The remnants lie on a similar fundamental plane, with even smaller scatter (0.02 dex) and a tilt in the correct sense - albeit weaker than observed. This tilt is caused by variable dark matter fractions within the effective radius, such that massive merger remnants have larger central dark matter fractions than their lower-mass counterparts (Taranu et al. 2015).These results suggest that massive ellipticals can originate from multiple, mainly minor and dry mergers of spirals at z<2, producing tight scaling relations in the process. However, significant gas dissipation and/or more compact progenitor spirals may be needed to produce lower-mass, rapidly-rotating ellipticals. I will also show preliminary results from simulations with more realistic progenitor galaxies (including

  10. Studying the Stellar Populations of the Local Group with VLT

    NASA Astrophysics Data System (ADS)

    Tolstoy, Eline

    The best chance we have to understand star formation and how it proceeds in the Universe is going to come from detailed studies of the numerous different environments found within the Local Group (LG). Present day star formation in our Galaxy occurs exclusively in metal rich environments (Z ˜ Z_⊙), so if we want to study how low metallicity stars form (and thus understand observations of galaxies at high-redshift) we have to look beyond our Galaxy, to the smallest star forming dwarf galaxies, which can have extremely low metallicities (Z ˜ 0.02-0.05Z_⊙). Of course in its entirety a stellar population always contains the complete details of the star formation history of a galaxy, however this information is often hard to disentangle retroactively. We also have much to learn from the Magellanic Clouds (Z ˜ 0.1- 0.3Z_⊙), although because they are undergoing interactions with our Galaxy and each other their evolutionary picture and its general applicability less obvious. In our LG there are also a number of "remnants", or galaxies which which currently do not form stars (e.g. the dSph, such as Carina, Leo I, Ursa Minor, etc..). It is not straight forward to draw parallels between galaxies which are forming stars and those which aren't. This is of course because star formation has such a dramatic impact upon a galaxy, and alternative methods have to be used to make the most basic of comparisons of properties (e.g. metallicity, mass, luminosity evolution). It is necessary to put all the dwarf galaxies into a global picture if we are to draw meaningful conclusions about their star formation properties (e.g. Ferrara & Tolstoy 1999). Many of the small LG galaxies contain direct evidence of complicated star formation histories (e.g. Smecker-Hane et al. 1994; Tolstoy et al. 1998; Gallart et al. 1999), which suggests that star formation patterns can change dramatically over long time scales. This kind of evolutionary behaviour can have a dramatic impact upon the

  11. EXPLORING X-RAY BINARY POPULATIONS IN COMPACT GROUP GALAXIES WITH CHANDRA

    SciTech Connect

    Tzanavaris, P.; Hornschemeier, A. E.; Desjardins, T. D.; Walker, L. M.; Johnson, K. E.; Mulchaey, J. S.

    2016-02-01

    We obtain total galaxy X-ray luminosities, L{sub X}, originating from individually detected point sources in a sample of 47 galaxies in 15 compact groups of galaxies (CGs). For the great majority of our galaxies, we find that the detected point sources most likely are local to their associated galaxy, and are thus extragalactic X-ray binaries (XRBs) or nuclear active galactic nuclei (AGNs). For spiral and irregular galaxies, we find that, after accounting for AGNs and nuclear sources, most CG galaxies are either within the ±1σ scatter of the Mineo et al. L{sub X}–star formation rate (SFR) correlation or have higher L{sub X} than predicted by this correlation for their SFR. We discuss how these “excesses” may be due to low metallicities and high interaction levels. For elliptical and S0 galaxies, after accounting for AGNs and nuclear sources, most CG galaxies are consistent with the Boroson et al. L{sub X}–stellar mass correlation for low-mass XRBs, with larger scatter, likely due to residual effects such as AGN activity or hot gas. Assuming non-nuclear sources are low- or high-mass XRBs, we use appropriate XRB luminosity functions to estimate the probability that stochastic effects can lead to such extreme L{sub X} values. We find that, although stochastic effects do not in general appear to be important, for some galaxies there is a significant probability that high L{sub X} values can be observed due to strong XRB variability.

  12. Frequent Spin Reorientation of Galaxies due to Local Interactions

    NASA Astrophysics Data System (ADS)

    Cen, Renyue

    2014-04-01

    We study the evolution of angular momenta of M * = 1010-1012 M ⊙ galaxies utilizing large-scale ultra-high resolution cosmological hydrodynamic simulations and find that the spin of the stellar component changes direction frequently because of interactions with nearby systems, such as major mergers, minor mergers, significant gas inflows, and torques. The rate and nature of change of spin direction cannot be accounted for by large-scale tidal torques, because the rates of the latter fall short by orders of magnitude and because the apparent random swings of the spin direction are inconsistent with the alignment by linear density field. The implications for galaxy formation as well as the intrinsic alignment of galaxies are profound. Assuming the large-scale tidal field is the sole alignment agent, a new picture emerging is that intrinsic alignment of galaxies would be a balance between slow large-scale coherent torquing and fast spin reorientation by local interactions. What is still open is whether other processes, such as feeding galaxies with gas and stars along filaments or sheets, introduce coherence for spin directions of galaxies along the respective structures.

  13. Constraining the mass of the Local Group

    NASA Astrophysics Data System (ADS)

    Carlesi, Edoardo; Hoffman, Yehuda; Sorce, Jenny G.; Gottlöber, Stefan

    2017-03-01

    The mass of the Local Group (LG) is a crucial parameter for galaxy formation theories. However, its observational determination is challenging - its mass budget is dominated by dark matter that cannot be directly observed. To meet this end, the posterior distributions of the LG and its massive constituents have been constructed by means of constrained and random cosmological simulations. Two priors are assumed - the Λ cold dark matter model that is used to set up the simulations, and an LG model that encodes the observational knowledge of the LG and is used to select LG-like objects from the simulations. The constrained simulations are designed to reproduce the local cosmography as it is imprinted on to the Cosmicflows-2 data base of velocities. Several prescriptions are used to define the LG model, focusing in particular on different recent estimates of the tangential velocity of M31. It is found that (a) different vtan choices affect the peak mass values up to a factor of 2, and change mass ratios of MM31 to MMW by up to 20 per cent; (b) constrained simulations yield more sharply peaked posterior distributions compared with the random ones; (c) LG mass estimates are found to be smaller than those found using the timing argument; (d) preferred Milky Way masses lie in the range of (0.6-0.8) × 1012 M⊙; whereas (e) MM31 is found to vary between (1.0-2.0) × 1012 M⊙, with a strong dependence on the vtan values used.

  14. Galaxy interactions in the Hickson Compact Group 88

    NASA Astrophysics Data System (ADS)

    Brosch, Noah

    2015-12-01

    I present observations of the Hickson Compact Group 88 (HCG88) obtained during the commissioning of a new 28-inch telescope at the Wise Observatory. This galaxy group was advertized to be non-interacting, or to be in a very early interaction stage, but this is not the case. The observations reported here were done using a `luminance' filter, essentially a very broad R filter, reaching a low surface brightness level of ≈26 mag arcsec-2. Additional observations were obtained in a narrow spectral band approximately centred on the rest-frame H α line from the group. Contrary to previous studies, my observations show that at least two of the major galaxies have had significant interactions in the past, although probably not between themselves. I report the discovery of a faint extended tail emerging from the brightest of the group galaxies, severe isophote twisting and possible outer shells around another galaxy, and map the H II regions in all the galaxies.

  15. A 17-billion-solar-mass black hole in a group galaxy with a diffuse core.

    PubMed

    Thomas, Jens; Ma, Chung-Pei; McConnell, Nicholas J; Greene, Jenny E; Blakeslee, John P; Janish, Ryan

    2016-04-21

    Quasars are associated with and powered by the accretion of material onto massive black holes; the detection of highly luminous quasars with redshifts greater than z = 6 suggests that black holes of up to ten billion solar masses already existed 13 billion years ago. Two possible present-day 'dormant' descendants of this population of 'active' black holes have been found in the galaxies NGC 3842 and NGC 4889 at the centres of the Leo and Coma galaxy clusters, which together form the central region of the Great Wall--the largest local structure of galaxies. The most luminous quasars, however, are not confined to such high-density regions of the early Universe; yet dormant black holes of this high mass have not yet been found outside of modern-day rich clusters. Here we report observations of the stellar velocity distribution in the galaxy NGC 1600--a relatively isolated elliptical galaxy near the centre of a galaxy group at a distance of 64 megaparsecs from Earth. We use orbit superposition models to determine that the black hole at the centre of NGC 1600 has a mass of 17 billion solar masses. The spatial distribution of stars near the centre of NGC 1600 is rather diffuse. We find that the region of depleted stellar density in the cores of massive elliptical galaxies extends over the same radius as the gravitational sphere of influence of the central black holes, and interpret this as the dynamical imprint of the black holes.

  16. INTERGALACTIC GAS IN GROUPS OF GALAXIES: IMPLICATIONS FOR DWARF SPHEROIDAL FORMATION AND THE MISSING BARYONS PROBLEM

    SciTech Connect

    Freeland, E.; Wilcots, E. E-mail: ewilcots@astro.wisc.edu

    2011-09-10

    Radio galaxies with bent jets are predominantly located in groups and clusters of galaxies. We use bent-double radio sources, under the assumption that their jets are bent by ram pressure, to probe intragroup medium (IGM) gas densities in galaxy groups. This method provides a direct measurement of the intergalactic gas density and allows us to probe intergalactic gas at large radii and in systems whose IGM is too cool to be detected by the current generation of X-ray telescopes. We find gas with densities of 10{sup -3} to 10{sup -4} cm{sup -3} at group radii from 15 to 700 kpc. A rough estimate of the total baryonic mass in intergalactic gas is consistent with the missing baryons being located in the IGM of galaxy groups. The neutral gas will be easily stripped from dwarf galaxies with total masses of 10{sup 6}-10{sup 7} M{sub sun} in the groups studied here. Indications are that intragroup gas densities in less-massive systems like the Local Group should be high enough to strip gas from dwarfs like Leo T and, in combination with tides, produce dwarf spheroidals.

  17. BVRI photometric analysis for the galaxy group NGC 4410

    NASA Astrophysics Data System (ADS)

    Pérez Grana, J. A.; Kemp, S. N.; Katsiyannis, A. C.; Franco-Balderas, A.; de La Fuente, E.; Meaburn, J.; Khosroshahi, H. G.

    2008-07-01

    We present a BVRI CCD (Charge Coupled Device) surface photometry analysis of the galaxy group NGC 4410, which contains four galaxies in interaction. Along with our photometric study, we show residual images (after subtracting isophotal models) and unsharp masked images to uncover any hidden structures in this system of galaxies; we have also performed a two-dimensional bulge-disk decomposition for NGC 4410C and D, and a major axis sector profile for NGC 4410A. We have calculated BVRI surface brightnesses and colors within regions such as galaxy centers, bridges, tails and optical knots in the NGC 4410 system, generating B-V color maps and color profiles. The information obtained was used to discover the predominant stellar populations. The colors of the galaxies imply ages of ~2×109 to ~2×1010 years for models using a range of metallicities. The bluer knots and H II regions have colors implying ages of a minimum of 5×108 years, but possibly as high as 3×109 years for stellar populations formed in the interaction. These results lead us to conclude that there is a moderate star formation rate and a tranquil evolving state of the system with a long timescale for interaction, much longer than the typical dynamical timescales of 108 years. Although we note that NGC 4410D has a blue nucleus (possible nuclear starburst?), bulge, bar, and short spiral arms, and may be interacting with a H I gas cloud. Some observed structures in NGC 4410A are coincident with previously studied H II regions, a tidal arm and optical/radio knots found in this galaxy. An optical knot E coincident with a radio knot may be an optical synchrotron emission or an H II region. The galaxy NGC 4410B appears to be a boxy giant elliptical with a possible dusty disk embedded (similar to Cen A?) and NGC 4410C is confirmed as a lenticular galaxy.

  18. The HI Content of Galaxies in Groups and Clusters as Measured by ALFALFA

    NASA Astrophysics Data System (ADS)

    Odekon, Mary Crone; Koopmann, Rebecca A.; Haynes, Martha P.; Finn, Rose A.; McGowan, Christopher; Micula, Adina; Reed, Lyle; Giovanelli, Riccardo; Hallenbeck, Gregory

    2016-06-01

    We present the HI content of galaxies in nearby groups and clusters as measured by the 70% complete Arecibo Legacy Fast-ALFA (ALFALFA) survey, including constraints from ALFALFA detection limits. Our sample includes 22 systems at distances between 70 and 160 Mpc over the mass range 12.5<' {log} M/{M}⊙ < 15.0, for a total of 1986 late-type galaxies. We find that late-type galaxies in the centers of groups lack HI at fixed stellar mass relative to the regions surrounding them. Larger groups show evidence of a stronger dependence of HI properties on environment, despite a similar dependence of color on environment at fixed stellar mass. We compare several environment variables to determine which is the best predictor of galaxy properties; group-centric distance r and r/{R}200 are similarly effective predictors, while local density is slightly more effective and group size and halo mass are slightly less effective. While both central and satellite galaxies in the blue cloud exhibit a significant dependence of HI content on local density, only centrals show a strong dependence on stellar mass, and only satellites show a strong dependence on halo mass. Finally, we see evidence that HI is deficient for blue cloud galaxies in denser environments even when both stellar mass and color are fixed. This is consistent with a picture where HI is removed or destroyed, followed by reddening within the blue cloud. Our results support the existence of pre-processing in isolated groups, along with an additional rapid mechanism for gas removal within larger groups and clusters, perhaps ram-pressure stripping.

  19. Semi-analytic models for HI gas in disk and local dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Fu, Jian

    2015-08-01

    We construct the radially-resolved semi-analytic models of galaxy formation based on the L-Galaxies model framework, which include both atomic and molecular gas phase in ISM. The models adopt the ΛCDM cosmology simulation Millennium, Millennium II and Aquarius. Our models can reproduce varies properties of HI gas in nearby galaxies, e.g. the HI mass function, the HI-to-star ratio vs stellar mass and stellar surface density, universal HI radial surface density profile in outer disks etc. We can also give some physical origins of HI size mass relation in many observations.Based on our model results for local dwarf galaxies, we show that the "missing satellite problem" also exists in the HI component, i.e., the models over predict dwarf galaxies with low HI mass. That is a shortcoming of current ΛCDM cosmology framework. Future survey for HI gas in dwarf galaxies (e.g. SKA or FAST) in local group can help to verify the correctness of cold dark matter.

  20. Galaxy group dynamics using the GAMA survey and predictions from semi-analytics and cosmological simulation.

    NASA Astrophysics Data System (ADS)

    Kafle, Prajwal R.; Robotham, Aaron; Lagos, Claudia; Driver, Simon P.

    2017-01-01

    We aim to discuss the dynamics of galaxies in group environment. We present our current findings on the contentious issue of the stellar mass segregation in galaxy groups using the Galaxy And Mass Assembly (GAMA) survey, the GALFORM semi-analytic and the EAGLE cosmological hydrodynamical simulation catalogues of galaxy groups. We will discuss our main results that show negligible mass segregation in galaxy groups, which also show a lack of redshift evolution.

  1. Local Analogs for High-redshift Galaxies: Resembling the Physical Conditions of the Interstellar Medium in High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Bian, Fuyan; Kewley, Lisa J.; Dopita, Michael A.; Juneau, Stephanie

    2016-05-01

    We present a sample of local analogs for high-redshift galaxies selected in the Sloan Digital Sky Survey (SDSS). The physical conditions of the interstellar medium (ISM) in these local analogs resemble those in high-redshift galaxies. These galaxies are selected based on their positions in the [O iii]/Hβ versus [N ii]/Hα nebular emission-line diagnostic diagram. We show that these local analogs share similar physical properties with high-redshift galaxies, including high specific star formation rates (sSFRs), flat UV continuums, and compact galaxy sizes. In particular, the ionization parameters and electron densities in these analogs are comparable to those in z ≃ 2-3 galaxies, but higher than those in normal SDSS galaxies by ≃0.6 dex and ≃0.9 dex, respectively. The mass-metallicity relation (MZR) in these local analogs shows -0.2 dex offset from that in SDSS star-forming galaxies at the low-mass end, which is consistent with the MZR of the z˜ 2{--}3 galaxies. We compare the local analogs in this study with those in other studies, including Lyman break analogs (LBA) and green pea (GP) galaxies. The analogs in this study share a similar star formation surface density with LBAs, but the ionization parameters and electron density in our analogs are higher than those in LBAs by factors of 1.5 and 3, respectively. The analogs in this study have comparable ionization parameters and electron densities to the GP galaxies, but our method can select galaxies in a wider redshift range. We find the high sSFR and SFR surface density can increase the electron density and ionization parameters, but still cannot fully explain the difference in ISM condition between nearby galaxies and the local analogs/high-redshift galaxies.

  2. Elliptical galaxies kinematics within general relativity with renormalization group effects

    SciTech Connect

    Rodrigues, Davi C.

    2012-09-01

    The renormalization group framework can be applied to Quantum Field Theory on curved space-time, but there is no proof whether the beta-function of the gravitational coupling indeed goes to zero in the far infrared or not. In a recent paper [1] we have shown that the amount of dark matter inside spiral galaxies may be negligible if a small running of the General Relativity coupling G is present (δG/G{sub 0}∼<10{sup −7} across a galaxy). Here we extend the proposed model to elliptical galaxies and present a detailed analysis on the modeling of NGC 4494 (an ordinary elliptical) and NGC 4374 (a giant elliptical). In order to compare our results to a well known alternative model to the standard dark matter picture, we also evaluate NGC 4374 with MOND. In this galaxy MOND leads to a significative discrepancy with the observed velocity dispersion curve and has a significative tendency towards tangential anisotropy. On the other hand, the approach based on the renormalization group and general relativity (RGGR) could be applied with good results to these elliptical galaxies and is compatible with lower mass-to-light ratios (of about the Kroupa IMF type)

  3. Viral coefficient and hidden mass in the galaxy groups

    NASA Technical Reports Server (NTRS)

    Anosova, Joanna P.; Orlov, Victor V.; Kiseleva, Ljudmila G.

    1990-01-01

    The purpose is the verification of the virial mass estimations for small galaxy groups. The dynamical evolution of triple and quintuple galaxies was studied by the numerical simulations. The dependence of the virial coefficient k(t) versus time was derived. Initial k(O) = O. The function k(t) has some strong oscillations from 0.02 to 0.99. Generally, these oscillations are quasiperiodical ones. Such a behavior of k(t) is caused by formation in a system of close isolated temporary double subsystems. A strong correlation between the virial coefficient and the least mutual distance in the system is observed. Such wide oscillations may add into the estimation of virial mass of the galaxy groups an uncertainty of more than one order. An additional uncertainty is introduced by the projection effect. This uncertainty for the individual estimations of the masses approach three orders. Thus any individual estimation of the virial mass is impossible for small galaxy groups. Some possibility of statistical estimation (median or average) of the total mass, including a hidden mass, is shown for the homogeneous samples. The authors propose a method for these estimations based on a comparison of the medians of dynamical parameters (a mean size in projection and a dispersion of relative radial velocities) for the simulated and observed ensembles of the galaxy groups. This method has been applied to a sample of 46 probably physical triplets of galaxies. The probable median of the hidden mass in a volume of the triplet is about 4 M, where M is the total mass of visible matter.

  4. THE RELATION BETWEEN MORPHOLOGY AND DYNAMICS OF POOR GROUPS OF GALAXIES

    SciTech Connect

    Tovmassian, Hrant M.; Plionis, M. E-mail: mplionis@astro.noa.gr

    2009-05-10

    shape, should be attributed mostly to the dynamical state of groups, and (2) groups of galaxies in the local universe do not constitute a family of objects in dynamical equilibrium, but rather a family of cosmic structures that are presently at various stages of their virialization process.

  5. The birthplace of compact groups of galaxies

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Diaferio, Antonaldo; Geller, Margaret J.; Huchra, John P.

    1994-01-01

    We use complete redshift surveys to study the redshift neighborhoods of 38 Hickson compact groups (HCGs). Twenty-nine of these HCGs (76%) are embedded in rich looser systems which we call HCG associations. Analysis of the redshift neighborhood of HCGs outside the CfA survey suggests that most HCGs are embedded in more extended physical systems. Rich loose groups extracted from the CfA survey (Ramella et al. (1994)) have physical properties similar to those of the HCG associations. These rich loose groups often contain compact configurations. N-body experiments (Diaferio (1994)) suggest that compact configurations analogous to HCGs form continually during the collapse of rich loose groups. These observational and numerical results suggest that rich loose groups are the birthplace of HCGs.

  6. Loose groups of galaxies in the Perseus-Pisces survey

    NASA Astrophysics Data System (ADS)

    Trasarti-Battistoni, R.

    1998-06-01

    We present a large catalog of loose groups of galaxies in the Southern Galactic Hemisphere, selected from the Perseus-Pisces redshift Survey (PPS). Particular care is taken in order to obtain group samples as homogeneous as possible to previously published catalogs. All our catalogs contain about 200 groups, significantly more than in most previous studies where group samples were obtained from galaxy data sets of comparable quality to (but smaller extent than) PPS. Groups are identified with the adaptive Friends-Of-Friends (FOF) algorithm of \\cite[Huchra & Geller (1982),]{HG82} with suitable normalizations D_0=0.231 \\ h(-1) Mpc and V_0=350 \\ km \\ s(-1) at cz_0=1000 \\ km \\ s(-1) . The luminosity function (LF) normalization phi_ *=0.02 \\ h(3) \\ Mpc(-3) appropriate for PPS yields a number density threshold delta n/n ~ 180 for the adopted D_0, instead of delta n/n ~ 80 used in previous studies of other samples. However, the customary choice of D_0 obtained (through the LF) from a fixed mass overdensity delta rho / rho =80, well motivated in theory, suffers from important observational uncertainties and sample-to-sample variations of the LF normalization, and from major uncertainties in the relation between galaxy density n and mass density rho . We discuss how to self-consistently match FOF parameters among different galaxy samples. We then separately vary several FOF and sample parameters, and discuss their effect on group properties. Loose groups in PPS nicely trace the large scale structure (LSS) in the parent galaxy sample. The group properties vary little with different redshift corrections, redshift cut-off, and galaxy LF, but are rather sensitive to the adopted links D_0 and V_0. More precisely, the typical group size (velocity dispersion) is linearly related to the adopted distance (velocity) link, while it is rather insensitive to the adopted velocity (distance) link. Physical properties of groups in PPS and in directly comparable samples show good

  7. The Local Tully–Fisher Relation for Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Karachentsev, Igor D.; Kaisina, Elena I.; Kashibadze (Nasonova, Olga G.

    2017-01-01

    We study different incarnations of the Tully–Fisher (TF) relation for the Local Volume (LV) galaxies taken from Updated Nearby Galaxy Catalog. The UNGC sample contains 656 galaxies with W50 H i-line-width estimates, mostly belonging to low-mass dwarfs. Of them, 296 objects have distances measured with accuracies better than 10%. For the sample of 331 LV galaxies having baryonic masses {log}{M}{bar}> 5.8{log} {M}ȯ , we obtain a relation {log}{M}{bar}=2.49{log}{W}50+3.97 with an observed scatter of 0.38 dex. The largest factors affecting the scatter are observational errors in K-band magnitudes and W50 line widths for the tiny dwarfs, as well as uncertainty of their inclinations. We find that accounting for the surface brightness of the LV galaxies or their gas fraction, specific star-formation rate, or isolation index does not essentially reduce the observed scatter on the baryonic TF diagram. We also notice that a sample of 71 dSph satellites of the Milky Way and M31 with a known stellar velocity dispersion σ* tends to follow nearly the same bTF relation, having slightly lower masses than that of late-type dwarfs.

  8. ON THE BARYON FRACTIONS IN CLUSTERS AND GROUPS OF GALAXIES

    SciTech Connect

    Dai Xinyu; Bregman, Joel N.; Kochanek, Christopher S.; Rasia, Elena

    2010-08-10

    We present the baryon fractions of 2MASS groups and clusters as a function of cluster richness using total and gas masses measured from stacked ROSAT X-ray data and stellar masses estimated from the infrared galaxy catalogs. We detect X-ray emission even in the outskirts of clusters, beyond r {sub 200} for richness classes with X-ray temperatures above 1 keV. This enables us to more accurately determine the total gas mass in these groups and clusters. We find that the optically selected groups and clusters have flatter temperature profiles and higher stellar-to-gas mass ratios than the individually studied, X-ray bright clusters. We also find that the stellar mass in poor groups with temperatures below 1 keV is comparable to the gas mass in these systems. Combining these results with individual measurements for clusters, groups, and galaxies from the literature, we find a break in the baryon fraction at {approx}1 keV. Above this temperature, the baryon fraction scales with temperature as f{sub b} {proportional_to} T {sup 0.20{+-}0.03}. We see significantly smaller baryon fractions below this temperature and the baryon fraction of poor groups joins smoothly onto that of systems with still shallower potential wells such as normal and dwarf galaxies where the baryon fraction scales with the inferred velocity dispersion as f{sub b} {proportional_to} {sigma}{sup 1.6}. The small scatter in the baryon fraction at any given potential well depth favors a universal baryon loss mechanism and a preheating model for the baryon loss. The scatter is, however, larger for less massive systems. Finally, we note that although the broken power-law relation can be inferred from data points in the literature alone, the consistency between the baryon fractions for poor groups and massive galaxies inspires us to fit the two categories of objects (galaxies and clusters) with one relation.

  9. Undergraduate ALFALFA Team: Analysis of Spatially-Resolved Star-Formation in Nearby Galaxy Groups and Clusters

    NASA Astrophysics Data System (ADS)

    Finn, Rose; Collova, Natasha; Spicer, Sandy; Whalen, Kelly; Koopmann, Rebecca A.; Durbala, Adriana; Haynes, Martha P.; Undergraduate ALFALFA Team

    2017-01-01

    As part of the Undergraduate ALFALFA Team, we are conducting a survey of the gas and star-formation properties of galaxies in 36 groups and clusters in the local universe. The galaxies in our sample span a large range of galactic environments, from the centers of galaxy groups and clusters to the surrounding infall regions. One goal of the project is to map the spatial distribution of star-formation; the relative extent of the star-forming and stellar disks provides important information about the internal and external processes that deplete gas and thus drive galaxy evolution. We obtained wide-field H-alpha observations with the WIYN 0.9m telescope at Kitt Peak National Observatory for galaxies in the vicinity of the MKW11 and NRGb004 galaxy groups and the Abell 1367 cluster. We present a preliminary analysis of the relative size of the star-forming and stellar disks as a function of galaxy morphology and local galaxy density, and we calculate gas depletion times using star-formation rates and HI gas mass. We will combine these results with those from other UAT members to determine if and how environmentally-driven gas depletion varies with the mass and X-ray properties of the host group or cluster. This work has supported by NSF grants AST-0847430, AST-1211005 and AST-1637339.

  10. Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?

    SciTech Connect

    Sánchez-Conde, Miguel A.; Cannoni, Mirco; Gómez, Mario E.; Zandanel, Fabio; Prada, Francisco E-mail: mirco.cannoni@dfa.uhu.es E-mail: mario.gomez@dfa.uhu.es

    2011-12-01

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We

  11. Dark Matter Searches with Cherenkov Telescopes: Nearby Dwarf Galaxies or Local Galaxy Clusters?

    SciTech Connect

    Sanchez-Conde, Miguel A.; Cannoni, Mirco; Zandanel, Fabio; Gomez, Mario E.; Prada, Francisco; /IAA, Granada

    2012-06-06

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We

  12. Most Distant Group of Galaxies Known in the Universe

    NASA Astrophysics Data System (ADS)

    2002-04-01

    New VLT Discovery Pushes Back the Beginnings Summary Using the ESO Very Large Telescope (VLT) , a team of astronomers from The Netherlands, Germany, France and the USA [1] have discovered the most distant group of galaxies ever seen , about 13.5 billion light-years away. It has taken the light now recorded by the VLT about nine-tenths of the age of the Universe to cover the huge distance. We therefore observe those galaxies as they were at a time when the Universe was only about 10% of its present age . The astronomers conclude that this group of early galaxies will develop into a rich cluster of galaxies, such as those seen in the nearby Universe. The newly discovered structure provides the best opportunity so far for studying when and how galaxies began to form clusters after the initial Big Bang , one of the greatest puzzles in modern cosmology. PR Photo 11a/02 : Sky field with the distant cluster of galaxies. PR Photo 11b/02 : Spectra of some of the galaxies in the cluster. Radio Galaxies as cosmic signposts A most intriguing question in modern astronomy is how the first groupings or "clusters" of galaxies emerged from the gas produced in the Big Bang. Some theoretical models predict that densely populated galaxy clusters ("rich clusters" in current astronomical terminology) are built up through a step-wise process. Clumps develop in the primeval gas, and stars condense out of these clumps to form small galaxies. Then these small galaxies merge together to form larger units. The peculiar class of "radio galaxies" is particularly important for investigating such scenarios. They are called so because their radio emission - a result of violent processes believed to be related to massive black holes located at the centres of these galaxies - is stronger by 5 - 10 orders of magnitude than that of our own Milky Way galaxy. In fact, this radio emission is often so intense that the galaxies can be spotted at extremely large distances, and thus at the remote epoch when

  13. H I OBSERVATIONS OF FIVE GROUPS OF GALAXIES

    SciTech Connect

    Freeland, E.; Wilcots, E.; Stilp, A.

    2009-07-15

    We present the results of H I observations of five groups of galaxies spanning a range of velocity dispersion and spiral fraction (brightest optical group member in parenthesis): NGC 7582 (NGC 7552), USGC U207 (NGC 2759), USGC U070 (NGC 664), USGC U412 (NGC 3822), USGC U451 (NGC 4065). Neutral intragroup gas is detected in three of the five groups. We present the discovery of a previously uncataloged galaxy in the USGC U070 group at {alpha}(2000) = 01{sup h}45{sup m}27{sup s}, {delta}(2000) = +0436'19'', which we are designating FSW J014526.92+043619.1. We compile an H I mass function for the group environment and find that the faint-end slope is consistent with being flat.

  14. Characterising the Dense Molecular Gas in Exceptional Local Galaxies

    NASA Astrophysics Data System (ADS)

    Tunnard, Richard C. A.

    2016-08-01

    The interferometric facilities now coming online (the Atacama Large Millimetre Array (ALMA) and the NOrthern Extended Millimeter Array (NOEMA)) and those planned for the coming decade (the Next Generation Very Large Array (ngVLA) and the Square Kilometre Array (SKA)) in the radio to sub-millimetre regimes are opening a window to the molecular gas in high-redshift galaxies. However, our understanding of similar galaxies in the local universe is still far from complete and the data analysis techniques and tools needed to interpret the observations in consistent and comparable ways are yet to be developed. I first describe the Monte Carlo Markov Chain (MCMC) script developed to empower a public radiative transfer code. I characterise both the public code and MCMC script, including an exploration of the effect of observing molecular lines at high redshift where the Cosmic Microwave Background (CMB) can provide a significant background, as well as the effect this can have on well-known local correlations. I present two studies of ultraluminous infrared galaxies (ULIRGs) in the local universe making use of literature and collaborator data. In the first of these, NGC6240, I use the wealth of available data and the geometry of the source to develop a multi-phase, multi-species model, finding evidence for a complex medium of hot diffuse and cold dense gas in pressure equilibrium. Next, I study the prototypical ULIRG Arp 220; an extraordinary galaxy rendered especially interesting by the controversy over the power source of the western of the two merger nuclei and its immense luminosity and dust obscuration. Using traditional grid based methods I explore the molecular gas conditions within the nuclei and find evidence for chemical differentiation between the two nuclei, potentially related to the obscured power source. Finally, I investigate the potential evolution of proto-clusters over cosmic time with sub-millimetre observations of 14 radio galaxies, unexpectedly finding

  15. Galaxy And Mass Assembly: search for a population of high-entropy galaxy groups

    NASA Astrophysics Data System (ADS)

    Pearson, R. J.; Ponman, T. J.; Norberg, P.; Robotham, A. S. G.; Babul, A.; Bower, R. G.; McCarthy, I. G.; Brough, S.; Driver, S. P.; Pimbblet, K.

    2017-08-01

    Observations with the Chandra X-ray Observatory are used to examine the hot gas properties within a sample of 10 galaxy groups selected from the Galaxy And Mass Assembly survey's optical Friends-of-Friends group catalogue. Our groups have been screened to eliminate spurious and unrelaxed systems, and the effectiveness of this procedure is demonstrated by the detection of intergalactic hot gas in 80 per cent of our sample. However, we find that 9 of the 10 are X-ray underluminous by a mean factor of ∼4 compared to typical X-ray-selected samples. Consistent with this, the majority of our groups have gas fractions that are lower and gas entropies somewhat higher than those seen in typical X-ray-selected samples. Two groups, which have high 2σ lower limits on their gas entropy, are candidates for the population of high-entropy groups predicted by some active galactic nucleus feedback models.

  16. Galaxy interactions and active galactic nuclei in the local universe

    NASA Astrophysics Data System (ADS)

    Ryan, Christopher J.

    2009-06-01

    It has been suggested that galaxy interactions may be the principal mechanism responsible for triggering non-thermal activity in galactic nuclei. This thesis investigates the possible role of interactions in the local Universe by searching for evidence of a causal relationship between major interactions and the initiation of activity in Seyfert galaxies using high-quality, multiwavelength imaging data. The connection between interacting galaxies and Seyferts is explored by comparing the clustering properties of their environments, as quantified by the spatial cross-correlation function amplitude. If a direct evolutionary relationship exists, the objects should be located in environments that are statistically similar. It was previously demonstrated that Seyferts are found in fields comparable to isolated galaxies. The analysis presented in this work reveals that interacting galaxies are preferentially situated in regions consistent with Abell Richness Classes of 0 to 1. The apparent dissimilarity of their environments provides a strong argument against a link between major interactions and Seyfert galaxies. An examination of the photometric and morphological properties of the interacting systems does not uncover any trends that could be associated with the initiation of nuclear activity. The role of major interactions in triggering low-redshift AGNs is then assessed using near-infrared imagery of a sample of Narrow-Line Seyfert 1 galaxies. It has been postulated that these objects are evolutionarily young AGNs, powered by accretion onto supermassive black holes that are considerably lower in mass than those found in typical broad-line Seyferts. By employing the correlation between black hole mass and host galaxy bulge luminosity, the mean black hole mass, [Special characters omitted.] BH , in solar units for the sample is found to be [left angle bracket]log [Special characters omitted.] ( BH )[right angle bracket] = 7.7 ± 0.1, consistent with typical broad

  17. GALAXIES IN X-RAY GROUPS. I. ROBUST MEMBERSHIP ASSIGNMENT AND THE IMPACT OF GROUP ENVIRONMENTS ON QUENCHING

    SciTech Connect

    George, Matthew R.; Bundy, Kevin; Leauthaud, Alexie; Finoguenov, Alexis; Tinker, Jeremy; Lin, Yen-Ting; Mei, Simona; Kneib, Jean-Paul; Ilbert, Olivier; Aussel, Herve; Le Floc'h, Emeric; Behroozi, Peter S.; Busha, Michael T.; Capak, Peter; Coccato, Lodovico; Covone, Giovanni; Faure, Cecile; Fiorenza, Stephanie L.; and others

    2011-12-01

    Understanding the mechanisms that lead dense environments to host galaxies with redder colors, more spheroidal morphologies, and lower star formation rates than field populations remains an important problem. As most candidate processes ultimately depend on host halo mass, accurate characterizations of the local environment, ideally tied to halo mass estimates and spanning a range in halo mass and redshift, are needed. In this work, we present and test a rigorous, probabilistic method for assigning galaxies to groups based on precise photometric redshifts and X-ray-selected groups drawn from the COSMOS field. The groups have masses in the range 10{sup 13} {approx}< M{sub 200c}/M{sub Sun} {approx}< 10{sup 14} and span redshifts 0 < z < 1. We characterize our selection algorithm via tests on spectroscopic subsamples, including new data obtained at the Very Large Telescope, and by applying our method to detailed mock catalogs. We find that our group member galaxy sample has a purity of 84% and completeness of 92% within 0.5 R{sub 200c}. We measure the impact of uncertainties in redshifts and group centering on the quality of the member selection with simulations based on current data as well as future imaging and spectroscopic surveys. As a first application of our new group member catalog which will be made publicly available, we show that member galaxies exhibit a higher quenched fraction compared to the field at fixed stellar mass out to z {approx} 1, indicating a significant relationship between star formation and environment at group scales. We also address the suggestion that dusty star-forming galaxies in such groups may impact the high-l power spectrum of the cosmic microwave background and find that such a population cannot explain the low power seen in recent Sunyaev-Zel'dovich measurements.

  18. Searching for merging groups of galaxies with Suzaku

    NASA Astrophysics Data System (ADS)

    Mitsuishi, Ikuyuki; Maejima, Masato; Babazaki, Yasunori; Kobayashi, Hiroaki; Matsumoto, Hironori; Tawara, Yuzuru; Yamasaki, Noriko Y.; Sasaki, Shin; Sousbie, Thierry

    2015-08-01

    Observational studies for merging group systems are important in terms of understanding dynamical evolution into cluster systems from group-scale halos in structure formation of the Universe. However, observational samples are very limited due to mainly its low surface brightness. Thus, to search for new merging group-scale halos, 11 fields were selected in total and Suzaku X-ray observatory which possesses both high sensitivity especially in the soft energy band below 1 keV and stable background was used. Seven fields are regions located around junctions of galaxy filaments where intense structure formation is expected. The other regions include an optically-identified group in the field of view where an interaction between central and satellite galaxies is observed in optical. A galaxy-galaxy merger including a central massive galaxy can be an indicator of a major merger for group systems because a single massive galaxy can be a perturber for such low mass systems. We conducted both imaging and spectral analysis for all the fields and discovered significant excess X-ray signals compared to background components from all the fields in their images and spectra. At least 5 systems show complex morphologies with multiple peaks in their intensity maps and no corresponding early-type galaxies exist for some of the peaks, which suggests that the systems are experiencing on-going mergers. Resultant temperatures, abundances, luminosities are 1-2 keV, <0.5 solar and 1042-43 erg s-1, respectively and thus the spectral analysis revealed that the excess X-ray emissions originate from group-scale halos associated with a merging event even though no significant deviation was found compared with a known Lx-kT relation (Kawahara et al. 2011, Mitsuishi et al. 2014, Mitsuishi et al. in prep.). In this conference, we will report on the details of our analysis and results using multiwavelength data such as radio, infrared, optical and X-ray to comprehend the merger phenomena and

  19. Dust-obscured galaxies in the local universe

    SciTech Connect

    Hwang, Ho Seong; Geller, Margaret J. E-mail: mgeller@cfa.harvard.edu

    2013-06-01

    We use Wide-field Infrared Survey Explorer (WISE), AKARI, and Galaxy Evolution Explorer (GALEX) data to select local analogs of high-redshift (z ∼ 2) dust obscured galaxies (DOGs). We identify 47 local DOGs with S {sub 12μm}/S {sub 0.22μm} ≥ 892 and S {sub 12μm} > 20 mJy at 0.05 < z < 0.08 in the Sloan Digital Sky Survey data release 7. The infrared (IR) luminosities of these DOGs are in the range 3.4 × 10{sup 10} (L {sub ☉}) ≲ L {sub IR} ≲ 7.0 × 10{sup 11} (L {sub ☉}) with a median L {sub IR} of 2.1 × 10{sup 11} (L {sub ☉}). We compare the physical properties of local DOGs with a control sample of galaxies that have lower S {sub 12μm}/S {sub 0.22μm} but have similar redshift, IR luminosity, and stellar mass distributions. Both WISE 12 μm and GALEX near-ultraviolet (NUV) flux densities of DOGs differ from the control sample of galaxies, but the difference is much larger in the NUV. Among the 47 DOGs, 36% ± 7% have small axis ratios in the optical (i.e., b/a < 0.6), larger than the fraction among the control sample (17% ± 3%). There is no obvious sign of interaction for many local DOGs. No local DOGs have companions with comparable optical magnitudes closer than ∼50 kpc. The large- and small-scale environments of DOGs are similar to the control sample. Many physical properties of local DOGs are similar to those of high-z DOGs, even though the IR luminosities of local objects are an order of magnitude lower than for the high-z objects: the presence of two classes (active galactic nuclei- and star formation-dominated) of DOGs, abnormal faintness in the UV rather than extreme brightness in the mid-IR, and diverse optical morphology. These results suggest a common underlying physical origin of local and high-z DOGs. Both seem to represent the high-end tail of the dust obscuration distribution resulting from various physical mechanisms rather than a unique phase of galaxy evolution.

  20. Iron in galaxy groups and clusters: confronting galaxy evolution models with a newly homogenized data set

    NASA Astrophysics Data System (ADS)

    Yates, Robert M.; Thomas, Peter A.; Henriques, Bruno M. B.

    2017-01-01

    We present an analysis of the iron abundance in the hot gas surrounding galaxy groups and clusters. To do this, we first compile and homogenize a large data set of 79 low-redshift (tilde{z} = 0.03) systems (159 individual measurements) from the literature. Our analysis accounts for differences in aperture size, solar abundance, and cosmology, and scales all measurements using customized radial profiles for the temperature (T), gas density (ρgas), and iron abundance (ZFe). We then compare this data set to groups and clusters in the L-GALAXIES galaxy evolution model. Our homogenized data set reveals a tight T-ZFe relation for clusters, with a scatter in ZFe of only 0.10 dex and a slight negative gradient. After examining potential measurement biases, we conclude that some of this negative gradient has a physical origin. Our model suggests greater accretion of hydrogen in the hottest systems, via stripping from infalling satellites, as a cause. In groups, L-GALAXIES over-estimates ZFe, indicating that metal-rich gas removal (via e.g. AGN feedback) is required. L-GALAXIES is consistent with the observed ZFe in the intracluster medium (ICM) of the hottest clusters at z = 0, and shows a similar rate of ICM enrichment as that observed from at least z ˜ 1.3 to the present day. This is achieved without needing to modify any of the galactic chemical evolution (GCE) model parameters. However, the ZFe in intermediate-T clusters could be under-estimated in our model. We caution that modifications to the GCE modelling to correct this disrupt the agreement with observations of galaxies' stellar components.

  1. Tidal dwarf galaxies in gas-rich groups

    NASA Astrophysics Data System (ADS)

    Sweet, Sarah M.

    2014-09-01

    I develop new methods for identifying and measuring tidal dwarf galaxies, using a sample of galaxies within Hi-rich groups that have no evidence of advanced major mergers. These groups are taken from the Survey of Ionization in Neutral Gas Galaxies (SINGG, Meurer et al., 2006), an optical follow-up survey to the HI Parkes All Sky Survey (HIPASS, Barnes et al., 2001). Fifteen of the fields contain four or more emission line galaxies and are named Choir groups. I detect new dwarf galaxies that are too small to be individually detectable in HIPASS; they are detectable in the SINGG narrow-band imaging because of their star formation and membership of these HI-rich groups. The Choir groups are compact, with a mean projected separation between the two brightest members of 190 kpc. They have comparable star formation efficiency (the ratio of star formation rate to HI mass) to the remaining SINGG fields. The Choir member galaxies also match the wider SINGG sample in their radii, Hα equivalent width and surface brightness. I define a new, more robust calibration for the metallicity diagnostic for identifying tidal dwarf galaxy candidates in the absence of tidal tails, based on the luminosity-metallicity relation with a consistent metallicity definition. Using that calibration, SDSS dwarfs fainter than MR = -16 have a mean metallicity of 12 + log(O/H) = 8.28 (±) 0.10, regardless of their luminosity. Tidal dwarf galaxy candidates in the literature are elevated above this at 12 + log(O/H) = 8.70 (±) 0.05 on average. Our hydrodynamical simulations also predict that tidal dwarf galaxies should have metallicities elevated above the normal luminosity-metallicity relation. I compare 53 star-forming galaxies in 9 of the Hi gas-rich Choir groups and find those brighter than MR ~ -16 to be consistent with the normal relation defined by the SDSS sample. At fainter magnitudes my sample has a wide range in metallicity, suggestive of varying Hi content and environment. Three (16%) of

  2. Ultracompact Blue Dwarfs: Galaxy Formation in the Local Universe?

    NASA Astrophysics Data System (ADS)

    Corbin, Michael

    2004-07-01

    Recent observations suggest that very low-mass galaxies in the local universe are still in the process of formation. To investigate this issue we propose to obtain deep ACS HRC images in the U, V and I bands of a sample of 11 "ultracompact" blue dwarf galaxies {UCBDs} identified in the Sloan Digital Sky Survey. These objects are nearby {z < 0.009}, actively star-forming, and have extremely small angular and physical sizes {d < 6" and D < 1 kpc}. They also tend to reside in voids. Our WFPC2 images of the prototype object of this class, POX 186, reveal this tiny object to have a highly disturbed morphlogy indicative of a recent {within 10^8 yr} collision between two small { 100 pc} clumps of stars that could represent the long-sought building blocks predicted by the Press-Schechter model of hierarchical galaxy formation. This collision has also triggered the formation of a "super" star cluster {SSC} at the object's core that may be the progenitor of a globular cluster. POX 186 thus appears to be a very small dwarf galaxy in the process of formation. This exciting discovery strongly motivates HST imaging of a full sample of UCBDs in order to determine if they have morphologies similar to POX 186. HST images are essential for resolving the structure of these objects, including establishing the presence of SSCs. HST also offers the only way to determine their morphologies in the near UV. The spectra of the objects available from the SDSS will also allow us to measure their star formation rates, dust content and metallicities. In addition to potentially providing the first direct evidence of Press-Schechter building blocks, these data could yield insight into the relationship between galaxy and globular cluster formation, and will serve as a test of the recent "downsizing" model of galaxy formation in which the least massive objects are the last to form.

  3. Properties of Galaxies and Groups at z < 1.4

    NASA Astrophysics Data System (ADS)

    Nascimento, R. S.; Lopes, P. A. A.; Ribeiro, A. L. B.

    2014-10-01

    In this work, we analyze a sample of galaxy groups constructed from the fourth data release of the Deep Extragalactic Evolutionary Probe 2 (DEEP2) including the Extended Groth Strip (EGS). This sample was obtained by Gerke et al. (2012) using the Voronoi-Delaunay Method. We selected 105 galaxy groups with at least 8 members in a radius of 4 Mpc. For each group we estimated its properties such as velocity dispersion (σ), physical radius (R_{200}) and mass (M_{200}). We also classify the groups as Gaussian and non-Gaussian (dynamic evolved or not) based on their galaxy velocity distributions. This classification is based on the following statistical tests: Anderson-Darling, Kolmogorov-Smirnov, Shapiro-Wilk, Jarque-Bera, Cramer-von Mises, D'Agostino and Dip test. When the Dip test confirms the hypothesis of the unimodality and all other tests prove the normality of the system, the group is classified as Gaussian. The behavior of gaussianity was checked varying the distance to the center of the group in 2-4 times its physical radius. Our results show that the number of systems classified as non-Gaussian groups grows with the increase of the physical radius.

  4. Independent Measurements of the Dynamical Masses of Six Galaxy Clusters in the Local Universe

    NASA Astrophysics Data System (ADS)

    Lee, Jounghun

    2017-04-01

    We present independent measurements of the masses of galaxy clusters in the local universe by employing the Dynamical Mass Estimator (DME) originally developed by Falco et al. In the catalog of the galaxy groups/clusters constructed by Tempel et al. from Sloan Digital Sky Survey Data Release 10, we search for galaxy clusters as the targets around which neighbor galaxies constitute thin straight filamentary structures in the configuration space spanned by the redshifts and the projected distances. Out of the 29 Sloan clusters that have 100 or more member galaxies, a total of six targets are found to have filamentary structures in their bound zones. For each of the six targets, we construct the profile of the recession velocities of the filament galaxies, which depend on the cluster mass and the angle of the filament relative to the line-of-sight direction. Fitting the constructed profile to the universal formula with constant amplitude and slope, we statistically determine the dynamical mass of each cluster and compare it with previous estimates made using the conventional method. The weak and strong points of the DME, as well as its prospects for measuring the dynamical masses of high-z clusters, are discussed.

  5. Stellar Populations in the Local Group: Contribution from Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Maciel, W. J.; Costa, R. D. D.; Idiart, T. E. P.; Escudero, A. V.

    2007-05-01

    The role of planetary nebulae (PN) as a key indicator of stellar populations both in the Milky Way and in galaxies of the Local Group has been emphasized in some recent publications (see for example Maciel et al. 2006, Planetary nebulae beyond the Milky Way, ed. L. Stanghellini, J.R. Walsh, N. G. Douglas, Springer, p.209; Richer and McCall 2006, ibid, p. 220; Buzzoni et al. 2006, MNRAS (in press); Ciardullo, R. 2006, IAU Symposium 234, ed. M.J. Barlow, R.H. Mendez, ASP, in press). As the offspring of stars within a reasonably large mass bracket (0.8 to about 8 solar masses), PN encompass an equally large age spread, as well as different spatial and kinematic distributions. For example, in spiral galaxies PN have different properties depending on their location in the disk, bulge or halo populations. They usually present bright emission lines and can be easily distinguished from other emission line objects, so that their chemical composition and spatiokinematical properties are relatively well determined. Therefore, they are particularly suitable for stellar population studies. In this work, we take into account the available data samples of PN in Local Group galaxies and compare the derived information from different objects, particularly regarding the luminosity-specific PN number density, the chemical composition, space distribution and kinematics. Data by our own group on the Milky Way and Magellanic Clouds are combined with recent surveys and theoretical analyses of other galaxies in the Local Group. Special emphasis is given to the disk and bulge populations of PN in the Milky Way and M31, including an analysis of the metallicity distribution, presence of abundance gradients and a determination of the luminosity function from planetary nebulae.

  6. The Galaxy Content of SDSS Clusters And Groups

    SciTech Connect

    Hansen, Sarah M.; Sheldon, Erin S.; Wechsler, Risa H.; Koester, Benjamin P.; /Chicago U., Astron. Astrophys. Ctr.

    2007-11-09

    Imaging data from the Sloan Digital Sky Survey are used to characterize the population of galaxies in groups and clusters detected with the MaxBCG algorithm. We investigate the dependence of Brightest Cluster Galaxy (BCG) luminosity, and the distributions of satellite galaxy luminosity and satellite color, on cluster properties over the redshift range 0.1 {le} z {le} 0.3. The size of the dataset allows us to make measurements in many bins of cluster richness, radius and redshift. We find that, within r200 of clusters with mass above 3x10{sup 13}h{sup -1}M{sub {circle_dot}}, the luminosity function of both red and blue satellites is only weakly dependent on richness. We further find that the shape of the satellite luminosity function does not depend on cluster-centric distance for magnitudes brighter than {sup 0.25}M{sub i} - 5log{sub 10}h = -19. However, the mix of faint red and blue galaxies changes dramatically. The satellite red fraction is dependent on cluster-centric distance, galaxy luminosity and cluster mass, and also increases by {approx}5% between redshifts 0.28 and 0.2, independent of richness. We find that BCG luminosity is tightly correlated with cluster richness, scaling as L{sub BCG} {approx} M{sup 0.3}{sub 200}, and has a Gaussian distribution at fixed richness, with {sigma}{sub log}L {approx} 0.17 for massive clusters. The ratios of BCG luminosity to total cluster luminosity and characteristic satellite luminosity scale strongly with cluster richness: in richer systems, BCGs contribute a smaller fraction of the total light, but are brighter compared to typical satellites. This study demonstrates the power of cross-correlation techniques for measuring galaxy populations in purely photometric data.

  7. THE GALAXY CONTENT OF SDSS CLUSTERS AND GROUPS

    SciTech Connect

    Hansen, Sarah M.; Wechsler, Risa H.; Koester, Benjamin P.

    2009-07-10

    Imaging data from the Sloan Digital Sky Survey are used to characterize the population of galaxies in groups and clusters detected with the MaxBCG algorithm. We investigate the dependence of brightest cluster galaxy (BCG) luminosity, and the distributions of satellite galaxy luminosity and satellite color, on cluster properties over the redshift range 0.1 {<=} z {<=} 0.3. The size of the data set allows us to make measurements in many bins of cluster richness, radius and redshift. We find that, within r {sub 200} of clusters with mass above 3 x 10{sup 13} h {sup -1} M {sub sun}, the luminosity function (LF) of both red and blue satellites is only weakly dependent on richness. We further find that the shape of the satellite LF does not depend on cluster-centric distance for magnitudes brighter than {sup 0.25} M{sub i} - 5log{sub 10} h =-19. However, the mix of faint red and blue galaxies changes dramatically. The satellite red fraction is dependent on cluster-centric distance, galaxy luminosity, and cluster mass, and also increases by {approx}5% between redshifts 0.28 and 0.2, independent of richness. We find that BCG luminosity is tightly correlated with cluster richness, scaling as L {sub BCG} {approx} M {sup 0.3} {sub 200}, and has a Gaussian distribution at fixed richness, with {sigma}{sub logL} {approx} 0.17 for massive clusters. The ratios of BCG luminosity to total cluster luminosity and characteristic satellite luminosity scale strongly with cluster richness: in richer systems, BCGs contribute a smaller fraction of the total light, but are brighter compared to typical satellites. This study demonstrates the power of cross-correlation techniques for measuring galaxy populations in purely photometric data.

  8. The Fastest Galaxy Evolution in an Unbiased Compact Group Sample with WISE

    NASA Astrophysics Data System (ADS)

    Lee, Gwang-Ho; Hwang, Ho Seong; Sohn, Jubee; Lee, Myung Gyoon

    2017-02-01

    We study the mid-infrared (MIR) properties of galaxies in compact groups and their environmental dependence using the Wide-field Infrared Survey Explorer (WISE) data. We use a volume-limited sample of 670 compact groups and their 2175 member galaxies with {M}r< -19.77 and 0.01< z< 0.0741, drawn from Sohn et al., which were identified using a friends-of-friends algorithm. Among the 2175 galaxies, 1541 galaxies are detected at WISE 12 μ {{m}} with a signal-to-noise ratio greater than 3. Among the 1541 galaxies, 433 AGN-host galaxies are identified by using both optical and MIR classification schemes. Using the remaining 1108 non-AGN galaxies, we find that the MIR [3.4]–[12] colors of compact group early-type galaxies are on average bluer than those of cluster early-type galaxies. When compact groups have both early- and late-type member galaxies, the MIR colors of the late-type members in those compact groups are bluer than the MIR colors of cluster late-type galaxies. As compact groups are located in denser regions, they tend to have larger early-type galaxy fractions and bluer MIR color galaxies. These trends are also seen for neighboring galaxies around compact groups. However, compact group member galaxies always have larger early-type galaxy fractions and bluer MIR colors than their neighboring galaxies. Our findings suggest that the properties of compact group galaxies depend on both internal and external environments of compact groups, and that galaxy evolution is faster in compact groups than in the central regions of clusters.

  9. Feeding and feedback in radio galaxies of the local universe

    NASA Astrophysics Data System (ADS)

    Couto, Guilherme dos Santos

    2016-10-01

    We present integral field spectroscopic data covering the inner kiloparsecs of four radio galaxies of the local Universe (z<0.07), Arp 102B, Pictor A, 3C 33 and 4C +29.30, obtained with the GMOS-IFU instrument of the Gemini telescopes. We use these data to analyze the gas excitation and kinematics via two-dimensional maps. Using the flux distributions of the emission lines, we identify extended emission in ionized gas up to the edges of the observed field, which corresponds to 1.7 kpc x 2.5 kpc for Arp 102B, 2.5 kpc x 3.4 kpc for Pictor A, 4.0 kpc x 5.8 kpc for 3C 33 and 4.3 kpc x 6.2 kpc for 4C +29.30. The extended line emitting gas displays structures resembling rotating disks, spiral arms and bars. Line ratios indicate that both photons from the nuclear source and shocks originated in the interaction of the radio jet with circumnuclear gas are ionizing mechanisms of the gas. Line ratio values are typical of Seyfert galaxies for 3C 33 and 4C +29.30, while intermediate values between Seyferts and LINERs are observed in Arp 102B. Pictor A galaxy, however, shows low values of [NII]/Ha=0.15-0.25, expected for HII regions. We suggest that these values are observed due to the low gas metallicity (12+log(O/H)=8.39). Centroid velocity maps show that the gas kinematics is dominated by rotation only in Arp 102B and 3C 33. Outflows are observed in the galaxies Arp 102B, 3C 33 and 4C +29.30. We obtain mass outflow rates of 0.32-0.49 Msun per year, but the outflow kinetic power is small, ranging 0.04-0.07% of the AGN bolometric luminosity, indicating that the feedback has little impact in the host galaxies evolution. The high masses of ionized gas, ranging from 7.4E7 to 4.6E8 Msun, and the fact that these galaxies are early-type, suggest an external origin of the gas. Indeed, it is observed evidence of interaction with companion galaxies in Arp 102B, Pictor A and 4C +29.30. We suggest that the capture of mass has triggered the nuclear activity in these galaxies, with the high

  10. Quantifying the physical properties of high-redshift galaxies: A multi-wavelength survey on the progenitors of local galaxies

    NASA Astrophysics Data System (ADS)

    Petty, Sara Michelle

    Since the discovery of galaxies outside of the Milky Way, studies of nearby galaxies have revealed a very different population of galaxies compared to distant galaxies. My thesis has been motivated by galaxy evolution. In particular, I focus on the connection between nearby and distant galaxies, changes in morphologies with wavelength, and the physical properties of galaxies when the Universe was 1.5 (z = 4) to 6 (z = 1) Gyr old. Rest-frame far-ultraviolet morphologies of 8 nearby interacting and starburst galaxies are artificially redshifted and compared with 54 galaxies at z ˜ 1.5 and 46 galaxies at z ˜ 4. I calculated the Gini coefficient (G), the second-order moment of the brightest 20% of the galaxy's flux (M20), and the Sersic index (n). I showed that ˜20-30% of Lyman-break galaxies have structures similar to local starburst mergers, and may be driven by similar processes. I also determined that Mrk 8, NGC 3079, and NGC 7673 have structures similar to merger-like and clumpy star-forming galaxies observed at z ˜ 1.5 and 4. I selected 301 galaxies from the Ultra Deep Field parallel survey (UDF05) done with HST's infrared camera, NICMOS, to calculate their spectral energy distributions (SEDs). The galaxies are cross-matched using HST ACS and NICMOS filters, and the infrared Spitzer IRAC filters. Photometric redshifts, dust extinction, stellar masses, bolometric luminosity, starburst age and metallicity are estimated through Balmerbreak SED fitting. Comparisons of 16 photometric redshifts with spectroscopic redshifts give 75% agreement. I determined through Monte Carlo simulations that the SED parameters are robust for the redshift ranges z > 1.2. I find that luminosities and star formation rates increase with redshift for a subsample of galaxies at z ˜ 1.5 and z ˜ 4. I demonstrate that multi-wavelength analysis is fundamental to the understanding of galaxy evolution. I determined that G-M20 values of Balmer-break galaxies are more bulge-like in the rest

  11. The effect of local galaxy density on the production of powerful radio sources by early-type galaxies

    NASA Astrophysics Data System (ADS)

    Heckman, T. M.; Carty, T. J.; Bothun, G. D.

    1985-01-01

    The authors have quantitatively analyzed the POSS prints and a set of CCD images obtained at KPNO in order to investigate the local galaxy density around samples of 47 radio-loud and 46 radio-quiet elliptical and lenticular galaxies. The radio sources studied are dominated by steep-spectrum components, not by compact, flat-spectrum ones. The local galaxy density has been measured by weighting the companion galaxies according to their relative size (or luminosity) and/or projected proximity. The primary conclusion is that all measures of average local galaxy density (applied to both the large POSS data set and smaller CCD data set) are larger (by at least a factor of 2 - 3) for the radio-loud galaxies. The statistical significance levels of these results are very high (typically >99.9%). It is argued that the evidence that galaxy interactions foster nuclear activity is now strong and may apply to the whole "zoo" of active extragalactic objects (nuclear starburst galaxies, Seyfert galaxies, Liners, radio galaxies, quasars).

  12. Star Formation in Undergraduate ALFALFA Team Galaxy Groups and Clusters

    NASA Astrophysics Data System (ADS)

    Koopmann, Rebecca A.; Durbala, Adriana; Finn, Rose; Haynes, Martha P.; Coble, Kimberly A.; Craig, David W.; Hoffman, G. Lyle; Miller, Brendan P.; Crone-Odekon, Mary; O'Donoghue, Aileen A.; Troischt, Parker; Undergraduate ALFALFA Team; ALFALFA Team

    2017-01-01

    The Undergraduate ALFALFA Team (UAT) Groups project is a coordinated study of gas and star formation properties of galaxies in and around 36 nearby (z<0.03) groups and clusters of varied richness, morphological type mix, and X-ray luminosity. By studying a large range of environments and considering the spatial distributions of star formation, we probe mechanisms of gas depletion and morphological transformation. The project uses ALFALFA HI observations, optical observations, and digital databases like SDSS, and incorporates work undertaken by faculty and students at different institutions within the UAT. Here we present results from our wide area Hα and broadband R imaging project carried out with the WIYN 0.9m+MOSAIC/HDI at KPNO, including an analysis of radial star formation rates and extents of galaxies in the NGC 5846, Abell 779, NRGb331, and HCG 69 groups/clusters. This work has been supported by NSF grant AST-1211005 and AST-1637339.

  13. Local Group and Star Cluster Dynamics from HSTPROMO: The Hubble Space Telescope Proper Motion Collaboration

    NASA Astrophysics Data System (ADS)

    van der Marel, R. P.; Anderson, J.; Bellini, A.; Besla, G.; Bianchini, P.; Boylan-Kolchin, M.; Chaname, J.; Deason, A.; Do, T.; Guhathakurta, P.; Kallivayalil, N.; Lennon, D.; Massari, D.; Meyer, E.; Platais, I.; Sabbi, E.; Sohn, S. T.; Soto, M.; Trenti, M.; Watkins, L.

    2014-03-01

    The Hubble Space Telescope (HST) has proven to be uniquely suited for the measurement of proper motions (PMs) of stars and galaxies in the nearby Universe. Here we summarize the main results and ongoing studies of the HSTPROMO collaboration, which over the past decade has executed some two dozen observational and theoretical HST projects on this topic. This is continuing to revolutionize our dynamical understanding of many objects, including: globular clusters; young star clusters; stars and stellar streams in the Milky Way halo; Local Group galaxies, including dwarf satellite galaxies, the Magellanic Clouds, and the Andromeda galaxy; and AGN black hole Jets.

  14. Status of The Dynamical Census of Galaxies and Groups in the RESOLVE Survey

    NASA Astrophysics Data System (ADS)

    Eckert, Kathleen D.; Kannappan, Sheila; Hall, Kirsten; Moffett, Amanda J.; Norris, Mark A.; Stark, David; Hoversten, Erik A.; Snyder, Elaine M.; Bittner, Ashley; Norman, Dara J.; Naluminsa, Elizabeth; Crawford, Steve; Vaisanen, Petri; Baker, Ashley; Berlind, Andreas A.; Rosenberg, Daniel; Beauchemin, Ryan William; Bonfield, Charles; RESOLVE Team

    2016-01-01

    The REsolved Spectroscopy of a Local VolumE (RESOLVE) survey is measuring either velocity dispersions or rotation velocities for ~1500 galaxies and ~200 multi-galaxy groups within >50,000 cubic Mpc of the z~0 universe, above a galaxy baryonic mass limit of ~10^9 Msun. Our kinematic census combines multi-slit, IFU, Fabry-Perot, long-slit, and radio linewidth data from the SOAR, SALT, Gemini, AAT, GBT, and Arecibo telescopes, with telescope/instrument combinations optimized for individual galaxy properties. We present a status update of the data taken, particularly focusing on the RESOLVE Early Science region overlapping Stripe 82. We also discuss challenges for dynamical measurements including measuring galaxy inclinations, determining the mix of support from rotational and random motions, and measuring dynamical masses for groups with few members. Finally, we conclude with a preliminary velocity function for the RESOLVE Early Science region. This work has been supported by the NSF through grants AST-0955368 and OCI-1156614, the NC Space Grant Graduate Research Fellowship Program, and a UNC Royster Society of Fellows Dissertation Completion Fellowship.

  15. The early chemical enrichment histories of two Sculptor group dwarf galaxies as revealed by RR lyrae variables

    SciTech Connect

    Yang, Soung-Chul; Kim, Sang Chul; Kyeong, Jaemann; Wagner-Kaiser, Rachel; Sarajedini, Ata

    2014-03-20

    We present the results of our analysis of the RR Lyrae (RRL) variable stars detected in two transition-type dwarf galaxies (dTrans), ESO294-G010 and ESO410-G005 in the Sculptor group, which is known to be one of the closest neighboring galaxy groups to our Local Group. Using deep archival images from the Advanced Camera for Surveys on board the Hubble Space Telescope, we have identified a sample of RRL candidates in both dTrans galaxies (219 RRab (RR0) and 13 RRc (RR1) variables in ESO294-G010; 225 RRab and 44 RRc stars in ESO410-G005). The metallicities of the individual RRab stars are calculated via the period-amplitude-[Fe/H] relation derived by Alcock et al. This yields mean metallicities of ([Fe/H]){sub ESO294} = –1.77 ± 0.03 and ([Fe/H]){sub ESO410} = –1.64 ± 0.03. The RRL metallicity distribution functions (MDFs) are investigated further via simple chemical evolution models; these reveal the relics of the early chemical enrichment processes for these two dTrans galaxies. In the case of both galaxies, the shapes of the RRL MDFs are well described by pre-enrichment models. This suggests two possible channels for the early chemical evolution for these Sculptor group dTrans galaxies: (1) the ancient stellar populations of our target dwarf galaxies might have formed from the star forming gas which was already enriched through 'prompt initial enrichment' or an 'initial nucleosynthetic spike' from the very first massive stars, or (2) this pre-enrichment state might have been achieved by the end products from more evolved systems of their nearest neighbor, NGC 55. We also study the environmental effects of the formation and evolution of our target dTrans galaxies by comparing their properties with those of 79 volume limited (D {sub ☉} < 2 Mpc) dwarf galaxy samples in terms of the luminosity-metallicity relation and the H I gas content. The presence of these RRL stars strongly supports the idea that although the Sculptor Group galaxies have a considerably

  16. A Catalog of Visually Classified Galaxies in the Local (z ∼ 0.01) Universe

    NASA Astrophysics Data System (ADS)

    Ann, H. B.; Seo, Mira; Ha, D. K.

    2015-04-01

    The morphological types of 5836 galaxies were classified by a visual inspection of color images using the Sloan Digital Sky Survey Data Release 7 to produce a morphology catalog of a representative sample of local galaxies with z\\lt 0.01. The sample galaxies are almost complete for galaxies brighter than {{r}pet}=17.77. Our classification system is basically the same as that of the Third Reference Catalog of Bright Galaxies with some simplifications for giant galaxies. On the other hand, we distinguish the fine features of dwarf elliptical (dE)-like galaxies to classify five subtypes: dE, blue-cored dwarf ellipticals, dwarf spheroidals (dSph), blue dwarf ellipticals (dEblue), and dwarf lenticulars (dS0). In addition, we note the presence of nucleation in dE, dSph, and dS0. Elliptical galaxies and lenticular galaxies contribute only ∼ 1.5 and ∼ 4.9% of local galaxies, respectively, whereas spirals and irregulars contribute ∼ 32.1 and ∼ 42.8%, respectively. The dEblue galaxies, which are a recently discovered population of galaxies, contribute a significant fraction of dwarf galaxies. There seem to be structural differences between dSph and dE galaxies. The dSph galaxies are fainter and bluer with a shallower surface brightness gradient than dE galaxies. They also have a lower fraction of galaxies with small axis ratios (b/a≲ 0.4) than dE galaxies. The mean projected distance to the nearest neighbor galaxy is ∼260 kpc. About 1% of local galaxies have no neighbors with comparable luminosity within a projected distance of 2 Mpc.

  17. Understanding Local Luminous Infrared Galaxies in the Herschel Era

    NASA Astrophysics Data System (ADS)

    Chu, Jason; Sanders, David B.; Larson, Kirsten L.; Mazzarella, Joseph M.; Howell, Justin; Diaz Santos, Tanio; Xu, C. Kevin; Paladini, Roberta; Schulz, Bernhard; Shupe, David L.; Appleton, Philip N.; Armus, Lee; Billot, Nicolas; Pan Chan, Hiu; Evans, Aaron S.; Fadda, Dario; Frayer, David T.; Haan, Sebastian; Mie Ishida, Catherine; Iwasawa, Kazushi; Kim, Dong-Chan; Lord, Steven D.; Murphy, Eric J.; Petric, Andreea; Privon, George C.; Surace, Jason A.; Treister, Ezequiel; Great Observatories All-Sky LIRG Survey, Cosmic Evolution Survey

    2017-06-01

    Luminous and ultraluminous infrared galaxies [(U)LIRGs] are some of the most extreme objects in the universe with their elevated star formation rates and/or presence of a powerful AGN, playing a central role in the evolution of galaxies throughout cosmic history. The 201 local (U)LIRGs (z<0.088) within the Great Observatories All-Sky LIRG Survey (GOALS) provide an unmatched opportunity to characterize the diverse properties in a large, statistically significant sample, in addition to comparisons with their high redshift counterparts. In this thesis talk I will first present the Herschel PACS and SPIRE far infrared image atlas of the entire GOALS sample (encompassing the 70-500 micron wavelength range), and demonstrate the excellent data quality. The Herschel GOALS images presented here are the highest resolution, most sensitive and comprehensive far-infrared imaging survey of the nearest (U)LIRGs to date. This allows us for the first time to directly probe the critical far infrared and submillimeter wavelength regime of these systems, enabling us to accurately determine the bolometric luminosities, infrared surface brightnesses, star formation rates, and dust masses and temperatures on spatial scales of 2-5 kpc. In addition, the superb resolution of Herschel means we can resolve many of the galaxy pairs and systems within the GOALS sample, allowing us to measure far infrared fluxes of component galaxies. Finally, using the Herschel photometry in conjunction with Spitzer, WISE, and IRAS data, I will show our first results on the global properties of (U)LIRGs such as their average 3-500 micron infrared SEDs and far infrared colors, and compare them to lower infrared luminosity objects. We will also compare and contrast their infrared SED shapes with previously published SED templates from the literature. If time permits, I will also show initial results from our rest-frame optical spectroscopy program on z~2.3 infrared selected galaxies in the COSMOS field.

  18. Dwarfs and Giants in the local flows of galaxies.

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Emelyanov, N. V.; Karachentsev, I. D.

    We use recent Hubble Space Telescope data on nearby dwarf and giant galaxies to study the dynamical structure and evolutionary trends of the local expansion flows of galaxies. It is found that antigravity of dark energy dominates the force field of the flows and makes them expand with acceleration. It also cools the flows and introduces to them the nearly linear velocity-distance relation with the time-rate close to the global Hubble's factor. There are grounds to expect that this is the universal physical regularity that is common not only for the nearby flows we studied here, but also for all the expansion flows of various spatial scales from the 1 Mpc scale and up to the scale of the global cosmological expansion.

  19. A photometric catalog of compact groups of galaxies

    SciTech Connect

    Hickson, P.; Auman, J.R.; Kindl, E. )

    1989-08-01

    The paper presents astrometry, photometry, and morphological types, derived from CCD images, for 463 galaxies in the 100 compact groups selected by Hickson. Some minor revisions to the membership of the original catalog are made, based on these new images. The completeness of the catalog is considered as a function of group magnitude and Galactic latitude. At high Galactic latitude the catalog is estimated to be 90 percent complete for groups with total B(T) magnitude 13.0 or less. It is less complete at lower Galactic latitude because of obscuration and high stellar density. 28 refs.

  20. Galaxy Zoo: building the low-mass end of the red sequence with local post-starburst galaxies

    NASA Astrophysics Data System (ADS)

    Wong, O. I.; Schawinski, K.; Kaviraj, S.; Masters, K. L.; Nichol, R. C.; Lintott, C.; Keel, W. C.; Darg, D.; Bamford, S. P.; Andreescu, D.; Murray, P.; Raddick, M. J.; Szalay, A.; Thomas, D.; Vandenberg, J.

    2012-02-01

    We present a study of local post-starburst galaxies (PSGs) using the photometric and spectroscopic observations from the Sloan Digital Sky Survey and the results from the Galaxy Zoo project. We find that the majority of our local PSG population have neither early- nor late-type morphologies but occupy a well-defined space within the colour-stellar mass diagram, most notably, the low-mass end of the 'green valley' below the transition mass thought to be the mass division between low-mass star-forming galaxies and high-mass passively evolving bulge-dominated galaxies. Our analysis suggests that it is likely that local PSGs will quickly transform into 'red', low-mass early-type galaxies as the stellar morphologies of the 'green' PSGs largely resemble that of the early-type galaxies within the same mass range. We propose that the current population of PSGs represents a population of galaxies which is rapidly transitioning between the star-forming and the passively evolving phases. Subsequently, these PSGs will contribute towards the build-up of the low-mass end of the 'red sequence' once the current population of young stars fade and stars are no longer being formed. These results are consistent with the idea of 'downsizing' where the build-up of smaller galaxies occurs at later epochs. This publication has been made possible by the participation of more than 250 000 volunteers in the Galaxy Zoo project. Their contributions are individually acknowledged at .

  1. The black hole mass function derived from local spiral galaxies

    SciTech Connect

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Daniel; Kennefick, Julia; Seigar, Marc S.; Lacy, Claud H. S.; Hartley, Matthew T.

    2014-07-10

    We present our determination of the nuclear supermassive black hole (SMBH) mass function for spiral galaxies in the local universe, established from a volume-limited sample consisting of a statistically complete collection of the brightest spiral galaxies in the southern (δ < 0°) hemisphere. Our SMBH mass function agrees well at the high-mass end with previous values given in the literature. At the low-mass end, inconsistencies exist in previous works that still need to be resolved, but our work is more in line with expectations based on modeling of black hole evolution. This low-mass end of the spectrum is critical to our understanding of the mass function and evolution of black holes since the epoch of maximum quasar activity. The sample is defined by a limiting luminosity (redshift-independent) distance, D{sub L} = 25.4 Mpc (z = 0.00572) and a limiting absolute B-band magnitude, M{sub B}=−19.12. These limits define a sample of 140 spiral galaxies, with 128 measurable pitch angles to establish the pitch angle distribution for this sample. This pitch-angle distribution function may be useful in the study of the morphology of late-type galaxies. We then use an established relationship between the logarithmic spiral arm pitch angle and the mass of the central SMBH in a host galaxy in order to estimate the mass of the 128 respective SMBHs in this volume-limited sample. This result effectively gives us the distribution of mass for SMBHs residing in spiral galaxies over a lookback time, t{sub L} ≤ 82.1 h{sub 67.77}{sup −1} Myr and contained within a comoving volume, V{sub C} = 3.37 × 10{sup 4} h{sub 67.77}{sup −3} Mpc{sup 3}. We estimate that the density of SMBHs residing in spiral galaxies in the local universe is ρ=5.54{sub −2.73}{sup +6.55} × 10{sup 4} h{sub 67.77}{sup 3} M{sub ☉} Mpc{sup –3}. Thus, our derived cosmological SMBH mass density for spiral galaxies is Ω{sub BH}=4.35{sub −2.15}{sup +5.14} × 10{sup –7} h{sub 67.77}. Assuming that

  2. Decaying sterile neutrino dark matter in the Local Group

    NASA Astrophysics Data System (ADS)

    Bozek, Brandon; Boylan-Kolchin, Michael; Horiuchi, Shunsaku; Garrison-Kimmel, Shea; Abazajian, Kevork; Bullock, James

    2017-01-01

    The detection of a 3.55 keV X-ray line in clusters of galaxies and the Andromeda and Milky Way galaxies, while contentious, can be explained by the decay of resonantly-produced 7.1 keV sterile neutrinos. If the X-ray line is confirmed to be the result of dark matter decay, then it is the first non-gravitational signal of dark matter and groundbreaking evidence of physics beyond the standard model. We use simulations that accurately model the dark matter distribution of the Local Group in realistic sterile neutrino cosmologies to study the dark matter interpretation of the X-ray flux. We present the sterile neutrino dark matter models that are consistent with the observed M31 flux profile and discuss the predictions of these models for X-ray observations of classical Milky Way dwarf galaxies. We discuss how these results relate to Lyman-alpha forest constraints of sterile neutrino models and predictions for satellite galaxy counts in future surveys, which may be able to rule out 7.1 keV sterile neutrinos as a dark matter candidate.

  3. RR Lyrae variables in the Andromeda group galaxies

    NASA Astrophysics Data System (ADS)

    Yang, Soung-Chul

    2011-08-01

    /H ]AndXI = -1.75; [Fe/H] AndXIII = --1.74) are consistent with the values calculated from the RGB slope indicating that our measurements are not significantly affected by the evolutionary effects of RRL stars. The distance to each galaxy was calculated using the absolute V magnitudes of the RRab stars. We obtained (m -- M)0, V = 24.54 for And XI and this value becomes (m -- M)0,V = 24.71 for And XIII. We discuss the origins of And XI and And XIII based on a comparative analysis of the luminosity-metallicity (L-M) relation of Local Group dwarf galaxies.

  4. Disk Galaxies in the Outer Local Supercluster: Optical CCD Surface Photometry and Distribution of Galaxy Disk Parameter

    NASA Technical Reports Server (NTRS)

    Lu, N. Y.

    1998-01-01

    We report new B-band CCD surface photometry on a sample of 76 disk galaxies brighter than BT = 14.5 mag in the Uppsala General Catalogue of Galaxies, which are confined within a volume located in the outer part of the Local Supercluster.

  5. A 17-billion-solar-mass black hole in a group galaxy with a diffuse core

    NASA Astrophysics Data System (ADS)

    Thomas, Jens; Ma, Chung-Pei; McConnell, Nicholas J.; Greene, Jenny E.; Blakeslee, John P.; Janish, Ryan

    2016-04-01

    Quasars are associated with and powered by the accretion of material onto massive black holes; the detection of highly luminous quasars with redshifts greater than z = 6 suggests that black holes of up to ten billion solar masses already existed 13 billion years ago. Two possible present-day ‘dormant’ descendants of this population of ‘active’ black holes have been found in the galaxies NGC 3842 and NGC 4889 at the centres of the Leo and Coma galaxy clusters, which together form the central region of the Great Wall—the largest local structure of galaxies. The most luminous quasars, however, are not confined to such high-density regions of the early Universe; yet dormant black holes of this high mass have not yet been found outside of modern-day rich clusters. Here we report observations of the stellar velocity distribution in the galaxy NGC 1600—a relatively isolated elliptical galaxy near the centre of a galaxy group at a distance of 64 megaparsecs from Earth. We use orbit superposition models to determine that the black hole at the centre of NGC 1600 has a mass of 17 billion solar masses. The spatial distribution of stars near the centre of NGC 1600 is rather diffuse. We find that the region of depleted stellar density in the cores of massive elliptical galaxies extends over the same radius as the gravitational sphere of influence of the central black holes, and interpret this as the dynamical imprint of the black holes.

  6. Evolution of Compact and Fossil Groups of Galaxies from Semi-analytical Models of Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Farhang, Amin; Khosroshahi, Habib G.; Mamon, Gary A.; Dariush, Ali. A.; Raouf, Mojtaba

    2017-05-01

    We compare the mean mass assembly histories of compact and fossil galaxy groups in the Millennium Dark Matter Simulation and an associated semi-analytic galaxy formation model. Tracing the halo mass of compact groups (CGs) from z = 0 to z = 1 shows that, on average, 55% of the halo mass in CGs is assembled since z˜ 1, compared to 40% of the halo mass in fossil groups (FGs) on the same time interval, indicating that compared to FGs, CGs are relatively younger galaxy systems. At z = 0, for a given halo mass, FGs tend to have a larger concentration than CGs. Investigating the evolution of CG’s parameters reveals that they become more compact with time. CGs at z = 0.5 see their magnitude gaps increase exponentially, but it takes ˜10 Gyr for them to reach a magnitude gap of 2 mag. The slow growth of the magnitude gap leads to only a minority (˜41%) of CGs selected at z = 0.5 turning into a FG by z = 0. Also, while three-quarters of FGs go through a compact phase, most fail to meet the CG isolation criterion, leaving only ˜30% of FGs fully satisfying the CG selection criteria. Therefore, there is no strong link of CGs turning into FGs or FGs originating from CGs. The relation between CGs and FGs is thus more complex, and in most cases, FGs and CGs follow different evolutionary tracks.

  7. Fossil group origins. VII. Galaxy substructures in fossil systems

    NASA Astrophysics Data System (ADS)

    Zarattini, S.; Girardi, M.; Aguerri, J. A. L.; Boschin, W.; Barrena, R.; del Burgo, C.; Castro-Rodriguez, N.; Corsini, E. M.; D'Onghia, E.; Kundert, A.; Méndez-Abreu, J.; Sánchez-Janssen, R.

    2016-02-01

    Context. Fossil groups (FG) are expected to be the final product of galaxy merging within galaxy groups. In simulations, they are predicted to assemble their mass at high redshift. This early formation allows for the innermost M∗ galaxies to merge into a massive central galaxy. Then, they are expected to maintain their fossil status because of the few interactions with the large-scale structure. In this context, the magnitude gap between the two brightest galaxies of the system is considered a good indicator of its dynamical status. As a consequence, the systems with the largest gaps should be dynamically relaxed. Aims: In order to examine the dynamical status of these systems, we systematically analyze, for the first time, the presence of galaxy substructures in a sample of 12 spectroscopically-confirmed fossil systems with redshift z ≤ 0.25. Methods: We apply a number of tests to investigate the substructure in fossil systems in the two-dimensional space of projected positions out to R200. Moreover, for a subsample of five systems with at least 30 spectroscopically-confirmed members we also analyze the substructure in the velocity and in the three-dimensional velocity-position spaces. Additionally, we look for signs of recent mergers in the regions around the central galaxies. Results: We find that an important fraction of fossil systems show substructure. The fraction depends critically on the adopted test, since each test is more sensitive to a particular type of substructure. Conclusions: Our interpretation of the results is that fossil systems are not, in general, as relaxed as expected from simulations. Our sample of 12 spectroscopically-confirmed fossil systems need to be extended to compute an accurate fraction, but our conclusion is that this fraction is similar to the fraction of substructure detected in nonfossil clusters. This result points out that the magnitude gap alone is not a good indicator of the dynamical status of a system. However, the

  8. Constraints on the Optical Depth of Galaxy Groups and Clusters

    NASA Astrophysics Data System (ADS)

    Flender, Samuel; Nagai, Daisuke; McDonald, Michael

    2017-03-01

    Future data from galaxy redshift surveys, combined with high-resolutions maps of the cosmic microwave background, will enable measurements of the pairwise kinematic Sunyaev–Zel’dovich (kSZ) signal with unprecedented statistical significance. This signal probes the matter-velocity correlation function, scaled by the average optical depth (τ) of the galaxy groups and clusters in the sample, and is thus of fundamental importance for cosmology. However, in order to translate pairwise kSZ measurements into cosmological constraints, external constraints on τ are necessary. In this work, we present a new model for the intracluster medium, which takes into account star formation, feedback, non-thermal pressure, and gas cooling. Our semi-analytic model is computationally efficient and can reproduce results of recent hydrodynamical simulations of galaxy cluster formation. We calibrate the free parameters in the model using recent X-ray measurements of gas density profiles of clusters, and gas masses of groups and clusters. Our observationally calibrated model predicts the average {τ }500 (i.e., the integrated τ within a disk of size R 500) to better than 6% modeling uncertainty (at 95% confidence level). If the remaining uncertainties associated with other astrophysical uncertainties and X-ray selection effects can be better understood, our model for the optical depth should break the degeneracy between optical depth and cluster velocity in the analysis of future pairwise kSZ measurements and improve cosmological constraints with the combination of upcoming galaxy and CMB surveys, including the nature of dark energy, modified gravity, and neutrino mass.

  9. Constraints on the optical depth of galaxy groups and clusters

    DOE PAGES

    Flender, Samuel; Nagai, Daisuke; McDonald, Michael

    2017-03-10

    Here, future data from galaxy redshift surveys, combined with high-resolutions maps of the cosmic microwave background, will enable measurements of the pairwise kinematic Sunyaev–Zel'dovich (kSZ) signal with unprecedented statistical significance. This signal probes the matter-velocity correlation function, scaled by the average optical depth (τ) of the galaxy groups and clusters in the sample, and is thus of fundamental importance for cosmology. However, in order to translate pairwise kSZ measurements into cosmological constraints, external constraints on τ are necessary. In this work, we present a new model for the intracluster medium, which takes into account star formation, feedback, non-thermal pressure, and gas cooling. Our semi-analytic model is computationally efficient and can reproduce results of recent hydrodynamical simulations of galaxy cluster formation. We calibrate the free parameters in the model using recent X-ray measurements of gas density profiles of clusters, and gas masses of groups and clusters. Our observationally calibrated model predicts the averagemore » $${\\tau }_{500}$$ (i.e., the integrated τ within a disk of size R 500) to better than 6% modeling uncertainty (at 95% confidence level). If the remaining uncertainties associated with other astrophysical uncertainties and X-ray selection effects can be better understood, our model for the optical depth should break the degeneracy between optical depth and cluster velocity in the analysis of future pairwise kSZ measurements and improve cosmological constraints with the combination of upcoming galaxy and CMB surveys, including the nature of dark energy, modified gravity, and neutrino mass.« less

  10. Groups of galaxies in the Center for Astrophysics redshift survey

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Geller, Margaret J.; Huchra, John P.

    1989-01-01

    By applying the Huchra and Geller (1982) objective group identification algorithm to the Center for Astrophysics' redshift survey, a catalog of 128 groups with three or more members is extracted, and 92 of these are used as a statistical sample. A comparison of the distribution of group centers with the distribution of all galaxies in the survey indicates qualitatively that groups trace the large-scale structure of the region. The physical properties of groups may be related to the details of large-scale structure, and it is concluded that differences among group catalogs may be due to the properties of large-scale structures and their location relative to the survey limits.

  11. A model for the formation of the Local Group

    SciTech Connect

    Peebles, P.J.E.; Melott, A.L.; Holmes, M.R.; Jiang, L.R. Kansas Univ., Lawrence )

    1989-10-01

    Observational tests of a model for the formation of the Local Group are presented and analyzed in which the mass concentration grows by gravitational accretion of local-pressure matter onto two seed masses in an otherwise homogeneous initial mass distribution. The evolution of the mass distribution is studied in an analytic approximation and a numerical computation. The initial seed mass and separation are adjusted to produce the observed present separation and relative velocity of the Andromeda Nebula and the Galaxy. If H(0) is adjusted to about 80 km/s/Mpc with density parameter Omega = 1, then the model gives a good fit to the motions of the outer members of the Local Group. The same model gives particle orbits at radius of about 100 kpc that reasonably approximate the observed distribution of redshifts of the Galactic satellites. 47 refs.

  12. A model for the formation of the Local Group

    NASA Technical Reports Server (NTRS)

    Peebles, P. J. E.; Melott, A. L.; Holmes, M. R.; Jiang, L. R.

    1989-01-01

    Observational tests of a model for the formation of the Local Group are presented and analyzed in which the mass concentration grows by gravitational accretion of local-pressure matter onto two seed masses in an otherwise homogeneous initial mass distribution. The evolution of the mass distribution is studied in an analytic approximation and a numerical computation. The initial seed mass and separation are adjusted to produce the observed present separation and relative velocity of the Andromeda Nebula and the Galaxy. If H(0) is adjusted to about 80 km/s/Mpc with density parameter Omega = 1, then the model gives a good fit to the motions of the outer members of the Local Group. The same model gives particle orbits at radius of about 100 kpc that reasonably approximate the observed distribution of redshifts of the Galactic satellites.

  13. Hot X-ray gas in galaxies, groups and clusters

    NASA Astrophysics Data System (ADS)

    Sun, Ming

    I investigate several aspects of X-ray gas in galaxies, groups and clusters, all related to the fundamental problems of radiative cooling and AGN feedback. A sample of 14 relaxed clusters and groups are studied, with an emphasis on their temperature and entropy profiles. Three clusters with isothermal temperature distributions are discovered which also have isentropic gas cores and weaker central radio activity than other cooling core clusters. This suggests a connection between gas cooling and feedback from supermassive black holes. A comparison of entropy profiles shows that within 0.1 virial radii, group entropy profiles are flatter than those of hot clusters and those predicted from simulations involving only gravity. From 0.1 to 0.35 virial radius, the slope of the cluster entropy profiles is consistent with simulations. Interesting systems (e.g., a hot but X-ray faint group and an isothermal group with a very high gas density core) in the sample are also discussed. I also present work on the X-ray coronae of galaxies in rich clusters, including detailed studies of coronae in A1367 and a small corona in NGC 1265. Cool X-ray coronae of early-type galaxies (0.5-1 keV), pressure confined in hot (>3 keV) clusters, are found to be common, although their properties have been significantly modified by the ICM environment. Despite the effects of gas stripping, ICM evaporation and AGN outbursts of the central SMBH, the survival of these small and vulnerable coronae puts interesting constraints on the physics of the interactions of the coronae. For example, transport processes (e.g., heat conduction) must be strongly suppressed, presumably by magnetic fields and the coronae must avoid disruption by energy output from the central AGN.

  14. PN populations in the local group and distant stellar populations

    NASA Astrophysics Data System (ADS)

    Reid, Warren

    2016-08-01

    Our understanding of galactic structure and evolution is far from complete. Within the past twelve months we have learnt that the Milky Way is about 50% wider than was previously thought. As a consequence, new models are being developed that force us to reassess the kinematic structure of our Galaxy. Similarly, we need to take a fresh look at the halo structure of external galaxies in our Local Group. Studies of stellar populations, star-forming regions, clusters, the interstellar medium, elemental abundances and late stellar evolution are all required in order to understand how galactic assembly has occurred as we see it. PNe play an important role in this investigation by providing a measure of stellar age, mass, abundances, morphology, kinematics and synthesized matter that is returned to the interstellar medium (ISM). Through a method of chemical tagging, halo PNe can reveal evidence of stellar migration and galactic mergers. This is an outline of the advances that have been made towards uncovering the full number of PNe in our Local Group galaxies and beyond. Current numbers are presented and compared to total population estimates based on galactic mass and luminosity. A near complete census of PNe is crucial to understanding the initial-to-final mass relation for stars with mass >1 to <8 times the mass of the sun. It also allows us to extract more evolutionary information from luminosity functions and compare dust-to-gas ratios from PNe in different galactic locations. With new data provided by the Gaia satellite, space-based telescopes and the rise of giant and extra-large telescopes, we are on the verge of observing and understanding objects such as PNe in distant galaxies with the same detail we expected from Galactic observations only a decade ago.

  15. Spectral properties of galaxies in the Stromlo-APM redshift survey: clues on the local star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Tresse, L.; Maddox, S. J.; Loveday, J.

    We analyse emission-line properties of the bj-selected Stromlo-APM spectra ( = 0.05). Because this is a representative sample, we can study the global spectral properties of the local galaxy population. We classify spectra according to their H_alpha emission, which is closely related to massive star formation. This study gives a comparative local point for analysis of more distant surveys. We show that in the local universe, faint, small galaxies are dominated by star formation activity, while bright, large galaxies are more quiescent. Obviously this picture of the local universe is quite different from the distant one, where bright galaxies appear to show a rapidly-increasing activity back in time.

  16. The motions of clusters and group of galaxies

    NASA Technical Reports Server (NTRS)

    Bahcall, Neta A.; Gramann, Mirt; Cen, Renyue

    1994-01-01

    The distributions of peculiar velocities of rich clusters and of groups of galaxies are investigated for different cosmological models and are compared with observations. Four cosmological models are studied: standard cold dark matter (CDM) (omega = 1); low-density CDM (omega = 0.3); hot dark matter (HDM) (omega = 1); and primeval baryonic isocurvature (PBI) (omega = 0.3). All models are normalized to the microwave background fluctuations observed by Cosmic Background Explorer (COBE). We find that rich clusters of galaxies exhibit a Maxwellian distribution of peculiar velocities in all models, as expected from a Gaussian initial density field. The clusters appear to be fundamental and efficient tracers of the large-scale velocity field. The cluster three-dimensional velocity distribution typically peaks at v approximately 600 km/s and extends to high cluster velocities of v approximately 2000 km/s. The low-density CDM model exhibits somewhat lower velocities: it peaks at approximately 400 km/s and extends to approximately 1200 km/s. Approximately 10% (approximately 1% for low-density CDM) of all model rich clusters move with high peculiar velocities of V greater than or = 10(exp 3) km/s. The highest velocity clusters frequently originate in dense superclusters. The model velocity distributions of rich clusters are compared with the model velocity distributions of small groups of galaxies, and of the total matter. The group velocity distribution is, in general, similar to the velocity distribution of the rich clusters. The matter velocity distribution is similar to that of the rich clusters for the omega = 0.3 models; these models exhibit Maxwellian velocity distributions for clusters, for groups, and for matter that are all similar to one another. The mass distribution in the omega = 1 models, however, exhibits a longer tail of high velocities than do the clusters. This high-velocity tail originates mostly from the high velocities that exist within rich clusters

  17. Using M Dwarfs to Map Extinction in the Local Galaxy

    NASA Astrophysics Data System (ADS)

    Jones, David; West, A. A.; Foster, J.

    2011-01-01

    We use spectra of more than 56,000 M dwarfs from the Sloan Digital Sky Survey (SDSS) to create a high-latitude extinction map of the local Galaxy. Our technique compares spectra from low-extinction lines of sight as determined by Schlegel, Finkbeiner, & Davis to other SDSS spectra in order to derive improved distances and accurate extinctions for the stars in the SDSS data release 7 M dwarf sample. Unlike most previous studies, which have used a two-color method to determine extinction, we fit extinction curves to fluxes across the entire spectral range from 5700 to 9200 angstroms for every star in our sample. Our result is an extinction map that extends from a few tens of pc to approximately 2 kpc from the Sun. We also use a similar technique to create a map of Rv values within approximately 1 kpc of the Sun and find that they are roughly consistent with the widely accepted diffuse interstellar medium value of 3.1. Using our extinction data, we derive a dust scale height for the local galaxy of 176 ± 15 parsecs.

  18. 11HUGS & LVL: Star Formation Properties of Local Volume Galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Janice C.; Gil de Paz, A.; Tremonti, C.; Kennicutt, R.; van Zee, L.; Sakai, S.; Funes, J. G.; LVL Team

    2007-12-01

    11HUGS, the 11 Mpc H-alpha UV Galaxy Survey, is a GALEX Legacy program designed to systematically characterize the star formation demographics of the Local Volume using a complete sample of 258 spiral and irregular galaxies within 11 Mpc. The dataset consists of snapshots of the instantaneous massive star formation as captured via narrowband H-alpha imaging, as well as GALEX NUV (1500 Å) and FUV (2300 Å) imaging, which traces star formation over a longer 1e8 yr timescale. UV observations of the 11HUGS sample are now 80% complete, and we use the available data, along with the completed H-alpha component of the survey, to investigate the consistency between UV and H-alpha derived star formation rates over a full range of activities down to ultra-low SFRs of 0.0001 M_sun/yr. We also provide a first look at the span of UV-FIR SED and dust properties using initial data from the follow-on Cycle 4 Spitzer Local Volume Legacy (LVL) survey, which is obtaining mid and far-IR imaging for the full sample.

  19. Towards a realistic population of simulated galaxy groups and clusters

    NASA Astrophysics Data System (ADS)

    Le Brun, Amandine M. C.; McCarthy, Ian G.; Schaye, Joop; Ponman, Trevor J.

    2014-06-01

    We present a new suite of large-volume cosmological hydrodynamical simulations called cosmo-OWLS. They form an extension to the OverWhelmingly Large Simulations (OWLS) project, and have been designed to help improve our understanding of cluster astrophysics and non-linear structure formation, which are now the limiting systematic errors when using clusters as cosmological probes. Starting from identical initial conditions in either the Planck or WMAP7 cosmologies, we systematically vary the most important `sub-grid' physics, including feedback from supernovae and active galactic nuclei (AGN). We compare the properties of the simulated galaxy groups and clusters to a wide range of observational data, such as X-ray luminosity and temperature, gas mass fractions, entropy and density profiles, Sunyaev-Zel'dovich flux, I-band mass-to-light ratio, dominance of the brightest cluster galaxy and central massive black hole (BH) masses, by producing synthetic observations and mimicking observational analysis techniques. These comparisons demonstrate that some AGN feedback models can produce a realistic population of galaxy groups and clusters, broadly reproducing both the median trend and, for the first time, the scatter in physical properties over approximately two decades in mass (1013 M⊙ ≲ M500 ≲ 1015 M⊙) and 1.5 decades in radius (0.05 ≲ r/r500 ≲ 1.5). However, in other models, the AGN feedback is too violent (even though they reproduce the observed BH scaling relations), implying that calibration of the models is required. The production of realistic populations of simulated groups and clusters, as well as models that bracket the observations, opens the door to the creation of synthetic surveys for assisting the astrophysical and cosmological interpretation of cluster surveys, as well as quantifying the impact of selection effects.

  20. Mid-Infrared Evidence for Accelerated Evolution in Compact Group Galaxies

    NASA Astrophysics Data System (ADS)

    Walker, L. M.; Johnson, K. E.; Gallagher, S. C.; Hibbard, J. E.; Hornschemeier, A. E.; Charlton, J. C.; Jarrett, T. H.

    2010-06-01

    We find evidence for accelerated evolution in compact group galaxies from the distribution in mid-infrared colorspace of 42 galaxies from 12 Hickson Compact Groups (HCGs) compared to the distributions of several other samples including the LVL+SINGS galaxies, interacting galaxies, and galaxies from the Coma Cluster. We find that the HCG galaxies are not uniformly distributed in colorspace, as well as quantitative evidence for a gap. Galaxies in the infall region of the Coma cluster also exhibit a non-uniform distribution and a less well defined gap, which may reflect a similarity with the compact group environment. Neither the Coma Center or interacting samples show evidence of a gap, leading us to speculate that the gap is unique to the environment of high galaxy density where gas has not been fully processed or stripped.

  1. K-band Properties of Galaxy Clusters and Groups: Brightest Cluster Galaxies and Intracluster Light

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Ting; Mohr, Joseph J.

    2004-12-01

    We investigate the near-infrared K-band properties of the brightest cluster galaxies (BCGs) in a sample of 93 X-ray galaxy clusters and groups, using data from the Two Micron All Sky Survey. Our cluster sample spans a factor of 70 in mass, making it sensitive to any cluster mass-related trends. We derive the cumulative radial distribution for the BCGs in the ensemble and find that 70% of the BCGs are centered in the cluster to within 5% of the virial radius r200; this quantifies earlier findings that BCG position coincides with the cluster center as defined by the X-ray emission peak. We study the correlations between the luminosity of the BCGs (Lb) and the mass and the luminosity of the host clusters, finding that BCGs in more massive clusters are more luminous than their counterparts in less massive systems and that the BCGs become less important in the overall cluster light (L200) as cluster mass increases. By examining a large sample of optically selected groups, we find that these correlations hold for galactic systems less massive than our clusters (<3×1013 Msolar). From the differences between luminosity functions in high- and low-mass clusters, we argue that BCGs grow in luminosity mainly by merging with other luminous galaxies as the host clusters grow hierarchically; the decreasing BCG luminosity fraction (Lb/L200) with cluster mass indicates that the rate of luminosity growth in BCGs is slow compared to the rate at which clusters acquire galaxy light from the field or other merging clusters. Utilizing the observed correlation between the cluster luminosity and mass and a merger tree model for cluster formation, we estimate that the amount of intracluster light (ICL) increases with cluster mass; our calculations suggest that in 1015 Msolar clusters more than 50% of total stellar mass is in ICL, making the role of ICL very important in the evolution and thermodynamic history of clusters. The cluster baryon fraction accounting for the ICL is in good

  2. Searching for Diffuse Light in the M96 Galaxy Group

    NASA Astrophysics Data System (ADS)

    Watkins, Aaron E.; Mihos, J. Christopher; Harding, Paul; Feldmeier, John J.

    2014-08-01

    We present deep, wide-field imaging of the M96 galaxy group (also known as the Leo I Group). Down to surface brightness limits of μ B = 30.1 and μ V = 29.5, we find no diffuse, large-scale optical counterpart to the "Leo Ring," an extended H I ring surrounding the central elliptical M105 (NGC 3379). However, we do find a number of extremely low surface brightness (μ B >~ 29) small-scale streamlike features, possibly tidal in origin, two of which may be associated with the Ring. In addition, we present detailed surface photometry of each of the group's most massive members—M105, NGC 3384, M96 (NGC 3368), and M95 (NGC 3351)—out to large radius and low surface brightness, where we search for signatures of interaction and accretion events. We find that the outer isophotes of both M105 and M95 appear almost completely undisturbed, in contrast to NGC 3384 which shows a system of diffuse shells indicative of a recent minor merger. We also find photometric evidence that M96 is accreting gas from the H I ring, in agreement with H I data. In general, however, interaction signatures in the M96 Group are extremely subtle for a group environment, and provide some tension with interaction scenarios for the formation of the Leo H I Ring. The lack of a significant component of diffuse intragroup starlight in the M96 Group is consistent with its status as a loose galaxy group in which encounters are relatively mild and infrequent.

  3. Searching for diffuse light in the M96 galaxy group

    SciTech Connect

    Watkins, Aaron E.; Mihos, J. Christopher; Harding, Paul; Feldmeier, John J.

    2014-08-10

    We present deep, wide-field imaging of the M96 galaxy group (also known as the Leo I Group). Down to surface brightness limits of μ{sub B} = 30.1 and μ{sub V} = 29.5, we find no diffuse, large-scale optical counterpart to the 'Leo Ring', an extended H I ring surrounding the central elliptical M105 (NGC 3379). However, we do find a number of extremely low surface brightness (μ{sub B} ≳ 29) small-scale streamlike features, possibly tidal in origin, two of which may be associated with the Ring. In addition, we present detailed surface photometry of each of the group's most massive members—M105, NGC 3384, M96 (NGC 3368), and M95 (NGC 3351)—out to large radius and low surface brightness, where we search for signatures of interaction and accretion events. We find that the outer isophotes of both M105 and M95 appear almost completely undisturbed, in contrast to NGC 3384 which shows a system of diffuse shells indicative of a recent minor merger. We also find photometric evidence that M96 is accreting gas from the H I ring, in agreement with H I data. In general, however, interaction signatures in the M96 Group are extremely subtle for a group environment, and provide some tension with interaction scenarios for the formation of the Leo H I Ring. The lack of a significant component of diffuse intragroup starlight in the M96 Group is consistent with its status as a loose galaxy group in which encounters are relatively mild and infrequent.

  4. Star Formation at Low Metallicity in Local Dwarf Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce; Hunter, Deidre Ann; Rubio, Monica; Brinks, Elias; Cortés, Juan R.; Cigan, Phil

    2016-01-01

    The radial profiles of star formation rates and surface mass densities for gas and stars have been compiled for 20 local dwarf irregular galaxies and converted into disk scale heights and Toomre Q values. The scale heights are relatively large compared to the galaxy sizes (~0.6 times the local radii) and generally increase with radius in a flare. The gaseous Q values are high, ~4, at most radii and even higher for the stars. Star formation proceeds even with these high Q values in a normal exponential disk as viewed in the far ultraviolet. Such normal star formation suggests that Q is not relevant to star formation in dIrrs. The star formation rate per unit area always equals approximately the gas surface density divided by the midplane free fall time with an efficiency factor of about 1% that decreases systematically with radius in approximate proportion to the gas surface density. We view this efficiency variation as a result of a changing molecular fraction in a disk where atomic gas dominates both stars and molecules. In a related study, CO observations with ALMA of star-forming regions at the low metallicities of these dwarfs, which averages 13% solar, shows, in the case of the WLM galaxy, tiny CO clouds inside much larger molecular and atomic hydrogen envelopes. The CO cloud mass fraction within the molecular region is only one percent or so. Nevertheless, the CO clouds have properties that are similar to solar neighborhood clouds: they satisfy the size-linewidth relation observed in the LMC, SMC, and other local dwarfs where CO has been observed, and the same virial mass versus luminosity relation. This uniforming of CO cloud properties seems to be the result of a confining pressure from the weight of the overlying molecular and atomic shielding layers. Star formation at low metallicity therefore appears to be a three dimensional process independent of 2D instabilities involving Q, in highly atomic gas with relatively small CO cores, activated at a rate

  5. X-ray scaling laws for galaxy clusters and groups

    NASA Astrophysics Data System (ADS)

    Horner, Donald John

    Scaling laws between galaxy cluster properties, such as the x-ray luminosity- temperature relation (L-T), the total mass-temperature relation (M-T), and velocity dispersion-temperature relation (?-T) reflect the underlying physics in clus ter formation and evolution. The differences between empirically determined and theoretically predicted scaling laws can give useful insights into physical processes happening in clusters. To determine these scaling laws, we have developed a data reduction pipeline for clusters observed by the ASCA x-ray satellite to create a sample of 273 clusters and groups with measured x-ray luminosities, average temperatures, and metal abundances. This is the largest such sample yet created and will form a baseline for future studies with improved instruments like Chandra and XMM-Newton. We compare our ASCA cluster catalog to data in the literature to examine some of the biases and systematics that affect measurement of x-ray properties, and illuminate issues that affect the science results derived from such x-ray samples. We derive the L-T relationship over several orders of magnitude in luminosity, from rich clusters to groups. In combination with data from the literature, we examine the M-T relationship for a variety of mass estimators. We then examine the ?-T relationship and other correlations between the optical and x-ray propertie s of galaxy clusters. In general, we find that these scaling laws are affected by non-gravitational processes which require additional physics, e.g., energy injection by supernovae. We also see little evolution of galaxy cluster properties with redshift to z - 0.5.

  6. Searching for Wolf-Rayet Stars in the Local Group

    NASA Astrophysics Data System (ADS)

    Shara, M. M.; Zurek, D.; Kanarek, G.; Faherty, J.

    2012-12-01

    Tony Moffat has been inspiring the hunt for new Wolf-Rayet stars for over 40 years. These extraordinary objects offer critical tests of stellar evolution theory, and are predicted to be progenitors of type Ib and Ic supernovae. We're only going to know if that prediction is correct (in our lifetimes) by locating and spectrographically confirming of order 10 000 WR stars - a daunting but increasingly doable task. Our 2009 prediction that roughly 6 500 Wolf-Rayet stars live in our Galaxy has been followed by demonstrations in the past few years that, via narrowband infrared imaging and spectroscopy, we can find and confirm almost all Galactic WR stars. The rest of the Local Group is unlikely to contain more than 1 000 WR stars, so the Milky Way is THE place to search exhaustively for them. I briefly describe how we hunt and gather WR stars and give a current (mid-2011) Local Group census of them.

  7. Investigating planar distributions of satellites around Local Group analogues

    NASA Astrophysics Data System (ADS)

    Tippens, Rebecca; Boylan-Kolchin, Michael

    2017-06-01

    Recent works have claimed that observed planar distributions of galaxies in the Local Group and beyond challenge the structure formation predictions of CDM theory. We perform an analysis of distributions of satellites around 12 Local Group analogue halo pairs and 24 mass-matched isolated haloes from the high-resolution, dissipation-less ELVIS simulations (Garrison-Kimmel et al. 2014). In each analysis, we search for the thinnest plane that can be fit using half of the 30 most massive subhaloes within the virial radius of the host at z=0, and study the kinematics of the result to determine if its components are co-rotating. We then expand this analysis to consider the full kinematic evolution of these planes and others at higher redshifts in the ELVIS merger trees. We find that planes similar to those in the literature are common in the ELVIS simulations, but they are neither uniquely defined or persistent over cosmic time.

  8. Detailed photometric analysis of young star groups in the galaxy NGC 300

    NASA Astrophysics Data System (ADS)

    Rodríguez, M. J.; Baume, G.; Feinstein, C.

    2016-10-01

    obtained from the size distribution are both 25 pc, in agreement with the value for the Local Group and nearby galaxies. Additionally, we found an average PDMF slope that is compatible with the Salpeter value. Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/594/A34

  9. Near-ultraviolet signatures of environment-driven galaxy quenching in Sloan Digital Sky Survey groups

    NASA Astrophysics Data System (ADS)

    Crossett, Jacob P.; Pimbblet, Kevin A.; Jones, D. Heath; Brown, Michael J. I.; Stott, John P.

    2017-01-01

    We have investigated the effect of group environment on residual star formation in galaxies, using Galaxy Evolution Explorer near-ultraviolet (NUV) galaxy photometry with the Sloan Digital Sky Survey group catalogue of Yang et al. We compared the (NUV - r) colours of grouped and non-grouped galaxies, and find a significant increase in the fraction of red sequence galaxies with blue (NUV - r) colours outside of groups. When comparing galaxies in mass-matched samples of satellite (non-central), and non-grouped galaxies, we found a >4σ difference in the distribution of (NUV - r) colours, and an (NUV - r) blue fraction >3σ higher outside groups. A comparison of satellite and non-grouped samples has found the NUV fraction is a factor of ˜2 lower for satellite galaxies between 1010.5 and 10^{10.7} M_{⊙}, showing that higher mass galaxies are more likely to have residual star formation when not influenced by a group potential. There was a higher (NUV - r) blue fraction of galaxies with lower Sérsic indices (n < 3) outside of groups, not seen in the satellite sample. We have used stellar population models of Bruzual & Charlot with multiple burst, or exponentially declining star formation histories to find that many of the (NUV - r) blue non-grouped galaxies can be explained by a slow (˜2 Gyr) decay of star formation, compared to the satellite galaxies. We suggest that taken together, the difference in (NUV - r) colours between samples can be explained by a population of secularly evolving, non-grouped galaxies, where star formation declines slowly. This slow channel is less prevalent in group environments where more rapid quenching can occur.

  10. The ACS Nearby Galaxy Survey Treasury. VIII. The Global Star Formation Histories of 60 Dwarf Galaxies in the Local Volume

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Dalcanton, Julianne J.; Williams, Benjamin F.; Gilbert, Karoline M.; Skillman, Evan D.; Seth, Anil C.; Dolphin, Andrew E.; McQuinn, Kristen B. W.; Gogarten, Stephanie M.; Holtzman, Jon; Rosema, Keith; Cole, Andrew; Karachentsev, Igor D.; Zaritsky, Dennis

    2011-09-01

    We present uniformly measured star formation histories (SFHs) of 60 nearby (D <~ 4 Mpc) dwarf galaxies based on color-magnitude diagrams of resolved stellar populations from images taken with the Hubble Space Telescope and analyzed as part of the ACS Nearby Galaxy Survey Treasury program (ANGST). This volume-limited sample contains 12 dwarf spheroidal (dSph)/dwarf elliptical (dE), 5 dwarf spiral, 28 dwarf irregular (dI), 12 dSph/dI (transition), and 3 tidal dwarf galaxies. The sample spans a range of ~10 mag in MB and covers a wide range of environments, from highly interacting to truly isolated. From the best-fit SFHs, we find three significant results for dwarf galaxies in the ANGST volume: (1) the majority of dwarf galaxies formed the bulk of their mass prior to z ~ 1, regardless of current morphological type; (2) the mean SFHs of dIs, transition dwarf galaxies (dTrans), and dSphs are similar over most of cosmic time, and only begin to diverge a few Gyr ago, with the clearest differences between the three appearing during the most recent 1 Gyr and (3) the SFHs are complex and the mean values are inconsistent with simple SFH models, e.g., single bursts, constant star formation rates (SFRs), or smooth, exponentially declining SFRs. The mean SFHs show clear divergence from the cosmic SFH at z <~ 0.7, which could be evidence that low-mass systems have experienced delayed star formation relative to more massive galaxies. The sample shows a strong density-morphology relationship, such that the dSphs in the sample are less isolated than the dIs. We find that the transition from a gas-rich to gas-poor galaxy cannot be solely due to internal mechanisms such as stellar feedback, and instead is likely the result of external mechanisms, e.g., ram pressure and tidal stripping and tidal forces. In terms of their environments, SFHs, and gas fractions, the majority of the dTrans appear to be low-mass dIs that simply lack Hα emission, similar to Local Group (LG) dTrans DDO 210

  11. A Submillimeter Continuum Survey of Local Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Jong Chul; Hwang, Ho Seong; Lee, Gwang-Ho

    2016-12-01

    We conduct a 350 μm dust continuum emission survey of 17 dust-obscured galaxies (DOGs) at z = 0.05-0.08 with the Caltech Submillimeter Observatory (CSO). We detect 14 DOGs with S 350 μm = 114-650 mJy and signal-to-noise > 3. By including two additional DOGs with submillimeter data in the literature, we are able to study dust content for a sample of 16 local DOGs, which consist of 12 bump and four power-law types. We determine their physical parameters with a two-component modified blackbody function model. The derived dust temperatures are in the range 57-122 K and 22-35 K for the warm and cold dust components, respectively. The total dust mass and the mass fraction of the warm dust component are 3-34 × 107 M ⊙ and 0.03%-2.52%, respectively. We compare these results with those of other submillimeter-detected infrared luminous galaxies. The bump DOGs, the majority of the DOG sample, show similar distributions of dust temperatures and total dust mass to the comparison sample. The power-law DOGs show a hint of smaller dust masses than other samples, but need to be tested with a larger sample. These findings support that the reason DOGs show heavy dust obscuration is not an overall amount of dust content, but probably the spatial distribution of dust therein.

  12. Mid-Infrared Evidence for Accelerated Evolution in Compact Group Galaxies

    NASA Astrophysics Data System (ADS)

    Walker, Lisa May; Johnson, K. E.; Gallagher, S. C.; Hibbard, J. E.; Hornschemeier, A. E.; Charlton, J. C.; Jarrett, T. H.

    2010-01-01

    We find evidence for accelerated evolution in compact group galaxies from the mid-infrared distribution in colorspace of 42 galaxies from 12 Hickson Compact Groups (HCGs) and the distributions of several comparison samples including the LVL+SINGS galaxies, interacting galaxies, and galaxies from the Coma Cluster. We find that the HCG galaxies are not uniformly distributed in colorspace, as well as quantitative evidence for a gap. Galaxies in the infall region of the Coma cluster also exhibit a non-uniform distribution and a less well defined gap, which may reflect a similarity with the compact group environment. None of the other samples we studied show evidence of a gap, leading us to speculate that it is unique to the environment present in compact groups and clusters; one of high density where gas has not been fully processed or stripped.

  13. MID-INFRARED EVIDENCE FOR ACCELERATED EVOLUTION IN COMPACT GROUP GALAXIES

    SciTech Connect

    Walker, Lisa May; Johnson, Kelsey E.; Gallagher, Sarah C.; Hibbard, John E.; Hornschemeier, Ann E.; Tzanavaris, Panayiotis; Charlton, Jane C.; Jarrett, Thomas H.

    2010-11-15

    Compact galaxy groups are at the extremes of the group environment, with high number densities and low velocity dispersions that likely affect member galaxy evolution. To explore the impact of this environment in detail, we examine the distribution in the mid-infrared (MIR) 3.6-8.0 {mu}m color space of 42 galaxies from 12 Hickson compact groups (HCGs) in comparison with several control samples, including the LVL+SINGS galaxies, interacting galaxies, and galaxies from the Coma Cluster. We find that the HCG galaxies are strongly bimodal, with statistically significant evidence for a gap in their distribution. In contrast, none of the other samples show such a marked gap, and only galaxies in the Coma infall region have a distribution that is statistically consistent with the HCGs in this parameter space. To further investigate the cause of the HCG gap, we compare the galaxy morphologies of the HCG and LVL+SINGS galaxies, and also probe the specific star formation rate (SSFR) of the HCG galaxies. While galaxy morphology in HCG galaxies is strongly linked to position with MIR color space, the more fundamental property appears to be the SSFR, or star formation rate normalized by stellar mass. We conclude that the unusual MIR color distribution of HCG galaxies is a direct product of their environment, which is most similar to that of the Coma infall region. In both cases, galaxy densities are high, but gas has not been fully processed or stripped. We speculate that the compact group environment fosters accelerated evolution of galaxies from star-forming and neutral gas-rich to quiescent and neutral gas-poor, leaving few members in the MIR gap at any time.

  14. Mid-infrared Evidence for Accelerated Evolution in Compact Group Galaxies

    NASA Astrophysics Data System (ADS)

    Walker, Lisa May; Johnson, Kelsey E.; Gallagher, Sarah C.; Hibbard, John E.; Hornschemeier, Ann E.; Tzanavaris, Panayiotis; Charlton, Jane C.; Jarrett, Thomas H.

    2010-11-01

    Compact galaxy groups are at the extremes of the group environment, with high number densities and low velocity dispersions that likely affect member galaxy evolution. To explore the impact of this environment in detail, we examine the distribution in the mid-infrared (MIR) 3.6-8.0 μm color space of 42 galaxies from 12 Hickson compact groups (HCGs) in comparison with several control samples, including the LVL+SINGS galaxies, interacting galaxies, and galaxies from the Coma Cluster. We find that the HCG galaxies are strongly bimodal, with statistically significant evidence for a gap in their distribution. In contrast, none of the other samples show such a marked gap, and only galaxies in the Coma infall region have a distribution that is statistically consistent with the HCGs in this parameter space. To further investigate the cause of the HCG gap, we compare the galaxy morphologies of the HCG and LVL+SINGS galaxies, and also probe the specific star formation rate (SSFR) of the HCG galaxies. While galaxy morphology in HCG galaxies is strongly linked to position with MIR color space, the more fundamental property appears to be the SSFR, or star formation rate normalized by stellar mass. We conclude that the unusual MIR color distribution of HCG galaxies is a direct product of their environment, which is most similar to that of the Coma infall region. In both cases, galaxy densities are high, but gas has not been fully processed or stripped. We speculate that the compact group environment fosters accelerated evolution of galaxies from star-forming and neutral gas-rich to quiescent and neutral gas-poor, leaving few members in the MIR gap at any time.

  15. THE NATURE OF FOSSIL GALAXY GROUPS: ARE THEY REALLY FOSSILS?

    SciTech Connect

    La Barbera, F.; Sorrentino, G.; De Carvalho, R. R.; De la Rosa, I. G.; Gal, R. R.; Kohl-Moreira, J. L.

    2009-04-15

    We use SDSS-DR4 photometric and spectroscopic data out to redshift z {approx} 0.1 combined with ROSAT All Sky Survey X-ray data to produce a sample of 25 fossil groups (FGs), defined as bound systems dominated by a single, luminous elliptical galaxy with extended X-ray emission. We examine possible biases introduced by varying the parameters used to define the sample, and the main pitfalls are also discussed. The spatial density of FGs, estimated via the V/V {sub MAX} test, is 2.83 x 10{sup -6} h {sup 3} {sub 75} Mpc{sup -3} for L{sub X} > 0.89 x 10{sup 42} h {sup -2} {sub 75} erg s{sup -1} consistent with Vikhlinin et al., who examined an X-ray overluminous elliptical galaxy sample (OLEG). We compare the general properties of FGs identified here with a sample of bright field ellipticals generated from the same data set. These two samples show no differences in the distribution of neighboring faint galaxy density excess, distance from the red sequence in the color-magnitude diagram, and structural parameters such as a {sub 4} and internal color gradients. Furthermore, examination of stellar populations shows that our 25 FGs have similar ages, metallicities, and {alpha}-enhancement as the bright field ellipticals, undermining the idea that these systems represent fossils of a physical mechanism that occurred at high redshift. Our study reveals no difference between FGs and field ellipticals, suggesting that FGs might not be a distinct family of true fossils, but rather the final stage of mass assembly in the universe.

  16. THE ROLE OF MERGER STAGE ON GALAXY RADIO SPECTRA IN LOCAL INFRARED-BRIGHT STARBURST GALAXIES

    SciTech Connect

    Murphy, Eric J.

    2013-11-01

    An investigation of the steep, high-frequency (i.e., ν ∼ 12 GHz) radio spectra among a sample of 31 local infrared-bright starburst galaxies is carried out in light of their Hubble-Space-Telescope-based merger classifications. Radio data covering as many as 10 individual bands allow for spectral indices to be measured over three frequency bins between 0.15 and 32.5 GHz. Sources having the flattest spectral indices measured at ∼2 and 4 GHz, arising from large free-free optical depths among the densest starbursts, appear to be in ongoing through post-stage mergers. The spectral indices measured at higher frequencies (i.e., ∼12 GHz) are steepest for sources associated with ongoing mergers in which their nuclei are distinct, but share a common stellar envelope and/or exhibit tidal tails. These results hold after excluding potential active galactic nuclei based on their low 6.2 μm polycyclic aromatic hydrocarbon equivalent widths. Consequently, the low-, mid-, and high-frequency spectral indices each appear to be sensitive to the exact merger stage. It is additionally shown that ongoing mergers, whose progenitors are still separated and share a common envelope and/or exhibit tidal tails, also exhibit excess radio emission relative to what is expected given the far-infrared/radio correlation, suggesting that there may be a significant amount of radio emission that is not associated with ongoing star formation. The combination of these observations, along with high-resolution radio morphologies, leads to a picture in which the steep high-frequency radio spectral indices and excess radio emission arise from radio continuum bridges and tidal tails that are not associated with star formation, similar to what is observed for so-called 'taffy' galaxies. This scenario may also explain the seemingly low far-infrared/radio ratios measured for many high-z submillimeter galaxies, a number of which are merger-driven starbursts.

  17. How the extinction of extragalactic background light affects surface photometry of galaxies, groups and clusters

    NASA Astrophysics Data System (ADS)

    Zackrisson, E.; Micheva, G.; Östlin, G.

    2009-08-01

    The faint regions of galaxies, groups and clusters hold important clues about how these objects formed, and surface photometry at optical and near-infrared wavelengths represents a powerful tool for studying such structures. Here, we identify a hitherto unrecognized problem with this technique, related to how the night sky flux is typically measured and subtracted from astronomical images. While most of the sky flux comes from regions between the observer and the target object, a small fraction - the extragalactic background light (EBL) - comes from behind. We argue that since this part of the sky flux can be subjected to extinction by dust present in the galaxy/group/cluster studied, standard reduction procedures may lead to a systematic oversubtraction of the EBL. Even very small amounts of extinction can lead to spurious features in radial surface brightness profiles and colour maps of extended objects. We assess the likely impact of this effect on a number of topics in extragalactic astronomy where very deep surface photometry is currently attempted, including studies of stellar haloes, starburst host galaxies, disc truncations and diffuse intragroup/intracluster light. We argue that EBL extinction may provide at least a partial explanation for the anomalously red colours reported for the haloes of disc galaxies and for the hosts of local starburst galaxies. EBL extinction effects also mimic truncations in discs with unusually high dust opacities, but are unlikely to be the cause of such features in general. Failure to account for EBL extinction can also give rise to a non-negligible underestimate of intragroup and intracluster light at the faintest surface brightness levels currently probed. Finally, we discuss how EBL extinction effects may be exploited to provide an independent constraint on the surface brightness of the EBL, using a combination of surface photometry and direct star counts.

  18. Analysis of the structure of disk galaxies in the NGC 2300 group

    NASA Astrophysics Data System (ADS)

    Il'ina, M. A.; Sil'chenko, O. K.

    2016-10-01

    Data from the 6-m telescope of the Special Astrophysical Observatory obtained using the SCORPIO instrument in imaging mode are used to study member galaxies of the NGC 2300 group. Surface photometry has been carried out for the five largest galaxies in the group, whose isophotal parameters and the parameters of their large-scale structural components (disks and bulges) have been determined. The morphological type of the central galaxy in the group has been refined, and shown to be elliptical. Studies of structural features in non-central disk galaxies have revealed an enhanced percent of bars: bars were found in all disk galaxies of this group, with all of these being compact structures. The similarity of the structural features of the disks of the group galaxies suggests that these disksmay be being restructured in the process of the current merger of the two X-ray subgroups comprising NGC 2300: the group NGC 2300 itself and the group NGC 2276.

  19. THE HUBBLE SEQUENCE IN GROUPS: THE BIRTH OF THE EARLY-TYPE GALAXIES

    SciTech Connect

    Feldmann, R.; Carollo, C. M.; Mayer, L.

    2011-08-01

    The physical mechanisms and timescales that determine the morphological signatures and the quenching of star formation of typical ({approx}L*) elliptical galaxies are not well understood. To address this issue, we have simulated the formation of a group of galaxies with sufficient resolution to track the evolution of gas and stars inside about a dozen galaxy group members over cosmic history. Galaxy groups, which harbor many elliptical galaxies in the universe, are a particularly promising environment to investigate morphological transformation and star formation quenching, due to their high galaxy density, their relatively low velocity dispersion, and the presence of a hot intragroup medium. Our simulation reproduces galaxies with different Hubble morphologies and, consequently, enables us to study when and where the morphological transformation of galaxies takes place. The simulation does not include feedback from active galactic nuclei showing that it is not an essential ingredient for producing quiescent, red elliptical galaxies in galaxy groups. Ellipticals form, as suspected, through galaxy mergers. In contrast with what has often been speculated, however, these mergers occur at z > 1, before the merging progenitors enter the virial radius of the group and before the group is fully assembled. The simulation also shows that quenching of star formation in the still star-forming elliptical galaxies lags behind their morphological transformation, but, once started, takes less than a billion years to complete. As long envisaged the star formation quenching happens as the galaxies approach and enter the finally assembled group, due to quenching of gas accretion and (to a lesser degree) stripping. A similar sort is followed by unmerged, disk galaxies, which, as they join the group, are turned into the red-and-dead disks that abound in these environments.

  20. Theoretical Modeling of Star-Forming Galaxies. I. Emission-Line Diagnostic Grids for Local and Low-Metallicity Galaxies

    NASA Astrophysics Data System (ADS)

    Levesque, Emily M.; Kewley, Lisa J.; Larson, Kirsten L.

    2010-02-01

    We use the newest generation of the Starburst99/Mappings code to generate an extensive suite of models to facilitate detailed studies of star-forming galaxies and their interstellar medium properties, particularly at low metallicities. The new models used include a rigorous treatment of metal opacities in the population synthesis modeling and more detailed dust physics in the photoionization code. These models span a wide range of physical parameters including metallicity, ionization parameter, and the adoption of both an instantaneous burst and continuous star formation history (SFH). We examine the agreement between our models and local (z < 0.1) star-forming galaxy populations from several large data sets, including the Sloan Digital Sky Survey, the Nearby Field Galaxy Survey, and samples of blue compact galaxies and metal-poor galaxies. We find that models adopting a continuous SFH reproduce the metallicity-sensitive line ratios observed in the local population of star-forming galaxies, including the low-metallicity sample. However, we find that the current codes generate an insufficiently hard ionizing radiation field, leading to deficiencies in the [S II] fluxes produced by the models. We consider the advantages and shortcomings of this suite of models, and discuss future work and improvements that can be applied to the modeling of star-forming galaxies.

  1. The shell galaxy NGC4104 in an X-ray group

    NASA Astrophysics Data System (ADS)

    Lima Neto, G. B.; Durret, F.; Laganá, T.; Machado, R. E. G.; Martinet, N.

    2017-07-01

    Groups of galaxies are expected to collapse early in the history of the universe, in particular the so-called Fossil Groups, with a central galaxy that grows at the bottom of the gravitational potential well by cannibalizing smaller galaxies and/or by major mergers. An evidence of galactic cannibalism is the feature known as shells or ripples in early-type galaxies Shell galaxies are believed to be the result of a minor merger of a dwarf with an elliptical galaxy, resulting in a series of faint concentric ripples in surface brightness observed throughout the main stellar component. This contribution presents very deep r and g imaging of NGC 4104 - the brightest galaxy of an X-ray emitting group - obtained with MegaCam on the 3.6 m CFHT. Using both iraf/ellipse and galfit 2D image-fitting programs, we show the presence of strong shell features and an extended stellar halo around the group brightest galaxy. We have run a series of N-body simulations in order to gain insight on the dynamical process that shaped NGC 4104. Numerical modeling suggests a recent (around 5 Gyrs ago) collision occurred with a dwarf galaxy, which may have also led to a central absorption feature observed in the galaxy center. Moreover, given the magnitude gap between the first and second brightest galaxies, it seems that we are witnessing the formation of an object that falls within the fossil group classification.

  2. The DEEP2 galaxy redshift survey: the evolution of the blue fraction in groups and the field

    NASA Astrophysics Data System (ADS)

    Gerke, Brian F.; Newman, Jeffrey A.; Faber, S. M.; Cooper, Michael C.; Croton, Darren J.; Davis, Marc; Willmer, Christopher N. A.; Yan, Renbin; Coil, Alison L.; Guhathakurta, Puragra; Koo, David C.; Weiner, Benjamin J.

    2007-04-01

    We explore the behaviour of the blue galaxy fraction over the redshift range 0.75 <= z <= 1.3 in the DEEP2 Survey, both for field galaxies and for galaxies in groups. The primary aim is to determine the role that groups play in driving the evolution of galaxy colour at high z. In pursuing this aim, it is essential to define a galaxy sample that does not suffer from redshift-dependent selection effects in colour-magnitude space. We develop four such samples for this study: at all redshifts considered, each one is complete in colour-magnitude space, and the selection also accounts for evolution in the galaxy luminosity function. These samples will also be useful for future evolutionary studies in DEEP2. The colour segregation observed between local group and field samples is already in place at z ~ 1: DEEP2 groups have a significantly lower blue fraction than the field. At fixed z, there is also a correlation between blue fraction and galaxy magnitude, such that brighter galaxies are more likely to be red, both in groups and in the field. In addition, there is a negative correlation between blue fraction and group richness. In terms of evolution, the blue fraction in groups and the field remains roughly constant from z = 0.75 to 1, but beyond this redshift the blue fraction in groups rises rapidly with z, and the group and field blue fractions become indistinguishable at z ~ 1.3. Careful tests indicate that this effect does not arise from known systematic or selection effects. To further ensure the robustness of this result, we build on previous mock DEEP2 catalogues to develop mock catalogues that reproduce the colour-overdensity relation observed in DEEP2 and use these to test our methods. The convergence between the group and field blue fractions at z ~ 1.3 implies that DEEP2 galaxy groups only became efficient at quenching star formation at z ~ 2; this result is broadly consistent with other recent observations and with current models of galaxy evolution and

  3. Compact groups of galaxies selected by stellar mass: the 2MASS compact group catalogue

    NASA Astrophysics Data System (ADS)

    Díaz-Giménez, Eugenia; Mamon, Gary A.; Pacheco, Marcela; Mendes de Oliveira, Claudia; Alonso, M. Victoria

    2012-10-01

    We present a photometric catalogue of compact groups of galaxies (p2MCGs) automatically extracted from the Two-Micron All Sky Survey (2MASS) extended source catalogue. A total of 262 p2MCGs are identified, following the criteria defined by Hickson, of which 230 survive visual inspection (given occasional galaxy fragmentation and blends in the 2MASS parent catalogue). Only one quarter of these 230 groups were previously known compact groups (CGs). Among the 144 p2MCGs that have all their galaxies with known redshifts, 85 (59 per cent) have four or more accordant galaxies. This v2MCG sample of velocity-filtered p2MCGs constitutes the largest sample of CGs (with N ≥ 4) catalogued to date, with both well-defined selection criteria and velocity filtering, and is the first CG sample selected by stellar mass. It is fairly complete up to Kgroup ˜ 9 and radial velocity of ˜6000 km s-1. We compared the properties of the 78 v2MCGs with median velocities greater than 3000 km s-1 with the properties of other CG samples, as well as those (mvCGs) extracted from the semi-analytical model (SAM) of Guo et al. run on the high-resolution Millennium-II simulation. This mvCG sample is similar (i.e. with 2/3 of physically dense CGs) to those we had previously extracted on three other SAMs run on the Millennium simulation with 125 times worse spatial and mass resolutions. The space density of v2MCGs within 6000 km s-1 is 8.0 × 10-5 h3 Mpc-3, i.e. four times that of the Hickson sample [Hickson Compact Group (HCG)] up to the same distance and with the same criteria used in this work, but still 40 per cent less than that of mvCGs. The v2MCG constitutes the first group catalogue to show a statistically large first-second ranked galaxy magnitude gap according to Tremaine-Richstone statistics, as expected if the first ranked group members tend to be the products of galaxy mergers, and as confirmed in the mvCGs. The v2MCG is also the first observed sample to show that first-ranked galaxies

  4. Central regions of the early-type galaxies in the NGC 3169 group

    NASA Astrophysics Data System (ADS)

    Sil'chenko, O. K.; Afanasiev, V. L.

    2006-08-01

    We have investigated the central regions of the galaxies in the NGC 3169/NGC 3166/NGC 3156 group with the multipupil fiber spectrograph of the 6-m telescope; the first (central) galaxy in the group is a spiral (Sa) one and the other two galaxies are lenticular ones. The group is known to have an extended HI cloud with a size of more than 100 kpc that is associated in its position, orientation, and rotation with the central galaxy NGC 3169. The mean age of the stellar populations in the centers of all three galaxies has been found to be approximately the same, ˜1 Gyr. Since the galaxies are early-type ones and since NGC 3166 and NGC 3156 show no global star formation, we are dealing here with a synchronous star formation burst in the centers of all three galaxies.

  5. THE ZURICH ENVIRONMENTAL STUDY OF GALAXIES IN GROUPS ALONG THE COSMIC WEB. I. WHICH ENVIRONMENT AFFECTS GALAXY EVOLUTION?

    SciTech Connect

    Carollo, C. Marcella; Cibinel, Anna; Lilly, Simon J.; Miniati, Francesco; Cameron, Ewan; Peng, Yingjie; Pipino, Antonio; Rudick, Craig S.; Norberg, Peder; Silverman, John D.; Van Gorkom, Jacqueline; Finoguenov, Alexis

    2013-10-20

    The Zurich Environmental Study (ZENS) is based on a sample of ∼1500 galaxy members of 141 groups in the mass range ∼10{sup 12.5-14.5} M{sub ☉} within the narrow redshift range 0.05 < z < 0.0585. ZENS adopts novel approaches, described here, to quantify four different galactic environments, namely: (1) the mass of the host group halo; (2) the projected halo-centric distance; (3) the rank of galaxies as central or satellites within their group halos; and (4) the filamentary large-scale structure density. No self-consistent identification of a central galaxy is found in ∼40% of <10{sup 13.5} M{sub ☉} groups, from which we estimate that ∼15% of groups at these masses are dynamically unrelaxed systems. Central galaxies in relaxed and unrelaxed groups generally have similar properties, suggesting that centrals are regulated by their mass and not by their environment. Centrals in relaxed groups have, however, ∼30% larger sizes than in unrelaxed groups, possibly due to accretion of small satellites in virialized group halos. At M > 10{sup 10} M{sub ☉}, satellite galaxies in relaxed and unrelaxed groups have similar size, color, and (specific) star formation rate distributions; at lower galaxy masses, satellites are marginally redder in relaxed relative to unrelaxed groups, suggesting quenching of star formation in low-mass satellites by physical processes active in relaxed halos. Overall, relaxed and unrelaxed groups show similar stellar mass populations, likely indicating similar stellar mass conversion efficiencies. In the enclosed ZENS catalog, we publish all environmental diagnostics as well as the galaxy structural and photometric measurements described in companion ZENS papers II and III.

  6. Evolutionary properties of the low-luminosity galaxy population in the NGC 5044 Group

    NASA Astrophysics Data System (ADS)

    Buzzoni, A.; Cellone, S. A.; Saracco, P.; Zucca, E.

    2012-03-01

    In this third paper of a series we present Johnson-Gunn B, g, V, r, i, z multicolour photometry for 79 objects, including a significant fraction of the faintest galaxies around NGC 5044, assessing group membership on the basis of apparent morphology (through accurate Sérsic-profile fitting) and low-resolution (R= 500-1000) optical spectroscopy to estimate the redshift for 21 objects. Early- and late-type systems are found to be clearly separate in Sérsic parameter space, with the well-known luminosity versus shape relation being mostly traced by different morphological types spanning different ranges in the shape parameter n. A significantly blue colour is confirmed for Magellanic irregulars (Sm/Ims), while a drift toward bluer integrated colours is also an issue for dwarf ellipticals (dEs). Both features point to moderate but pervasive star-formation activity even among nominally 'quiescent' stellar systems. Together, dEs and Ims provide the bulk of the galaxy luminosity function, around M(g) ≃-18.0 ± 1.5, while the S0 and dwarf spheroidal (dSph) components dominate the bright and faint-end tails of the distribution respectively. This special mix places the NGC 5044 Group just 'midway' between the high-density cosmic aggregation scale typical of galaxy clusters and the low-density environment of looser galaxy clumps like our Local Group. The bright mass of the 136 member galaxies with available photometry and morphological classification, as inferred from appropriate M/L model fitting, amounts to a total of 2.3 × 1012 M⊙. This is one seventh of the total dynamical mass of the group, according to its X-ray emission. The current star-formation rate within the group turns to be about 23 M⊙ yr-1, a figure that may however be slightly increased as a result of the evident activity among dwarf ellipticals, as shown by enhanced Hβ emission in their spectra. Lick narrow-band indices have been computed for 17 galaxies, probing all the relevant atomic and

  7. ESO 255-IG 07, a compact group of interacting galaxies

    NASA Astrophysics Data System (ADS)

    Bergvall, N.; Ekman, A.; Lauberts, A.

    1981-03-01

    Photographic, photometric, and spectroscopic properties are studied for the galaxy system ESO 255-IG 07 = 0626-471. The system is composed of four main galaxies of normal sizes and luminosities in what looks like a common halo. It is suggested that the halo consists of stars being torn out from the individual galaxies as a consequence of the interaction. Although the galaxies morphologically seem to be of early Hubble types, ionized gas is found to extend over a significant part of all four galaxies and also in a bridge connecting the two northernmost galaxies. Indications of enhanced nuclear activity are found in the northernmost galaxy; it is suggested that cloud-cloud collisions are frequent and could trigger the star formation and enhanced nuclear activity observed.

  8. X-ray emission from clusters and groups of galaxies.

    PubMed

    Mushotzky, R

    1998-01-06

    Recent major advances in x-ray imaging and spectroscopy of clusters have allowed the determination of their mass and mass profile out to approximately 1/2 the virial radius. In rich clusters, most of the baryonic mass is in the gas phase, and the ratio of mass in gas/stars varies by a factor of 2-4. The baryonic fractions vary by a factor of approximately 3 from cluster to cluster and almost always exceed 0.09 h50-[3/2] and thus are in fundamental conflict with the assumption of Omega = 1 and the results of big bang nucleosynthesis. The derived Fe abundances are 0.2-0.45 solar, and the abundances of O and Si for low redshift systems are 0.6-1.0 solar. This distribution is consistent with an origin in pure type II supernova. The amount of light and energy produced by these supernovae is very large, indicating their importance in influencing the formation of clusters and galaxies. The lack of evolution of Fe to a redshift of z approximately 0.4 argues for very early enrichment of the cluster gas. Groups show a wide range of abundances, 0.1-0.5 solar. The results of an x-ray survey indicate that the contribution of groups to the mass density of the universe is likely to be larger than 0.1 h50-2. Many of the very poor groups have large x-ray halos and are filled with small galaxies whose velocity dispersion is a good match to the x-ray temperatures.

  9. X-ray emission from clusters and groups of galaxies

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.

    1998-01-01

    Recent major advances in x-ray imaging and spectroscopy of clusters have allowed the determination of their mass and mass profile out to approximately 1/2 the virial radius. In rich clusters, most of the baryonic mass is in the gas phase, and the ratio of mass in gas/stars varies by a factor of 2-4. The baryonic fractions vary by a factor of approximately 3 from cluster to cluster and almost always exceed 0.09 h50-[3/2] and thus are in fundamental conflict with the assumption of Omega = 1 and the results of big bang nucleosynthesis. The derived Fe abundances are 0.2-0.45 solar, and the abundances of O and Si for low redshift systems are 0.6-1.0 solar. This distribution is consistent with an origin in pure type II supernova. The amount of light and energy produced by these supernovae is very large, indicating their importance in influencing the formation of clusters and galaxies. The lack of evolution of Fe to a redshift of z approximately 0.4 argues for very early enrichment of the cluster gas. Groups show a wide range of abundances, 0.1-0.5 solar. The results of an x-ray survey indicate that the contribution of groups to the mass density of the universe is likely to be larger than 0.1 h50-2. Many of the very poor groups have large x-ray halos and are filled with small galaxies whose velocity dispersion is a good match to the x-ray temperatures.

  10. BRIGHTEST SATELLITE GALAXY ALIGNMENT OF SLOAN DIGITAL SKY SURVEY GALAXY GROUPS

    SciTech Connect

    Li Zhigang; Wang Yougang; Chen Xuelei; Yang Xiaohu; Xie Lizhi; Wang Xin E-mail: wangygcluster@gmail.com E-mail: lzxie@bao.ac.cn E-mail: wangxin@pha.jhu.edu

    2013-05-01

    We study the alignment signal between the distribution of the brightest satellite galaxies (BSGs) and the major axes of their host groups using the Sloan Digital Sky Survey group catalog constructed by Yang et al. After correcting for the effect of group ellipticity, a statistically significant ({approx}5{sigma}) major-axis alignment is detected and the alignment angle is found to be 43. Degree-Sign 0 {+-} 0. Degree-Sign 4. More massive and richer groups show a stronger BSG alignment. The BSG alignment around blue brightest central galaxies (BCGs) is slightly stronger than that around red BCGs. Red BSGs have a much stronger major-axis alignment than blue BSGs. Unlike BSGs, other satellites do not show very significant alignment with their group's major axis. We further explore BSG alignment using the semi-analytic model (SAM) constructed by Guo et al. In general, we found good agreement of the model with observations: BSGs in the SAM show a strong major-axis alignment that depends on group mass and richness in the same way as in observations and none of the other satellites exhibit prominent alignment. However, a discrepancy also exists in that the SAM shows a BSG color dependence opposite of that in observations, which is most probably induced by a missing large-scale environment ingredient in the SAM. The combination of two popular scenarios can explain the BSG alignment we detected. First, satellites merged into the group along the surrounding filaments, which are strongly aligned with the major axis of the group. Second, BSGs entered their host group more recently than other satellites, so they have preserved more information about their assembling history and major-axis alignment. In the SAM, we found positive evidence for the second scenario in the fact that BSGs merged into groups statistically more recently than other satellites. We also found that most of the BSGs (80%) were BCGs before they merged into groups and earlier merging BSGs tend to be closer to

  11. Intracluster medium cooling, AGN feedback, and brightest cluster galaxy properties of galaxy groups. Five properties where groups differ from clusters

    NASA Astrophysics Data System (ADS)

    Bharadwaj, V.; Reiprich, T. H.; Schellenberger, G.; Eckmiller, H. J.; Mittal, R.; Israel, H.

    2014-12-01

    Aims: We aim to investigate cool-core and non-cool-core properties of galaxy groups through X-ray data and compare them to the AGN radio output to understand the network of intracluster medium (ICM) cooling and feedback by supermassive black holes. We also aim to investigate the brightest cluster galaxies (BCGs) to see how they are affected by cooling and heating processes, and compare the properties of groups to those of clusters. Methods: Using Chandra data for a sample of 26 galaxy groups, we constrained the central cooling times (CCTs) of the ICM and classified the groups as strong cool-core (SCC), weak cool-core (WCC), and non-cool-core (NCC) based on their CCTs. The total radio luminosity of the BCG was obtained using radio catalogue data and/or literature, which in turn was compared to the cooling time of the ICM to understand the link between gas cooling and radio output. We determined K-band luminosities of the BCG with 2MASS data, and used a scaling relation to constrain the masses of the supermassive black holes, which were then compared to the radio output. We also tested for correlations between the BCG luminosity and the overall X-ray luminosity and mass of the group. The results obtained for the group sample were also compared to previous results for clusters. Results: The observed cool-core/non-cool-core fractions for groups are comparable to those of clusters. However, notable differences are seen: 1) for clusters, all SCCs have a central temperature drop, but for groups this is not the case as some have centrally rising temperature profiles despite very short cooling times; 2) while for the cluster sample, all SCC clusters have a central radio source as opposed to only 45% of the NCCs, for the group sample, all NCC groups have a central radio source as opposed to 77% of the SCC groups; 3) for clusters, there are indications of an anticorrelation trend between radio luminosity and CCT. However, for groups this trend is absent; 4) the indication of

  12. Constraining the Multi-Phase Gas Content of Galaxies in the Local Cosmic Web

    NASA Astrophysics Data System (ADS)

    Stark, David; Kannappan, S. J.; Wei, L. H.; Baker, A. J.; Haynes, M. P.; Giovanelli, R.; Heitsch, F.; RESOLVE Team; ALFALFA Team

    2010-01-01

    The RESOLVE (REsolved Spectroscopy Of a Local VolumE) Survey is a census of gas, stars, and dark matter in 1500 galaxies down to dwarf-scale baryonic masses of 109 Msun, occupying a range of cluster, group, and filament environments in the local cosmic web. We discuss strategies to estimate the gas mass in HI, H2, and warmer phases. RESOLVE falls largely within the footprint of the ongoing ALFALFA survey, allowing us to acquire accurate HI data for much of the sample. Any missing HI masses will be estimated from color and environment data, based on trends calibrated using the ALFALFA data set. Initially, our constraints on the molecular gas component will be largely indirect, based on either AKARI FIR data or a new technique presented here that links CO-derived H2/HI ratios to stellar-mass normalized color gradients. We discuss additional strategies under development to better measure molecular gas and constrain the mass in warmer phases. In particular, we describe observational constraints on the nature of additional gas that is detected dynamically in a sample of very blue, gas-dominated galaxies, possibly representing a warm-hot phase or a low-metallicity molecular component. Obtaining a full gas census for the RESOLVE survey will allow us to model gas phase transitions and star formation, specifically examining how baryonic mass component ratios and conversion timescales depend on galaxy mass and environment.

  13. Galaxy clusters and groups in the ALHAMBRA survey

    NASA Astrophysics Data System (ADS)

    Ascaso, B.; Benítez, N.; Fernández-Soto, A.; Arnalte-Mur, P.; López-Sanjuan, C.; Molino, A.; Schoenell, W.; Jiménez-Teja, Y.; Merson, A. I.; Huertas-Company, M.; Díaz-García, L. A.; Martínez, V. J.; Cenarro, A. J.; Dupke, R.; Márquez, I.; Masegosa, J.; Nieves-Seoane, L.; Pović, M.; Varela, J.; Viironen, K.; Aguerri, J. A. L.; Olmo, A. Del; Moles, M.; Perea, J.; Alfaro, E.; Aparicio-Villegas, T.; Broadhurst, T.; Cabrera-Caño, J.; Castander, F. J.; Cepa, J.; Cerviño, M.; Delgado, R. M. González; Cristóbal-Hornillos, D.; Hurtado-Gil, L.; Husillos, C.; Infante, L.; Prada, F.; Quintana, J. M.

    2015-09-01

    We present a catalogue of 348 galaxy clusters and groups with 0.2 < z < 1.2 selected in the 2.78 deg2 Advanced Large, Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) survey. The high precision of our photometric redshifts, close to 1 per cent, and the wide spread of the seven ALHAMBRA pointings ensure that this catalogue has better mass sensitivity and is less affected by cosmic variance than comparable samples. The detection has been carried out with the Bayesian Cluster Finder, whose performance has been checked in ALHAMBRA-like light-cone mock catalogues. Great care has been taken to ensure that the observable properties of the mocks photometry accurately correspond to those of real catalogues. From our simulations, we expect to detect galaxy clusters and groups with both 70 per cent completeness and purity down to dark matter halo masses of Mh ˜ 3 × 1013 M⊙ for z < 0.85. Cluster redshifts are expected to be recovered with ˜0.6 per cent precision for z < 1. We also expect to measure cluster masses with σ _{M_h|M^*_{CL}}˜ 0.25-0.35 dex precision down to ˜ 3 × 1013 M⊙, masses which are 50 per cent smaller than those reached by similar work. We have compared these detections with previous optical, spectroscopic and X-rays work, finding an excellent agreement with the rates reported from the simulations. We have also explored the overall properties of these detections such as the presence of a colour-magnitude relation, the evolution of the photometric blue fraction and the clustering of these sources in the different ALHAMBRA fields. Despite the small numbers, we observe tentative evidence that, for a fixed stellar mass, the environment is playing a crucial role at lower redshifts (z < 0.5).

  14. {The Motion of the Local Group With Respect to the}

    NASA Astrophysics Data System (ADS)

    Lauer, T. R.; Postman, M.

    1992-12-01

    We have completed a program to measure the reflex motion of the Local Group with respect to an inertial frame defined by the 120 Abell and ACO clusters contained within 15,000 km/s. The observations consist of a full-sky peculiar velocity survey with an effective depth about four times that of the Seven Samurai Survey. The survey data are new, high-precision, two-color CCD images and extensive redshift data (some also new). Clusters are selected by heliocentric velocity and the sample is volume limited. We use the Hoessel (1980) relationship between the metric luminosities of the Brightest Clusters Galaxies (BCG) and the slope of their brightness profiles as the distance indicator. The Cousins R band luminosity within a metric radius of 10h(-1) kpc yields a typical distance error of 16% for a single BCG. The primary goal is to test for convergence of the local flow on scales within 10,000 km/s (i.e., alignment of the Local Group velocity vector with the Cosmic Microwave Background (CMB) Dipole). We find, however, that our sample is not at rest with respect to the CMB. The velocity of the Local Group relative to 15,000 km/s frame is 555 km/s towards l=214(deg,) b=-28(deg.) This vector is inconsistent with the Local Group absolute space velocity inferred from the CMB dipole anisotropy at greater than 99.9% confidence. An extensive error analysis has been conducted to validate this result. If the CMB dipole is doppler in origin, then this result implies that the frame itself is moving at 842 km/s towards l=339(deg,) b=+50(deg,) and that the Local Group motion is, thus, generated largely by mass concentrations beyond 100h(-1) Mpc.

  15. The SAMI Galaxy Survey: energy sources of the turbulent velocity dispersion in spatially resolved local star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Zhou, Luwenjia; Federrath, Christoph; Yuan, Tiantian; Bian, Fuyan; Medling, Anne M.; Shi, Yong; Bland-Hawthorn, Joss; Bryant, Julia J.; Brough, Sarah; Catinella, Barbara; Croom, Scott M.; Goodwin, Michael; Goldstein, Gregory; Green, Andrew W.; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; Owers, Matt S.; Richards, Samuel N.; Sanchez, Sebastian F.

    2017-10-01

    We investigate the energy sources of random turbulent motions of ionized gas from H α emission in eight local star-forming galaxies from the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. These galaxies satisfy strict pure star-forming selection criteria to avoid contamination from active galactic nuclei (AGNs) or strong shocks/outflows. Using the relatively high spatial and spectral resolution of SAMI, we find that - on sub-kpc scales, our galaxies display a flat distribution of ionized gas velocity dispersion as a function of star formation rate (SFR) surface density. A major fraction of our SAMI galaxies shows higher velocity dispersion than predictions by feedback-driven models, especially at the low SFR surface density end. Our results suggest that additional sources beyond star formation feedback contribute to driving random motions of the interstellar medium in star-forming galaxies. We speculate that gravity, galactic shear and/or magnetorotational instability may be additional driving sources of turbulence in these galaxies.

  16. MORPHOLOGY AND SIZE DIFFERENCES BETWEEN LOCAL AND HIGH-REDSHIFT LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Rujopakarn, Wiphu; Rieke, George H.; Eisenstein, Daniel J.; Juneau, Stephanie

    2011-01-10

    We show that the star-forming regions in high-redshift luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and submillimeter galaxies (SMGs) have similar physical scales to those in local normal star-forming galaxies. To first order, their higher infrared (IR) luminosities result from higher luminosity surface density. We also find a good correlation between the IR luminosity and IR luminosity surface density in starburst galaxies across over five orders of magnitude of IR luminosity from local normal galaxies to z {approx} 2 SMGs. The intensely star-forming regions of local ULIRGs are significantly smaller than those in their high-redshift counterparts and hence diverge significantly from this correlation, indicating that the ULIRGs found locally are a different population from the high-redshift ULIRGs and SMGs. Based on this relationship, we suggest that luminosity surface density should serve as a more accurate indicator for the IR emitting environment, and hence the observable properties, of star-forming galaxies than their IR luminosity. We demonstrate this approach by showing that ULIRGs at z {approx} 1 and a lensed galaxy at z {approx} 2.5 exhibit aromatic features agreeing with local LIRGs that are an order of magnitude less luminous, but have similar IR luminosity surface density. A consequence of this relationship is that the aromatic emission strength in star-forming galaxies will appear to increase at z>1 for a given IR luminosity compared to their local counterparts.

  17. Local Groups Online: Political Learning and Participation

    NASA Astrophysics Data System (ADS)

    Kavanaugh, Andrea; Zin, Thanthan; Schmitz, Joseph; Rosson, Mary Beth; Kim, B. Joon; Carroll, John M.

    Voluntary associations serve crucial roles in local communities and within our larger democratic society. They aggregate shared interests, collective will, and cultivate civic competencies that nurture democratic participation. People active in multiple local groups frequently act as opinion leaders and create “weak” social ties across groups. In Blacksburg and surrounding Montgomery County, Virginia, the Blacksburg Electronic Village (BEV) community computer network has helped to foster nearly universal Internet penetration. Set in this dense Internet context, the present study investigated whether and how personal affiliation with local groups enhanced political participation in this high information and communication technology environment. This paper presents findings from longitudinal survey data which indicate that as individuals’ uses of information technology within local formal groups increase over time, so do their levels and types of involvement in the group. Furthermore, these increases most often appear among people who serve as opinion leaders and maintain weak social ties in their communities. Individuals’ changes in community participation, interests and activities, and Internet use suggest ways in which group members act upon political motivations and interests across various group types.

  18. A multi-wavelength analysis of Hickson Compact Groups of galaxies

    NASA Astrophysics Data System (ADS)

    Bitsakis, T.; Charmandaris, V.

    2012-01-01

    We present a comprehensive study on the impact of the environment of compact galaxy groups on the evolution of their members using a multi-wavelength analysis, from the UV to the infrared, for a sample of 32 Hickson compact groups (HCGs) containing 135 galaxies. Fitting the SEDs of all galaxies with the state-of-the-art model of da Cunha (2008) we can accurately calculate their mass, SFR, and extinction, as well as estimate their infrared luminosity and dust content. We compare our findings with samples of field galaxies, early-stage interacting pairs, and cluster galaxies with similar data. We find that classifying the groups as dynamically "old" or "young", depending on whether or not at least one quarter of their members are early-type systems, is physical and consistent with past classifications of HCGs based on their atomic gas content. Dynamically "old" groups are more compact and display higher velocity dispersions than "young" groups. Late-type galaxies in dynamically "young" groups have specific star formation rates (sSFRs), NUV-r, and mid-infrared colors which are similar to those of field and early stage interacting pair spirals. Late-type galaxies in dynamically "old" groups have redder NUV-r colors, as they have likely experienced several tidal encounters in the past building up their stellar mass, and display lower sSFRs. We identify several late-type galaxies which have sSFRs and colors similar to those of elliptical galaxies, since they lost part of their gas due to numerous interactions with other group members. Also, 25% of the elliptical galaxies in these groups have bluer UV/optical colors than normal ellipticals in the field, probably due to star formation as they accreted gas from other galaxies of the group, or via merging of dwarf companions. Finally, our SED modeling suggests that in 13 groups, 10 of which are dynamically "old", there is diffuse cold dust in the intragroup medium. All this evidence point to an evolutionary scenario in which

  19. Cosmic-ray spectrum in the local Galaxy

    NASA Astrophysics Data System (ADS)

    Neronov, Andrii; Malyshev, Denys; Semikoz, Dmitri V.

    2017-09-01

    Aims: We study the spectral properties of the cosmic-ray spectrum in the interstellar medium within 1 kpc distance from the Sun. Methods: We used eight-year exposure data of molecular clouds of the Gould Belt obtained with the Fermi-LAT telescope to precisely measure the cosmic-ray spectrum at different locations in the local Galaxy. We compared this measurement with the direct measurements of the cosmic-ray flux in and around the solar system obtained by Voyager and AMS-02 or PAMELA. Results: We find that the average cosmic-ray spectrum in the local Galaxy in the 1-100 GeV range is well described by a broken power-law in rigidity with a low-energy slope of 2.33+0.06-0.08 and a break at 18+7-4 GV, with a slope change by 0.59 ± 0.11. This result is consistent with an earlier analysis of the γ-ray signal from the Gould Belt clouds based on a shorter exposure of Fermi-LAT and with a different event selection. The break at 10-20 GV is also consistent with the combined Voyager + AMS-02 measurements in/around the solar system. The slope of the spectrum below the break agrees with the slope of the average cosmic-ray spectrum in the inner part of the disk of the Milky Way that was previously derived from the Fermi-LAT γ-ray data. We conjecture that it is this slope of 2.33 and not the locally measured softer slope of 2.7-2.8 that is determined by the balance between a steady-state injection of cosmic rays with a power-law slope of 2-2.1 that is due to Fermi acceleration and the energy-dependent propagation of cosmic-ray particles through the turbulent interstellar magnetic field with a Kolmogorov turbulence spectrum. The approximation of a continuous-in-time injection of cosmic rays at a constant rate breaks down, which causes the softening of the spectrum at higher energies.

  20. Merging groups and clusters of galaxies from the SDSS data. The catalogue of groups and potentially merging systems

    NASA Astrophysics Data System (ADS)

    Tempel, E.; Tuvikene, T.; Kipper, R.; Libeskind, N. I.

    2017-06-01

    Context. Galaxy groups and clusters are the main tools used to test cosmological models and to study the environmental effect of galaxy formation. Aims: This work provides a catalogue of galaxy groups and clusters, as well as potentially merging systems based on the SDSS main galaxy survey. Methods: We identified galaxy groups and clusters using the modified friends-of-friends (FoF) group finder designed specifically for flux-limited galaxy surveys. The FoF group membership is refined by multimodality analysis to find subgroups and by using the group virial radius and escape velocity to expose unbound galaxies. We look for merging systems by comparing distances between group centres with group radii. Results: The analysis results in a catalogue of 88 662 galaxy groups with at least two members. Among them are 6873 systems with at least six members which we consider to be more reliable groups. We find 498 group mergers with up to six groups. We performed a brief comparison with some known clusters in the nearby Universe, including the Coma cluster and Abell 1750. The Coma cluster in our catalogue is a merging system with six distinguishable subcomponents. In the case of Abell 1750 we find a clear sign of filamentary infall toward this cluster. Our analysis of mass-to-light ratio (M/L) of galaxy groups reveals that M/L slightly increases with group richness. The catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A100

  1. Galaxy NGC 55

    NASA Image and Video Library

    2003-12-10

    This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the "local group" of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy. http://photojournal.jpl.nasa.gov/catalog/PIA04923

  2. Galaxy evolution in nearby loose groups - II. Photometric and kinematic characterization of USGC U268 and USGC U376 group members in the Leo cloud

    NASA Astrophysics Data System (ADS)

    Marino, A.; Plana, H.; Rampazzo, R.; Bianchi, L.; Rosado, M.; Bettoni, D.; Galletta, G.; Mazzei, P.; Buson, L.; Ambrocio-Cruz, P.; Gabbasov, R. F.

    2013-01-01

    This paper is the second of a series of papers in which we are exploring the coevolution of galaxies and groups in the local Universe, by adopting a multiwavelength approach. Here, we present the photometric and kinematic characterization of two groups, USGC U268 and USGC U376 (U268 and U376 hereafter), which are located in different regions of the Leo cloud. We revisit the group membership, using results from recent redshift surveys, and we investigate their substructures. U268, which is composed of 10 catalogued members and 11 new added members, has a small fraction (≈24 per cent) of early-type galaxies (ETGs). U376 has 16 catalogued members plus eight new added members, with ≈38 per cent of ETGs. We find that there are significant substructures in both groups, which suggests that they are likely to be accreting galaxies. U268 is located in a more loose environment than U376. For each member galaxy, broad-band integrated and surface photometry have been obtained in far-ultraviolet (FUV) and near-ultraviolet (NUV) with the Galaxy Evolution Explorer (GALEX), and in the u, g, r, i and z (Sloan Digital Sky Survey) bands. Hα imaging and two-dimensional high-resolution kinematical data have been obtained using the scanning Fabry-Pérot interferometer (PUMA) at the 2.12-m telescope at San Pedro Mártir (Baja California, Mexico). We have improved the galaxy classification and we have detected morphological and kinematical distortions that might be connected either to ongoing and/or past interaction/accretion events or to environmental-induced secular evolution. U268 appears to be more active than U376, with a large fraction of galaxies showing interaction signatures (60 per cent versus 13 per cent). The presence of bars among late-type galaxies is ≈10 per cent in U268 and ≈29 per cent in U376. The cumulative distribution of the FUV-NUV colours of galaxies in U268 is significantly different from that in U376, with galaxies in U268 being bluer than those in U376

  3. Galaxy interactions in compact groups - II. Abundance and kinematic anomalies in HCG 91c

    NASA Astrophysics Data System (ADS)

    Vogt, Frédéric P. A.; Dopita, Michael A.; Borthakur, Sanchayeeta; Verdes-Montenegro, Lourdes; Heckman, Timothy M.; Yun, Min S.; Chambers, Kenneth C.

    2015-07-01

    Galaxies in Hickson Compact Group 91 (HCG 91) were observed with the WiFeS integral field spectrograph as part of our ongoing campaign targeting the ionized gas physics and kinematics inside star-forming members of compact groups. Here, we report the discovery of H II regions with abundance and kinematic offsets in the otherwise unremarkable star-forming spiral HCG 91c. The optical emission line analysis of this galaxy reveals that at least three H II regions harbour an oxygen abundance ˜0.15 dex lower than expected from their immediate surroundings and from the abundance gradient present in the inner regions of HCG 91c. The same star-forming regions are also associated with a small kinematic offset in the form of a lag of 5-10 km s-1 with respect to the local circular rotation of the gas. H I observations of HCG 91 from the Very Large Array and broad-band optical images from Pan-STARRS (Panoramic Survey Telescope And Rapid Response System) suggest that HCG 91c is caught early in its interaction with the other members of HCG 91. We discuss different scenarios to explain the origin of the peculiar star-forming regions detected with WiFeS, and show that evidence points towards infalling and collapsing extraplanar gas clouds at the disc-halo interface, possibly as a consequence of long-range gravitational perturbations of HCG 91c from the other group members. As such, HCG 91c provides evidence that some of the perturbations possibly associated with the early phase of galaxy evolution in compact groups impact the star-forming disc locally, and on sub-kpc scales.

  4. The Ultraviolet and Infrared Star Formation Rates of Compact Group Galaxies: An Expanded Sample

    NASA Technical Reports Server (NTRS)

    Lenkic, Laura; Tzanavaris, Panayiotis; Gallagher, Sarah C.; Desjardins, Tyler D.; Walker, Lisa May; Johnson, Kelsey E.; Fedotov, Konstantin; Charlton, Jane; Cardiff, Ann H.; Durell, Pat R.

    2016-01-01

    Compact groups of galaxies provide insight into the role of low-mass, dense environments in galaxy evolution because the low velocity dispersions and close proximity of galaxy members result in frequent interactions that take place over extended time-scales. We expand the census of star formation in compact group galaxies by Tzanavaris et al. (2010) and collaborators with Swift UVOT, Spitzer IRAC and MIPS 24 m photometry of a sample of 183 galaxies in 46 compact groups. After correcting luminosities for the contribution from old stellar populations, we estimate the dust-unobscured star formation rate (SFRUV) using the UVOT uvw2 photometry. Similarly, we use the MIPS 24 m photometry to estimate the component of the SFR that is obscured by dust (SFRIR). We find that galaxies which are MIR-active (MIR-red), also have bluer UV colours, higher specific SFRs, and tend to lie in Hi-rich groups, while galaxies that are MIR-inactive (MIR-blue) have redder UV colours, lower specific SFRs, and tend to lie in Hi-poor groups. We find the SFRs to be continuously distributed with a peak at about 1 M yr1, indicating this might be the most common value in compact groups. In contrast, the specific SFR distribution is bimodal, and there is a clear distinction between star-forming and quiescent galaxies. Overall, our results suggest that the specific SFR is the best tracer of gas depletion and galaxy evolution in compact groups.

  5. Group-galaxy correlations in redshift space as a probe of the growth of structure

    NASA Astrophysics Data System (ADS)

    Mohammad, F. G.; de la Torre, S.; Bianchi, D.; Guzzo, L.; Peacock, J. A.

    2016-05-01

    We investigate the use of the cross-correlation between galaxies and galaxy groups to measure redshift-space distortions (RSD) and thus probe the growth rate of cosmological structure. This is compared to the classical approach based on using galaxy auto-correlation. We make use of realistic simulated galaxy catalogues that have been constructed by populating simulated dark matter haloes with galaxies through halo occupation prescriptions. We adapt the classical RSD dispersion model to the case of the group-galaxy cross-correlation function and estimate the RSD parameter β by fitting both the full anisotropic correlation function ξs(rp, π) and its multipole moments. In addition, we define a modified version of the latter statistics by truncating the multipole moments to exclude strongly non-linear distortions at small transverse scales. We fit these three observable quantities in our set of simulated galaxy catalogues and estimate statistical and systematic errors on β for the case of galaxy-galaxy, group-group, and group-galaxy correlation functions. When ignoring off-diagonal elements of the covariance matrix in the fitting, the truncated multipole moments of the group-galaxy cross-correlation function provide the most accurate estimate, with systematic errors below 3 per cent when fitting transverse scales larger than 10 h-1 Mpc. Including the full data covariance enlarges statistical errors but keep unchanged the level of systematic error. Although statistical errors are generally larger for groups, the use of group-galaxy cross-correlation can potentially allow the reduction of systematics while using simple linear or dispersion models.

  6. Galaxy Group Stephan's Quintet Video File HubbleMinute: Battle Royale in Stephan's Quintet

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Hubble Space Telescope's closeup view of Stephan's Quintet, a group of five galaxies, reveals a string of brighter star clusters that separate like a diamond necklace. Astronomers studying the compact galaxy group Stephan's Quintet have seen creative destruction in the many collisions taking place among its galaxies. This HubbleMinute discusses what astronomers are learning and hope to learn from exploring the quintet.

  7. Galaxy Group Stephan's Quintet Video File HubbleMinute: Battle Royale in Stephan's Quintet

    NASA Astrophysics Data System (ADS)

    2001-07-01

    The Hubble Space Telescope's closeup view of Stephan's Quintet, a group of five galaxies, reveals a string of brighter star clusters that separate like a diamond necklace. Astronomers studying the compact galaxy group Stephan's Quintet have seen creative destruction in the many collisions taking place among its galaxies. This HubbleMinute discusses what astronomers are learning and hope to learn from exploring the quintet.

  8. TIDAL INTERACTION AS THE ORIGIN OF EARLY-TYPE DWARF GALAXIES IN GROUP ENVIRONMENTS

    SciTech Connect

    Paudel, Sanjaya; Ree, Chang H.

    2014-11-20

    We present a sample of dwarf galaxies that suffer ongoing disruption by the tidal forces of nearby massive galaxies. By analyzing structural and stellar population properties using the archival imaging and spectroscopic data from the Sloan Digital Sky Survey (SDSS), we find that they are likely a ''smoking gun'' example of the formation through tidal stirring of early-type dwarf galaxies (dEs) in the galaxy group environment. The inner cores of these galaxies are fairly intact and the observed light profiles are well fit by the Sérsic functions while the tidally stretched stellar halos are prominent in the outer parts. They are all located within a sky-projected distance of 50 kpc from the centers of the host galaxies and no dwarf galaxies have relative line-of-sight velocities larger than 205 km s{sup –1} to their hosts. We derive the Composite Stellar Population properties of these galaxies by fitting the SDSS optical spectra to a multiple-burst composite stellar population model. We find that these galaxies accumulate a significant fraction of stellar mass within the last 1 Gyr and contain a majority stellar population with an intermediate age of 2 to 4 Gyr. Based on this evidence, we argue that tidal stirring, particularly through the galaxy-galaxy interaction, might have an important role in the formation and evolution of dEs in the group environment where the influence of other gas stripping mechanism might be limited.

  9. X-ray-selected galaxy groups in Boötes

    SciTech Connect

    Vajgel, Bruna; Lopes, Paulo A. A.; Jones, Christine; Forman, William R.; Murray, Stephen S.; Goulding, Andrew; Andrade-Santos, Felipe

    2014-10-10

    We present the X-ray and optical properties of the galaxy groups selected in the Chandra X-Boötes survey. We used follow-up Chandra observations to better define the group sample and their X-ray properties. Group redshifts were measured from the AGN and Galaxy Evolution Survey spectroscopic data. We used photometric data from the NOAO Deep Wide Field Survey to estimate the group richness (N {sub gals}) and the optical luminosity (L {sub opt}). Our final sample comprises 32 systems at z < 1.75 with 14 below z = 0.35. For these 14 systems, we estimate velocity dispersions (σ {sub gr}) and perform a virial analysis to obtain the radii (R {sub 200} and R {sub 500}) and total masses (M {sub 200} and M {sub 500}) for groups with at least 5 galaxy members. We use the Chandra X-ray observations to derive the X-ray luminosity (L{sub X} ). We examine the performance of the group properties σ{sub gr}, L {sub opt}, and L{sub X} , as proxies for the group mass. Understanding how well these observables measure the total mass is important to estimate how precisely the cluster/group mass function is determined. Exploring the scaling relations built with the X-Boötes sample and comparing these with samples from the literature, we find a break in the L{sub X} -M {sub 500} relation at approximately M {sub 500} = 5 × 10{sup 13} M {sub ☉} (for M {sub 500} > 5 × 10{sup 13} M {sub ☉}, M{sub 500}∝L{sub X}{sup 0.61±0.02}, while for M {sub 500} ≤ 5 × 10{sup 13} M {sub ☉}, M{sub 500}∝L{sub X}{sup 0.44±0.05}). Thus, the mass-luminosity relation for galaxy groups cannot be described by the same power law as galaxy clusters. A possible explanation for this break is the dynamical friction, tidal interactions, and projection effects that reduce the velocity dispersion values of the galaxy groups. By extending the cluster luminosity function to the group regime, we predict the number of groups that new X-ray surveys, particularly eROSITA, will detect. Based on our cluster/group

  10. Effects of local information on group behavior

    SciTech Connect

    Roychowdhury, S.; Arora, N.; Sen, S.

    1996-12-31

    Researchers in the field of Distributed Artificial Intelligence have studied the effects of local decision-making on overall system performance in both cooperative and self-interested agent groups. The performance of individual agents depends critically on the quality of information available to it about local and global goals and resources. Whereas in general it is assumed that the more accurate and up-to-date the available information, the better is the expected performance of the individual and the group, this conclusion can be challenged in a number of scenarios.

  11. Galaxies

    SciTech Connect

    Not Available

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented.

  12. Localization of Unitary Braid Group Representations

    NASA Astrophysics Data System (ADS)

    Rowell, Eric C.; Wang, Zhenghan

    2012-05-01

    Governed by locality, we explore a connection between unitary braid group representations associated to a unitary R-matrix and to a simple object in a unitary braided fusion category. Unitary R-matrices, namely unitary solutions to the Yang-Baxter equation, afford explicitly local unitary representations of braid groups. Inspired by topological quantum computation, we study whether or not it is possible to reassemble the irreducible summands appearing in the unitary braid group representations from a unitary braided fusion category with possibly different positive multiplicities to get representations that are uniformly equivalent to the ones from a unitary R-matrix. Such an equivalence will be called a localization of the unitary braid group representations. We show that the q = e π i/6 specialization of the unitary Jones representation of the braid groups can be localized by a unitary 9 × 9 R-matrix. Actually this Jones representation is the first one in a family of theories ( SO( N), 2) for an odd prime N > 1, which are conjectured to be localizable. We formulate several general conjectures and discuss possible connections to physics and computer science.

  13. The kinematical center and mass profile of the local group

    SciTech Connect

    Whiting, Alan B.

    2014-09-20

    Abandoning the assumption that light traces mass, I seek the location of the center of the Local Group of galaxies based solely on kinematic data and the plausible assumption of infall. The available set of positions and radial velocities is shown to be a misleading indicator of Local Group motions, giving a direction to the center offset from the true one; statistical techniques of moderate sophistication do not catch the offset. Corrected calculations show the center to lie in the direction of M31 within the uncertainty of the method, within a few degrees. The distance to the center is not well determined, lying about 0.5 Mpc from the Milky Way. The pattern of observed (galactocentric) radial velocities excludes both dynamically important 'orphan halos' and any extended dark matter halo for the Group as a whole, and shows the Group to have formed from a much more extended volume than it presently occupies. Kinematics alone indicates that the mass of the Group is concentrated effectively in M31 and the Milky Way.

  14. A Submillimeter Survey of Dust Continuum Emission in Local Dust-Obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Jong Chul; Hwang, Ho Seong; Lee, Gwang-Ho

    2015-08-01

    Dusty star-forming galaxies are responsible for the bulk of cosmic star formation at 1galaxies is far from clear because of their extreme distances. The study of their local analogs helps us to improve understanding of the drivers of the intense star formation activity at high redshift. The submillimeter data on the 'Rayleigh-Jeans' side of the infrared spectral energy distributions (SEDs) of these galaxies are crucial for deriving the physical parameters of the dust content. We therefore conduct a submillimeter survey of local dust-obscured galaxies (DOGs) with the Caltech Submillimeter Observatory and the Submillimeter Array to study their dust properties. We determine the dust masses and temperatures for 16 local DOGs from the SED fit, and compare them with other dusty galaxies to understand a possible evolutionary link among them.

  15. Understanding `Galaxy Groups' as a Unique Structure in the Universe

    NASA Astrophysics Data System (ADS)

    John, Reju Sam; Paul, Surajit; Gupta, Prateek; Kumar, Harish

    2017-07-01

    `Galaxy groups' have hardly been realized as a separate class of objects with specific characteristics in the structural hierarchy of the universe. The presumption that the self-similarity of dark matter structures is a valid prescription for the baryonic universe also at all scales has rendered smaller structures undetectable by current observational facilities, leading to lesser dedicated studies on them. Some recent reports on deviation of {L_x}-T scaling in groups from that of clusters have motivated us to study their physical properties in depth. In this article, we report the extensive study on physical properties of groups in comparison with clusters through cosmological hydrodynamic plus N-body simulations using ENZO 2.2 code. We have included cooling and heating physics and star formation feedback in the simulation. And produced a mock sample of 362 objects with mass ranging from 5×10^{12} M_{⊙} to 2.5×10^{15} M_{⊙}. Strikingly, we have found that objects with a mass below ˜ 8×10^{13} M_{⊙} do not follow any of the cluster self-similar laws in hydrostatics, not even in thermal and non-thermal regimes. Two distinct scaling laws are observed to be followed with breaks at ˜ 6-8× 10^{13} M_{⊙} for mass, ˜1 keV for temperature and ˜1 Mpc for radius. This places groups as a distinct entity in the hierarchical structures, well demarcated from clusters. This study reveals that groups are mostly far away from virialization, suggesting the need for formulating new models for deciphering their physical parameters. They are also shown to have high turbulence and more non-thermal energy stored, indicating better visibility in the non-thermal regime.

  16. Understanding `galaxy groups' as a unique structure in the universe

    NASA Astrophysics Data System (ADS)

    Paul, S.; John, R. S.; Gupta, P.; Kumar, H.

    2017-10-01

    'Galaxy groups' have hardly been realized as a separate class of objects with specific characteristics in the structural hierarchy. The presumption that the self-similarity of dark matter structures is a valid prescription for the baryonic universe at all scales has rendered smaller structures undetectable by current observational facilities, leading to lesser dedicated studies on them. Some recent reports that indicate a deviation from LX-T scaling in groups compared to clusters have motivated us to study their physical properties in depth. In this article, we report the extensive study on physical properties of groups in comparison to the clusters through cosmological hydrodynamic plus N-body simulations using enzo 2.2 code. As additional physics, radiative cooling, heating due to supernova and star motions, star formation and stellar feedback have been implemented. We have produced a mock sample of 362 objects with mass ranging from 5 × 1012 M⊙ to 2.5 × 1015 M⊙. Strikingly, we have found that objects with mass below ∼8 × 1013 M⊙ do not follow any of the cluster self-similar laws in hydrostatics, not even in thermal and non-thermal energies. Two distinct scaling laws are observed to be followed with breaks at ∼8 × 1013 M⊙ for mass, ∼1 keV for temperature and ∼1 Mpc for radius. This places groups as a distinct entity in the hierarchical structures, well demarcated from clusters. This study reveals that groups are mostly far away from virialization, suggesting the need for formulating new models for deciphering their physical parameters. They are also shown to have high turbulence and more non-thermal energy stored, indicating better visibility in the non-thermal regime.

  17. The Role of Group Dynamics in the Evolution of Galaxies out to z ~ 1

    NASA Astrophysics Data System (ADS)

    Hou, Annie; Parker, L. C.; Harris, W. E.; Group Environment; Evolution Collaboration (GEEC)

    2013-01-01

    It is well known that the properties of observed galaxies depend, at least on some part, on the properties of their host environments. We are particularly interested in investigating how the dynamics of the group environment influence galaxy evolution. We study the dynamical state of massive galaxy groups over a wide range of redshifts (0 < z < 1), using the Sloan Digital Sky Survey (SDSS), Group Environment and Evolution Collaboration (GEEC) and higher redshift GEEC2 catalogs. We look for both substructure and non-Gaussian velocity distributions in all of our systems in order to determine the dynamical state. We then use panchromatic data to study the observed galaxy properties (i.e. colour, blue fractions, star formation rates) as function of the dynamical state of their host group. In this work we are probing both the dynamical evolution of groups and the importance of group dynamics on galaxy evolution at a wide range of redshifts.

  18. Gas distribution and clumpiness in the galaxy group NGC 2563

    NASA Astrophysics Data System (ADS)

    Morandi, Andrea; Sun, Ming; Mulchaey, John; Nagai, Daisuke; Bonamente, Massimiliano

    2017-08-01

    We present a Chandra study of the hot intragroup medium of the galaxy group NCG 2563. The Chandra mosaic observations, with a total exposure time of ∼430 ks, allow the gas density to be detected beyond R200 and the gas temperature out to 0.75 R200. This represents the first observational measurement of the physical properties of a poor groups beyond R500. By capitalizing on the exquisite spatial resolution of Chandra that is capable to remove unrelated emission from point sources and substructures, we are able to radially constrain the inhomogeneities of gas ('clumpiness'), gas fraction, temperature and entropy distribution. Although there is some uncertainty in the measurements, we find evidences of gas clumping in the virialization region, with clumping factor of about 2-3 at R200. The gas clumping-corrected gas fraction is significantly lower than the cosmological baryon budget. These results may indicate a larger impact of the gas inhomogeneities with respect to the prediction from hydrodynamic numerical simulations, and we discuss possible explanations for our findings.

  19. An X-ray View of Galaxies in Compact Groups and the Coma Cluster Infall Region

    NASA Astrophysics Data System (ADS)

    Desjardins, Tyler D.

    2015-01-01

    As the majority of galaxies in the nearby universe exist in groups and clusters, it is imperative for our understanding of galaxy evolution to examine the effects these environments have on their member galaxies. In particular, compact groups of galaxies (CGs) occupy an interesting part of the parameter space having low velocity dispersions and high number densities. These characteristics increase the likelihood of multi-galaxy interactions over long timescales. Infrared observations of galaxies in CGs have suggested that CG members experience accelerated evolution from star-forming to passive. Using X-ray imaging spectroscopy from the Chandra X-ray Observatory, I characterize the luminosity and morphology of the hot intragroup gas in 19 CGs and compare the results with known galaxy cluster scaling relations and other group properties. Only the most massive CGs have hot intragroup gas similar to galaxy clusters. At low group masses, the hot gas becomes associated with individual galaxies and is linked to star formation. The low derived hot gas densities and low galaxy velocities imply that ram-pressure stripping, a common quenching process in galaxy clusters, is probably not the cause of the accelerated evolution in CGs. Using deep XMM observations, I also examine the X-ray emission from individual galaxies in the Coma cluster infall region, inside which the galaxies have infrared properties suggestive of accelerated evolution similar to CG members. While the Coma galaxies have X-ray emission consistent with known scaling relations between X-ray luminosity, star formation rate, and stellar mass, a CG galaxy comparison sample shows enhanced X-ray emission sometimes an order of magnitude more luminous than the expected value. Thus, while the mid-infrared properties of CG and Coma infall galaxies are similar, the X-ray data reveal that there are marked differences between these environments. While it has been hypothesized that low gas-phase metallicity may cause

  20. Constraining particle dark matter using local galaxy distribution

    SciTech Connect

    Ando, Shin’ichiro; Ishiwata, Koji

    2016-06-27

    It has been long discussed that cosmic rays may contain signals of dark matter. In the last couple of years an anomaly of cosmic-ray positrons has drawn a lot of attentions, and recently an excess in cosmic-ray anti-proton has been reported by AMS-02 collaboration. Both excesses may indicate towards decaying or annihilating dark matter with a mass of around 1–10 TeV. In this article we study the gamma rays from dark matter and constraints from cross correlations with distribution of galaxies, particularly in a local volume. We find that gamma rays due to inverse-Compton process have large intensity, and hence they give stringent constraints on dark matter scenarios in the TeV scale mass regime. Taking the recent developments in modeling astrophysical gamma-ray sources as well as comprehensive possibilities of the final state products of dark matter decay or annihilation into account, we show that the parameter regions of decaying dark matter that are suggested to explain the excesses are excluded. We also discuss the constrains on annihilating scenarios.

  1. Carbon Abundances in Starburst Galaxies of the Local Universe

    NASA Astrophysics Data System (ADS)

    Peña-Guerrero, María A.; Leitherer, Claus; de Mink, Selma; Wofford, Aida; Kewley, Lisa

    2017-10-01

    The cosmological origin of carbon, the fourth most abundant element in the universe, is not well known and a matter of heavy debate. We investigate the behavior of C/O to O/H in order to constrain the production mechanism of carbon. We measured emission-line intensities in the spectral range from 1600 to 10000 Å on Space Telescope Imaging Spectrograph (STIS) long-slit spectra of 18 starburst galaxies in the local universe. We determined chemical abundances through traditional nebular analysis, and we used a Markov Chain Monte Carlo method to determine where our carbon and oxygen abundances lie in the parameter space. We conclude that our C and O abundance measurements are sensible. We analyzed the behavior of our sample in the [C/O] versus [O/H] diagram with respect to other objects such as DLAs, neutral ISM measurements, and disk and halo stars, finding that each type of object seems to be located in a specific region of the diagram. Our sample shows a steeper C/O versus O/H slope with respect to other samples, suggesting that massive stars contribute more to the production of C than N at higher metallicities, only for objects where massive stars are numerous; otherwise, intermediate-mass stars dominate the C and N production.

  2. Kinematics of dwarf galaxies in gas-rich groups, and the survival and detectability of tidal dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Sweet, Sarah M.; Drinkwater, Michael J.; Meurer, Gerhardt; Kilborn, Virginia; Audcent-Ross, Fiona; Baumgardt, Holger; Bekki, Kenji

    2016-01-01

    We present DEIMOS multi-object spectroscopy (MOS) of 22 star-forming dwarf galaxies located in four gas-rich groups, including six newly discovered dwarfs. Two of the galaxies are strong tidal dwarf galaxy (TDG) candidates based on our luminosity-metallicity relation definition. We model the rotation curves of these galaxies. Our sample shows low mass-to-light ratios (M/L = 0.73 ± 0.39 M⊙/L⊙) as expected for young, star-forming dwarfs. One of the galaxies in our sample has an apparently strongly falling rotation curve, reaching zero rotational velocity outside the turnover radius of rturn = 1.2re. This may be (1) a polar ring galaxy, with a tilted bar within a face-on disc; (2) a kinematic warp. These scenarios are indistinguishable with our current data due to limitations of slit alignment inherent to MOS-mode observations. We consider whether TDGs can be detected based on their tidal radius, beyond which tidal stripping removes kinematic tracers such as Hα emission. When the tidal radius is less than about twice the turnover radius, the expected falling rotation curve cannot be reliably measured. This is problematic for as much as half of our sample, and indeed more generally, galaxies in groups like these. Further to this, the Hα light that remains must be sufficiently bright to be detected; this is only the case for three (14 per cent) galaxies in our sample. We conclude that the falling rotation curves expected of TDGs are intrinsically difficult to detect.

  3. Abundances in photoionized nebulae of the Local Group and nucleosynthesis of intermediate mass stars

    NASA Astrophysics Data System (ADS)

    Maciel, W. J.; Costa, R. D. D.; Cavichia, O.

    2017-04-01

    Photoionized nebulae, comprising HII regions and planetary nebulae, are excellent laboratories to investigate the nucleosynthesis and chemical evolution of several elements in the Galaxy and other galaxies of the Local Group. Our purpose in this investigation is threefold: (i) compare the abundances of HII regions and planetary nebulae in each system in order to investigate the differences derived from the age and origin of these objects, (ii) compare the chemical evolution in different systems, such as the Milky Way, the Magellanic Clouds, and other galaxies of the Local Group, and (iii) investigate to what extent the nucleosynthesis contributions from the progenitor stars affect the observed abundances in planetary nebulae, which constrains the nucleosynthesis of intermediate mass stars. We show that all objects in the samples present similar trends concerning distance-independent correlations, and some constraints can be defined on the production of He and N by the PN progenitor stars.

  4. A Summary of Observational Data of the Local Group and a Comparison to ΛCDM

    NASA Astrophysics Data System (ADS)

    Yniguez, Basilio

    The Local group's dwarf galaxies may well be the key to connecting observation and theory in galaxy formation. I will use this thesis to outline contributions I have made to collecting data related the galaxies in the Local Group. I will also describe several uses of ΛCDM substructure to investigate seemingly anomalous distributions of dwarf galaxies in the Local Group. The first such anomalous distribution is that of the Milky Way's brightest dwarf satellites which, while presumed to represent a complete sample, are quite different, both in number and in spacial distribution from ΛCDM AND from those of our nearest large neighbor, the Andromeda Galaxy (M31). The conclusion drawn from this mismatch is that the MW's bright dwarf galaxies are potentially quite incomplete. The second anomalous distribution of satellites is M31's so called Great Plane of Satellites (POS), which consists of 16 dwarf galaxies that lie at a root mean square (RMS) distance of 13 kpc from a common plane and appear to be co-rotating about M31. I find that only one of the 44 high resolution simulated host halos has a great POS that is this thin, which is not corotating while several or more of the halos' thinnest POS are corotating at rates comparable to that of M31. The subhalos of the ELVIS suite of high resolution simulations serves as a simple, yet powerful, empirical tool to relate mass to tracer velocity dispersion. Using this combined with spectroscopic data which I helped to collect, I determine an M31 virial mass of 1:2 x 1012 which is consistent with mass estimates calculated from different data sets.

  5. Yellow and Red Supergiants in the Local Group

    NASA Astrophysics Data System (ADS)

    Massey, Philip; Neugent, Kathryn; Drout, Maria; Meynet, Georges

    2013-06-01

    Yellow and red supergiants are the "poor cousins" of massive star studies, often overlooked in favor of strong emission-lined Wolf-Rayets or the spectacular, enigmatic Luminous Blue Variables. Recent studies, however, are proving the truth of Kippenhahn & Weigert (1990)'s claim that these evolved stages act as a "sort of magnifying glass, revealing relentlessly the faults of calculations of earlier phases." Identifying complete samples of YSGs and RSGs among the galaxies of the Local Group is difficult, as foreground dwarfs are nearly indistinguishable from bona-fide extragalactic members. We have succeeded in this task only by using a combination of wide-area photometry surveys combined with spectroscopic followup. Since massive star evolution is greatly affected by mass-loss, and mass-loss rates depend upon metallicity, we have conducted such studies over a range of 10 in metallicity, including the SMC, LMC, M33, and M31. These studies not only allow us to test the stellar evolutionary models, but the identification of these stars provides interesting kinematic information on the youngest stellar populations in these galaxies. We will review here what we have learned over the past few years, and what new questions these studies are raising.

  6. Particle Dark Matter Searches Outside the Local Group.

    PubMed

    Regis, Marco; Xia, Jun-Qing; Cuoco, Alessandro; Branchini, Enzo; Fornengo, Nicolao; Viel, Matteo

    2015-06-19

    If dark matter (DM) is composed by particles which are nongravitationally coupled to ordinary matter, their annihilations or decays in cosmic structures can result in detectable radiation. We show that the most powerful technique to detect a particle DM signal outside the Local Group is to study the angular cross-correlation of nongravitational signals with low-redshift gravitational probes. This method allows us to enhance the signal to noise from the regions of the Universe where the DM-induced emission is preferentially generated. We demonstrate the power of this approach by focusing on GeV-TeV DM and on the recent cross-correlation analysis between the 2MASS galaxy catalogue and the Fermi-LAT γ-ray maps. We show that this technique is more sensitive than other extragalactic γ-ray probes, such as the energy spectrum and angular autocorrelation of the extragalactic background, and emission from clusters of galaxies. Intriguingly, we find that the measured cross-correlation can be well fitted by a DM component, with a thermal annihilation cross section and mass between 10 and 100 GeV, depending on the small-scale DM properties and γ-ray production mechanism. This solicits further data collection and dedicated analyses.

  7. The Magellanic Satellites Survey: Searching for Hierarchical Structure Formation within the Local Group

    NASA Astrophysics Data System (ADS)

    Bechtol, Keith; Magellanic Satellites Survey (MagLiteS)

    2017-01-01

    A generic prediction of galaxy formation in the standard cosmological model with cold dark matter is the hierarchical assembly of structure on mass scales ranging from ultra-faint galaxies to galaxy clusters. In the Local Group, dozens of galaxies have been found orbiting the Milky Way and Andromeda. The question of whether the largest Milky Way satellites, the Large and Small Magellanic Clouds, brought in their own entourage of satellites has been a long standing puzzle, and has garnered renewed interest following the recent discovery of more than a dozen ultra-faint galaxy candidates in the southern hemisphere. The on-going Magellanic Satellites Survey (MagLiteS) aims to complete an annulus of contiguous deep optical imaging with Blanco/DECam around the periphery of the Magellanic Clouds, enabling a systematic search for ultra-faint galaxies and other low-surface-brightness stellar substructures associated with the Magellanic system. I will report on the progress of MagLiteS and discuss science highlights from the first observing season, including a new ultra-faint galaxy candidate located ~11 kpc from the Large Magellanic Cloud.

  8. Improved MCNP Memory Locality by Neutron Grouping

    NASA Astrophysics Data System (ADS)

    Bly, Aaron

    This research presents new code for Monte Carlo N-Particle (MCNP) to achieve an improved time during criticality calculations. Modifications implementing the grouping and sorting of neutrons takes advantage of memory locality by processing all neutrons in a group to achieve the temporal reuse of cross section data. This prevents unnecessary data lookups. Various groupings and their results are compared. The modified code utilizing neutron energy groups provided the best result of a 16.7% +/- 0.5% speedup for a criticality determination of a two slab tank experiment. This is a savings of 2 ½ hours for a system that normally takes approximately 15 ½ hours to execute. The code implemented was chosen to require minimal modifications to the MCNP program thus avoiding the need to rewrite a new version. Verification and validation is still needed in order to show that a speedup using neutron groups can be achieved in all cases.

  9. Statistical modelling of supernova remnant populations in the Local Group

    NASA Astrophysics Data System (ADS)

    Sarbadhicary, S.; Badenes, C.; Chomiuk, L.; Caprioli, D.; Huizenga, D.

    2016-06-01

    Supernova remnants (SNRs) in the Local Group offer unique insights into the origin of different types of supernovae. However, the intrinsic diversity and environment-driven evolution of SNRs require the use of statistical methods to model SNR populations in the context of their host galaxy. We introduce a semi-analytic model for SNR radio light curves that uses the physics of shock propagation through the ISM, the resultant particle acceleration and the range of kinetic energies observed in supernovae. We use this model to reproduce the fundamental properties of observed SNR populations, taking into account the detection limits of radio surveys and the wealth of observational constraints on the stellar distribution and ISM structure of the host galaxy from radio, optical, and IR images. We can reproduce the observed radio luminosity function of SNRs in M33 with a SN rate of (3.5 - 4.3)x10^-3 SN per year and an electron acceleration efficiency, ɛ_e~0.01.This is the first measurement of ɛ_e using a large sample of SNRs. We show that dim Galactic SNRs like SN1006 would have been missed by archival radio surveys at the distance of M33, and we predict that most SNRs in M33 have radio visibility times of 20-80 kyrs that are correlated with the measured ISM column densities N_H: t_vis ~ N_H^a with α = -0.36(+0.01/-0.01), whereas a small fraction of SNRs have visibility times 10 kyrs that appear uncorrelated with column density. This observationally-anchored approach to the visibility time of SNRs will allow us to use SNR catalogs as SN surveys; to calculate SN rates and delay time distributions in the Local Group.

  10. Supermassive Black Hole Activity Within Local Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Miller, Brendan P.; Gallo, E.; Treu, T.

    2011-01-01

    We report preliminary results from an ongoing Chandra survey of 100 field early-type galaxies. This project investigates the influence of environment upon supermassive black hole (SMBH) accretion within formally inactive galaxies. The volume-limited sample has been selected to be well-matched to the recently conducted AMUSE-Virgo survey, which studied SMBHs within cluster early-type galaxies. That work resulted in the detection of nuclear X-ray sources in 32/100 objects, establishing a firm lower limit of 24-34% to the SMBH occupation fraction of normal galaxies, and found the average Eddington-scaled X-ray luminosity to be a decreasing function of SMBH mass, evidence for accretion "downsizing" (Gallo et al. 2008, 2010). Galaxies in more isolated environments have distinct properties that might influence the rate of SMBH fueling. Relative to cluster sources, field early-type galaxies have a lower probability of mergers; they also likely retain a larger fraction of hot gas (due to reduced ram-pressure stripping) and apparently contain more cold gas and tend to have younger stellar populations. The X-ray detection fraction of the field early-type galaxies is found to be comparable to that of the AMUSE-Virgo survey. We correlate the average Eddington-scaled X-ray luminosity with SMBH mass for the observed objects and compare the relation to that found for cluster galaxies. We also calculate the rate of off-nuclear X-ray sources and discuss implications for X-ray binary populations within field early-type galaxies.

  11. Direct evidence of hierarchical assembly at low masses from isolated dwarf galaxy groups

    NASA Astrophysics Data System (ADS)

    Stierwalt, S.; Liss, S. E.; Johnson, K. E.; Patton, D. R.; Privon, G. C.; Besla, G.; Kallivayalil, N.; Putman, M.

    2017-01-01

    The demographics of dwarf galaxy populations have long been in tension with predictions from the Λ cold dark matter (ΛCDM) paradigm 1-4 . If primordial density fluctuations were scale-free as predicted, dwarf galaxies should themselves host dark-matter subhaloes 5 , the most massive of which may have undergone star formation resulting in dwarf galaxy groups. Ensembles of dwarf galaxies are observed as sate­llites of more massive galaxies 6-9 , and there is observational 10 and theoretical 11 evidence to suggest that these satellites at redshift z = 0 were captured by the massive host halo as a group. However, the evolution of dwarf galaxies is highly susceptible to environment 12-14 , making these satellite groups imperfect probes of ΛCDM in the low-mass regime. Here we report one of the clearest examples yet of hierarchical structure formation at low masses: using deep multi-wavelength data, we identify seven isolated, spectroscopically confirmed groups of only dwarf galaxies. Each group hosts three to five known members, has a baryonic mass of ~4.4 × 109 to 2 × 1010 solar masses (M ⊙), and requires a mass-to-light ratio of <100 to be gravitationally bound. Such groups are predicted to be rare theoretically and found to be rare observationally at the current epoch, and thus provide a unique window into the possible formation mechanism of more massive, isolated galaxies.

  12. Galaxy Zoo: the interplay of quenching mechanisms in the group environment★

    NASA Astrophysics Data System (ADS)

    Smethurst, R. J.; Lintott, C. J.; Bamford, S. P.; Hart, R. E.; Kruk, S. J.; Masters, K. L.; Nichol, R. C.; Simmons, B. D.

    2017-08-01

    Does the environment of a galaxy directly influence the quenching history of a galaxy? Here, we investigate the detailed morphological structures and star formation histories of a sample of SDSS group galaxies with both classifications from Galaxy Zoo 2 and near ultra-violet (NUV) detections in GALEX. We use the optical and NUV colours to infer the quenching time and rate describing a simple exponentially declining star formation history for each galaxy, along with a control sample of field galaxies. We find that the time since quenching and the rate of quenching do not correlate with the relative velocity of a satellite but are correlated with the group potential. This quenching occurs within an average quenching time-scale of ∼ 2.5 Gyr from star forming to complete quiescence, during an average infall time (from ∼10R200 to 0.01R200) of ∼ 2.6 Gyr. Our results suggest that the environment does play a direct role in galaxy quenching through quenching mechanisms that are correlated with the group potential, such as harassment, interactions or starvation. Environmental quenching mechanisms that are correlated with satellite velocity, such as ram-pressure stripping, are not the main cause of quenching in the group environment. We find that no single mechanism dominates over another, except in the most extreme environments or masses. Instead, an interplay of mergers, mass and morphological quenching and environment-driven quenching mechanisms dependent on the group potential drive galaxy evolution in groups.

  13. The Heavy Element Abundance in Groups of Galaxies

    NASA Technical Reports Server (NTRS)

    David, Laurence

    2000-01-01

    Over the past few years we have analyzed a sample of clusters observed by the Advanced Spacecraft for Cosmology Astrophysics (ASCA) X-ray satellite. We performed spatially resolved X-ray spectroscopy of a sample of 18 relaxed clusters of galaxies with gas temperatures below 4 keV. The spectral analysis was done using ASCA/SIS (Solid state Imaging Spectrometer) data combined with imaging data from ROSAT/PSPC (German acronym for X-ray satellite/Position Sensitive Proportional Counter) and Einstein/IPC (Imaging Proportional Counter) observations. We derived temperature profiles using single-temperature fits for all of the clusters in the sample, and also corrected for the presence of cold gas in the center of so-called 'cooling flow' clusters. For all of the clusters in the sample we derived Si and Fe abundance profiles. For a few of the clusters we also were able to derive Ne and S abundance profiles. We compared the elemental abundances derived at similar overdensities in all of the clusters in the sample. We also compared element mass-to-light ratios for the entire sample. We concluded that the preferential accretion of low entropy, low abundance gas into the potentials of groups and cold clusters can explain most of the observed trends in metallicity. In addition, we discussed the importance of preheating of the intracluster medium by Type II supernovae on the cluster scaling relations.

  14. The Heavy Element Abundance in Groups of Galaxies

    NASA Technical Reports Server (NTRS)

    David, Laurence

    2000-01-01

    Over the past few years we have analyzed a sample of clusters observed by the Advanced Spacecraft for Cosmology Astrophysics (ASCA) X-ray satellite. We performed spatially resolved X-ray spectroscopy of a sample of 18 relaxed clusters of galaxies with gas temperatures below 4 keV. The spectral analysis was done using ASCA/SIS (Solid state Imaging Spectrometer) data combined with imaging data from ROSAT/PSPC (German acronym for X-ray satellite/Position Sensitive Proportional Counter) and Einstein/IPC (Imaging Proportional Counter) observations. We derived temperature profiles using single-temperature fits for all of the clusters in the sample, and also corrected for the presence of cold gas in the center of so-called 'cooling flow' clusters. For all of the clusters in the sample we derived Si and Fe abundance profiles. For a few of the clusters we also were able to derive Ne and S abundance profiles. We compared the elemental abundances derived at similar overdensities in all of the clusters in the sample. We also compared element mass-to-light ratios for the entire sample. We concluded that the preferential accretion of low entropy, low abundance gas into the potentials of groups and cold clusters can explain most of the observed trends in metallicity. In addition, we discussed the importance of preheating of the intracluster medium by Type II supernovae on the cluster scaling relations.

  15. Understanding the Physical Conditions in Local Analogs of High-Redshift Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Spiewak, Renée; Erb, Dawn; Tremonti, Christina A.; Berg, Danielle

    2016-01-01

    Observations of strong nebular emission lines in high-redshift galaxies (z~2) can be illuminated through the use of analogous local galaxies (z<0.4), for which many more emission lines can be measured. The observed offset in the "BPT" ([N II]λ6584/Hα vs. [O III]λ5007/Hβ) nebular diagnostic diagram between the locus of high redshift galaxies and that of typical local galaxies indicates a change in the physical conditions of the galaxies with redshift; the cause of this offset is unknown, but it may be associated with the ionization parameter, the hardness of the ionizing spectrum, or the N/O abundance ratio. To study the offset, we have selected a sample of local galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey Data Release 12 (SDSS-III/BOSS DR12), which occupies the same space in the [N II]λ6584/Hα vs. [O III]λ5007/Hβ diagnostic diagram as the z~2 sample. Using a suite of >50 different emission lines, most of which are unavailable in analyses of higher redshift galaxies, and a novel method of improving the spectrophotometric calibration of BOSS data, we investigate the metallicity, ionization state, and abundance ratios of this offset sample in order to shed light on the physical conditions in galaxies in the early universe.

  16. A KiDS weak lensing analysis of assembly bias in GAMA galaxy groups

    NASA Astrophysics Data System (ADS)

    Dvornik, Andrej; Cacciato, Marcello; Kuijken, Konrad; Viola, Massimo; Hoekstra, Henk; Nakajima, Reiko; van Uitert, Edo; Brouwer, Margot; Choi, Ami; Erben, Thomas; Fenech Conti, Ian; Farrow, Daniel J.; Herbonnet, Ricardo; Heymans, Catherine; Hildebrandt, Hendrik; Hopkins, Andrew M.; McFarland, John; Norberg, Peder; Schneider, Peter; Sifón, Cristóbal; Valentijn, Edwin; Wang, Lingyu

    2017-07-01

    We investigate possible signatures of halo assembly bias for spectroscopically selected galaxy groups from the Galaxy And Mass Assembly (GAMA) survey using weak lensing measurements from the spatially overlapping regions of the deeper, high-imaging-quality photometric Kilo-Degree Survey. We use GAMA groups with an apparent richness larger than 4 to identify samples with comparable mean host halo masses but with a different radial distribution of satellite galaxies, which is a proxy for the formation time of the haloes. We measure the weak lensing signal for groups with a steeper than average and with a shallower than average satellite distribution and find no sign of halo assembly bias, with the bias ratio of 0.85^{+0.37}_{-0.25}, which is consistent with the Λ cold dark matter prediction. Our galaxy groups have typical masses of 1013 M⊙ h-1, naturally complementing previous studies of halo assembly bias on galaxy cluster scales.

  17. Resolving the Galaxies within a Giant Lyα Nebula: Witnessing the Formation of a Galaxy Group?

    NASA Astrophysics Data System (ADS)

    Prescott, Moire K. M.; Dey, Arjun; Brodwin, Mark; Chaffee, Frederic H.; Desai, Vandana; Eisenhardt, Peter; Le Floc'h, Emeric; Jannuzi, Buell T.; Kashikawa, Nobunari; Matsuda, Yuichi; Soifer, B. T.

    2012-06-01

    Detailed analysis of the substructure of Lyα nebulae can put important constraints on the physical mechanisms at work and the properties of galaxies forming within them. Using high-resolution Hubble Space Telescope (HST) imaging of a Lyα nebula at z ≈ 2.656, we have taken a census of the compact galaxies in the vicinity, used optical/near-infrared colors to select system members, and put constraints on the morphology of the spatially extended emission. The system is characterized by (1) a population of compact, low-luminosity (~0.1 L*) sources—17 primarily young, small (Re ≈ 1-2 kpc), disky galaxies including an obscured active galactic nucleus—that are all substantially offset (gsim20 kpc) from the line-emitting nebula; (2) the lack of a central galaxy at or near the peak of the Lyα emission; and (3) several nearly coincident, spatially extended emission components—Lyα, He II, and UV continuum—that are extremely smooth. These morphological findings are difficult to reconcile with theoretical models that invoke outflows, cold flows, or resonant scattering, suggesting that while all of these physical phenomena may be occurring, they are not sufficient to explain the powering and large extent of Lyα nebulae. In addition, although the compact galaxies within the system are irrelevant as power sources, the region is significantly overdense relative to the field galaxy population (by at least a factor of four). These observations provide the first estimate of the luminosity function of galaxies within an individual Lyα nebula system and suggest that large Lyα nebulae may be the seeds of galaxy groups or low-mass clusters.

  18. RESOLVING THE GALAXIES WITHIN A GIANT Ly{alpha} NEBULA: WITNESSING THE FORMATION OF A GALAXY GROUP?

    SciTech Connect

    Prescott, Moire K. M.; Dey, Arjun; Jannuzi, Buell T.; Brodwin, Mark; Chaffee, Frederic H.; Desai, Vandana; Soifer, B. T.; Eisenhardt, Peter; Le Floc'h, Emeric; Matsuda, Yuichi

    2012-06-20

    Detailed analysis of the substructure of Ly{alpha} nebulae can put important constraints on the physical mechanisms at work and the properties of galaxies forming within them. Using high-resolution Hubble Space Telescope (HST) imaging of a Ly{alpha} nebula at z Almost-Equal-To 2.656, we have taken a census of the compact galaxies in the vicinity, used optical/near-infrared colors to select system members, and put constraints on the morphology of the spatially extended emission. The system is characterized by (1) a population of compact, low-luminosity ({approx}0.1 L*) sources-17 primarily young, small (R{sub e} Almost-Equal-To 1-2 kpc), disky galaxies including an obscured active galactic nucleus-that are all substantially offset ({approx}>20 kpc) from the line-emitting nebula; (2) the lack of a central galaxy at or near the peak of the Ly{alpha} emission; and (3) several nearly coincident, spatially extended emission components-Ly{alpha}, He II, and UV continuum-that are extremely smooth. These morphological findings are difficult to reconcile with theoretical models that invoke outflows, cold flows, or resonant scattering, suggesting that while all of these physical phenomena may be occurring, they are not sufficient to explain the powering and large extent of Ly{alpha} nebulae. In addition, although the compact galaxies within the system are irrelevant as power sources, the region is significantly overdense relative to the field galaxy population (by at least a factor of four). These observations provide the first estimate of the luminosity function of galaxies within an individual Ly{alpha} nebula system and suggest that large Ly{alpha} nebulae may be the seeds of galaxy groups or low-mass clusters.

  19. Assessing colour-dependent occupation statistics inferred from galaxy group catalogues

    NASA Astrophysics Data System (ADS)

    Campbell, Duncan; van den Bosch, Frank C.; Hearin, Andrew; Padmanabhan, Nikhil; Berlind, Andreas; Mo, H. J.; Tinker, Jeremy; Yang, Xiaohu

    2015-09-01

    We investigate the ability of current implementations of galaxy group finders to recover colour-dependent halo occupation statistics. To test the fidelity of group catalogue inferred statistics, we run three different group finders used in the literature over a mock that includes galaxy colours in a realistic manner. Overall, the resulting mock group catalogues are remarkably similar, and most colour-dependent statistics are recovered with reasonable accuracy. However, it is also clear that certain systematic errors arise as a consequence of correlated errors in group membership determination, central/satellite designation, and halo mass assignment. We introduce a new statistic, the halo transition probability (HTP), which captures the combined impact of all these errors. As a rule of thumb, errors tend to equalize the properties of distinct galaxy populations (i.e. red versus blue galaxies or centrals versus satellites), and to result in inferred occupation statistics that are more accurate for red galaxies than for blue galaxies. A statistic that is particularly poorly recovered from the group catalogues is the red fraction of central galaxies as a function of halo mass. Group finders do a good job in recovering galactic conformity, but also have a tendency to introduce weak conformity when none is present. We conclude that proper inference of colour-dependent statistics from group catalogues is best achieved using forward modelling (i.e. running group finders over mock data) or by implementing a correction scheme based on the HTP, as long as the latter is not too strongly model dependent.

  20. The environmental history of group and cluster galaxies in a Λ cold dark matter universe

    NASA Astrophysics Data System (ADS)

    De Lucia, Gabriella; Weinmann, Simone; Poggianti, Bianca M.; Aragón-Salamanca, Alfonso; Zaritsky, Dennis

    2012-06-01

    We use publicly available galaxy merger trees, obtained applying semi-analytic techniques to a large high-resolution cosmological simulation, to study the environmental history of group and cluster galaxies. Our results highlight the existence of an intrinsic history bias which makes the nature versus nurture (as well as the mass versus environment) debate inherently ill posed. In particular, we show that (i) surviving massive satellites were accreted later than their less massive counterparts, from more massive haloes and (ii) the mixing of galaxy populations is incomplete during halo assembly, which creates a correlation between the time a galaxy becomes satellite and its present distance from the parent halo centre. The weakest trends are found for the most massive satellites, as a result of efficient dynamical friction and late formation times of massive haloes. A large fraction of the most massive group/cluster members are accreted on to the main progenitor of the final halo as central galaxies, while about half of the galaxies with low and intermediate stellar masses are accreted as satellites. Large fractions of group and cluster galaxies (in particular those of low stellar mass) have therefore been ‘pre-processed’ as satellites of groups with mass ˜1013 M⊙. To quantify the relevance of hierarchical structure growth on the observed environmental trends, we have considered observational estimates of the passive galaxy fractions and their variation as a function of halo mass and clustercentric distance. Comparisons with our theoretical predictions require relatively long times (˜5-7 Gyr) for the suppression of star formation in group and cluster satellites. It is unclear how such a gentle mode of strangulation can be achieved by simply relaxing the assumption of instantaneous stripping of the hot gas reservoir associated with accreting galaxies, or if the difficulties encountered by recent galaxy formation models in reproducing the observed trends

  1. Powerful quasar feedback in local and very distant galaxies

    NASA Astrophysics Data System (ADS)

    Cicone, Claudia

    2015-08-01

    Identifying feedback mechanisms responsible for the rapid quenching of star formation occurring in the early stages of the evolution of massive galaxies is crucial for advancing our understanding of galaxy formation and evolution. The discovery of massive and extended molecular outflows in several nearby galaxies constitutes a major breakthrough in this field. Because cold and dense molecular gas is the primary ingredient of star formation, massive molecular outflows are presumably extremely relevant to galaxy growth and evolution. Our observations have shown that, although molecular outflows can develop also in purely star forming galaxies as a consequence of stellar feedback, the presence of a powerful quasar can significantly enhance mass-loss rate, kinetic power and momentum rate of the outflows, thereby resulting in a more profound feedback on the host galaxy. The high outflow momentum rates (~20 L_AGN/c) estimated in AGN host galaxies support models of ``energy-conserving’’ outflows, generated by hydrodynamical coupling of the AGN with the galactic interstellar medium via fast and highly ionised nuclear winds.Feedback can be even more dramatic at high redshift. Our high sensitivity interferometric observations of the [CII]158micron emission line and FIR continuum in the quasar SDSS J1148+5251 at z=6.4 have revealed a giant (r~30 kpc) outflow of cold gas reaching a velocity of ~1500 km/s. Comparison with simulations shows that, although the quasar is likely the main driver of the outflow in SDSS J1148+5251, supernova feedback must play a prominent role, as supported by our discovery of intense star formation occurring at least up to scales of r~10 kpc in this z>6 quasar host galaxy.

  2. BVRI Surface Photometry of Isolated Galaxies in the Local Universe

    NASA Astrophysics Data System (ADS)

    Zendejas-Domínguez, J.; Ortega-Esbrí, S.; Salazar-Contreras, J. R.; Hernández-Toledo, H. M.

    2008-04-01

    We present preliminary results of multicolor broadband CCD (BVRI) photometry for a sample of 230 isolated (elliptical and spiral) galaxies drawn from the Catalog of Isolated Galaxies (CIG) by Karachentseva (1973). Images were acquired at the San Pedro Mártir (OAN-SPM) National Optical Observatory in Baja California, Mexico. We estimated total magnitudes and colors at various circular apertures, as well as global structural/morphological parameters: Concentration, Asymmetry and Clumpiness (CAS).

  3. Cluster of galaxies & Cosmology - X-ray analysis of fossil group RXJ1720.1+2360

    NASA Astrophysics Data System (ADS)

    Lozada, Monica

    2012-09-01

    We present the results on the X-ray analysis of fossil group of galaxies RXJ1720.1+2360. Fossil Groups are systems associated to extended emission in X-rays with one single central elliptical galaxy surrounded by very faint companions. This unusual lack of bright galaxies in the group is presumably due to galactic cannibalism. In this study we present for the first time the imaging and spectral analysis of the XMM-Newton data of RXJ1720.1+2360. This work is part of a systematic study to determine the X-ray properties of fossil groups.

  4. On the mass of the local group

    SciTech Connect

    González, Roberto E.; Kravtsov, Andrey V.; Gnedin, Nickolay Y.

    2014-10-01

    We use recent proper motion measurements of the tangential velocity of M31, along with its radial velocity and distance, to derive the likelihood of the sum of halo masses of the Milky Way and M31. This is done using a sample of halo pairs in the Bolshoi cosmological simulation of ΛCDM cosmology selected to match the properties and the environment of the Local Group. The resulting likelihood gives an estimate of the sum of the masses of M {sub MW,} {sub 200c} + M {sub M31,} {sub 200c} = 2.40{sub −1.05}{sup +1.95}×10{sup 12} M{sub ⊙} (90% confidence interval). This estimate is consistent with individual mass estimates for the Milky Way and M31 and is consistent, albeit somewhat on the low side, with the mass estimated using the timing argument. We show that although the timing argument is unbiased on average for all pairs, for pairs constrained to have radial and tangential velocities similar to that of the Local Group the argument overestimates the sum of masses by a factor of 1.6. Using similar technique, we estimate the total dark matter mass enclosed within 1 Mpc from the Local Group barycenter to be M{sub LG}(r<1 Mpc)=4.2{sub −2.0}{sup +3.4}×10{sup 12} M{sub ⊙} (90% confidence interval).

  5. IRAS 23532+2513: a compact group including a Seyfert 1 and a starburst galaxy.

    NASA Astrophysics Data System (ADS)

    Zou, Z.-L.; Xia, X.-Y.; Deng, Z.-G.; Wu, H.

    1995-12-01

    The very luminous infrared source IRAS 23532 coincides with a compact group of galaxies including MCG 04-01-002, MCG 04-01-003 and MCG 04-01-004. Spectroscopic observations show that the bright-nucleus galaxy MCG 04-01-002 is a Seyfert 1 and the disturbed spiral galaxy MCG 04-01-003 is a starburst galaxy. CCD images in V band reveal that clear tidal interaction exists between those two objects. This is another example of tidal interaction triggering starburst and Seyfert activity.

  6. Luminosity and Stellar Mass Functions of Local Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Pérez-González, Pablo G.; Gallego, Jesús; Zamorano, Jaime; Alonso-Herrero, Almudena; Gil de Paz, Armando; Aragón-Salamanca, Alfonso

    2003-04-01

    We present the optical and near-infrared luminosity and mass functions of the local star-forming galaxies in the Universidad Complutense de Madrid (UCM) Survey. A bivariate method that explicitly deals with the Hα selection of the survey is used when estimating these functions. Total stellar masses have been calculated on a galaxy-by-galaxy basis taking into account differences in star formation histories. The main difference between the luminosity distributions of the UCM sample and the luminosity functions of the local galaxy population is a lower normalization (φ*), indicating a lower global volume density of UCM galaxies. The typical near-infrared luminosity (L*) of local star-forming galaxies is fainter than that of normal galaxies. This is a direct consequence of the lower stellar masses of our objects. However, at optical wavelengths (B and r), the luminosity enhancement arising from the young stars leads to M* values that are similar to those of normal galaxies. The fraction of the total optical and near-infrared luminosity density in the local universe associated with star-forming galaxies is 10%-20%. Fitting the total stellar mass function using a Schechter parameterization, we obtain α=-1.15+/-0.15, logM*=10.82+/-0.17 Msolar, and logφ*=-3.04+/-0.20 Mpc-3. This gives an integrated total stellar mass density of 107.83+/-0.07 Msolar Mpc-3 in local star-forming galaxies (H0=70 km s-1 Mpc-1, ΩM=0.3, and Λ=0.7). The volume-averaged burst strength of the UCM galaxies is b=0.04+/-0.01, defined as the ratio of the mass density of stars formed in recent bursts (with an age of <10 Myr) to the total stellar mass density in UCM galaxies. Finally, we derive that in the local universe, 13%+/-3% of the total baryon mass density in the form of stars is associated with star-forming galaxies.

  7. Flocculent and grand design spiral structure in field, binary and group galaxies

    NASA Astrophysics Data System (ADS)

    Elmegreen, D. M.; Elmegreen, B. G.

    1982-12-01

    A 12-division morphological system emphasizing arm continuity, length and symmetry has been developed for the classification of all spiral galaxies according to the regularity of their spiral arm structure. Arm classifications were tabulated for 305 barred and nonbarred spiral galaxies; of these, 79 are isolated, 52 are binary and 174 are in groups. Among the isolated SA galaxies, 68 + or - 10% have irregular and fragmented, or 'flocculent', spiral structures. Only 32 + or - 10% have symmetric spiral arms in the classic grand design pattern. Flocculent spirals are the most common structures of galaxies without companions or bars. Since flocculent galaxies may have bars and companions, and grand design galaxies may have neither bars nor companions, such perturbations are neither perfectly effective nor always necessary in the driving of grand design patterns.

  8. Spectroscopic Confirmation of the Dwarf Spheroidal Galaxy d0994+71 as a Member of the M81 Group of Galaxies

    NASA Astrophysics Data System (ADS)

    Toloba, Elisa; Sand, David; Guhathakurta, Puragra; Chiboucas, Kristin; Crnojević, Denija; Simon, Joshua D.

    2016-10-01

    We use Keck/DEIMOS spectroscopy to measure the first velocity and metallicity of a dwarf spheroidal (dSph) galaxy beyond the Local Group using resolved stars. Our target, d0944+71, is a faint dSph found in the halo of the massive spiral galaxy M81 by Chiboucas et al. We coadd the spectra of 27 individual stars and measure a heliocentric radial velocity of -38 ± 10 km s-1. This velocity is consistent with d0944+71 being gravitationally bound to M81. We coadd the spectra of the 23 stars that are consistent with being red giant branch stars and measure an overall metallicity of [Fe/H] = -1.3 ± 0.3 based on the calcium triplet lines. This metallicity is consistent with d0944+71 following the metallicity-luminosity relation for Local Group dSphs. We investigate several potential sources of observational bias but find that our sample of targeted stars is representative of the metallicity distribution function of d0944+71 and any stellar contamination due to seeing effects is negligible. The low ellipticity of the galaxy and its position in the metallicity-luminosity relation suggest that d0944+71 has not been affected by strong tidal stripping.

  9. Constraints on the dynamical evolution of the galaxy group M81

    NASA Astrophysics Data System (ADS)

    Oehm, W.; Thies, I.; Kroupa, P.

    2017-05-01

    According to the standard model of cosmology, galaxies are embedded in dark matter haloes that are made of particles beyond the standard model of particle physics, thus extending the mass and the size of the visible baryonic matter by typically two orders of magnitude. The observed gas distribution throughout the nearby M81 group of galaxies shows evidence for past significant galaxy-galaxy interactions but without a merger between the present-day members having occurred. This group is here studied for possible dynamical solutions within the dark matter standard model. In order to cover a comprehensive set of initial conditions, the inner three core members M81, M82 and NGC 3077 are treated as a three-body model based on Navarro-Frenk-White profiles. The possible orbits of these galaxies are examined statistically taking into account dynamical friction. Long living, non-merging initial constellations that allow multiple galaxy-galaxy encounters comprise unbound galaxies only, which are arriving from a far distance and happen to simultaneously encounter each other within the recent 500 Myr. Our results are derived by the employment of two separate and independent statistical methods, namely a Markov chain Monte Carlo method and the genetic algorithm using the sap system environment. The conclusions reached are confirmed by high-resolution simulations of live self-consistent systems (N-body calculations). Given the observed positions of the three galaxies, the solutions found comprise predictions for their proper motions.

  10. Constraints on the dynamical evolution of the galaxy group M81

    NASA Astrophysics Data System (ADS)

    Oehm, W.; Thies, I.; Kroupa, P.

    2017-01-01

    According to the standard model of cosmology, galaxies are embedded in dark matter haloes that are made of particles beyond the standard model of particle physics, thus extending the mass and the size of the visible baryonic matter by typically two orders of magnitude. The observed gas distribution throughout the nearby M81 group of galaxies shows evidence for past significant galaxy-galaxy interactions but without a merger between the present-day members having occurred. This group is here studied for possible dynamical solutions within the dark matter standard model. In order to cover a comprehensive set of initial conditions, the inner three core members M81, M82 and NGC 3077 are treated as a three-body model based on Navarro-Frenk-White profiles. The possible orbits of these galaxies are examined statistically taking into account dynamical friction. Long living, non-merging initial constellations that allow multiple galaxy-galaxy encounters comprise unbound galaxies only, which are arriving from a far distance and happen to simultaneously encounter each other within the recent 500 Myr. Our results are derived by the employment of two separate and independent statistical methods, namely a Markov chain Monte Carlo method and the genetic algorithm using the sap system environment. The conclusions reached are confirmed by high-resolution simulations of live self-consistent systems (N-body calculations). Given the observed positions of the three galaxies, the solutions found comprise predictions for their proper motions.

  11. RADIO GALAXY FEEDBACK IN X-RAY-SELECTED GROUPS FROM COSMOS: THE EFFECT ON THE INTRACLUSTER MEDIUM

    SciTech Connect

    Giodini, S.; Finoguenov, A.; Boehringer, H.; Pierini, D.; Smolcic, V.; Massey, R.; BIrzan, L.; Zamorani, G.; Oklopcic, A.; Pratt, G. W.; Koekemoer, A. M.; Salvato, M.; Sanders, D. B.; Kartaltepe, J. S.; Thompson, D.

    2010-05-01

    We quantify the importance of the mechanical energy released by radio galaxies inside galaxy groups. We use scaling relations to estimate the mechanical energy released by 16 radio-active galactic nuclei located inside X-ray-detected galaxy groups in the COSMOS field. By comparing this energy output to the host groups' gravitational binding energy, we find that radio galaxies produce sufficient energy to unbind a significant fraction of the intragroup medium. This unbinding effect is negligible in massive galaxy clusters with deeper potential wells. Our results correctly reproduce the breaking of self-similarity observed in the scaling relation between entropy and temperature for galaxy groups.

  12. Mapping the Star Formation History of the Local Group with NHST

    NASA Astrophysics Data System (ADS)

    Brown, T. M.

    2003-05-01

    The color-magnitude diagram (CMD) is the most fundamental tool for studying the star formation history of nearby stellar populations. Strong constraints on the ages of stellar populations come from CMDs reaching the main sequence, and with the Hubble Space Telescope (HST), it is possible to produce such a CMD for stars at any distance within the Local Group. Unfortunately, resolving the main sequence in old populations beyond the satellites of the Milky Way requires an enormous investment of HST time, meaning that only a few pencil beams can be explored within the remaining HST mission. In strong contrast, an 8 meter UV-optical space telescope, diffraction limited at 0.5 microns, could map the star formation history of all galaxies in the Local Group: It would take only one hour to resolve the main sequence in any Local Group galaxy, allowing the exploration of hundreds of sight-lines in a reasonable program.

  13. STRUCTURE IN THE 3D GALAXY DISTRIBUTION. II. VOIDS AND WATERSHEDS OF LOCAL MAXIMA AND MINIMA

    SciTech Connect

    Way, M. J.; Gazis, P. R.; Scargle, Jeffrey D. E-mail: PGazis@sbcglobal.net

    2015-01-20

    The major uncertainties in studies of the multi-scale structure of the universe arise not from observational errors but from the variety of legitimate definitions and detection methods for individual structures. To facilitate the study of these methodological dependencies, we have carried out 12 different analyses defining structures in various ways. This has been done in a purely geometrical way by utilizing the HOP algorithm as a unique parameter-free method of assigning groups of galaxies to local density maxima or minima. From three density estimation techniques (smoothing kernels, Bayesian blocks, and self-organizing maps) applied to three data sets (the Sloan Digital Sky Survey Data Release 7, the Millennium simulation, and randomly distributed points) we tabulate information that can be used to construct catalogs of structures connected to local density maxima and minima. We also introduce a void finder that utilizes a method to assemble Delaunay tetrahedra into connected structures and characterizes regions empty of galaxies in the source catalog.

  14. Identification of red supergiants in the Local Group with mid-IR photometry

    NASA Astrophysics Data System (ADS)

    Britavskiy, Nikolay; Bonanos, Alceste; Mehner, Andrea

    2015-08-01

    Star forming dwarf irregular (dIrr) galaxies serve as ideal laboratories for investigating the evolution and mass loss phenomenon of red supergiants (RSGs) within the context of different metallicities of host galaxies. Also, RSGs may be used for abundance determinations in dIrrs. The extremely low number of spectroscopically confirmed RSGs in external galaxies makes the identification of new RSGs statistically significant. We present a systematic survey of RSGs and luminous blue variables (LBVs) with the goal to complete the census of these objects in the Local Group. Using the fact that RSGs and LBVs are bright in mid-infrared colors due to dust, we propose and apply a technique that allows us to select dusty massive stars based on their [3.6] and [4.5] Spitzer photometry (Britavskiy et al. 2014). We present the results of our spectroscopic follow-up of luminous infrared sources in 7 nearby dIrrs (Phoenix, Pegasus, Sextans A, Sextans B, WLM, IC 10 and IC 1613) based on VLT/FORS2 and GTC/OSIRIS observations. In total we have observed ˜100 targets, among which we have so far identified 16 RSGs and 2 new emission line objects in these galaxies. Moreover, using the newly discovered RSGs, we have revised the mid-IR and optical photometric selection criteria for this type of objects, which can be applied to other galaxies of the Local Group and beyond.

  15. The low-luminosity galaxy population in