Sample records for local heating effects

  1. Response of eddy activities to localized diabatic heating in Held-Suarez simulations

    NASA Astrophysics Data System (ADS)

    Lin, Yanluan; Zhang, Jishi; Li, Xingrui; Deng, Yi

    2018-01-01

    Widespread air pollutions, such as black carbon over East Asia in recent years, could induce a localized diabatic heating, and thus lead to localized static stability and meridional temperature gradient (MTG) changes. Although effect of static stability and MTG on eddies has been addressed by the linear baroclinic instability theory, impacts of a localized heating on mid-latitude eddy activities have not been well explored and quantified. Via a series of idealized global Held-Suarez simulations with different magnitudes of localized heating at different altitudes and latitudes, responses of mid-latitude eddy activity and circulation to these temperature perturbations are systematically investigated. Climatologically, the localized heating in the lower atmosphere induces a wave-like response of eddy activity near the mid-latitude jet stream. Over the heating region, eddy activity tends to be weakening due to the increased static stability. However, there are cyclonic anomalies over the upstream and downstream of the heating region. The zonal mean eddy activity weakens along the baroclinic zone due to reduced MTG and increased static stability. Furthermore, the response of eddy activity increased as the heating magnitude is increased and moved to higher altitudes. The influence of the heating decreases as the heating is prescribed further away from the climatological mid-latitude jet. This implies that the localized heating is most effective over the region with the maximum baroclinicity. Besides, enhanced storm track downstream of the localized heating area found here suggests that increased aerosols over East Asia might strengthen the North Pacific storm track.

  2. A scaling law for the local CHF on the external bottom side of a fully submerged reactor vessel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, F.B.; Haddad, K.H.; Liu, Y.C.

    1997-02-01

    A scaling law for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water has been developed from the results of an advanced hydrodynamic CHF model for pool boiling on a downward facing curved heating surface. The scaling law accounts for the effects of the size of the vessel, the level of liquid subcooling, the intrinsic properties of the fluid, and the spatial variation of the local critical heat flux along the heating surface. It is found that for vessels with diameters considerably larger than the characteristic size ofmore » the vapor masses, the size effect on the local critical heat flux is limited almost entirely to the effect of subcooling associated with the local liquid head. When the subcooling effect is accounted for separately, the local CHF limit is nearly independent of the vessel size. Based upon the scaling law developed in this work, it is possible to merge, within the experimental uncertainties, all the available local CHF data obtained for various vessel sizes under both saturated and subcooled boiling conditions into a single curve. Applications of the scaling law to commercial-size vessels have been made for various system pressures and water levels above the heated vessel. Over the range of conditions explored in this study, the local CHF limit is found to increase by a factor of two or more from the bottom center to the upper edge of the vessel. Meanwhile, the critical heat flux at a given angular position of the heated vessel is also found to increase appreciably with the system pressure and the water level.« less

  3. Interface Shape Control Using Localized Heating during Bridgman Growth

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.; Aggarwal, M. D.; Croll, A.

    2008-01-01

    Numerical calculations were performed to assess the effect of localized radial heating on the melt-crystal interface shape during vertical Bridgman growth. System parameters examined include the ampoule, melt and crystal thermal conductivities, the magnitude and width of localized heating, and the latent heat of crystallization. Concave interface shapes, typical of semiconductor systems, could be flattened or made convex with localized heating. Although localized heating caused shallower thermal gradients ahead of the interface, the magnitude of the localized heating required for convexity was less than that which resulted in a thermal inversion ahead of the interface. A convex interface shape was most readily achieved with ampoules of lower thermal conductivity. Increasing melt convection tended to flatten the interface, but the amount of radial heating required to achieve a convex interface was essentially independent of the convection intensity.

  4. Boiling local heat transfer enhancement in minichannels using nanofluids

    PubMed Central

    2013-01-01

    This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance. PMID:23506445

  5. Resist heating effect on e-beam mask writing at 75 kV and 60 A/cm2

    NASA Astrophysics Data System (ADS)

    Benes, Zdenek; Deverich, Christina; Huang, Chester; Lawliss, Mark

    2003-12-01

    Resist heating has been known to be one of the main contributors to local CD variation in mask patterning using variable shape e-beam tools. Increasingly complex mask patterns require increased number of shapes which drives the need for higher electron beam current densities to maintain reasonable write times. As beam current density is increased, CD error resulting from resist heating may become a dominating contributor to local CD variations. In this experimental study, the IBM EL4+ mask writer with high voltage and high current density has been used to quantitatively investigate the effect of resist heating on the local CD uniformity. ZEP 7000 and several chemically amplified resists have been evaluated under various exposure conditions (single-pass, multi-pass, variable spot size) and pattern densities. Patterns were designed specifically to allow easy measurement of local CD variations with write strategies designed to maximize the effect of resist heating. Local CD variations as high as 15 nm in 18.75 × 18.75 μm sub-field size have been observed for ZEP 7000 in a single-pass writing with full 1000 nm spots at 50% pattern density. This number can be reduced by increasing the number of passes or by decreasing the maximum spot size. The local CD variation has been reduced to as low as 2 nm for ZEP 7000 for the same pattern under modified exposure conditions. The effectiveness of various writing strategies is discussed as well as their possible deficiencies. Minimal or no resist heating effects have been observed for the chemically amplified resists studied. The results suggest that the resist heating effect can be well controlled by careful selection of the resist/process system and/or writing strategy and that resist heating does not have to pose a problem for high throughput e-beam mask making that requires high voltage and high current densities.

  6. Silicon Field Effect Transistors as Dual-Use Sensor-Heater Hybrids

    PubMed Central

    Reddy, Bobby; Elibol, Oguz H.; Nair, Pradeep R.; Dorvel, Brian R.; Butler, Felice; Ahsan, Zahab; Bergstrom, Donald E.; Alam, Muhammad A.; Bashir, Rashid

    2011-01-01

    We demonstrate the temperature mediated applications of a previously proposed novel localized dielectric heating method on the surface of dual purpose silicon field effect transistor (FET) sensor-heaters and perform modeling and characterization of the underlying mechanisms. The FETs are first shown to operate as electrical sensors via sensitivity to changes in pH in ionic fluids. The same devices are then demonstrated as highly localized heaters via investigation of experimental heating profiles and comparison to simulation results. These results offer further insight into the heating mechanism and help determine the spatial resolution of the technique. Two important biosensor platform applications spanning different temperature ranges are then demonstrated: a localized heat-mediated DNA exchange reaction and a method for dense selective functionalization of probe molecules via the heat catalyzed complete desorption and reattachment of chemical functionalization to the transistor surfaces. Our results show that the use of silicon transistors can be extended beyond electrical switching and field-effect sensing to performing localized temperature controlled chemical reactions on the transistor itself. PMID:21214189

  7. Heat Transfer and Fluid Transport of Supercritical CO 2 in Enhanced Geothermal System with Local Thermal Non-equilibrium Model

    DOE PAGES

    Zhang, Le; Luo, Feng; Xu, Ruina; ...

    2014-12-31

    The heat transfer and fluid transport of supercritical CO 2 in enhanced geothermal system (EGS) is studied numerically with local thermal non-equilibrium model, which accounts for the temperature difference between solid matrix and fluid components in porous media and uses two energy equations to describe heat transfer in the solid matrix and in the fluid, respectively. As compared with the previous results of our research group, the effect of local thermal non-equilibrium mainly depends on the volumetric heat transfer coefficient ah, which has a significant effect on the production temperature at reservoir outlet and thermal breakthrough time. The uniformity ofmore » volumetric heat transfer coefficient ah has little influence on the thermal breakthrough time, but the temperature difference become more obvious with time after thermal breakthrough with this simulation model. The thermal breakthrough time reduces and the effect of local thermal non-equilibrium becomes significant with decreasing ah.« less

  8. Modality-specific peripheral antinociceptive effects of μ-opioid agonists on heat and mechanical stimuli: Contribution of sigma-1 receptors.

    PubMed

    Montilla-García, Ángeles; Perazzoli, Gloria; Tejada, Miguel Á; González-Cano, Rafael; Sánchez-Fernández, Cristina; Cobos, Enrique J; Baeyens, José M

    2018-06-01

    Morphine induces peripherally μ-opioid-mediated antinociception to heat but not to mechanical stimulation. Peripheral sigma-1 receptors tonically inhibit μ-opioid antinociception to mechanical stimuli, but it is unknown whether they modulate μ-opioid heat antinociception. We hypothesized that sigma-1 receptors might play a role in the modality-specific peripheral antinociceptive effects of morphine and other clinically relevant μ-opioid agonists. Mechanical nociception was assessed in mice with the paw pressure test (450 g), and heat nociception with the unilateral hot plate (55 °C) test. Local peripheral (intraplantar) administration of morphine, buprenorphine or oxycodone did not induce antinociception to mechanical stimulation but had dose-dependent antinociceptive effects on heat stimuli. Local sigma-1 antagonism unmasked peripheral antinociception by μ-opioid agonists to mechanical stimuli, but did not modify their effects on heat stimulation. TRPV1+ and IB4+ cells are segregated populations of small neurons in the dorsal root ganglia (DRG) and the density of sigma-1 receptors was higher in IB4+ cells than in the rest of small nociceptive neurons. The in vivo ablation of TRPV1-expressing neurons with resiniferatoxin did not alter IB4+ neurons in the DRG, mechanical nociception, or the effects of sigma-1 antagonism on local morphine antinociception in this type of stimulus. However, it impaired the responses to heat stimuli and the effect of local morphine on heat nociception. In conclusion, peripheral opioid antinociception to mechanical stimuli is limited by sigma-1 tonic inhibitory actions, whereas peripheral opioid antinociception to heat stimuli (produced in TRPV1-expressing neurons) is not. Therefore, sigma-1 receptors contribute to the modality-specific peripheral effects of opioid analgesics. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Neuronal nitric oxide synthase control mechanisms in the cutaneous vasculature of humans in vivo

    PubMed Central

    Kellogg, Dean L; Zhao, Joan L; Wu, Yubo

    2008-01-01

    The physiological roles of constituitively expressed nitric oxide synthase (NOS) isoforms in humans, in vivo, are unknown. Cutaneous vasodilatation during both central nervous system-mediated, thermoregulatory reflex responses to whole-body heat stress and during peripheral axon reflex-mediated, local responses to skin warming in humans depend on nitric oxide (NO) generation by constituitively expressed NOS of uncertain isoform. We hypothesized that neuronal NOS (nNOS, NOS I) effects cutaneous vasodilatation during whole-body heat stress, but not during local skin warming. We examined the effects of the nNOS inhibitor 7-nitroindazole (7-NI) administered by intradermal microdialysis on vasodilatation induced by whole-body heat stress or local skin warming. Skin blood flow (SkBF) was monitored by laser–Doppler flowmetry (LDF). Blood pressure (MAP) was monitored and cutaneous vascular conductance calculated (CVC = LDF/MAP). In protocol 1, whole-body heat stress was induced with water-perfused suits. In protocol 2, local skin warming was induced through local warming units at LDF sites. At the end of each protocol, 56 mm sodium nitroprusside was perfused at microdialysis sites to raise SkBF to maximal levels for data normalization. 7-NI significantly attenuated CVC increases during whole-body heat stress (P < 0.05), but had no effect on CVC increases induced by local skin warming (P > 0.05). These diametrically opposite effects of 7-NI on two NO-dependent processes verify selective nNOS antagonism, thus proving that the nNOS isoform affects NO increases and hence vasodilatation during centrally mediated, reflex responses to whole-body heat stress, but not during locally mediated, axon reflex responses to local skin warming. We conclude that the constituitively expressed nNOS isoform has distinct physiological roles in cardiovascular control mechanisms in humans, in vivo. PMID:18048451

  10. Second principle approach to the analysis of unsteady flow and heat transfer in a tube with arc-shaped corrugation

    NASA Astrophysics Data System (ADS)

    Pagliarini, G.; Vocale, P.; Mocerino, A.; Rainieri, S.

    2017-01-01

    Passive convective heat transfer enhancement techniques are well known and widespread tool for increasing the efficiency of heat transfer equipment. In spite of the ability of the first principle approach to forecast the macroscopic effects of the passive techniques for heat transfer enhancement, namely the increase of both the overall heat exchanged and the head losses, a first principle analysis based on energy, momentum and mass local conservation equations is hardly able to give a comprehensive explanation of how local modifications in the boundary layers contribute to the overall effect. A deeper insight on the heat transfer enhancement mechanisms can be instead obtained within a second principle approach, through the analysis of the local exergy dissipation phenomena which are related to heat transfer and fluid flow. To this aim, the analysis based on the second principle approach implemented through a careful consideration of the local entropy generation rate seems the most suitable, since it allows to identify more precisely the cause of the loss of efficiency in the heat transfer process, thus providing a useful guide in the choice of the most suitable heat transfer enhancement techniques.

  11. Local heat stroke prevention plans in Japan: characteristics and elements for public health adaptation to climate change.

    PubMed

    Martinez, Gerardo Sanchez; Imai, Chisato; Masumo, Kanako

    2011-12-01

    The adverse health effects from hot weather and heat waves represent significant public health risks in vulnerable areas worldwide. Rising temperatures due to climate change are aggravating these risks in a context of fast urbanization, population growth and societal ageing. However, environmental heat-related health effects are largely preventable through adequate preparedness and responses. Public health adaptation to climate change will often require the implementation of heat wave warning systems and targeted preventive activities at different levels. While several national governments have established such systems at the country level, municipalities do not generally play a major role in the prevention of heat disorders. This paper analyzes selected examples of locally operated heat-health prevention plans in Japan. The analysis of these plans highlights their strengths, but also the need of local institutions for assistance to make the transition towards an effective public health management of high temperatures and heat waves. It can also provide useful elements for municipal governments in vulnerable areas, both in planning their climate change and health adaptation activities or to better protect their communities against current health effects from heat.

  12. Local Heat Stroke Prevention Plans in Japan: Characteristics and Elements for Public Health Adaptation to Climate Change

    PubMed Central

    Martinez, Gerardo Sanchez; Imai, Chisato; Masumo, Kanako

    2011-01-01

    The adverse health effects from hot weather and heat waves represent significant public health risks in vulnerable areas worldwide. Rising temperatures due to climate change are aggravating these risks in a context of fast urbanization, population growth and societal ageing. However, environmental heat-related health effects are largely preventable through adequate preparedness and responses. Public health adaptation to climate change will often require the implementation of heat wave warning systems and targeted preventive activities at different levels. While several national governments have established such systems at the country level, municipalities do not generally play a major role in the prevention of heat disorders. This paper analyzes selected examples of locally operated heat-health prevention plans in Japan. The analysis of these plans highlights their strengths, but also the need of local institutions for assistance to make the transition towards an effective public health management of high temperatures and heat waves. It can also provide useful elements for municipal governments in vulnerable areas, both in planning their climate change and health adaptation activities or to better protect their communities against current health effects from heat. PMID:22408589

  13. Localized heating on silicon field effect transistors: device fabrication and temperature measurements in fluid.

    PubMed

    Elibol, Oguz H; Reddy, Bobby; Nair, Pradeep R; Dorvel, Brian; Butler, Felice; Ahsan, Zahab S; Bergstrom, Donald E; Alam, Muhammad A; Bashir, Rashid

    2009-10-07

    We demonstrate electrically addressable localized heating in fluid at the dielectric surface of silicon-on-insulator field-effect transistors via radio-frequency Joule heating of mobile ions in the Debye layer. Measurement of fluid temperatures in close vicinity to surfaces poses a challenge due to the localized nature of the temperature profile. To address this, we developed a localized thermometry technique based on the fluorescence decay rate of covalently attached fluorophores to extract the temperature within 2 nm of any oxide surface. We demonstrate precise spatial control of voltage dependent temperature profiles on the transistor surfaces. Our results introduce a new dimension to present sensing systems by enabling dual purpose silicon transistor-heaters that serve both as field effect sensors as well as temperature controllers that could perform localized bio-chemical reactions in Lab on Chip applications.

  14. Human local and total heat losses in different temperature.

    PubMed

    Wang, Lijuan; Yin, Hui; Di, Yuhui; Liu, Yanfeng; Liu, Jiaping

    2016-04-01

    This study investigates the effects of operative temperature on the local and total heat losses, and the relationship between the heat loss and thermal sensation. 10 local parts of head, neck, chest, abdomen, upper arm, forearm, hand, thigh, leg and foot are selected. In all these parts, convection, radiation, evaporation, respiration, conduction and diffusion heat losses are analyzed when operative temperature is 23, 28, 33 and 37 °C. The local heat losses show that the radiation and convection heat losses are mainly affected by the area of local body, and the heat loss of the thigh is the most in the ten parts. The evaporation heat loss is mainly affected by the distribution of sweat gland, and the heat loss of the chest is the most. The total heat loss of the local body shows that in low temperature, the thigh, leg and chest have much heat loss, while in high temperature, the chest, abdomen, thigh and head have great heat loss, which are useful for clothing design. The heat losses of the whole body show that as the operative temperature increases, the radiation and convection heat losses decrease, the heat losses of conduction, respiration, and diffusion are almost constant, and the evaporation heat loss increases. By comparison, the heat loss ratios of the radiation, convection and sweat evaporation, are in agreement with the previous researches. At last, the formula about the heat loss ratio of convection and radiation is derived. It's useful for thermal comfort evaluation and HVAC (heating, ventilation and air conditioning) design. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The role of size polydispersity in magnetic fluid hyperthermia: average vs. local infra/over-heating effects.

    PubMed

    Munoz-Menendez, Cristina; Conde-Leboran, Ivan; Baldomir, Daniel; Chubykalo-Fesenko, Oksana; Serantes, David

    2015-11-07

    An efficient and safe hyperthermia cancer treatment requires the accurate control of the heating performance of magnetic nanoparticles, which is directly related to their size. However, in any particle system the existence of some size polydispersity is experimentally unavoidable, which results in a different local heating output and consequently a different hyperthermia performance depending on the size of each particle. With the aim to shed some light on this significant issue, we have used a Monte Carlo technique to study the role of size polydispersity in heat dissipation at both the local (single particle) and global (macroscopic average) levels. We have systematically varied size polydispersity, temperature and interparticle dipolar interaction conditions, and evaluated local heating as a function of these parameters. Our results provide a simple guide on how to choose, for a given polydispersity degree, the more adequate average particle size so that the local variation in the released heat is kept within some limits that correspond to safety boundaries for the average-system hyperthermia performance. All together we believe that our results may help in the design of more effective magnetic hyperthermia applications.

  16. Preventing heat-related morbidity and mortality: new approaches in a changing climate.

    PubMed

    O'Neill, Marie S; Carter, Rebecca; Kish, Jonathan K; Gronlund, Carina J; White-Newsome, Jalonne L; Manarolla, Xico; Zanobetti, Antonella; Schwartz, Joel D

    2009-10-20

    Due to global climate change, the world will, on average, experience a higher number of heat waves, and the intensity and length of these heat waves is projected to increase. Knowledge about the implications of heat exposure to human health is growing, with excess mortality and illness occurring during hot weather in diverse regions. Certain groups, including the elderly, the urban poor, and those with chronic health conditions, are at higher risk. Preventive actions include: establishing heat wave warning systems; making cool environments available (through air conditioning or other means); public education; planting trees and other vegetation; and modifying the built environment to provide proper ventilation and use materials and colors that reduce heat build-up and optimize thermal comfort. However, to inspire local prevention activities, easily understood information about the strategies' benefits needs to be incorporated into decision tools. Integrating heat health information into a comprehensive adaptation planning process can alert local decision-makers to extreme heat risks and provide information necessary to choose strategies that yield the largest health improvements and cost savings. Tools to enable this include web-based programs that illustrate effective methods for including heat health in comprehensive local-level adaptation planning; calculate costs and benefits of several activities; maps showing zones of high potential heat exposure and vulnerable populations in a local area; and public awareness materials and training for implementing preventive activities. A new computer-based decision tool will enable local estimates of heat-related health effects and potential savings from implementing a range of prevention strategies.

  17. The effect of dry spots on heat transfer in a locally heated liquid film moving under the action of gas flow in a channel

    NASA Astrophysics Data System (ADS)

    Zaitsev, D. V.; Tkachenko, E. M.; Bykovskaya, E. F.

    2017-11-01

    Intensive evaporation of a thin liquid film, moving in a flat micro-/minichannel under the action of gas flow is very promising for the use in cooling systems of modern semiconductor devices with localized heat sources of high intensity. In this work, using the high-speed visualization, the effect of the formation of dry spots on heat transfer in a locally heated liquid film shear-driven in a channel was investigated. It was found that the maximum intensity of heat removal from the heater is achieved in the mode, when the film flow continuity is broken. During the experiment the total area of dry spots increases with increasing heat flux and heater temperature, but when the heater reaches a certain temperature (≈100°C), the total area begins to decrease. However, the length of contact line increases with increasing heat flux and reaches a maximum in the pre-crisis regime. Intensive evaporation in the region of the contact line may explain the achievement of high heat fluxes in the shear-driven liquid film.

  18. A Non Local Electron Heat Transport Model for Multi-Dimensional Fluid Codes

    NASA Astrophysics Data System (ADS)

    Schurtz, Guy

    2000-10-01

    Apparent inhibition of thermal heat flow is one of the most ancient problems in computational Inertial Fusion and flux-limited Spitzer-Harm conduction has been a mainstay in multi-dimensional hydrodynamic codes for more than 25 years. Theoretical investigation of the problem indicates that heat transport in laser produced plasmas has to be considered as a non local process. Various authors contributed to the non local theory and proposed convolution formulas designed for practical implementation in one-dimensional fluid codes. Though the theory, confirmed by kinetic calculations, actually predicts a reduced heat flux, it fails to explain the very small limiters required in two-dimensional simulations. Fokker-Planck simulations by Epperlein, Rickard and Bell [PRL 61, 2453 (1988)] demonstrated that non local effects could lead to a strong reduction of heat flow in two dimensions, even in situations where a one-dimensional analysis suggests that the heat flow is nearly classical. We developed at CEA/DAM a non local electron heat transport model suitable for implementation in our two-dimensional radiation hydrodynamic code FCI2. This model may be envisionned as the first step of an iterative solution of the Fokker-Planck equations; it takes the mathematical form of multigroup diffusion equations, the solution of which yields both the heat flux and the departure of the electron distribution function to the Maxwellian. Although direct implementation of the model is straightforward, formal solutions of it can be expressed in convolution form, exhibiting a three-dimensional tensor propagator. Reduction to one dimension retrieves the original formula of Luciani, Mora and Virmont [PRL 51, 1664 (1983)]. Intense magnetic fields may be generated by thermal effects in laser targets; these fields, as well as non local effects, will inhibit electron conduction. We present simulations where both effects are taken into account and shortly discuss the coupling strategy between them.

  19. Effect of whole-body and local heating on cutaneous vasoconstrictor responses in humans

    NASA Technical Reports Server (NTRS)

    Wilson, Thad E.; Cui, Jian; Crandall, Craig G.

    2002-01-01

    Animal studies suggest that alpha-adrenergic-mediated vasoconstriction is compromised during whole-body heating. The purpose of this study was to identify whether whole-body heating and/or local surface heating reduce cutaneous alpha-adrenergic vasoconstrictor responsiveness in human skin. Protocol I: Six subjects were exposed to neutral skin temperature (i.e., 34 degrees C), whole-body heating, and local heating of forearm skin to increase skin blood flow to the same relative magnitude as that observed during whole-body heating. Protocol II: In eight subjects forearm skin was locally heated to 34, 37, 40, and 42 degrees C. During both protocols, alpha-adrenergic vasoconstrictor responsiveness was assessed by local delivery of norepinephrine (NE) via intradermal microdialysis. Skin blood flow was continuously monitored over each microdialysis membrane via laser-Doppler flowmetry. In protocol I, whole-body and local heating caused similar increases in cutaneous vascular conductance (CVC). The EC50 (log NE dose) of the dose-response curves for both whole body (-4.2 +/- 0.1 M) and local heating (-4.7 +/- 0.4 M) were significantly greater (i.e., high dose required to cause 50% reduction in CVC) relative to neutral skin temperature (- 5.6 +/- 0.0 M; P<0.05 for both). In both local and whole-body heated conditions CVC did not return to pre-heating values even at the highest dose of NE. In protocol II, calculated EC50 for 34, 37, 40, and 42 degrees C local heating was - 5.5 +/- 0.4, -4.6 +/- 0.3, -4.5 +/- 0.3, - 4.2 +/- 0.4 M, respectively. Statistical analyses revealed that the EC50 for 37,40 and 42 degrees C were significantly greater than the EC50 for 34 degrees C. These results indicate that even during administration of high concentrations of NE, alpha-adrenergic vasoconstriction does not fully compensate for local heating and whole-body heating induced vasodilatation in young, healthy subjects. Moreover, these data suggest that elevated local temperatures, above 37 degrees C, and whole-body heating similarly attenuate cutaneous alpha-adrenergic vasoconstriction responsiveness.

  20. Generalization of the slip line field theory for temperature sensitive visco-plastic materials

    NASA Astrophysics Data System (ADS)

    Paesold, Martin; Peters, Max; Regenauer-Lieb, Klaus; Veveakis, Manolis; Bassom, Andrew

    2015-04-01

    Geological processes can be a combination of various effects such as heat production or consumption, chemical reactions or fluid flow. These individual effects are coupled to each other via feedbacks and the mathematical analysis becomes challenging due to these interdependencies. Here, we concentrate solely on thermo-mechanical coupling and a main result of this work is that the coupling can depend on material parameters and boundary conditions and the coupling is more or less pronounced depending on theses parameters. The transitions from weak to strong coupling can be studied in the context of a bifurcation analysis. classically, Material instabilities in solids are approached as material bifurcations of a rate-independent, isothermal, elasto-plastic solid. However, previous research has shown that temperature and deformation rate are important factors and are fully coupled with the mechanical deformation. Early experiments in steel revealed a distinct pattern of localized heat dissipation and plastic deformation known as heat lines. Further, earth materials, soils, rocks and ceramics are known to be greatly influenced by temperature with strain localization being strongly affected by thermal loading. In this work, we provide a theoretical framework for the evolution of plastic deformation for such coupled systems, with a two-pronged approach to the prediction of localized failure. First, slip line field theory is employed to predict the geometry of the failure patterns and second, failure criteria are derived from an energy bifurcation analysis. The bifurcation analysis is concerned with the local energy balance of a material and compares the effects of heat diffusion terms and heat production terms where the heat production is due to mechanical processes. Commonly, the heat is produced locally along the slip lines and if the heat production outweighs diffusion the material is locally weakened which eventually leads to failure. The effect of diffusion and heat production is captured by a dimensionless quantity, the Gruntfest number, and only if the Gruntfest number is larger than a critical value localized failure occurs. This critical Gruntfest number depends on boundary conditions such as temperature or pressure and hence this critical value gives rise to localization criteria. We find that the results of this approach agree with earlier contributions to the theory of plasticity but gives the advantage of a unified framework which might prove useful in numerical schemes for visco-plasticity.

  1. Localized Heating on Silicon Field Effect Transistors: Device Fabrication and Temperature Measurements in Fluid

    PubMed Central

    Elibol, Oguz H.; Reddy, Bobby; Nair, Pradeep R.; Dorvel, Brian; Butler, Felice; Ahsan, Zahab; Bergstrom, Donald E.; Alam, Muhammad A.; Bashir, Rashid

    2010-01-01

    We demonstrate electrically addressable localized heating in fluid at the dielectric surface of silicon-on-insulator field-effect transistors via radio-frequency Joule heating of mobile ions in the Debye layer. Measurement of fluid temperatures in close vicinity to surfaces poses a challenge due to the localized nature of the temperature profile. To address this, we developed a localized thermometry technique based on the fluorescence decay rate of covalently attached fluorophores to extract the temperature within 2 nm of any oxide surface. We demonstrate precise spatial control of voltage dependent temperature profiles on the transistor surfaces. Our results introduce a new dimension to present sensing systems by enabling dual purpose silicon transistor-heaters that serve both as field effect sensors as well as temperature controllers that could perform localized bio-chemical reactions in Lab on Chip applications. PMID:19967115

  2. A comparison between the effects of artificial land cover and anthropogenic heat on a localized heavy rain event in 2008 in Zoshigaya, Tokyo, Japan

    NASA Astrophysics Data System (ADS)

    Souma, Kazuyoshi; Tanaka, Kenji; Suetsugi, Tadashi; Sunada, Kengo; Tsuboki, Kazuhisa; Shinoda, Taro; Wang, Yuqing; Sakakibara, Atsushi; Hasegawa, Koichi; Moteki, Qoosaku; Nakakita, Eiichi

    2013-10-01

    5 August 2008, a localized heavy rainfall event caused a rapid increase in drainpipe discharge, which killed five people working in a drainpipe near Zoshigaya, Tokyo. This study compared the effects of artificial land cover and anthropogenic heat on this localized heavy rainfall event based on three ensemble experiments using a cloud-resolving model that includes realistic urban features. The first experiment CTRL (control) considered realistic land cover and urban features, including artificial land cover, anthropogenic heat, and urban geometry. In the second experiment NOAH (no anthropogenic heat), anthropogenic heat was ignored. In the third experiment NOLC (no land cover), urban heating from artificial land cover was reduced by keeping the urban geometry but with roofs, walls, and roads of artificial land cover replaced by shallow water. The results indicated that both anthropogenic heat and artificial land cover increased the amount of precipitation and that the effect of artificial land cover was larger than that of anthropogenic heat. However, in the middle stage of the precipitation event, the difference between the two effects became small. Weak surface heating in NOAH and NOLC reduced the near-surface air temperature and weakened the convergence of horizontal wind and updraft over the urban areas, resulting in a reduced rainfall amount compared with that in CTRL.

  3. The influence of local versus global heat on the healing of chronic wounds in patients with diabetes.

    PubMed

    Petrofsky, Jerrold S; Lawson, Daryl; Suh, Hye Jin; Rossi, Christine; Zapata, Karina; Broadwell, Erin; Littleton, Lindsay

    2007-12-01

    In a previous study, it was shown that placing a subject with chronic diabetic ulcers in a warm room prior to the use of electrical stimulation dramatically increased the healing rate. However, global heating is impractical in many therapeutic environments, and therefore in the present investigation the effect of global heat versus using a local heat source to warm the wound was investigated. Twenty-nine male and female subjects participated in a series of experiments to determine the healing associated with electrical stimulation with the application of local heat through a heat lamp compared to global heating of the subject in a warm room. Treatment consisted of biphasic electrical stimulation at currents at 20 mA for 30 min three times per week for 4 weeks in either a 32 degrees C room or, with the application of local heat, to raise skin temperature to 37 degrees C. Skin blood flow was measured by a laser Doppler imager. Blood flow increased with either local or global heating. During electrical stimulation, blood flow almost doubled on the outside and on the edge of the wound with a smaller increase in the center of the wound. However, the largest increase in blood flow was in the subjects exposed to global heating. Further, healing rates, while insignificant for subjects who did not receive electrical stimulation, showed 74.5 +/- 23.4% healing with global heat and 55.3 +/- 31.1% healing with local heat in 1 month; controls actually had a worsening of their wounds. The best healing modality was global heat. However, there was still a significant advantage in healing with local heat.

  4. Global and local Joule heating effects seen by DE 2

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.; Coley, W. R.

    1988-01-01

    In the altitude region between 350 and 550 km, variations in the ion temperature principally reflect similar variations in the local frictional heating produced by a velocity difference between the ions and the neutrals. Here, the distribution of the ion temperature in this altitude region is shown, and its attributes in relation to previous work on local Joule heating rates are discussed. In addition to the ion temperature, instrumentation on the DE 2 satellite also provides a measure of the ion velocity vector representative of the total electric field. From this information, the local Joule heating rate is derived. From an estimate of the height-integrated Pedersen conductivity it is also possible to estimate the global (height-integrated) Joule heating rate. Here, the differences and relationships between these various parameters are described.

  5. Effect of gage size on the measurement of local heat flux. [formulas for determining gage averaging errors

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Papell, S. S.

    1973-01-01

    General formulas are derived for determining gage averaging errors of strip-type heat flux meters used in the measurement of one-dimensional heat flux distributions. In addition, a correction procedure is presented which allows a better estimate for the true value of the local heat flux. As an example of the technique, the formulas are applied to the cases of heat transfer to air slot jets impinging on flat and concave surfaces. It is shown that for many practical problems, the use of very small heat flux gages is often unnecessary.

  6. Forced convection and flow boiling with and without enhancement devices for top-side-heated horizontal channels

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D., Sr.; Turknett, Jerry C.

    1989-01-01

    The effect of enhancement devices on flow boiling heat transfer in coolant channels, which are heated either from the top side or uniformly was studied. Studies are completed of the variations in the local (axial and circumferential) and mean heat transfer coefficients in horizontal, top-heated coolant channels with smooth walls and internal heat transfer enhancement devices. The working fluid is freon-11. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls; (2) examine the effect of channel diameter (and the length-to-diameter aspect ratio) variations for the smooth wall channel; and (3) develop and improved data reduction analysis. The case of the top-heated, horizontal flow channel with smooth wall (1.37 cm inside diameter, and 122 cm heated length) was completed. The data were reduced using a preliminary analysis based on the heated hydraulic diameter. Preliminary examination of the local heat transfer coefficient variations indicated that there are significant axial and circumferential variations. However, it appears that the circumferential variation is more significant than the axial ones. In some cases, the circumferential variations were as much as a factor of ten. The axial variations rarely exceeded a factor of three.

  7. Effect of Reynolds number, turbulence level and periodic wake flow on heat transfer on low pressure turbine blades.

    PubMed

    Suslov, D; Schulz, A; Wittig, S

    2001-05-01

    The development of effective cooling methods is of major importance for the design of new gas turbines blades. The conception of optimal cooling schemes requires a detailed knowledge of the heat transfer processes on the blade's surfaces. The thermal load of turbine blades is predominantly determined by convective heat transfer which is described by the local heat transfer coefficient. Heat transfer is closely related to the boundary layer development along the blade surface and hence depends on various flow conditions and geometrical parameters. Particularly Reynolds number, pressures gradient and turbulence level have great impact on the boundary layer development and the according heat transfer. Therefore, in the present study, the influence of Reynolds number, turbulence intensity, and periodic unsteady inflow on the local heat transfer of a typical low pressure turbine airfoil is experimentally examined in a plane cascade.

  8. OCT-based angiography of human dermal microvascular reactions to local stimuli: Implications for increasing capillary blood collection volumes.

    PubMed

    Men, Shaojie; Wong, Jennifer Manyu; Welch, Emily J; Xu, Jingjiang; Song, Shaozhen; Deegan, Anthony J; Ravichander, Aarthi; Casavant, Benjamin; Berthier, Erwin; Wang, Ruikang K

    2018-05-25

    To measure and compare microvascular responses within the skin of the upper arm to local stimuli, such as heating or rubbing, through the use of optical coherence tomography angiography (OCTA), and to investigate its impact on blood volume collection. With the use of heat packs or rubbing, local stimulation was applied to the skin of either the left or right upper arm. Data from the stimulated sites were obtained using OCTA comparing pre- and post-stimulation microvascular parameters, such as vessel density, mean vessel diameter, and mean avascular pore size. Additionally, blood was collected using a newly designed collection device and volume was recorded to evaluate the effect of the skin stimulation. Nineteen subjects were recruited for local stimulation study (including rubbing and heating) and 21 subjects for blood drawn study. Of these subjects, 14 agreed to participate in both studies. OCTA was successful in monitoring and measuring minute changes in the microvasculature of the stimulated skin. Compared to baseline, significant changes after local heating and rubbing were respectively found in vessel density (16% [P = 0.0004] and 33% [P < 0.0001] increase), mean vessel diameter (14% and 11% increase) and mean avascular pore size (5% [P = 0.0068] and 8% [P = 0.0005] decrease) after stimulations. A gradual recovery was recorded for each parameter, with no difference being measured after 30 minutes. Blood collection volumes significantly increased after stimulations of heating (48% increase; P = 0.049) and rubbing (78% increase; P = 0.048). Significant correlations were found between blood volume and microvascular parameters except mean avascular pore size under the heating condition. OCTA can provide important information regarding microvascular adaptations to local stimuli. With that, both heating and rubbing of the skin have positive effects on blood collection capacity, with rubbing having the most significant effect. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  9. Thermal Dose is Related to Duration of Local Control in Canine Sarcomas Undergoing Thermoradiotherapy

    PubMed Central

    Thrall, Donald E.; LaRue, Susan M.; Yu, Daohai; Samulski, Thaddeus; Sanders, Linda; Case, Beth; Rosner, Gary; Azuma, Chieko; Poulson, Jeannie; Pruitt, Amy F.; Stanley, Wilma; Hauck, Marlene L.; Williams, Laurel; Hess, Paul; Dewhirst, Mark W.

    2009-01-01

    Purpose To test that prospective delivery of higher thermal dose is associated with longer tumor control duration. Experimental Design 122 dogs with a heatable soft tissue sarcoma were randomized to receive a low (2–5 CEM43°CT90) or high (20–50 CEM43°CT90) thermal dose in combination with radiotherapy. Most dogs (90%) received 4–6 hyperthermia treatments over 5 weeks. Results In the primary analysis, median (95% CI) duration of local control in the low dose group was 1.2 (0.7–2.1) years versus 1.9 (1.4–3.2) years in the high dose group (logrank p=0.28). The probability (95% CI) of tumor control at one year in the low vs. high dose groups was 0.57 (0.43–0.70) vs. 0.74 (0.62–0.86), respectively. Using multivariable procedure, thermal dose group (p=0.023), total duration of heating (p=0.008), tumor volume (p=0.041) and tumor grade (p=0.027) were significantly related to duration of local tumor control. When correcting for volume, grade and duration of heating, dogs in the low dose group were 2.3 times as likely to experience local failure. Conclusions Thermal dose is directly related to local control duration in irradiated canine sarcomas. Longer heating being associated with shorter local tumor control was unexpected. However, the effect of thermal dose on tumor control was stronger than for heating duration. The heating duration effect is possibly mediated through deleterious effects on tumor oxygenation. These results are the first to show the value of prospectively controlled thermal dose in achieving local tumor control with thermoradiotherapy, and they establish a paradigm for prescribing thermoradiotherapy and writing a thermal prescription. PMID:16033838

  10. HIGH ALBEDO AND ENVIRONMENT-FRIENDLY CONCRETE FOR SMART GROWTH AND SUSTAINABLE DEVELOPMENT

    EPA Science Inventory

    Concrete surfaces absorb heat from sunlight due to their low solar reflectivity (albedo). This increases the local ambient temperature in urban areas (the so-called "heat-island" effect). The heat-island effect leads to a waste of energy because of increased cooling costs. ...

  11. Effects of finite wall thickness and sinusoidal heating on convection in nanofluid-saturated local thermal non-equilibrium porous cavity

    NASA Astrophysics Data System (ADS)

    Alsabery, A. I.; Chamkha, A. J.; Saleh, H.; Hashim, I.; Chanane, B.

    2017-03-01

    The effects of finite wall thickness and sinusoidal heating on convection in a nanofluid-saturated local thermal non-equilibrium (LTNE) porous cavity are studied numerically using the finite difference method. The finite thickness vertical wall of the cavity is maintained at a constant temperature and the right wall is heated sinusoidally. The horizontal insulated walls allow no heat transfer to the surrounding. The Darcy law is used along with the Boussinesq approximation for the flow. Water-based nanofluids with Cu nanoparticles are chosen for investigation. The results of this study are obtained for various parameters such as the Rayleigh number, periodicity parameter, nanoparticles volume fraction, thermal conductivity ratio, ratio of wall thickness to its height and the modified conductivity ratio. Explanation for the influence of the various above-mentioned parameters on the streamlines, isotherms, local Nusselt number and the weighted average heat transfer is provided with regards to the thermal conductivities of nanoparticles suspended in the pure fluid and the porous medium. It is shown that the overall heat transfer is significantly increased with the relative non-uniform heating. Further, the convection heat transfer is shown to be inhibited by the presence of the solid wall. The results have possible applications in the heat-storage fluid-saturated porous systems and the applications of the high power heat transfer.

  12. Photo-induced-heat localization on nanostructured metallic glasses

    NASA Astrophysics Data System (ADS)

    Uzun, Ceren; Kahler, Niloofar; Grave de Peralta, Luis; Kumar, Golden; Bernussi, Ayrton A.

    2017-09-01

    Materials with large photo-thermal energy conversion efficiency are essential for renewable energy applications. Photo-excitation is an effective approach to generate controlled and localized heat at relatively low excitation optical powers. However, lateral heat diffusion to the surrounding illuminated areas accompanied by low photo-thermal energy conversion efficiency remains a challenge for metallic surfaces. Surface nanoengineering has proven to be a successful approach to further absorption and heat generation. Here, we show that pronounced spatial heat localization and high temperatures can be achieved with arrays of amorphous metallic glass nanorods under infrared optical illumination. Thermography measurements revealed marked temperature contrast between illuminated and non-illuminated areas even under low optical power excitation conditions. This attribute allowed for generating legible photo-induced thermal patterns on textured metallic glass surfaces.

  13. Numerical simulation of heat transfer in metal foams

    NASA Astrophysics Data System (ADS)

    Gangapatnam, Priyatham; Kurian, Renju; Venkateshan, S. P.

    2018-02-01

    This paper reports a numerical study of forced convection heat transfer in high porosity aluminum foams. Numerical modeling is done considering both local thermal equilibrium and non local thermal equilibrium conditions in ANSYS-Fluent. The results of the numerical model were validated with experimental results, where air was forced through aluminum foams in a vertical duct at different heat fluxes and velocities. It is observed that while the LTE model highly under predicts the heat transfer in these foams, LTNE model predicts the Nusselt number accurately. The novelty of this study is that once hydrodynamic experiments are conducted the permeability and porosity values obtained experimentally can be used to numerically simulate heat transfer in metal foams. The simulation of heat transfer in foams is further extended to find the effect of foam thickness on heat transfer in metal foams. The numerical results indicate that though larger foam thicknesses resulted in higher heat transfer coefficient, this effect weakens with thickness and is negligible in thick foams.

  14. Photoinduced local heating in silica photonic crystals for fast and reversible switching.

    PubMed

    Gallego-Gómez, Francisco; Blanco, Alvaro; López, Cefe

    2012-12-04

    Fast and reversible photonic-bandgap tunability is achieved in silica artificial opals by local heating. The effect is fully reversible as heat rapidly dissipates through the non-irradiated structure without active cooling and water is readsorbed. The performance is strongly enhanced by decreasing the photoirradiated opal volume, allowing bandgap shifts of 12 nm and response times of 20 ms. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Nanoscale steady-state temperature gradients within polymer nanocomposites undergoing continuous-wave photothermal heating from gold nanorods.

    PubMed

    Maity, Somsubhra; Wu, Wei-Chen; Tracy, Joseph B; Clarke, Laura I; Bochinski, Jason R

    2017-08-17

    Anisotropically-shaped metal nanoparticles act as nanoscale heaters via excitation of a localized surface plasmon resonance, utilizing a photothermal effect which converts the optical energy into local heat. Steady-state temperatures within a polymer matrix embedded with gold nanorods undergoing photothermal heating using continuous-wave excitation are measured in the immediate spatial vicinity of the nanoparticle (referred to as the local temperature) from observing the rate of physical rotation of the asymmetric nanoparticles within the locally created polymer melt. Average temperatures across the entire (mostly solid) sample (referred to as the global temperature) are simultaneously observed using a fluorescence method from randomly dispersed molecular emitters. Comparing these two independent measurements in films having varying concentrations of nanorods reveals the interplay between the local and global temperatures, clearly demonstrating the capability of these material samples to sustain large steady-state spatial temperature gradients when experiencing continuous-wave excitation photothermal heating. These results are discussed quantitatively. Illustrative imaging studies of nanofibers under photothermal heating also support the presence of a large temperature gradient. Photothermal heating in this manner has potential utility in creating unique thermal processing conditions for outcomes such as driving chemical reactions, inducing crystallinity changes, or enhancing degradation processes in a manner unachievable by conventional heating methods.

  16. Natural convection in symmetrically heated vertical parallel plates with discrete heat sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manca, O.; Nardini, S.; Naso, V.

    Laminar air natural convection in a symmetrically heated vertical channel with uniform flush-mounted discrete heat sources has been experimentally investigated. The effects of heated strips location and of their number are pointed out in terms of the maximum wall temperatures. A flow visualization in the entrance region of the channel was carried out and air temperatures and velocities in two cross sections have been measured. Dimensionless local heat transfer coefficients have been evaluated and monomial correlations among relevant parameters have bee derived in the local Rayleigh number range 10--10{sup 6}. Channel Nusselt number has been correlated in a polynomial formmore » in terms of channel Rayleigh number.« less

  17. Characterization of microstructure, local deformation and microchemistry in Alloy 690 heat-affected zone and stress corrosion cracking in high temperature water

    NASA Astrophysics Data System (ADS)

    Lu, Zhanpeng; Chen, Junjie; Shoji, Tetsuo; Takeda, Yoichi; Yamazaki, Seiya

    2015-10-01

    With increasing the distance from the weld fusion line in an Alloy 690 heat-affected zone, micro-hardness decreases, kernel average misorientation decreases and the fraction of Σ3 boundaries increases. Chromium depletion at grain boundaries in the Alloy 690 heat-affected zone is less significant than that in an Alloy 600 heat-affected zone. Alloy 690 heat-affected zone exhibits much higher IGSCC resistance than Alloy 600 heat-affected zone in simulated pressurized water reactor primary water. Heavily cold worked Alloy 690 exhibits localized intergranular stress corrosion cracking. The effects of metallurgical and mechanical properties on stress corrosion cracking in Alloy 690 are discussed.

  18. Novel localized heating technique on centrifugal microfluidic disc with wireless temperature monitoring system.

    PubMed

    Joseph, Karunan; Ibrahim, Fatimah; Cho, Jongman

    2015-01-01

    Recent advances in the field of centrifugal microfluidic disc suggest the need for electrical interface in the disc to perform active biomedical assays. In this paper, we have demonstrated an active application powered by the energy harvested from the rotation of the centrifugal microfluidic disc. A novel integration of power harvester disc onto centrifugal microfluidic disc to perform localized heating technique is the main idea of our paper. The power harvester disc utilizing electromagnetic induction mechanism generates electrical energy from the rotation of the disc. This contributes to the heat generation by the embedded heater on the localized heating disc. The main characteristic observed in our experiment is the heating pattern in relative to the rotation of the disc. The heating pattern is monitored wirelessly with a digital temperature sensing system also embedded on the disc. Maximum temperature achieved is 82 °C at rotational speed of 2000 RPM. The technique proves to be effective for continuous heating without the need to stop the centrifugal motion of the disc.

  19. Computational Study of Inbore and Inflight Heating for the 105MM, M774 Projectile Modified Swept Fin.

    DTIC Science & Technology

    1984-08-01

    local 1* H. A. Dwyjer, R. J. K~ee, and B. R., Sanderse, "Adaptive Gr’id Method for’ ProbZe s in Ftuid Mechanie and Heat Transfer," 44.AL...A a.4 VoZ . 18...within the fin, heat conduction at the fin root into the pro- jectile body , and surface heat transfer at the fin tip. Other limitations in the heat...Figures 17a,b and 18a,b. From these figures the effect appears to be localized in the trailing edge region and no influence at the critical area near

  20. Numerical simulation of inertial alfven waves to study localized structures and spectral index in auroral region

    NASA Astrophysics Data System (ADS)

    Jatav, Bheem Singh

    2018-06-01

    In the present paper, the numerical simulation of Inertial Alfven wave (IAW) in low-β plasma applicable to the auroral region at 1700 km was studied. It leads to the formation of localized structures when the nonlinearity arises due to ponderomotive effect and Joule heating. The effect of perturbation and magnitude of pump IAW, formed the localized structures of magnetic field, has been studied. The formed localized structures at different times and average spectral index scaling of power spectrum have been observed. Results obtained from simulation reveal that spectrum steepens with power law index ˜ -3.5 for shorter wavelength. These localized structures could be a source of particle acceleration and heating by pump IAW in low- β plasma.

  1. Local endwall heat/mass-transfer distributions in pin fin channels

    NASA Astrophysics Data System (ADS)

    Lau, S. C.; Kim, Y. S.; Han, J. C.

    1987-10-01

    Naphthalene sublimination experiments were conducted to study the effects of the pin configuration, the pin length-to-diameter ratio, and the entrance length on local endwall heat/mass transfer in a channel with short pin fins (pin length-to-diameter ratios of 0.5 and 1.0). The detailed distributions of the local endwall heat/mass-transfer coefficient were obtained for staggered and aligned arrays of pin fins, for the spanwise pin spacing-to-diameter ratio of 2.5, and for streamwise pin spacing-to-diameter ratios of 1.25 and 2.5. The Reynolds numbers were kept at about 33,000. Overall- and row-averaged Nusselt numbers compared very well with those from previous heat-transfer studies.

  2. Global climate change: impact of heat waves under different definitions on daily mortality in Wuhan, China.

    PubMed

    Zhang, Yunquan; Feng, Renjie; Wu, Ran; Zhong, Peirong; Tan, Xiaodong; Wu, Kai; Ma, Lu

    2017-01-01

    There was no consistent definition for heat wave worldwide, while a limited number of studies have compared the mortality effect of heat wave as defined differently. This paper aimed to provide epidemiological evidence for policy makers to determine the most appropriate definition for local heat wave warning systems. We developed 45 heat wave definitions (HWs) combining temperature indicators and temperature thresholds with durations. We then assessed the impact of heat waves under various definitions on non-accidental mortality in hot season (May-September) in Wuhan, China during 2003-2010. Heat waves defined by HW14 (daily mean temperature ≥ 99.0th percentile and duration ≥ 3 days) had the best predictive ability in assessing the mortality effects of heat wave with the relative risk of 1.63 (95% CI : 1.43, 1.89) for total mortality. The group-specific mortality risk using official heat wave definition of Chinese Meteorological Administration was much smaller than that using HW14. We also found that women, and the elderly (age ≥ 65) were more susceptible to heat wave effects which were stronger and longer lasting. These findings suggest that region specific heat wave definitions are crucial and necessary for developing efficient local heat warning systems and for providing evidence for policy makers to protect the vulnerable population.

  3. Strategies to reduce the harmful effects of extreme heat events: a four-city study.

    PubMed

    White-Newsome, Jalonne L; McCormick, Sabrina; Sampson, Natalie; Buxton, Miatta A; O'Neill, Marie S; Gronlund, Carina J; Catalano, Linda; Conlon, Kathryn C; Parker, Edith A

    2014-02-13

    Extreme heat events (EHEs) are becoming more intense, more frequent and longer lasting in the 21st century. These events can disproportionately impact the health of low-income, minority, and urban populations. To better understand heat-related intervention strategies used by four U.S. cities, we conducted 73 semi-structured interviews with government and non-governmental organization leaders representing public health, general social services, emergency management, meteorology, and the environmental planning sectors in Detroit, MI; New York City, NY; Philadelphia, PA and Phoenix, AZ-cities selected for their diverse demographics, climates, and climate adaptation strategies. We identified activities these leaders used to reduce the harmful effects of heat for residents in their city, as well as the obstacles they faced and the approaches they used to evaluate these efforts. Local leaders provided a description of how local context (e.g., climate, governance and city structure) impacted heat preparedness. Despite the differences among study cities, political will and resource access were critical to driving heat-health related programming. Upon completion of our interviews, we convened leaders in each city to discuss these findings and their ongoing efforts through day-long workshops. Our findings and the recommendations that emerged from these workshops could inform other local or national efforts towards preventing heat-related morbidity and mortality.

  4. Strategies to Reduce the Harmful Effects of Extreme Heat Events: A Four-City Study

    PubMed Central

    White-Newsome, Jalonne L.; McCormick, Sabrina; Sampson, Natalie; Buxton, Miatta A.; O’Neill, Marie S.; Gronlund, Carina J.; Catalano, Linda; Conlon, Kathryn C.; Parker, Edith A.

    2014-01-01

    Extreme heat events (EHEs) are becoming more intense, more frequent and longer lasting in the 21st century. These events can disproportionately impact the health of low-income, minority, and urban populations. To better understand heat-related intervention strategies used by four U.S. cities, we conducted 73 semi-structured interviews with government and non-governmental organization leaders representing public health, general social services, emergency management, meteorology, and the environmental planning sectors in Detroit, MI; New York City, NY; Philadelphia, PA and Phoenix, AZ—cities selected for their diverse demographics, climates, and climate adaptation strategies. We identified activities these leaders used to reduce the harmful effects of heat for residents in their city, as well as the obstacles they faced and the approaches they used to evaluate these efforts. Local leaders provided a description of how local context (e.g., climate, governance and city structure) impacted heat preparedness. Despite the differences among study cities, political will and resource access were critical to driving heat-health related programming. Upon completion of our interviews, we convened leaders in each city to discuss these findings and their ongoing efforts through day-long workshops. Our findings and the recommendations that emerged from these workshops could inform other local or national efforts towards preventing heat-related morbidity and mortality. PMID:24531122

  5. Summer in the City - Assessing and Communicating the Richmond, VA Urban Heat Island to the Public and Policymakers

    NASA Astrophysics Data System (ADS)

    Hoffman, J. S.; Maurakis, E. G.; Shandas, V.

    2017-12-01

    The local impacts of global climate change are generally underestimated or misunderstood by the public and policymakers as far-off, future problems. However, differential and regional surface warming trends are exacerbated in urban areas due to the radiative properties of impervious surfaces like buildings and roads relative to natural landscapes. Decades of research illustrate that this unnatural radiative imbalance in the built environment gives rise to the well-studied urban heat island effect, whereby air temperatures in urban areas are several degrees warmer than in surrounding non-urbanized areas. In this way, the urban heat island effect presents a unique opportunity to highlight the human influence on Earth systems and at the same time mobilize local community-scale action to mitigate and become resilient to climate change impacts on tangible, experiential time scales. However, public stakeholders, city planners, and policymakers may view the urban heat island effect and its mitigation strategies through varying degrees of climatological, public health, and urban development knowledge and interest. This variation in stakeholder engagement highlights the need for individualized science communication strategies for each audience in order to maximize understanding of the scientific outcomes and tactics for mitigating the urban heat island effect. The City of Richmond, Virginia is currently developing a climate action plan as part of their greenhouse gas emission reduction initiative, RVAgreen 2050, and its recently announced "Richmond 300," a 20-year city development master plan. These initiatives provide the policy backdrop for a public and stakeholder education campaign centered on communicating urban heat island effects and resilience strategies. As such, the Science Museum of Virginia led the city's first urban heat island assessment using citizen science and leveraging a network of local university, non-profit, and city government stakeholders. Here, we will share our tactics for public- and policymaker-centered dissemination of urban heat island science, findings, and mitigation strategies using a variety of techniques including local news stations, 3D visualization technology, NOAA-funded museum media pieces, and policymaker/stakeholder engagement opportunities.

  6. ON INTERMITTENT TURBULENCE HEATING OF THE SOLAR WIND: DIFFERENCES BETWEEN TANGENTIAL AND ROTATIONAL DISCONTINUITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xin; Tu Chuanyi; He Jiansen

    The intermittent structures in solar wind turbulence, studied by using measurements from the WIND spacecraft, are identified as being mostly rotational discontinuities (RDs) and rarely tangential discontinuities (TDs) based on the technique described by Smith. Only TD-associated current sheets (TCSs) are found to be accompanied with strong local heating of the solar wind plasma. Statistical results show that the TCSs have a distinct tendency to be associated with local enhancements of the proton temperature, density, and plasma beta, and a local decrease of magnetic field magnitude. Conversely, for RDs, our statistical results do not reveal convincing heating effects. These resultsmore » confirm the notion that dissipation of solar wind turbulence can take place in intermittent or locally isolated small-scale regions which correspond to TCSs. The possibility of heating associated with RDs is discussed.« less

  7. 3D DNS of Turbulent Premixed Flame with over 50 Species and 300 Elementary Reactions

    NASA Astrophysics Data System (ADS)

    Shimura, Masayasu; Yenerdag, Basmil; Naka, Yoshitsugu; Nada, Yuzuru; Tanahashi, Mamoru

    2014-11-01

    Three-dimensional direct numerical simulation of methane-air premixed planar flame propagating in homogenous isotropic turbulence is conducted to investigate local flame structure in thin reaction zones. Detailed kinetic mechanism, GRI-Mech 3.0 which includes 53 species and 325 elementary reactions, is used to represent methane-air reaction, and temperature dependences of transport and thermal properties are considered. For a better understanding of the local flame structure in thin reaction zones regime, distributions of mass fractions of major species, heat release rate, temperature and turbulent structures are investigated. Characteristic flame structures, such as radical fingering and multi-layered-like flame structures, are observed. The most expected maximum heat release rate in flame elements is lower than that of laminar flame with same mixture. To clarify mechanism of the decrease in local heat release rate, effects of strain rates tangential to flame front on local heat release rate are investigated.

  8. Effect of radiation and magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alkasasbeh, Hamzeh Taha, E-mail: zukikuj@yahoo.com; Sarif, Norhafizah Md, E-mail: zukikuj@yahoo.com; Salleh, Mohd Zuki, E-mail: zukikuj@yahoo.com

    2015-02-03

    In this paper, the effect of radiation on magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid, in which the heat transfer from the surface is proportional to the local surface temperature, is considered. The transformed boundary layer equations in the form of nonlinear partial differential equations are solved numerically using an implicit finite difference scheme known as the Keller-box method. Numerical solutions are obtained for the local wall temperature and the local skin friction coefficient, as well as the velocity, angular velocity and temperature profiles. The features of the flow andmore » heat transfer characteristics for various values of the Prandtl number Pr, micropolar parameter K, magnetic parameter M, radiation parameter N{sub R}, the conjugate parameter γ and the coordinate running along the surface of the sphere, x are analyzed and discussed.« less

  9. Analysis of disturbances in a hypersonic boundary layer on a cone with heating/cooling of the nose tip

    NASA Astrophysics Data System (ADS)

    Bountin, Dmitry; Maslov, Anatoly; Gromyko, Yury

    2018-05-01

    Experimental results of the influence of local heating/cooling on the development of hypersonic boundary layer disturbances are reported. Local heating/cooling is applied at the cone nose tip. The experiments are carried out at the Mach number M = 5.95, stagnation temperature T0 = 360-418 K, and stagnation pressure P0 = 3.7-45 atm. The unit Reynolds number is varied in the interval Re1 = (4.5-63) × 106 m-1. The investigations are conducted in the boundary layer on a cone with an apex half-angle of 7° and varied bluntness radius of the nose tip [R = 0.03 (sharp nose), 0.75, and 1.5 mm] for different values of the local temperature factor. The nose tip is heated by an ohmic heater. Cooling is performed by supplying liquid nitrogen into the internal cavity of the model nose. A comparative analysis of pressure pulsation spectra on the cone surface is performed. It is demonstrated that heating/cooling in the case of a sharp cone leads to flow destabilization/stabilization. The opposite effect is observed for blunted cones: heating/cooling stabilizes/destabilizes the second-mode disturbances. This effect is enhanced by increasing the nose tip bluntness. All the observed effects vanish with distance downstream from the nose tip.

  10. Mitigating Climate Change with Earth Orbital Sunshades

    NASA Technical Reports Server (NTRS)

    Coverstone, Victoria; Johnson, Les

    2015-01-01

    An array of rotating sunshades based on emerging solar sail technology will be deployed in a novel Earth orbit to provide near-continuous partial shading of the Earth, reducing the heat input to the atmosphere by blocking a small percentage of the incoming sunlight, and mitigating local weather effects of anticipated climate change over the next century. The technology will provide local cooling relief during extreme heat events (and heating relief during extreme cold events) thereby saving human lives, agriculture, livestock, water and energy needs. A synthesis of the solar sail design, the sails' operational modes, and the selected orbit combine to provide local weather modification.

  11. Regimes of heating and dynamical response in driven many-body localized systems

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Sarang; Knap, Michael; Demler, Eugene

    2016-09-01

    We explore the response of many-body localized (MBL) systems to periodic driving of arbitrary amplitude, focusing on the rate at which they exchange energy with the drive. To this end, we introduce an infinite-temperature generalization of the effective "heating rate" in terms of the spread of a random walk in energy space. We compute this heating rate numerically and estimate it analytically in various regimes. When the drive amplitude is much smaller than the frequency, this effective heating rate is given by linear response theory with a coefficient that is proportional to the optical conductivity; in the opposite limit, the response is nonlinear and the heating rate is a nontrivial power law of time. We discuss the mechanisms underlying this crossover in the MBL phase. We comment on implications for the subdiffusive thermal phase near the MBL transition, and for response in imperfectly isolated MBL systems.

  12. Heat transfer and material temperature conditions in the leading edge area of impingement-cooled turbine vanes

    NASA Astrophysics Data System (ADS)

    Berg, H. P.; Pfaff, K.; Hennecke, D. K.

    The resultant effects on the cooling effectiveness at the leading edge area of an impingement-cooled turbine vane by varying certain geometrical parameters is described with reference to local internal heat transfer coefficients determined from experiment and temperature calculations. The local heat transfer on the cooling-air side is determined experimentally with the aid of the analogy between heat- and mass transfer. The impingement cooling is provided from an inserted sheet-metal containing a single row of holes. The Reynolds Number and several of the cooling geometry parameters were varied. The results demonstrate the high local resolution of the method of measurement, which allows improved analytical treatment of the leading-edge cooling configuration. These experiments also point to the necessity of not always performing model tests under idealized conditions. This becomes very clear in the case of the tests performed on an application-oriented impingement-cooling configuration like that often encountered in engine manufacture. In conclusion, as an example, temperature calculations are employed to demonstrate the effect on the cooling effectiveness of varying the distances between insert and inner surface of the leading edge. It shows how the effectiveness of the leading edge cooling can be increased by simple geometrical measures, which results in a considerable improvement in service life.

  13. A simple model of the effect of ocean ventilation on ocean heat uptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadiga, Balasubramanya T.; Urban, Nathan Mark

    Presentation includes slides on Earth System Models vs. Simple Climate Models; A Popular SCM: Energy Balance Model of Anomalies; On calibrating against one ESM experiment, the SCM correctly captures that ESM's surface warming response with other forcings; Multi-Model Analysis: Multiple ESMs, Single SCM; Posterior Distributions of ECS; However In Excess of 90% of TOA Energy Imbalance is Sequestered in the World Oceans; Heat Storage in the Two Layer Model; Heat Storage in the Two Layer Model; Including TOA Rad. Imbalance and Ocean Heat in Calibration Improves Repr., but Significant Errors Persist; Improved Vertical Resolution Does Not Fix Problem; A Seriesmore » of Expts. Confirms That Anomaly-Diffusing Models Cannot Properly Represent Ocean Heat Uptake; Physics of the Thermocline; Outcropping Isopycnals and Horizontally-Averaged Layers; Local interactions between outcropping isopycnals leads to non-local interactions between horizontally-averaged layers; Both Surface Warming and Ocean Heat are Well Represented With Just 4 Layers; A Series of Expts. Confirms That When Non-Local Interactions are Allowed, the SCMs Can Represent Both Surface Warming and Ocean Heat Uptake; and Summary and Conclusions.« less

  14. Use of a liquid-crystal, heater-element composite for quantitative, high-resolution heat transfer coefficients on a turbine airfoil, including turbulence and surface roughness effects

    NASA Astrophysics Data System (ADS)

    Hippensteele, Steven A.; Russell, Louis M.; Torres, Felix J.

    1987-05-01

    Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at roon temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code.

  15. Use of a liquid-crystal and heater-element composite for quantitative, high-resolution heat-transfer coefficients on a turbine airfoil including turbulence and surface-roughness effects

    NASA Astrophysics Data System (ADS)

    Hippensteele, S. A.; Russell, L. M.; Torres, F. J.

    Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at room temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code.

  16. Use of a liquid-crystal, heater-element composite for quantitative, high-resolution heat transfer coefficients on a turbine airfoil, including turbulence and surface roughness effects

    NASA Technical Reports Server (NTRS)

    Hippensteele, Steven A.; Russell, Louis M.; Torres, Felix J.

    1987-01-01

    Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at roon temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code.

  17. Local rectification of heat flux

    NASA Astrophysics Data System (ADS)

    Pons, M.; Cui, Y. Y.; Ruschhaupt, A.; Simón, M. A.; Muga, J. G.

    2017-09-01

    We present a chain-of-atoms model where heat is rectified, with different fluxes from the hot to the cold baths located at the chain boundaries when the temperature bias is reversed. The chain is homogeneous except for boundary effects and a local modification of the interactions at one site, the “impurity”. The rectification mechanism is due here to the localized impurity, the only asymmetrical element of the structure, apart from the externally imposed temperature bias, and does not rely on putting in contact different materials or other known mechanisms such as grading or long-range interactions. The effect survives if all interaction forces are linear except the ones for the impurity.

  18. Heat transfer about a vertical permeable membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaviany, M.

    1988-05-01

    The natural convection heat transfer about both sides of vertical walls without any seepage has been studied and the effects of the wall thickness and thermal conductivity on the local and average heat transfer rates have been determined. Viskanta and Lankford have concluded that in predicting the heat transfer rate through the wall, for low-thermal-conductivity walls the a priori unknown wall surface temperatures can be walls the a priori unknown wall surface temperatures can be estimated as the arithmetic average of the reservoir temperatures without loss of accuracy (for most practical situations). Sparrow and Prakash treated the surface temperature asmore » variable but used the local temperature along with the available isothermal boundary-layer analysis for determination of the local heat transfer rate and found this to be reasonable at relatively low Grashof numbers. In this study the heat trasnfer rate between two reservoirs of different temperature connected in part through a permeable membrane is analyzed. Rather than solving the complete problem numerically for the three domains (fluid-wall-fluid), the available results on the effects of suction and blowing on the natural convection boundary layer are used in an analysis of the membranes with low thermal conductivity and small seepage velocities, which are characteristic of membranes considered. This will lead to rather simple expressions for the determination of the heat transfer rate.« less

  19. A ‘self-adjustment’ mechanism for mixed-layer heat budget in the equatorial Atlantic cold tongue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yanyan; Wang, Bin; Huang, Wenyu

    Wind forcing is one of the most important sources for the oceanic energy cycle and is especially critical to the heat budget of surface mixed layer. The sensitivity of heat budget in the equatorial Atlantic cold tongue (EACT) region (5°S–5°N, 25°W–5°E) to wind forcing and the related mechanism are explored in this study. Based on the experiments forced by different wind forcing from both reanalysis and idealized datasets, it is revealed that the contribution ratio for each of the dominant physical processes in the heat budget is insensitive (the variations within 1% of the mean) to the variations in themore » local winds (the largest variation is about 20% of the mean) over the EACT region. Therefore, a ‘self-adjustment’ mechanism exists in the mixed-layer heat budget: as local zonal winds over the EACT region strengthen (weaken), both the cooling effects of turbulent mixing and the combined warming effects of surface net heat flux and zonal advection simultaneously increase (decrease) by nearly the same percentage and thus their contribution ratios are kept constant. Finally, owing to the impact of meridional winds on each term of heat budget can be neglected, the above mechanism is also tenable under the situation when the local meridional winds change.« less

  20. A ‘self-adjustment’ mechanism for mixed-layer heat budget in the equatorial Atlantic cold tongue

    DOE PAGES

    Shi, Yanyan; Wang, Bin; Huang, Wenyu

    2017-01-20

    Wind forcing is one of the most important sources for the oceanic energy cycle and is especially critical to the heat budget of surface mixed layer. The sensitivity of heat budget in the equatorial Atlantic cold tongue (EACT) region (5°S–5°N, 25°W–5°E) to wind forcing and the related mechanism are explored in this study. Based on the experiments forced by different wind forcing from both reanalysis and idealized datasets, it is revealed that the contribution ratio for each of the dominant physical processes in the heat budget is insensitive (the variations within 1% of the mean) to the variations in themore » local winds (the largest variation is about 20% of the mean) over the EACT region. Therefore, a ‘self-adjustment’ mechanism exists in the mixed-layer heat budget: as local zonal winds over the EACT region strengthen (weaken), both the cooling effects of turbulent mixing and the combined warming effects of surface net heat flux and zonal advection simultaneously increase (decrease) by nearly the same percentage and thus their contribution ratios are kept constant. Finally, owing to the impact of meridional winds on each term of heat budget can be neglected, the above mechanism is also tenable under the situation when the local meridional winds change.« less

  1. On the heating mechanism of magnetic flux loops in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Song, M. T.; Wu, S. T.

    1984-01-01

    An investigation is conducted of physical heating mechanisms due to the ponderomotive forces exerted by turbulent waves along the solar atmosphere's curved magnetic flux loops. Results indicate that the temperature difference between the inside and outside of the flux loop can be classified into three parts, two of which represent the cooling or heating effect exerted by the ponderomotive force, while the third is the heating effect due to turbulent energy conversion from the localized plasma. This heating mechanism is used to illustrate solar atmospheric heating by means of an example that leads to the formulation of plages.

  2. The Cosmological Impact of Luminous TeV Blazars. II. Rewriting the Thermal History of the Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Chang, Philip; Broderick, Avery E.; Pfrommer, Christoph

    2012-06-01

    The universe is opaque to extragalactic very high energy gamma rays (VHEGRs, E > 100 GeV) because they annihilate and pair produce on the extragalactic background light. The resulting ultrarelativistic pairs are commonly assumed to lose energy primarily through inverse Compton scattering of cosmic microwave background (CMB) photons, reprocessing the original emission from TeV to GeV energies. In Broderick et al., we argued that this is not the case; powerful plasma instabilities driven by the highly anisotropic nature of the ultrarelativistic pair distribution provide a plausible way to dissipate the kinetic energy of the TeV-generated pairs locally, heating the intergalactic medium (IGM). Here, we explore the effect of this heating on the thermal history of the IGM. We collate the observed extragalactic VHEGR sources to determine a local VHEGR heating rate. Given the pointed nature of VHEGR observations, we estimate the correction for the various selection effects using Fermi observations of high- and intermediate-peaked BL Lac objects. As the extragalactic component of the local VHEGR flux is dominated by TeV blazars, we then estimate the evolution of the TeV blazar luminosity density by tying it to the well-observed quasar luminosity density and producing a VHEGR heating rate as a function of redshift. This heating is relatively homogeneous for z <~ 4, but there is greater spatial variation at higher redshift (order unity at z ~ 6) because of the reduced number of blazars that contribute to local heating. We show that this new heating process dominates photoheating in the low-redshift evolution of the IGM and calculate the effect of this heating in a one-zone model. As a consequence, the inclusion of TeV blazar heating qualitatively and quantitatively changes the structure and history of the IGM. Due to the homogeneous nature of the extragalactic background light, TeV blazars produce a uniform volumetric heating rate. This heating is sufficient to increase the temperature of the mean density IGM by nearly an order of magnitude, and at low densities by substantially more. It also naturally produces the inverted temperature-density relation inferred by recent observations of the high-redshift Lyα forest, a feature that is difficult to reconcile with standard reionization models. Finally, we close with a discussion on the possibility of detecting this hot low-density IGM suggested by our model either directly or indirectly via the local Lyα forest, the Comptonized CMB, or free-free emission, but we find that such measurements are currently not feasible.

  3. Antagonism of soluble guanylyl cyclase attenuates cutaneous vasodilation during whole body heat stress and local warming in humans

    PubMed Central

    Zhao, Joan L.; Wu, Yubo; Johnson, John M.

    2011-01-01

    We hypothesized that nitric oxide activation of soluble guanylyl cyclase (sGC) participates in cutaneous vasodilation during whole body heat stress and local skin warming. We examined the effects of the sGC inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), on reflex skin blood flow responses to whole body heat stress and on nonreflex responses to increased local skin temperature. Blood flow was monitored by laser-Doppler flowmetry, and blood pressure by Finapres to calculate cutaneous vascular conductance (CVC). Intradermal microdialysis was used to treat one site with 1 mM ODQ in 2% DMSO and Ringer, a second site with 2% DMSO in Ringer, and a third site received Ringer. In protocol 1, after a period of normothermia, whole body heat stress was induced. In protocol 2, local heating units warmed local skin temperature from 34 to 41°C to cause local vasodilation. In protocol 1, in normothermia, CVC did not differ among sites [ODQ, 15 ± 3% maximum CVC (CVCmax); DMSO, 14 ± 3% CVCmax; Ringer, 17 ± 6% CVCmax; P > 0.05]. During heat stress, ODQ attenuated CVC increases (ODQ, 54 ± 4% CVCmax; DMSO, 64 ± 4% CVCmax; Ringer, 63 ± 4% CVCmax; P < 0.05, ODQ vs. DMSO or Ringer). In protocol 2, at 34°C local temperature, CVC did not differ among sites (ODQ, 17 ± 2% CVCmax; DMSO, 18 ± 4% CVCmax; Ringer, 18 ± 3% CVCmax; P > 0.05). ODQ attenuated CVC increases at 41°C local temperature (ODQ, 54 ± 5% CVCmax; DMSO, 86 ± 4% CVCmax; Ringer, 90 ± 2% CVCmax; P < 0.05 ODQ vs. DMSO or Ringer). sGC participates in neurogenic active vasodilation during heat stress and in the local response to direct skin warming. PMID:21292837

  4. Heat and mass transfer at gas-phase ignition of grinded coal layer by several metal particles heated to a high temperature

    NASA Astrophysics Data System (ADS)

    Glushkov, D. O.; Kuznetsov, G. V.; Strizhak, P. A.

    2017-07-01

    Characteristics of gas-phase ignition of grinded brown coal (brand 2B, Shive-Ovoos deposit in Mongolia) layer by single and several metal particles heated to a high temperature (above 1000 K) have been investigated numerically. The developed mathematical model of the process takes into account the heating and thermal decomposition of coal at the expense of the heat supplied from local heat sources, release of volatiles, formation and heating of gas mixture and its ignition. The conditions of the joint effect of several hot particles on the main characteristic of the process-ignition delay time are determined. The relation of the ignition zone position in the vicinity of local heat sources and the intensity of combustible gas mixture warming has been elucidated. It has been found that when the distance between neighboring particles exceeds 1.5 hot particle size, an analysis of characteristics and regularities of coal ignition by several local heat sources can be carried out within the framework of the model of "single metal particle / grinded coal / air". Besides, it has been shown with the use of this model that the increase in the hot particle height leads, along with the ignition delay time reduction, to a reduction of the source initial temperatures required for solid fuel ignition. At an imperfect thermal contact at the interface hot particle / grinded coal due to the natural porosity of the solid fuel structure, the intensity of ignition reduces due to a less significant effect of radiation in the area of pores on the heat transfer conditions compared to heat transfer by conduction in the near-surface coal layer without regard to its heterogeneous structure.

  5. Stagnation point flow on bioconvection nanofluid over a stretching/shrinking surface with velocity and thermal slip effects

    NASA Astrophysics Data System (ADS)

    Chan, Sze Qi; Aman, Fazlina; Mansur, Syahira

    2017-09-01

    Nanofluid containing nanometer sized particles has become an ideal thermal conductivity medium for the flow and heat transfer in many industrial and engineering applications due to their high rate of heat transfer. However, swimming microorganisms are imposed into the nanofluid to overcome the instability of nanoparticles due to a bioconvection phenomenon. This paper investigates the stagnation point flow on bioconvection heat transfer of a nanofluid over a stretching/shrinking surface containing gyrotactic microorganisms. Velocity and thermal slip effects are the two conditions incorporated into the model. Similarity transformation is applied to reduce the governing nonlinear partial differential equations into the nonlinear ordinary differential equations. The transformed equations are then solved numerically. The results are displayed in the form of graphs and tables. The effects of these governing parameters on the skin friction coefficient, local Nusselt number, local Sherwood number and the local density of the motile microorganisms are analysed and discussed in details.

  6. Photothermal lesions in soft tissue induced by optical fiber microheaters.

    PubMed

    Pimentel-Domínguez, Reinher; Moreno-Álvarez, Paola; Hautefeuille, Mathieu; Chavarría, Anahí; Hernández-Cordero, Juan

    2016-04-01

    Photothermal therapy has shown to be a promising technique for local treatment of tumors. However, the main challenge for this technique is the availability of localized heat sources to minimize thermal damage in the surrounding healthy tissue. In this work, we demonstrate the use of optical fiber microheaters for inducing thermal lesions in soft tissue. The proposed devices incorporate carbon nanotubes or gold nanolayers on the tips of optical fibers for enhanced photothermal effects and heating of ex vivo biological tissues. We report preliminary results of small size photothermal lesions induced on mice liver tissues. The morphology of the resulting lesions shows that optical fiber microheaters may render useful for delivering highly localized heat for photothermal therapy.

  7. Local measurement and numerical modeling of mass/heat transfer from a turbine blade in a linear cascade with tip clearance

    NASA Astrophysics Data System (ADS)

    Jin, Peitong

    2000-11-01

    Local mass/heat transfer measurements from the turbine blade near-tip and the tip surfaces are performed using the naphthalene sublimation technique. The experiments are conducted in a linear cascade consisting of five high-pressure blades with a central test-blade configuration. The incoming flow conditions are close to those of the gas turbine engine environment (boundary layer displacement thickness is about 0.01 of chord) with an exit Reynolds number of 6.2 x 105. The effects of tip clearance level (0.86%--6.90% of chord), mainstream Reynolds number and turbulence intensity (0.2 and 12.0%) are investigated. Two methods of flow visualization---oil and lampblack, laser light sheet smoke wire---as well as static pressure measurement on the blade surface are used to study the tip leakage flow and vortex in the cascade. In addition, numerical modeling of the flow and heat transfer processes in the linear cascade with different tip clearances is conducted using commercial software incorporating advanced turbulence models. The present study confirms many important results on the tip leakage flow and vortex from the literature, contributes to the current understanding in the effects of tip leakage flow and vortex on local heat transfer from the blade near-tip and the tip surfaces, and provides detailed local and average heat/mass transfer data applicable to turbine blade tip cooling design.

  8. A numerical analysis of the effects of conjugate heat transfer, vapor compressibility, and viscous dissipation in heat pipes

    NASA Astrophysics Data System (ADS)

    Faghri, Amir; Chen, Ming-Ming

    1989-10-01

    The effects of conjugate heat transfer, vapor compressibility, and viscous dissipation in heat pipes are discussed. The accuracy of the partially parabolic versus the elliptic presentation of the governing equations is also examined. The results show that the axial wall conduction has a tendency to make the temperature distribution more uniform for heat pipes with large ratios of pipe wall to effective liquid-wick thermal conductivity. The compressible and incompressible models show very close agreement for the total pressure drop, while the local pressure variations along the heat pipe are quite different for these two models when the radial Reynolds number at the interface is high.

  9. Infrared thermography with non-uniform heat flux boundary conditions on the rotor endwall of an axial turbine

    NASA Astrophysics Data System (ADS)

    Lazzi Gazzini, S.; Schädler, R.; Kalfas, A. I.; Abhari, R. S.

    2017-02-01

    It is technically challenging to measure heat fluxes on the rotating components of gas turbines, yet accurate knowledge of local heat loads under engine-representative conditions is crucial for ensuring the reliability of the designs. In this work, quantitative image processing tools were developed to perform fast and accurate infrared thermography measurements on 3D-shaped film-heaters directly deposited on the turbine endwalls. The newly developed image processing method and instrumentation were used to measure the heat load on the rotor endwalls of an axial turbine. A step-transient heat flux calibration technique is applied to measure the heat flux generated locally by the film heater, thus eliminating the need for a rigorously iso-energetic boundary condition. On-board electronics installed on the rotor record the temperature readings of RTDs installed in the substrate below the heaters in order to evaluate the conductive losses in the solid. Full maps of heat transfer coefficient and adiabatic wall temperature are produced for two different operating conditions, demonstrating the sensitivity of the technique to local flow features and variations in heat transfer due to Reynolds number effect.

  10. [Startup mechanism of moxibustion warming and dredging function].

    PubMed

    Huang, Kaiyu; Liang, Shuang; Sun, Zheng; Zhang, Jianbin

    2017-09-12

    With "moxibustion" and "warm stimulation" as the keywords, the literature on moxibustion mechanism of warming and dredging from June 1st, 1995 to June 1st, 2016 was collected from PubMed, China National Knowledge Infrastructure (CNKI) and Wanfang database. The startup mechanism of moxibustion warming and dredging function was analyzed in terms of moxibustion warming stimulation. The results were found that moxibustion was based on local rising temperature of acupoint. It activated local specific receptors, heat sensitive immune cells, heat shock proteins and so on to start the warming and dredging function and produce various local effects. The warming stimulation signals as well as subsequent effects through nerve and body fluid pathways induced the effects of further specific target organs and body systems.

  11. Sensitivities Affecting Heat and Urban Heat Island Effect on Local Scale Projected to Neighborhood Scale in Baltimore, Maryland

    NASA Astrophysics Data System (ADS)

    Sze, C.; Zaitchik, B. F.; Scott, A.

    2015-12-01

    Urban regions are often impacted more by heat than adjacent rural areas, which is a phenomenon known as the urban heat island (UHI) effect. Urban areas are also highly heterogeneous and notoriously difficult to monitor using standard meteorological protocols—the hottest microclimates within a city often occur in locations that lack open, representative installation sites that are an adequate distance from buildings and direct heat sources. To investigate the challenges of monitoring urban heat, this study examines the sensitivity of temperature and humidity sensors currently used in a Baltimore UHI monitoring network to differences in sun exposure, material on which the data collecting instrument is attached, and land cover class of the vicinity. Sensitivity to sun exposure and attachment site can be interpreted as sources of uncertainty for urban heat monitoring, while sensitivity to land cover may reflect a true source of local temperature and humidity variability. In this study, we present results from a test deployment designed to assess the sensitivity of heat measurements to each of these three factors. We then apply these results to interpret measurements taken across the entire Baltimore UHI monitoring network. These results can then be used to improve heat measurements and more accurately represent and quantify the UHI effect on a broader scale, such as in neighborhoods or urban centers.

  12. Physical effects of thermal pollution in lakes

    NASA Astrophysics Data System (ADS)

    Râman Vinnâ, Love; Wüest, Alfred; Bouffard, Damien

    2017-05-01

    Anthropogenic heat emissions into inland waters influence water temperature and affect stratification, heat and nutrient fluxes, deep water renewal, and biota. Given the increased thermal stress on these systems by growing cooling demands of riparian/coastal infrastructures in combination with climate warming, the question arises on how to best monitor and manage these systems. In this study, we investigate local and system-wide physical effects on the medium-sized perialpine Lake Biel (Switzerland), influenced by point-source cooling water emission from an upstream nuclear power plant (heat emission ˜700 MW, ˜18 W m-2 lake wide). We use one-dimensional (SIMSTRAT) and three-dimensional (Delft3D-Flow) hydrodynamic numerical simulations and provide model resolution guidelines for future studies of thermal pollution. The effects on Lake Biel by the emitted excess heat are summarized as: (i) clear seasonal trend in temperature increase, locally up to 3.4°C and system-wide volume mean ˜0.3°C, which corresponds to one decade of regional surface water climate warming; (ii) the majority of supplied thermal pollution (˜60%) leaves this short residence time (˜58 days) system via the main outlet, whereas the remaining heat exits to the atmosphere; (iii) increased length of stratified period due to the stabilizing effects of additional heat; (iv) system-wide effects such as warmer temperature, prolonged stratified period, and river-caused epilimnion flushing are resolved by both models whereas local raised temperature and river short circuiting was only identifiable with the three-dimensional model approach. This model-based method provides an ideal tool to assess man-made impacts on lakes and their downstream outflows.

  13. A non-local model of fractional heat conduction in rigid bodies

    NASA Astrophysics Data System (ADS)

    Borino, G.; di Paola, M.; Zingales, M.

    2011-03-01

    In recent years several applications of fractional differential calculus have been proposed in physics, chemistry as well as in engineering fields. Fractional order integrals and derivatives extend the well-known definitions of integer-order primitives and derivatives of the ordinary differential calculus to real-order operators. Engineering applications of fractional operators spread from viscoelastic models, stochastic dynamics as well as with thermoelasticity. In this latter field one of the main actractives of fractional operators is their capability to interpolate between the heat flux and its time-rate of change, that is related to the well-known second sound effect. In other recent studies a fractional, non-local thermoelastic model has been proposed as a particular case of the non-local, integral, thermoelasticity introduced at the mid of the seventies. In this study the autors aim to introduce a different non-local model of extended irreverible thermodynamics to account for second sound effect. Long-range heat flux is defined and it involves the integral part of the spatial Marchaud fractional derivatives of the temperature field whereas the second-sound effect is accounted for introducing time-derivative of the heat flux in the transport equation. It is shown that the proposed model does not suffer of the pathological problems of non-homogenoeus boundary conditions. Moreover the proposed model coalesces with the Povstenko fractional models in unbounded domains.

  14. Increased Air Velocity Reduces Thermal and Cardiovascular Strain in Young and Older Males during Humid Exertional Heat Stress.

    PubMed

    Wright Beatty, Heather E; Hardcastle, Stephen G; Boulay, Pierre; Flouris, Andreas D; Kenny, Glen P

    2015-01-01

    Older adults have been reported to have a lower evaporative heat loss capacity than younger adults during exercise when full sweat evaporation is permitted. However, it is unclear how conditions of restricted evaporative and convective heat loss (i.e., high humidity, clothing insulation) alter heat stress. to the purpose of this study was to examine the heat stress responses of young and older males during and following exercise in a warm/humid environment under two different levels of air velocity. Ten young (YOUNG: 24±2 yr) and 10 older (OLDER: 59±3 yr) males, matched for body surface area performed 4×15-min cycling bouts (15-min rest) at a fixed rate of heat production (400 W) in warm/humid conditions (35°C, 60% relative humidity) under 0.5 (Low) and 3.0 (High) m·s(-1) air velocity while wearing work coveralls. Rectal (Tre) and mean skin (MTsk) temperatures, heart rate (HR), local sweat rate, % max skin blood flow (SkBF) (recovery only), and blood pressure (recovery only) were measured. High air velocity reduced core and skin temperatures (p < 0.05) equally in YOUNG and OLDER males (p > 0.05) but was more effective in reducing cardiovascular strain (absolute and % max HR; p < 0.05) in YOUNG males (p < 0.05). Greater increases in local dry heat loss responses (% max SkBF and cutaneous vascular conductance) were detected across time in OLDER than YOUNG males in both conditions (p < 0.05). Local dry heat loss responses and cardiovascular strain were attenuated during the High condition in YOUNG compared to OLDER (p < 0.05). High air velocity reduced the number of males surpassing the 38.0°C Tre threshold from 90% (Low) to 50% (High). Despite age-related local heat loss differences, YOUNG and OLDER males had similar levels of heat stress during intermittent exercise in warm and humid conditions while wearing work coveralls. Increased air velocity was effective in reducing heat stress equally, and cardiovascular strain to a greater extent, in YOUNG and OLDER males, and may be useful for mitigating heat stress in all workers.

  15. Heat Pipes Cool Power Magnetics

    NASA Technical Reports Server (NTRS)

    Hansen, I.; Chester, M.; Luedke, E.

    1983-01-01

    Configurations originally developed for space use are effective in any orientation. Heat pipes integrated into high-power, high-frequency, highvoltage spaceflight magnetics reduce weight and improve reliability by lowering internal tempertures. Two heat pipes integrated in design of power transformer cool unit in any orientation. Electrostatic shield conducts heat from windings to heat pipe evaporator. Technology allows dramatic reductions in size and weight, while significantly improving reliability. In addition, all attitude design of heat pipes allows operation of heat pipes independent of local gravity forces.

  16. The local heat transfer mathematical model between vibrated fluidized beds and horizontal tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xuejun; College of Biology and Chemical Engineering, Panzhihua University, Panzhihua 617000; Ye, Shichao

    2008-05-15

    A dimensionless mathematical model is proposed to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes, and the effects of the thickness of gas film and the contact time of particle packets are well considered. Experiments using the glass beads (the average diameter bar d{sub p}=1.83mm) were conducted in a two-dimensional vibrated fluidized bed (240 mm x 80 mm). The local heat transfer law between vibrated fluidized bed and horizontal tube surface has been investigated. The results show that the values of theoretical prediction are in good agreement with experimental data, so the model ismore » able to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes reasonably well, and the error is in range of {+-}15%. The results can provide references for future designing and researching on the vibrated fluidized beds with immersed horizontal tubes. (author)« less

  17. Self-generated Local Heating Induced Nanojoining for Room Temperature Pressureless Flexible Electronic Packaging

    PubMed Central

    Peng, Peng; Hu, Anming; Gerlich, Adrian P.; Liu, Yangai; Zhou, Y. Norman

    2015-01-01

    Metallic bonding at an interface is determined by the application of heat and/or pressure. The means by which these are applied are the most critical for joining nanoscale structures. The present study considers the feasibility of room-temperature pressureless joining of copper wires using water-based silver nanowire paste. A novel mechanism of self-generated local heating within the silver nanowire paste and copper substrate system promotes the joining of silver-to-silver and silver-to-copper without any external energy input. The localized heat energy was delivered in-situ to the interfaces to promote atomic diffusion and metallic bond formation with the bulk component temperature stays near room-temperature. This local heating effect has been detected experimentally and confirmed by calculation. The joints formed at room-temperature without pressure achieve a tensile strength of 5.7 MPa and exhibit ultra-low resistivity in the range of 101.3 nOhm·m. The good conductivity of the joint is attributed to the removal of organic compounds in the paste and metallic bonding of silver-to-copper and silver-to-silver. The water-based silver nanowire paste filler material is successfully applied to various flexible substrates for room temperature bonding. The use of chemically generated local heating may become a potential method for energy in-situ delivery at micro/nanoscale. PMID:25788019

  18. Urban Heat Islands and Their Mitigation vs. Local Impacts of Climate Change

    NASA Astrophysics Data System (ADS)

    Taha, H.

    2007-12-01

    Urban heat islands and their mitigation take on added significance, both negative and positive, when viewed from a climate-change perspective. In negative terms, urban heat islands can act as local exacerbating factors, or magnifying lenses, to the effects of regional and large-scale climate perturbations and change. They can locally impact meteorology, energy/electricity generation and use, thermal environment (comfort and heat waves), emissions of air pollutants, photochemistry, and air quality. In positive terms, on the other hand, mitigation of urban heat islands (via urban surface modifications and control of man-made heat, for example) can potentially have a beneficial effect of mitigating the local negative impacts of climate change. In addition, mitigation of urban heat islands can, in itself, contribute to preventing regional and global climate change, even if modestly, by helping reduce CO2 emissions from power plants and other sources as a result of decreased energy use for cooling (both direct and indirect) and reducing the rates of meteorology-dependent emissions of air pollutants. This presentation will highlight aspects and characteristics of heat islands, their mitigation, their modeling and quantification techniques, and recent advances in meso-urban modeling of California (funded by the California Energy Commission). In particular, the presentation will focus on results from quantitative, modeling-based analyses of the potential benefits of heat island mitigation in 1) reducing point- and area-source emissions of CO2, NOx, and VOC as a result of reduced cooling energy demand and ambient/surface temperatures, 2) reducing evaporative and fugitive hydrocarbon emissions as a result of lowered temperatures, 3) reducing biogenic hydrocarbon emissions from existing vegetative cover, 4) slowing the rates of tropospheric/ground-level ozone formation and/or accumulation in the urban boundary layer, and 5) helping improve air quality. Quantitative estimates of the above will be presented based on recent and earlier meteorological, energy, thermal environmental, emissions, and photochemical modeling studies for California and Texas.

  19. Stretching and Controlled Motion of Single-Stranded DNA in Locally-Heated Solid-State Nanopores

    PubMed Central

    Belkin, Maxim; Maffeo, Christopher; Wells, David B.

    2013-01-01

    Practical applications of solid-state nanopores for DNA detection and sequencing require the electrophoretic motion of DNA through the nanopores to be precisely controlled. Controlling the motion of single-stranded DNA presents a particular challenge, in part because of the multitude of conformations that a DNA strand can adopt in a nanopore. Through continuum, coarse-grained and atomistic modeling, we demonstrate that local heating of the nanopore volume can be used to alter the electrophoretic mobility and conformation of single-stranded DNA. In the nanopore systems considered, the temperature near the nanopore is modulated via a nanometer-size heater element that can be radiatively switched on and off. The local enhancement of temperature produces considerable stretching of the DNA fragment confined within the nanopore. Such stretching is reversible, so that the conformation of DNA can be toggled between compact (local heating is off) and extended (local heating is on) states. The effective thermophoretic force acting on single-stranded DNA in the vicinity of the nanopore is found to be sufficiently large (4–8 pN) to affect such changes in the DNA conformation. The local heating of the nanopore volume is observed to promote single-file translocation of DNA strands at transmembrane biases as low as 10 mV, which opens new avenues for using solid-state nanopores for detection and sequencing of DNA. PMID:23876013

  20. Heat convection in a micro impinging jet system

    NASA Astrophysics Data System (ADS)

    Mai, John Dzung Hoang

    2000-10-01

    This thesis covers the development of an efficient micro impinging jet heat exchanger, using MEMS technology, to provide localized cooling for present and next generation microelectronic computer chips. Before designing an efficient localized heat exchanger, it is necessary to investigate fluid dynamics and heat transfer in the micro scale. MEMS technology has been used in this project because it is the only tool currently available that can provide a large array of batch-fabricated, micro-scale nozzles for localized cooling. Our investigation of potential MEMS heat exchanger designs begins with experiments that measure the pressure drops and temperature changes in a micro scale tubing system that will be necessary to carry fluid to the impingement point. Our basic MEMS model is a freestanding micro channel with integrated temperature microsensors. The temperature distribution along the channel in a vacuum is measured. The measured flow rates are compared with an analytical model developed for capillary flow that accounts for 2-D, slip and compressibility effects. The work is focused on obtaining correlations in the form of the Nussult number, the Reynolds number and a H/d geometric factor. A set of single MEMS nozzles have been designed to test heat transfer effectiveness as a function of nozzle diameter, ranging from 1.0 mm to 250 um. In addition, nozzle and slot array MEMS devices have been fabricated. In order to obtain quantitative measurements from these micron scale devices, a series of target temperature sensor chips were custom made and characterized for these experiments. The heat transfer characteristics of various MEMS nozzle configurations operating at various steady inlet pressures, at different heights above the heated substrate, have been characterized. These steady results showed that the average heat transfer coefficient, averaged over a 1 cm2 test area, was usually less than 0.035 W/cm 2K for any situation. However, the local heat transfer coefficient, as measured by a single 4mum x 4mum temperature sensor, was as high as 0.5 W/cm2K. Using a mechanical valve and piezo actuator to perturb the flow at frequencies from 10 Hz to 1 kHz, we identify that enhanced heat transfer can occur in an unsteady forced jet. The functional dependence of the enhanced heat transfer on the mean jet speed, perturbation level and perturbing frequency has been established. The expected trend that increased heat transfer at higher values of St number was noticed. In addition the effect of a confined and free jet geometry on an unsteady flow was observed.

  1. Climate-driven variations in thermal forcing across a nearshore reef system during a marine heat wave and its potential impact on coral calcification

    NASA Astrophysics Data System (ADS)

    Falter, J.; Zhang, Z.; Lowe, R.; Foster, T.; McCulloch, M. T.

    2016-02-01

    We examined the oceanic and atmospheric forces driving seasonal and spatial variability in water temperature across backreef and lagoonal habitats at Coral Bay at Ningaloo Reef, Western Australia before, during, and after a historically unprecedented marine heat wave and resulting mass bleaching event in 2010-2011. Local deviations in the mean daily temperature of nearshore reef waters from offshore values were a linear function of the combined effect of net atmospheric heating and offshore wave height and period . While intra-annual variation in local heat exchange was driven mainly by seasonal changes in short-wave radiation; intra-annual variation in local cooling was driven mostly by changes in relative humidity (r2 = 0.60) and wind speed (r2 = 0.31) which exhibited no apparent seasonality. We demonstrate good agreement between nearshore reef temperatures modeled from offshore sea surface temperatures (SST), offshore wave forcing, and local atmospheric heat fluxes with observed temperatures using a simple linear model (r2 = 0.31 to 0.69, root-mean-square error = 0.4°C to 0.9°C). Using these modeled nearshore reef temperature records, we show that during the heat wave local thermal stresses across the reef reached as high as 18-34 °C-weeks and were being both intensified and accelerated by regional climate forcing when compared with offshore waters (12.6 °C-weeks max). Measurements of coral calcification made in Coral Bay following the bleaching event appear to lack any distinct seasonality; possibly due to the long-term effects of acute thermal stress. However, similarly minimal seasonality in calcification rates had also been observed in an Acropora-dominated community at Ningaloo years before the heat wave as well as more recently in coral from regions in WA that had avoided mass bleaching. These observations, in conjunction with observations that most of the bleached communities within Coral Bay had recovered their color within 3-6 months of the bleaching event, suggest that how reef building coral respond to a severe thermal stress event can be somewhat nuanced depending on the local and regional setting.

  2. Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating.

    PubMed

    Yan, Jiahao; Liu, Pu; Ma, Churong; Lin, Zhaoyong; Yang, Guowei

    2016-04-28

    Through the excitation of plasmon resonance, the energy of plasmonic nanoparticles either reradiates through light scattering or decays into energetic electrons (absorption). The plasmon-induced absorption can greatly enhance the efficiency of solar energy harvesting, local heating, photodetection and photocatalysis. Here, we demonstrate that heavily self-doped titanium oxide nanoparticles (TiO1.67 analogue arising from oxygen vacancies in rutile TiO2) with the plasmon resonance dominated by an interband transition shows strong absorption to build a broadband perfect absorber in the wavelength range from 300 to 2000 nm covering the solar irradiation spectrum completely. The absorptivity of the fabricated array is greater than 90% in the whole spectral range. And the broadband and strong absorption is due to the plasmon hybridization and hot spot generation from near-touching TiO1.67 nanoparticles with different sizes. What is more, the local heating of a TiO1.67 nanoparticle layer is fast and effective. The temperature increases quickly from 30 °C to 80 °C within 200 seconds. This local heating can realize rapid solar-enabled evaporation which can find applications in large-scale distillation and seawater desalination. These findings actually open a pathway for applications of these newly developed plasmonic materials in the energy and environment fields.

  3. Experimental aerodynamic heating to simulated space shuttle tiles in laminar and turbulent boundary layers with variable flow angles at a nominal Mach number of 7. M.S. Thesis - George Washington Univ., Nov. 1983

    NASA Technical Reports Server (NTRS)

    Avery, D. E.

    1985-01-01

    The heat transfer to simulated shuttle thermal protection system tiles was investigated experimentally by using a highly instrumented metallic thin wall tile arranged with other metal tiles in a staggered tile array. Cold wall heating rate data for laminar and turbulent flow were obtained in the Langley 8 foot high Temperature Tunnel at a nominal Mach number of 7, a nominal total temperature of 3300R, a free stream unit Reynolds number from 3.4 x 10 sup 5 to 2.2 10 sup 6 per foot, and a free stream dynamic pressure from 2.1 to 9.0 psia. Experimental data are presented to illustrate the effects of flow angularity and gap width on both local peak heating and overall heating loads. For the conditions of the present study, the results show that localized and total heating are sensitive to changes in flow angle only for the test conditions of turbulent boundary layer flow with high kinetic energy and that a flow angle from 30 deg to 50 deg will minimize the local heating.

  4. Small scale changes of geochemistry and flow field due to transient heat storage in aquifers

    NASA Astrophysics Data System (ADS)

    Bauer, S.; Boockmeyer, A.; Li, D.; Beyer, C.

    2013-12-01

    Heat exchangers in the subsurface are increasingly installed for transient heat storage due to the need of heating or cooling of buildings as well as the interim storage of heat to compensate for the temporally fluctuating energy production by wind or solar energy. For heat storage to be efficient, high temperatures must be achieved in the subsurface. Significant temporal changes of the soil and groundwater temperatures however effect both the local flow field by temperature dependent fluid parameters as well as reactive mass transport through temperature dependent diffusion coefficients, geochemical reaction rates and mineral equilibria. As the use of heat storage will be concentrated in urban areas, the use of the subsurface for (drinking) water supply and heat storage will typically coincide and a reliable prognosis of the processes occurring is needed. In the present work, the effects of a temporal variation of the groundwater temperature, as induced by a local heat exchanger introduced into a groundwater aquifer, are studied. For this purpose, the coupled non-isothermal groundwater flow, heat transport and reactive mass transport is simulated in the near filed of such a heat exchanger. By explicitly discretizing and incorporating the borehole, the borehole cementation and the heat exchanger tubes, a realistic geometrical and process representation is obtained. The numerical simulation code OpenGeoSys is used in this work, which incorporates the required processes of coupled groundwater flow, heat and mass transport as well as temperature dependent geochemistry. Due to the use of a Finite Element Method, a close representation of the geometric effects can be achieved. Synthetic scenario simulations for typical settings of salt water formations in northern Germany are used to investigate the geochemical effects arising from a high temperature heat storage by quantifying changes in groundwater chemistry and overall reaction rates. This work presents the simulation approach used and results obtained for the synthetic scenarios. The model simulations show that locally in the direct vicinity of the borehole heat exchanger the flow field is changed, causing a ground water convergence and thus a mixing of water in the case of high temperatures. Also, geochemical reactions are induced due to shifting of temperature dependent mineral equilibria. Due to the moving groundwater, the changes are not reversible, and small impacts remain downstream of the borehole heat exchanger. However, the changes depend strongly on the mineral composition of the formation and the formation water present.

  5. In-situ shear stress indicator using heated strain gages at the flow boundary

    NASA Astrophysics Data System (ADS)

    Yeh, Chi-An; Yang, Fuling

    2011-11-01

    This work borrows the concept of hot-wire anemometry and sketch a technique that uses local heat transfer to infer the flow field and the corresponding stress. Conventional strain gages were mounted at the flow solid boundary as the heat source and acrylic boundary was chosen for its low thermal conductivity ensuring heat accumulation when a gage is energized. The gage would now work in slightly overheated state and its self-heating leads to an additional thermal strain. When exposed to a flow field, heat is brought away by local forced convection, resulting in deviations in gage signal from that developed in quiescent liquid. We have developed a facility to achieve synchronous gage measurements at different locations on a solid boundary. Three steady flow motions were considered: circular Couette flow, rectilinear uniform flow, and rectilinear oscillating flow. Preliminary tests show the gage reading does respond to the imposed flow through thermal effects and greater deviation was measured in flows of higher shear strain rates. The correlation between the gage signals and the imposed flow field is further examined by theoretical analysis. We also introduced a second solid boundary to the vicinity of the gage in the two rectilinear flows. The gage readings demonstrate rises in its magnitudes indicating wall amplification effect on the local shear strain, agreeing to the drag augmentation by a second solid boundary reported in many multiphase flow literatures.

  6. BLIMPK/Streamline Surface Catalytic Heating Predictions on the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Marichalar, Jeremiah J.; Rochelle, William C.; Kirk, Benjamin S.; Campbell, Charles H.

    2006-01-01

    This paper describes the results of an analysis of localized catalytic heating effects to the U.S. Space Shuttle Orbiter Thermal Protection System (TPS). The analysis applies to the High-temperature Reusable Surface Insulation (HRSI) on the lower fuselage and wing acreage, as well as the critical Reinforced Carbon-Carbon on the nose cap, chin panel and the wing leading edge. The object of the analysis was to use a modified two-layer approach to predict the catalytic heating effects on the Orbiter windward HRSI tile acreage, nose cap, and wing leading edge assuming localized highly catalytic or fully catalytic surfaces. The method incorporated the Boundary Layer Integral Matrix Procedure Kinetic (BLIMPK) code with streamline inputs from viscous Navier-Stokes solutions to produce heating rates for localized fully catalytic and highly catalytic surfaces as well as for nominal partially catalytic surfaces (either Reinforced Carbon-Carbon or Reaction Cured Glass) with temperature-dependent recombination coefficients. The highly catalytic heating results showed very good correlation with Orbiter Experiments STS-2, -3, and -5 centerline and STS-5 wing flight data for the HRSI tiles. Recommended catalytic heating factors were generated for use in future Shuttle missions in the event of quick-time analysis of damaged or repaired TPS areas during atmospheric reentry. The catalytic factors are presented along the streamlines as well as a function of stagnation enthalpy so they can be used for arbitrary trajectories.

  7. Coupling of an acoustic wave to shear motion due to viscous heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin; Goree, J.

    2016-07-15

    Viscous heating due to shear motion in a plasma can result in the excitation of a longitudinal acoustic wave, if the shear motion is modulated in time. The coupling mechanism is a thermal effect: time-dependent shear motion causes viscous heating, which leads to a rarefaction that can couple into a longitudinal wave, such as an acoustic wave. This coupling mechanism is demonstrated in an electrostatic three-dimensional (3D) simulation of a dusty plasma, in which a localized shear flow is initiated as a pulse, resulting in a delayed outward propagation of a longitudinal acoustic wave. This coupling effect can be profoundmore » in plasmas that exhibit localized viscous heating, such as the dusty plasma we simulated using parameters typical of the PK-4 experiment. We expect that a similar phenomenon can occur with other kinds of plasma waves.« less

  8. Whole-body heating decreases skin vascular response to low orthostatic stress in the lower extremities.

    PubMed

    Yamazaki, Fumio; Nakayama, Yoshiro; Sone, Ryoko

    2006-04-01

    To elucidate the influence of heat stress on cutaneous vascular response in the lower extremities during orthostatic stress, a head-up tilt (HUT) test at angles of 15 degrees, 30 degrees, 45 degrees, and 60 degrees for 4 min each was conducted under normothermic control conditions followed by whole-body heat stress produced by a hot water-perfused suit in healthy volunteers. Skin blood flows (SkBF) in the forearm, thigh, and calf were monitored using laser-Doppler flowmetry throughout the experiment. Furthermore, to elucidate the effects of increased core and local skin temperatures on the local vascular response in calf skin under increasing orthostatic stress, the thigh was occluded at 20, 30, 50, 70, and 80 mmHg with a cuff in both the normothermic condition and the whole-body or local heating condition. Significant decreases in forearm SkBF during HUT were observed at an angle of 60 degrees during normothermia and at 30 degrees or more during heating. SkBF in the thigh and calf was decreased significantly by HUT at 15 degrees and above during normothermia, and there was no significant reduction of SkBF in these sites during HUT at the lower angles (15 degrees -45 degrees ) during whole-body heating. Significant decreases of calf SkBF were observed at cuff pressures of 20 mmHg and above during normothermia and of 30 mmHg and above during whole-body and local heating, respectively. These results suggest that SkBF in the lower extremities shows a marked reduction compared with the upper extremities during low orthostatic stress in normothermia, and the enhanced skin vasoconstrictor response in the lower extremities is diminished by both whole-body and local heat stress.

  9. Boron-doped nanodiamonds as possible agents for local hyperthermia

    NASA Astrophysics Data System (ADS)

    Vervald, A. M.; Burikov, S. A.; Vlasov, I. I.; Ekimov, E. A.; Shenderova, O. A.; Dolenko, T. A.

    2017-04-01

    In this work, the effective heating of surrounding water by heavily-boron-doped nanodiamonds (NDs) under laser irradiation of visible wavelength was found. Using Raman scattering spectroscopy of aqueous suspensions of boron-doped NDs, it was found that this abnormally high heating results in the weakening of hydrogen bonds much more so (2-5 times stronger) than for undoped NDs. The property of boron-doped NDs to heat a solvent under the influence of laser radiation (1-5 W cm-2) opens broad prospects for their use to create nanoagents for medical oncology and local hyperthermia.

  10. The effect of near-surface heating on the underlying convection pattern with application to Enceladus

    NASA Astrophysics Data System (ADS)

    Roberts, J. H.; Nimmo, F.

    2007-12-01

    Rapid strike-slip motion is predicted to be a consequence of diurnal tidal stresses in most satellites of the outer solar system with short orbital timescales [1]. Such motion can lead to near-surface heating through friction or viscous dissipation [2]. Here we discuss the effect of near-surface shear heating on convection in the underlying ice shells of icy satellites [3], with a focus on Enceladus and a possible origin of the south polar thermal anomaly [4]. We present models of convection in spherical ice shells including both spatially variable volumetric tidal heating [5] and regional shear heating localized in the top 5 km at either the pole or the equator. We observe that the presence of the near-surface heating strongly controls the convective pattern, increasing the wavelength, and promoting the formation of a hot upwelling beneath the shear zone. Our results suggest that localized near- surface heating may result in a degree-1 convective planform in an ice shell of a thickness that may be appropriate for a differentiated Enceladus (d < 0.36 Rsat). The near-surface heating and convection pattern will produce a localized heat flow anomaly. The upwelling beneath the shear zone also produces a few hundred meters of long-wavelength dynamic topography. The ℓ=2 component of the topography may cause reorientation of the satellite [6]. [1] Hoppa, G., B. R. Tufts, R. Greenberg, and P. Geissler, Icarus, 141, 287-298, 1999. [2] Nimmo, F., E. Gaidos, JGR, 107, 5021, 2002. [3] Han, L., A. P. Showman, LPSC XXXVIII, #2277, 2007. [4] Spencer, J. R., et al., Science, 311, 1401-1405. [5] Tobie, G., A. Mocquet, C. Sotin, Icarus, 177 534-549. [6] Nimmo, F., R. T. Pappalardo, Nature, 441, 614-616.

  11. Evaluation of CFD Turbulent Heating Prediction Techniques and Comparison With Hypersonic Experimental Data

    NASA Technical Reports Server (NTRS)

    Dilley, Arthur D.; McClinton, Charles R. (Technical Monitor)

    2001-01-01

    Results from a study to assess the accuracy of turbulent heating and skin friction prediction techniques for hypersonic applications are presented. The study uses the original and a modified Baldwin-Lomax turbulence model with a space marching code. Grid converged turbulent predictions using the wall damping formulation (original model) and local damping formulation (modified model) are compared with experimental data for several flat plates. The wall damping and local damping results are similar for hot wall conditions, but differ significantly for cold walls, i.e., T(sub w) / T(sub t) < 0.3, with the wall damping heating and skin friction 10-30% above the local damping results. Furthermore, the local damping predictions have reasonable or good agreement with the experimental heating data for all cases. The impact of the two formulations on the van Driest damping function and the turbulent eddy viscosity distribution for a cold wall case indicate the importance of including temperature gradient effects. Grid requirements for accurate turbulent heating predictions are also studied. These results indicate that a cell Reynolds number of 1 is required for grid converged heating predictions, but coarser grids with a y(sup +) less than 2 are adequate for design of hypersonic vehicles. Based on the results of this study, it is recommended that the local damping formulation be used with the Baldwin-Lomax and Cebeci-Smith turbulence models in design and analysis of Hyper-X and future hypersonic vehicles.

  12. Miniature Microwave Applicator for Murine Bladder Hyperthermia Studies

    PubMed Central

    Salahi, Sara; Maccarini, Paolo F.; Rodrigues, Dario B.; Etienne, Wiguins; Landon, Chelsea D.; Inman, Brant A.; Dewhirst, Mark W.; Stauffer, Paul R.

    2012-01-01

    Purpose Novel combinations of heat with chemotherapeutic agents are often studied in murine tumor models. Currently, no device exists to selectively heat small tumors at depth in mice. In this project, we modelled, built and tested a miniature microwave heat applicator, the physical dimensions of which can be scaled to adjust the volume and depth of heating to focus on the tumor volume. Of particular interest is a device that can selectively heat murine bladder. Materials and Methods Using Avizo® segmentation software, we created a numerical mouse model based on micro-MRI scan data. The model was imported into HFSS™ simulation software and parametric studies were performed to optimize the dimensions of a water-loaded circular waveguide for selective power deposition inside a 0.15ml bladder. A working prototype was constructed operating at 2.45GHz. Heating performance was characterized by mapping fiber-optic temperature sensors along catheters inserted at depths of 0-1mm (subcutaneous), 2-3mm (vaginal), and 4-5mm (rectal) below the abdominal wall, with the mid-depth catheter adjacent to the bladder. Core temperature was monitored orally. Results Thermal measurements confirm the simulations which demonstrate that this applicator can provide local heating at depth in small animals. Measured temperatures in murine pelvis show well-localized bladder heating to 42-43°C while maintaining normothermic skin and core temperatures. Conclusions Simulation techniques facilitate the design optimization of microwave antennas for use in pre-clinical applications such as localized tumor heating in small animals. Laboratory measurements demonstrate the effectiveness of a new miniature water-coupled microwave applicator for localized heating of murine bladder. PMID:22690856

  13. A Transport Model for Non-Local Heating of Electrons in ICP Reactors

    NASA Technical Reports Server (NTRS)

    Chang, C. H.; Bose, Deepak; Arnold, James O. (Technical Monitor)

    1998-01-01

    A new model has been developed for non-local heating of electrons in ICP reactors, based on a hydrodynamic approach. The model has been derived using the electron momentum conservation in azimuthal direction with electromagnetic and frictional forces respectively as driving force and damper of harmonic oscillatory motion of electrons. The resulting transport equations include the convection of azimuthal electron momentum in radial and axial directions, thereby accounting for the non-local effects. The azimuthal velocity of electrons and the resulting electrical current are coupled to the Maxwell's relations, thus forming a self-consistent model for non-local heating. This model is being implemented along with a set of Navier-Stokes equations for plasma dynamics and gas flow to simulate low-pressure (few mTorr's) ICP discharges. Characteristics of nitrogen plasma in a TCP 300mm etch reactor is being studied. The results will be compared against the available Langmuir probe measurements.

  14. An experimental and numerical study of endwall heat transfer in a turbine blade cascade including tangential heat conduction analysis

    NASA Astrophysics Data System (ADS)

    Ratto, Luca; Satta, Francesca; Tanda, Giovanni

    2018-06-01

    This paper presents an experimental and numerical investigation of heat transfer in the endwall region of a large scale turbine cascade. The steady-state liquid crystal technique has been used to obtain the map of the heat transfer coefficient for a constant heat flux boundary condition. In the presence of two- and three-dimensional flows with significant spatial variations of the heat transfer coefficient, tangential heat conduction could lead to error in the heat transfer coefficient determination, since local heat fluxes at the wall-to-fluid interface tend to differ from point to point and surface temperatures to be smoothed out, thus making the uniform-heat-flux boundary condition difficult to be perfectly achieved. For this reason, numerical simulations of flow and heat transfer in the cascade including the effect of tangential heat conduction inside the endwall have been performed. The major objective of numerical simulations was to investigate the influence of wall heat conduction on the convective heat transfer coefficient determined during a nominal iso-flux heat transfer experiment and to interpret possible differences between numerical and experimental heat transfer results. Results were presented and discussed in terms of local Nusselt number and a convenient wall heat flux function for two values of the Reynolds number (270,000 and 960,000).

  15. Radiofrequency heating of nanomaterials for cancer treatment: Progress, controversies, and future development

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Chen, Hui-jiuan; Chen, Xiaodong; Alfadhl, Yasir; Yu, Junsheng; Wen, Dongsheng

    2015-03-01

    In recent years, the application of nanomaterials to biological and biomedicine areas has attracted intensive interest. One of the hot topics is the nanomaterial mediated radiofrequency (RF) hyperthermia or ablation, i.e., using RF fields/waves to heat tumor tissues treated with nanomaterials to destroy cancerous cells while minimizing the side-heating effect. However, there are currently many contradictive results reported concerning the heating effect of nanomaterials under a RF field. This paper provided a comprehensive review to nanomaterial mediated RF ablation from both experimental and theoretical aspects. Three heating mechanisms were discussed, i.e., laser heating, magnetic field heating, and electric field heating in RF spectrum, with the focus on the last one. The results showed that while diluted pure metallic nanoparticles could be heated significantly by a laser through the surface plasmon resonance, they cannot be easily heated by a RF electric field. Further studies are proposed focusing on nanoparticle structure and morphology, electromagnetic frequency and localized heating effect to pave the way for future development.

  16. The ‘Hothaps’ programme for assessing climate change impacts on occupational health and productivity: an invitation to carry out field studies

    PubMed Central

    Kjellstrom, Tord; Gabrysch, Sabine; Lemke, Bruno; Dear, Keith

    2009-01-01

    The ‘high occupational temperature health and productivity suppression’ programme (Hothaps) is a multi-centre health research and prevention programme aimed at quantifying the extent to which working people are affected by, or adapt to, heat exposure while working, and how global heating during climate change may increase such effects. The programme will produce essential new evidence for local, national and global assessment of negative impacts of climate change that have largely been overlooked. It will also identify and evaluate preventive interventions in different social and economic settings. Hothaps includes studies in any part of the world where hourly heat exposure exceeds physiological stress limits that may affect workers. This usually happens at temperatures above 25°C, depending on humidity, wind movement and heat radiation. Working people in low and middle-income tropical countries are particularly vulnerable, because many of them are involved in heavy physical work, either outdoors in strong sunlight or indoors without effective cooling. If high work intensity is maintained in workplaces with high heat exposure, serious health effects can occur, including heat stroke and death. Depending on the type of occupation, the required work intensity, and the level of heat stress, working people have to slow down their work in order to reduce internal body heat production and the risk of heat stroke. Thus, unless preventive interventions are used to reduce the heat stress on workers, their individual health and productivity will be affected and economic output per work hour will be reduced. Heat also influences other daily physical activities, unrelated to work, in all age groups. Poorer people without access to household or workplace cooling devices are most likely to be affected. The Hothaps programme includes a pilot study, heat monitoring of selected workplaces, qualitative studies of perceived heat impacts and preventative interventions, quantitative studies of impacts on health and productivity, and assessments of local impacts of climate change taking into account different applications of preventative interventions. Fundraising for the global programme is in progress and has enabled local field studies to start in 2009. Local funding support is also of great value and is being sought by several interested scientific partners. The Hothaps team welcomes independent use of the study protocols, but would be grateful for information about any planned, ongoing or completed studies of this type. Coordinated implementation of the protocols in multi-centre studies is also welcome. Eventually, the results of the Hothaps field studies will be used in global assessments of climate change-induced heat exposure increase in workplaces and its impacts on occupational health and productivity. These results will also be of value for the next assessment by the Intergovernmental Panel on Climate Change (IPCC) in 2013. PMID:20052425

  17. The 'Hothaps' programme for assessing climate change impacts on occupational health and productivity: an invitation to carry out field studies.

    PubMed

    Kjellstrom, Tord; Gabrysch, Sabine; Lemke, Bruno; Dear, Keith

    2009-11-11

    The 'high occupational temperature health and productivity suppression' programme (Hothaps) is a multi-centre health research and prevention programme aimed at quantifying the extent to which working people are affected by, or adapt to, heat exposure while working, and how global heating during climate change may increase such effects. The programme will produce essential new evidence for local, national and global assessment of negative impacts of climate change that have largely been overlooked. It will also identify and evaluate preventive interventions in different social and economic settings.Hothaps includes studies in any part of the world where hourly heat exposure exceeds physiological stress limits that may affect workers. This usually happens at temperatures above 25 degrees C, depending on humidity, wind movement and heat radiation. Working people in low and middle-income tropical countries are particularly vulnerable, because many of them are involved in heavy physical work, either outdoors in strong sunlight or indoors without effective cooling. If high work intensity is maintained in workplaces with high heat exposure, serious health effects can occur, including heat stroke and death.Depending on the type of occupation, the required work intensity, and the level of heat stress, working people have to slow down their work in order to reduce internal body heat production and the risk of heat stroke. Thus, unless preventive interventions are used to reduce the heat stress on workers, their individual health and productivity will be affected and economic output per work hour will be reduced. Heat also influences other daily physical activities, unrelated to work, in all age groups. Poorer people without access to household or workplace cooling devices are most likely to be affected.The Hothaps programme includes a pilot study, heat monitoring of selected workplaces, qualitative studies of perceived heat impacts and preventative interventions, quantitative studies of impacts on health and productivity, and assessments of local impacts of climate change taking into account different applications of preventative interventions.Fundraising for the global programme is in progress and has enabled local field studies to start in 2009. Local funding support is also of great value and is being sought by several interested scientific partners. The Hothaps team welcomes independent use of the study protocols, but would be grateful for information about any planned, ongoing or completed studies of this type. Coordinated implementation of the protocols in multi-centre studies is also welcome. Eventually, the results of the Hothaps field studies will be used in global assessments of climate change-induced heat exposure increase in workplaces and its impacts on occupational health and productivity. These results will also be of value for the next assessment by the Intergovernmental Panel on Climate Change (IPCC) in 2013.

  18. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D.; Turknett, Jerry C.; Smith, Alvin

    1989-01-01

    The effects of enhancement devices on flow boiling heat transfer in circular coolant channels, which are heated over a fraction of their perimeters, are studied. The variations were examined in both the mean and local (axial, and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls. Improvements were initiated in the present data reduction analysis. These efforts should lead to the development of heat transfer correlations which include effects of single side heat flux and enhancement device configuration. It is hoped that a stage will be set for the study of heat transfer and pressure drop in single sided heated systems under zero gravity conditions.

  19. Photothermal effect of gold nanostars inkjet-printed on coated paper substrate under near-infrared irradiation

    NASA Astrophysics Data System (ADS)

    Borzenkov, Mykola; Chirico, Giuseppe; Collini, Maddalena; Määttänen, Anni; Ihalainen, Petri; Cabrini, Elisa; Dacarro, Giacomo; Pallavicini, Piersandro

    2016-04-01

    The research and development of personalized medical treatments is increasing steadily fostered by its large societal impact. The ability of non-spherical gold nanoparticles to locally and efficiently release heat when irradiated in Near Infrared (NIR) wavelength region is a promising tool for photothermal medical therapies. In the present work, stable inks containing PEGylated gold nanostars (GNS) were obtained and inkjet-printed on a pigment coated paper substrate. Significant photothermal effect of the printed patterns was observed under Near Infrared (NIR) excitation of the Localized Surface Plasmon Resonance (LSPR) of the GNS. These preliminary results support, in perspective, the application of printed GNS patterns for thermal medical treatments either by direct localized heating, or by temperature triggered drug release.

  20. The effect of free-stream turbulence on heat transfer from a flat plate

    NASA Technical Reports Server (NTRS)

    Sugawara, Sugao; Sato, Takashi; Komatsu, Hiroyasu; Osaka, Hiroichi

    1958-01-01

    Turbulence was generated by using screens, and the turbulence percentage was measured by a hot-wire anemometer both in the boundary layer and the free stream. The local heat-transfer coefficient was measured at 12 locations along the plate for the cases of various turbulence levels. The transition Reynolds number from laminar to turbulent flow decreases as the main-stream turbulence level increases. In the range of laminar heat transfer the effect of turbulence in the main flow was not great, but in the range of turbulent heat transfer the heat-transfer coefficient increases according to the increase of turbulence.

  1. Role of thermal heating on the voltage induced insulator-metal transition in VO2.

    PubMed

    Zimmers, A; Aigouy, L; Mortier, M; Sharoni, A; Wang, Siming; West, K G; Ramirez, J G; Schuller, Ivan K

    2013-02-01

    We show that the main mechanism for the dc voltage or dc current induced insulator-metal transition in vanadium dioxide VO(2) is due to local Joule heating and not a purely electronic effect. This "tour de force" experiment was accomplished by using the fluorescence spectra of rare-earth doped micron sized particles as local temperature sensors. As the insulator-metal transition is induced by a dc voltage or dc current, the local temperature reaches the transition temperature indicating that Joule heating plays a predominant role. This has critical implications for the understanding of the dc voltage or dc current induced insulator-metal transition and has a direct impact on applications which use dc voltage or dc current to externally drive the transition.

  2. Using Forecast and Observed Weather Data to Assess Performance of Forecast Products in Identifying Heat Waves and Estimating Heat Wave Effects on Mortality

    PubMed Central

    Chen, Yeh-Hsin; Schwartz, Joel D.; Rood, Richard B.; O’Neill, Marie S.

    2014-01-01

    Background: Heat wave and health warning systems are activated based on forecasts of health-threatening hot weather. Objective: We estimated heat–mortality associations based on forecast and observed weather data in Detroit, Michigan, and compared the accuracy of forecast products for predicting heat waves. Methods: We derived and compared apparent temperature (AT) and heat wave days (with heat waves defined as ≥ 2 days of daily mean AT ≥ 95th percentile of warm-season average) from weather observations and six different forecast products. We used Poisson regression with and without adjustment for ozone and/or PM10 (particulate matter with aerodynamic diameter ≤ 10 μm) to estimate and compare associations of daily all-cause mortality with observed and predicted AT and heat wave days. Results: The 1-day-ahead forecast of a local operational product, Revised Digital Forecast, had about half the number of false positives compared with all other forecasts. On average, controlling for heat waves, days with observed AT = 25.3°C were associated with 3.5% higher mortality (95% CI: –1.6, 8.8%) than days with AT = 8.5°C. Observed heat wave days were associated with 6.2% higher mortality (95% CI: –0.4, 13.2%) than non–heat wave days. The accuracy of predictions varied, but associations between mortality and forecast heat generally tended to overestimate heat effects, whereas associations with forecast heat waves tended to underestimate heat wave effects, relative to associations based on observed weather metrics. Conclusions: Our findings suggest that incorporating knowledge of local conditions may improve the accuracy of predictions used to activate heat wave and health warning systems. Citation: Zhang K, Chen YH, Schwartz JD, Rood RB, O’Neill MS. 2014. Using forecast and observed weather data to assess performance of forecast products in identifying heat waves and estimating heat wave effects on mortality. Environ Health Perspect 122:912–918; http://dx.doi.org/10.1289/ehp.1306858 PMID:24833618

  3. Microscale Heat Conduction Models and Doppler Feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawari, Ayman I.; Ougouag, Abderrafi

    2015-01-22

    The objective of this project is to establish an approach for providing the fundamental input that is needed to estimate the magnitude and time-dependence of the Doppler feedback mechanism in Very High Temperature reactors. This mechanism is the foremost contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic (TRISO) coated particles. Therefore, its correct prediction is essential to the conduct of safety analyses for these reactors. Since the effect is directly dependent on the actual temperature reached by the fuel during transients, the underlying phenomena of heat deposition, heat transfer and temperaturemore » rise must be correctly predicted. To achieve the above objective, this project will explore an approach that accounts for lattice effects as well as local temperature variations and the correct definition of temperature and related local effects.« less

  4. HEATING OF THE WARM IONIZED MEDIUM BY LOW-ENERGY COSMIC RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Mark A., E-mail: Mark.Walker@manlyastrophysics.org

    2016-02-10

    In light of evidence for a high ionization rate due to low-energy cosmic rays (LECR) in diffuse molecular gas in the solar neighborhood, we evaluate their heat input to the warm ionized medium (WIM). LECR are much more effective at heating plasma than they are at heating neutrals. We show that the upper end of the measured ionization rates corresponds to a local LECR heating rate sufficient to maintain the WIM against radiative cooling, independent of the nature of the ionizing particles or the detailed shape of their spectrum. Elsewhere in the Galaxy the LECR heating rates may be highermore » than those measured locally. In particular, higher fluxes of LECR have been suggested for the inner Galactic disk, based on the observed hard X-ray emission, with correspondingly larger heating rates implied for the WIM. We conclude that LECR play an important and perhaps dominant role in the thermal balance of the WIM.« less

  5. Heat and mass transfer and hydrodynamics in swirling flows (review)

    NASA Astrophysics Data System (ADS)

    Leont'ev, A. I.; Kuzma-Kichta, Yu. A.; Popov, I. A.

    2017-02-01

    Research results of Russian and foreign scientists of heat and mass transfer in whirling flows, swirling effect, superficial vortex generators, thermodynamics and hydrodynamics at micro- and nanoscales, burning at swirl of the flow, and technologies and apparatuses with the use of whirling currents for industry and power generation were presented and discussed at the "Heat and Mass Transfer in Whirling Currents" 5th International Conference. The choice of rational forms of the equipment flow parts when using whirling and swirling flows to increase efficiency of the heat-power equipment and of flow regimes and burning on the basis of deep study of the flow and heat transfer local parameters was set as the main research prospect. In this regard, there is noticeable progress in research methods of whirling and swirling flows. The number of computational treatments of swirling flows' local parameters has been increased. Development and advancement of the up to date computing models and national productivity software are very important for this process. All experimental works are carried out with up to date research methods of the local thermoshydraulic parameters, which enable one to reveal physical mechanisms of processes: PIV and LIV visualization techniques, high-speed and infrared photography, high speed registration of parameters of high-speed processes, etc. There is a problem of improvement of researchers' professional skills in the field of fluid mechanics to set adequately mathematics and physics problems of aerohydrodynamics for whirling and swirling flows and numerical and pilot investigations. It has been pointed out that issues of improvement of the cooling system and thermal protection effectiveness of heat-power and heat-transfer equipment units are still actual. It can be solved successfully using whirling and swirling flows as simple low power consumption exposing on the flow method and heat transfer augmentation.

  6. On the possibility of control restoration in some inverse problems of heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Bilchenko, G. G.; Bilchenko, N. G.

    2016-11-01

    The hypersonic aircraft permeable surfaces effective heat protection problems are considered. The physic-chemical processes (the dissociation and the ionization) in laminar boundary layer of compressible gas are appreciated in mathematical model. The statements of direct problems of heat and mass transfer are given: according to preset given controls it is necessary to compute the boundary layer mathematical model parameters and determinate the local and total heat flows and friction forces and the power of blowing system. The A.A.Dorodnicyn's generalized integral relations method has been used as calculation basis. The optimal control - the blowing into boundary layer (for continuous functions) was constructed as the solution of direct problem in extreme statement with the use of this approach. The statement of inverse problems are given: the control laws ensuring the preset given local heat flow and local tangent friction are restored. The differences between the interpolation and the approximation statements are discussed. The possibility of unique control restoration is established and proved (in the stagnation point). The computational experiments results are presented.

  7. A Numerical Analysis on a Compact Heat Exchanger in Aluminum Foam

    NASA Astrophysics Data System (ADS)

    Buonomo, B.; Ercole, D.; Manca, O.; Nardini, S.

    2016-09-01

    A numerical investigation on a compact heat exchanger in aluminum foam is carried out. The governing equations in two-dimensional steady state regime are written in local thermal non-equilibrium (LTNE). The geometrical domain under investigation is made up of a plate in aluminum foam with inside a single array of five circular tubes. The presence of the open-celled metal foam is modeled as a porous media by means of the Darcy-Forchheimer law. The foam has a porosity of 0.93 with 20 pores per inch and the LTNE assumption is used to simulate the heat transfer between metal foam and air. The compact heat exchanger at different air flow rates is studied with an assigned surface tube temperature. The results in terms of local heat transfer coefficient and Nusselt number on the external surface of the tubes are given. Moreover, local air temperature and velocity profiles in the smaller cross section, between two consecutive tubes, as a function of Reynolds number are showed. The performance evaluation criteria (PEC) is assessed in order to evaluate the effectiveness of the metal foam.

  8. Ionospheric Modification from Under-Dense Heating by High-Power HF Transmitter

    DTIC Science & Technology

    2011-03-03

    Auroral Research Program ( HAARP ) is a HF transmitter, which delivers 0.36 to 3.6 GW effective isotropic radiated powers (F.IRP) for the radiation...dense heating, the EIRP of the HAARP heater can be increased significantly by increasing the heater frequency. With higher heater frequency, the loss...1304 local time) and on 13 April from 0812 to 0844 UTC (0012 to 0044 local time), using the HAARP transmitter facility at Gakona, AK, at full power

  9. Ecological solid fuels, effective heating devices for communal management and their testing methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubica, K.

    1995-12-31

    The national balance of primary energy consumption is almost 90% based upon coal. Coal is used not only in electricity production, but also in the communal sector - in heating facilities comprising chiefly local boiler houses and private households.

  10. The Effect of Being Aerobically Active vs. Inactive on Cutaneous Vascular Conductance during Local Heat Stress in an Older Population.

    PubMed

    Mitchell, Ulrike H; Burton, Samantha; Gordon, Christopher; Mack, Gary W

    2017-01-01

    Objective: To test the hypothesis that long- term aerobically trained elderly individuals have a greater amount of bioavailable nitric oxide (NO) and have a larger cutaneous vasodilation during local heat stress compared to their inactive elderly counterparts. Methods: Eight aerobically trained and 8 inactive older men (>60 years old) participated in this study. NO bioavailability in blood and intradermal dialysate were measured with an ozone based chemiluminescence NO analyzer. Cutaneous vasodilator response to local heating was obtained using laser Doppler velocimetry. Results: Whole blood NO were similar in older- trained and inactive subjects (0.75 ± 0.56 and 0.38 ± 0.32 μM, respectively; Mann-Whitney, p = 0.153), as was intradermal dialysate NO before (7.82 ± 6.32 and 4.18 ± 1.89 μM, respectively) and after local heating (7.16 ± 6.27 and 5.88 ± 3.97 μM, respectively, p = 0.354). The cutaneous vasodilator response of the older- inactive group was smaller than the older- trained group [Group-Time interaction, F (24, 264) = 12.0, p < 0.0001]. When compared to a young group the peak vasodilator response of the older- trained subjects was similar. However, the time to initial dilation was 3.1 and 2.2 times longer ( p < 0.05) in older- inactive and older- trained subjects, respectively, compared to young subjects. Conclusions: Our data support the hypothesis that the age-related reductions in cutaneous vasodilation can possibly be restored by maintaining an aerobic training regimen (at least 3 years). However, some residual effects of aging remain, specifically a delayed cutaneous vasodilator response to local heating is still present in active older adults. We found no evidence for an increase in systemic or local NO-bioavailability with an extended commitment to aerobic fitness.

  11. Momentum transport and non-local transport in heat-flux-driven magnetic reconnection in HEDP

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Fox, Will; Bhattacharjee, Amitava

    2016-10-01

    Strong magnetic fields are readily generated in high-energy-density plasmas and can affect the heat confinement properties of the plasma. Magnetic reconnection can in turn be important as an inverse process, which destroys or reconfigures the magnetic field. Recent theory has demonstrated a novel physics regime for reconnection in high-energy-density plasmas where the magnetic field is advected into the reconnection layer by plasma heat flux via the Nernst effect. In this work we elucidate the physics of the electron dissipation layer in this heat-flux-driven regime. Through fully kinetic simulation and a new generalized Ohm's law, we show that momentum transport due to the heat-flux-viscosity effect provides the dissipation mechanism to allow magnetic field line reconnection. Scaling analysis and simulations show that the characteristic width of the current sheet in this regime is several electron mean-free-paths. These results additionally show a coupling between non-local transport and momentum transport, which in turn affects the dynamics of the magnetic field. This work was supported by the U.S. Department of Energy under Contract No. DE-SC0008655.

  12. Viscous dissipation and Joule heating effects in MHD 3D flow with heat and mass fluxes

    NASA Astrophysics Data System (ADS)

    Muhammad, Taseer; Hayat, Tasawar; Shehzad, Sabir Ali; Alsaedi, Ahmed

    2018-03-01

    The present research explores the three-dimensional stretched flow of viscous fluid in the presence of prescribed heat (PHF) and concentration (PCF) fluxes. Mathematical formulation is developed in the presence of chemical reaction, viscous dissipation and Joule heating effects. Fluid is electrically conducting in the presence of an applied magnetic field. Appropriate transformations yield the nonlinear ordinary differential systems. The resulting nonlinear system has been solved. Graphs are plotted to examine the impacts of physical parameters on the temperature and concentration distributions. Skin friction coefficients and local Nusselt and Sherwood numbers are computed and analyzed.

  13. Local probing of thermal energy transfer and conversion processes in VO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Menges, Fabian

    Nanostructures of strongly correlated materials, such as metal-insulator transition (MIT) oxides, enable unusual coupling of charge and heat transport. Hence, they provide an interesting pathway to the development of non-linear thermal devices for active heat flux control. Here, we will report the characterization of local thermal non-equilibrium processes in vanadium dioxide (VO2) thin films and single-crystalline nanobeams. Using a scanning thermal microscope and calorimetric MEMS platforms, we studied the MIT triggered by electrical currents, electrical fields, near-field thermal radiation and thermal conduction. Based on out recently introduced scanning probe thermometry method, which enables direct imaging of local Joule and Peltier effects, we quantified self-heating processes in VO2 memristors using the tip of a resistively heated scanning probe both as local sensor and nanoscopic heat source. Finally, we will report on recent approaches to build radiative thermal switches and oscillators using VO2 nanostructures. We quantified variations of near-field radiative thermal transport between silicon dioxide and VO2 down to nanoscopic gap sizes, and will discuss its implications for the development of phonon polariton based radiative thermal devices. Funding of the Swiss Federal Office of Energy under Grant Agreement No. SI/501093-01 is gratefully acknowledged.

  14. Assessing complexity of skin blood flow oscillations in response to locally applied heating and pressure in rats: Implications for pressure ulcer risk

    NASA Astrophysics Data System (ADS)

    Liao, Fuyuan; O'Brien, William D.; Jan, Yih-Kuen

    2013-10-01

    The objective of this study was to investigate the effects of local heating on the complexity of skin blood flow oscillations (BFO) under prolonged surface pressure in rats. Eleven Sprague-Dawley rats were studied: 7 rats underwent surface pressure with local heating (△t=10 °C) and 4 rats underwent pressure without heating. A pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin blood flow was measured using laser Doppler flowmetry. The loading period was divided into nonoverlapping 30 min epochs. For each epoch, multifractal detrended fluctuation analysis (MDFA) was utilized to compute DFA coefficients and complexity of endothelial related metabolic, neurogenic, and myogenic frequencies of BFO. The results showed that under surface pressure, local heating led to a significant decrease in DFA coefficients of myogenic frequency during the initial epoch of loading period, a sustained decrease in complexity of myogenic frequency, and a significantly higher degree of complexity of metabolic frequency during the later phase of loading period. Surrogate tests showed that the reduction in complexity of myogenic frequency was associated with a loss of nonlinearity whereas increased complexity of metabolic frequency was associated with enhanced nonlinearity. Our results indicate that increased metabolic activity and decreased myogenic response due to local heating manifest themselves not only in magnitudes of metabolic and myogenic frequencies but also in their structural complexity. This study demonstrates the feasibility of using complexity analysis of BFO to monitor the ischemic status of weight-bearing skin and risk of pressure ulcers.

  15. Conjugate Heat Transfer Study in Hypersonic Flows

    NASA Astrophysics Data System (ADS)

    Sahoo, Niranjan; Kulkarni, Vinayak; Peetala, Ravi Kumar

    2018-04-01

    Coupled and decoupled conjugate heat transfer (CHT) studies are carried out to imitate experimental studies for heat transfer measurement in hypersonic flow regime. The finite volume based solvers are used for analyzing the heat interaction between fluid and solid domains. Temperature and surface heat flux signals are predicted by both coupled and decoupled CHT analysis techniques for hypersonic Mach numbers. These two methodologies are also used to study the effect of different wall materials on surface parameters. Effectiveness of these CHT solvers has been verified for the inverse problem of wall heat flux recovery using various techniques reported in the literature. Both coupled and decoupled CHT techniques are seen to be equally useful for prediction of local temperature and heat flux signals prior to the experiments in hypersonic flows.

  16. Localized, plasmon-mediated heating from embedded nanoparticles in nanocomposites

    NASA Astrophysics Data System (ADS)

    Maity, Somsubhra; Downen, Lori; Bochinski, Jason; Clarke, Laura

    2010-03-01

    Metallic nanoparticles exhibit a surface plasmon resonance which, when excited with visible light, results in a dramatic increase in the nanoparticle temperature. Previously such localized heating has been primarily employed in biomedical research and other experiments involving aqueous environments. In this work, we investigated use of the nanoparticles in solid phase to re-shape, bond, melt, and otherwise process nanofibrous mats of ˜200 nm diameter nanofibers doped with ˜80 nm spherical gold nanoparticles. Under low light intensities (100 mW/cm^2 @ 532 nm) and dilute nanoparticle loading (˜0.15% volume fraction), irradiation of a few minutes melted nanofibrous mats of poly (ethylene oxide) (Tm = 65 degree C). Control samples without gold nanoparticles displayed no melting. Because the heat is generated from within the material and only at the nanoparticle locations, this technique enables true nanoprocessing -- the non-contact, controlled application of heat at specific nano-sized locations within a material to effect desired local changes. Funded by CMMI-0829379.

  17. A laser-induced heat flux technique for convective heat transfer measurements in high speed flows

    NASA Technical Reports Server (NTRS)

    Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high speed flow fields.

  18. A laser-induced heat flux technique for convective heat transfer measurements in high speed flows

    NASA Technical Reports Server (NTRS)

    Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high-speed flowfields.

  19. Impact of extreme high temperature on mortality and regional level definition of heat wave: a multi-city study in China.

    PubMed

    Gao, Jinghong; Sun, Yunzong; Liu, Qiyong; Zhou, Maigeng; Lu, Yaogui; Li, Liping

    2015-02-01

    Few multi-city studies have been conducted to explore the regional level definition of heat wave and examine the association between extreme high temperature and mortality in developing countries. The purpose of the present study was to investigate the impact of extreme high temperature on mortality and to explore the local definition of heat wave in five Chinese cities. We first used a distributed lag non-linear model to characterize the effects of daily mean temperature on non-accidental mortality. We then employed a generalized additive model to explore the city-specific definition of heat wave. Finally, we performed a comparative analysis to evaluate the effectiveness of the definition. For each city, we found a positive non-linear association between extreme high temperature and mortality, with the highest effects appearing within 3 days of extreme heat event onset. Specifically, we defined individual heat waves of Beijing and Tianjin as being two or more consecutive days with daily mean temperatures exceeding 30.2 °C and 29.5 °C, respectively, and Nanjing, Shanghai and Changsha heat waves as ≥3 consecutive days with daily mean temperatures higher than 32.9 °C, 32.3 °C and 34.5 °C, respectively. Comparative analysis generally supported the definition. We found extreme high temperatures were associated with increased mortality, after a short lag period, when temperatures exceeded obvious threshold levels. The city-specific definition of heat wave developed in our study may provide guidance for the establishment and implementation of early heat-health response systems for local government to deal with the projected negative health outcomes due to heat waves. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Surface Temperature Prediction of a Bridge for Tactical Decision Aide Modelling

    DTIC Science & Technology

    1988-01-01

    Roadway And Piling Surface Temperature Predictions (No Radiosity Incident on Lower Surface) Compared to Temperature Estimates...Heat gained from water = Heat lost by long wave radiosity radiation. Algebraically, with the conduction term expressed in the same manner as for...5 10 15 20 LOCAL TIME (hrs.) Figure 8. Effect of No Radiosity Incident on Lower Surface. 37 U 8a M OT U% 60-- 0- o.. 20- 0- 1 T I I 5 10 15 20 LOCAL

  1. The Effect of Substrate Microstructure on the Heat-Affected Zone Size in Sn-Zn Alloys Due to Adjoining Ni-Al Reactive Multilayer Foil Reaction

    DOE PAGES

    Hooper, R. J.; Adams, D. P.; Hirschfeld, D.; ...

    2015-08-05

    The rapid release of energy from reactive multilayer foils can create extreme local temperature gradients near substrate materials. To fully exploit the potential of these materials, a better understanding of the interaction between the substrate or filler material and the foil is needed. In particular, this work investigates how variations in local properties within the substrate (i.e. differences between properties in constituent phases) can affect heat transport into the substrate. Furthermore, this can affect the microstructural evolution observed within the substrate, which may affect the final joint properties. The effect of the initial substrate microstructure on microstructural evolution within themore » heat-affected zone is evaluated experimentally in two Sn-Zn alloys and numerical techniques are utilized to inform the analysis.« less

  2. Heating, weakening and shear localization in earthquake rupture

    NASA Astrophysics Data System (ADS)

    Rice, James R.

    2017-08-01

    Field and borehole observations of active earthquake fault zones show that shear is often localized to principal deforming zones of order 0.1-10 mm width. This paper addresses how frictional heating in rapid slip weakens faults dramatically, relative to their static frictional strength, and promotes such intense localization. Pronounced weakening occurs even on dry rock-on-rock surfaces, due to flash heating effects, at slip rates above approximately 0.1 m s-1 (earthquake slip rates are typically of the order of 1 m s-1). But weakening in rapid shear is also predicted theoretically in thick fault gouge in the presence of fluids (whether native ground fluids or volatiles such as H2O or CO2 released by thermal decomposition reactions), and the predicted localizations are compatible with such narrow shear zones as have been observed. The underlying concepts show how fault zone materials with high static friction coefficients, approximately 0.6-0.8, can undergo strongly localized shear at effective dynamic friction coefficients of the order of 0.1, thus fitting observational constraints, e.g. of earthquakes producing negligible surface heat outflow and, for shallow events, only rarely creating extensive melt. The results to be summarized include those of collaborative research published with Nicolas Brantut (University College London), Eric Dunham (Stanford University), Nadia Lapusta (Caltech), Hiroyuki Noda (JAMSTEC, Japan), John D. Platt (Carnegie Institution for Science, now at *gramLabs), Alan Rempel (Oregon State University) and John W. Rudnicki (Northwestern University). This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'.

  3. Effect of the angle of attack of a rectangular wing on the heat transfer enhancement in channel flow at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Khanjian, Assadour; Habchi, Charbel; Russeil, Serge; Bougeard, Daniel; Lemenand, Thierry

    2018-05-01

    Convective heat transfer enhancement can be achieved by generating secondary flow structures that are added to the main flow to intensify the fluid exchange between hot and cold regions. One method involves the use of vortex generators to produce streamwise and transverse vortices superimposed to the main flow. This study presents numerical computation results of laminar convection heat transfer in a rectangular channel whose bottom wall is equipped with one row of rectangular wing vortex generators. The governing equations are solved using finite volume method by considering steady state, laminar regime and incompressible flow. Three-dimensional numerical simulations are performed to study the effect of the angle of attack α of the wing on heat transfer and pressure drop. Different values are taken into consideration within the range 0° < α < 30 °. For all of these geometrical configurations the Reynolds number is maintained to Re = 456 . To assess the effect of the angle of attack on the heat transfer enhancement, Nusselt number and the friction factor are studied on both local and global perspectives. Also, the location of the generated vortices within the channel is studied, as well as their effect on the heat transfer enhancement throughout the channel for all α values . Based on both local and global analysis, our results show that the angle of attack α has a direct impact on the heat transfer enhancement. By increasing its value, it leads to better enhancement until an optimal value is reached, beyond which the thermal performances decrease.

  4. Investigation of pitchfork bifurcation phenomena effects on heat transfer of viscoelastic flow inside a symmetric sudden expansion

    NASA Astrophysics Data System (ADS)

    Shahbani-Zahiri, A.; Hassanzadeh, H.; Shahmardan, M. M.; Norouzi, M.

    2017-11-01

    In this paper, the inertial and non-isothermal flows of the viscoelastic fluid through a planar channel with symmetric sudden expansion are numerically simulated. Effects of pitchfork bifurcation phenomena on the heat transfer rate are examined for the thermally developing and fully developed flow of the viscoelastic fluid inside the expanded part of the planar channel with an expansion ratio of 1:3. The rheological model of exponential Phan Thien-Tanner is used to include both the effects of shear-thinning and elasticity in fluid viscosity. The properties of fluids are temperature-dependent, and the viscous dissipation and heat stored by fluid elasticity are considered in the heat transfer equation. For coupling the governing equations, the PISO algorithm (Pressure Implicit with Splitting of Operator) is applied and the system of equations is linearized using the finite volume method on the collocated grids. The main purpose of this study is to examine the pitchfork bifurcation phenomena and its influences on the temperature distribution, the local and mean Nusselt numbers, and the first and second normal stress differences at different Reynolds, elasticity, and Brinkman numbers. The results show that by increasing the Brinkman number for the heated flow of the viscoelastic fluid inside the expanded part of the channel, the value of the mean Nusselt number is almost linearly decreased. Also, the maximum values of the local Nusselt number for the thermally developing flow and the local Nusselt number of the thermally fully developed flow are decremented by enhancing the Brinkman number.

  5. An improved algorithm for the modeling of vapor flow in heat pipes

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K.; Hainley, Donald C.

    1989-01-01

    A heat pipe vapor flow algorithm suitable for use in codes on microcomputers is presented. The incompressible heat pipe vapor flow studies of Busse are extended to incorporate compressibility effects. The Busse velocity profile factor is treated as a function of temperature and pressure. The assumption of a uniform saturated vapor temperature determined by the local pressure at each cross section of the pipe is not made. Instead, a mean vapor temperature, defined by an energy integral, is determined in the course of the solution in addition to the pressure, saturation temperature at the wall, and the Busse velocity profile factor. For alkali metal working fluids, local species equilibrium is assumed. Temperature and pressure profiles are presented for several cases involving sodium heat pipes. An example for a heat pipe with an adiabatic section and two evaporators in sequence illustrates the ability to handle axially varying heat input. A sonic limit plot for a short evaporator falls between curves for the Busse and Levy inviscid sonic limits.

  6. An improved algorithm for the modeling of vapor flow in heat pipes

    NASA Astrophysics Data System (ADS)

    Tower, Leonard K.; Hainley, Donald C.

    1989-12-01

    A heat pipe vapor flow algorithm suitable for use in codes on microcomputers is presented. The incompressible heat pipe vapor flow studies of Busse are extended to incorporate compressibility effects. The Busse velocity profile factor is treated as a function of temperature and pressure. The assumption of a uniform saturated vapor temperature determined by the local pressure at each cross section of the pipe is not made. Instead, a mean vapor temperature, defined by an energy integral, is determined in the course of the solution in addition to the pressure, saturation temperature at the wall, and the Busse velocity profile factor. For alkali metal working fluids, local species equilibrium is assumed. Temperature and pressure profiles are presented for several cases involving sodium heat pipes. An example for a heat pipe with an adiabatic section and two evaporators in sequence illustrates the ability to handle axially varying heat input. A sonic limit plot for a short evaporator falls between curves for the Busse and Levy inviscid sonic limits.

  7. Distinguishing between heating power and hyperthermic cell-treatment efficacy in magnetic fluid hyperthermia.

    PubMed

    Munoz-Menendez, Cristina; Conde-Leboran, Ivan; Serantes, David; Chantrell, Roy; Chubykalo-Fesenko, Oksana; Baldomir, Daniel

    2016-11-04

    In the magnetic fluid hyperthermia (MFH) research field, it is usually assumed that achieving a uniform temperature enhancement (ΔT) of the entire tumour is a key-point for treatment. However, various experimental works reported successful cell apoptosis via MFH without a noticeable ΔT of the system. A possible explanation of the success of these negligible-ΔT experiments is that a local ΔT restricted to the particle nanoenvironment (i.e. with no significant effect on the global temperature T) could be enough to trigger cell death. Shedding light on such a possibility requires accurate knowledge of heat dissipation at the local level in relation to the usually investigated global (average) one. Since size polydispersity is inherent to all synthesis techniques and the heat released is proportional to the particle size, heat dissipation spots with different performances - and thus different effects on the cells - will likely exist in every sample. In this work we aim for a double objective: (1) to emphasize the necessity to distinguish between the total dissipated heat and hyperthermia effectiveness, and (2) to suggest a theoretical approach on how to select, for a given size polydispersity, a more adequate average size so that most of the particles dissipate within a desired heating power range. The results are reported in terms of Fe 3 O 4 nanoparticles as a representative example.

  8. Effects of City Expansion on Heat Stress under Climate Change Conditions

    PubMed Central

    Argüeso, Daniel; Evans, Jason P.; Pitman, Andrew J.; Di Luca, Alejandro

    2015-01-01

    We examine the joint contribution of urban expansion and climate change on heat stress over the Sydney region. A Regional Climate Model was used to downscale present (1990–2009) and future (2040–2059) simulations from a Global Climate Model. The effects of urban surfaces on local temperature and vapor pressure were included. The role of urban expansion in modulating the climate change signal at local scales was investigated using a human heat-stress index combining temperature and vapor pressure. Urban expansion and climate change leads to increased risk of heat-stress conditions in the Sydney region, with substantially more frequent adverse conditions in urban areas. Impacts are particularly obvious in extreme values; daytime heat-stress impacts are more noticeable in the higher percentiles than in the mean values and the impact at night is more obvious in the lower percentiles than in the mean. Urban expansion enhances heat-stress increases due to climate change at night, but partly compensates its effects during the day. These differences are due to a stronger contribution from vapor pressure deficit during the day and from temperature increases during the night induced by urban surfaces. Our results highlight the inappropriateness of assessing human comfort determined using temperature changes alone and point to the likelihood that impacts of climate change assessed using models that lack urban surfaces probably underestimate future changes in terms of human comfort. PMID:25668390

  9. Localized Electron Heating by Strong Guide-Field Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Guo, Xuehan; Sugawara, Takumichi; Inomoto, Michiaki; Yamasaki, Kotaro; Ono, Yasushi; UTST Team

    2015-11-01

    Localized electron heating of magnetic reconnection was studied under strong guide-field (typically Bt 15Bp) using two merging spherical tokamak plasmas in Univ. Tokyo Spherical Tokamak (UTST) experiment. Our new slide-type two-dimensional Thomson scattering system documented for the first time the electron heating localized around the X-point. The region of high electron temperature, which is perpendicular to the magnetic field, was found to have a round shape with radius of 2 [cm]. Also, it was localized around the X-point and does not agree with that of energy dissipation term Et .jt . When we include a guide-field effect term Bt / (Bp + αBt) for Et .jt where α =√{ (vin2 +vout2) /v∥2 } , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus,'' a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  10. A transport model for non-local heating of electrons in ICP reactors

    NASA Astrophysics Data System (ADS)

    Chang, C. H.; Bose, Deepak

    1998-10-01

    A new model has been developed for non-local heating of electrons in ICP reactors, based on a hydrodynamic approach. The model has been derived using the electron momentum conservation in azimuthal direction with electromagnetic and frictional forces respectively as driving force and damper of harmonic oscillatory motion of electrons. The resulting transport equations include the convection of azimuthal electron momentum in radial and axial directions, thereby accounting for the non-local effects. The azimuthal velocity of electrons and the resulting electrical current are coupled to the Maxwell's relations, thus forming a self-consistent model for non-local heating. This model is being implemented along with a set of Navier-Stokes equations for plasma dynamics and gas flow to simulate low-pressure (few mTorr's) ICP discharges. Characteristics of nitrogen plasma in a TCP 300mm etch reactor is being studied. The results will be compared against the available Langmuir probe measurements [Collison et al. JVST-A 16(1),1998].

  11. Theory of unidirectional spin heat conveyer

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroto; Maekawa, Sadamichi

    2015-05-01

    We theoretically investigate the unidirectional spin heat conveyer effect recently reported in the literature that emerges from the Damon-Eshbach spin wave on the surface of a magnetic material. We develop a simple phenomenological theory for heat transfer dynamics in a coupled system of phonons and the Damon-Eshbach spin wave, and demonstrate that there arises a direction-selective heat flow as a result of the competition between an isotropic heat diffusion by phonons and a unidirectional heat drift by the spin wave. The phenomenological approach can account for the asymmetric local temperature distribution observed in the experiment.

  12. Theory of unidirectional spin heat conveyer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adachi, Hiroto, E-mail: adachi.hiroto@jaea.go.jp; Maekawa, Sadamichi

    2015-05-07

    We theoretically investigate the unidirectional spin heat conveyer effect recently reported in the literature that emerges from the Damon-Eshbach spin wave on the surface of a magnetic material. We develop a simple phenomenological theory for heat transfer dynamics in a coupled system of phonons and the Damon-Eshbach spin wave, and demonstrate that there arises a direction-selective heat flow as a result of the competition between an isotropic heat diffusion by phonons and a unidirectional heat drift by the spin wave. The phenomenological approach can account for the asymmetric local temperature distribution observed in the experiment.

  13. Thermoregulatory responses to heat and vibration in men

    NASA Technical Reports Server (NTRS)

    Spaul, W. A.; Spear, R. C.; Greenleaf, J. E.

    1986-01-01

    The effect of vibration on thermoregulatory responses was studied in heat-acclimated men exposed suddenly to simultaneous heat and whole body vibrations (WBVs) at two intensity levels, each at graded frequencies between 5 and 80 Hz. The mean rectal temperature (Tre) became elevated more quickly in the WBV exposures than in the controls (heat exposure alone). Both intensity- and frequency-dependent WBV relationships were recorded in localized blood flows and in sweat rates. Thus, vibration appears to reduce the efficiency of the cooling mechanisms during a heat exposure.

  14. Local and nonlocal parallel heat transport in general magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del-Castillo-Negrete, Diego B; Chacon, Luis

    2011-01-01

    A novel approach for the study of parallel transport in magnetized plasmas is presented. The method avoids numerical pollution issues of grid-based formulations and applies to integrable and chaotic magnetic fields with local or nonlocal parallel closures. In weakly chaotic fields, the method gives the fractal structure of the devil's staircase radial temperature profile. In fully chaotic fields, the temperature exhibits self-similar spatiotemporal evolution with a stretched-exponential scaling function for local closures and an algebraically decaying one for nonlocal closures. It is shown that, for both closures, the effective radial heat transport is incompatible with the quasilinear diffusion model.

  15. Turbulent boundary layer heat transfer experiments: Convex curvature effects including introduction and recovery

    NASA Technical Reports Server (NTRS)

    Simon, T. W.; Moffat, R. J.; Johnston, J. P.; Kays, W. M.

    1982-01-01

    Measurements were made of the heat transfer rate through turbulent and transitional boundary layers on an isothermal, convexly curved wall and downstream flat plate. The effect of convex curvature on the fully turbulent boundary layer was a reduction of the local Stanton numbers 20% to 50% below those predicted for a flat wall under the same circumstances. The recovery of the heat transfer rates on the downstream flat wall was extremely slow. After 60 cm of recovery length, the Stanton number was still typically 15% to 20% below the flat wall predicted value. Various effects important in the modeling of curved flows were studied separately. These are: the effect of initial boundary layer thickness, the effect of freestream velocity, the effect of freestream acceleration, the effect of unheated starting length, and the effect of the maturity of the boundary layer. An existing curvature prediction model was tested against this broad heat transfer data base to determine where it could appropriately be used for heat transfer predictions.

  16. Management of climatic heat stress risk in construction: a review of practices, methodologies, and future research.

    PubMed

    Rowlinson, Steve; Yunyanjia, Andrea; Li, Baizhan; Chuanjingju, Carrie

    2014-05-01

    Climatic heat stress leads to accidents on construction sites brought about by a range of human factors emanating from heat induced illness, and fatigue leading to impaired capability, physical and mental. It is an occupational characteristic of construction work in many climates and the authors take the approach of re-engineering the whole safety management system rather than focusing on incremental improvement, which is current management practice in the construction industry. From a scientific viewpoint, climatic heat stress is determined by six key factors: (1) air temperature, (2) humidity, (3) radiant heat, and (4) wind speed indicating the environment, (5) metabolic heat generated by physical activities, and (6) "clothing effect" that moderates the heat exchange between the body and the environment. By making use of existing heat stress indices and heat stress management processes, heat stress risk on construction sites can be managed in three ways: (1) control of environmental heat stress exposure through use of an action-triggering threshold system, (2) control of continuous work time (CWT, referred by maximum allowable exposure duration) with mandatory work-rest regimens, and (3) enabling self-paced working through empowerment of employees. Existing heat stress practices and methodologies are critically reviewed and the authors propose a three-level methodology for an action-triggering, localized, simplified threshold system to facilitate effective decisions by frontline supervisors. The authors point out the need for "regional based" heat stress management practices that reflect unique climatic conditions, working practices and acclimatization propensity by local workers indifferent geographic regions. The authors set out the case for regional, rather than international, standards that account for this uniqueness and which are derived from site-based rather than laboratory-based research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Heat loss through the glabrous skin surfaces of heavily insulated, heat-stressed individuals.

    PubMed

    Grahn, D A; Dillon, J L; Heller, H C

    2009-07-01

    Insulation reduces heat exchange between a body and the environment. Glabrous (nonhairy) skin surfaces (palms of the hands, soles of the feet, face, and ears) constitute a small percentage of total body surface area but contain specialized vascular structures that facilitate heat loss. We have previously reported that cooling the glabrous skin surfaces is effective in alleviating heat stress and that the application of local subatmospheric pressure enhances the effect. In this paper, we compare the effects of cooling multiple glabrous skin surfaces with and without vacuum on thermal recovery in heavily insulated heat-stressed individuals. Esophageal temperatures (T(es)) and heart rates were monitored throughout the trials. Water loss was determined from pre- and post-trial nude weights. Treadmill exercise (5.6 km/h, 9-16% slope, and 25-45 min duration) in a hot environment (41.5 degrees C, 20-30% relative humidity) while wearing insulating pants and jackets was used to induce heat stress (T(es)>or=39 degrees C). For postexercise recovery, the subjects donned additional insulation (a balaclava, winter gloves, and impermeable boot covers) and rested in the hot environment for 60 min. Postexercise cooling treatments included control (no cooling) or the application of a 10 degrees C closed water circulating system to (a) the hand(s) with or without application of a local subatmospheric pressure, (b) the face, (c) the feet, or (d) multiple glabrous skin regions. Following exercise induction of heat stress in heavily insulated subjects, the rate of recovery of T(es) was 0.4+/-0.2 degrees C/h(n=12), but with application of cooling to one hand, the rate was 0.8+/-0.3 degrees C/h(n=12), and with one hand cooling with subatmospheric pressure, the rate was 1.0+/-0.2 degrees C/h(n=12). Cooling alone yielded two responses, one resembling that of cooling with subatmospheric pressure (n=8) and one resembling that of no cooling (n=4). The effect of treating multiple surfaces was additive (no cooling, DeltaT(es)=-0.4+/-0.2 degrees C; one hand, -0.9+/-0.3 degrees C; face, -1.0+/-0.3 degrees C; two hands, -1.3+/-0.1 degrees C; two feet, -1.3+/-0.3 degrees C; and face, feet, and hands, -1.6+/-0.2 degrees C). Cooling treatments had a similar effect on water loss and final resting heart rate. In heat-stressed resting subjects, cooling the glabrous skin regions was effective in lowering T(es). Under this protocol, the application of local subatmospheric pressure did not significantly increase heat transfer per se but, presumably, increased the likelihood of an effect.

  18. Effect of Local Post Weld Heat Treatment on Tensile Properties in Friction Stir Welded 2219-O Al Alloy

    NASA Astrophysics Data System (ADS)

    Chu, Guannan; Sun, Lei; Lin, Caiyuan; Lin, Yanli

    2017-11-01

    To improve the formability of the aluminum alloy welds and overcome the size limitation of the bulk post weld heat treatment (BPWHT) on large size friction stir welded joints, a local post weld heat treatment method (LPWHT) was proposed. In this method, the resistance heating as the moving heat source is adopted to only heat the weld seam. The temperature field of LPWHT and its influence on the mechanical properties and formability of FSW 2219-O Al alloy joints was investigated. The evaluation of the tensile properties of FSW samples was also examined by mapping the global and local strain distribution using the digital image correlation methodology. The results indicated that the formability was improved greatly after LPWHT, while the hardness distribution of the FSW joint was homogenized. The maximum elongation can reach 1.4 times that of as-welded joints with increase the strength and the strain of the nugget zone increased from 3 to 8% when annealing at 300 °C. The heterogeneity on the tensile deformation of the as-welded joints was improved by the nugget zone showing large local strain value and the reason was given according to the dimple fracture characteristics at different annealing temperatures. The tensile strength and elongation of LPWHT can reach 93.3 and 96.1% of the BPWHT, respectively. Thus, the LPWHT can be advantageous compared to the BPWHT for large size welds.

  19. Measuring skin necrosis in a randomised controlled feasibility trial of heat preconditioning on wound healing after reconstructive breast surgery: study protocol and statistical analysis plan for the PREHEAT trial.

    PubMed

    Cro, Suzie; Mehta, Saahil; Farhadi, Jian; Coomber, Billie; Cornelius, Victoria

    2018-01-01

    Essential strategies are needed to help reduce the number of post-operative complications and associated costs for breast cancer patients undergoing reconstructive breast surgery. Evidence suggests that local heat preconditioning could help improve the provision of this procedure by reducing skin necrosis. Before testing the effectiveness of heat preconditioning in a definitive randomised controlled trial (RCT), we must first establish the best way to measure skin necrosis and estimate the event rate using this definition. PREHEAT is a single-blind randomised controlled feasibility trial comparing local heat preconditioning, using a hot water bottle, against standard care on skin necrosis among breast cancer patients undergoing reconstructive breast surgery. The primary objective of this study is to determine the best way to measure skin necrosis and to estimate the event rate using this definition in each trial arm. Secondary feasibility objectives include estimating recruitment and 30 day follow-up retention rates, levels of compliance with the heating protocol, length of stay in hospital and the rates of surgical versus conservative management of skin necrosis. The information from these objectives will inform the design of a larger definitive effectiveness and cost-effectiveness RCT. This article describes the PREHEAT trial protocol and detailed statistical analysis plan, which includes the pre-specified criteria and process for establishing the best way to measure necrosis. This study will provide the evidence needed to establish the best way to measure skin necrosis, to use as the primary outcome in a future RCT to definitively test the effectiveness of local heat preconditioning. The pre-specified statistical analysis plan, developed prior to unblinded data extraction, sets out the analysis strategy and a comparative framework to support a committee evaluation of skin necrosis measurements. It will increase the transparency of the data analysis for the PREHEAT trial. ISRCTN ISRCTN15744669. Registered 25 February 2015.

  20. Small-scale heat detection using catalytic microengines irradiated by laser

    NASA Astrophysics Data System (ADS)

    Liu, Zhaoqian; Li, Jinxing; Wang, Jiao; Huang, Gaoshan; Liu, Ran; Mei, Yongfeng

    2013-01-01

    We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection.We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32494f

  1. Detailing radio frequency heating induced by coronary stents: a 7.0 Tesla magnetic resonance study.

    PubMed

    Santoro, Davide; Winter, Lukas; Müller, Alexander; Vogt, Julia; Renz, Wolfgang; Ozerdem, Celal; Grässl, Andreas; Tkachenko, Valeriy; Schulz-Menger, Jeanette; Niendorf, Thoralf

    2012-01-01

    The sensitivity gain of ultrahigh field Magnetic Resonance (UHF-MR) holds the promise to enhance spatial and temporal resolution. Such improvements could be beneficial for cardiovascular MR. However, intracoronary stents used for treatment of coronary artery disease are currently considered to be contra-indications for UHF-MR. The antenna effect induced by a stent together with RF wavelength shortening could increase local radiofrequency (RF) power deposition at 7.0 T and bears the potential to induce local heating, which might cause tissue damage. Realizing these constraints, this work examines RF heating effects of stents using electro-magnetic field (EMF) simulations and phantoms with properties that mimic myocardium. For this purpose, RF power deposition that exceeds the clinical limits was induced by a dedicated birdcage coil. Fiber optic probes and MR thermometry were applied for temperature monitoring using agarose phantoms containing copper tubes or coronary stents. The results demonstrate an agreement between RF heating induced temperature changes derived from EMF simulations versus MR thermometry. The birdcage coil tailored for RF heating was capable of irradiating power exceeding the specific-absorption rate (SAR) limits defined by the IEC guidelines by a factor of three. This setup afforded RF induced temperature changes up to +27 K in a reference phantom. The maximum extra temperature increase, induced by a copper tube or a coronary stent was less than 3 K. The coronary stents examined showed an RF heating behavior similar to a copper tube. Our results suggest that, if IEC guidelines for local/global SAR are followed, the extra RF heating induced in myocardial tissue by stents may not be significant versus the baseline heating induced by the energy deposited by a tailored cardiac transmit RF coil at 7.0 T, and may be smaller if not insignificant than the extra RF heating observed under the circumstances used in this study.

  2. Detailing Radio Frequency Heating Induced by Coronary Stents: A 7.0 Tesla Magnetic Resonance Study

    PubMed Central

    Santoro, Davide; Winter, Lukas; Müller, Alexander; Vogt, Julia; Renz, Wolfgang; Özerdem, Celal; Grässl, Andreas; Tkachenko, Valeriy; Schulz-Menger, Jeanette; Niendorf, Thoralf

    2012-01-01

    The sensitivity gain of ultrahigh field Magnetic Resonance (UHF-MR) holds the promise to enhance spatial and temporal resolution. Such improvements could be beneficial for cardiovascular MR. However, intracoronary stents used for treatment of coronary artery disease are currently considered to be contra-indications for UHF-MR. The antenna effect induced by a stent together with RF wavelength shortening could increase local radiofrequency (RF) power deposition at 7.0 T and bears the potential to induce local heating, which might cause tissue damage. Realizing these constraints, this work examines RF heating effects of stents using electro-magnetic field (EMF) simulations and phantoms with properties that mimic myocardium. For this purpose, RF power deposition that exceeds the clinical limits was induced by a dedicated birdcage coil. Fiber optic probes and MR thermometry were applied for temperature monitoring using agarose phantoms containing copper tubes or coronary stents. The results demonstrate an agreement between RF heating induced temperature changes derived from EMF simulations versus MR thermometry. The birdcage coil tailored for RF heating was capable of irradiating power exceeding the specific-absorption rate (SAR) limits defined by the IEC guidelines by a factor of three. This setup afforded RF induced temperature changes up to +27 K in a reference phantom. The maximum extra temperature increase, induced by a copper tube or a coronary stent was less than 3 K. The coronary stents examined showed an RF heating behavior similar to a copper tube. Our results suggest that, if IEC guidelines for local/global SAR are followed, the extra RF heating induced in myocardial tissue by stents may not be significant versus the baseline heating induced by the energy deposited by a tailored cardiac transmit RF coil at 7.0 T, and may be smaller if not insignificant than the extra RF heating observed under the circumstances used in this study. PMID:23185498

  3. Film cooling performance of a row of dual-fanned holes at various injection angles

    NASA Astrophysics Data System (ADS)

    Li, Guangchao; Wang, Haofeng; Zhang, Wei; Kou, Zhihai; Xu, Rangshu

    2017-10-01

    Film cooling performance about a row of dual-fanned holes with injection angles of 30°, 60 ° and 90° were experimentally investigated at blowing ratios of 1.0 and 2.0. Dual-fanned hole is a novel shaped hole which has both inlet expansion and outlet expansion. A transient thermochromic liquid crystal technique was used to reveal the local values of film cooling effectiveness and heat transfer coefficient. The results show that injection angles have strong influence on the two dimensional distributions of film cooling effectiveness and heat transfer coefficient. For the small injection angle of 30 degree and small blowing ratio of 1.0, there is only a narrow spanwise region covered with film. The increase of injection angle and blowing ratio both leads to the enhanced spanwise film diffusion, but reduced local cooling ability far away from the hole. Injection angles have comprehensive influence on the averaged film cooling effectiveness for various x/d locations. As injection angles are 30 and 60 degree, two bands of high heat transfer coefficients are found in mixing region of the gas and coolant. As injection angle increases to 90 degree, the mixing leads to the enhanced heat transfer region near the film hole. The averaged heat transfer coefficient increases with the increase of injection angle.

  4. Localized mold heating with the aid of selective induction for injection molding of high aspect ratio micro-features

    NASA Astrophysics Data System (ADS)

    Park, Keun; Lee, Sang-Ik

    2010-03-01

    High-frequency induction is an efficient, non-contact means of heating the surface of an injection mold through electromagnetic induction. Because the procedure allows for the rapid heating and cooling of mold surfaces, it has been recently applied to the injection molding of thin-walled parts or micro/nano-structures. The present study proposes a localized heating method involving the selective use of mold materials to enhance the heating efficiency of high-frequency induction heating. For localized induction heating, a composite injection mold of ferromagnetic material and paramagnetic material is used. The feasibility of the proposed heating method is investigated through numerical analyses in terms of its heating efficiency for localized mold surfaces and in terms of the structural safety of the composite mold. The moldability of high aspect ratio micro-features is then experimentally compared under a variety of induction heating conditions.

  5. Extreme Heat and Health: Perspectives from Health Service Providers in Rural and Remote Communities in South Australia

    PubMed Central

    Williams, Susan; Bi, Peng; Newbury, Jonathan; Robinson, Guy; Pisaniello, Dino; Saniotis, Arthur; Hansen, Alana

    2013-01-01

    Among the challenges for rural communities and health services in Australia, climate change and increasing extreme heat are emerging as additional stressors. Effective public health responses to extreme heat require an understanding of the impact on health and well-being, and the risk or protective factors within communities. This study draws on lived experiences to explore these issues in eleven rural and remote communities across South Australia, framing these within a socio-ecological model. Semi-structured interviews with health service providers (n = 13), and a thematic analysis of these data, has identified particular challenges for rural communities and their health services during extreme heat. The findings draw attention to the social impacts of extreme heat in rural communities, the protective factors (independence, social support, education, community safety), and challenges for adaptation (vulnerabilities, infrastructure, community demographics, housing and local industries). With temperatures increasing across South Australia, there is a need for local planning and low-cost strategies to address heat-exacerbating factors in rural communities, to minimise the impact of extreme heat in the future. PMID:24173140

  6. Turbine heat transfer

    NASA Technical Reports Server (NTRS)

    Rohde, J. E.

    1982-01-01

    Objectives and approaches to research in turbine heat transfer are discussed. Generally, improvements in the method of determining the hot gas flow through the turbine passage is one area of concern, as is the cooling air flow inside the airfoil, and the methods of predicting the heat transfer rates on the hot gas side and on the coolant side of the airfoil. More specific areas of research are: (1) local hot gas recovery temperatures along the airfoil surfaces; (2) local airfoil wall temperature; (3) local hot gas side heat transfer coefficients on the airfoil surfaces; (4) local coolant side heat transfer coefficients inside the airfoils; (5) local hot gas flow velocities and secondary flows at real engine conditions; and (6) local delta strain range of the airfoil walls.

  7. Multifunctional Porous Graphene for High-Efficiency Steam Generation by Heat Localization.

    PubMed

    Ito, Yoshikazu; Tanabe, Yoichi; Han, Jiuhui; Fujita, Takeshi; Tanigaki, Katsumi; Chen, Mingwei

    2015-08-05

    Multifunctional nanoporous graphene is realized as a heat generator to convert solar illumination into high-energy steam. The novel 3D nanoporous graphene demonstrates a highly energy-effective steam generation with an energy conversation of 80%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. β-adrenergic blockade does not impair the skin blood flow sensitivity to local heating in burned and non-burned skin under neutral and hot environments in children

    PubMed Central

    Rivas, Eric; McEntire, Serina J.; Herndon, David N.; Mlcak, Ronald P.; Suman, Oscar E.

    2017-01-01

    Objective Tested the hypothesis that propranolol, a drug given to burn patients to reduce hypermetabolism/cardiac stress, may inhibit heat dissipation by changing the sensitivity of skin blood flow (SkBF) to local heating under neutral and hot conditions. Methods In a randomized double-blind study, a placebo was given to 8 burned children while propranolol was given to 13 burned children with similar characteristics (mean ± SD: 11.9±3y, 147±20cm, 45±23kg, 56±12% TBSA). Non-burned children (n=13, 11.4±3y, 152±15cm, 52±13kg) served as healthy controls. A progressive local heating protocol characterized SkBF responses in burned and unburned skin and non-burned control skin under the two environmental conditions (23°C and 34°C) via laser-Doppler flowmetry. Results Resting SkBF was greater in burned and unburned skin compared to the non-burned control (main effect: skin, P<0.0001; 57±32 burned; 38±36 unburned vs 9±8 control %SkBFmax). No difference was found for maximal SkBF capacity to local heating between groups. Additionally, dose response curves for the sensitivity of SkBF to local heating were not different among burned or unburned skin, and non-burned control skin (EC50, P>0.05) under either condition. Conclusion Therapeutic propranolol does not negatively affect SkBF under neutral or hot environmental conditions and further compromise temperature regulation in burned children. PMID:28071840

  9. β-Adrenergic blockade does not impair the skin blood flow sensitivity to local heating in burned and nonburned skin under neutral and hot environments in children.

    PubMed

    Rivas, Eric; McEntire, Serina J; Herndon, David N; Mlcak, Ronald P; Suman, Oscar E

    2017-05-01

    We tested the hypothesis that propranolol, a drug given to burn patients to reduce hypermetabolism/cardiac stress, may inhibit heat dissipation by changing the sensitivity of skin blood flow (SkBF) to local heating under neutral and hot conditions. In a randomized double-blind study, a placebo was given to eight burned children, while propranolol was given to 13 burned children with similar characteristics (mean±SD: 11.9±3 years, 147±20 cm, 45±23 kg, 56±12% Total body surface area burned). Nonburned children (n=13, 11.4±3 years, 152±15 cm, 52±13 kg) served as healthy controls. A progressive local heating protocol characterized SkBF responses in burned and unburned skin and nonburned control skin under the two environmental conditions (23 and 34°C) via laser Doppler flowmetry. Resting SkBF was greater in burned and unburned skin compared to the nonburned control (main effect: skin, P<.0001; 57±32 burned; 38±36 unburned vs 9±8 control %SkBF max ). No difference was found for maximal SkBF capacity to local heating between groups. Additionally, dose-response curves for the sensitivity of SkBF to local heating were not different among burned or unburned skin, and nonburned control skin (EC 50 , P>.05) under either condition. Therapeutic propranolol does not negatively affect SkBF under neutral or hot environmental conditions and further compromise temperature regulation in burned children. © 2017 John Wiley & Sons Ltd.

  10. Novel tumor-ablation device for liver tumors utilizing heat energy generated under an alternating magnetic field.

    PubMed

    Sato, Koichi; Watanabe, Yuji; Horiuchi, Atsushi; Yukumi, Shungo; Doi, Takashi; Yoshida, Motohira; Yamamoto, Yuji; Maehara, Tsunehiro; Naohara, Takashi; Kawachi, Kanji

    2008-07-01

    We have developed a novel tumor-ablation device for liver tumors utilizing heat energy induced by magnesium ferrite (MgFe(2)O(4)) particles under an alternating magnetic field (AMF) produced by electric currents. This novel device can repeatedly heat liver tumors at lower temperature than usual heating devices, such as radiofrequency ablation therapy, with slight infliction of pain. This study assesses its heating effect on rat liver tumors as local therapy. The small needle was manufactured from MgFe(2)O(4) particles by sintering at 1100 degrees C. After a MgFe(2)O(4) needle was inserted into liver tumors comprising of dRLh-84 cells, the tumors were heated for 30 min under an AMF. We examined cellular activity by using nicotinamide adenine dinucleotide (NADH) diaphorase staining and terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP nick-end labeling (TUNEL) staining, and evaluated the effect of suppressing tumor growth by sequentially comparing the tumor diameter with that of the control group. The mean temperature of the heated tumors was 60.2 +/- 1.8 degrees C. The tumor cells were constricted, and chromatin of nuclei had shrunk immediately after heating. The heat-injury area that contained the tumors was negative for NADH diaphorase activity. After 3 days, the tumor cells in the heat-injury area became positive for TUNEL staining, which detects cell death. At 7 days, the mean tumor diameters were significantly smaller in the heating group than in the control group (6.15 +/- 0.47 mm vs 16.89 +/- 2.69 mm; P < 0.05). This device, utilizing heat energy induced by ferromagnetic metal under an AMF, appears useful as local thermotherapy for human liver cancer.

  11. Acute limb heating improves macro- and microvascular dilator function in the leg of aged humans.

    PubMed

    Romero, Steven A; Gagnon, Daniel; Adams, Amy N; Cramer, Matthew N; Kouda, Ken; Crandall, Craig G

    2017-01-01

    Local heating of an extremity increases blood flow and vascular shear stress throughout the arterial tree. Local heating acutely improves macrovascular dilator function in the upper limbs of young healthy adults through a shear stress-dependent mechanism but has no such effect in the lower limbs of this age group. The effect of acute limb heating on dilator function within the atherosclerotic prone vasculature of the lower limbs of aged adults is unknown. Therefore, the purpose of this study was to test the hypothesis that acute lower limb heating improves macro- and microvascular dilator function within the leg vasculature of aged adults. Nine young and nine aged adults immersed their lower limbs at a depth of ~33 cm into a heated (~42°C) circulated water bath for 45 min. Before and 30 min after heating, macro (flow-mediated dilation)- and microvascular (reactive hyperemia) dilator functions were assessed in the lower limb, following 5 min of arterial occlusion, via Doppler ultrasound. Compared with preheat, macrovascular dilator function was unchanged following heating in young adults (P = 0.6) but was improved in aged adults (P = 0.04). Similarly, microvascular dilator function, as assessed by peak reactive hyperemia, was unchanged following heating in young adults (P = 0.1) but was improved in aged adults (P < 0.01). Taken together, these data suggest that acute lower limb heating improves both macro- and microvascular dilator function in an age dependent manner. We demonstrate that lower limb heating acutely improves macro- and microvascular dilator function within the atherosclerotic prone vasculature of the leg in aged adults. These findings provide evidence for a potential therapeutic use of chronic lower limb heating to improve vascular health in primary aging and various disease conditions. Copyright © 2017 the American Physiological Society.

  12. A comparison of non-local electron transport models for laser-plasmas relevant to inertial confinement fusion

    DOE PAGES

    Sherlock, M.; Brodrick, J. P.; Ridgers, C. P.

    2017-08-08

    Here, we compare the reduced non-local electron transport model developed to Vlasov-Fokker-Planck simulations. Two new test cases are considered: the propagation of a heat wave through a high density region into a lower density gas, and a one-dimensional hohlraum ablation problem. We find that the reduced model reproduces the peak heat flux well in the ablation region but significantly over-predicts the coronal preheat. The suitability of the reduced model for computing non-local transport effects other than thermal conductivity is considered by comparing the computed distribution function to the Vlasov-Fokker-Planck distribution function. It is shown that even when the reduced modelmore » reproduces the correct heat flux, the distribution function is significantly different to the Vlasov-Fokker-Planck prediction. Two simple modifications are considered which improve agreement between models in the coronal region.« less

  13. The effect of anisotropic heat transport on magnetic islands in 3-D configurations

    NASA Astrophysics Data System (ADS)

    Schlutt, M. G.; Hegna, C. C.

    2012-08-01

    An analytic theory of nonlinear pressure-induced magnetic island formation using a boundary layer analysis is presented. This theory extends previous work by including the effects of finite parallel heat transport and is applicable to general three dimensional magnetic configurations. In this work, particular attention is paid to the role of finite parallel heat conduction in the context of pressure-induced island physics. It is found that localized currents that require self-consistent deformation of the pressure profile, such as resistive interchange and bootstrap currents, are attenuated by finite parallel heat conduction when the magnetic islands are sufficiently small. However, these anisotropic effects do not change saturated island widths caused by Pfirsch-Schlüter current effects. Implications for finite pressure-induced island healing are discussed.

  14. Radiation effects on the mixed convection flow induced by an inclined stretching cylinder with non-uniform heat source/sink.

    PubMed

    Hayat, Tasawar; Qayyum, Sajid; Alsaedi, Ahmed; Asghar, Saleem

    2017-01-01

    This study investigates the mixed convection flow of Jeffrey liquid by an impermeable inclined stretching cylinder. Thermal radiation and non-uniform heat source/sink are considered. The convective boundary conditions at surface are imposed. Nonlinear expressions of momentum, energy and concentration are transformed into dimensionless systems. Convergent homotopic solutions of the governing systems are worked out by employing homotopic procedure. Impact of physical variables on the velocity, temperature and concentration distributions are sketched and discussed. Numerical computations for skin friction coefficient, local Nusselt and Sherwood numbers are carried out. It is concluded that velocity field enhances for Deborah number while reverse situation is observed regarding ratio of relaxation to retardation times. Temperature and heat transfer rate are enhanced via larger thermal Biot number. Effect of Schmidt number on the concentration and local Sherwood number is quite reverse.

  15. Radiation effects on the mixed convection flow induced by an inclined stretching cylinder with non-uniform heat source/sink

    PubMed Central

    Hayat, Tasawar; Qayyum, Sajid; Alsaedi, Ahmed; Asghar, Saleem

    2017-01-01

    This study investigates the mixed convection flow of Jeffrey liquid by an impermeable inclined stretching cylinder. Thermal radiation and non-uniform heat source/sink are considered. The convective boundary conditions at surface are imposed. Nonlinear expressions of momentum, energy and concentration are transformed into dimensionless systems. Convergent homotopic solutions of the governing systems are worked out by employing homotopic procedure. Impact of physical variables on the velocity, temperature and concentration distributions are sketched and discussed. Numerical computations for skin friction coefficient, local Nusselt and Sherwood numbers are carried out. It is concluded that velocity field enhances for Deborah number while reverse situation is observed regarding ratio of relaxation to retardation times. Temperature and heat transfer rate are enhanced via larger thermal Biot number. Effect of Schmidt number on the concentration and local Sherwood number is quite reverse. PMID:28441392

  16. Cardiovascular pharmacology of quazodine (MJ-1988), with particular reference to effects of myocardial blood flow and metabolic heat production.

    PubMed

    Parratt, J R; Winslow, E

    1971-06-01

    1. The effects of intravenous infusions of quazodine (6,7-dimethoxy-4-ethylquinazoline; MJ-1988) on myocardial blood flow, myocardial metabolic heat production and on general haemodynamics have been studied in cats anaesthetized with sodium pentobarbitone.2. Quazodine (0.25 and 0.5 (mg/kg)/min for 10 min) decreased diastolic blood pressure, peripheral vascular resistance, systolic ejection time and left ventricular end-diastolic pressure. Heart rate, cardiac effort, output and external work and left ventricular dP/dt were markedly increased. These changes are indicative of increased myocardial contractility and peripheral vasodilatation.3. In a dose of (1.0 mg/kg)/min, quazodine had a more marked hypotensive effect, systolic pressure being significantly reduced, and had less effect on left ventricular dP/dt and cardiac effort. Calculated external cardiac work was slightly reduced and there were very occasional nodal arrhythmias.4. Changes in heart rate, aortic dP/dt and diastolic blood pressure induced by quazodine were unaffected by the previous administration of the beta-adrenoceptor blocking agent alprenolol in a dose (1.0 mg/kg) which abolished the effects of isoprenaline.5. In all doses, quazodine markedly increased local blood flow (by 70-540%) around an implanted myocardial heated thermocouple recorder. ;Corrected temperature', an index of local myocardial metabolic heat production, was almost unchanged and it is suggested that increased myocardial contractility, occurring with unchanged metabolic heat production and oxygen consumption, probably results from a concomitant decrease in intramural wall tension.

  17. Using Remote Sensing Data and Research Results for Urban Heat Island Mitigation

    NASA Technical Reports Server (NTRS)

    Estes, Maury; Luvall, Jeffrey

    1999-01-01

    This paper provides information on the characteristics of the urban heat island, research designed to provide the data needed to develop effective urban heat island reduction strategies, and the development of local working groups to develop implementation plans. As background, an overview of research results on the urban heat island phenomenon and the resultant effect on energy usage and air quality will be explored. The use of more reflective roofing materials, paving materials, tree planting, and other initiatives will be explored as a basis for strategies to mitigate urban heat islands and improve the urban environment. Current efforts to use aircraft remote sensing data in Atlanta, Baton Rouge, Sacramento, and Salt Lake City and our work with non-profit organizations designated to lead public education and strategic development efforts will be presented. Efforts to organize working groups comprised of key stakeholders, the process followed in communicating research results, and methodology for soliciting feedback and incorporating ideas into local plans, policies and decision-making will be discussed. Challenges in developing and transferring data products and research results to stakeholders will be presented. It is our ultimate goal that such efforts be integrated into plans and/or decision models that encourage sustainable development.

  18. Assessment and Mitigation of PM pollution in the border regions of Austria and Slovenia

    NASA Astrophysics Data System (ADS)

    Uhrner, Ulrich; Reifeltshammer, Rafael; Lackner, Bettina; Forkel, Renate; Sturm, Peter

    2017-04-01

    Many cities, towns and regions located at the southern fringe of the Alps face remarkably high PM levels particularly during the winter period. The project PMinter aimed 1) to analyse the air quality in S-Styria, S-Carinthia and N-Slovenia, 2) to evaluate local and regional measures to develop effective air quality management plans and finally 3) to support a sustainable improvement of air quality in the project region. Using wood for residential heating is very popular in Austria and in Slovenia. To assess the contribution from wood smoke to the total PM burden and the impact of regional and large scale transport as well as the impact of secondary aerosols were major goals of PMinter. Due to the complex terrain air quality and exposure assessment is challenging. To resolve sources which are located in valleys and basins, emissions were computed or processed on 1 km x 1 km resolution for the entire program area. A new combined model approach was developed and tested successfully using a state-of-the-art CTM (WRF/Chem) on the regional scale and the Lagrangian particle model GRAL on the local scale. A detailed analysis and comparisons with measurements and regional/local scale scenario simulations were carried out. Residential heating using wood was identified as the major source and PM component dominant on the "local scale" ( 10 km), secondary inorganic aerosol was the dominant PM component on the regional scale ( 10 km - 150 km) and above. Various mitigation scenarios for PM were computed. A "local" scenario where individual heating facilities using solid fuels were replaced by district heating and a regional scenario with 35% reduced ammonia emissions from agriculture proved to be most effective.

  19. A laser pointer driven microheater for precise local heating and conditional gene regulation in vivo. Microheater driven gene regulation in zebrafish.

    PubMed

    Placinta, Mike; Shen, Meng-Chieh; Achermann, Marc; Karlstrom, Rolf O

    2009-12-30

    Tissue heating has been employed to study a variety of biological processes, including the study of genes that control embryonic development. Conditional regulation of gene expression is a particularly powerful approach for understanding gene function. One popular method for mis-expressing a gene of interest employs heat-inducible heat shock protein (hsp) promoters. Global heat shock of hsp-promoter-containing transgenic animals induces gene expression throughout all tissues, but does not allow for spatial control. Local heating allows for spatial control of hsp-promoter-driven transgenes, but methods for local heating are cumbersome and variably effective. We describe a simple, highly controllable, and versatile apparatus for heating biological tissue and other materials on the micron-scale. This microheater employs micron-scale fiber optics and uses an inexpensive laser-pointer as a power source. Optical fibers can be pulled on a standard electrode puller to produce tips of varying sizes that can then be used to reliably heat 20-100 mum targets. We demonstrate precise spatiotemporal control of hsp70l:GFP transgene expression in a variety of tissue types in zebrafish embryos and larvae. We also show how this system can be employed as part of a new method for lineage tracing that would greatly facilitate the study of organogenesis and tissue regulation at any time in the life cycle. This versatile and simple local heater has broad utility for the study of gene function and for lineage tracing. This system could be used to control hsp-driven gene expression in any organism simply by bringing the fiber optic tip in contact with the tissue of interest. Beyond these uses for the study of gene function, this device has wide-ranging utility in materials science and could easily be adapted for therapeutic purposes in humans.

  20. The structure of turbulent channel flow with passive scalar transport

    NASA Technical Reports Server (NTRS)

    Guezennec, Y.; Stretch, D.; Kim, J.

    1990-01-01

    The simulation of turbulent channel flow, with various passive markers, was examined to investigate the local mechanisms of passive scalar transport. We found significant differences between the local transport of heat and momentum, even when the molecular and turbulent Prandtl numbers are of order one. These discrepancies can be attributed to the role of the pressure. We also found that the heat is a poor marker of the vorticity field outside of the near wall region and that scalar transport over significant distances results from the aggregate effect of many turbulent eddies.

  1. DNA transformation via local heat shock

    NASA Astrophysics Data System (ADS)

    Li, Sha; Meadow Anderson, L.; Yang, Jui-Ming; Lin, Liwei; Yang, Haw

    2007-07-01

    This work describes transformation of foreign DNA into bacterial host cells by local heat shock using a microfluidic system with on-chip, built-in platinum heaters. Plasmid DNA encoding ampicillin resistance and a fluorescent protein can be effectively transformed into the DH5α chemically competent E. coli using this device. Results further demonstrate that only one-thousandth of volume is required to obtain transformation efficiencies as good as or better than conventional practices. As such, this work complements other lab-on-a-chip technologies for potential gene cloning/therapy and protein expression applications.

  2. Simulation of nonlinear convective thixotropic liquid with Cattaneo-Christov heat flux

    NASA Astrophysics Data System (ADS)

    Zubair, M.; Waqas, M.; Hayat, T.; Ayub, M.; Alsaedi, A.

    2018-03-01

    In this communication we utilized a modified Fourier approach featuring thermal relaxation effect in nonlinear convective flow by a vertical exponentially stretchable surface. Temperature-dependent thermal conductivity describes the heat transfer process. Thixotropic liquid is modeled. Convergent local similar solutions by homotopic approach are obtained. Graphical results for emerging parameters of interest are analyzed. Skin friction is calculated and interpreted. Consideration of larger local buoyancy and nonlinear convection parameters yields an enhancement in velocity distribution. Temperature and thermal layer thickness are reduced for larger thermal relaxation factor.

  3. On the correlation between ‘non-local’ effects and intrinsic rotation reversals in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Rodriguez-Fernandez, P.; Rice, J. E.; Cao, N. M.; Creely, A. J.; Howard, N. T.; Hubbard, A. E.; Irby, J. H.; White, A. E.

    2017-07-01

    Contemporary predictive models for heat and particle transport in tokamak plasmas are based on the assumption that local fluxes can be described in terms of local plasma parameters, where electromagnetic drift-wave-type turbulence is driven by local gradients and results in cross-field transport. The question of whether or not transport could be dominated by non-local terms in certain circumstances is essential for our understanding of transport in magnetically confined plasmas, and critical for developing predictive models for future tokamaks, such as ITER. Perturbative transport experiments using cold-pulse injections at low density seem to challenge the local closure of anomalous transport: a rapid temperature increase in the core of the plasma following a sharp edge cooling is widely observed in tokamaks and helical devices. Past work in Ohmic plasmas in Alcator C-Mod and in ECH plasmas in KSTAR found that the temperature inversions disappear at higher densities, above the intrinsic toroidal rotation reversal density. These observations suggested that the so-called ‘non-local’ heat transport effects were related to the intrinsic rotation reversal, and therefore to changes in momentum transport. In this work, new experiments and analysis at Alcator C-Mod show that intrinsic rotation reversals and disappearance of temperature inversions are not concomitant in Ohmic plasmas at high plasma current and in ICRH L-modes. This new data set shows that the correlation between transient temperature inversions and intrinsic rotation reversals is not universal, suggesting that ‘non-local’ heat transport and momentum transport effects may be affected by different physical mechanisms.

  4. Toroid Joining Gun For Fittings And Couplings

    NASA Technical Reports Server (NTRS)

    Fox, Robert L.; Swaim, Robert J.; Johnson, Samuel D.; Buckley, John D.; Copeland, Carl E.; Coultrip, Robert H.; Johnston, David F.; Phillips, William M.

    1992-01-01

    Hand-held gun used to join metal heat-to-shrink couplings. Uses magnetic induction (eddy currents) to produce heat in metal coupling, and thermocouple to measure temperature and signals end of process. Gun, called "toroid joining gun" concentrates high levels of heat in localized areas. Reconfigured for use on metal heat-to-shrink fitting and coupling applications. Provides rapid heating, operates on low power, lightweight and portable. Safe for use around aircraft fuel and has no detrimental effects on surrounding surfaces or objects. Reliable in any environment and under all weather conditions. Gun logical device for taking full advantage of capabilities of new metal heat-to-shrink couplings and fittings.

  5. Development of a laser-induced heat flux technique for measurement of convective heat transfer coefficients in a supersonic flowfield

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert; Keith, Theo G., Jr.; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the load surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimental results agreed reasonably well with theoretical predictions of convective heat transfer of flat plate laminar boundary layers. The results indicate that this non-intrusive optical measurement technique has the potential to obtain high quality surface convective heat transfer measurements in high speed flowfields.

  6. Hyperbolic heat conduction, effective temperature, and third law for nonequilibrium systems with heat flux

    NASA Astrophysics Data System (ADS)

    Sobolev, S. L.

    2018-02-01

    Some analogies between different nonequilibrium heat conduction models, particularly random walk, the discrete variable model, and the Boltzmann transport equation with the single relaxation time approximation, have been discussed. We show that, under an assumption of a finite value of the heat carrier velocity, these models lead to the hyperbolic heat conduction equation and the modified Fourier law with relaxation term. Corresponding effective temperature and entropy have been introduced and analyzed. It has been demonstrated that the effective temperature, defined as a geometric mean of the kinetic temperatures of the heat carriers moving in opposite directions, acts as a criterion for thermalization and is a nonlinear function of the kinetic temperature and heat flux. It is shown that, under highly nonequilibrium conditions when the heat flux tends to its maximum possible value, the effective temperature, heat capacity, and local entropy go to zero even at a nonzero equilibrium temperature. This provides a possible generalization of the third law to nonequilibrium situations. Analogies and differences between the proposed effective temperature and some other definitions of a temperature in nonequilibrium state, particularly for active systems, disordered semiconductors under electric field, and adiabatic gas flow, have been shown and discussed. Illustrative examples of the behavior of the effective temperature and entropy during nonequilibrium heat conduction in a monatomic gas and a strong shockwave have been analyzed.

  7. Effects of surface cooling and of roughness on the heating (including transition) to the windward plane-of-symmetry of the shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Bertin, J. J.; Idar, E. S., III; Galanski, S. R.

    1977-01-01

    The theoretical heat-transfer distributions are compared with experimental heat-transfer distributions obtained in Tunnel B at AEDC using a 0.0175 scale model of the space shuttle orbiter configuration for which the first 80% of the windward surface was roughened by a simulated tile misalignment. The theoretical solutions indicate that thinning the boundary layer by surface cooling increased the nondimensionalized value of the local heat-transfer coefficient. Tile misalignment did not significantly affect the heat-transfer rate in regions where the boundary layer was either laminar or turbulent.

  8. Conformal mapping technique for two-dimensional porous media and jet impingement heat transfer

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1974-01-01

    Transpiration cooling and liquid metals both provide highly effective heat transfer. Using Darcy's law in porous media and the inviscid approximation for liquid metals, the local fluid velocity in these flows equals the gradient of a potential. The energy equation and flow region are simplified when transformed into potential plane coordinates. In these coordinates, the present problems are reduced to heat conduction solutions which are mapped into the physical geometry. Results are obtained for a porous region with simultaneously prescribed surface temperature and heat flux, heat transfer in a two-dimensional porous bed, and heat transfer for two liquid metal slot jets impinging on a heated plate.

  9. Conformal mapping technique for two-dimensional porous media and jet impingement heat transfer

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1973-01-01

    Transpiration cooling and liquid metals both provide highly effective heat transfer. Using Darcy's law in porous media, and the inviscid approximation for liquid metals, the local fluid velocity in these flows equals the gradient of a potential, The energy equation and flow region are simplified when transformed into potential plane coordinates. In these coordinates the present problems are reduced to heat conduction solutions which are mapped into the physical geometry. Results are obtained for a porous region with simultaneously prescribed surface temperature and heat flux, heat transfer in a two-dimensional porous bed, and heat transfer for two liquid metal slot jets impinging on a heated plate.

  10. Distribution and depth of bottom-simulating reflectors in the Nankai subduction margin.

    PubMed

    Ohde, Akihiro; Otsuka, Hironori; Kioka, Arata; Ashi, Juichiro

    2018-01-01

    Surface heat flow has been observed to be highly variable in the Nankai subduction margin. This study presents an investigation of local anomalies in surface heat flows on the undulating seafloor in the Nankai subduction margin. We estimate the heat flows from bottom-simulating reflectors (BSRs) marking the lower boundaries of the methane hydrate stability zone and evaluate topographic effects on heat flow via two-dimensional thermal modeling. BSRs have been used to estimate heat flows based on the known stability characteristics of methane hydrates under low-temperature and high-pressure conditions. First, we generate an extensive map of the distribution and subseafloor depths of the BSRs in the Nankai subduction margin. We confirm that BSRs exist at the toe of the accretionary prism and the trough floor of the offshore Tokai region, where BSRs had previously been thought to be absent. Second, we calculate the BSR-derived heat flow and evaluate the associated errors. We conclude that the total uncertainty of the BSR-derived heat flow should be within 25%, considering allowable ranges in the P-wave velocity, which influences the time-to-depth conversion of the BSR position in seismic images, the resultant geothermal gradient, and thermal resistance. Finally, we model a two-dimensional thermal structure by comparing the temperatures at the observed BSR depths with the calculated temperatures at the same depths. The thermal modeling reveals that most local variations in BSR depth over the undulating seafloor can be explained by topographic effects. Those areas that cannot be explained by topographic effects can be mainly attributed to advective fluid flow, regional rapid sedimentation, or erosion. Our spatial distribution of heat flow data provides indispensable basic data for numerical studies of subduction zone modeling to evaluate margin parallel age dependencies of subducting plates.

  11. Effect of raw materials and hardening process on hardness of manually forged knife

    NASA Astrophysics Data System (ADS)

    Balkhaya, Suwarno

    2017-06-01

    Knives are normally made by forging process either using a machine or traditional method by means of hammering process. This present work was conducted to study the effects of steel raw materials and hardening process on the hardness of manually forged knives. The knife samples were made by traditional hammering (forging) process done by local blacksmith. Afterward, the samples were heat treated with two different hardening procedures, the first was based on the blacksmith procedure and the second was systematically done at the laboratory. The forging was done in the temperature ranged between 900-950°C, while the final temperature ranged between 650-675°C. The results showed that knives made of spring steel and heat treated in simulated condition at the laboratory obtained higher level of hardness, i.e. 62 HRC. In general, knives heat treated by local blacksmith had lower level of hardness that those obtained from simulated condition. Therefore, we concluded that the traditional knife quality in term of hardness can be improved by optimizing the heat treatment schedule.

  12. Study of the L-mode tokamak plasma “shortfall” with local and global nonlinear gyrokinetic δf particle-in-cell simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, J.; Wan, Weigang; Chen, Yang

    2014-11-15

    The δ f particle-in-cell code GEM is used to study the transport “shortfall” problem of gyrokinetic simulations. In local simulations, the GEM results confirm the previously reported simulation results of DIII-D [Holland et al., Phys. Plasmas 16, 052301 (2009)] and Alcator C-Mod [Howard et al., Nucl. Fusion 53, 123011 (2013)] tokamaks with the continuum code GYRO. Namely, for DIII-D the simulations closely predict the ion heat flux at the core, while substantially underpredict transport towards the edge; while for Alcator C-Mod, the simulations show agreement with the experimental values of ion heat flux, at least within the range of experimental error.more » Global simulations are carried out for DIII-D L-mode plasmas to study the effect of edge turbulence on the outer core ion heat transport. The edge turbulence enhances the outer core ion heat transport through turbulence spreading. However, this edge turbulence spreading effect is not enough to explain the transport underprediction.« less

  13. Experimental and Computational Studies of Heat Transfer in Complex Internal Flows.

    DTIC Science & Technology

    1981-01-01

    project, extending from September 15, 1979 to December 15, 1980 . The details of five distinct pieces of research are set forth. These research problems... Hislop , C. I., and Morris, R., "Effect on the Local Heat Transfer Coefficient in a Pipe of an Abrupt Disturbance of the Fluid Flow: Abrupt...Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, 1980 . 10. Petukhov, B. S., "Heat Transfer and Friction in Turbulent

  14. Numerical investigation on aluminum foam application in a tubular heat exchanger

    NASA Astrophysics Data System (ADS)

    Buonomo, Bernardo; di Pasqua, Anna; Ercole, Davide; Manca, Oronzio; Nardini, Sergio

    2018-02-01

    A numerical study has been conducted to examine the thermal and fluiddynamic behaviors of a tubular heat exchanger in aluminum foam. A plate in metal foam with a single array of five circular tubes is the geometrical domain under examination. Darcy-Forchheimer flow model and the thermal non-equilibrium energy model are used to execute two-dimensional simulations on metal foam heat exchanger. The foam is characterized by porosity and (number) pores per inch respectively equal to 0.935 and 20. Different air flow rates are imposed to the entrance of the heat exchanger with an assigned surface tube temperature. The results are provided in terms of local heat transfer coefficient and Nusselt number evaluated on the external surface of the tubes. Furthermore, local air temperature and velocity profiles in the smaller cross section, between two consecutive tubes are given. Finally, the Energy Performance Ratio (EPR) is evaluated in order to demonstrate the effectiveness of the metal foam.

  15. Study of flow control by localized volume heating in hypersonic boundary layers

    NASA Astrophysics Data System (ADS)

    Keller, M. A.; Kloker, M. J.; Kirilovskiy, S. V.; Polivanov, P. A.; Sidorenko, A. A.; Maslov, A. A.

    2014-12-01

    Boundary-layer flow control is a prerequisite for a safe and efficient operation of future hypersonic transport systems. Here, the influence of an electric discharge—modeled by a heat-source term in the energy equation—on laminar boundary-layer flows over a flat plate with zero pressure gradient at Mach 3, 5, and 7 is investigated numerically. The aim was to appraise the potential of electro-gasdynamic devices for an application as turbulence generators in the super- and hypersonic flow regime. The results with localized heat-source elements in boundary layers are compared to cases with roughness elements serving as classical passive trips. The numerical simulations are performed using the commercial code ANSYS FLUENT (by ITAM) and the high-order finite-difference DNS code NS3D (by IAG), the latter allowing for the detailed analysis of laminar flow instability. For the investigated setups with steady heating, transition to turbulence is not observed, due to the Reynolds-number lowering effect of heating.

  16. Modeling reduction of the Urban Heat Island effect to counter-act the effects of climate change in densely built-up areas

    NASA Astrophysics Data System (ADS)

    Andre, Konrad; Zuvela-Aloise, Maja; Lettmayer, Gudrun; Schwaiger, Hannes Peter; Kaltenegger, Ingrid; Bird, David Neil; Woess-Gallasch, Susanne

    2017-04-01

    The phenomenon of Urban Heat Islands (UHIs) observed in cities, caused by changes in energy balance due to the structural development of the city as well as by sealed surfaces and a lack of vegetation, is expected to strengthen in the future and will further contribute to heat stress, creating an increased need for energy for cooling and ventilation as well as lowering human comfort. Due to a changing climate, rising heat stress, pronounced by an increased intensity or frequency of heat waves, could have far reaching implications for major Austrian cities in the near future. Simultaneous to this expected increasing of the already existing UHI-effect, it is observable, that continuous densification of the core parts of cities is being intensified through implemented traditional urban planning measures. This is particular relevant for high densely populated districts of the city. Several possible counteractions how to address this challenge are already known, partly investigated in urban modeling studies on the effects of modifying the reflective properties of buildings and urban areas for the city of Vienna. On this experience, within the Austrian FFG and KLIEN Smart Cities project JACKY COOL CHECK (Project Nr. 855554), a wide set of measures to reduce heat stress, consisting of e.g. unsealed surfaces, green areas, green roofs, improve reflective properties of different surfaces etc., for the densely built-up residential and business district of Jakomini in the city of Graz/Styria is investigated, to gain decisive data pointing out the peculiarities of UHIs and the potential cooling effects of these target measures for this local specific area. These results serving as a basis for the selection of sustainable measures that will be implemented, in coordination with local stakeholders and considering their interests.

  17. Heating Augmentation in Laminar Flow Due to Heat-Shield Cavities on the Project Orion CEV

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    2008-01-01

    An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion CEV heat-shield at laminar conditions. Testing was conducted in Mach 6 and Mach 10 perfect-gas wind tunnels to obtain heating measurements on and around the compression pads using global phosphor thermography. Consistent trends in heating augmentation levels were observed in the data and correlations of average and maximum heating at the cavities were formulated in terms of the local boundary-layer parameters and cavity dimensions. Additional heating data from prior testing of Genesis and Mars Science Laboratory models were also examined to extend the parametric range of cavity heating correlations.

  18. An Improved Heat Budget Estimation Including Bottom Effects for General Ocean Circulation Models

    NASA Technical Reports Server (NTRS)

    Carder, Kendall; Warrior, Hari; Otis, Daniel; Chen, R. F.

    2001-01-01

    This paper studies the effects of the underwater light field on heat-budget calculations of general ocean circulation models for shallow waters. The presence of a bottom significantly alters the estimated heat budget in shallow waters, which affects the corresponding thermal stratification and hence modifies the circulation. Based on the data collected during the COBOP field experiment near the Bahamas, we have used a one-dimensional turbulence closure model to show the influence of the bottom reflection and absorption on the sea surface temperature field. The water depth has an almost one-to-one correlation with the temperature rise. Effects of varying the bottom albedo by replacing the sea grass bed with a coral sand bottom, also has an appreciable effect on the heat budget of the shallow regions. We believe that the differences in the heat budget for the shallow areas will have an influence on the local circulation processes and especially on the evaporative and long-wave heat losses for these areas. The ultimate effects on humidity and cloudiness of the region are expected to be significant as well.

  19. Mixed convection and heat generation/absorption aspects in MHD flow of tangent-hyperbolic nanoliquid with Newtonian heat/mass transfer

    NASA Astrophysics Data System (ADS)

    Qayyum, Sajid; Hayat, Tasawar; Shehzad, Sabir Ali; Alsaedi, Ahmed

    2018-03-01

    This article concentrates on the magnetohydrodynamic (MHD) stagnation point flow of tangent hyperbolic nanofluid in the presence of buoyancy forces. Flow analysis caused due to stretching surface. Characteristics of heat transfer are examined under the influence of thermal radiation and heat generation/absorption. Newtonian conditions for heat and mass transfer are employed. Nanofluid model includes Brownian motion and thermophoresis. The governing nonlinear partial differential systems of the problem are transformed into a systems of nonlinear ordinary differential equations through appropriate variables. Impact of embedded parameters on the velocity, temperature and nanoparticle concentration fields are presented graphically. Numerical computations are made to obtain the values of skin friction coefficient, local Nusselt and Sherwood numbers. It is concluded that velocity field enhances in the frame of mixed convection parameter while reverse situation is observed due to power law index. Effect of Brownian motion parameter on the temperature and heat transfer rate is quite reverse. Moreover impact of solutal conjugate parameter on the concentration and local Sherwood number is quite similar.

  20. A survey of heating and turbulent boundary layer characteristics of several hypersonic research aircraft configurations

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.

    1981-01-01

    Four of the configurations investigated during a proposed NASA-Langley hypersonic research aircraft program were selected for phase-change-paint heat-transfer testing and forebody boundary layer pitot surveys. In anticipation of future hypersonic aircraft, both published and unpublished data and results are reviewed and presented with the purpose of providing a synoptic heat-transfer data base from the research effort. Engineering heat-transfer predictions are compared with experimental data on both a global and a local basis. The global predictions are shown to be sufficient for purposes of configuration development, and even the local predictions can be adequate when interpreted in light of the proper flow field. In that regard, cross flow in the forebody boundary layers was examined for significant heating and aerodynamic effect on the scramjet engines. A design philosophy which evolved from the research airplane effort is used to design a forebody shape that produces thin, uniform, forebody boundary layers on a hypersonic airbreathing missile. Finally, heating/boundary layer phenomena which are not predictable with state-of-the-art knowledge and techniques are shown and discussed.

  1. Energetics of a two-phase model of lithospheric damage, shear localization and plate-boundary formation

    NASA Astrophysics Data System (ADS)

    Bercovici, David; Ricard, Yanick

    2003-03-01

    The two-phase theory for compaction and damage proposed by Bercovici et al. (2001a, J. Geophys. Res.,106, 8887-8906) employs a nonequilibrium relation between interfacial surface energy, pressure and viscous deformation, thereby providing a model for damage (void generation and microcracking) and a continuum description of weakening, failure and shear localization. Here we examine further variations of the model which consider (1) how interfacial surface energy, when averaged over the mixture, appears to be partitioned between phases; (2) how variability in deformational-work partitioning greatly facilitates localization; and (3) how damage and localization are manifested in heat output and bulk energy exchange. Microphysical considerations of molecular bonding and activation energy suggest that the apparent partitioning of surface energy between phases goes as the viscosity of the phases. When such partitioning is used in the two-phase theory, it captures the melt-compaction theory of McKenzie (1984, J. Petrol.,25, 713-765) exactly, as well as the void-damage theory proposed in a companion paper (Ricard & Bercovici, submitted). Calculations of 1-D shear localization with this variation of the theory still show at least three possible regimes of damage and localization: at low stress is weak localization with diffuse slowly evolving shear bands; at higher stress strong localization with narrow rapidly growing bands exists; and at yet higher shear stress it is possible for the system to undergo broadly distributed damage and no localization. However, the intensity of localization is strongly controlled by the variability of the deformational-work partitioning with dilation rate, represented by the parameter γ. For γ>> 1, extreme localization is allowed, with sharp profiles in porosity (weak zones), nearly discontinuous separation velocities and effectively singular dilation rates. Finally, the bulk heat output is examined for the 1-D system to discern how much deformational work is effectively stored as surface energy. In the high-stress, distributed-damage cases, heat output is reduced as more interfacial surface energy is created. Yet, in either the weak or strong localizing cases, the system always releases surface energy, regardless of the presence of damage or not, and thus slightly more heat is in fact released than energy is input through external work. Moreover, increased levels of damage (represented by the maximum work-partitioning f*) make the localizing system release surface energy faster as damage enhances phase separation and focusing of the porosity field, thus yielding more rapid loss of net interfacial surface area. However, when cases with different levels of damage are compared at similar stages of development (say, the peak porosity of the localization) it is apparent that increased damage causes smaller relative heat release and retards loss of net interfacial surface energy. The energetics and energy partitioning of this damage and shear-localization model are applied to estimating the energy costs of forming plate boundaries and generating plates from mantle convection.

  2. Study of heat dissipation process from heat sink using lensless Fourier transform digital holographic interferometry.

    PubMed

    Kumar, Varun; Shakher, Chandra

    2015-02-20

    This paper presents the results of experimental investigations about the heat dissipation process of plate fin heat sink using digital holographic interferometry. Visual inspection of reconstructed phase difference maps of the air field around the heat sink with and without electric power in the load resistor provides qualitative information about the variation of temperature and the heat dissipation process. Quantitative information about the temperature distribution is obtained from the relationship between the digitally reconstructed phase difference map of ambient air and heated air. Experimental results are presented for different current and voltage in the load resistor to investigate the heat dissipation process. The effect of fin spacing on the heat dissipation performance of the heat sink is also investigated in the case of natural heat convection. From experimental data, heat transfer parameters, such as local heat flux and convective heat transfer coefficients, are also calculated.

  3. Effects of tissue impedance on heat generation during RF delivery with the Thermage system

    NASA Astrophysics Data System (ADS)

    Tomkoria, Sara; Pope, Karl

    2005-04-01

    The Thermage ThermaCool TC system is a non-ablative RF device designed to promote tissue tightening and contouring. The system delivers RF energy to a target area under the skin, with volumetric tissue heating in that area. While the amount of energy delivered to a patient can be controlled by ThermaCool system settings, the distribution of energy to the treatment area and underlying layers is variable from individual to individual due to differences in body composition. The present study investigated how local tissue impedance affects the amount of discomfort experienced by patients during RF energy delivery. Discomfort results from heat generation in the treatment area. By using features of the ThermaCool TC System, local impedance (impedance of the treatment area), bulk impedance (impedance of the underlying tissue layers), and total impedance (the sum of local and bulk impedance) were measured for 35 patients. For each patient, impedance measurements were compared to discomfort levels expressed during treatment. Analysis of whole body, local, and bulk impedance values indicate that the percent of total body impedance in the local treatment area contributes to discomfort levels expressed by patients during treatment.

  4. Photoinduced random molecular reorientation by nonradiative energy relaxation: An experimental test

    NASA Astrophysics Data System (ADS)

    Manzo, C.; Paparo, D.; Marrucci, L.

    2004-11-01

    By measuring the time-resolved fluorescence depolarization as a function of light excitation wavelength we address the question of a possible photoinduced orientational randomization of amino-anthraquinone dyes in liquid solutions. We find no significant dependence within the experimental uncertainties of both the initial molecule anisotropy and of the subsequent rotational diffusion dynamics on the photon energy. This indicates that this effect, if present, must be very small. A simple model of photoinduced local heating and corresponding enhanced rotational diffusion is in accordance with this result. This null result rules out some recent proposals that photoinduced local heating may contribute significantly to molecular reorientation effects in different materials. A small but statistically significant effect of photon energy is instead found in the excited-state lifetime of the dye.

  5. Thermal footprints in groundwater of central European cities

    NASA Astrophysics Data System (ADS)

    Bayer, P.; Menberg, K.; Blum, P.

    2014-12-01

    Atmospheric thermal pollution in densely populated areas is recognized as a severe problem with consequences for human health, and considerable efforts are being taken to mitigate heat stress in cities. However, anthropogenic activities also influence the thermal environment beneath the ground level, with commonly growing temperatures that affect groundwater ecology and geothermal use efficiency. In our work, we identify the controlling mechanisms for the long-term evolution of such urban heat islands. The shallow groundwater temperatures in several central European cities such as Cologne, Karlsruhe, Munich, Berlin and Zurich were mapped at high spatial and temporal resolution. Thermal anomalies were found to be highly heterogeneous with local hot spots showing temperatures of more than 20°C. Accordingly, these urban regions show a considerable groundwater warming in comparison to undisturbed temperatures of 8-11°C. Examination of potential heat sources by analytical modelling reveals that increased ground surface temperatures and basements of buildings act as dominant drivers for the anthropogenic heat input into the groundwater. The factors are revealed to be case-specific and they may have pronounced local or regional effects. Typical local factors are for example buried district heating networks. In selected cities we find that the average urban heat flux is around one order of magnitude higher than the elevated ground heat flux due to recent climate change. Additionally, such as observed in Zurich, naturally controlled temperature variations can be substantial and they are shown to wash out anthropogenic thermal footprints.

  6. Implantable polymer/metal thin film structures for the localized treatment of cancer by Joule heating

    NASA Astrophysics Data System (ADS)

    Kan-Dapaah, Kwabena; Rahbar, Nima; Theriault, Christian; Soboyejo, Wole

    2015-04-01

    This paper presents an implantable polymer/metal alloy thin film structure for localized post-operative treatment of breast cancer. A combination of experiments and models is used to study the temperature changes due to Joule heating by patterned metallic thin films embedded in poly-dimethylsiloxane. The heat conduction within the device and the surrounding normal/cancerous breast tissue is modeled with three-dimensional finite element method (FEM). The FEM simulations are used to explore the potential effects of device geometry and Joule heating on the temperature distribution and lesion (thermal dose). The FEM model is validated using a gel model that mimics biological media. The predictions are also compared to prior results from in vitro studies and relevant in vivo studies in the literature. The implications of the results are discussed for the potential application of polymer/metal thin film structures in hyperthermic treatment of cancer.

  7. Heat transfer enhancement induced by wall inclination in turbulent thermal convection

    NASA Astrophysics Data System (ADS)

    Kenjereš, Saša

    2015-11-01

    We present a series of numerical simulations of turbulent thermal convection of air in an intermediate range or Rayleigh numbers (106≤Ra ≤109 ) with different configurations of a thermally active lower surface. The geometry of the lower surface is designed in such a way that it represents a simplified version of a mountain slope with different inclinations (i.e., "Λ "- and "V "-shaped geometry). We find that different wall inclinations significantly affect the local heat transfer by imposing local clustering of instantaneous thermal plumes along the inclination peaks. The present results reveal that significant enhancement of the integral heat transfer can be obtained (up to 32%) when compared to a standard Rayleigh-Bénard configuration with flat horizontal walls. This is achieved through combined effects of the enlargement of the heated surface and reorganization of the large-scale flow structures.

  8. Effect of ELMs on deuterium-loaded-tungsten plasma facing components

    NASA Astrophysics Data System (ADS)

    Umstadter, K. R.; Rudakov, D. L.; Wampler, W.; Watkins, J. G.; Wong, C. P. C.

    2011-08-01

    Prior heat pulse testing of plasma facing components (PFCs) has been completed in vacuum environments without the presence of background plasma. Edge localized modes (ELMs) will not be this kind of isolated event and one should know the effect of a plasma background during these transients. Heat-pulse experiments have been conducted in the PISCES-A device utilizing laser heating in a divertor-like plasma background. Initial results indicate that the erosion of PFCs is enhanced as compared to heat pulse or plasma only tests. To determine if the enhanced erosion effect is a phenomena only witnessed in the laboratory PISCES device, tungsten and graphite samples were exposed to plasmas in the lower divertor of the DIII-D tokamak using the Divertor Material Evaluation System (DiMES). Mass loss analysis indicates that materials that contain significant deuterium prior to experiencing a transient heating event will erode faster than those that have no or little retained deuterium.

  9. Effects on skin blood flow by provocation during local analgesia.

    PubMed

    Arildsson, M; Nilsson, G E; Strömberg, T

    2000-01-01

    Although topical analgesia cream has been used for several years, little is known about its effects on the microcirculation. Previous studies have shown a vasoconstrictive effect after short application times and a vasodilatation after longer application. It has also been shown that vasomotion does not occur in the analgesized skin. The present study was undertaken to investigate the alterations in skin blood perfusion following local cooling, local heating and pin-pricking after the establishment of analgesia. In 11 healthy volunteers, skin analgesia was attained by use of a eutectic mixture of lidocaine and prilocaine (EMLA, Astra Pain Control AB, Sweden) applied to the skin three hours prior to provocation. The changes in skin blood perfusion, after applying three different provocation methods, were studied using the laser Doppler technique. Local cooling and heating to temperatures of +10 and +45 degrees C, respectively, were applied for 9 s by use of a copper probe (O12 mm). In the pin-prick provocation method, a combined effect of deflection and penetration of the skin to in total 3 mm was attained. Identical provocation methods were applied to placebo treated and untreated skin areas. After heat provocation, significant differences in the perfusion response between the treatments were seen (P < 0.0001). Skin areas treated with analgesia cream responded with a slow increase in perfusion that persisted beyond the four minute measurement period. Placebo and untreated areas decreased their perfusion over time. After cooling a significant reduction in skin perfusion was seen, irrespective of the treatment. Similarly, after pin-pricking a perfusion increase was seen for all treatments. The findings indicate that topical analgesia influences the myogenic control of the blood flow in those vascular plexa measured by laser Doppler following heat provocation. No differences could be seen in the response to pin-pricking and cooling for the different treatments. Copyright 2000 Academic Press.

  10. Integration of Photothermal Effect and Heat Insulation to Efficiently Reduce Reaction Temperature of CO2 Hydrogenation.

    PubMed

    Zhang, Wenbo; Wang, Liangbing; Wang, Kaiwen; Khan, Munir Ullah; Wang, Menglin; Li, Hongliang; Zeng, Jie

    2017-02-01

    The photothermal effect is applied in CO 2 hydrogenation to reduce the reaction temperature under illumination by encapsulating Pt nanocubes and Au nanocages into a zeolitic imidazolate framework (ZIF-8). Under illumination, the heat generated by the photothermal effect of Au nanocages is mainly insulated in the ZIF-8 to form a localized high-temperature region, thereby improving the catalytic activity of Pt nanocubes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Heat Transfer Analysis of Localized Heat-Treatment for Grade 91 Steel

    NASA Astrophysics Data System (ADS)

    Walker, Jacob D.

    Many of the projects utilizing Grade 91 steel are large in scale, therefore it is necessary to assemble on site. The assembly of the major pieces requires welding in the assembly; this drastically changes the superior mechanical properties of Grade 91 steel that it was specifically developed for. Therefore, because of the adverse effects of welding on the mechanical properties of Grade 91, it is necessary to do a localized post weld heat treatment. As with most metallic materials grade 91 steel requires a very specific heat treatment process. This process includes a specific temperature and duration at that temperature to achieve the heat treatment desired. Extensive research has been done to determine the proper temperatures and duration to provide the proper microstructure for the superior mechanical properties that are inherent to Grade 91 steel. The welded sections are typically large structures that require local heat treatments and cannot be placed in an oven. The locations of these structures vary from indoors in a controlled environment to outdoors with unpredictable environments. These environments can be controlled somewhat, however in large part the surrounding conditions are unchangeable. Therefore, there is a need to develop methods to accurately apply the surrounding conditions and geometries to a theoretical model in order to provide the proper requirements for the local heat treatment procedure. Within this requirement is the requirement to define unknowns used in the heat transfer equations so that accurate models can be produced and accurate results predicted. This study investigates experimentally and numerically the heat transfer and temperature fields of Grade 91 piping in a local heat treatment. The objective of this thesis research is to determine all of the needed heat transfer coefficients. The appropriate heat transfer coefficients are determined through the inverse heat conduction method utilizing a ceramic heat blanket. This will be done through an inverse method by collecting actual data from different conditions and temperatures. Then the heat transfer coefficients are used to set up a model to determine the appropriate post-weld heat treatment conditions for Grade 91 steel. This will enable one to use the derived coefficients to run a forward analysis with the specific geometry and conditions they will encounter in the heat treatment process for their application. The analysis will provide a theoretical determination of time and temperatures needed to maintain the temperature for the proper time needed to properly heat treat the welded section in the desired areas that have been joined together through a welding process. Finally time and temperature combinations are compared with experimentally measured data. The forward model code applied to the parameters of the heat-treatment can then appropriately assist to determine the proper post-weld heat treatment conditions for the desired toughness and creep properties. This research is very beneficial to the joining of metals industry because it provides a way to ensure the method used to heat treat the welded section is being properly done, and the required heat treatment is achieved. It is applicable to many different geometries so that it can be modified to specific situations.

  12. Increasing bioenergy production on arable land: Does the regional and local climate respond? Germany as a case study

    NASA Astrophysics Data System (ADS)

    Tölle, Merja H.; Gutjahr, Oliver; Busch, Gerald; Thiele, Jan C.

    2014-03-01

    The extent and magnitude of land cover change effect on local and regional future climate during the vegetation period due to different forms of bioenergy plants are quantified for extreme temperatures and energy fluxes. Furthermore, we vary the spatial extent of plant allocation on arable land and simulate alternative availability of transpiration water to mimic both rainfed agriculture and irrigation. We perform climate simulations down to 1 km scale for 1970-1975 C20 and 2070-2075 A1B over Germany with Consortium for Small-Scale Modeling in Climate Mode. Here an impact analysis indicates a strong local influence due to land cover changes. The regional effect is decreased by two thirds of the magnitude of the local-scale impact. The changes are largest locally for irrigated poplar with decreasing maximum temperatures by 1°C in summer months and increasing specific humidity by 0.15 g kg-1. The increased evapotranspiration may result in more precipitation. The increase of surface radiative fluxes Rnet due to changes in latent and sensible heat is estimated by 5 W m-2locally. Moreover, increases in the surface latent heat flux cause strong local evaporative cooling in the summer months, whereas the associated regional cooling effect is pronounced by increases in cloud cover. The changes on a regional scale are marginal and not significant. Increasing bioenergy production on arable land may result in local temperature changes but not in substantial regional climate change in Germany. We show the effect of agricultural practices during climate transitions in spring and fall.

  13. Topical hindpaw application of L-menthol decreases responsiveness to heat with biphasic effects on cold sensitivity of rat lumbar dorsal horn neurons

    PubMed Central

    Klein, Amanda H.; Sawyer, Carolyn M.; Takechi, Kenichi; Davoodi, Auva; Ivanov, Margaret A.; Carstens, Mirela Iodi; Carstens, E

    2012-01-01

    Menthol is used in pharmaceutical applications because of its desired cooling and analgesic properties. The neural mechanism by which topical application of menthol decreases heat pain is not fully understood. We investigated the effects of topical menthol application on lumbar dorsal horn wide dynamic range and nociceptive-specific neuronal responses to noxious heat and cooling of glaborous hindpaw cutaneous receptive fields. Menthol increased thresholds for responses to noxious heat in a concentration-dependent manner. Menthol had a biphasic effect on cold-evoked responses, reducing the threshold (to warmer temperatures) at a low (1%) concentration and increasing threshold and reducing response magnitude at high (10, 40%) concentrations. Menthol had little effect on responses to innocuous or noxious mechanical stimuli, ruling out a local anesthetic action. Application of 40% menthol to the contralateral hindpaw tended to reduce responses to cooling and noxious heat, suggesting a weak heterosegmental inhibitory effect. These results indicate that menthol has an analgesic effect on heat sensitivity of nociceptive dorsal horn neurons, as well as biphasic effects on cold sensitivity, consistent with previous behavioral observations. PMID:22687951

  14. Turbulent heat transfer prediction method for application to scramjet engines

    NASA Technical Reports Server (NTRS)

    Pinckney, S. Z.

    1974-01-01

    An integral method for predicting boundary layer development in turbulent flow regions on two-dimensional or axisymmetric bodies was developed. The method has the capability of approximating nonequilibrium velocity profiles as well as the local surface friction in the presence of a pressure gradient. An approach was developed for the problem of predicting the heat transfer in a turbulent boundary layer in the presence of a high pressure gradient. The solution was derived with particular emphasis on its applicability to supersonic combustion; thus, the effects of real gas flows were included. The resulting integrodifferential boundary layer method permits the estimation of cooling reguirements for scramjet engines. Theoretical heat transfer results are compared with experimental combustor and noncombustor heat transfer data. The heat transfer method was used in the development of engine design concepts which will produce an engine with reduced cooling requirements. The Langley scramjet engine module was designed by utilizing these design concepts and this engine design is discussed along with its corresponding cooling requirements. The heat transfer method was also used to develop a combustor cooling correlation for a combustor whose local properties are computed one dimensionally by assuming a linear area variation and a given heat release schedule.

  15. Heat Transfer through a Condensate Droplet on Hydrophobic and Nanostructured Superhydrophobic Surfaces.

    PubMed

    Chavan, Shreyas; Cha, Hyeongyun; Orejon, Daniel; Nawaz, Kashif; Singla, Nitish; Yeung, Yip Fun; Park, Deokgeun; Kang, Dong Hoon; Chang, Yujin; Takata, Yasuyuki; Miljkovic, Nenad

    2016-08-09

    Understanding the fundamental mechanisms governing vapor condensation on nonwetting surfaces is crucial to a wide range of energy and water applications. In this paper, we reconcile classical droplet growth modeling barriers by utilizing two-dimensional axisymmetric numerical simulations to study individual droplet heat transfer on nonwetting surfaces (90° < θa < 170°). Incorporation of an appropriate convective boundary condition at the liquid-vapor interface reveals that the majority of heat transfer occurs at the three phase contact line, where the local heat flux can be up to 4 orders of magnitude higher than at the droplet top. Droplet distribution theory is incorporated to show that previous modeling approaches underpredict the overall heat transfer by as much as 300% for dropwise and jumping-droplet condensation. To verify our simulation results, we study condensed water droplet growth using optical and environmental scanning electron microscopy on biphilic samples consisting of hydrophobic and nanostructured superhydrophobic regions, showing excellent agreement with the simulations for both constant base area and constant contact angle growth regimes. Our results demonstrate the importance of resolving local heat transfer effects for the fundamental understanding and high fidelity modeling of phase change heat transfer on nonwetting surfaces.

  16. A rapid decrease in temperature induces latewood formation in artificially reactivated cambium of conifer stems

    PubMed Central

    Begum, Shahanara; Nakaba, Satoshi; Yamagishi, Yusuke; Yamane, Kenichi; Islam, Md. Azharul; Oribe, Yuichiro; Ko, Jae-Heung; Jin, Hyun-O; Funada, Ryo

    2012-01-01

    Background and Aims Latewood formation in conifers occurs during the later part of the growing season, when the cell division activity of the cambium declines. Changes in temperature might be important for wood formation in trees. Therefore, the effects of a rapid decrease in temperature on cellular morphology of tracheids were investigated in localized heating-induced cambial reactivation in Cryptomeria japonica trees and in Abies firma seedlings. Methods Electric heating tape and heating ribbon were wrapped on the stems of C. japonica trees and A. firma seedlings. Heating was discontinued when 11 or 12 and eight or nine radial files of differentiating and differentiated tracheids had been produced in C. japonica and A. firma stems, respectively. Tracheid diameter, cell wall thickness, percentage of cell wall area and percentage of lumen area were determined by image analysis of transverse sections and scanning electron microscopy. Key Results Localized heating induced earlier cambial reactivation and xylem differentiation in stems of C. japonica and A. firma as compared with non-heated stems. One week after cessation of heating, there were no obvious changes in the dimensions of the differentiating tracheids in the samples from adult C. japonica. In contrast, tracheids with a smaller diameter were observed in A. firma seedlings after 1 week of cessation of heating. Two or three weeks after cessation of heating, tracheids with reduced diameters and thickened cell walls were found. The results showed that the rapid decrease in temperature produced slender tracheids with obvious thickening of cell walls that resembled latewood cells. Conclusions The results suggest that a localized decrease in temperature of stems induces changes in the diameter and cell wall thickness of differentiating tracheids, indicating that cambium and its derivatives can respond directly to changes in temperature. PMID:22843340

  17. Geometrical correction factors for heat flux meters

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Papell, S. S.

    1974-01-01

    General formulas are derived for determining gage averaging errors of strip-type heat flux meters used in the measurement of one-dimensional heat flux distributions. The local averaging error e(x) is defined as the difference between the measured value of the heat flux and the local value which occurs at the center of the gage. In terms of e(x), a correction procedure is presented which allows a better estimate for the true value of the local heat flux. For many practical problems, it is possible to use relatively large gages to obtain acceptable heat flux measurements.

  18. Welding of Semiconductor Nanowires by Coupling Laser-Induced Peening and Localized Heating.

    PubMed

    Rickey, Kelly M; Nian, Qiong; Zhang, Genqiang; Chen, Liangliang; Suslov, Sergey; Bhat, S Venkataprasad; Wu, Yue; Cheng, Gary J; Ruan, Xiulin

    2015-11-03

    We demonstrate that laser peening coupled with sintering of CdTe nanowire films substantially enhances film quality and charge transfer while largely maintaining basic particle morphology. During the laser peening phase, a shockwave is used to compress the film. Laser sintering comprises the second step, where a nanosecond pulse laser beam welds the nanowires. Microstructure, morphology, material content, and electrical conductivities of the films are characterized before and after treatment. The morphology results show that laser peening can decrease porosity and bring nanowires into contact, and pulsed laser heating fuses those contacts. Multiphysics simulations coupling electromagnetic and heat transfer modules demonstrate that during pulsed laser heating, local EM field enhancement is generated specifically around the contact areas between two semiconductor nanowires, indicating localized heating. The characterization results indicate that solely laser peening or sintering can only moderately improve the thin film quality; however, when coupled together as laser peen sintering (LPS), the electrical conductivity enhancement is dramatic. LPS can decrease resistivity up to a factor of ~10,000, resulting in values on the order of ~10(5) Ω-cm in some cases, which is comparable to CdTe thin films. Our work demonstrates that LPS is an effective processing method to obtain high-quality semiconductor nanocrystal films.

  19. Welding of Semiconductor Nanowires by Coupling Laser-Induced Peening and Localized Heating

    PubMed Central

    Rickey, Kelly M.; Nian, Qiong; Zhang, Genqiang; Chen, Liangliang; Suslov, Sergey; Bhat, S. Venkataprasad; Wu, Yue; Cheng, Gary J.; Ruan, Xiulin

    2015-01-01

    We demonstrate that laser peening coupled with sintering of CdTe nanowire films substantially enhances film quality and charge transfer while largely maintaining basic particle morphology. During the laser peening phase, a shockwave is used to compress the film. Laser sintering comprises the second step, where a nanosecond pulse laser beam welds the nanowires. Microstructure, morphology, material content, and electrical conductivities of the films are characterized before and after treatment. The morphology results show that laser peening can decrease porosity and bring nanowires into contact, and pulsed laser heating fuses those contacts. Multiphysics simulations coupling electromagnetic and heat transfer modules demonstrate that during pulsed laser heating, local EM field enhancement is generated specifically around the contact areas between two semiconductor nanowires, indicating localized heating. The characterization results indicate that solely laser peening or sintering can only moderately improve the thin film quality; however, when coupled together as laser peen sintering (LPS), the electrical conductivity enhancement is dramatic. LPS can decrease resistivity up to a factor of ~10,000, resulting in values on the order of ~105 Ω-cm in some cases, which is comparable to CdTe thin films. Our work demonstrates that LPS is an effective processing method to obtain high-quality semiconductor nanocrystal films. PMID:26527570

  20. Roles of nitric oxide synthase isoforms in cutaneous vasodilation induced by local warming of the skin and whole body heat stress in humans

    PubMed Central

    Zhao, Joan L.; Wu, Yubo

    2009-01-01

    Nitric oxide (NO) participates in the cutaneous vasodilation caused by increased local skin temperature (Tloc) and whole body heat stress in humans. In forearm skin, endothelial NO synthase (eNOS) participates in vasodilation due to elevated Tloc and neuronal NO synthase (nNOS) participates in vasodilation due to heat stress. To explore the relative roles and interactions of these isoforms, we examined the effects of a relatively specific eNOS inhibitor, Nω-amino-l-arginine (LNAA), and a specific nNOS inhibitor, Nω-propyl-l-arginine (NPLA), both separately and in combination, on skin blood flow (SkBF) responses to increased Tloc and heat stress in two protocols. In each protocol, SkBF was monitored by laser-Doppler flowmetry (LDF) and mean arterial pressure (MAP) by Finapres. Cutaneous vascular conductance (CVC) was calculated (CVC = LDF/MAP). Intradermal microdialysis was used to treat one site with 5 mM LNAA, another with 5 mM NPLA, a third with combined 5 mM LNAA and 5 mM NPLA (Mix), and a fourth site with Ringer only. In protocol 1, Tloc was controlled with combined LDF/local heating units. Tloc was increased from 34°C to 41.5°C to cause local vasodilation. In protocol 2, after a period of normothermia, whole body heat stress was induced (water-perfused suits). At the end of each protocol, all sites were perfused with 58 mM nitroprusside to effect maximal vasodilation for data normalization. In protocol 1, at Tloc = 34°C, CVC did not differ between sites (P > 0.05). LNAA and Mix attenuated CVC increases at Tloc = 41.5°C to similar extents (P < 0.05, LNAA or Mix vs. untreated or NPLA). In protocol 2, in normothermia, CVC did not differ between sites (P > 0.05). During heat stress, NPLA and Mix attenuated CVC increases to similar extents, but no significant attenuation occurred with LNAA (P < 0.05, NPLA or Mix vs. untreated or LNAA). In forearm skin, eNOS mediates the vasodilator response to increased Tloc and nNOS mediates the vasodilator response to heat stress. The two isoforms do not appear to interact during either response. PMID:19745188

  1. Film condensation in a horizontal rectangular duct

    NASA Technical Reports Server (NTRS)

    Lu, Qing; Suryanarayana, N. V.

    1992-01-01

    Condensation heat transfer in an annular flow regime with and without interfacial waves was experimentally investigated. The study included measurements of heat transfer rate with condensation of vapor flowing inside a horizontal rectangular duct and experiments on the initiation of interfacial waves in condensation, and adiabatic air-liquid flow. An analytical model for the condensation was developed to predict condensate film thickness and heat transfer coefficients. Some conclusions drawn from the study are that the condensate film thickness was very thin (less than 0.6 mm). The average heat transfer coefficient increased with increasing the inlet vapor velocity. The local heat transfer coefficient decreased with the axial distance of the condensing surface, with the largest change at the leading edge of the test section. The interfacial shear stress, which consisted of the momentum shear stress and the adiabatic shear stress, appeared to have a significant effect on the heat transfer coefficients. In the experiment, the condensate flow along the condensing surface experienced a smooth flow, a two-dimensional wavy flow, and a three-dimensional wavy flow. In the condensation experiment, the local wave length decreased with the axial distance of the condensing surface and the average wave length decreased with increasing inlet vapor velocity, while the wave speed increased with increasing vapor velocity. The heat transfer measurements are reliable. And, the ultrasonic technique was effective for measuring the condensate film thickness when the surface was smooth or had waves of small amplitude.

  2. An assessment of potential weather effects due to operation of the Space Orbiting Light Augmentation Reflector Energy System (SOLARES)

    NASA Technical Reports Server (NTRS)

    Allen, N. C.

    1978-01-01

    Implementation of SOLARES will input large quantities of heat continuously into a stationary location on the Earth's surface. The quantity of heat released by each of the SOlARES ground receivers, having a reflector orbit height of 6378 km, exceeds by 30 times that released by large power parks which were studied in detail. Using atmospheric models, estimates are presented for the local weather effects, the synoptic scale effects, and the global scale effects from such intense thermal radiation.

  3. Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements

    NASA Astrophysics Data System (ADS)

    Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing

    2009-08-01

    Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.

  4. Impact of cloud radiative heating on East Asian summer monsoon circulation

    DOE PAGES

    Guo, Zhun; Zhou, Tianjun; Wang, Minghuai; ...

    2015-07-17

    The impacts of cloud radiative heating on East Asian Summer Monsoon (EASM) over the southeastern China (105°-125°E, 20°-35°N) are explained by using the Community Atmosphere Model version 5 (CAM5). Sensitivity experiments demonstrate that the radiative heating of clouds leads to a positive effect on the local EASM circulation over southeastern China. Without the radiative heating of cloud, the EASM circulation and precipitation would be much weaker than that in the normal condition. The longwave heating of clouds dominates the changes of EASM circulation. The positive effect of clouds on EASM circulation is explained by the thermodynamic energy equation, i.e. themore » different heating rate between cloud base and cloud top enhances the convective instability over southeastern China, which enhances updraft consequently. The strong updraft would further result in a southward meridional wind above the center of the updraft through Sverdrup vorticity balance.« less

  5. Design, Construction, and Qualification of a Microscale Heater Array for Use in Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Rule, T. D.; Kim, J.; Kalkur, T. S.

    1998-01-01

    Boiling heat transfer is an efficient means of heat transfer because a large amount of heat can be removed from a surface using a relatively small temperature difference between the surface and the bulk liquid. However, the mechanisms that govern boiling heat transfer are not well understood. Measurements of wall temperature and heat flux near the wall would add to the database of knowledge which is necessary to understand the mechanisms of nucleate boiling. A heater array has been developed which contains 96 heater elements within a 2.5 mm square area. The temperature of each heater element is held constant by an electronic control system similar to a hot-wire anemometer. The voltage that is being applied to each heater element can be measured and digitized using a high-speed A/D converter, and this digital information can be compiled into a series of heat-flux maps. Information for up to 10,000 heat flux maps can be obtained each second. The heater control system, the A/D system and the heater array construction are described in detail. Results are presented which show that this is an effective method of measuring the local heat flux during nucleate and transition boiling. Heat flux maps are obtained for pool boiling in FC-72 on a horizontal surface. Local heat flux variations are shown to be three to six times larger than variations in the spatially averaged heat flux.

  6. FEL investigations of energy transfer in condensed phase systems

    NASA Astrophysics Data System (ADS)

    Henderson, Don O.; Mu, Richard; Silberman, Enrique; Johnson, J. B.; Edwards, Glenn S.

    1993-07-01

    The vibrational dynamics of O-H groups in fused silica have been examined by a time- resolved pump-probe technique using the Vanderbilt Free Electron Laser (FEL). We consider two effects, local heating and transient thermal lensing, which can influence measured T1 values in one color pump-probe measurements. The dependence of these two effects on both the micropulse spacing and the total number of micropulses delivered to the sample are analyzed in detail for the O-H/SiO2 system. The results indicate that transient thermal lensing can significantly influence the measured probe signal. The local heating may cause thermally induced changes in the ground state population of the absorber, thereby complicating the analysis of the relaxation dynamics.

  7. The Urban Heat Island Phenomenon and Potential Mitigation Strategies

    NASA Technical Reports Server (NTRS)

    Estes, Maurice G., Jr.; Gorsevski, Virginia; Russell, Camille; Quattrochi, Dale; Luvall, Jeffrey

    1999-01-01

    A survey of urban heat island research is provided to describe how heat islands develop, urban landscape and meteorological characteristics that facilitate development, use of aircraft remote sensing data, and why heat islands are of interest to planners, elected officials, and the public. The roles of the National Aeronautics and Space Administration (NASA), the Environmental Protection Agency (EPA), other federal agencies, national laboratories and universities, state and local governments, and non-governmental organizations (NGOS) in studying the urban heat island effect and developing mitigation strategies are explored. Barriers that hamper mitigation efforts and case studies in Atlanta and Salt Lake City are discussed.

  8. In vivo determination of a modified heat capacity of small hepatocellular carcinomas prior to radiofrequency ablation: correlation with adjacent vasculature and tumour recurrence.

    PubMed

    Sheiman, Robert G; Mullan, Charles; Ahmed, Muneeb

    2012-01-01

    To calculate a modified heat capacity (mHC) of small hepatocellular carcinomas (HCCs) in vivo during radio frequency ablation (RFA) and to determine if mHC correlates with tumour vascularity, adjacent vessels or local recurrence. This study was IRB approved and informed consent was obtained from all patients. Before formal RFA, ambient HCC temperature and temperature 1 min after heating at constant wattage were measured in 29 patients. From temperature change and wattage, individual mHCs (joules required to increase tumour temperature by 1° Celsius) were calculated. Pre-RFA, three-phase computerised tomography (CT) scans were reviewed blindly for hepatic arteries, hepatic veins and portal veins abutting or within 3 mm of tumour edge from which twelve vascular parameters were quantified. Tumour enhancement (homogeneous or heterogeneous on arterial phase) was also assessed. Multiple regression was used to correlate mHC with vascular parameters and tumour enhancement. Cox proportional hazard model was used to examine the relationship of mHC to local recurrence. There was significant correlation of mHC with lesion enhancement (P = 0.0018), length of hepatic arteries (P < 0.0001) and total hepatic vein volume in contact with tumour (P = 0.016). No correlation was found with any non-abutting vessel or portal vein parameter. The chance of local recurrence increased with increasing mHC. Because the modified heat capacity of small HCCs in our study population correlated with HCC enhancement, abutting hepatic arteries, the volume of abutting hepatic veins and local recurrence, it may be an indicator of the heat sink effect (HSE) and supports the HSE as a risk factor for local recurrence.

  9. Effect of rib angle on local heat/mass transfer distribution in a two-pass rib-roughened channel

    NASA Technical Reports Server (NTRS)

    Chandra, P. R.; Han, J. C.; Lau, S. C.

    1987-01-01

    The naphthalene sublimation technique is used to investigate the heat transfer characteristics of turbulent air flow in a two-pass channel. A test section that resembles the internal cooling passages of gas turbine airfoils is employed. The local Sherwood numbers on the ribbed walls were found to be 1.5-6.5 times those for a fully developed flow in a smooth square duct. Depending on the rib angle-of-attack and the Reynolds number, the average ribbed-wall Sherwood numbers were 2.5-3.5 times higher than the fully developed values.

  10. High-Temperature Tolerance of Photosynthesis Can Be Linked to Local Electrical Responses in Leaves of Pea

    PubMed Central

    Sukhov, Vladimir; Gaspirovich, Vladimir; Mysyagin, Sergey; Vodeneev, Vladimir

    2017-01-01

    It is known that numerous stimuli induce electrical signals which can increase a plant's tolerance to stressors, including high temperature. However, the physiological role of local electrical responses (LERs), i.e., responses in the zone of stimulus action, in the plant's tolerance has not been sufficiently investigated. The aim of a current work is to analyze the connection between parameters of LERs with the thermal tolerance of photosynthetic processes in pea. Electrical activity and photosynthetic parameters in pea leaves were registered during transitions of air temperature in a measurement head (from 23 to 30°C, from 30 to 40°C, from 40 to 45°C, and from 45 to 23°C). This stepped heating decreased a photosynthetic assimilation of CO2 and induced generation of LERs in the heated leaf. Amplitudes of LERs, quantity of responses during the heating and the number of temperature transition, which induced the first generation of LERs, varied among different pea plants. Parameters of LERs were weakly connected with the photosynthetic assimilation of CO2 during the heating; however, a residual photosynthetic activity after a treatment by high temperatures increased with the growth of amplitudes and quantity of LERs and with lowering of the number of the heating transition, inducing the first electrical response. The effect was not connected with a photosynthetic activity before heating; similar dependences were also observed for effective and maximal quantum yields of photosystem II after heating. We believe that the observed effect can reflect a positive influence of LERs on the thermal tolerance of photosynthesis. It is possible that the process can participate in a plant's adaptation to stressors. PMID:29033854

  11. Encapsulated nano-heat-sinks for thermal management of heterogeneous chemical reactions.

    PubMed

    Zhang, Minghui; Hong, Yan; Ding, Shujiang; Hu, Jianjun; Fan, Yunxiao; Voevodin, Andrey A; Su, Ming

    2010-12-01

    This paper describes a new way to control temperatures of heterogeneous exothermic reactions such as heterogeneous catalytic reaction and polymerization by using encapsulated nanoparticles of phase change materials as thermally functional additives. Silica-encapsulated indium nanoparticles and silica encapsulated paraffin nanoparticles are used to absorb heat released in catalytic reaction and to mitigate gel effect of polymerization, respectively. The local hot spots that are induced by non-homogenous catalyst packing, reactant concentration fluctuation, and abrupt change of polymerization rate lead to solid to liquid phase change of nanoparticle cores so as to avoid thermal runaway by converting energies from exothermic reactions to latent heat of fusion. By quenching local hot spots at initial stage, reaction rates do not rise significantly because the thermal energy produced in reaction is isothermally removed. Nanoparticles of phase change materials will open a new dimension for thermal management of exothermic reactions to quench local hot spots, prevent thermal runaway of reaction, and change product distribution.

  12. A comparison of non-local electron transport models relevant to inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Sherlock, Mark; Brodrick, Jonathan; Ridgers, Christopher

    2017-10-01

    We compare the reduced non-local electron transport model developed by Schurtz et al. to Vlasov-Fokker-Planck simulations. Two new test cases are considered: the propagation of a heat wave through a high density region into a lower density gas, and a 1-dimensional hohlraum ablation problem. We find the reduced model reproduces the peak heat flux well in the ablation region but significantly over-predicts the coronal preheat. The suitability of the reduced model for computing non-local transport effects other than thermal conductivity is considered by comparing the computed distribution function to the Vlasov-Fokker-Planck distribution function. It is shown that even when the reduced model reproduces the correct heat flux, the distribution function is significantly different to the Vlasov-Fokker-Planck prediction. Two simple modifications are considered which improve agreement between models in the coronal region. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions.

    PubMed

    Richardson, Hugh H; Carlson, Michael T; Tandler, Peter J; Hernandez, Pedro; Govorov, Alexander O

    2009-03-01

    We perform a set of experiments on photoheating in a water droplet containing gold nanoparticles (NPs). Using photocalorimetric methods, we determine efficiency of light-to-heat conversion (eta) which turns out to be remarkably close to 1, (0.97 < eta < 1.03). Detailed studies reveal a complex character of heat transfer in an optically stimulated droplet. The main mechanism of equilibration is due to convectional flow. Theoretical modeling is performed to describe thermal effects at both nano- and millimeter scales. Theory shows that the collective photoheating is the main mechanism. For a large concentration of NPs and small laser intensity, an averaged temperature increase (at the millimeter scale) is significant (approximately 7 degrees C), whereas on the nanometer scale the temperature increase at the surface of a single NP is small (approximately 0.02 degrees C). In the opposite regime, that is, a small NP concentration and intense laser irradiation, we find an opposite picture: a temperature increase at the millimeter scale is small (0.1 degrees C) but a local, nanoscale temperature has strong local spikes at the surfaces of NPs (approximately 3 degrees C). These studies are crucial for the understanding of photothermal effects in NPs and for their potential and current applications in nano- and biotechnologies.

  14. Mmi1, the Yeast Homologue of Mammalian TCTP, Associates with Stress Granules in Heat-Shocked Cells and Modulates Proteasome Activity

    PubMed Central

    Grousl, Tomas; Stradalova, Vendula; Heeren, Gino; Richter, Klaus; Breitenbach-Koller, Lore; Malinsky, Jan; Hasek, Jiri; Breitenbach, Michael

    2013-01-01

    As we have shown previously, yeast Mmi1 protein translocates from the cytoplasm to the outer surface of mitochondria when vegetatively growing yeast cells are exposed to oxidative stress. Here we analyzed the effect of heat stress on Mmi1 distribution. We performed domain analyses and found that binding of Mmi1 to mitochondria is mediated by its central alpha-helical domain (V-domain) under all conditions tested. In contrast, the isolated N-terminal flexible loop domain of the protein always displays nuclear localization. Using immunoelectron microscopy we confirmed re-location of Mmi1 to the nucleus and showed association of Mmi1 with intact and heat shock-altered mitochondria. We also show here that mmi1Δ mutant strains are resistant to robust heat shock with respect to clonogenicity of the cells. To elucidate this phenotype we found that the cytosolic Mmi1 holoprotein re-localized to the nucleus even in cells heat-shocked at 40°C. Upon robust heat shock at 46°C, Mmi1 partly co-localized with the proteasome marker Rpn1 in the nuclear region as well as with the cytoplasmic stress granules defined by Rpg1 (eIF3a). We co-localized Mmi1 also with Bre5, Ubp3 and Cdc48 which are involved in the protein de-ubiquitination machinery, protecting protein substrates from proteasomal degradation. A comparison of proteolytic activities of wild type and mmi1Δ cells revealed that Mmi1 appears to be an inhibitor of the proteasome. We conclude that one of the physiological functions of the multifunctional protein module, Mmi1, is likely in regulating degradation and/or protection of proteins thereby indirectly regulating the pathways leading to cell death in stressed cells. PMID:24204967

  15. A new test procedure to evaluate the performance of substations for collective heating systems

    NASA Astrophysics Data System (ADS)

    Baetens, Robin; Verhaert, Ivan

    2017-11-01

    The overall heat demand of a single dwelling, existing out of space heating and domestic hot water production, decreases due to higher insulation rates. Because of this, investing in efficient and renewable heat generation becomes less interesting. Therefore, to incorporate renewables or residual heat on a larger scale, district heating or collective heating systems grow in importance. Within this set-up, the substation is responsible for the interaction between local demand for comfort and overall energy performance of the collective heating system. Many different configurations of substations exist, which influence both local comfort and central system performance. Next to that, also hybrids exist with additional local energy input. To evaluate performance of such substations, a new experimental-based test procedure is developed in order to evaluate these different aspects, characterized by the two roles a substation has, namely as heat generator and as heat consumer. The advantage of this approach is that an objective comparison between individual and central systems regarding performance on delivering local comfort can be executed experimentally. The lab set-up consists out of three different subsystems, namely the central system, the domestic hot water consumption and the local space heating. The central system can work with different temperature regimes and control strategies, as these aspects have proven to have the largest influence on actual performance. The domestic hot water system is able to generate similar tap profiles according to eco-design regulation for domestic hot water generation. The space heating system is able to demand a modular heat load.

  16. Potential regulation on the climatic effect of Tibetan Plateau heating by tropical air-sea coupling in regional models

    NASA Astrophysics Data System (ADS)

    Wang, Ziqian; Duan, Anmin; Yang, Song

    2018-05-01

    Based on the conventional weather research and forecasting (WRF) model and the air-sea coupled mode WRF-OMLM, we investigate the potential regulation on the climatic effect of Tibetan Plateau (TP) heating by the air-sea coupling over the tropical Indian Ocean and western Pacific. Results indicate that the TP heating significantly enhances the southwesterly monsoon circulation over the northern Indian Ocean and the South Asia subcontinent. The intensified southwesterly wind cools the sea surface mainly through the wind-evaporation-SST (sea surface temperature) feedback. Cold SST anomaly then weakens monsoon convective activity, especially that over the Bay of Bengal, and less water vapor is thus transported into the TP along its southern slope from the tropical oceans. As a result, summer precipitation decreases over the TP, which further weakens the TP local heat source. Finally, the changed TP heating continues to influence the summer monsoon precipitation and atmospheric circulation. To a certain extent, the air-sea coupling over the adjacent oceans may weaken the effect of TP heating on the mean climate in summer. It is also implied that considerations of air-sea interaction are necessary in future simulation studies of the TP heating effect.

  17. A Thermodynamical Theory with Internal Variables Describing Thermal Effects in Viscous Fluids

    NASA Astrophysics Data System (ADS)

    Ciancio, Vincenzo; Palumbo, Annunziata

    2018-04-01

    In this paper the heat conduction in viscous fluids is described by using the theory of classical irreversible thermodynamics with internal variables. In this theory, the deviation from the local equilibrium is characterized by vectorial internal variables and a generalized entropy current density expressed in terms of so-called current multipliers. Cross effects between heat conduction and viscosity are also considered and some phenomenological generalizations of Fourier's and Newton's laws are obtained.

  18. Heat transfer in gas turbine engines and three-dimensional flows; Proceedings of the Symposium, ASME Winter Annual Meeting, Chicago, IL, Nov. 27-Dec. 2, 1988

    NASA Technical Reports Server (NTRS)

    Elovic, E. (Editor); O'Brien, J. E. (Editor); Pepper, D. W. (Editor)

    1988-01-01

    The present conference on heat transfer characteristics of gas turbines and three-dimensional flows discusses velocity-temperature fluctuation correlations at the flow stagnation flow of a circular cylinder in turbulent flow, heat transfer across turbulent boundary layers with pressure gradients, the effect of jet grid turbulence on boundary layer heat transfer, and heat transfer characteristics predictions for discrete-hole film cooling. Also discussed are local heat transfer in internally cooled turbine airfoil leading edges, secondary flows in vane cascades and curved ducts, three-dimensional numerical modeling in gas turbine coal combustor design, numerical and experimental results for tube-fin heat exchanger airflow and heating characteristics, and the computation of external hypersonic three-dimensional flow field and heat transfer characteristics.

  19. Heat transfer in gas turbine engines and three-dimensional flows; Proceedings of the Symposium, ASME Winter Annual Meeting, Chicago, IL, Nov. 27-Dec. 2, 1988

    NASA Astrophysics Data System (ADS)

    Elovic, E.; O'Brien, J. E.; Pepper, D. W.

    The present conference on heat transfer characteristics of gas turbines and three-dimensional flows discusses velocity-temperature fluctuation correlations at the flow stagnation flow of a circular cylinder in turbulent flow, heat transfer across turbulent boundary layers with pressure gradients, the effect of jet grid turbulence on boundary layer heat transfer, and heat transfer characteristics predictions for discrete-hole film cooling. Also discussed are local heat transfer in internally cooled turbine airfoil leading edges, secondary flows in vane cascades and curved ducts, three-dimensional numerical modeling in gas turbine coal combustor design, numerical and experimental results for tube-fin heat exchanger airflow and heating characteristics, and the computation of external hypersonic three-dimensional flow field and heat transfer characteristics.

  20. Heat transfer in condensing and evaporating two-component, two-phase flow inside a horizontal tube

    NASA Astrophysics Data System (ADS)

    Duval, W. M. B.

    The effect of adding a small amount of oil to condensing and evaporation refrigerant R-12 following inside a horizontal tube is investigated both experimentally and analytically. Analytically, the problem is addressed assuming annular flow inside the tube. The analysis is based on the momentum and energy equations with the heat transfer in the liquid film determined using the Reynolds analogy between turbulent heat and momentum transfer. Two separate methods are developed for extending this model to include the effects of the two-component nature of the flow. Experimentally, two-phase local heat transfer measurements and flow pattern visualization are made for both condensation and evaporation. From the measurements, correlations are developed to predict two-phase heat transfer for the range of 0%, 2% and 5% oil fraction by mass flow.

  1. The effect of convective boundary condition on MHD mixed convection boundary layer flow over an exponentially stretching vertical sheet

    NASA Astrophysics Data System (ADS)

    Isa, Siti Suzilliana Putri Mohamed; Arifin, Norihan Md.; Nazar, Roslinda; Bachok, Norfifah; Ali, Fadzilah Md

    2017-12-01

    A theoretical study that describes the magnetohydrodynamic mixed convection boundary layer flow with heat transfer over an exponentially stretching sheet with an exponential temperature distribution has been presented herein. This study is conducted in the presence of convective heat exchange at the surface and its surroundings. The system is controlled by viscous dissipation and internal heat generation effects. The governing nonlinear partial differential equations are converted into ordinary differential equations by a similarity transformation. The converted equations are then solved numerically using the shooting method. The results related to skin friction coefficient, local Nusselt number, velocity and temperature profiles are presented for several sets of values of the parameters. The effects of the governing parameters on the features of the flow and heat transfer are examined in detail in this study.

  2. A numerical study of EGS heat extraction process based on a thermal non-equilibrium model for heat transfer in subsurface porous heat reservoir

    NASA Astrophysics Data System (ADS)

    Chen, Jiliang; Jiang, Fangming

    2016-02-01

    With a previously developed numerical model, we perform a detailed study of the heat extraction process in enhanced or engineered geothermal system (EGS). This model takes the EGS subsurface heat reservoir as an equivalent porous medium while it considers local thermal non-equilibrium between the rock matrix and the fluid flowing in the fractured rock mass. The application of local thermal non-equilibrium model highlights the temperature-difference heat exchange process occurring in EGS reservoirs, enabling a better understanding of the involved heat extraction process. The simulation results unravel the mechanism of preferential flow or short-circuit flow forming in homogeneously fractured reservoirs of different permeability values. EGS performance, e.g. production temperature and lifetime, is found to be tightly related to the flow pattern in the reservoir. Thermal compensation from rocks surrounding the reservoir contributes little heat to the heat transmission fluid if the operation time of an EGS is shorter than 15 years. We find as well the local thermal equilibrium model generally overestimates EGS performance and for an EGS with better heat exchange conditions in the heat reservoir, the heat extraction process acts more like the local thermal equilibrium process.

  3. General Population Knowledge about Extreme Heat: A Cross-Sectional Survey in Lisbon and Madrid.

    PubMed

    Gil Cuesta, Julita; van Loenhout, Joris Adriaan Frank; Colaço, Maria da Conceição; Guha-Sapir, Debarati

    2017-01-28

    Extreme heat is associated with an increased mortality and morbidity. National heat plans have been implemented to minimize the effect of extreme heat. The population's awareness and knowledge of national heat plans and extreme heat is essential to improve the community's behavior and adaptation. A general population survey was conducted in Lisbon and in Madrid to assess this knowledge. We used a questionnaire to interview passers-by. Results were compared between Lisbon and Madrid and between locals and foreigners, using Pearson Chi-square tests and Fisher's exact test. We conducted 260 interviews in six locations of different socio-economic backgrounds in each city. The most frequently mentioned extreme heat-related risk groups were the elderly (79.2%), children (49.6%) and babies (21.5%). The most frequently reported protective measures were increased fluid intake (73.1%) and avoiding exposure to the sun (50.8%). Knowledge about the heat plan was higher in Lisbon (37.2%) than in Madrid (25.2%) ( p -value = 0.03). Foreigners had less knowledge of risk groups compared to locals. Heat plans were not widely known in Madrid and Lisbon. Nonetheless, knowledge of practical concepts to face extreme heat, such as certain risk groups and protective measures, was found. Our results were similar to comparable surveys where specific respondents' groups were identified as less knowledgeable. This highlighted the importance of addressing these groups when communicating public health messages on heat. Foreigners should be specifically targeted to increase their awareness.

  4. Method of hyperthermia and tumor size influence effectiveness of doxorubicin release from thermosensitive liposomes in experimental tumors.

    PubMed

    Willerding, Linus; Limmer, Simone; Hossann, Martin; Zengerle, Anja; Wachholz, Kirsten; Ten Hagen, Timo L M; Koning, Gerben A; Sroka, Ronald; Lindner, Lars H; Peller, Michael

    2016-01-28

    Systemic chemotherapy of solid tumors could be enhanced by local hyperthermia (HT) in combination with thermosensitive liposomes (TSL) as drug carriers. In such an approach, effective HT of the tumor is considered essential for successful triggering local drug release and targeting of the drug to the tumor. To investigate the effect of HT method on the effectiveness of drug delivery, a novel laser-based HT device designed for the use in magnetic resonance imaging (MRI) was compared systematically with the frequently used cold light lamp and water bath HT. Long circulating phosphatidyldiglycerol-based TSL (DPPG2-TSL) with encapsulated doxorubicin (DOX) were used as drug carrier enabling intravascular drug release. Experiments were performed in male Brown Norway rats with a syngeneic soft tissue sarcoma (BN 175) located on both hind legs. One tumor was heated while the second tumor remained unheated as a reference. Six animals were investigated per HT method. DPPG2-TSL were injected i.v. at a stable tumor temperature above 40°C. Thereafter, temperature was maintained for 60min. Total DOX concentration in plasma, tumor tissue and muscle was determined post therapy by HPLC. Finally, the new laser-based device was tested in a MRI environment at 3T using DPPG2-TSL with encapsulated Gd-based contrast agent. All methods showed effective DOX delivery by TSL with 4.5-23.1ng/mg found in the heated tumors. In contrast, DOX concentration in the non-heated tumors was 0.5±0.1ng/mg. Independent of used HT methods, higher DOX levels were found in the smaller tumors. In comparison water bath induced lowest DOX delivery but still showing fourfold higher DOX concentrations compared to the non-heated tumors. With the laser-based applicator, a 13 fold higher DOX deposition was possible for large tumors and a 15 fold higher for the small tumors, respectively. Temperature gradients in the tumor tissue were higher with the laser and cold light lamp (-0.3°C/mm to -0.5°C/mm) compared to the water bath (-0.1°C/mm and -0.2°C/mm). Visualization of HT in the MRI demonstrated successful localized heating throughout the entire tumor volume by contrast agent release from DPPG2-TSL. In conclusion, HT triggered drug delivery by using DPPG2-TSL is a promising tool in chemotherapy but effectiveness markedly depended on the method of heating and also on tumor size. Local HT using a cold light lamp or the new laser applicator allowed more efficient drug delivery than using a regional water bath heating. MR-compatibility of the new applicator gives the opportunity for future experiments investing drug delivery in more detail by MRI at low technical efforts. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Protective effect of anti-oxidants on endothelial function in young Korean-Asians compared to Caucasians.

    PubMed

    Yim, Jongeun; Petrofsky, Jerrold; Berk, Lee; Daher, Noha; Lohman, Everett; Moss, Abigail; Cavalcanti, Paula

    2012-08-01

    Previous studies show that Asians have an impaired blood flow response (BFR) to occlusion after a single high fat (HF) meal. The mechanism is believed to be the presence and susceptibility to high free radicals in their blood. The free radical concentration after a HF meal has not been examined in Asians. Further the BFR to heat after a single HF meal in Koreans has not been measured. This study evaluated postprandial endothelial function by measuring the BFR to vascular occlusion and local heat before and after a HF meal and the interventional effects of anti-oxidant vitamins on improving endothelial function in young Korean-Asians (K) compared to Caucasians (C) with these assessments. Ten C and ten K participated in the study (mean age 25.3±3.6 years old). BFR to vascular occlusion and local heat and oxidative stress were assessed after a single low fat (LF) and HF meal at 2 hours compared to baseline. After administration of vitamins (1000 mg of vitamin C, 800 IU of vitamin E, and 300 mg of Coenzyme Q-10) for 14 days, the same measurements were made. This study showed that the skin BFR to vascular occlusion and local heat following a HF meal significantly decreased and free radicals significantly increased at 2 hours compared to baseline in K (p<.001), but not in C. When vitamins were given, the BFR to vascular occlusion and local heat before and after HF meal were not significantly different in K and C. These findings suggest that even a single HF meal can reduce endothelial response to stress through an oxidative stress mechanism but can be blocked by antioxidants, probably through scavenging free radicals in K. Since endothelial function improved even before a HF meal in K, endothelial damage from an Americanized diet may be reduced in K by antioxidants.

  6. Protective effect of anti-oxidants on endothelial function in young Korean-Asians compared to Caucasians

    PubMed Central

    Yim, Jongeun; Petrofsky, Jerrold; Berk, Lee; Daher, Noha; Lohman, Everett; Moss, Abigail; Cavalcanti, Paula

    2012-01-01

    Summary Background Previous studies show that Asians have an impaired blood flow response (BFR) to occlusion after a single high fat (HF) meal. The mechanism is believed to be the presence and susceptibility to high free radicals in their blood. The free radical concentration after a HF meal has not been examined in Asians. Further the BFR to heat after a single HF meal in Koreans has not been measured. Material/Methods This study evaluated postprandial endothelial function by measuring the BFR to vascular occlusion and local heat before and after a HF meal and the interventional effects of anti-oxidant vitamins on improving endothelial function in young Korean-Asians (K) compared to Caucasians (C) with these assessments. Ten C and ten K participated in the study (mean age 25.3±3.6 years old). BFR to vascular occlusion and local heat and oxidative stress were assessed after a single low fat (LF) and HF meal at 2 hours compared to baseline. After administration of vitamins (1000 mg of vitamin C, 800 IU of vitamin E, and 300 mg of Coenzyme Q-10) for 14 days, the same measurements were made. Results This study showed that the skin BFR to vascular occlusion and local heat following a HF meal significantly decreased and free radicals significantly increased at 2 hours compared to baseline in K (p<.001), but not in C. When vitamins were given, the BFR to vascular occlusion and local heat before and after HF meal were not significantly different in K and C. Conclusions These findings suggest that even a single HF meal can reduce endothelial response to stress through an oxidative stress mechanism but can be blocked by antioxidants, probably through scavenging free radicals in K. Since endothelial function improved even before a HF meal in K, endothelial damage from an Americanized diet may be reduced in K by antioxidants. PMID:22847195

  7. Solid motor aft closure insulation erosion. [heat flux correlation for rate analysis

    NASA Technical Reports Server (NTRS)

    Stampfl, E.; Landsbaum, E. M.

    1973-01-01

    The erosion rate of aft closure insulation in a number of large solid propellant motors was empirically analyzed by correlating the average ablation rate with a number of variables that had previously been demonstrated to affect heat flux. The main correlating parameter was a heat flux based on the simplified Bartz heat transfer coefficient corrected for two-dimensional effects. A multiplying group contained terms related to port-to-throat ratio, local wall angle, grain geometry and nozzle cant angle. The resulting equation gave a good correlation and is a useful design tool.

  8. The role of local heating in the 2015 Indian heat wave

    USDA-ARS?s Scientific Manuscript database

    India faced a major heat wave during the summer of 2015. Temperature anomalies peaked in the dry period before the onset of the summer monsoon, suggesting that local land-atmosphere feedbacks involving desiccated soils and vegetation might have played a role in driving the heat extreme. Upon examina...

  9. Coupling Analysis of Heat Island Effects, Vegetation Coverage and Urban Flood in Wuhan

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Liu, Q.; Fan, W.; Wang, G.

    2018-04-01

    In this paper, satellite image, remote sensing technique and geographic information system technique are main technical bases. Spectral and other factors comprehensive analysis and visual interpretation are main methods. We use GF-1 and Landsat8 remote sensing satellite image of Wuhan as data source, and from which we extract vegetation distribution, urban heat island relative intensity distribution map and urban flood submergence range. Based on the extracted information, through spatial analysis and regression analysis, we find correlations among heat island effect, vegetation coverage and urban flood. The results show that there is a high degree of overlap between of urban heat island and urban flood. The area of urban heat island has buildings with little vegetation cover, which may be one of the reasons for the local heavy rainstorms. Furthermore, the urban heat island has a negative correlation with vegetation coverage, and the heat island effect can be alleviated by the vegetation to a certain extent. So it is easy to understand that the new industrial zones and commercial areas which under constructions distribute in the city, these land surfaces becoming bare or have low vegetation coverage, can form new heat islands easily.

  10. Modeling the effects of urban vegetation on air pollution

    Treesearch

    David J. Nowak; Patrick J. McHale; Myriam Ibarra; Daniel Crane; Jack C. Stevens; Chris J. Luley

    1998-01-01

    Urban vegetation can directly and indirectly affect local and regional air quality by altering the urban atmospheric environment. Trees affect local air temperature by transpiring water through their leaves, by blocking solar radiation (tree shade), which reduces radiation absorption and heat storage by various anthropogenic surfaces (e.g., buildings, roads), and by...

  11. A Heat Warning System to Reduce Heat Illness in San Diego County

    NASA Astrophysics Data System (ADS)

    Tardy, A. O.; Corcus, I.; Guirguis, K.; Gershunov, A.; Basu, R.; Stepanski, B.

    2016-12-01

    The National Weather Service (NWS) has issued official heat alerts to the public and decision making partners for many years by developing a single criterion or regional criteria from heat indices which combine temperature and humidity. The criteria have typically relied on fixed thresholds and did not consider impact from a particular heat episode, nor did it factor seasonality, population acclimatization, or impacts on the most vulnerable subgroups. In 2013, the NWS San Diego office began modifying their criteria to account for local climatology with much less dependence on humidity or the heat index. These local changes were based on initial findings from the California Department of Public Health, EpiCenter California Injury Data Online system (EPIC), which document heat health impacts. The Scripps Institution of Oceanography (SIO) in collaboration with the California Environmental Protection Agency's Office of Environmental Health Hazard Assessment and the NWS completed a study of hospital visits during heat waves in California showing significant health impacts occurred in the past when no regional heat warning was issued. Therefore, the results supported the need for an exploratory project to implement significant modification of the traditional local criteria. To understand the impacts of heat on community health, medical outcome data were provided by the County of San Diego Emergency Medical Services Branch (EMS), which is provided by the County's Public Health Officer to monitor heat-related illness and injury daily during specific heat episodes. The data were combined with SIO research to inform the modification of local NWS heat criteria and establish trigger points to pilot new procedures for the issuance of heat alerts. Finally, procedures were customized for each of the county health departments in the NWS area of responsibility across extreme southwest California counties in collaboration with their Office of Emergency Services (OES). The collaboration was the development of a local Heat Health Impact and Public Notification System prototype. This system incorporates better temperature thresholds defined relative to local climate, levels of heat related responses and activation, as well as a standardized alerting terminology for public notifications.

  12. Analysis of high speed flow, thermal and structural interactions

    NASA Technical Reports Server (NTRS)

    Thornton, Earl A.

    1994-01-01

    Research for this grant focused on the following tasks: (1) the prediction of severe, localized aerodynamic heating for complex, high speed flows; (2) finite element adaptive refinement methodology for multi-disciplinary analyses; (3) the prediction of thermoviscoplastic structural response with rate-dependent effects and large deformations; (4) thermoviscoplastic constitutive models for metals; and (5) coolant flow/structural heat transfer analyses.

  13. Parks and the urban heat island: A longitudinal study in Westfield, Massachusetts

    Treesearch

    Robert S. Bristow; Robert Blackie; Nicole Brown

    2012-01-01

    Urban landscapes often have warmer temperatures than the surrounding countryside, a phenomenon known as the urban heat island (UHI) effect. This study compares and contrasts temperatures across Westfield, Massachusetts, a moderate size New England city, and considers the influence that the city’s parks and protected areas have on the local microclimate. The data show a...

  14. Transverse thermopherotic MHD Oldroyd-B fluid with Newtonian heating

    NASA Astrophysics Data System (ADS)

    Mehmood, R.; Rana, S.; Nadeem, S.

    2018-03-01

    Hydromagnetic transverse flow of an Oldroyd-B type fluid with suspension of nanoparticles and Newtonian heating effects is conferred in this article. Relaxation and Retardation time effects are taken into consideration. Using suitable transformations physical problem is converted into non-linear ordinary differential equations which are tackled numerically via Runge-Kutta Fehlberg integration scheme. Illustration of embedded constraints on flow characteristics are extracted through graphs. The physical response of velocity, temperature and concentration are investigated computationally. Momentum boundary layer thickness decreases but local heat and mass flux rises for Deborah number and Hartman number. The results provide interesting insights into certain applicable transport phenomena involving hydromagnetic rheological fluids.

  15. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D., Sr.

    1989-01-01

    A research program to study the effect of enhancement devices on flow boiling heat transfer in coolant channels, which are heated either from the top side or uniformly, is discussed. Freon 11 is the working fluid involved. The specific objectives are: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls, (2) examine the effect channel diameter (and the length-to-diameter aspect ratio) variations for the smooth wall channel, and (3) develop an improved data reduction analysis.

  16. Environmental Consequences of Rapid Urbanization in Zhejiang Province, East China

    PubMed Central

    Yang, Xuchao; Yue, Wenze; Xu, Honghui; Wu, Jingsheng; He, Yue

    2014-01-01

    Since reforms carried out in the late 1970s, China has experienced unprecedented rates of urban growth. Remote sensing data and surface observational data are used to investigate the urbanization process and related environmental consequences, focusing on extreme heat events and air pollution, in Zhejiang Province (ZJP, East China). Examination of satellite-measured nighttime light data indicates rapid urbanization in ZJP during the past decade, initially forming three urban clusters. With rapid urban sprawl, a significant Urban Heat Island (UHI) effect has emerged. During extreme heat events in summer, the UHI effect significantly exacerbates nocturnal heat stress in highly urbanized areas. Taking a long-term view, urbanization also causes additional hot days and hot degree days in urban areas. Urbanization also imposes a heavy burden on local and regional air quality in ZJP. Degraded visibility and an increase in haze days are observed at most meteorological stations, especially in the three urban clusters. The results show that urbanization has led to serious environmental problems in ZJP, not only on the city scale, but also on the regional scale. Maintaining a balance between the continuing process of urbanization and environmental sustainability is a major issue facing the local government. PMID:25019266

  17. Environmental consequences of rapid urbanization in zhejiang province, East china.

    PubMed

    Yang, Xuchao; Yue, Wenze; Xu, Honghui; Wu, Jingsheng; He, Yue

    2014-07-11

    Since reforms carried out in the late 1970s, China has experienced unprecedented rates of urban growth. Remote sensing data and surface observational data are used to investigate the urbanization process and related environmental consequences, focusing on extreme heat events and air pollution, in Zhejiang Province (ZJP, East China). Examination of satellite-measured nighttime light data indicates rapid urbanization in ZJP during the past decade, initially forming three urban clusters. With rapid urban sprawl, a significant Urban Heat Island (UHI) effect has emerged. During extreme heat events in summer, the UHI effect significantly exacerbates nocturnal heat stress in highly urbanized areas. Taking a long-term view, urbanization also causes additional hot days and hot degree days in urban areas. Urbanization also imposes a heavy burden on local and regional air quality in ZJP. Degraded visibility and an increase in haze days are observed at most meteorological stations, especially in the three urban clusters. The results show that urbanization has led to serious environmental problems in ZJP, not only on the city scale, but also on the regional scale. Maintaining a balance between the continuing process of urbanization and environmental sustainability is a major issue facing the local government.

  18. Local heat transfer distribution in a square channel with 90 continuous, 90 saw tooth profiled and 60 broken ribs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Abhishek; SriHarsha, V.; Prabhu, S.V.

    2008-02-15

    Internal channel cooling is employed in advanced gas turbines blade to allow high inlet temperatures so as to achieve high thrust/weight ratios and low specific fuel consumption. The objective of the present study is to measure the local heat transfer distributions in a double wall ribbed square channel with 90 continuous, 90 saw tooth profiled and 60 V-broken ribs. Comparison is made between the 90 continuous ribs (P/e = 7 and 10 for a e/D = 0.15) and 90 saw tooth profiled rib configurations (P/e = 7 for an e/D = 0.15) for the same rib height to the hydraulicmore » diameter ratio (e/D). The effect of pitch to rib height ratio (P/e = 7.5,10 and 12) of 60 V-broken ribbed channel with a constant rib height to hydraulic diameter ratio (e/D) of 0.0625 on the local heat transfer distribution is studied. The Reynolds number based on duct hydraulic diameter is ranging from 10,000 to 30,000. A thin stainless steel foil of 0.05 mm thickness is used as heater and infrared thermography technique is used to obtain the local temperature distribution on the surface. The images are captured in the periodically fully developed region of the channel. It is observed that the heat transfer augmentations in the channel with 90 saw tooth profiled ribs are comparable with those of 90 continuous ribs. The enhancements caused by 60 V-broken ribs are higher than those of 90 continuous ribs. The effect of pitch to the rib height ratio (P/e) is not significant for channel with 60 V-broken ribs for a given rib height to hydraulic diameter ratio (e/D = 0.0625). (author)« less

  19. Influence of heat-piping on the initiation and evolution of plate tectonics

    NASA Astrophysics Data System (ADS)

    Tosi, N.; Baumeister, P. A.

    2017-12-01

    The onset of plate tectonics on Earth is believed to be caused by local weakening of the lithosphere. If the convective stress locally exceeds a critical value, a plate-breaking event may occur and initiate plate tectonics. Heat-piping is a heat transport process in which a large amount of melt produced at depth migrates either to the surface (extrusive volcanism) or the base of the crust and lithosphere (intrusive volcanism) due to positive buoyancy and over-pressure in the melting region. As a result of melt being extruded and compacted at the surface or within the crust and lithosphere, cold, near surface material is advected downwards. This mechanism, which effectively cools the mantle, has been proposed to dominate the early phases of the Earth's evolution preventing the onset of plate tectonics by leveling the slope of the lithosphere (e.g. Moore & Webb, 2013, Kankanamge & Moore, 2016). This in turn prevents the formation of lithospheric undulations that are necessary to locally build up sufficient stress to initiate a plate-breaking event. In this work we explore the effects of both extrusive and intrusive heat-piping on the critical yield stress needed to start a plate-breaking event and maintain a regime of surface mobilization over long timescales. We use a two-dimensional cylindrical model of compressible thermal convection. The melt generated at depth is extracted instantaneously according to a defined ratio between extrusive and intrusive volcanism. Extrusive melt is deposited at the surface, whereas intrusive melt is assumed to migrate to a depth dependent on the pressure distribution in the column above the melt region. Considering heat piping tends to increase the episodicity in the mobilization of the surface due to the additional local cooling caused by melt extraction but does not affect significantly the critical yield stress necessary to induce lid failure. Our models indicate that the evolution of plate mobility is a stochastic process, strongly dependent on the choice of the initial conditions. Heat-piping does not seem to be a controlling factor for the onset of plate tectonics.

  20. Anomalies of hydrological cycle components during the 2007 heat wave in Bulgaria

    NASA Astrophysics Data System (ADS)

    Mircheva, Biliana; Tsekov, Milen; Meyer, Ulrich; Guerova, Guergana

    2017-12-01

    Heat waves have large adverse social, economic and environmental effects which include increased mortality, transport restrictions and a decreased agricultural production. The estimated economic losses of the 2007 heat wave in South-east Europe exceed 2 billion EUR with 19 000 hospitalisation in Romania only. Understanding the changes of the hydrological cycle components is essential for early forecasting of heat wave occurrence. Valuable insight of two components of the hydrological cycle, namely Integrated Water Vapour (IWV) and Terrestrial Water Storage Anomaly (TWSA), is now possible using observations from Global Navigation Satellite System (GNSS) and Gravity Recovery And Climate Experiment (GRACE) mission. In this study anomalies of temperature, precipitation, IWV and TWS in 2007 are compared to 2003-2013 period for Sofia, Bulgaria. In 2007, positive temperature anomalies are observed in January, February and July. There are negative IWV and precipitation anomalies in July 2007 that coincides with the heat wave in Bulgaria. TWSA in 2007 are negative in January, May and from July to October being largest in August. Long-term trends of: 1) temperatures have a local maximum in March 2007, 2) TWSA has a local minimum in May 2007, 3) IWV has a local minimum in September 2007, and 4) precipitation has a local maximum in July 2007. The TWSA interannual trends in Bulgaria, Hungary and Poland show similar behaviour as indicated by cross correlation coefficients of 0.9 and 0.7 between Bulgaria and Hungary and Bulgaria and Poland respectively. ALADIN-Climate describes the anomalies of temperature and IWV more successfully than those of precipitation and TWS.

  1. Experimental study of forced convection heat transport in porous media

    NASA Astrophysics Data System (ADS)

    Pastore, Nicola; Cherubini, Claudia; Rapti, Dimitra; Giasi, Concetta I.

    2018-04-01

    The present study is aimed at extending this thematic issue through heat transport experiments and their interpretation at laboratory scale. An experimental study to evaluate the dynamics of forced convection heat transfer in a thermally isolated column filled with porous medium has been carried out. The behavior of two porous media with different grain sizes and specific surfaces has been observed. The experimental data have been compared with an analytical solution for one-dimensional heat transport for local nonthermal equilibrium condition. The interpretation of the experimental data shows that the heterogeneity of the porous medium affects heat transport dynamics, causing a channeling effect which has consequences on thermal dispersion phenomena and heat transfer between fluid and solid phases, limiting the capacity to store or dissipate heat in the porous medium.

  2. Synergistic antibacterial effects of localized heat and oxidative stress caused by hydroxyl radicals mediated by graphene/iron oxide-based nanocomposites.

    PubMed

    Pan, Wen-Yu; Huang, Chieh-Cheng; Lin, Tzu-Tsen; Hu, Hsin-Yi; Lin, Wei-Chih; Li, Meng-Ju; Sung, Hsing-Wen

    2016-02-01

    This work develops a composite system of reduced graphene oxide (rGO)-iron oxide nanoparticles (rGO-IONP) that can synergistically induce physical and chemical damage to methicillin-resistant Staphylococcus aureus (MRSA) that are present in subcutaneous abscesses. rGO-IONP was synthesized by the chemical deposition of Fe(2+)/Fe(3+) ions on nanosheets of rGO in aqueous ammonia. The antibacterial efficacy of the as-prepared rGO-IONP was evaluated in a mouse model with MRSA-infected subcutaneous abscesses. Upon exposure to a near-infrared laser in vitro, rGO-IONP synergistically generated localized heat and large amounts of hydroxyl radicals, which inactivated MRSA. The in vivo results reveal that combined treatment with localized heat and oxidative stress that is caused by hydroxyl radicals accelerated the healing of wounds associated with MRSA-infected abscesses. The above results demonstrate that an rGO-IONP nanocomposite system that can effectively inactivate multiple-drug-resistant bacteria in subcutaneous infections was successfully developed. The emergence of methicillin-resistant S. aureus (MRSA) has posed a significant problem in the clinical setting. Thus, it is imperative to develop new treatment strategies against this. In this study, the authors described the use of reduced graphene oxide (rGO)-iron oxide nanoparticles (rGO-IONP) to induce heat and chemical damage to MRSA. This approach may provide a platform the design of other treatment modalities against multiple-drug-resistant bacteria. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Impact of highway construction on land surface energy balance and local climate derived from LANDSAT satellite data.

    PubMed

    Nedbal, Václav; Brom, Jakub

    2018-08-15

    Extensive construction of highways has a major impact on the landscape and its structure. They can also influence local climate and heat fluxes in the surrounding area. After the removal of vegetation due to highway construction, the amount of solar radiation energy used for plant evapotranspiration (latent heat flux) decreases, bringing about an increase in landscape surface temperature, changing the local climate and increasing surface run-off. In this study, we evaluated the impact of the D8 highway construction (Central Bohemia, Czech Republic) on the distribution of solar radiation energy into the various heat fluxes (latent, sensible and ground heat flux) and related surface functional parameters (surface temperature and surface wetness). The aim was to describe the severity of the impact and the distance from the actual highway in which it can be observed. LANDSAT multispectral satellite images and field meteorological measurements were used to calculate surface functional parameters and heat balance before and during the highway construction. Construction of a four-lane highway can influence the heat balance of the landscape surface as far as 90m in the perpendicular direction from the highway axis, i.e. up to 75m perpendicular from its edge. During a summer day, the decrease in evapotranspired water can reach up to 43.7m 3 per highway kilometre. This means a reduced cooling effect, expressed as the decrease in latent heat flux, by an average of 29.7MWh per day per highway kilometre and its surroundings. The loss of the cooling ability of the land surface by evaporation can lead to a rise in surface temperature by as much as 7°C. Thus, the results indicate the impact of extensive line constructions on the local climate. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Stakeholders' Perception on National Heatwave Plans and Their Local Implementation in Belgium and The Netherlands.

    PubMed

    van Loenhout, Joris Adriaan Frank; Rodriguez-Llanes, Jose Manuel; Guha-Sapir, Debarati

    2016-11-10

    National heatwave plans are aimed at reducing the avoidable human health consequences due to heatwaves, by providing warnings as well as improving communication between relevant stakeholders. The objective of this study was to assess the perceptions of key stakeholders within plans in Belgium and The Netherlands on their responsibilities, the partnerships, and the effectiveness of the local implementation in Brussels and Amsterdam. Key informant interviews were held with stakeholders that had an important role in development of the heatwave plan in these countries, or its implementation in Brussels or Amsterdam. Care organisations, including hospitals and elderly care organisations, had a lack of familiarity with the national heatwave plan in both cities, and prioritised heat the lowest. Some groups of individuals, specifically socially isolated individuals, are not sufficiently addressed by the current national heatwave plans and most local plans. Stakeholders reported that responsibilities were not clearly described and that the national plan does not describe tasks on a local level. We recommend to urgently increase awareness on the impact of heat on health among care organisations. More emphasis needs to be given to the variety of heat-risk groups. Stakeholders should be involved in the development of updates of the plans.

  5. The Influence of Low Wall Temperature on Boundary-Layer Transition and Local Heat Transfer on 2-Inch-Diameter Hemispheres at a Mach Number of 4.95 and a Reynolds Number per Foot of 73.2 x 10(exp 6)

    NASA Technical Reports Server (NTRS)

    Cooper, Morton; Mayo, Edward E.; Julius, Jerome D.

    1960-01-01

    Measurements of the location of boundary-layer transition and the local heat transfer have been made on 2-inch-diameter hemispheres in the Langley gas dynamics laboratory at a Mach number of 4.95, a Reynolds number per foot of 73.2 x 10(exp 6), and a stagnation temperature of approximately 400 F. The transient-heating thin-skin calorimeter technique was used, and the initial values of the wall-to-stream stagnation- temperature ratios were 0.16 (cold-model tests) and 0.65 (hot-model test). During two of the four cold tests, the boundary-layer flow changed from turbulent to laminar over large regions of the hemisphere as the model heated. On the basis of a detailed consideration of the magnitude of roughness possibly present during these two cold tests, it appears that this destabilizing effect of low wall temperatures (cooling) was not caused by roughness as a dominant influence. This idea of a decrease in boundary-layer stability with cooling has been previously suggested. (See, for example, NASA Memorandum 10-8-58E.) For the laminar data obtained during the early part of the hot test, the correlation of the local-heating data with laminar theory was excellent.

  6. Neutron stars at the dark matter direct detection frontier

    NASA Astrophysics Data System (ADS)

    Raj, Nirmal; Tanedo, Philip; Yu, Hai-Bo

    2018-02-01

    Neutron stars capture dark matter efficiently. The kinetic energy transferred during capture heats old neutron stars in the local galactic halo to temperatures detectable by upcoming infrared telescopes. We derive the sensitivity of this probe in the framework of effective operators. For dark matter heavier than a GeV, we find that neutron star heating can set limits on the effective operator cutoff that are orders of magnitude stronger than possible from terrestrial direct detection experiments in the case of spin-dependent and velocity-suppressed scattering.

  7. Synergy between fast-ion transport by core MHD and test blanket module fields in DIII-D experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidbrink, W. W.; Austin, M. E.; Collins, C. S.

    2015-07-21

    We measured fast-ion transport caused by the combination of MHD and a mock-up test-blanket module (TBM) coil in the DIII-D tokamak. The primary diagnostic is an infrared camera that measures the heat flux on the tiles surrounding the coil. The combined effects of the TBM and four other potential sources of transport are studied: neoclassical tearing modes, Alfvén eigenmodes, sawteeth, and applied resonant magnetic perturbation fields for the control of edge localized modes. A definitive synergistic effect is observed at sawtooth crashes where, in the presence of the TBM, the localized heat flux at a burst increases from 0.36 ±0.27more » to 2.6 ±0.5 MW/m -2.« less

  8. Varying stopping and self-focusing of intense proton beams as they heat solid density matter

    NASA Astrophysics Data System (ADS)

    Kim, J.; McGuffey, C.; Qiao, B.; Wei, M. S.; Grabowski, P. E.; Beg, F. N.

    2016-04-01

    Transport of intense proton beams in solid-density matter is numerically investigated using an implicit hybrid particle-in-cell code. Both collective effects and stopping for individual beam particles are included through the electromagnetic fields solver and stopping power calculations utilizing the varying local target conditions, allowing self-consistent transport studies. Two target heating mechanisms, the beam energy deposition and Ohmic heating driven by the return current, are compared. The dependences of proton beam transport in solid targets on the beam parameters are systematically analyzed, i.e., simulations with various beam intensities, pulse durations, kinetic energies, and energy distributions are compared. The proton beam deposition profile and ultimate target temperature show strong dependence on intensity and pulse duration. A strong magnetic field is generated from a proton beam with high density and tight beam radius, resulting in focusing of the beam and localized heating of the target up to hundreds of eV.

  9. Varying stopping and self-focusing of intense proton beams as they heat solid density matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.; McGuffey, C., E-mail: cmcguffey@ucsd.edu; Qiao, B.

    2016-04-15

    Transport of intense proton beams in solid-density matter is numerically investigated using an implicit hybrid particle-in-cell code. Both collective effects and stopping for individual beam particles are included through the electromagnetic fields solver and stopping power calculations utilizing the varying local target conditions, allowing self-consistent transport studies. Two target heating mechanisms, the beam energy deposition and Ohmic heating driven by the return current, are compared. The dependences of proton beam transport in solid targets on the beam parameters are systematically analyzed, i.e., simulations with various beam intensities, pulse durations, kinetic energies, and energy distributions are compared. The proton beam depositionmore » profile and ultimate target temperature show strong dependence on intensity and pulse duration. A strong magnetic field is generated from a proton beam with high density and tight beam radius, resulting in focusing of the beam and localized heating of the target up to hundreds of eV.« less

  10. Effect of heat wave at the initial stage in spark plasma sintering.

    PubMed

    Zhang, Long; Zhang, Xiaomin; Chu, Zhongxiang; Peng, Song; Yan, Zimin; Liang, Yuan

    2016-01-01

    Thermal effects are important considerations at the initial stage in spark plasma sintering of non-conductive Al2O3 powders. The generalized thermo-elastic theory is introduced to describe the influence of the heat transport and thermal focusing caused by thermal wave propagation within a constrained space and transient time. Simulations show that low sintering temperature can realize high local temperature because of the superposition effect of heat waves. Thus, vacancy concentration differences between the sink and the cross section of the particles increase relative to that observed during pressure-less and hot-pressure sintering. Results show that vacancy concentration differences are significantly improved during spark plasma sintering, thereby decreasing the time required for sintering.

  11. Distribution and depth of bottom-simulating reflectors in the Nankai subduction margin

    NASA Astrophysics Data System (ADS)

    Ohde, Akihiro; Otsuka, Hironori; Kioka, Arata; Ashi, Juichiro

    2018-04-01

    Surface heat flow has been observed to be highly variable in the Nankai subduction margin. This study presents an investigation of local anomalies in surface heat flows on the undulating seafloor in the Nankai subduction margin. We estimate the heat flows from bottom-simulating reflectors (BSRs) marking the lower boundaries of the methane hydrate stability zone and evaluate topographic effects on heat flow via two-dimensional thermal modeling. BSRs have been used to estimate heat flows based on the known stability characteristics of methane hydrates under low-temperature and high-pressure conditions. First, we generate an extensive map of the distribution and subseafloor depths of the BSRs in the Nankai subduction margin. We confirm that BSRs exist at the toe of the accretionary prism and the trough floor of the offshore Tokai region, where BSRs had previously been thought to be absent. Second, we calculate the BSR-derived heat flow and evaluate the associated errors. We conclude that the total uncertainty of the BSR-derived heat flow should be within 25%, considering allowable ranges in the P-wave velocity, which influences the time-to-depth conversion of the BSR position in seismic images, the resultant geothermal gradient, and thermal resistance. Finally, we model a two-dimensional thermal structure by comparing the temperatures at the observed BSR depths with the calculated temperatures at the same depths. The thermal modeling reveals that most local variations in BSR depth over the undulating seafloor can be explained by topographic effects. Those areas that cannot be explained by topographic effects can be mainly attributed to advective fluid flow, regional rapid sedimentation, or erosion. Our spatial distribution of heat flow data provides indispensable basic data for numerical studies of subduction zone modeling to evaluate margin parallel age dependencies of subducting plates.[Figure not available: see fulltext.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherlock, M.; Brodrick, J. P.; Ridgers, C. P.

    Here, we compare the reduced non-local electron transport model developed to Vlasov-Fokker-Planck simulations. Two new test cases are considered: the propagation of a heat wave through a high density region into a lower density gas, and a one-dimensional hohlraum ablation problem. We find that the reduced model reproduces the peak heat flux well in the ablation region but significantly over-predicts the coronal preheat. The suitability of the reduced model for computing non-local transport effects other than thermal conductivity is considered by comparing the computed distribution function to the Vlasov-Fokker-Planck distribution function. It is shown that even when the reduced modelmore » reproduces the correct heat flux, the distribution function is significantly different to the Vlasov-Fokker-Planck prediction. Two simple modifications are considered which improve agreement between models in the coronal region.« less

  13. Electro-statically controllable graphene local heater

    NASA Astrophysics Data System (ADS)

    Wang, Hui-Shan; Deng, Lian-Wen; Li, Lei; Sun, Qiu-Juan; Xie, Hong; Wang, Hao-Min

    2018-03-01

    We report on current-induced thermal power investigation of graphene nanostructure for potential local-heating applications. It is found that the efficiency of heating can be greatly improved if graphene is patterned into structures with narrow width and long channel. In a narrow graphene-ribbon, the Joule heating power exhibits an obvious dependence on the back-gate voltage. By monitoring Raman spectra, the temperature of graphene-ribbon can be determined. The temperature of graphene-ribbon is modulated by the electric field effect when the sample is sourced with a relatively high current. Project supported by the National Key R&D Program of China (Grant No. 2017YFF0206106), the Chinese Academy of Sciences (Grant No. XDB04040300), the National Natural Science Foundation of China (Grant No. 51772317), and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 16ZR1442700).

  14. Heat localization for targeted tumor treatment with nanoscale near-infrared radiation absorbers

    PubMed Central

    Xie, Bin; Singh, Ravi; Torti, F. M.; Keblinski, Pawel; Torti, Suzy

    2012-01-01

    Focusing heat delivery while minimizing collateral damage to normal tissues is essential for successful nanoparticle-mediated laser-induced thermal cancer therapy. We present thermal maps obtained via magnetic resonance imaging (MRI) characterizing laser heating of a phantom tissue containing a multiwalled carbon nanotube inclusion. The data demonstrate that heating continuously over tens of seconds leads to poor localization (~ 0.5 cm) of the elevated temperature region. By contrast, for the same energy input, heat localization can be reduced to the millimeter rather than centimeter range by increasing the laser power and shortening the pulse duration. The experimental data can be well understood within a simple diffusive heat conduction model. Analysis of the model indicates that to achieve 1 mm or better resolution, heating pulses of ~ 2s or less need to be used with appropriately higher heating power. Modeling these data using a diffusive heat conduction analysis predicts parameters for optimal targeted delivery of heat for ablative therapy. PMID:22948207

  15. An assessment of solar hot water heating in the Washington, D.C. area - Implications for local utilities

    NASA Astrophysics Data System (ADS)

    Stuart, M. W.

    1980-04-01

    A survey of residential solar hot water heating in the Washington, D.C. area is presented with estimates of the total solar energy contribution per year. These estimates are examined in relation to a local utility's peak-load curves to determine the impact of a substantial increase in solar domestic hot water use over the next 20 yr in the area of utility management. The results indicate that a 10% market penetration of solar water heaters would have no detrimental effect on the utility's peak-load profile and could save several million dollars in new plant construction costs.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Zhun; Zhou, Tianjun; Wang, Minghuai

    The impacts of cloud radiative heating on East Asian Summer Monsoon (EASM) over the southeastern China (105°-125°E, 20°-35°N) are explained by using the Community Atmosphere Model version 5 (CAM5). Sensitivity experiments demonstrate that the radiative heating of clouds leads to a positive effect on the local EASM circulation over southeastern China. Without the radiative heating of cloud, the EASM circulation and precipitation would be much weaker than that in the normal condition. The longwave heating of clouds dominates the changes of EASM circulation. The positive effect of clouds on EASM circulation is explained by the thermodynamic energy equation, i.e. themore » different heating rate between cloud base and cloud top enhances the convective instability over southeastern China, which enhances updraft consequently. The strong updraft would further result in a southward meridional wind above the center of the updraft through Sverdrup vorticity balance.« less

  17. Estimating population heat exposure and impacts on working people in conjunction with climate change

    NASA Astrophysics Data System (ADS)

    Kjellstrom, Tord; Freyberg, Chris; Lemke, Bruno; Otto, Matthias; Briggs, David

    2018-03-01

    Increased environmental heat levels as a result of climate change present a major challenge to the health, wellbeing and sustainability of human communities in already hot parts of this planet. This challenge has many facets from direct clinical health effects of daily heat exposure to indirect effects related to poor air quality, poor access to safe drinking water, poor access to nutritious and safe food and inadequate protection from disease vectors and environmental toxic chemicals. The increasing environmental heat is a threat to environmental sustainability. In addition, social conditions can be undermined by the negative effects of increased heat on daily work and life activities and on local cultural practices. The methodology we describe can be used to produce quantitative estimates of the impacts of climate change on work activities in countries and local communities. We show in maps the increasing heat exposures in the shade expressed as the occupational heat stress index Wet Bulb Globe Temperature. Some tropical and sub-tropical areas already experience serious heat stress, and the continuing heating will substantially reduce work capacity and labour productivity in widening parts of the world. Southern parts of Europe and the USA will also be affected. Even the lowest target for climate change (average global temperature change = 1.5 °C at representative concentration pathway (RCP2.6) will increase the loss of daylight work hour output due to heat in many tropical areas from less than 2% now up to more than 6% at the end of the century. A global temperature change of 2.7 °C (at RCP6.0) will double this annual heat impact on work in such areas. Calculations of this type of heat impact at country level show that in the USA, the loss of work capacity in moderate level work in the shade will increase from 0.17% now to more than 1.3% at the end of the century based on the 2.7 °C temperature change. The impact is naturally mainly occurring in the southern hotter areas. In China, the heat impact will increase from 0.3 to 2%, and in India, from 2 to 8%. Especially affected countries, such as Cambodia, may have losses going beyond 10%, while countries with most of the population at high cooler altitude, such as Ethiopia, may experience much lower losses.

  18. Use of a novel smart heating sleeping bag to improve wearers’ local thermal comfort in the feet

    PubMed Central

    Song, W. F.; Zhang, C. J.; Lai, D. D.; Wang, F. M.; Kuklane, K.

    2016-01-01

    Previous studies have revealed that wearers had low skin temperatures and cold and pain sensations in the feet, when using sleeping bags under defined comfort and limit temperatures. To improve wearers’ local thermal comfort in the feet, a novel heating sleeping bag (i.e., MARHT) was developed by embedding two heating pads into the traditional sleeping bag (i.e., MARCON) in this region. Seven female and seven male volunteers underwent two tests on different days. Each test lasted for three hours and was performed in a climate chamber with a setting temperature deduced from EN 13537 (2012) (for females: comfort temperature of −0.4 °C, and for males: the limit temperature of −6.4 °C). MARHT was found to be effective in maintaining the toe and feet temperatures within the thermoneutral range for both sex groups compared to the linearly decreased temperatures in MARCON during the 3-hour exposure. In addition, wearing MARHT elevated the toe blood flow significantly for most females and all males. Thermal and comfort sensations showed a large improvement in feet and a small to moderate improvement in the whole body for both sex groups in MARHT. It was concluded that MARHT is effective in improving local thermal comfort in the feet. PMID:26759077

  19. Use of a novel smart heating sleeping bag to improve wearers’ local thermal comfort in the feet

    NASA Astrophysics Data System (ADS)

    Song, W. F.; Zhang, C. J.; Lai, D. D.; Wang, F. M.; Kuklane, K.

    2016-01-01

    Previous studies have revealed that wearers had low skin temperatures and cold and pain sensations in the feet, when using sleeping bags under defined comfort and limit temperatures. To improve wearers’ local thermal comfort in the feet, a novel heating sleeping bag (i.e., MARHT) was developed by embedding two heating pads into the traditional sleeping bag (i.e., MARCON) in this region. Seven female and seven male volunteers underwent two tests on different days. Each test lasted for three hours and was performed in a climate chamber with a setting temperature deduced from EN 13537 (2012) (for females: comfort temperature of -0.4 °C, and for males: the limit temperature of -6.4 °C). MARHT was found to be effective in maintaining the toe and feet temperatures within the thermoneutral range for both sex groups compared to the linearly decreased temperatures in MARCON during the 3-hour exposure. In addition, wearing MARHT elevated the toe blood flow significantly for most females and all males. Thermal and comfort sensations showed a large improvement in feet and a small to moderate improvement in the whole body for both sex groups in MARHT. It was concluded that MARHT is effective in improving local thermal comfort in the feet.

  20. Use of a novel smart heating sleeping bag to improve wearers' local thermal comfort in the feet.

    PubMed

    Song, W F; Zhang, C J; Lai, D D; Wang, F M; Kuklane, K

    2016-01-13

    Previous studies have revealed that wearers had low skin temperatures and cold and pain sensations in the feet, when using sleeping bags under defined comfort and limit temperatures. To improve wearers' local thermal comfort in the feet, a novel heating sleeping bag (i.e., MARHT) was developed by embedding two heating pads into the traditional sleeping bag (i.e., MARCON) in this region. Seven female and seven male volunteers underwent two tests on different days. Each test lasted for three hours and was performed in a climate chamber with a setting temperature deduced from EN 13537 (2012) (for females: comfort temperature of -0.4 °C, and for males: the limit temperature of -6.4 °C). MARHT was found to be effective in maintaining the toe and feet temperatures within the thermoneutral range for both sex groups compared to the linearly decreased temperatures in MARCON during the 3-hour exposure. In addition, wearing MARHT elevated the toe blood flow significantly for most females and all males. Thermal and comfort sensations showed a large improvement in feet and a small to moderate improvement in the whole body for both sex groups in MARHT. It was concluded that MARHT is effective in improving local thermal comfort in the feet.

  1. Interaction between mantle and crustal detachments: a non-linear system controlling lithospheric extension

    NASA Astrophysics Data System (ADS)

    Rosenbaum, G.; Regenauer-Lieb, K.; Weinberg, R. F.

    2009-12-01

    We use numerical modelling to investigate the development of crustal and mantle detachment faults during lithospheric extension. Our models simulate a wide range of rift systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles, which grow in response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation at different levels of the lithosphere. Crustal detachment faults are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW/m2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30-40 km) and an intermediate (60-70 mW/m2) heat flow. Results show a non-linear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometime unexpected switches in extension modes (e.g. from diffuse rifting to effective lithospheric-scale rupturing) or from mantle- to crust-dominated strain localization. We interpret this non-linearity to result from the interference of doming wavelengths. Disharmony of crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonious crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged rifting history prior to continental breakup.

  2. Interaction between mantle and crustal detachments: A nonlinear system controlling lithospheric extension

    NASA Astrophysics Data System (ADS)

    Rosenbaum, Gideon; Regenauer-Lieb, Klaus; Weinberg, Roberto F.

    2010-11-01

    We use numerical modeling to investigate the development of crustal and mantle detachments during lithospheric extension. Our models simulate a wide range of extensional systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles as a response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation. Crustal detachments, here referred as low-angle normal decoupling horizons, are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW m-2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30-40 km) and an intermediate heat flow (60-70 mW m-2). Results show a nonlinear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometimes unexpected switches in extension modes (e.g., from diffuse extensional deformation to effective lithospheric-scale rupturing) or from mantle- to crust-dominated strain localization. We interpret this nonlinearity to result from the interference of doming wavelengths in the presence of multiple necking instabilities. Disharmonic crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonic crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged history of extension prior to continental breakup.

  3. Response of Urban Systems to Climate Change in Europe: Heat Stress Exposure and the Effect on Human Health

    NASA Astrophysics Data System (ADS)

    Stevens, Catherine; Thomas, Bart; Grommen, Mart

    2015-04-01

    Climate change is driven by global processes such as the global ocean circulation and its variability over time leading to changing weather patterns on regional scales as well as changes in the severity and occurrence of extreme events such as heavy rain- and windstorms, floods, drought, heat waves, etc. The summer 2003 European heat wave was the hottest summer on record in Europe over the past centuries leading to health crises in several countries like France and caused up to 70.000 excess deaths over four months in Central and Western Europe. The main risks induced by global climate change in urbanised areas are considered to be overheating and resulting health effects, increased exposure to flood events, increased damage losses from extreme weather conditions but also shortages in the provision of life-sustaining services. Moreover, the cities themselves create specific or inherent risks and urban adaptation is often very demanding. As most of Europe's inhabitants live in cities, it is of particular relevance to examine the impact of climate variability on urban areas and their populations. The present study focusses on the identification of heat stress variables related to human health and the extraction of this information by processing daily temperature statistics of local urban climate simulations over multiple timeframes of 20 years and three different European cities based on recent, near future and far future global climate predictions. The analyses have been conducted in the framework of the NACLIM FP7 project funded by the European Commission involving local stakeholders such as the cities of Antwerp (Belgium), Berlin (Germany) and Almada (Portugal) represented by different climate and urban characteristics. Apart from the urban-rural temperature increment (urban heat island effect), additional heat stress parameters such as the average number of heat wave days together with their duration and intensities have been covered during this research. In a subsequent step, the heat stress variables are superposed on relevant socio-economic datasets targeting total population and its distribution per age class as well as vulnerable institutions such as hospitals, schools, rest homes and child/day care facilities in order to generate heat stress exposure maps for each use case city and various climate, urban planning and mitigation scenarios. The specifications and requirements for the various scenarios have been consolidated in close collaboration with the local stakeholders during dedicated end-users workshops. The results of this study will allow urban planners and policy makers facing the challenges of climate change and develop sound strategies for evolving towards sustainable and climate resilient cities.

  4. Hydrogen film/conductive cooling

    NASA Technical Reports Server (NTRS)

    Ewen, R. L.

    1972-01-01

    Small scale nozzle tests using heated nitrogen were run to obtain effectiveness and wall heat transfer data with hydrogen film cooling. Effectiveness data are compared with an entrainment model developed from planar, unaccelerated flow data. Results indicate significant effects due to flow turning and acceleration. With injection velocity effects accounted for explicitly, heat transfer correlation coefficients were found to be the same with and without film cooling when properties are evaluated at an appropriate reference temperature for the local gas composition defined by the coolant effectiveness. A design study for an O2/H2 application with 300 psia (207 N/sq cm) chamber pressure and 1500 lbs (6670 N) thrust indicates an adiabatic wall design requires 4 to 5 percent of the total flow as hydrogen film cooling. Internal regenerative cooling designs were found to offer no reduction in coolant requirements.

  5. Urban effects on extreme heat in a mid-sized North American city

    NASA Astrophysics Data System (ADS)

    Schatz, J.; Kucharik, C. J.

    2013-12-01

    As climate change drives global temperatures higher, heat waves are projected to increase in frequency, intensity, and duration, particularly in cities where the urban heat island effect can further raise local temperatures. Cities contain 50% of the global population and 80% of the North American population, and these percentages are projected to reach 70% globally and 87% in North America by 2030. This creates a need to understand the nature of heat events not just globally but also within cities where local climate variation can be substantial. That local variation could prove highly consequential for heat adaptation in cities, making it important to understand the dynamics of extreme heat within urban landscapes. Our study addresses this need by characterizing 400m-resolution variation in air temperature and heat index during a historically hot year in Madison, Wisconsin. Madison is a mid-sized temperate city with a metropolitan area population of 568,593. It is surrounded by several large lakes and a complex rural landscape of agriculture, forests, wetlands, and grasslands. In 2012, Madison experienced its hottest year and third hottest summer on record, with the Madison airport reporting 39 days exceeding 90°F compared to an average of 9 days. In March 2012, we installed 135 Onset HOBO ProV2 T/RH sensors across the Madison area to record air temperature and relative humidity at 15 minute intervals. The data from this network provides a unique opportunity to study small-scale spatial variation in the magnitude and duration of hot conditions that are projected to become more common in the future. Our sensors recorded substantial variation in the magnitude and duration of high temperatures and heat indices during the summer of 2012. For temperature, the densest parts of the city experienced >200 hours ≥90°F compared to <100 hours in many rural areas. Temperatures ≥100°F occurred up to 22 hours in some parts of the city versus 0 hours in much of the rural surroundings. For heat index, the densest parts of Madison experienced >300 hours ≥90°F compared to <200 hours in most rural areas. Heat indices ≥100°F occurred >70 hours in dense urban areas compared to <50 hours in rural. The magnitude and duration of high temperatures were positively related to percent impervious surface coverage and negatively related to lake proximity, though lake proximity was not always significant. Heat index showed similar patterns with respect to impervious cover, but unlike temperature was negatively related to water body proximity due to the lakes providing a source of high humidity. Further results and analyses will be described and visualized, including a comparison with the relatively cool and wet summer of 2013. As climate change continues to raise heat related risks in cities across the world, these results have important implications for urban adaptation to high heat and its effects on human health, electric power demand, and the environment.

  6. An experimental study of heat transfer in a large-scale turbine rotor passage

    NASA Astrophysics Data System (ADS)

    Blair, Michael F.

    1992-06-01

    An experimental study of the heat transfer distribution in a turbine rotor passage was conducted in a large-scale, ambient temperature, rotating turbine model. Heat transfer was measured for both the full-span suction and pressure surfaces of the airfoil as well as for the hub endwall surface. The objective of this program was to document the effects of flow three-dimensionality on the heat transfer in a rotating blade row (vs a stationary cascade). Of particular interest were the effects of the hub and tip secondary flows, tip leakage and the leading-edge horseshoe vortex system. The effect of surface roughness on the passage heat transfer was also investigated. Midspan results are compared with both smooth-wall and rough-wall finite-difference two-dimensional heat transfer predictions. Contour maps of Stanton number for both the rotor airfoil and endwall surfaces revealed numerous regions of high heat transfer produced by the three-dimensional flows within the rotor passage. Of particular importance are regions of local enhancement (as much as 100 percent over midspan values) produced on the airfoil suction surface by the secondary flows and tip-leakage vortices and on the hub endwall by the leading-edge horseshoe vortex system.

  7. Equatorial cloud level convection on Venus

    NASA Astrophysics Data System (ADS)

    Lee, Yeon Joo; Imamura, Takeshi; Sugiyama, Koichiro; Sato, Takao M.; Maejima, Yasumitsu

    2016-10-01

    In the equatorial region on Venus, a clear cloud top morphology difference depending on solar local time has been observed through UV images. Laminar flow shaped clouds are shown on the morning side, and convective-like cells on the afternoon side (Titov et al. 2012). Baker et al. (1998) suggested that deep convective motions in the low-to-middle cloud layers at the 40-60 km range can explain cellular shapes. Imamura et al. (2014), however argued that this cannot be a reason, as convection in the low-to-middle cloud layers can be suppressed near sub solar regions due to a stabilizing effect by strong solar heating. We suggest that the observed feature may be related to strong solar heating at local noon time (Lee et al. 2015). Horizontal uneven distribution of an unknown UV absorber and/or cloud top structure may trigger horizontal convection (Toigo et al. 1994). In order to examine these possibilities, we processed 1-D radiative transfer model calculations from surface to 100 km altitude (SHDOM, Evans 1998), which includes clouds at 48-71 km altitudes (Crisp et al. 1986). The results on the equatorial thermal cooling and solar heating profiles were employed in a 2D fluid dynamic model calculation (CReSS, Tsuboki and Sakakibara 2007). The calculation covered an altitude range of 40-80 km and a 100-km horizontal distance. We compared three conditions; an 'effective' global circulation condition that cancels out unbalanced net radiative energy at equator, a condition without such global circulation effect, and the last condition assumed horizontally inhomogeneous unknown UV absorber distribution. Our results show that the local time dependence of lower level cloud convection is consistent with Imamura et al.'s result, and suggest a possible cloud top level convection caused by locally unbalanced net energy and/or horizontally uneven solar heating. This may be related to the observed cloud morphology in UV images. The effective global circulation condition, however, can "remove" such cloud top level convection. The later one consists with measured high static stability at the cloud top level from radio occultation measurement.

  8. Heat Sink Welding for Preventing Hot Cracking in Alloy 2195 Intersection Welds: A Feasibility Study

    NASA Technical Reports Server (NTRS)

    Yang, Yu-Ping; Dong, Pingsha; Rogers, Patrick

    2000-01-01

    Two concepts, stationary cooling and trailing cooling, were proposed to prevent weld intersection cracking. Finite element analysis was used to demonstrate the potential effectiveness of those two concepts. Both stationary and trailing heat sink setups were proposed for preventing intersection cracking. The cooling media could be liquid nitrogen, or pressured air knife. Welding experiments on the small test panel with the localized heat sink confirmed the feasibility of using such a stationary cooling technique. The required cooling was achieved in this test panel. Systematic welding experiments should be conducted in the future to validate and refine the heat sink technique for preventing intersection cracking.

  9. Urban heat islands in the subsurface of German cities

    NASA Astrophysics Data System (ADS)

    Menberg, K.; Blum, P.; Zhu, K.; Bayer, P.

    2012-04-01

    In the subsurface of many cities there are widespread and persistent thermal anomalies (subsurface urban heat islands) that result in a warming of urban aquifers. The reasons for this heating are manifold. Possible heat sources are basements of buildings, leakage of sewage systems, buried district heating networks, re-injection of cooling water and solar irradiation on paved surfaces. In the current study, the reported groundwater temperatures in several German cities, such as Berlin, Munich, Cologne and Karlsruhe, are compared. Available data sets are supplemented by temperature measurements and depth profiles in observation wells. Trend analyses are conducted with time series of groundwater temperatures, and three-dimensional groundwater temperature maps are provided. In all investigated cities, pronounced positive temperature anomalies are present. The distribution of groundwater temperatures appears to be spatially and temporally highly variable. Apparently, the increased heat input into the urban subsurface is controlled by very local and site-specific parameters. In the long-run, the superposition of various heat sources results in an extensive temperature increase. In many cases, the maximum temperature elevation is found close to the city centre. Regional groundwater temperature differences between the city centre and the rural background are up to 5 °C, with local hot spots of even more pronounced anomalies. Particular heat sources, like cooling water injections or case-specific underground constructions, can cause local temperatures > 20°C in the subsurface. Examination of the long-term variations in isotherm maps shows that temperatures have increased by about 1°C in the city, as well as in the rural background areas over the last decades. This increase could be reproduced with trend analysis of temperature data gathered from several groundwater wells. Comparison between groundwater and air temperatures in Karlsruhe, for example, also indicates a spatial correlation between the urban heat island effect in the subsurface and in the atmosphere.

  10. Effects of heat sink and source and entropy generation on MHD mixed convection of a Cu-water nanofluid in a lid-driven square porous enclosure with partial slip

    NASA Astrophysics Data System (ADS)

    Chamkha, A. J.; Rashad, A. M.; Mansour, M. A.; Armaghani, T.; Ghalambaz, M.

    2017-05-01

    In this work, the effects of the presence of a heat sink and a heat source and their lengths and locations and the entropy generation on MHD mixed convection flow and heat transfer in a porous enclosure filled with a Cu-water nanofluid in the presence of partial slip effect are investigated numerically. Both the lid driven vertical walls of the cavity are thermally insulated and are moving with constant and equal speeds in their own plane and the effect of partial slip is imposed on these walls. A segment of the bottom wall is considered as a heat source meanwhile a heat sink is placed on the upper wall of cavity. There are heated and cold parts placed on the bottom and upper walls, respectively, while the remaining parts are thermally insulated. Entropy generation and local heat transfer according to different values of the governing parameters are presented in detail. It is found that the addition of nanoparticles decreases the convective heat transfer inside the porous cavity at all ranges of the heat sink and source lengths. The results for the effects of the magnetic field show that the average Nusselt number decreases considerably upon the enhancement of the Hartmann number. Also, adding nanoparticles to a pure fluid leads to increasing the entropy generation for all values of D for λl=-λr = 1 .

  11. Experimental Study on Flow Boiling of Deionized Water in a Horizontal Long Small Channel

    NASA Astrophysics Data System (ADS)

    Huang, Qian; Jia, Li; Dang, Chao; Yang, Lixin

    2018-04-01

    In this paper, an experimental investigation on the flow boiling heat transfer in a horizontal long mini-channel was carried out. The mini-channel was with 2 mm wide and 1 mm deep and 900 mm long. The material of the mini-channel was stainless. The working fluid was deionized water. The experiments were conducted with the conditions of inlet pressure in the range of 0.2 0.5 MPa, mass flux in the range of 196.57-548.96 kg/m2s, and the outlet vapor quality in the range of 0.2 to 1. The heat flux was in the range of 292.86 kW/m2 to 788.48 kW/m2, respectively. The influences of mass flux and heat flux were studied. At a certain mass flow rate, the local heat transfer coefficient increased with the increase of the heat flux. If dry-out occurred in the mini-channel, the heat transfer coefficient decreased. At the same heat flux, the local heat transfer coefficient would depend on the mass flux. It would increase with the mass flux in a certain range, and then decrease if the mass flux was beyond this range. Experimental data were compared with the results of previous studies. Flow visualization and measurements were conducted to identify flow regime transitions. Results showed that there were eight different kinds of flow patterns occurring during the flow boiling. It was found that flow pattern had a significant effect on heat transfer.

  12. A parametric heat transfer study for cryogenic ball bearings in SSME HPOTP

    NASA Technical Reports Server (NTRS)

    Chyu, Mingking K.

    1989-01-01

    A numerical modeling is to examine the effects of coolant convective heat transfer coefficient and frictional heating on the local temperature characteristics of a ball element in Space Shuttle Main Engine (SSME) High Pressure Oxidizer Turbopump (HPOTP) bearing. The present modeling uses a control-volume based, finite-difference method to solve the non-dimensionalized heat conduction equation in spherical coordinate system. The dimensionless temperature is found as a function of Biot number, heat flux ratio between the two race contacts, and location in the ball. The current results show that, for a given cooling capability, the ball temperature generally increases almost linearly with the heat input from the race-contacts. This increase is always very high at one of the two contacts. An increase in heat transfer coefficient generally reduces the ball temperature and alleviates the temperature gradient, except for the regions very close to the race contacts. For a 10-fold increase of heat transfer coefficient, temperature decrease is 35 percent for the average over entire ball, and 10 percent at the inner-race contact. The corresponding change of temperature gradient displays opposing trends between the regions immediately adjacent to the contacts and the remaining portion of the ball. The average temperature gradient in the vicinity of both contacts increases approximately 70 to 100 percent. A higher temperature gradient produces excessive thermal stress locally which may be detrimental to the material integrity. This, however, is the only unfavorable issue for an increase of heat transfer coefficient.

  13. Control Mechanisms of the Electron Heat Flux in the Solar Wind: Observations in Comparison to Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Stverak, S.; Hellinger, P.; Landi, S.; Travnicek, P. M.; Maksimovic, M.

    2017-12-01

    Recent understanding of the heat transport and dissipation in the expanding solar wind propose number of complex control mechanisms down to the electron kinetic scales. We investigate the evolution of electron heat flux properties and constraints along the expansion using in situ observations from Helios spacecraft in comparison to numerical kinetic simulations. In particular we focus on the roles of Coulomb collisions and wave-particle interactions in shaping the electron velocity distribution functions and thus controlling the heat transported by the electron heat flux. We show the general evolution of the electron heat flux to be driven namely by the Coulomb collisions. Locally we demonstrate the wave-particle interactions related to the kinetic plasma instabilities to be providing effective constraints in case of extreme heat flux levels.

  14. Recent progress of RF-dominated experiments on EAST

    NASA Astrophysics Data System (ADS)

    Liu, F. K.; Zhao, Y. P.; Shan, J. F.; Zhang, X. J.; Ding, B. J.; Wang, X. J.; Wang, M.; Xu, H. D.; Qin, C. M.; Li, M. H.; Gong, X. Z.; Hu, L. Q.; Wan, B. N.; Song, Y. T.; Li, J. G.

    2017-10-01

    The research of EAST program is mostly focused on the development of high performance steady state scenario with ITER-like poloidal configuration and RF-dominated heating schemes. With the enhanced ITER-relevant auxiliary heating and current drive systems, the plasma profile control by coupling/integration of various combinations has been investigated, including lower hybrid current drive (LHCD), electron cyclotron resonance heating (ECRH) and ion cyclotron resonance heating (ICRH). The 12 MW ICRH system has been installed on EAST. Heating and confinement studies using the Hydrogen Minority Heating scheme have been investigated. One of the importance challenges for EAST is coupling higher power into the core plasma, experiments including changing plasma position, electron density, local gas puffing and antenna phasing scanning were performed to improve ICRF coupling efficiency on EAST. Results show that local gas injection and reducing the k|| can improve the coupling efficiency directly. By means of the 4.6 GHz and 2.45 GHz LHCD systems, H-mode can be obtained and sustained at relatively high density, even up to ne ˜ 4.5 × 1019 m-3, where a current drive effect is still observed. Meanwhile, effect of source frequency (2.45GHz and 4.6GHz) on LHCD characteristic has been studied on EAST, showing that higher frequency improves penetration of the coupled LH (lower hybrid) power into the plasma core and leads to a better effect on plasma characteristics. Studies demonstrate the role of parasitic effects of edge plasma in LHCD and the mitigation by increasing source frequency. Experiments of effect of LH spectrum and plasma density on plasma characteristics are performed, suggesting the possibility of plasma control for high performance. The development of a 4MW ECRH system is in progress for the purpose of plasma heating and MHD control. The built ECRH system with 1MW source power has been successfully put into use on EAST in 2015. H-mode discharges with L-H transition triggered by ECRH injection were obtained and its effects on the electron temperature, particle confinement and the core MHD stabilities were observed. By further exploring and optimizing the RF combination for the sole RF heating and current drive regime, fully non-inductive H-mode discharges with Vloop˜0V has progressed steadily in the 2016 campaign. The overview of the significant progress of RF dominated experiments is presented in this paper.

  15. Urbanization-induced urban heat island and aerosol effects on climate extremes in the Yangtze River Delta region of China

    NASA Astrophysics Data System (ADS)

    Zhong, Shi; Qian, Yun; Zhao, Chun; Leung, Ruby; Wang, Hailong; Yang, Ben; Fan, Jiwen; Yan, Huiping; Yang, Xiu-Qun; Liu, Dongqing

    2017-04-01

    The WRF-Chem model coupled with a single-layer urban canopy model (UCM) is integrated for 5 years at convection-permitting scale to investigate the individual and combined impacts of urbanization-induced changes in land cover and pollutant emissions on regional climate in the Yangtze River Delta (YRD) region in eastern China. Simulations with the urbanization effects reasonably reproduced the observed features of temperature and precipitation in the YRD region. Urbanization over the YRD induces an urban heat island (UHI) effect, which increases the surface temperature by 0.53 °C in summer and increases the annual heat wave days at a rate of 3.7 d yr-1 in the major megacities in the YRD, accompanied by intensified heat stress. In winter, the near-surface air temperature increases by approximately 0.7 °C over commercial areas in the cities but decreases in the surrounding areas. Radiative effects of aerosols tend to cool the surface air by reducing net shortwave radiation at the surface. Compared to the more localized UHI effect, aerosol effects on solar radiation and temperature influence a much larger area, especially downwind of the city cluster in the YRD. Results also show that the UHI increases the frequency of extreme summer precipitation by strengthening the convergence and updrafts over urbanized areas in the afternoon, which favor the development of deep convection. In contrast, the radiative forcing of aerosols results in a surface cooling and upper-atmospheric heating, which enhances atmospheric stability and suppresses convection. The combined effects of the UHI and aerosols on precipitation depend on synoptic conditions. Two rainfall events under two typical but different synoptic weather patterns are further analyzed. It is shown that the impact of urban land cover and aerosols on precipitation is not only determined by their influence on local convergence but also modulated by large-scale weather systems. For the case with a strong synoptic forcing associated with stronger winds and larger spatial convergence, the UHI and aerosol effects are relatively weak. When the synoptic forcing is weak, however, the UHI and aerosol effects on local convergence dominate. This suggests that synoptic forcing plays a significant role in modulating the urbanization-induced land-cover and aerosol effects on individual rainfall event. Hence precipitation changes due to urbanization effects may offset each other under different synoptic conditions, resulting in little changes in mean precipitation at longer timescales.

  16. Urbanization-induced urban heat island and aerosol effects on climate extremes in the Yangtze River Delta region of China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Shi; Qian, Yun; Zhao, Chun

    The WRF-Chem model coupled with a single-layer urban canopy model (UCM) is integrated for 5 years at convection-permitting scale to investigate the individual and combined impacts of urbanization-induced changes in land cover and pollutant emissions on regional climate in the Yangtze River Delta (YRD) region in eastern China. Simulations with the urbanization effects reasonably reproduced the observed features of temperature and precipitation in the YRD region. Urbanization over the YRD induces an urban heat island (UHI) effect, which increases the surface temperature by 0.53 °C in summer and increases the annual heat wave days at a rate of 3.7 d yr −1 in themore » major megacities in the YRD, accompanied by intensified heat stress. In winter, the near-surface air temperature increases by approximately 0.7 °C over commercial areas in the cities but decreases in the surrounding areas. Radiative effects of aerosols tend to cool the surface air by reducing net shortwave radiation at the surface. Compared to the more localized UHI effect, aerosol effects on solar radiation and temperature influence a much larger area, especially downwind of the city cluster in the YRD. Results also show that the UHI increases the frequency of extreme summer precipitation by strengthening the convergence and updrafts over urbanized areas in the afternoon, which favor the development of deep convection. In contrast, the radiative forcing of aerosols results in a surface cooling and upper-atmospheric heating, which enhances atmospheric stability and suppresses convection. The combined effects of the UHI and aerosols on precipitation depend on synoptic conditions. Two rainfall events under two typical but different synoptic weather patterns are further analyzed. It is shown that the impact of urban land cover and aerosols on precipitation is not only determined by their influence on local convergence but also modulated by large-scale weather systems. For the case with a strong synoptic forcing associated with stronger winds and larger spatial convergence, the UHI and aerosol effects are relatively weak. When the synoptic forcing is weak, however, the UHI and aerosol effects on local convergence dominate. This suggests that synoptic forcing plays a significant role in modulating the urbanization-induced land-cover and aerosol effects on individual rainfall event. Hence precipitation changes due to urbanization effects may offset each other under different synoptic conditions, resulting in little changes in mean precipitation at longer timescales.« less

  17. Urbanization-induced urban heat island and aerosol effects on climate extremes in the Yangtze River Delta region of China

    DOE PAGES

    Zhong, Shi; Qian, Yun; Zhao, Chun; ...

    2017-04-27

    The WRF-Chem model coupled with a single-layer urban canopy model (UCM) is integrated for 5 years at convection-permitting scale to investigate the individual and combined impacts of urbanization-induced changes in land cover and pollutant emissions on regional climate in the Yangtze River Delta (YRD) region in eastern China. Simulations with the urbanization effects reasonably reproduced the observed features of temperature and precipitation in the YRD region. Urbanization over the YRD induces an urban heat island (UHI) effect, which increases the surface temperature by 0.53 °C in summer and increases the annual heat wave days at a rate of 3.7 d yr −1 in themore » major megacities in the YRD, accompanied by intensified heat stress. In winter, the near-surface air temperature increases by approximately 0.7 °C over commercial areas in the cities but decreases in the surrounding areas. Radiative effects of aerosols tend to cool the surface air by reducing net shortwave radiation at the surface. Compared to the more localized UHI effect, aerosol effects on solar radiation and temperature influence a much larger area, especially downwind of the city cluster in the YRD. Results also show that the UHI increases the frequency of extreme summer precipitation by strengthening the convergence and updrafts over urbanized areas in the afternoon, which favor the development of deep convection. In contrast, the radiative forcing of aerosols results in a surface cooling and upper-atmospheric heating, which enhances atmospheric stability and suppresses convection. The combined effects of the UHI and aerosols on precipitation depend on synoptic conditions. Two rainfall events under two typical but different synoptic weather patterns are further analyzed. It is shown that the impact of urban land cover and aerosols on precipitation is not only determined by their influence on local convergence but also modulated by large-scale weather systems. For the case with a strong synoptic forcing associated with stronger winds and larger spatial convergence, the UHI and aerosol effects are relatively weak. When the synoptic forcing is weak, however, the UHI and aerosol effects on local convergence dominate. This suggests that synoptic forcing plays a significant role in modulating the urbanization-induced land-cover and aerosol effects on individual rainfall event. Hence precipitation changes due to urbanization effects may offset each other under different synoptic conditions, resulting in little changes in mean precipitation at longer timescales.« less

  18. Stability analysis on the flow and heat transfer of nanofluid past a stretching/shrinking cylinder with suction effect

    NASA Astrophysics Data System (ADS)

    Bakar, Nor Ashikin Abu; Bachok, Norfifah; Arifin, Norihan Md.; Pop, Ioan

    2018-06-01

    The steady boundary layer flow over a stretching/shrinking cylinder with suction effect is numerically studied. Using a similarity transformations, the governing partial differential equations are transformed into a set of nonlinear differential equations and have been solved numerically using a bvp4c code in Matlab software. The nanofluid model used is taking into account the effects of Brownian motion and thermophoresis. The influences of the governing parameters namely the curvature parameter γ, mass suction parameter S, Brownian motion parameter Nb and thermophoresis parameter Nt on the flow, heat and mass transfers characteristics are presented graphically. The numerical results obtained for the skin friction coefficient, local Nusselt number and local Sherwood number are thoroughly determined and presented graphically for several values of the governing parameters. From our investigation, it is found that the non-unique (dual) solutions exist for a certain range of mass suction parameter. It is observed that as curvature parameter increases, the skin friction coefficient and heat transfer rate decrease, meanwhile the mass transfer rates increase. Moreover, the stability analysis showed that the first solution is linearly stable, while the second solution is linearly unstable.

  19. Multicriteria hierarchical iterative interactive algorithm for organizing operational modes of large heat supply systems

    NASA Astrophysics Data System (ADS)

    Korotkova, T. I.; Popova, V. I.

    2017-11-01

    The generalized mathematical model of decision-making in the problem of planning and mode selection providing required heat loads in a large heat supply system is considered. The system is multilevel, decomposed into levels of main and distribution heating networks with intermediate control stages. Evaluation of the effectiveness, reliability and safety of such a complex system is carried out immediately according to several indicators, in particular pressure, flow, temperature. This global multicriteria optimization problem with constraints is decomposed into a number of local optimization problems and the coordination problem. An agreed solution of local problems provides a solution to the global multicriterion problem of decision making in a complex system. The choice of the optimum operational mode of operation of a complex heat supply system is made on the basis of the iterative coordination process, which converges to the coordinated solution of local optimization tasks. The interactive principle of multicriteria task decision-making includes, in particular, periodic adjustment adjustments, if necessary, guaranteeing optimal safety, reliability and efficiency of the system as a whole in the process of operation. The degree of accuracy of the solution, for example, the degree of deviation of the internal air temperature from the required value, can also be changed interactively. This allows to carry out adjustment activities in the best way and to improve the quality of heat supply to consumers. At the same time, an energy-saving task is being solved to determine the minimum required values of heads at sources and pumping stations.

  20. A New Heat Supply System of Cogeneration for the Local Community

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hideki; Hisazumi, Yoshinori; Asano, Hitoshi; Morita, Hikaru; Hori, Toshihiro; Matsumoto, Toshiki; Abiko, Tetsuo

    In order for economically viable distributed generation systems for local communities to be widely accepted, it is essential to develop an efficient and low-cost heat supply system. For this purpose, we propose a new heat supply system which we already presented at the ICOPE-05 Chicago. The key technology for the system is to connect compact heat supply units with a heat storage function installed in all the households of the local community, such as condominiums, by a single-loop of hot water pipe. A phase change material was used for the heat supply unit as the heat storage material. However, for easier handling and reducing the cost of the unit, we have developed a new heat supply unit whose heat storage tank is made of plastic. Hot water for space heating is used as the heat storage material. Further we constructed a heat supply system for 7 lived-in households with a 5 kW gas engine and a 42 kW boiler as the heat sources. Some experiments with a heat supply unit and a heat supply system, such as for heat storage and heat supply for peak demand were conducted. Additionally, dynamic simulations of heat demand by 50 households and a COP evaluation of a new CO2 heat pump system using low-temperature exhaust gas from the gas engine were also conducted.

  1. Local Heat Transfer for Finned-Tube Heat Exchangers using Oval Tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, James Edward; Sohal, Manohar Singh

    2000-08-01

    This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with either a circular tube or an elliptical tube in crossflow. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally appliedmore » one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.56 x 10-3 to 15.6 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 630 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. The elliptical tube had an aspect ratio of 3:1 and a/H equal to 4.33. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of circular and oval tubes and their relationship to the complex horseshoe vortex system that forms in the flow stagnation region. Fin surface stagnation-region Nusselt numbers are shown to be proportional to the square-root of Reynolds number.« less

  2. Validation of Heat Transfer and Film Cooling Capabilities of the 3-D RANS Code TURBO

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping

    2010-01-01

    The capabilities of the 3-D unsteady RANS code TURBO have been extended to include heat transfer and film cooling applications. The results of simulations performed with the modified code are compared to experiment and to theory, where applicable. Wilcox s k-turbulence model has been implemented to close the RANS equations. Two simulations are conducted: (1) flow over a flat plate and (2) flow over an adiabatic flat plate cooled by one hole inclined at 35 to the free stream. For (1) agreement with theory is found to be excellent for heat transfer, represented by local Nusselt number, and quite good for momentum, as represented by the local skin friction coefficient. This report compares the local skin friction coefficients and Nusselt numbers on a flat plate obtained using Wilcox's k-model with the theory of Blasius. The study looks at laminar and turbulent flows over an adiabatic flat plate and over an isothermal flat plate for two different wall temperatures. It is shown that TURBO is able to accurately predict heat transfer on a flat plate. For (2) TURBO shows good qualitative agreement with film cooling experiments performed on a flat plate with one cooling hole. Quantitatively, film effectiveness is under predicted downstream of the hole.

  3. Re-evaluating occupational heat stress in a changing climate.

    PubMed

    Spector, June T; Sheffield, Perry E

    2014-10-01

    The potential consequences of occupational heat stress in a changing climate on workers, workplaces, and global economies are substantial. Occupational heat stress risk is projected to become particularly high in middle- and low-income tropical and subtropical regions, where optimal controls may not be readily available. This commentary presents occupational heat stress in the context of climate change, reviews its impacts, and reflects on implications for heat stress assessment and control. Future efforts should address limitations of existing heat stress assessment methods and generate economical, practical, and universal approaches that can incorporate data of varying levels of detail, depending on resources. Validation of these methods should be performed in a wider variety of environments, and data should be collected and analyzed centrally for both local and large-scale hazard assessments and to guide heat stress adaptation planning. Heat stress standards should take into account variability in worker acclimatization, other vulnerabilities, and workplace resources. The effectiveness of controls that are feasible and acceptable should be evaluated. Exposure scientists are needed, in collaboration with experts in other areas, to effectively prevent and control occupational heat stress in a changing climate. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  4. Method for localizing heating in tumor tissue

    DOEpatents

    Doss, James D.; McCabe, Charles W.

    1977-04-12

    A method for a localized tissue heating of tumors is disclosed. Localized radio frequency current fields are produced with specific electrode configurations. Several electrode configurations are disclosed, enabling variations in electrical and thermal properties of tissues to be exploited.

  5. Time-multiplexed two-channel capacitive radiofrequency hyperthermia with nanoparticle mediation.

    PubMed

    Kim, Ki Soo; Hernandez, Daniel; Lee, Soo Yeol

    2015-10-24

    Capacitive radiofrequency (RF) hyperthermia suffers from excessive temperature rise near the electrodes and poorly localized heat transfer to the deep-seated tumor region even though it is known to have potential to cure ill-conditioned tumors. To better localize heat transfer to the deep-seated target region in which electrical conductivity is elevated by nanoparticle mediation, two-channel capacitive RF heating has been tried on a phantom. We made a tissue-mimicking phantom consisting of two compartments, a tumor-tissue-mimicking insert against uniform background agarose. The tumor-tissue-mimicking insert was made to have higher electrical conductivity than the normal-tissue-mimicking background by applying magnetic nanoparticle suspension to the insert. Two electrode pairs were attached on the phantom surface by equal-angle separation to apply RF electric field to the phantom. To better localize heat transfer to the tumor-tissue-mimicking insert, RF power with a frequency of 26 MHz was delivered to the two channels in a time-multiplexed way. To monitor the temperature rise inside the phantom, MR thermometry was performed at a 3T MRI intermittently during the RF heating. Finite-difference-time-domain (FDTD) electromagnetic and thermal simulations on the phantom model were also performed to verify the experimental results. As compared to the one-channel RF heating, the two-channel RF heating with time-multiplexed driving improved the spatial localization of heat transfer to the tumor-tissue-mimicking region in both the simulation and experiment. The two-channel RF heating also reduced the temperature rise near the electrodes significantly. Time-multiplexed two-channel capacitive RF heating has the capability to better localize heat transfer to the nanoparticle-mediated tumor region which has higher electrical conductivity than the background normal tissues.

  6. Numerical Simulation of Temperature Sensor Self-Heating Effects in Gaseous and Liquid Hydrogen Under Cryogenic Conditions

    NASA Astrophysics Data System (ADS)

    Langebach, R.; Haberstroh, Ch.

    2010-04-01

    In this paper a numerical investigation is presented that characterizes the free convective flow field and the resulting heat transfer mechanisms for a resistance temperature sensor in liquid and gaseous hydrogen at various cryogenic conditions. Motivation for this is the detection of stratification effects e.g. inside a liquid hydrogen storage vessel. In this case, the local temperature measurement in still resting fluid requires a very high standard of precision despite an extremely poor thermal anchoring of the sensor. Due to electrical power dissipation a certain amount of heat has to be transferred from sensor to fluid. This can cause relevant measurement errors due to a slightly elevated sensor temperature. A commercial CFD code was employed to calculate the heat and mass transfer around the typical sensor geometry. The results were compared with existing heat transfer correlations from the literature. As a result the magnitude of averaged heat transfer coefficients and sensor over-heating as a function of power dissipation are given in figures. From the gained numerical results a new correlation for the averaged Nusselt Number is presented that represents very low Rayleigh Number flows. The correlation can be used to estimate sensor self-heating effects in similar situations.

  7. Multi-resolution analysis for region of interest extraction in thermographic nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Ortiz-Jaramillo, B.; Fandiño Toro, H. A.; Benitez-Restrepo, H. D.; Orjuela-Vargas, S. A.; Castellanos-Domínguez, G.; Philips, W.

    2012-03-01

    Infrared Non-Destructive Testing (INDT) is known as an effective and rapid method for nondestructive inspection. It can detect a broad range of near-surface structuring flaws in metallic and composite components. Those flaws are modeled as a smooth contour centered at peaks of stored thermal energy, termed Regions of Interest (ROI). Dedicated methodologies must detect the presence of those ROIs. In this paper, we present a methodology for ROI extraction in INDT tasks. The methodology deals with the difficulties due to the non-uniform heating. The non-uniform heating affects low spatial/frequencies and hinders the detection of relevant points in the image. In this paper, a methodology for ROI extraction in INDT using multi-resolution analysis is proposed, which is robust to ROI low contrast and non-uniform heating. The former methodology includes local correlation, Gaussian scale analysis and local edge detection. In this methodology local correlation between image and Gaussian window provides interest points related to ROIs. We use a Gaussian window because thermal behavior is well modeled by Gaussian smooth contours. Also, the Gaussian scale is used to analyze details in the image using multi-resolution analysis avoiding low contrast, non-uniform heating and selection of the Gaussian window size. Finally, local edge detection is used to provide a good estimation of the boundaries in the ROI. Thus, we provide a methodology for ROI extraction based on multi-resolution analysis that is better or equal compared with the other dedicate algorithms proposed in the state of art.

  8. Application of Thin-Film Thermocouples to Localized Heat Transfer Measurements

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Bruckner, R. J.; Smith, F. A.

    1995-01-01

    The paper describes a proof-of-concept experiment on thin-film thermocouples used for localized heat transfer measurements applicable to experiments on hot parts of turbine engines. The paper has three main parts. The first part describes the thin-film sensors and manufacturing procedures. Attention is paid to connections between thin-film thermocouples and lead wires, which has been a source of problems in the past. The second part addresses the test arrangement and facility used for the heat transfer measurements modeling the conditions for upcoming warm turbine tests at NASA LeRC. The paper stresses the advantages of a modular approach to the test rig design. Finally, we present the results of bulk and local heat flow rate measurements, as well as overall heat transfer coefficients obtained from measurements in a narrow passage with an aspect ratio of 11.8. The comparison of bulk and local heat flow rates confirms applicability of thin-film thermocouples to upcoming warm turbine tests.

  9. Photo-thermal nanosystems for diseased cell treatment

    NASA Astrophysics Data System (ADS)

    Raeesi, Vahid

    The prevalence of cancer and infectious disease demands for development of more effective treatment technologies. Current standard chemo- and radiotherapy for cancer offer only relative therapeutic efficacy at the cost of significant side-effects. On the other hand, resistance of microbes to current antibiotics has raised serious concern in public health sectors such as hospitals. Thermal therapy is an alternative technique that employs high temperatures to treat diseased cells via direct and indirect heat effects. Owing to its nature, this technique can offer enhanced therapeutic efficacy in local diseased regions via either mono- or combinatorial platforms and very minimal side-effects. However, existing bulk heating systems are limited in providing selective and controlled temperature rise in the desired region at tissue/cellular scales. This compromises the therapeutic efficacy of the treatment and increases the risk of off-target heating in healthy tissues. In this thesis, we propose the use of heat-generating nanoparticles to precisely target heat into small regions and study how they can be applied in cancer and bacteria treatment. Our model nanoparticle system generates heat by light stimulation. Different nanosystems based on this particle are developed and their thermal effects on therapeutic distribution are explored at tumor tissue and cellular scales. In addition, the thermal effect of these nanoparticles is utilized to overcome microbial resistance. By mechanistic understanding of nanoparticle thermal effects at different length scales, this research helps to rationalize proper design and development of heat- generating nanomedicine for cancer and microbial treatments.

  10. Simulation of the alpha particle heating and the helium ash source in an International Thermonuclear Experimental Reactor-like tokamak with an internal transport barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Lei, E-mail: lye@ipp.ac.cn; Guo, Wenfeng; Xiao, Xiaotao

    2014-12-15

    A guiding center orbit following code, which incorporates a set of non-singular coordinates for orbit integration, was developed and applied to investigate the alpha particle heating in an ITER-like tokamak with an internal transport barrier. It is found that a relatively large q (safety factor) value can significantly broaden the alpha heating profile in comparison with the local heating approximation; this broadening is due to the finite orbit width effects; when the orbit width is much smaller than the scale length of the alpha particle source profile, the heating profile agrees with the source profile, otherwise, the heating profile canmore » be significantly broadened. It is also found that the stagnation particles move to the magnetic axis during the slowing-down process, thus the effect of stagnation orbits is not beneficial to the helium ash removal. The source profile of helium ash is broadened in comparison with the alpha source profile, which is similar to the heating profile.« less

  11. Periodically driven ergodic and many-body localized quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponte, Pedro; Department of Physics and Astronomy, University of Waterloo, ON N2L 3G1; Chandran, Anushya

    2015-02-15

    We study dynamics of isolated quantum many-body systems whose Hamiltonian is switched between two different operators periodically in time. The eigenvalue problem of the associated Floquet operator maps onto an effective hopping problem. Using the effective model, we establish conditions on the spectral properties of the two Hamiltonians for the system to localize in energy space. We find that ergodic systems always delocalize in energy space and heat up to infinite temperature, for both local and global driving. In contrast, many-body localized systems with quenched disorder remain localized at finite energy. We support our conclusions by numerical simulations of disorderedmore » spin chains. We argue that our results hold for general driving protocols, and discuss their experimental implications.« less

  12. Mixed convection-radiation interaction in boundary-layer flow over horizontal surfaces

    NASA Astrophysics Data System (ADS)

    Ibrahim, F. S.; Hady, F. M.

    1990-06-01

    The effect of buoyancy forces and thermal radiation on the steady laminar plane flow over an isothermal horizontal flat plate is investigated within the framework of first-order boundary-layer theory, taking into account the hydrostatic pressure variation normal to the plate. The fluid considered is a gray, absorbing-emitting but nonscattering medium, and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. Both a hot surface facing upward and a cold surface facing downward are considered in the analysis. Numerical results for the local Nusselt number, the local wall shear stress, the local surface heat flux, as well as the velocity and temperature distributions are presented for gases with a Prandtl number of 0.7 for various values of the radiation-conduction parameter, the buoyancy parameter, and the temperature ratio parameter.

  13. Linkages and feedbacks in orogenic systems: An introduction

    USGS Publications Warehouse

    Thigpen, J. Ryan; Law, Richard D.; Merschat, Arthur J.; Stowell, Harold

    2017-01-01

    Orogenic processes operate at scales ranging from the lithosphere to grain-scale, and are inexorably linked. For example, in many orogens, fault and shear zone architecture controls distribution of heat advection along faults and also acts as the primary mechanism for redistribution of heat-producing material. This sets up the thermal structure of the orogen, which in turn controls lithospheric rheology, the nature and distribution of deformation and strain localization, and ultimately, through localized mechanical strengthening and weakening, the fundamental shape of the developing orogenic wedge (Fig. 1). Strain localization establishes shear zone and fault geometry, and it is the motion on these structures, in conjunction with climate, that often focuses erosional and exhumational processes. This climatic focusing effect can even drive development of asymmetry at the scale of the entire wedge (Willett et al., 1993).

  14. Implantable magnetic nanocomposites for the localized treatment of breast cancer

    NASA Astrophysics Data System (ADS)

    Kan-Dapaah, Kwabena; Rahbar, Nima; Soboyejo, Wole

    2014-12-01

    This paper explores the potential of implantable magnetic nanocomposites for the localized treatment of breast cancer via hyperthermia. Magnetite (Fe3O4)-reinforced polydimethylsiloxane composites were fabricated and characterized to determine their structural, magnetic, and thermal properties. The thermal properties and degree of optimization were shown to be strongly dependent on material properties of magnetic nanoparticles (MNPs). The in-vivo temperature profiles and thermal doses were investigated by the use of a 3D finite element method (FEM) model to simulate the heating of breast tissue. Heat generation was calculated using the linear response theory model. The 3D FEM model was used to investigate the effects of MNP volume fraction, nanocomposite geometry, and treatment parameters on thermal profiles. The implications of the results were then discussed for the development of implantable devices for the localized treatment of breast cancer.

  15. Nondestructive Evaluation of Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Nayeb-Hashemi, Hamid; Rossettos, J. N.

    1997-01-01

    The final report consists of 5 published papers in referred journals and a technical letter to the technical monitor. These papers include the following: (1) Comparison of the effects of debonds and voids in adhesive; (2) On the peak shear stresses in adhesive joints with voids; (3) Nondestructive evaluation of adhesively bonded joints by acousto-ultrasonic technique and acoustic emission; (4) Multiaxial fatigue life evaluation of tubular adhesively bonded joints; (5) Theoretical and experimental evaluation of the bond strength under peeling loads. The letter outlines the progress of the research. Also included is preliminary information on the study of nondestructive evaluation of composite materials subjected to localized heat damage. The investigators studied the effects of localized heat on unidirectional fiber glass epoxy composite panels. Specimens of the fiber glass epoxy composites were subjected to 400 C heat for varying lengths of time. The specimens were subjected to nondestructive tests. The specimens were then pulled to their failure and acoustic emission of these specimens were measured. The analysis of the data was continuing as of the writing of the letter, and includes a finite element stress analysis of the problem.

  16. Chemical reaction and radiation effects on MHD flow past an exponentially stretching sheet with heat sink

    NASA Astrophysics Data System (ADS)

    Nur Wahida Khalili, Noran; Aziz Samson, Abdul; Aziz, Ahmad Sukri Abdul; Ali, Zaileha Md

    2017-09-01

    In this study, the problem of MHD boundary layer flow past an exponentially stretching sheet with chemical reaction and radiation effects with heat sink is studied. The governing system of PDEs is transformed into a system of ODEs. Then, the system is solved numerically by using Runge-Kutta-Fehlberg fourth fifth order (RKF45) method available in MAPLE 15 software. The numerical results obtained are presented graphically for the velocity, temperature and concentration. The effects of various parameters are studied and analyzed. The numerical values for local Nusselt number, skin friction coefficient and local Sherwood number are tabulated and discussed. The study shows that various parameters give significant effect on the profiles of the fluid flow. It is observed that the reaction rate parameter affected the concentration profiles significantly and the concentration thickness of boundary layer decreases when reaction rate parameter increases. The analysis found is validated by comparing with the results previous work done and it is found to be in good agreement.

  17. Self-Generated Magnetic Fields in the Stagnation Phase of Indirect-Drive Implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Walsh, C. A.; Chittenden, J. P.; McGlinchey, K.; Niasse, N. P. L.; Appelbe, B. D.

    2017-04-01

    Three-dimensional extended-magnetohydrodynamic simulations of the stagnation phase of inertial confinement fusion implosion experiments at the National Ignition Facility are presented, showing self-generated magnetic fields over 104 T . Angular high mode-number perturbations develop large magnetic fields, but are localized to the cold, dense hot-spot surface, which is hard to magnetize. When low-mode perturbations are also present, the magnetic fields are injected into the hot core, reaching significant magnetizations, with peak local thermal conductivity reductions greater than 90%. However, Righi-Leduc heat transport effectively cools the hot spot and lowers the neutron spectra-inferred ion temperatures compared to the unmagnetized case. The Nernst effect qualitatively changes the results by demagnetizing the hot-spot core, while increasing magnetizations at the edge and near regions of large heat loss.

  18. Effect of Energetic Electrons Produced by Raman Scattering on Hohlraum Dynamics

    NASA Astrophysics Data System (ADS)

    Strozzi, D. J.; Bailey, D. S.; Doeppner, T.; Divol, L.; Harte, J. A.; Michel, P.; Thomas, C. A.

    2016-10-01

    A reduced model of laser-plasma interactions, namely crossed-beam energy transfer and stimulated Raman scattering (SRS), has recently been implemented in a self-consistent or ``inline'' way in radiation-hydrodynamics codes. We extend this work to treat the energetic electrons produced by Langmuir waves (LWs) from SRS by a suprathermal, multigroup diffusion model. This gives less spatially localized heating than depositing the LW energy into the local electron fluid. We compare the resulting hard x-ray production to imaging data on the National Ignition Facility, which indicate significant emission around the laser entrance hole. We assess the effects of energetic electrons, as well as background electron heat flow, on hohlraum dynamics and capsule implosion symmetry. Work performed under the auspices of the U.S. D.O.E. by LLNL under Contract No. DE-AC52-07NA27344.

  19. Self-Generated Magnetic Fields in the Stagnation Phase of Indirect-Drive Implosions on the National Ignition Facility.

    PubMed

    Walsh, C A; Chittenden, J P; McGlinchey, K; Niasse, N P L; Appelbe, B D

    2017-04-14

    Three-dimensional extended-magnetohydrodynamic simulations of the stagnation phase of inertial confinement fusion implosion experiments at the National Ignition Facility are presented, showing self-generated magnetic fields over 10^{4}  T. Angular high mode-number perturbations develop large magnetic fields, but are localized to the cold, dense hot-spot surface, which is hard to magnetize. When low-mode perturbations are also present, the magnetic fields are injected into the hot core, reaching significant magnetizations, with peak local thermal conductivity reductions greater than 90%. However, Righi-Leduc heat transport effectively cools the hot spot and lowers the neutron spectra-inferred ion temperatures compared to the unmagnetized case. The Nernst effect qualitatively changes the results by demagnetizing the hot-spot core, while increasing magnetizations at the edge and near regions of large heat loss.

  20. A numerical analysis for non-linear radiation in MHD flow around a cylindrical surface with chemically reactive species

    NASA Astrophysics Data System (ADS)

    Khan, Junaid Ahmad; Mustafa, M.

    2018-03-01

    Boundary layer flow around a stretchable rough cylinder is modeled by taking into account boundary slip and transverse magnetic field effects. The main concern is to resolve heat/mass transfer problem considering non-linear radiative heat transfer and temperature/concentration jump aspects. Using conventional similarity approach, the equations of motion and heat transfer are converted into a boundary value problem whose solution is computed by shooting method for broad range of slip coefficients. The proposed numerical scheme appears to improve as the strengths of magnetic field and slip coefficients are enhanced. Axial velocity and temperature are considerably influenced by a parameter M which is inversely proportional to the radius of cylinder. A significant change in temperature profile is depicted for growing wall to ambient temperature ratio. Relevant physical quantities such as wall shear stress, local Nusselt number and local Sherwood number are elucidated in detail.

  1. Viscous dissipation effects on MHD slip flow and heat transfer in porous micro duct with LTNE assumptions using modified lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Rabhi, R.; Amami, B.; Dhahri, H.; Mhimid, A.

    2017-11-01

    This paper deals with heat transfer and fluid flow in a porous micro duct under local thermal non equilibrium conditions subjected to an external oriented magnetic field. The considered sample is a micro duct filled with porous media assumed to be homogenous, isotropic and saturated. The slip velocity and the temperature jump were uniformly imposed to the wall. In modeling the flow, the Brinkmann-Forchheimer extended Darcy model was incorporated into the momentum equations. In the energy equation, the local thermal non equilibrium between the two phases was adopted. A modified axisymmetric lattice Boltzmann method was used to solve the obtained governing equation system. Attention was focused on the influence of the emerging parameters such as Knudsen number, Kn, Hartmann number, Ha, Eckert number, Ec, Biot number, Bi and the magnetic field inclination γ on flow and heat transfer throughout this paper.

  2. Local heat transfer in turbine disk-cavities. II - Rotor cooling with radial location injection of coolant

    NASA Astrophysics Data System (ADS)

    Bunker, R. S.; Metzger, D. E.; Wittig, S.

    1990-06-01

    The detailed radial distributions of rotor heat-transfer coefficients for three basic disk-cavity geometries applicable to gas turbines are presented. The coefficients are obtained over a range of parameters including disk rotational Reynolds numbers of 200,000 to 50,000, rotor/stator spacing-to-disk ratios of 0.025 to 0.15, and jet mass flow rates between 0.10 and 0.40 times the turbulent pumped flow rate of a free disk. The effects of a parallel rotor are analyzed, and strong variations in local Nusselt numbers for all but the rotational speed are pointed out and compared with the associated hub-injection data from a previous study. It is demonstrated that the overall rotor heat transfer is optimized by either the hub injection or radial location injection of a coolant, dependent on the configuration.

  3. Spatially resolved heat release rate measurements in turbulent premixed flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayoola, B.O.; Kaminski, C.F.; Balachandran, R.

    Heat release rate is a fundamental property of great importance for the theoretical and experimental elucidation of unsteady flame behaviors such as combustion noise, combustion instabilities, and pulsed combustion. Investigations of such thermoacoustic interactions require a reliable indicator of heat release rate capable of resolving spatial structures in turbulent flames. Traditionally, heat release rate has been estimated via OH or CH radical chemiluminescence; however, chemiluminescence suffers from being a line-of-sight technique with limited capability for resolving small-scale structures. In this paper, we report spatially resolved two-dimensional measurements of a quantity closely related to heat release rate. The diagnostic technique usesmore » simultaneous OH and CH{sub 2}O planar laser-induced fluorescence (PLIF), and the pixel-by-pixel product of the OH and CH{sub 2}O PLIF signals has previously been shown to correlate well with local heat release rates. Results from this diagnostic technique, which we refer to as heat release rate imaging (HR imaging), are compared with traditional OH chemiluminescence measurements in several flames. Studies were performed in lean premixed ethylene flames stabilized between opposed jets and with a bluff body. Correlations between bulk strain rates and local heat release rates were obtained and the effects of curvature on heat release rate were investigated. The results show that the heat release rate tends to increase with increasing negative curvature for the flames investigated for which Lewis numbers are greater than unity. This correlation becomes more pronounced as the flame gets closer to global extinction.« less

  4. Public crowdsensing of heat waves by social media data

    NASA Astrophysics Data System (ADS)

    Grasso, Valentina; Crisci, Alfonso; Morabito, Marco; Nesi, Paolo; Pantaleo, Gianni

    2017-07-01

    Investigating on society-related heat wave hazards is a global issue concerning the people health. In the last two decades, Europe experienced several severe heat wave episodes with catastrophic effects in term of human mortality (2003, 2010 and 2015). Recent climate investigations confirm that this threat will represent a key issue for the resiliency of urban communities in next decades. Several important mitigation actions (Heat-Health Action Plans) against heat hazards have been already implemented in some WHO (World Health Organization) European region member states to encourage preparedness and response to extreme heat events. Nowadays, social media (SM) offer new opportunities to indirectly measure the impact of heat waves on society. Using the crowdsensing concept, a micro-blogging platform like Twitter may be used as a distributed network of mobile sensors that react to external events by exchanging messages (tweets). This work presents a preliminary analysis of tweets related to heat waves that occurred in Italy in summer 2015. Using TwitterVigilance dashboard, developed by the University of Florence, a sample of tweets related to heat conditions was retrieved, stored and analyzed for main features. Significant associations between the daily increase in tweets and extreme temperatures were presented. The daily volume of Twitter users and messages revealed to be a valuable indicator of heat wave impact at the local level, in urban areas. Furthermore, with the help of Generalized Additive Model (GAM), the volume of tweets in certain locations has been used to estimate thresholds of local discomfort conditions. These city-specific thresholds are the result of dissimilar climatic conditions and risk cultures.

  5. Variable magnetic field (VMF) effect on the heat transfer of a half-annulus cavity filled by Fe3O4-water nanofluid under constant heat flux

    NASA Astrophysics Data System (ADS)

    Hatami, M.; Zhou, J.; Geng, J.; Jing, D.

    2018-04-01

    In this paper, the effect of a variable magnetic field (VMF) on the natural convection heat transfer of Fe3O4-water nanofluid in a half-annulus cavity is studied by finite element method using FlexPDE commercial code. After deriving the governing equations and solving the problem by defined boundary conditions, the effects of three main parameters (Hartmann Number (Ha), nanoparticles volume fraction (φ) and Rayleigh number (Ra)) on the local and average Nusselt numbers of inner wall are investigated. As a main outcome, results confirm that in low Eckert numbers, increasing the Hartmann number make a decrease on the Nusselt number due to Lorentz force resulting from the presence of stronger magnetic field.

  6. Differential heat sensitivity index in barley cultivars (Hordeum vulgare L.) monitored by chlorophyll a fluorescence OKJIP.

    PubMed

    Oukarroum, Abdallah; El Madidi, Saïd; Strasser, Reto J

    2016-08-01

    The objective of this study was to differentiate the heat tolerance in ten varieties of barley (Hordeum vulgare L.) originating from Morocco. Five modern varieties and five landraces (local varieties) collected at five different geographical localities in the south of Morocco were investigated in the present study. After two weeks of growth, detached leaves were short term exposure to various temperatures (25, 30, 35, 40, and 45 °C) for 10 min in the dark. Two chlorophyll a fluorescence parameters derived from chlorophyll a fluorescence transient (OKJIP) (performance index (PIABS) and relative variable fluorescence at the K-step (VK)) were analysed. Heat treatment had a significant effect on the PIABS and VK at 45 °C treatment and the analysis of variance for PIABS and VK is highly significant between all varieties. The slope of the relationship between logPIABS and VK named heat sensitivity index (HSI) was used to evaluate the thermotolerance of photosystem II (PSII) between the studied barley varieties. According to this approach, barley varieties were screened and ranked for improving heat tolerance. HSI was found to be a new indicator with regard to distinguishing heat tolerance of different barley cultivars. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Local atmospheric response to warm mesoscale ocean eddies in the Kuroshio-Oyashio Confluence region.

    PubMed

    Sugimoto, Shusaku; Aono, Kenji; Fukui, Shin

    2017-09-19

    In the extratropical regions, surface winds enhance upward heat release from the ocean to atmosphere, resulting in cold surface ocean: surface ocean temperature is negatively correlated with upward heat flux. However, in the western boundary currents and eddy-rich regions, the warmer surface waters compared to surrounding waters enhance upward heat release-a positive correlation between upward heat release and surface ocean temperature, implying that the ocean drives the atmosphere. The atmospheric response to warm mesoscale ocean eddies with a horizontal extent of a few hundred kilometers remains unclear because of a lack of observations. By conducting regional atmospheric model experiments, we show that, in the Kuroshio-Oyashio Confluence region, wintertime warm eddies heat the marine atmospheric boundary layer (MABL), and accelerate westerly winds in the near-surface atmosphere via the vertical mixing effect, leading to wind convergence around the eastern edge of eddies. The warm-eddy-induced convergence forms local ascending motion where convective precipitation is enhanced, providing diabatic heating to the atmosphere above MABL. Our results indicate that warm eddies affect not only near-surface atmosphere but also free atmosphere, and possibly synoptic atmospheric variability. A detailed understanding of warm eddy-atmosphere interaction is necessary to improve in weather and climate projections.

  8. Environmental evaluation of the electric and cogenerative configurations for the energy recovery of the Turin municipal solid waste incineration plant.

    PubMed

    Panepinto, Deborah; Genon, Giuseppe

    2014-07-01

    Given the desirability of reducing fossil fuel consumption, together with the increasing production of combustible solid wastes, there is clearly a need for waste treatment systems that achieve both volume reduction and energy recovery. Direct incineration method is one such system. The aim of this work was to analyze the municipal solid waste incineration plant currently under construction in the province of Turin (Piedmont, North Italy), especially the potential for energy recovery, and the consequent environmental effects. We analyzed two kinds of energy recovery: electric energy (electrical configuration) only, and both electric and thermal energy (cogenerative configuration), in this case with a different connection hypothesis to the district heating network. After we had evaluated the potential of the incinerator and considered local demographic, energy and urban planning effects, we assumed different possible connections to the district heating network. We computed the local and global environmental balances based on the characteristics of the flue gas emitted from the stack, taking into consideration the emissions avoided by the substituted sources. The global-scale results provided relevant information on the carbon dioxide emissions parameter. The results on the local scale were used as reference values for the implementation of a Gaussian model (Aermod) that allows evaluation of the actual concentration of the pollutants released into the atmosphere. The main results obtained highlight the high energy efficiency of the combined production of heat and electricity, and the opportunity to minimize the environmental impact by including cogeneration in a district heating scheme. © The Author(s) 2014.

  9. Numerical Calculation of the Peaking Factor of a Water-Cooled W/Cu Monoblock for a Divertor

    NASA Astrophysics Data System (ADS)

    Han, Le; Chang, Haiping; Zhang, Jingyang; Xu, Tiejun

    2015-09-01

    In order to accurately predict the incident critical heat flux (ICHF, the heat flux at the heated surface when CHF occurs) of a water-cooled W/Cu monoblock for a divertor, the exact knowledge of its peaking factors (fp) under one-sided heating conditions with different design parameters is a key issue. In this paper, the heat conduction in the solid domain of a water-cooled W/Cu monoblock is calculated numerically by assuming the local heat transfer coefficients (HTC) of the cooling wall to be functions of the local wall temperature, so as to obtain fp. The reliability of the calculation method is validated by an experimental example result, with the maximum error of 2.1% only. The effects of geometric and flow parameters on the fp of a water-cooled W/Cu monoblock are investigated. Within the scope of this study, it is shown that the fp increases with increasing dimensionless W/Cu monoblock width and armour thickness (the shortest distance between the heated surface and Cu layer), and the maximum increases are 43.8% and 22.4% respectively. The dimensionless W/Cu monoblock height and Cu thickness have little effect on fp. The increase of Reynolds number and Jakob number causes the increase of fp, and the maximum increases are 6.8% and 9.6% respectively. Based on the calculated results, an empirical correlation on peaking factor is obtained via regression. These results provide a valuable reference for the thermal-hydraulic design of water-cooled divertors. supported by National Magnetic Confinement Fusion Science Program of China (No. 2010GB104005) and Funding of Jiangsu Innovation Program for Graduate Education, China (CXLX12_0170), the Fundamental Research Funds for the Central Universities of China

  10. Integrating local urban climate modelling and mobile sensor data for personal exposure assessments in the context of urban heat island effect

    NASA Astrophysics Data System (ADS)

    Ueberham, Maximilian; Hertel, Daniel; Schlink, Uwe

    2017-04-01

    Deeper knowledge about urban climate conditions is getting more important in the context of climate change, urban population growth, urban compaction and continued surface sealing. Especially the urban heat island effect (UHI) is one of the most significant human induced alterations of Earth's surface climate. According to this the appearance frequency of heat waves in cities will increase with deep impacts on personal thermal comfort, human health and local residential quality of citizens. UHI can be very heterogenic within a city and research needs to focus more on the neighborhood scale perspective to get further insights about the heat burden of individuals. However, up to now, few is known about local thermal environmental variances and personal exposure loads. To monitor these processes and the impact on individuals, improved monitoring approaches are crucial, complementing data recorded at conventional fixed stations. Therefore we emphasize the importance of micro-meteorological modelling and mobile measurements to shed new light on the nexus of urban human-climate interactions. Contributing to this research we jointly present the approaches of our two PhD-projects. Firstly we illustrate on the basis of an example site, how local thermal conditions in an urban district can be simulated and predicted by a micro-meteorological model. Secondly we highlight the potentials of personal exposure measurements based on an evaluation of mobile micro-sensing devices (MSDs) and analyze and explain differences between model predictions and mobile records. For the examination of local thermal conditions we calculated ENVI-met simulations within the "Bayerischer Bahnhof" quarter in Leipzig (Saxony, Germany; 51°20', 12°22'). To accomplish the maximum temperature contrasts within the diverse built-up structures we chose a hot summer day (25 Aug 2016) under autochthonous weather conditions. From these simulations we analyzed a UHI effect between the model core (urban area) and the surrounding nesting area (rural area). Preparing for the outdoor application of mobile MSDs we tested their accuracy and performance between several MSDs and reliable sophisticated devices under laboratory conditions. We found that variations mainly depend on the device design and technology (e.g. active/passive ventilation). The standard deviation of the temperature records was quite stable over the whole range of values and the MSDs proved to be applicable for the purpose of our study. In conclusion the benefit of integrating mobile data and micrometeorological predictions is manifold. Mobile data can be used for the investigation of personal exposure in the context of heat stress and for the verification and training of micrometeorological models. Otherwise, model predictions can identify local areas of special climate interest where additional mobile measurements would be beneficial to provide new information for mitigation and adaptation actions.

  11. Probing the photoresponse of individual Nb2O5 nanowires with global and localized laser beam irradiation.

    PubMed

    Tamang, Rajesh; Varghese, Binni; Mhaisalkar, Subodh G; Tok, Eng Soon; Sow, Chorng Haur

    2011-03-18

    Photoresponse of isolated Nb(2)O(5) nanowires (NW) padded with platinum (Pt) at both ends were studied with global irradiation by a laser beam and localized irradiation using a focused laser beam. Global laser irradiation on individual NW in ambient and vacuum conditions revealed photocurrent contributions with different time characteristics (rapid and slowly varying components) arising from defect level excitations, thermal heating effect, surface states and NW-Pt contacts. With a spot size of < 1 µm, localized irradiation highlighted the fact that the measured photocurrent in this single NW device (with and without applied bias) depended sensitively on the photoresponse at the NW-Pt contacts. At applied bias, unidirectional photocurrent was observed and higher photocurrent was achieved with localized laser irradiation at reverse-biased NW-Pt contacts. At zero bias, the opposite polarity of photocurrents was detected when the two NW-Pt contacts were subjected to focused laser beam irradiation. A reduced Schottky barrier/width resulting from an increase in charge carriers and thermoelectric effects arising from the localized thermal heating due to focused laser beam irradiation were proposed as the mechanisms dictating the photocurrent at the NW-Pt interface. Comparison of photocurrents generated upon global and localized laser irradiation showed that the main contribution to the photocurrent was largely due to the photoresponse of the NW-Pt contacts.

  12. Heat transfer flow of Cu-water and Al2O3-water micropolar nanofluids about a solid sphere in the presence of natural convection using Keller-box method

    NASA Astrophysics Data System (ADS)

    Swalmeh, Mohammed Z.; Alkasasbeh, Hamzeh T.; Hussanan, Abid; Mamat, Mustafa

    2018-06-01

    Natural convection boundary layer flow over a solid sphere in micropolar nanofluid with prescribed wall temperature is studied. Copper (Cu) and alumina (Al2O3) in water-based micropolar nanofluid has been considered. Tiwari and Das's nanofluid model with realistic empirical correlations are considered to analyze the nanoparticles effects on natural convective flow. The nonlinear partial differential equations of the boundary layer are first transformed into a non-dimensional form and then solved numerically using an implicit finite difference scheme known as Keller-box method. The effects of nanoparticles volume fraction, Prandtl number, micro-rotation parameter on temperature, velocity and angular velocity are plotted and discussed. Further, numerical results for the local Nusselt number and the local skin friction coefficient are obtained. It is found that Cu has a low heat transfer rate as compare to Al2O3 water-based micropolar nanofluid with increasing micro-rotation parameter. The present results of local Nusselt number and the local skin friction for viscous fluid are found to be in good agreement with the literature.

  13. Ground based studies of thermocapillary flows in levitated drops

    NASA Technical Reports Server (NTRS)

    Sadhal, Satwindar Singh; Trinh, Eugene H.

    1994-01-01

    Analytical studies along with ground-based experiments are presently being carried out in connection with thermocapillary phenomena associated with drops and bubbles in a containerless environment. The effort here focuses on the thermal and the fluid phenomena associated with the local heating of acoustically levitated drops, both at 1-g and at low-g. In particular, the Marangoni effect on drops under conditions of local spot-heating and other types of heating are being studied. With the experiments conducted to date, fairly stable acoustic levitation of drops has been achieved and successful flow visualization by light scattering from smoke particles has been carried out. The results include situations with and without heating. As a preliminary qualitative interpretation of these experimental results, we consider the external flow pattern as a superposition of three discrete circulation cells operating on different spatial scales. The observations of the flow fields also indicate the existence of a steady state torque induced by the streaming flows. The theoretical studies have been concentrated on the analysis of streaming flows in a gaseous medium with the presence of a spherical particle undergoing periodic heating. A matched asymptotic analysis was carried out for small parameters derived from approximations in the high frequency range. The heating frequency being 'in tune' with the acoustic frequency results in a nonzero time-averaged thermal field. This leads to a steady heat flow across the equatorial plane of the sphere.

  14. Implantable apparatus for localized heating of tissue

    DOEpatents

    Doss, James D.

    1987-01-01

    With the object of repetitively treating deep-seated, inoperable tumors by hyperthermia as well as locally heating other internal tissue masses repetitively, a receiving antenna, transmission line, and electrode arrangment are implanted completely within the patient's body, with the receiving antenna just under the surface of the skin and with the electrode arrangement being located so as to most effectively heat the tissue to be treated. An external, transmitting antenna, driven by an external radio-frequency energy source, is closely coupled to the implanted receiving antenna so that the energy coupled across the air-skin interface provides electromagnetic energy suitable for heating the tissue in the vicinity of the implanted electrodes. The resulting increase in tissue temperature may be estimated by an indirect measurement of the decrease in tissue resistivity in the heated region. This change in resistivity appears as a change in the loading of the receiving antenna which can be measured by either determining the change in the phase relationship between the voltage and the current appearing on the transmitting antenna or by measuring the change in the magnitude of the impedance thereof. Optionally, multiple electrode arrays may be activated or inactivated by the application of magnetic fields to operate implanted magnetic reed switches.

  15. Implantable apparatus for localized heating of tissue

    DOEpatents

    Doss, J.D.

    1985-05-20

    With the object of repetitively treating deep-seated, inoperable tumors by hyperthermia as well as locally heating other internal tissue masses repetitively, a receiving antenna, transmission line and electrode arrangement are implanted completely within the patient's body, with the receiving antenna just under the surface of the skin and with the electrode arrangement being located so as to most effectively heat the tissue to be treated. An external, transmitting antenna, driven by an external radio-frequency energy source, is closely coupled to the implanted receiving antenna so that the energy coupled across the air-skin interface provides electromagnetic energy suitable for heating the tissue in the vicinity of the implanted electrodes. The resulting increase in tissue temperature may be estimated by an indirect measurement of the decrease in tissue resistivity in the heat region. This change in resistivity appears as a change in the loading of the receiving antenna which can be measured by either determining the change in the phase relationship between the voltage and the current appearing on the transmitting antenna or by measuring the change in the magnitude of the impedance thereof. Optionally, multiple electrode arrays may be activated or inactivated by the application of magnetic fields to operate implanted magnetic reed swtiches. 5 figs.

  16. Conduction-driven cooling of LED-based automotive LED lighting systems for abating local hot spots

    NASA Astrophysics Data System (ADS)

    Saati, Ferina; Arik, Mehmet

    2018-02-01

    Light-emitting diode (LED)-based automotive lighting systems pose unique challenges, such as dual-side packaging (front side for LEDs and back side for driver electronics circuit), size, harsh ambient, and cooling. Packaging for automotive lighting applications combining the advanced printed circuit board (PCB) technology with a multifunctional LED-based board is investigated with a focus on the effect of thermal conduction-based cooling for hot spot abatement. A baseline study with a flame retardant 4 technology, commonly known as FR4 PCB, is first compared with a metal-core PCB technology, both experimentally and computationally. The double-sided advanced PCB that houses both electronics and LEDs is then investigated computationally and experimentally compared with the baseline FR4 PCB. Computational models are first developed with a commercial computational fluid dynamics software and are followed by an advanced PCB technology based on embedded heat pipes, which is computationally and experimentally studied. Then, attention is turned to studying different heat pipe orientations and heat pipe placements on the board. Results show that conventional FR4-based light engines experience local hot spots (ΔT>50°C) while advanced PCB technology based on heat pipes and thermal spreaders eliminates these local hot spots (ΔT<10°C), leading to a higher lumen extraction with improved reliability. Finally, possible design options are presented with embedded heat pipe structures that further improve the PCB performance.

  17. The contribution of urbanization to recent extreme heat events and white roof mitigation strategy in the Beijing-Tianjin-Hebei metropolitan area

    NASA Astrophysics Data System (ADS)

    Wang, Mingna

    2015-04-01

    The UHI effect can aggravate summertime heat waves and strongly influence human comfort and health, leading to greater mortality in metropolitan areas. Many geo-engineering technological strategies have been proposed to mitigate climate warming, and for the UHI, increasing the albedo of artificial urban surfaces (rooftops or pavements) has been considered a lucrative and effective way to cool cities. The objective of this work is to quantify the contribution of urbanization to recent extreme heat events of the early 21st century in the Beijing-Tianjin-Hebei metropolitan area, using the mesoscale WRF model coupled with a single urban canopy model and actual urban land cover datasets. This work also investigates a simulation of the regional effects of white roof technology by increasing the albedo of urban areas in the urban canopy model to mitigate the urban heat island, especially in extreme heat waves. The results show that urban land use characteristics that have evolved over the past ~20 years in the Beijing-Tianjin-Hebei metropolitan area have had a significant impact on the extreme temperatures occurring during extreme heat events. Simulations show that new urban development has caused an intensification and expansion of the areas experiencing extreme heat waves with an average increase in temperature of approximately 0.60°C. This change is most obvious at night with an increase up to 0.95°C, for which the total contribution of anthropogenic heat is 34%. We also simulate the effects of geo-engineering strategies increasing the albedo of urban roofs. White roofs reflect a large fraction of incoming sunlight in the daytime, which reduced the net radiation so that the roof surface keep at a lower temperature than regular solar-absorptive roofs. Urban net radiation decreases by approximately 200 W m-2 at local noon because of high solar reflectance of white roofs, which cools the daytime urban temperature afer sunrise, with the largest decrease of almost -0.80°C at local noon. Moreover, the nighttime temperature also shows slightly cooler, approximately 0.2°C, because there is still considerable heat which is stored in the daytime released from urban surfaces at night. The results also suggest that increasing the albedo of urban roofs can reduce the urban mean temperature by approximately 0.51°C during summer extreme heat events. In urban areas, white roofs can counter 80% of the heat wave results from urban sprawl during the last 20 years. These results suggest that increasing the albedo of roofs in the Beijing-Tianjin-Hebei metropolitan area is an effective way of countering some hazards of heat waves. Using a regional climate model, we proposed that white roofs may be an effective strategy to complement urban heat wave mitigation efforts as a way of further slowing the rate of global temperature increase in response to continued greenhouse gas emissions.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, R. J.; Adams, D. P.; Hirschfeld, D.

    The rapid release of energy from reactive multilayer foils can create extreme local temperature gradients near substrate materials. To fully exploit the potential of these materials, a better understanding of the interaction between the substrate or filler material and the foil is needed. In particular, this work investigates how variations in local properties within the substrate (i.e. differences between properties in constituent phases) can affect heat transport into the substrate. Furthermore, this can affect the microstructural evolution observed within the substrate, which may affect the final joint properties. The effect of the initial substrate microstructure on microstructural evolution within themore » heat-affected zone is evaluated experimentally in two Sn-Zn alloys and numerical techniques are utilized to inform the analysis.« less

  19. No major impact of skin aging on the response of skin blood flow to a submaximal local thermal stimulus.

    PubMed

    Vionnet, Julien; Calero-Romero, Irene; Heim, Abigaël; Rotaru, Corina; Engelberger, Rolf Peter; Dischl, Benoît; Noël, Bernard; Liaudet, Lucas; Waeber, Bernard; Feihl, François

    2014-11-01

    This study was undertaken to investigate how aging affects dermal microvascular reactivity in skin areas differentially exposed to sunlight, and therefore to different degrees of photoaging. We assessed, in young (18-30 years, n = 13) and aged males (≥60 years, n = 13), the thigh, forearm, and forehead's skin vasodilatory response to local heating (LTH) with a LDI. In each subject and at each location, local Tskin was brought from 34°C (baseline) to 39 or 41°C for 30 minutes, to effect submaximal vasodilation, with maximal vasodilation then elicited by further heating to 44°C. The CVCs evaluated at baseline and after maximal vasodilation (CVCmax ) were higher in the forehead than in the two other anatomical locations. On all locations, CVCmax decreased with age but less markedly in the forehead compared to the two other locations. When expressed in % of CVCmax , the plateau increase of CVCs in response to submaximal temperatures (39 and 41°C) did not vary with age, and minimally so with location. Skin aging, whether intrinsic or combined with photoaging, reduces the maximal vasodilatory capacity of the dermal microcirculation, but not its reactivity to local heating. © 2014 John Wiley & Sons Ltd.

  20. Tailoring the heat transfer on the injection moulding cavity by plasma sprayed ceramic coatings

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Hopmann, Ch; Öte, M.; Knoch, M. A.; Alkhasli, I.; Dornebusch, H.; Schmitz, M.

    2017-03-01

    Inhomogeneous material shrinkage in injection moulding can cause warpage in thermoplastic components. To minimise the deformations of the injection moulding parts, the heat transfer during the cooling phase can be adjusted according to the local cooling demand on the surface of the mould cavity by means of plasma sprayed coatings with locally variable thermal resistance over the surface of the mould. Thermal resistance is a function of thermal conductivity and thickness of the coatings, where thermal conductivity of thermal barrier coatings can be adjusted by altering the chemical composition and the microstructure, which is depending on the thickness. This work evaluates the application of plasma sprayed coatings with variable thickness as thermal barrier coatings in the mould cavity. The thermal resistance of the coating and thereby the heat transfer from the melt into the mould will be influenced locally by varying the coating thickness over the cavity area according to the local cooling demand. Using the laser flash method, the thermal conduction of coatings with different thicknesses will be determined. On the basis of the experimentally determined thermal conduction, the effect of the coatings on the temperature field of the mould cavity will be numerically calculated and the required thickness distribution of the coating for an optimal temperature gradient will be determined.

  1. Impact of Heat Wave Definitions on the Added Effect of Heat Waves on Cardiovascular Mortality in Beijing, China.

    PubMed

    Dong, Wentan; Zeng, Qiang; Ma, Yue; Li, Guoxing; Pan, Xiaochuan

    2016-09-21

    Heat waves are associated with increased mortality, however, few studies have examined the added effect of heat waves. Moreover, there is limited evidence for the influence of different heat wave definitions (HWs) on cardiovascular mortality in Beijing, the capital of China. The aim of this study was to find the best HW definitions for cardiovascular mortality, and we examined the effect modification by an individual characteristic on cardiovascular mortality in Beijing, a typical northern city in China. We applied a Poisson generalized additive approach to estimate the differences in cardiovascular mortality during heat waves (using 12 HWs) compared with non-heat-wave days in Beijing from 2006 to 2009. We also validated the model fit by checking the residuals to ensure that the autocorrelation was successfully removed. In addition, the effect modifications by individual characteristics were explored in different HWs. Our results showed that the associations between heat waves and cardiovascular mortality differed from different HWs. HWs using the 93th percentile of the daily average temperature (27.7 °C) and a duration ≥5 days had the greatest risk, with an increase of 18% (95% confidence interval (CI): 6%, 31%) in the overall population, 24% (95% CI: 10%, 39%) in an older group (ages ≥65 years), and 22% (95% CI: 3%, 44%) in a female group. The added effect of heat waves was apparent after 5 consecutive heat wave days for the overall population and the older group. Females and the elderly were at higher risk than males and younger subjects (ages <65 years). Our findings suggest that heat wave definitions play a significant role in the relationship between heat wave and cardiovascular mortality. Using a suitable definition may have implications for designing local heat early warning systems and protecting the susceptible populations during heat waves.

  2. Optimal Placement of Non-Intrusive Waste Heat Recovery Devices in Exhaust Ducts

    DTIC Science & Technology

    2015-06-01

    Reynolds Number and Local Reynolds Number Depression Mixing .............................................................................40  3...57  viii 1.  Counterintuitive Findings Due to Local Reynolds Number Depression ... depression in the secondary recirculation zone enhances heat transfer, and device placement is the dominant factor for maximizing heat transfer in a

  3. Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment

    NASA Astrophysics Data System (ADS)

    Quinto, Christopher A.; Mohindra, Priya; Tong, Sheng; Bao, Gang

    2015-07-01

    Superparamagnetic iron oxide (SPIO) nanoparticles have the potential for use as a multimodal cancer therapy agent due to their ability to carry anticancer drugs and generate localized heat when exposed to an alternating magnetic field, resulting in combined chemotherapy and hyperthermia. To explore this potential, we synthesized SPIOs with a phospholipid-polyethylene glycol (PEG) coating, and loaded Doxorubicin (DOX) with a 30.8% w/w loading capacity when the PEG length is optimized. We found that DOX-loaded SPIOs exhibited a sustained DOX release over 72 hours where the release kinetics could be altered by the PEG length. In contrast, the heating efficiency of the SPIOs showed minimal change with the PEG length. With a core size of 14 nm, the SPIOs could generate sufficient heat to raise the local temperature to 43 °C, sufficient to trigger apoptosis in cancer cells. Further, we found that DOX-loaded SPIOs resulted in cell death comparable to free DOX, and that the combined effect of DOX and SPIO-induced hyperthermia enhanced cancer cell death in vitro. This study demonstrates the potential of using phospholipid-PEG coated SPIOs for chemotherapy-hyperthermia combinatorial cancer treatment with increased efficacy.Superparamagnetic iron oxide (SPIO) nanoparticles have the potential for use as a multimodal cancer therapy agent due to their ability to carry anticancer drugs and generate localized heat when exposed to an alternating magnetic field, resulting in combined chemotherapy and hyperthermia. To explore this potential, we synthesized SPIOs with a phospholipid-polyethylene glycol (PEG) coating, and loaded Doxorubicin (DOX) with a 30.8% w/w loading capacity when the PEG length is optimized. We found that DOX-loaded SPIOs exhibited a sustained DOX release over 72 hours where the release kinetics could be altered by the PEG length. In contrast, the heating efficiency of the SPIOs showed minimal change with the PEG length. With a core size of 14 nm, the SPIOs could generate sufficient heat to raise the local temperature to 43 °C, sufficient to trigger apoptosis in cancer cells. Further, we found that DOX-loaded SPIOs resulted in cell death comparable to free DOX, and that the combined effect of DOX and SPIO-induced hyperthermia enhanced cancer cell death in vitro. This study demonstrates the potential of using phospholipid-PEG coated SPIOs for chemotherapy-hyperthermia combinatorial cancer treatment with increased efficacy. Electronic supplementary information (ESI) available: Core size distribution; temperature increase for specific absorption rate calculations; effect of DOX loading on zeta potential; combined effect of hyperthermia and free DOX; cell morphology following DOX/hyperthermia treatment. See DOI: 10.1039/c5nr02718g

  4. Measurement of local high-level, transient surface heat flux

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1988-01-01

    This study is part of a continuing investigation to develop methods for measuring local transient surface heat flux. A method is presented for simultaneous measurements of dual heat fluxes at a surface location by considering the heat flux as a separate function of heat stored and heat conducted within a heat flux gage. Surface heat flux information is obtained from transient temperature measurements taken at points within the gage. Heat flux was determined over a range of 4 to 22 MW/sq m. It was concluded that the method is feasible. Possible applications are for heat flux measurements on the turbine blade surfaces of space shuttle main engine turbopumps and on the component surfaces of rocket and advanced gas turbine engines and for testing sensors in heat flux gage calibrators.

  5. Numerical heat transfer analysis of transcritical hydrocarbon fuel flow in a tube partially filled with porous media

    NASA Astrophysics Data System (ADS)

    Jiang, Yuguang; Feng, Yu; Zhang, Silong; Qin, Jiang; Bao, Wen

    2016-01-01

    Hydrocarbon fuel has been widely used in air-breathing scramjets and liquid rocket engines as coolant and propellant. However, possible heat transfer deterioration and threats from local high heat flux area in scramjet make heat transfer enhancement essential. In this work, 2-D steady numerical simulation was carried out to study different schemes of heat transfer enhancement based on a partially filled porous media in a tube. Both boundary and central layouts were analyzed and effects of gradient porous media were also compared. The results show that heat transfer in the transcritical area is enhanced at least 3 times with the current configuration compared to the clear tube. Besides, the proper use of gradient porous media also enhances the heat transfer compared to homogenous porous media, which could help to avoid possible over-temperature in the thermal protection.

  6. Finite element residual stress analysis of induction heating bended ferritic steel piping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin

    2014-10-06

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residualmore » stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.« less

  7. Cycloheximide- and puromycin-induced heat resistance: different effects on cytoplasmic and nuclear luciferases

    PubMed Central

    Michels, Annemieke A; Kanon, Bart; Konings, Antonius W.T; Bensaude, Olivier; Kampinga, Harm H

    2000-01-01

    Inhibition of translation can result in cytoprotection against heat shock. The mechanism of this protection has remained elusive so far. Here, the thermoprotective effects of the translation inhibitor cycloheximide (CHX) and puromycin were investigated, using as reporter firefly luciferase localized either in the nucleus or in the cytoplasm. A short preincubation of O23 cells with either translation inhibitor was found to attenuate the heat inactivation of a luciferase directed into the cytoplasm, whereas the heat sensitivity of a nuclear-targeted luciferase remained unaffected. After a long-term CHX pretreatment, both luciferases were more heat resistant. Both the cytoplasmic and the nuclear luciferase are protected against heat-induced inactivation in thermotolerant cells and in cells overexpressing heat shock protein (Hsp)70. CHX incubations further attenuated cytoplasmic luciferase inactivation in thermotolerant and in Hsp70 overexpressing cells, even when Hsp70-mediated protection was saturated. It is concluded that protection by translation inhibition is unlikely due to an increase in the pool of free Hsps normally engaged in translation and released from the nascent polypeptide chains on the ribosomes. Rather, a decrease in nascent chains and thermolabile polypeptides may account for the heat resistance promoted by inhibitors of translation. PMID:11005376

  8. Investigation of heat flux processes governing the increase of groundwater temperatures beneath cities

    NASA Astrophysics Data System (ADS)

    Bayer, P.; Menberg, K.; Zhu, K.; Blum, P.

    2012-12-01

    In the subsurface of many cities there are widespread and persistent thermal anomalies. These so-called subsurface urban heat islands (UHIs), which also stimulate warming of urban aquifers, are triggered by various processes. Possible heat sources are basements of buildings, leakage of sewage systems, buried district heating networks, re-injection of cooling water and solar irradiation on paved surfaces. In the current study, the reported groundwater temperatures in several Central European cities, such as Berlin, Cologne (Germany) and Zurich (Switzerland) are compared. Available data sets are supplemented by temperature measurements and depth profiles in observation wells. Trend analyses are conducted with time series of groundwater temperatures, and three-dimensional groundwater temperature maps are provided. In all investigated cities, pronounced positive temperature anomalies are present. The distribution of groundwater temperatures appears to be spatially and temporally highly variable. Apparently, the increased heat input into the urban subsurface is controlled by very local and site-specific parameters. In the long-run, the combination of various heat sources results in an extensive temperature increase. In many cases, the maximum temperature elevation is found close to the city center. Regional groundwater temperature differences between the city center and the rural background are up to 5 °C, with local hot spots of even more pronounced anomalies. Particular heat sources, like cooling water injections or case-specific underground constructions, can cause local temperatures > 20 °C in the subsurface. Examination of the long-term variations in isotherm maps shows that temperatures have increased by about 1 °C in the city, as well as in the rural background areas over the last decades. This increase could be reproduced with trend analysis of temperature data gathered from several groundwater wells. Comparison between groundwater and air temperatures in the city of Karlsruhe (Germany), for example, also indicates a spatial correlation between the urban heat island effect in the subsurface and in the atmosphere.

  9. A Study on Infrared Local Heat Treatment for AA5083 to Improve Formability and Automotive Part Forming

    NASA Astrophysics Data System (ADS)

    Lee, Eun-Ho; Yang, Dong-Yol; Ko, SeJin

    2017-10-01

    Automotive industries are increasingly employing aluminum alloys for auto parts to reduce vehicle weight. However, the low formability of aluminum alloys has been an obstacle to their application. To resolve the formability problem, some studies involving heat treatments under laboratory conditions have been reported. However, for industrial applications, the heat treatment sequence, heating energy efficiency, and a commercial part test should be studied. This work shows an infrared (IR) local heat treatment, heating only small areas where the heat treatment is required, for an aluminum alloy to improve the formability with a reduction of heating energy. The experiment shows that the formability drastically increases when the aluminum alloy is heat treated between two forming stages, referred to as intermediate heat treatment. The microstructures of the test pieces are evaluated to identify the cause of the increase in the formability. For an industrial application, an aluminum tailgate, which cannot be manufactured without heat treatment, was successfully manufactured by the IR local heat treatment with a reduction of energy. A simulation was also conducted with a stress-based forming limit diagram, which is not affected by the strain path and heat treatment histories. The simulation gives a good prediction of the formability improvement.

  10. Poly(D,L-lactide-co-glycolide) microcomposite containing magnetic iron core nanoparticles as a drug carrier

    NASA Astrophysics Data System (ADS)

    Naik, Sweta; Carpenter, Everett E.

    2008-04-01

    Today many potent anticancer drugs like cisplatin are available which carry a number of side effects. A promising way of reducing the side effects is to target the drug to tissue sites by coating it with biocompatible materials like Poly (dl-lactide-co-glycolide) (PLGA) polymer where controlled drug release is achieved during the biodegradation of the polymer. Also the efficacy of anticancer drugs like cisplatin increases at elevated temperatures, so if local heating can be achieved where the drug is targeted. Local heating can be achieved by introducing iron core nanoparticles in the composites along with the drug, which can be heated by the 2.4 GHz microwaves. Local heating of the nanocomposites also helps to swell the polymer shell and enhance the drug release. The magnetic nanocomposites were synthesized using iron nanoparticles, PLGA and a fluorescent dye, tris-(2,2'bipyridyl) dichlororuthenium (II) using an oil-in-emulsion technique. The emulsion contains PLGA, dye, and iron nanoparticles dissolved in the oil phase and polyvinyl alcohol (PVA) as a stabilizer. As the sample is homogenized, and dried, uniform 100 nm composites are formed where the dye and iron nanoparticles are encapsulated in a PLGA shell. Control of the thickness and loading efficiency of the nanocomposite can be controlled by varying the ratio of PLGA, iron, and dye. The amount of loading was determined using TGA confirming from 20-50% (w/w) loading. As the dye is released from the composite the fluorescence intensity decreases due to self-quenching. This self-quenching allows for the determination of the release kinetics as a function of temperature using fluorescence spectroscopy. Initial results suggest that there is a release of 5-10% of the dye from the composite at 25°C and complete release after the nanocomposite reaches 90°C. Using local microwave heating the complete release of the dye can be accomplished with three two second pulses of 2.4 GHz microwaves. This allows for the complete drug delivery platform which allows for the controlled release using microwave frequency.

  11. Possible role of laser phototherapy in laser immunotherapy

    NASA Astrophysics Data System (ADS)

    Hode, Tomas; Hode, Lars

    2009-02-01

    Laser immunotherapy is a promising cancer treatment method that induces antitumor immunity and appears to be effective both locally and systemically. In this context, an important factor is the overall state of the immune system, both locally and systemically. The success of any immunotherapy treatment depends on the balance between the local immunosuppressive forces induced by the tumor and the immune response of the host organism. Factors that influence this balance include heat-shock proteins (for example HSP70), transforming growth factor β (TGF-β), tumor necrosis factor α (TNF-α), interleukins, and more. Laser phototherapy, which is based on non-thermal photobiological processes, has been shown to modulate the body's own immune response, both locally and systemically, with a strong influence on for example cytokine production and heat-shock protein synthesis. Laser phototherapy may therefore be an important component in the overall efficacy of laser immunotherapy, and may tip the balance between the immunosuppressive and immunostimulatory forces in favor of immunostimulation.

  12. Self-aligned nanoforest in silicon nanowire for sensitive conductance modulation.

    PubMed

    Seol, Myeong-Lok; Ahn, Jae-Hyuk; Choi, Ji-Min; Choi, Sung-Jin; Choi, Yang-Kyu

    2012-11-14

    A self-aligned and localized nanoforest structure is constructed in a top-down fabricated silicon nanowire (SiNW). The surface-to-volume ratio (SVR) of the SiNW is enhanced due to the local nanoforest formation. The conductance modulation property of the SiNWs, which is an important characteristic in sensor and charge transfer based applications, can be largely enhanced. For the selective modification of the channel region, localized Joule-heating and subsequent metal-assisted chemical etching (mac-etch) are employed. The nanoforest is formed only in the channel region without misalignment due to the self-aligned process of Joule-heating. The modified SiNW is applied to a porphyrin-silicon hybrid device to verify the enhanced conductance modulation. The charge transfer efficiency between the porphyrin and the SiNW, which is caused by external optical excitation, is clearly increased compared to the initial SiNW. The effect of the local nanoforest formation is enhanced when longer etching times and larger widths are used.

  13. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete.

    PubMed

    Mohajerani, Abbas; Bakaric, Jason; Jeffrey-Bailey, Tristan

    2017-07-15

    The Urban Heat Island (UHI) is a phenomenon that affects many millions of people worldwide. The higher temperatures experienced in urban areas compared to the surrounding countryside has enormous consequences for the health and wellbeing of people living in cities. The increased use of manmade materials and increased anthropogenic heat production are the main causes of the UHI. This has led to the understanding that increased urbanisation is the primary cause of the urban heat island. The UHI effect also leads to increased energy needs that further contribute to the heating of our urban landscape, and the associated environmental and public health consequences. Pavements and roofs dominate the urban surface exposed to solar irradiation. This review article outlines the contribution that pavements make to the UHI effect and analyses localized and citywide mitigation strategies against the UHI. Asphalt Concrete (AC) is one of the most common pavement surfacing materials and is a significant contributor to the UHI. Densely graded AC has low albedo and high volumetric heat capacity, which results in surface temperatures reaching upwards of 60 °C on hot summer days. Cooling the surface of a pavement by utilizing cool pavements has been a consistent theme in recent literature. Cool pavements can be reflective or evaporative. However, the urban geometry and local atmospheric conditions should dictate whether or not these mitigation strategies should be used. Otherwise both of these pavements can actually increase the UHI effect. Increasing the prevalence of green spaces through the installation of street trees, city parks and rooftop gardens has consistently demonstrated a reduction in the UHI effect. Green spaces also increase the cooling effect derived from water and wind sources. This literature review demonstrates that UHI mitigation techniques are best used in combination with each other. As a result of the study, it was concluded that the current mitigation measures need development to make them relevant to various climates and throughout the year. There are also many possible sources of future study, and alternative measures for mitigation have been described, thereby providing scope for future research and development following this review. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Heat Transfer Enhancement for Finned-tube Heat Exchangers with Winglets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, James Edward; Sohal, Manohar Singh

    2000-11-01

    This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with a circular tube and/or a delta-winglet pair. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inversemore » heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.51 x 10-3 to 14.0 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 670 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of a circular tube, a delta-winglet pair, and a combination of a circular tube and a delta-winglet pair. Comparisons of local and average heat transfer distributions for the circular tube with and without winglets are provided. Overall mean finsurface Nusselt-number results indicate a significant level of heat transfer enhancement associated with the deployment of the winglets with the circular cylinder. At the lowest Reynolds numbers (which correspond to the laminar operating conditions of existing geothermal air-cooled condensers), the enhancement level is nearly a factor of two. At higher Reynolds numbers, the enhancement level is close to 50%.« less

  15. An Energy Saver Called NECAP

    NASA Technical Reports Server (NTRS)

    1979-01-01

    One of the most comprehensive and most effective programs is NECAP, an acronym for NASA Energy Cost Analysis Program. Developed by Langley Research Center, NECAP operates according to heating/cooling calculation procedures formulated by the American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE). The program enables examination of a multitude of influences on heat flow into and out of buildings. For example, NECAP considers traditional weather patterns for a given locale and predicts the effects on a particular building design of sun, rain, wind, even shadows from other buildings. It takes into account the mass of structural materials, insulating values, the type of equipment the building will house, equipment operating schedules, heat by people and machinery, heat loss or gain through windows and other openings and a variety of additional details. NECAP ascertains how much energy the building should require ideally, aids selection of the most economical and most efficient energy systems and suggests design and operational measures for reducing the building's energy needs. Most importantly, NECAP determines cost effectiveness- whether an energy-saving measure will pay back its installation cost through monetary savings in energy bills. thrown off

  16. Impact of Climate Conditions on Occupational Health and Related Economic Losses: A New Feature of Global and Urban Health in the Context of Climate Change.

    PubMed

    Kjellstrom, Tord

    2016-03-01

    One feature of climate change is the increasing heat exposure in many workplaces where efficient cooling systems cannot be applied. Excessive heat exposure is a particular problem for working people because of the internal heat production when muscle work is carried out. The physiological basis for severe heat stroke, other clinical effects, and heat exhaustion is well known. One feature of this health effect of excessive workplace heat exposure is reduced work capacity, and new research has started to quantify this effect in the context of climate change. Current climate conditions in tropical and subtropical parts of the world are already so hot during the hot seasons that occupational health effects occur and work capacity for many working people is affected. The Hothaps-Soft database and software andClimateCHIP.orgwebsite make it possible to rapidly produce estimates of local heat conditions and trends. The results can be mapped to depict the spatial distribution of workplace heat stress. In South-East Asia as much as 15% to 20% of annual work hours may already be lost in heat-exposed jobs, and this may double by 2050 as global climate change progresses. By combining heat exposure data and estimates of the economic consequences, the vulnerability of many low- and middle-income countries is evident. The annual cost of reduced labor productivity at country level already in 2030 can be several percent of GDP, which means billions of US dollars even for medium-size countries. The results provide new arguments for effective climate change adaptation and mitigation policies and preventive actions in all countries. © 2015 APJPH.

  17. A DISCUSSION ON UTILIZATION OF HEAT PIPE AND VAPOUR CHAMBER TECHNOLOGY AS A PRIMARY DEVICE FOR HEAT EXTRACTION FROM PHOTON ABSORBER SURFACES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suthar, K. J.; Lurie, Alexander M.; Den Hartog, P.

    Heat pipes and vapour chambers work on heat exchange phenomena of two-phase flow and are widely used for in-dustrial and commercial applications. These devices offer very high effective thermal conductivities (5,000-200,000 W/m/K) and are adaptable to various sizes, shapes, and ori-entations. Although they have been found to be an excel-lent thermal management solution for laptops, satellites, and many things in-between, heat pipes and vapour cham-bers have yet to be adopted for use at particle accelerator facilities where they offer the possibility of more compact and more efficient means to remove heat from unwanted synchrotron radiation. As with all technologies, theremore » are inherent limitations. Foremost, they are limited by practi-cality to serve as local heat transfer devices; heat transfer over long distances is likely best provided by other means. Heat pipes also introduce unique failure modes which must be considered.« less

  18. Coolant-side heat-transfer rates for a hydrogen-oxygen rocket and a new technique for data correlation

    NASA Technical Reports Server (NTRS)

    Schacht, R. L.; Quentmeyer, R. J.

    1973-01-01

    An experimental investigation was conducted to determine the coolant-side, heat transfer coefficients for a liquid cooled, hydrogen-oxygen rocket thrust chamber. Heat transfer rates were determined from measurements of local hot gas wall temperature, local coolant temperature, and local coolant pressure. A correlation incorporating an integration technique for the transport properties needed near the pseudocritical temperature of liquid hydrogen gives a satisfactory prediction of hot gas wall temperatures.

  19. Double diffusive conjugate heat transfer: Part II

    NASA Astrophysics Data System (ADS)

    Azeem, Soudagar, Manzoor Elahi M.

    2018-05-01

    Conjugate heat transfer in porous medium is an important study involved in many practical applications. The current study is aimed to investigate the double diffusive flow in a square porous cavity subjected to left vertical surface heating and right vertical surface cooling respectively along with left and right surfaces maintained at high and low concentration. The three governing equations are converted into algebraic form of equations by applying finite element method and solved in iterative manner. The study is focused to investigate the effect of presence of solid inside the cavity with respect to varying buoyancy ratio. It is found that the local heat and mass transfer rate decreases along the height of cavity.

  20. Modulatory effect of betaine on expression dynamics of HSPs during heat stress acclimation in goat (Capra hircus).

    PubMed

    Dangi, Satyaveer Singh; Dangi, Saroj K; Chouhan, V S; Verma, M R; Kumar, Puneet; Singh, Gyanendra; Sarkar, Mihir

    2016-01-10

    Changing climatic scenario with expected global rise in surface temperature compelled more focus of research over decoding heat stress response mechanism of animals and mitigation of heat stress. Recently betaine, a trimethyl form of glycine has been found to ameliorate heat stress in some species of animals. To overcome deleterious effect of heat stress, an attempt was taken to investigate the effect of betaine supplementation on heat stress mitigation in goats. Eighteen female Barbari goats were taken and randomly divided into 3 groups (n=6) such as control, HS (Heat stressed), HS+B (Heat stressed administered with betaine). Except for the control group, other groups were exposed to repeated heat stress (42 °C) for 6 h for sixteen consecutive days. Blood samples were collected at the end of heat exposure on day 1 (Initial heat stress acclimation - IHSA), day 6 (Short term heat stress acclimation - STHSA) and day 16 (Long term heat stress acclimation - LTHSA). When the groups were compared between different heat stress acclimatory phases, expression of all HSPs (HSP60, HSP70, HSP90 and HSP105/110) showed a similar pattern with a first peak on IHSA, reaching a basal level on STHSA followed by second peak on LTHSA. The messenger RNA (mRNA) and protein expression of HSPs was observed to be higher (P<0.05) in HS group than HS+B group except HSP90 on IHSA and HSP60 on STHSA. HSP105/110 expression was highest (P<0.05) on LTHSA. Immunocytochemical analysis revealed that HSPs were mainly localized both in nucleus and cytoplasm of PBMCs. In conclusion, heat stress increases HSPs expression and betaine administration was shown to have a dwindling effect on expression of HSPs, suggesting a possible role of this chemical chaperone on heat stress amelioration. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Condensation and single-phase heat transfer coefficient and flow regime visualization in microchannel tubes for HFC-134A

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Wen William

    This dissertation is to document experimental, local condensation and single-phase heat transfer and flow data of the minute diameter, microchannel tube and to develop correlation methods for optimizing the design of horizontal-microchannel condensers. It is essential to collect local data as the condensation progresses through several different flow patterns, since as more liquid is formed, the mechanism conducting heat transfer and flow is also changing. Therefore, the identification of the flow pattern is as important as the thermal and dynamic data. The experimental results were compared with correlation and flow regime maps from literature. The experiment using refrigerant HFC-134a in flat, multi-port aluminum tubing with 1.46mm hydraulic diameter was conducted. The characteristic of single-phase friction can be described with the analytical solution of square channel. The Gnielinski correlation provided good prediction of single-phase turbulent flow heat transfer. Higher mass fluxes and qualities resulted in increased condensation heat transfer and were more effective in the shear-dominated annular flow. The effect of temperature gradient from wall to refrigerant attributed profoundly in the gravity-dominated wavy/slug flow. Two correlation based on different flow mechanisms were developed for specified flow regimes. Finally, an asymptotic correlation was successfully proposed to account for the entire data regardless of flow patterns. Data taken from experiment and observations obtained from flow visualization, resulted in a better understanding of the physics in microchannel condensation, optimized designs in the microchannel condensers are now possible.

  2. Turbulent boundary layer heat transfer experiments: Convex curvature effects, including introduction and recovery

    NASA Technical Reports Server (NTRS)

    Simon, T. W.; Moffat, R. J.; Johnston, J. P.; Kays, W. M.

    1980-01-01

    Heat transfer rates were measured through turbulent and transitional boundary layers on an isothermal, convexly curved wall and downstream flat plate. The effect of convex curvature on the fully turbulent boundary layer was a reduction of the local Stanton numbers 20-50% below those predicted for a flat wall under the same circumstances. The recovery of the heat transfer rates on the downstream flat wall was extremely slow. After 60 cm of recovery length, the Stanton number was still typically 15-20% below the flat wall predicted value. Various effects important in the modeling of curved flows were studied separately. These are: (1) the effect of initial boundary layer thickness; (2) the effect of freestream velocity; (3) the effect of freestream acceleration; (4) the effect of unheated starting length; and (5) the effect of the maturity of the boundary layer. Regardless of the initial state, curvature eventually forced the boundary layer into an asymptotic curved condition. The slope, minus one, is believed to be significant.

  3. On computational experiments in some inverse problems of heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Bilchenko, G. G.; Bilchenko, N. G.

    2016-11-01

    The results of mathematical modeling of effective heat and mass transfer on hypersonic aircraft permeable surfaces are considered. The physic-chemical processes (the dissociation and the ionization) in laminar boundary layer of compressible gas are appreciated. Some algorithms of control restoration are suggested for the interpolation and approximation statements of heat and mass transfer inverse problems. The differences between the methods applied for the problem solutions search for these statements are discussed. Both the algorithms are realized as programs. Many computational experiments were accomplished with the use of these programs. The parameters of boundary layer obtained by means of the A.A.Dorodnicyn's generalized integral relations method from solving the direct problems have been used to obtain the inverse problems solutions. Two types of blowing laws restoration for the inverse problem in interpolation statement are presented as the examples. The influence of the temperature factor on the blowing restoration is investigated. The different character of sensitivity of controllable parameters (the local heat flow and local tangent friction) respectively to step (discrete) changing of control (the blowing) and the switching point position is studied.

  4. Millimeter Wave Detection of Localized Anomalies in the Space Shuttle External Fuel Tank Insulating Foam and Acreage Heat Tiles

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Case, J. T.; Zoughi, R.; Hepburn, F.

    2005-01-01

    The Space Shuttle Columbia's catastrophic accident emphasizes the growing need for developing and applying effective, robust and life-cycle oriented nondestructive testing (NDT) methods for inspecting the shuttle external fuel tank spray on foam insulation (SOFI) and its protective acreage heat tiles. Millimeter wave NDT techniques were one of the methods chosen for evaluating their potential for inspecting these structures. Several panels with embedded anomalies (mainly voids) were produced and tested for this purpose. Near-field and far-field millimeter wave NDT methods were used for producing millimeter wave images of the anomalies in SOFI panel and heat tiles. This paper presents the results of an investigation for the purpose of detecting localized anomalies in two SOFI panels and a set of heat tiles. To this end, reflectometers at a relatively wide range of frequencies (Ka-band (26.5 - 40 GHz) to W-band (75 - 110 GHz)) and utilizing different types of radiators were employed. The results clearly illustrate the utility of these methods for this purpose.

  5. Estimation of Anthropogenic Heat Emissions in Delhi, India and Their Role in Urban Heat Island Effect

    NASA Astrophysics Data System (ADS)

    Bhati, S.; Mohan, M.

    2016-12-01

    Energy consumption in the urban environment impacts the urban surface energy budget and leads to the emission of anthropogenic sensible heat into the atmosphere. Anthropogenic heat (AH) can vary both in time and space, and are not readily measured. In present study, anthropogenic heat emissions have been estimated using an inventory approach for Delhi. The main sources that have been considered are electricity consumption, vehicular emissions, fuel consumption in domestic sector and waste heat from power plants. Total estimated anthropogenic heat is apportioned gridwise (2 km2) and incorporated in the WRF (version 3.5) model coupled with single-layer Urban canopy model (UCM) to assess the impact of these emissions on urban heat island effect in Delhi. Vehicular emissions have been found to be highest contributor to anthropogenic heat emissions (47%) followed by electricity consumption (28%), domestic fuel consumption (16%) and waste heat from power plants (9%). Highest annual average anthropogenic heat flux was estimated to be 25.2 Wm-2. High flux zones are observed in east Delhi and densely occupied and commercial zones of Sitaram Bazar and Connaught Place. Inclusion of anthropogenic heat emissions in the model improves model performance for near surface temperature as well as urban heat island intensities. Maximum simulated night-time UHI improves from 5.95°C (without AH) to 6.24°C (with AH) against observed value of 6.68°C, thereby indicating positive contribution of anthropogenic heat emissions along with urban canopy towards UHI effect in Delhi. Similarly, spatial distribution and UHI hotspots are found to be comparatively closer to corresponding observed distribution and hotspots with anthropogenic heat emissions being added to the WRF model. Overall, relatively improved model performance is indicative of the impact of anthropogenic heat emissions in local urban meteorology and urban heat island effect in Delhi. Hence, rising population and change in land use-cover and associated anthropogenic activities call for strategic mitigation measures in the city to prevent further strengthening of heat island effect.

  6. Localized temperature and chemical reaction control in nanoscale space by nanowire array.

    PubMed

    Jin, C Yan; Li, Zhiyong; Williams, R Stanley; Lee, K-Cheol; Park, Inkyu

    2011-11-09

    We introduce a novel method for chemical reaction control with nanoscale spatial resolution based on localized heating by using a well-aligned nanowire array. Numerical and experimental analysis shows that each individual nanowire could be selectively and rapidly Joule heated for local and ultrafast temperature modulation in nanoscale space (e.g., maximum temperature gradient 2.2 K/nm at the nanowire edge; heating/cooling time < 2 μs). By taking advantage of this capability, several nanoscale chemical reactions such as polymer decomposition/cross-linking and direct and localized hydrothermal synthesis of metal oxide nanowires were demonstrated.

  7. Exploring Hypersonic, Unstructured-Grid Issues through Structured Grids

    NASA Technical Reports Server (NTRS)

    Mazaheri, Ali R.; Kleb, Bill

    2007-01-01

    Pure-tetrahedral unstructured grids have been shown to produce asymmetric heat transfer rates for symmetric problems. Meanwhile, two-dimensional structured grids produce symmetric solutions and as documented here, introducing a spanwise degree of freedom to these structured grids also yields symmetric solutions. The effects of grid skewness and other perturbations of structured-grids are investigated to uncover possible mechanisms behind the unstructured-grid solution asymmetries. By using controlled experiments around a known, good solution, the effects of particular grid pathologies are uncovered. These structured-grid experiments reveal that similar solution degradation occurs as for unstructured grids, especially for heat transfer rates. Non-smooth grids within the boundary layer is also shown to produce large local errors in heat flux but do not affect surface pressures.

  8. Estimating population heat exposure and impacts on working people in conjunction with climate change.

    PubMed

    Kjellstrom, Tord; Freyberg, Chris; Lemke, Bruno; Otto, Matthias; Briggs, David

    2018-03-01

    Increased environmental heat levels as a result of climate change present a major challenge to the health, wellbeing and sustainability of human communities in already hot parts of this planet. This challenge has many facets from direct clinical health effects of daily heat exposure to indirect effects related to poor air quality, poor access to safe drinking water, poor access to nutritious and safe food and inadequate protection from disease vectors and environmental toxic chemicals. The increasing environmental heat is a threat to environmental sustainability. In addition, social conditions can be undermined by the negative effects of increased heat on daily work and life activities and on local cultural practices. The methodology we describe can be used to produce quantitative estimates of the impacts of climate change on work activities in countries and local communities. We show in maps the increasing heat exposures in the shade expressed as the occupational heat stress index Wet Bulb Globe Temperature. Some tropical and sub-tropical areas already experience serious heat stress, and the continuing heating will substantially reduce work capacity and labour productivity in widening parts of the world. Southern parts of Europe and the USA will also be affected. Even the lowest target for climate change (average global temperature change = 1.5 °C at representative concentration pathway (RCP2.6) will increase the loss of daylight work hour output due to heat in many tropical areas from less than 2% now up to more than 6% at the end of the century. A global temperature change of 2.7 °C (at RCP6.0) will double this annual heat impact on work in such areas. Calculations of this type of heat impact at country level show that in the USA, the loss of work capacity in moderate level work in the shade will increase from 0.17% now to more than 1.3% at the end of the century based on the 2.7 °C temperature change. The impact is naturally mainly occurring in the southern hotter areas. In China, the heat impact will increase from 0.3 to 2%, and in India, from 2 to 8%. Especially affected countries, such as Cambodia, may have losses going beyond 10%, while countries with most of the population at high cooler altitude, such as Ethiopia, may experience much lower losses.

  9. Biological Effects of Nonionizing Electromagnetic Radiation. Volume V, Number 1.

    DTIC Science & Technology

    1980-09-01

    temperature are Mande, France); Doury, P.: Conrad. J.: Metges. P. J.. close to the limits for protein denaturation: this may Pattin. S. Med Aeronaut Spat 18...large cylinder or mat.netrode that. TECHNIOUE USED TO TREAT according to Dr. Storm, provides "deep internal CANCER PATIENTS heating to any depth with no...investiga- cells. Two aspects of microwave hyperthermia-- tion, hyperthermla is never used as a first line localized heating and accurate temperature

  10. Assessment of Fencing on the Orion Heatshield

    NASA Technical Reports Server (NTRS)

    Alunni, Antonella I.; Gokcen, Tahir

    2016-01-01

    This paper presents recession measurements of arc-jet test articles that simulate an ablator with gap filler and were exposed to various heating profiles. Results were used to derive empirically-based differential recession models used for the baseline sizing of the Orion block heatshield architecture. The profile test conditions represent different local flight environments associated with different regions of the heatshield. Recession measurements were collected during and after arc-jet tests, and the results were used to observe the heating profiles’ effect on differential recession. Arc-jet tests were conducted at the Aerodynamic Heating Facility at NASA Ames Research Center.

  11. Transport of heat and mass in near-critical fluids

    NASA Astrophysics Data System (ADS)

    Garrabos, Yves; Leneindre, B.; Guenoun, P.; Perrot, F.; Beysens, Daniel

    1992-08-01

    In order to investigate some aspects of heat and mass transport in fluids in the absence of gravity, thermal cycles were performed near the liquid-phase critical point of CO2 and SF6 in the TEXUS 25 rocket and during the International Microgravity Laboratory (IML-1) Spacelab mission. In the absence of gravity driven convection, the heat transport is expected to be diffusive and very slow. Experimentally, although the local density and temperature gradients indeed relax by a diffusive process, clear evidence is found of fast and uniform thermal equilibration. This new mechanism is a 'piston effect'.

  12. Effects of local and global mechanical distortions to hypervelocity boundary layers

    NASA Astrophysics Data System (ADS)

    Flaherty, William P.

    The response of hypervelocity boundary layers to global mechanical distortions due to concave surface curvature is examined. Surface heat transfer, visual boundary layer thickness, and pressure sensitive paint (PSP) data are obtained for a suite of models with different concave surface geometries. Results are compared to predictions using existing approximate methods. Near the leading edge, good agreement is observed, but at larger pressure gradients, predictions diverge significantly from the experimental data. Up to a factor of five underprediction is reported in regions with greatest distortion. Curve fits to the experimental data are compared with surface equations. It is demonstrated that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle for all model geometries, even at the conditions of greatest distortion. As a means of introducing additional local distortions, vortex generators are used to impose streamwise structures into the boundary layer. The response of the large scale vortical structures to an adverse pressure gradient is investigated. For a flat plate baseline case, heat transfer augmentation at similar levels to turbulent flow is measured. For the concave geometries, increases in heat transfer by factors up to 2.6 are measured over the laminar values, though for higher turning angle cases, a relaxation to below undisturbed values is reported at turning angles between 10 and 15 degrees. The scaling of heat transfer with turning angle that is identified for the laminar boundary layer response is found to be robust even in the presence of the imposed vortex structures. PSP measurements indicated that natural streaks form over concave models even when imposed vorticity is present. Correlations found between the heat transfer and natural streak formation are discussed and indicate possible vortex interactions.

  13. Mitigation of divertor heat flux by high-frequency ELM pacing with non-fuel pellet injection in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bortolon, A.; Maingi, R.; Mansfield, D. K.

    Experiments have been conducted on DIII-D investigating high repetition rate injection of non-fuel pellets as a tool for pacing Edge Localized Modes (ELMs) and mitigating their transient divertor heat loads. Effective ELM pacing was obtained with injection of Li granules in different H-mode scenarios, at frequencies 3–5 times larger than the natural ELM frequency, with subsequent reduction of strike-point heat flux. However, in scenarios with high pedestal density (~6 × 10 19 m –3), the magnitude of granule triggered ELMs shows a broad distribution, in terms of stored energy loss and peak heat flux, challenging the effectiveness of ELM mitigation.more » Furthermore, transient heat-flux deposition correlated with granule injections was observed far from the strike-points. As a result, field line tracing suggest this phenomenon to be consistent with particle loss into the mid-plane far scrape-off layer, at toroidal location of the granule injection.« less

  14. Mitigation of divertor heat flux by high-frequency ELM pacing with non-fuel pellet injection in DIII-D

    DOE PAGES

    Bortolon, A.; Maingi, R.; Mansfield, D. K.; ...

    2017-03-23

    Experiments have been conducted on DIII-D investigating high repetition rate injection of non-fuel pellets as a tool for pacing Edge Localized Modes (ELMs) and mitigating their transient divertor heat loads. Effective ELM pacing was obtained with injection of Li granules in different H-mode scenarios, at frequencies 3–5 times larger than the natural ELM frequency, with subsequent reduction of strike-point heat flux. However, in scenarios with high pedestal density (~6 × 10 19 m –3), the magnitude of granule triggered ELMs shows a broad distribution, in terms of stored energy loss and peak heat flux, challenging the effectiveness of ELM mitigation.more » Furthermore, transient heat-flux deposition correlated with granule injections was observed far from the strike-points. As a result, field line tracing suggest this phenomenon to be consistent with particle loss into the mid-plane far scrape-off layer, at toroidal location of the granule injection.« less

  15. Heterogeneous nanofluids: natural convection heat transfer enhancement

    NASA Astrophysics Data System (ADS)

    Oueslati, Fakhreddine Segni; Bennacer, Rachid

    2011-12-01

    Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case.

  16. Heterogeneous nanofluids: natural convection heat transfer enhancement

    PubMed Central

    2011-01-01

    Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case. PMID:21711755

  17. Numerical simulation of supersonic gap flow.

    PubMed

    Jing, Xu; Haiming, Huang; Guo, Huang; Song, Mo

    2015-01-01

    Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.

  18. Chemical reaction and heat generation/absorption aspects in MHD nonlinear convective flow of third grade nanofluid over a nonlinear stretching sheet with variable thickness

    NASA Astrophysics Data System (ADS)

    Qayyum, Sajid; Hayat, Tasawar; Alsaedi, Ahmed

    Nonlinear thermal radiation and chemical reaction in magnetohydrodynamic (MHD) flow of third grade nanofluid over a stretching sheet with variable thickness are addressed. Heat generation/absorption and nonlinear convection are considered. The sheet moves with nonlinear velocity. Sheet is convectively heated. In addition zero mass flux condition for nanoparticle concentration is imposed. Results for velocity, temperature, concentration, skin friction and local Nusselt number are presented and examined. It is found that velocity and boundary layer thickness are increasing for Reynolds number. Temperature is a increasing function of the heat generation/absorption parameter while it causes a decrease in the heat transfer rate. Moreover effect of Brownian motion and chemical reaction on the concentration are quite reverse.

  19. Hyperthermia in the treatment of cancer: A review of the radiobiological basis

    NASA Technical Reports Server (NTRS)

    Baker, D. G.

    1978-01-01

    Temperatures in the range 41.5 C to 43.5 C tend to be more damaging to malignant than nonmalignant cells. Where local hyperthermia (41.5 C to 43.5 C) is combined with ionizing radiation, a significant therapeutic ratio may be realized. Total body hyperthermia, alone or combined with other therapeutic modalities, can provide palliation for some systemic malignancies but may not be as effective as local hyperthermia for treating local disease. The influence of hyperthermia on immune mechanisms and the risk of metastatic spread of potential tumor growth stimulation need further investigation. Among other questions needing elucidation before hyperthermia can be considered a standard treatment modality are the time-dose (for heating) relationships to produce an optimal therapeutic ratio and whether the late sequela of combined heat and ionizing radiation may result in an unacceptable risk of patient morbidity.

  20. Effect of electron-vibration interactions on the thermoelectric efficiency of molecular junctions.

    PubMed

    Hsu, Bailey C; Chiang, Chi-Wei; Chen, Yu-Chang

    2012-07-11

    From first-principles approaches, we investigate the thermoelectric efficiency of a molecular junction where a benzene molecule is connected directly to the platinum electrodes. We calculate the thermoelectric figure of merit ZT in the presence of electron-vibration interactions with and without local heating under two scenarios: linear response and finite bias regimes. In the linear response regime, ZT saturates around the electrode temperature T(e) = 25 K in the elastic case, while in the inelastic case we observe a non-saturated and a much larger ZT beyond T(e) = 25 K attributed to the tail of the Fermi-Dirac distribution. In the finite bias regime, the inelastic effects reveal the signatures of the molecular vibrations in the low-temperature regime. The normal modes exhibiting structures in the inelastic profile are characterized by large components of atomic vibrations along the current density direction on top of each individual atom. In all cases, the inclusion of local heating leads to a higher wire temperature T(w) and thus magnifies further the influence of the electron-vibration interactions due to the increased number of local phonons.

  1. The role of local heating in the 2015 Indian Heat Wave.

    PubMed

    Ghatak, Debjani; Zaitchik, Benjamin; Hain, Christopher; Anderson, Martha

    2017-08-09

    India faced a major heat wave during the summer of 2015. Temperature anomalies peaked in the dry period before the onset of the summer monsoon, suggesting that local land-atmosphere feedbacks involving desiccated soils and vegetation might have played a role in driving the heat extreme. Upon examination of in situ data, reanalysis, satellite observations, and land surface models, we find that the heat wave included two distinct peaks: one in late May, and a second in early June. During the first peak we find that clear skies led to a positive net radiation anomaly at the surface, but there is no significant sensible heat flux anomaly within the core of the heat wave affected region. By the time of the second peak, however, soil moisture had dropped to anomalously low levels in the core heat wave region, net surface radiation was anomalously high, and a significant positive sensible heat flux anomaly developed. This led to a substantial local forcing on air temperature that contributed to the intensity of the event. The analysis indicates that the highly agricultural landscape of North and Central India can reinforce heat extremes under dry conditions.

  2. Alternative energy sources

    NASA Astrophysics Data System (ADS)

    Todd, R. W.

    1982-04-01

    Renewable energy sources and their potential contribution for solving energy needs are presented. Centralized supply technologies include those alternative fuels derived from biomass using solar energy, (supplying 57% of the energy supply in some countries), and those using directly collected solar energy to manufacture a fuel. Fuel utilization effects can be doubled by using combined heat and power stations, and other major sources include wind, wave, tidal, and solar. In terms of local supply technology, wood burning appliances are becoming more popular, and methane is being used for heating and to fuel spark ignition engines. Geothermal low temperature heating exists worldwide at a capacity of 7.2 GW, supplying heat, particularly in Hungary, parts of the U.S.S.R., and Iceland, and a geothermal research program has been established in the United States. Sweden has a potential hydroelectric capacity of 600 MW, and the United States has a 100 GW capacity. Many of these technologies are already cost effective.

  3. Chromospheric heating by acoustic shock waves

    NASA Technical Reports Server (NTRS)

    Jordan, Stuart D.

    1993-01-01

    Work by Anderson & Athay (1989) suggests that the mechanical energy required to heat the quiet solar chromosphere might be due to the dissipation of weak acoustic shocks. The calculations reported here demonstrate that a simple picture of chromospheric shock heating by acoustic waves propagating upward through a model solar atmosphere, free of both magnetic fields and local inhomogeneities, cannot reproduce their chromospheric model. The primary reason is the tendency for vertically propagating acoustic waves in the range of allowed periods to dissipate too low in the atmosphere, providing insufficient residual energy for the middle chromosphere. The effect of diverging magnetic fields and the corresponding expanding acoustic wavefronts on the mechanical dissipation length is then discussed as a means of preserving a quasi-acoustic heating hypothesis. It is argued that this effect, in a canopy that overlies the low chromosphere, might preserve the acoustic shock hypothesis consistent with the chromospheric radiation losses computed by Anderson & Athay.

  4. Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics

    PubMed Central

    Stujenske, Joseph M.; Spellman, Timothy; Gordon, Joshua A.

    2015-01-01

    Summary Despite the increasing use of optogenetics in vivo, the effects of direct light exposure to brain tissue are understudied. Of particular concern is the potential for heat induced by prolonged optical stimulation. We demonstrate that high intensity light, delivered through an optical fiber, is capable of elevating firing rate locally, even in the absence of opsin expression. Predicting the severity and spatial extent of any temperature increase during optogenetic stimulation is therefore of considerable importance. Here we describe a realistic model that simulates light and heat propagation during optogenetic experiments. We validated the model by comparing predicted and measured temperature changes in vivo. We further demonstrate the utility of this model by comparing predictions for various wavelengths of light and fiber sizes, as well as testing methods for reducing heat effects on neural targets in vivo. PMID:26166563

  5. The InSight Mars Lander and Its Effect on the Subsurface Thermal Environment

    NASA Astrophysics Data System (ADS)

    Siegler, Matthew A.; Smrekar, Suzanne E.; Grott, Matthias; Piqueux, Sylvain; Mueller, Nils; Williams, Jean-Pierre; Plesa, Ana-Catalina; Spohn, Tilman

    2017-10-01

    The 2018 InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Mission has the mission goal of providing insitu data for the first measurement of the geothermal heat flow of Mars. The Heat Flow and Physical Properties Package (HP3) will take thermal conductivity and thermal gradient measurements to approximately 5 m depth. By necessity, this measurement will be made within a few meters of the lander. This means that thermal perturbations from the lander will modify local surface and subsurface temperature measurements. For HP3's sensitive thermal gradient measurements, this spacecraft influence will be important to model and parameterize. Here we present a basic 3D model of thermal effects of the lander on its surroundings. Though lander perturbations significantly alter subsurface temperatures, a successful thermal gradient measurement will be possible in all thermal conditions by proper (>3 m depth) placement of the heat flow probe.

  6. Joule heating effects on particle immobilization in insulator-based dielectrophoretic devices

    PubMed Central

    Gallo-Villanueva, Roberto C.; Sano, Michael B.; Lapizco-Encinas, Blanca H.; Davalos, Rafael V.

    2014-01-01

    In this work, the temperature effects due to Joule heating obtained by application of a DC electric potential were investigated for a microchannel with cylindrical insulating posts employed for insulator based dielectrophoresis (iDEP). The conductivity of the suspending medium, the local electric field, and the gradient of the squared electric field, which directly affect the magnitude of the dielectrophoretic force exerted on particles, were computationally simulated employing COMSOL Multiphysics. It was observed that a temperature gradient is formed along the microchannel which redistributes the conductivity of the suspending medium leading to an increase of the dielectrophoretic force towards the inlet of the channel while decreasing towards the outlet. Experimental results are in good agreement with simulations on the particle trapping zones anticipated. This study demonstrates the importance of considering Joule heating effects when designing iDEP systems. PMID:24002905

  7. Double Diffusive Magnetohydrodynamic (MHD) Mixed Convective Slip Flow along a Radiating Moving Vertical Flat Plate with Convective Boundary Condition

    PubMed Central

    Rashidi, Mohammad M.; Kavyani, Neda; Abelman, Shirley; Uddin, Mohammed J.; Freidoonimehr, Navid

    2014-01-01

    In this study combined heat and mass transfer by mixed convective flow along a moving vertical flat plate with hydrodynamic slip and thermal convective boundary condition is investigated. Using similarity variables, the governing nonlinear partial differential equations are converted into a system of coupled nonlinear ordinary differential equations. The transformed equations are then solved using a semi-numerical/analytical method called the differential transform method and results are compared with numerical results. Close agreement is found between the present method and the numerical method. Effects of the controlling parameters, including convective heat transfer, magnetic field, buoyancy ratio, hydrodynamic slip, mixed convective, Prandtl number and Schmidt number are investigated on the dimensionless velocity, temperature and concentration profiles. In addition effects of different parameters on the skin friction factor, , local Nusselt number, , and local Sherwood number are shown and explained through tables. PMID:25343360

  8. Intracorporeal Heat Distribution from Fully Implantable Energy Sources for Mechanical Circulatory Support: A Computational Proof-of-Concept Study

    PubMed Central

    Biasetti, Jacopo; Pustavoitau, Aliaksei; Spazzini, Pier Giorgio

    2017-01-01

    Mechanical circulatory support devices, such as total artificial hearts and left ventricular assist devices, rely on external energy sources for their continuous operation. Clinically approved power supplies rely on percutaneous cables connecting an external energy source to the implanted device with the associated risk of infections. One alternative, investigated in the 70s and 80s, employs a fully implanted nuclear power source. The heat generated by the nuclear decay can be converted into electricity to power circulatory support devices. Due to the low conversion efficiencies, substantial levels of waste heat are generated and must be dissipated to avoid tissue damage, heat stroke, and death. The present work computationally evaluates the ability of the blood flow in the descending aorta to remove the locally generated waste heat for subsequent full-body distribution and dissipation, with the specific aim of investigating methods for containment of local peak temperatures within physiologically acceptable limits. To this aim, coupled fluid–solid heat transfer computational models of the blood flow in the human aorta and different heat exchanger architectures are developed. Particle tracking is used to evaluate temperature histories of cells passing through the heat exchanger region. The use of the blood flow in the descending aorta as a heat sink proves to be a viable approach for the removal of waste heat loads. With the basic heat exchanger design, blood thermal boundary layer temperatures exceed 50°C, possibly damaging blood cells and proteins. Improved designs of the heat exchanger, with the addition of fins and heat guides, allow for drastically lower blood temperatures, possibly leading to a more biocompatible implant. The ability to maintain blood temperatures at biologically compatible levels will ultimately allow for the body-wise distribution, and subsequent dissipation, of heat loads with minimum effects on the human physiology. PMID:29094038

  9. Intracorporeal Heat Distribution from Fully Implantable Energy Sources for Mechanical Circulatory Support: A Computational Proof-of-Concept Study.

    PubMed

    Biasetti, Jacopo; Pustavoitau, Aliaksei; Spazzini, Pier Giorgio

    2017-01-01

    Mechanical circulatory support devices, such as total artificial hearts and left ventricular assist devices, rely on external energy sources for their continuous operation. Clinically approved power supplies rely on percutaneous cables connecting an external energy source to the implanted device with the associated risk of infections. One alternative, investigated in the 70s and 80s, employs a fully implanted nuclear power source. The heat generated by the nuclear decay can be converted into electricity to power circulatory support devices. Due to the low conversion efficiencies, substantial levels of waste heat are generated and must be dissipated to avoid tissue damage, heat stroke, and death. The present work computationally evaluates the ability of the blood flow in the descending aorta to remove the locally generated waste heat for subsequent full-body distribution and dissipation, with the specific aim of investigating methods for containment of local peak temperatures within physiologically acceptable limits. To this aim, coupled fluid-solid heat transfer computational models of the blood flow in the human aorta and different heat exchanger architectures are developed. Particle tracking is used to evaluate temperature histories of cells passing through the heat exchanger region. The use of the blood flow in the descending aorta as a heat sink proves to be a viable approach for the removal of waste heat loads. With the basic heat exchanger design, blood thermal boundary layer temperatures exceed 50°C, possibly damaging blood cells and proteins. Improved designs of the heat exchanger, with the addition of fins and heat guides, allow for drastically lower blood temperatures, possibly leading to a more biocompatible implant. The ability to maintain blood temperatures at biologically compatible levels will ultimately allow for the body-wise distribution, and subsequent dissipation, of heat loads with minimum effects on the human physiology.

  10. Multicriteria optimization approach to design and operation of district heating supply system over its life cycle

    NASA Astrophysics Data System (ADS)

    Hirsch, Piotr; Duzinkiewicz, Kazimierz; Grochowski, Michał

    2017-11-01

    District Heating (DH) systems are commonly supplied using local heat sources. Nowadays, modern insulation materials allow for effective and economically viable heat transportation over long distances (over 20 km). In the paper a method for optimized selection of design and operating parameters of long distance Heat Transportation System (HTS) is proposed. The method allows for evaluation of feasibility and effectivity of heat transportation from the considered heat sources. The optimized selection is formulated as multicriteria decision-making problem. The constraints for this problem include a static HTS model, allowing considerations of system life cycle, time variability and spatial topology. Thereby, variation of heat demand and ground temperature within the DH area, insulation and pipe aging and/or terrain elevation profile are taken into account in the decision-making process. The HTS construction costs, pumping power, and heat losses are considered as objective functions. Inner pipe diameter, insulation thickness, temperatures and pumping stations locations are optimized during the decision-making process. Moreover, the variants of pipe-laying e.g. one pipeline with the larger diameter or two with the smaller might be considered during the optimization. The analyzed optimization problem is multicriteria, hybrid and nonlinear. Because of such problem properties, the genetic solver was applied.

  11. Heterogonous Nanofluids for Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Alammar, Khalid

    2014-09-01

    Nuclear reactions can be associated with high heat energy release. Extracting such energy efficiently requires the use of high-rate heat exchangers. Conventional heat transfer fluids, such as water and oils are limited in their thermal conductivity, and hence nanofluids have been introduced lately to overcome such limitation. By suspending metal nanoparticles with high thermal conductivity in conventional heat transfer fluids, thermal conductivity of the resulting homogeneous nanofluid is increased. Heterogeneous nanofluids offer yet more potential for heat transfer enhancement. By stratifying nanoparticles within the boundary layer, thermal conductivity is increased where temperature gradients are highest, thereby increasing overall heat transfer of a flowing fluid. In order to test the merit of this novel technique, a numerical study of a laminar pipe flow of a heterogeneous nanofluid was conducted. Effect of Iron-Oxide distribution on flow and heat transfer characteristics was investigated. With Iron-Oxide volume concentration of 0.009 in water, up to 50% local heat transfer enhancement was predicted for the heterogeneous compared to homogeneous nanofluids. Increasing the Reynolds number is shown to increase enhancement while having negligible effect on pressure drop. Using permanent magnets attached externally to the pipe, an experimental investigation conducted at MIT nuclear reactor laboratory for similar flow characteristics of a heterogeneous nanofluid have shown upto 160% enhancement in heat transfer. Such results show that heterogeneous nanofluids are promising for augmenting heat transfer rates in nuclear power heat exchanger systems.

  12. Results from the Phoenix Urban Heat Island (UHI) experiment: effects at the local, neighbourhood and urban scales

    NASA Astrophysics Data System (ADS)

    di Sabatino, S.; Leo, L. S.; Hedquist, B. C.; Carter, W.; Fernando, H. J. S.

    2009-04-01

    This paper reports on the analysis of results from a large urban heat island experiment (UHI) performed in Phoenix (AZ) in April 2008. From 1960 to 2000, the city of Phoenix experienced a minimum temperature rise of 0.47 °C per decade, which is one of the highest rates in the world for a city of this size (Golden, 2004). Contemporaneously, the city has recorded a rapid enlargement and large portion of the land and desert vegetation have been replaced by buildings, asphalt and concrete (Brazel et al., 2007, Emmanuel and Fernando, 2007). Besides, model predictions show that minimum air temperatures for Phoenix metropolitan area in future years might be even higher than 38 °C. In order to make general statements and mitigation strategies of the UHI phenomenon in Phoenix and other cities in hot arid climates, a one-day intensive experiment was conducted on the 4th-5th April 2008 to collect surface and ambient temperatures within various landscapes in Central Phoenix. Inter alia, infrared thermography (IRT) was used for UHI mapping. The aim was to investigate UHI modifications within the city of Phoenix at three spatial scales i.e. the local (Central Business District, CBD), the neighborhood and the city scales. This was achieved by combining IRT measurements taken at ground level by mobile equipment (automobile-mounted and pedicab) and at high elevation by a helicopter. At local scale detailed thermographic images of about twenty building façades and several street canyons were collected. In total, about two thousand images were taken during the 24-hour campaign. Image analysis provides detailed information on building surface and pavement temperatures at fine resolution (Hedquist et al. 2009, Di Sabatino et al. 2009). This unique dataset allows us several investigations on local air temperature dependence on albedo, building thermal inertia, building shape and orientation and sky view factors. Besides, the mosaic of building façade temperatures are being analyzed in terms of local buoyancy fluxes and possible wind flow modifications by such thermally driven flows will be elucidated. The results are of consequence for understanding microclimate of large cities in order to derive urbanizations schemes for numerical models and to set-up suitable heat mitigation strategies. REFERENCES Brazel, AJ, Gober, P., Lee, S., Grossman-Clarke, S., Zehnder, J., Hedquist, B. and Comparri, E 2007: Dynamics and determinants of urban heat island change (1990-2004) with Phoenix, Arizona, USA. Climate Research 33, 171-182. Di Sabatino S, Hedquist BC, Carter W, Leo LS, Fernando HJS. 2009. Phoenix urban heat island experiment: effects of built elements. Proceedings of the Eighth Symposium on the Urban Environment, Phoenix, Arizona. Emmanuel, R. and Fernando HJS 2007: Effects of urban form and thermal properties in urban heat island mitigation in hot humid and hot arid climates: The cases of Colombo, Sri Lanka and Phoenix, USA. Climate Research 34, 241-251. Golden JS. 2004. The built environment induced urban heat island in rapidly urbanizing arid regions: a sustainable urban engineering complexity. Environmental Sciences 1(4):321-349. Hedquist, BC, Brazel, AJ, Di Sabatino, S., Carter, W. and Fernando, HJS 2009: Phoenix urban heat island experiment: micrometeorological aspects. Proceedings of the Eighth Symposium on the Urban Environment, Phoenix, Arizona.

  13. Critical heat flux for water boiling in channels. Modern state, typical regularities, unsolved problems, and ways for solving them (a review)

    NASA Astrophysics Data System (ADS)

    Bobkov, V. P.

    2015-02-01

    Some general matters concerned with description of burnout in channels are outlined. Data obtained from experimental investigations on critical heat fluxes (CHF) in different channels, CHF data banks, the main determining parameters, CHF basic dependences, and a system of correction functions are discussed. Two methods for estimating the CHF description errors are analyzed. The influence of operating parameters, transverse sizes of channels, and conditions at their inlet are analyzed. The effects of heat-transfer surface shape and heat supply arrangement are considered for concentric annular channels. The notions of a thermal boundary layer and an elementary thermal cell during burnout in channels with an intricate cross section are defined. New notions for describing CHF in rod assemblies are introduced: bundle effect, thermal misalignment, assembly-section-averaged and local parameters (for an elementary cell), cell-wise CHF analysis in bundles, and standard and nonstandard cells. Possible influence of wall thermophysical properties on CHF in dense assemblies and other effects are considered. Thermal interaction of nonequivalent cells and the effect of heat supply arrangement over the cell perimeter are analyzed. Special attention is paid to description of the effect the heat release nonuniformity along the channels has on CHF. Objectives to be pursued by studies of CHF in channels of different cross-section shapes are formulated.

  14. Assessing the potential and side effects of ocean albedo modification in the Arctic

    NASA Astrophysics Data System (ADS)

    Mengis, N.; Oschlies, A.; Keller, D. P.; Martin, T.

    2015-12-01

    The ice albedo feedbacks in the Arctic are a key factor of the positive feedback mechanisms, which amplify climate change in the high northern latitudes. This study assesses the potential and side effects of an idealised Arctic ocean albedo modification (AOAM) experiment under varying emissions scenarios. A first finding is the fact that the decreasing trend in the Arctic summer sea ice extent could only be offset rather than reversed by the implementation of AOAM under increasing atmospheric CO2 emissions. What becomes evident in this study is that the Earth system regulates its internal heat budgets. Therefore a local cooling at the high northern latitudes causes compensatory heat fluxes in the atmosphere and the ocean. Meaning that firstly, the effectiveness of local scale climate intervention will, in the long term, be lowered by these compensatory fluxes and secondly that there are consequences, such as the subsurface warming signal found in this study, which are unexpected and unintended.

  15. Shock wave interactions in hypervelocity flow

    NASA Astrophysics Data System (ADS)

    Sanderson, S. R.; Sturtevant, B.

    1994-08-01

    The impingement of shock waves on blunt bodies in steady supersonic flow is known to cause extremely high local heat transfer rates and surface pressures. Although these problems have been studied in cold hypersonic flow, the effects of dissociative relaxation processes are unknown. In this paper we report a model aimed at determining the boundaries of the possible interaction regimes for an ideal dissociating gas. Local analysis about shock wave intersection points in the pressure-flow deflection angle plane with continuation of singular solutions is the fundamental tool employed. Further, we discuss an experimental investigation of the nominally two-dimensional mean flow that results from the impingement of an oblique shock wave on the leading edge of a cylinder. The effects of variations in shock impingement geometry were visualized using differential interferometry. Generally, real gas effects are seen to increase the range of shock impingement points for which enhanced heating occurs. They also reduce the type 4 interaction supersonic jet width and influence the type 2-3 transition process.

  16. Focal gene misexpression in zebrafish embryos induced by local heat shock using a modified soldering iron.

    PubMed

    Hardy, Melissa E; Ross, Louis V; Chien, Chi-Bin

    2007-11-01

    Misexpression of genes in a temporally and spatially controlled fashion is an important tool for assessing gene function during development. Because few tissue-specific promoters have been identified in zebrafish, inducible systems such as the Cre/LoxP and Tet repressor systems are of limited utility. Here we describe a new method of misexpression: local heat shock using a modified soldering iron. Zebrafish carrying transgenes under the control of a heat shock promoter (hsp70) are focally heated with the soldering iron to induce gene expression in a small area of the embryo. We have validated this method in three stable transgenic lines and at three developmental timepoints. Local heat shock is a fast, easy, and inexpensive method for gene misexpression. Copyright 2007 Wiley-Liss, Inc.

  17. The impact of heat waves on surface urban heat island and local economy in Cluj-Napoca city, Romania

    NASA Astrophysics Data System (ADS)

    Herbel, Ioana; Croitoru, Adina-Eliza; Rus, Adina Viorica; Roşca, Cristina Florina; Harpa, Gabriela Victoria; Ciupertea, Antoniu-Flavius; Rus, Ionuţ

    2017-07-01

    The association between heat waves and the urban heat island effect can increase the impact on environment and society inducing biophysical hazards. Heat stress and their associated public health problems are among the most frequent. This paper explores the heat waves impact on surface urban heat island and on the local economy loss during three heat periods in Cluj-Napoca city in the summer of 2015. The heat wave events were identified based on daily maximum temperature, and they were divided into three classes considering the intensity threshold: moderate heat waves (daily maximum temperature exceeding the 90th percentile), severe heat waves (daily maximum temperature over the 95th percentile), and extremely severe heat waves (daily maximum temperature exceeding the 98th percentile). The minimum length of an event was of minimum three consecutive days. The surface urban heat island was detected based on land surface temperature derived from Landsat 8 thermal infrared data, while the economic impact was estimated based on data on work force structure and work productivity in Cluj-Napoca derived from the data released by Eurostat, National Bank of Romania, and National Institute of Statistics. The results indicate that the intensity and spatial extension of surface urban heat island could be governed by the magnitude of the heat wave event, but due to the low number of satellite images available, we should consider this information only as preliminary results. Thermal infrared remote sensing has proven to be a very efficient method to study surface urban heat island, due to the fact that the synoptic conditions associated with heat wave events usually favor cloud free image. The resolution of the OLI_TIRS sensor provided good results for a mid-extension city, but the low revisiting time is still a drawback. The potential economic loss was calculated for the working days during heat waves and the estimated loss reached more than 2.5 mil. EUR for each heat wave day at city scale, cumulating more than 38 mil. EUR for the three cases considered.

  18. Local hyperthermia for esophageal cancer in a rabbit tumor model: Magnetic stent hyperthermia versus magnetic fluid hyperthermia

    PubMed Central

    LIU, JIAYI; LI, NING; LI, LI; LI, DANYE; LIU, KAI; ZHAO, LINGYUN; TANG, JINTIAN; LI, LIYA

    2013-01-01

    Magnetic-mediated hyperthermia (MMH) is a promising local thermotherapy approach for cancer treatment. The present study investigated the feasibility and effectiveness of MMH in esophageal cancer using a rabbit tumor model. The therapeutic effect of two hyperthermia approaches, magnetic stent hyperthermia (MSH), in which heat is induced by the clinical stent that is placed inside the esophagus, and magnetic fluid hyperthermia (MFH), where magnetic nanoparticles are applied as the agent, was systematically evaluated. A rabbit esophageal tumor model was established by injecting VX2 carcinoma cells into the esophageal submucosa. The esophageal stent was deployed perorally into the tumor segment of the esophagus. For the MFH, magnetic nanoparticles (MNPs) were administered to the rabbits by intratumoral injection. The rabbits were exposed under a benchtop applicator using an alternative magnetic field (AMF) with 300 kHz frequency for the hyperthermia treatment. The results demonstrated that esophageal stents and MNPs had ideal inductive heating properties upon exposure under an AMF of 300 kHz. MSH, using a thermal dose of 46°C with a 10-min treatment time, demonstrated antitumor effects on the rabbit esophageal cancer. However, the rabbit esophageal wall is not heat-resistant. Therefore, a higher temperature or longer treatment time may lead to necrosis of the rabbit esophagus. MFH has a significant antitumor effect by confining the heat within the tumor site without damaging the adjacent normal tissues. The present study indicates that the two hyperthermia procedures have therapeutic effects on esophageal cancer, and that MFH may be more specific than MSH in terms of temperature control during the treatment. PMID:24260045

  19. Effect of heat treatment on the crystal structure of deformed samples of chromium-manganese steel

    NASA Astrophysics Data System (ADS)

    Chezganov, D. S.; Chikova, O. A.; Borovykh, M. A.

    2017-09-01

    Results of studying microstructures and the crystal structure of samples of 35KhGF steel (0.31-0.38 wt % C, 0.17-0.37 wt % Si, 0.95-1.25 wt % Mn, 1.0-1.3 wt % Cr, 0.06-0.12 wt % V, and the remainder was Fe) have been presented. The samples have been selected from hot-rolled pipes subjected to different heat treatments. A study has been carried out in order to explain the choice of the heat-treatment regime based on determining the structure-properties relationship that provides an increase in the corrosion resistance of pipes to the effect of hydrocarbons. Methods of the energy-dispersive X-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD) have been used. In the microstructure of samples, oxide inclusions and discontinuities with sizes of 1-50 μm that presumably consist of the scale were detected. The ferrite grain size and the orientations of crystals were determined; the data on the local mechanical stresses in the Taylor orientation- factor maps were obtained. The grain refinement; the increase in the fraction of the low-angle boundaries; and the decrease in the local mechanical stresses and, therefore, the highest corrosion resistance to the effect of hydrocarbons is achieved by normalizing at 910°C.

  20. Managing heat and immune stress in athletes with evidence-based strategies.

    PubMed

    Pyne, David B; Guy, Joshua H; Edwards, Andrew M

    2014-09-01

    Heat and immune stress can affect athletes in a wide range of sports and environmental conditions. The classical thermoregulatory model of heat stress has been well characterized, as has a wide range of practical strategies largely centered on cooling and heat-acclimation training. In the last decade evidence has emerged of an inflammatory pathway that can also contribute to heat stress. Studies are now addressing the complex and dynamic interplay between hyperthermia, the coagulation cascade, and a systemic inflammatory response occurring after transient damage to the gastrointestinal tract. Damage to the intestinal mucosal membrane increases permeability, resulting in leakage of endotoxins into the circulation. Practical strategies that target both thermoregulatory and inflammatory causes of heat stress include precooling; short-term heat-acclimation training; nutritional countermeasures including hydration, energy replacement, and probiotic supplementation; pacing strategies during events; and postevent cooling measures. Cooperation between international, national, and local sporting organizations is required to ensure that heat-management policies and strategies are implemented effectively to promote athletes' well-being and performance.

  1. Experiment of flow regime map and local condensing heat transfer coefficients inside three dimensional inner microfin tubes

    NASA Astrophysics Data System (ADS)

    Du, Yang; Xin, Ming Dao

    1999-03-01

    This paper developed a new type of three dimensional inner microfin tube. The experimental results of the flow patterns for the horizontal condensation inside these tubes are reported in the paper. The flow patterns for the horizontal condensation inside the new made tubes are divided into annular flow, stratified flow and intermittent flow within the test conditions. The experiments of the local heat transfer coefficients for the different flow patterns have been systematically carried out. The experiments of the local heat transfer coefficients changing with the vapor dryness fraction have also been carried out. As compared with the heat transfer coefficients of the two dimensional inner microfin tubes, those of the three dimensional inner microfin tubes increase 47-127% for the annular flow region, 38-183% for the stratified flow and 15-75% for the intermittent flow, respectively. The enhancement factor of the local heat transfer coefficients is from 1.8-6.9 for the vapor dryness fraction from 0.05 to 1.

  2. Vasculature of the hive: heat dissipation in the honey bee ( Apis mellifera) hive

    NASA Astrophysics Data System (ADS)

    Bonoan, Rachael E.; Goldman, Rhyan R.; Wong, Peter Y.; Starks, Philip T.

    2014-06-01

    Eusocial insects are distinguished by their elaborate cooperative behavior and are sometimes defined as superorganisms. As a nest-bound superorganism, individuals work together to maintain favorable nest conditions. Residing in temperate environments, honey bees ( Apis mellifera) work especially hard to maintain brood comb temperature between 32 and 36 °C. Heat shielding is a social homeostatic mechanism employed to combat local heat stress. Workers press the ventral side of their bodies against heated surfaces, absorb heat, and thus protect developing brood. While the absorption of heat has been characterized, the dissipation of absorbed heat has not. Our study characterized both how effectively worker bees absorb heat during heat shielding, and where worker bees dissipate absorbed heat. Hives were experimentally heated for 15 min during which internal temperatures and heat shielder counts were taken. Once the heat source was removed, hives were photographed with a thermal imaging camera for 15 min. Thermal images allowed for spatial tracking of heat flow as cooling occurred. Data indicate that honey bee workers collectively minimize heat gain during heating and accelerate heat loss during cooling. Thermal images show that heated areas temporarily increase in size in all directions and then rapidly decrease to safe levels (<37 °C). As such, heat shielding is reminiscent of bioheat removal via the cardiovascular system of mammals.

  3. Vasculature of the hive: heat dissipation in the honey bee (Apis mellifera) hive.

    PubMed

    Bonoan, Rachael E; Goldman, Rhyan R; Wong, Peter Y; Starks, Philip T

    2014-06-01

    Eusocial insects are distinguished by their elaborate cooperative behavior and are sometimes defined as superorganisms. As a nest-bound superorganism, individuals work together to maintain favorable nest conditions. Residing in temperate environments, honey bees (Apis mellifera) work especially hard to maintain brood comb temperature between 32 and 36 °C. Heat shielding is a social homeostatic mechanism employed to combat local heat stress. Workers press the ventral side of their bodies against heated surfaces, absorb heat, and thus protect developing brood. While the absorption of heat has been characterized, the dissipation of absorbed heat has not. Our study characterized both how effectively worker bees absorb heat during heat shielding, and where worker bees dissipate absorbed heat. Hives were experimentally heated for 15 min during which internal temperatures and heat shielder counts were taken. Once the heat source was removed, hives were photographed with a thermal imaging camera for 15 min. Thermal images allowed for spatial tracking of heat flow as cooling occurred. Data indicate that honey bee workers collectively minimize heat gain during heating and accelerate heat loss during cooling. Thermal images show that heated areas temporarily increase in size in all directions and then rapidly decrease to safe levels (<37 °C). As such, heat shielding is reminiscent of bioheat removal via the cardiovascular system of mammals.

  4. Towards improved magnetic fluid hyperthermia: major-loops to diminish variations in local heating.

    PubMed

    Munoz-Menendez, Cristina; Serantes, David; Ruso, Juan M; Baldomir, Daniel

    2017-06-07

    In the context of using magnetic nanoparticles for heat-mediated applications, the need of an accurate knowledge of the local (at the nanoparticle level) heat generation in addition to the usually studied global counterpart has been recently highlighted. Such a need requires accurate knowledge of the links among the intrinsic particle properties, system characteristics and experimental conditions. In this work we have investigated the role of the particles' anisotropy polydispersity in relation to the amplitude (H max ) of the AC magnetic field using a Monte Carlo technique. Our results indicate that it is better to use particles with large anisotropy for enhancing global heating, whereas for achieving homogeneous local heating it is better to use lower anisotropy particles. The latter ensures that most of the system undergoes major-loop hysteresis conditions, which is the key-point. This is equivalent to say that low-anisotropy particles (i.e. with less heating capability) may be better for accurate heat-mediated applications, which goes against some research trends in the literature that seek for large anisotropy (and hence heating) values.

  5. A global economic assessment of city policies to reduce climate change impacts

    NASA Astrophysics Data System (ADS)

    Estrada, Francisco; Botzen, W. J. Wouter; Tol, Richard S. J.

    2017-06-01

    Climate change impacts can be especially large in cities. Several large cities are taking climate change into account in long-term strategies, for which it is important to have information on the costs and benefits of adaptation. Studies on climate change impacts in cities mostly focus on a limited set of countries and risks, for example sea-level rise, health and water resources. Most of these studies are qualitative, except for the costs of sea-level rise in cities. These impact estimates do not take into account that large cities will experience additional warming due to the urban heat island effect, that is, the change of local climate patterns caused by urbanization. Here we provide a quantitative assessment of the economic costs of the joint impacts of local and global climate change for all main cities around the world. Cost-benefit analyses are presented of urban heat island mitigation options, including green and cool roofs and cool pavements. It is shown that local actions can be a climate risk-reduction instrument. Furthermore, limiting the urban heat island through city adaptation plans can significantly amplify the benefits of international mitigation efforts.

  6. BREEDING AND GENETICS SYMPOSIUM: Resilience and lessons from studies in genetics of heat stress.

    PubMed

    Misztal, I

    2017-04-01

    Production environments are expected to change, mostly to a hotter climate but also possibly more extreme and drier. Can the current generation of farm animals cope with the changes or should it be specifically selected for changing conditions? In general, genetic selection produces animals with a smaller environmental footprint but also with smaller environmental flexibility. Some answers are coming from heat-stress research across species, with heat tolerance partly understood as a greater environmental flexibility. Specific studies in various species show the complexities of defining and selecting for heat tolerance. In Holsteins, the genetic component for effect of heat stress on production approximately doubles in second and quadruples in third parity. Cows with elevated body temperature have the greatest production under heat stress but probably are at risk for increased mortality. In hot but less intensive environments, the effect of heat stress on production is minimal, although the negative effect on fertility remains. Mortality peaks under heat stress and increases with parity. In Angus, the effect of heat stress is stronger only in selected regions, probably because of adaptation of calving seasons to local conditions and crossbreeding. Genetically, the direct effect shows variability because of heat stress, but the maternal effect does not, probably because dams shield calves from environmental challenges. In pigs, the effect of heat stress is strong for commercial farms but almost nothing for nucleus farms, which have lower pig density and better heat abatement. Under intensive management, heat stress is less evident in drier environments because of more efficient cooling. A genetic component of heat stress exists, but it is partly masked by improving management and selection based on data from elite farms. Genetic selection may provide superior identification of heat-tolerant animals, but a few cycles may be needed for clear results. Also, simple traits exist that are strongly related to heat stress (e.g., slick hair in dairy cattle and shedding intensity in Angus). Defining resilience may be difficult, especially when masked by improving environment. Under climate change, the current selection strategies may be adequate if they 1) are accompanied by constantly improving management, 2) use commercial data, and 3) include traits important under climate change (e.g., mortality).

  7. Development of an intravascular heating source using an MR imaging guidewire.

    PubMed

    Qiu, Bensheng; Yeung, Christopher J; Du, Xiangying; Atalar, Ergin; Yang, Xiaoming

    2002-12-01

    To develop a novel endovascular heating source using a magnetic resonance (MR) imaging guidewire (MRIG) to deliver controlled microwave energy into the target vessel for thermal enhancement of vascular gene transfection. A 0.032-inch MRIG was connected to a 2.45-GHz microwave generator. We 1) calculated the microwave power loss along the MRIG, 2) simulated the power distribution around the MRIG, 3) measured the temperature increase vs. input power with the MRIG, and 4) evaluated the thermal effect on the balloon-compressed/microwave-heated aorta of six living rabbits. In addition, during balloon inflation, we also simultaneously generated high-resolution MR images of the aortic wall. The power loss was calculated to be 3.9 dB along the MRIG. The simulation-predicted power distribution pattern was cylindrically symmetric, analogous to the geometry of vessels. Under balloon compression, the vessel wall could be locally heated at 41 degrees C with no thermal damage apparent on histology. This study demonstrates the possibility of using the MRIG as a multifunctional device, not only as a receiver antenna to generate intravascular high-resolution MR images of atherosclerotic plaques and as a conventional guidewire to guide endovascular interventions during MR imaging, but also as a potential intravascular heating source to produce local heat for thermal enhancement of vascular gene transfection. Copyright 2002 Wiley-Liss, Inc.

  8. The Thermodynamics of General and Local Anesthesia

    PubMed Central

    Græsbøll, Kaare; Sasse-Middelhoff, Henrike; Heimburg, Thomas

    2014-01-01

    General anesthetics are known to cause depression of the freezing point of transitions in biomembranes. This is a consequence of ideal mixing of the anesthetic drugs in the membrane fluid phase and exclusion from the solid phase. Such a generic law provides physical justification of the famous Meyer-Overton rule. We show here that general anesthetics, barbiturates, and local anesthetics all display the same effect on melting transitions. Their effect is reversed by hydrostatic pressure. Thus, the thermodynamic behavior of local anesthetics is very similar to that of general anesthetics. We present a detailed thermodynamic analysis of heat capacity profiles of membranes in the presence of anesthetics. Using this analysis, we are able to describe experimentally observed calorimetric profiles and predict the anesthetic features of arbitrary molecules. In addition, we discuss the thermodynamic origin of the cutoff effect of long-chain alcohols and the additivity of the effect of general and local anesthetics. PMID:24853743

  9. The Thermodynamics of General and Local Anesthesia

    NASA Astrophysics Data System (ADS)

    Græsbøll, Kaare; Sasse-Middelhoff, Henrike; Heimburg, Thomas

    2014-05-01

    General anesthetics are known to cause depression of the freezing point of transitions in biomembranes. This is a consequence of ideal mixing of the anesthetic drugs in the membrane fluid phase and exclusion from the solid phase. Such a generic law provides physical justification of the famous Meyer-Overton rule. We show here that general anesthetics, barbiturates and local anesthetics all display the same effect on melting transitions. Their effect is reversed by hydrostatic pressure. Thus, the thermodynamic behavior of local anesthetics is very similar to that of general anesthetics. We present a detailed thermodynamic analysis of heat capacity profiles of membranes in the presence of anesthetics. This analysis is able to describe experimentally observed calorimetric profiles and permits prediction of the anesthetic features of arbitrary molecules. In addition, we discuss the thermodynamic origin of the cutoff-effect of long-chain alcohols and the additivity of the effect of general and local anesthetics.

  10. Modified Bose-Einstein and Fermi-Dirac statistics if excitations are localized on an intermediate length scale: applications to non-Debye specific heat.

    PubMed

    Chamberlin, Ralph V; Davis, Bryce F

    2013-10-01

    Disordered systems show deviations from the standard Debye theory of specific heat at low temperatures. These deviations are often attributed to two-level systems of uncertain origin. We find that a source of excess specific heat comes from correlations between quanta of energy if excitations are localized on an intermediate length scale. We use simulations of a simplified Creutz model for a system of Ising-like spins coupled to a thermal bath of Einstein-like oscillators. One feature of this model is that energy is quantized in both the system and its bath, ensuring conservation of energy at every step. Another feature is that the exact entropies of both the system and its bath are known at every step, so that their temperatures can be determined independently. We find that there is a mismatch in canonical temperature between the system and its bath. In addition to the usual finite-size effects in the Bose-Einstein and Fermi-Dirac distributions, if excitations in the heat bath are localized on an intermediate length scale, this mismatch is independent of system size up to at least 10(6) particles. We use a model for correlations between quanta of energy to adjust the statistical distributions and yield a thermodynamically consistent temperature. The model includes a chemical potential for units of energy, as is often used for other types of particles that are quantized and conserved. Experimental evidence for this model comes from its ability to characterize the excess specific heat of imperfect crystals at low temperatures.

  11. Natural convection enhancement by a discrete vibrating plate and a cross-flow opening: a numerical investigation

    NASA Astrophysics Data System (ADS)

    Florio, L. A.; Harnoy, A.

    2011-06-01

    In this study, a unique combination of a vibrating plate and a cross-flow passage is proposed as a means of enhancing natural convection cooling. The enhancement potential was estimated based on numerical studies involving a representative model which includes a short, transversely oscillating plate, placed over a transverse cross-flow opening in a uniformly heated vertical channel wall dividing two adjacent vertical channels. The resulting velocity and temperature fields are analyzed, with the focus on the local thermal effects near the opening. The simulation indicates up to a 50% enhancement in the local heat transfer coefficient for vibrating plate amplitudes of at least 30% of the mean clearance space and frequencies of over 82 rad/s.

  12. Some limitations on processing materials in acoustic levitation devices

    NASA Technical Reports Server (NTRS)

    Oran, W. A.; Witherow, W. K.; Ross, B. B.; Rush, J. E.

    1979-01-01

    The spot heating of samples, suspended in an acoustic field, was investigated to determine if the technique could be used to process materials. A single axis resonance device operating in air at 25 C with an rms pressure maximum of 160 to 170 db was used in the experiments. The heat flow from a hot object suspended in a levitation node is dominated by the effects of the field, with the heat loss approximately 20 times larger than that due to natural convection. The acoustic forces which suspend the body at a node also serve to eject the heated air. The coupling between the locally heated region around the body and the acoustic field results in instabilities in both the pressure wave and force field. The investigations indicated the extreme difficulties in developing a materials processing device based on acoustic/spot heating for use in a terrestrial environment.

  13. An improved heat transfer configuration for a solid-core nuclear thermal rocket engine

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Walton, James T.; Mcguire, Melissa L.

    1992-01-01

    Interrupted flow, impingement cooling, and axial power distribution are employed to enhance the heat-transfer configuration of a solid-core nuclear thermal rocket engine. Impingement cooling is introduced to increase the local heat-transfer coefficients between the reactor material and the coolants. Increased fuel loading is used at the inlet end of the reactor to enhance heat-transfer capability where the temperature differences are the greatest. A thermal-hydraulics computer program for an unfueled NERVA reactor core is employed to analyze the proposed configuration with attention given to uniform fuel loading, number of channels through the impingement wafers, fuel-element length, mass-flow rate, and wafer gap. The impingement wafer concept (IWC) is shown to have heat-transfer characteristics that are better than those of the NERVA-derived reactor at 2500 K. The IWC concept is argued to be an effective heat-transfer configuration for solid-core nuclear thermal rocket engines.

  14. Fourier heat conduction as a phenomenon described within the scope of the second law

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jesudason, Christopher G.

    The historical development of the Carnot cycle necessitated the construction of isothermal and adiabatic pathways within the cycle that were also mechanically 'reversible' which lead eventually to the Kelvin-Clausius development of the entropy function S where for any reversible closed path C, ∮{sub C} dS = 0 based on an infinite number of concatenated Carnot engines that approximated the said path and where for each engine ΔQ{sub 1}/T{sub 1}+ΔQ{sub 2}/T{sub 2} = 0 where the Q's and T's are the heat absorption increments and temperature respectively with the subscripts indicating the isothermal paths (1;2) where for the Carnot engine, the heat absorptionmore » is for the diathermal (isothermal) paths of the cycle only. Since 'heat' has been defined as that form of energy that is transferred as a result of a temperature difference and a corollary of the Clausius statement of the Second law is that it is impossible for heat to be transferred from a cold to a hot reservoir with no other effect on the environment, these statements suggested that the local mode of transfer of 'heat' in the isothermal segments of the pathway does imply a Fourier heat conduction mechanism (to conform to the definition of 'heat') albeit of a 'reversible' kind, but on the other hand, the Fourier mechanism is apparently irreversible, leading to an increase in entropy of the combined reservoirs at either end of the material involved in the conveyance of the heat energy. These and several other considerations lead Benofy and Quay (BQ) to postulate the Fourier heat conduction phenomenon to be an ancillary principle in thermodynamics, with this principle being strictly local in nature, where the global Second law statements could not be applied to this local process. Here we present equations that model heat conduction as a thermodynamically reversible but mechanically irreversible process where due to the belief in mechanical time reversible symmetry, thermodynamical reversibility has been unfortunately linked to mechanical reversibility, that has discouraged such an association. The modeling is based on an application of a 'recoverable transition', defined and developed earlier on ideas derived from thermal desorption of particles from a surface where the Fourier heat conduction process is approximated as a series of such desorption processes. We recall that the original Carnot engine required both adiabatic and isothermal steps to complete the zero entropy cycle, and this construct lead to the consequent deduction that any Second law statement that refers to heat-work conversion processes are only globally relevant. Here, on the other hand, we examine Fourier heat conduction from MD simulation and model this process as a zero-entropy forward scattering process relative to each of the atoms in the lattice chain being treated as a system where the Carnot cycle can be applied individually. The equations developed predicts the 'work' done to be equal to the energy transfer rate. The MD simulations conducted shows excellent agreement with the theory. Such views and results as these, if developed to a successful conclusion could imply that the Carnot cycle be viewed as describing a local process of energy-work conversion and that irreversible local processes might be brought within the scope of this cycle, implying a unified treatment of thermodynamically (i) irreversible, (ii) reversible, (iii) isothermal and (iv) adiabatic processes.« less

  15. Surface Tension Gradients Induced by Temperature: The Thermal Marangoni Effect

    ERIC Educational Resources Information Center

    Gugliotti, Marcos; Baptisto, Mauricio S.; Politi, Mario J.

    2004-01-01

    Surface tensions gradients were generated in a thin liquid film because of the local increase in temperature, for demonstration purposes. This is performed using a simple experiment and allows different alternatives for heat generation to be used.

  16. Bearing tester data compilation analysis, and reporting and bearing math modeling

    NASA Technical Reports Server (NTRS)

    Cody, J. C.

    1986-01-01

    Integration of heat transfer coefficients, modified to account for local vapor quality, into the 45 mm bearing model has been completed. The model has been evaluated with two flow rates and subcooled and saturated coolant. The evaluation showed that by increasing the flow from 3.6 to 7.0 lbs/sec the average ball temperature was decreased by 102 F, using a coolant temperature of -230 F. The average ball temperature was decreased by 63 F by decreasing the inlet coolant temperature from saturated to -230 F at a flow rate of 7.0 lbs/sec. Since other factors such as friction, cage heating, etc., affect bearing temperatures, the above bearing temperature effects should be considered as trends and not absolute values. The two phase heat transfer modification has been installed in the 57 mm bearing model and the effects on bearing temperatures have been evaluated. The average ball temperature was decreased by 60 F by increasing the flow rate from 4.6 to 9.0 lbs/sec for the subcooled case. By decreasing the inlet coolant temperature from saturation to -24 F, the average ball temperature was decreased 57 F for a flow rate of 9.0 lbs/sec. The technique of relating the two phase heat transfer coefficient to local vapor quality will be applied to the tester model and compared with test data.

  17. Local thermal sensation modeling-a review on the necessity and availability of local clothing properties and local metabolic heat production.

    PubMed

    Veselá, S; Kingma, B R M; Frijns, A J H

    2017-03-01

    Local thermal sensation modeling gained importance due to developments in personalized and locally applied heating and cooling systems in office environments. The accuracy of these models depends on skin temperature prediction by thermophysiological models, which in turn rely on accurate environmental and personal input data. Environmental parameters are measured or prescribed, but personal factors such as clothing properties and metabolic rates have to be estimated. Data for estimating the overall values of clothing properties and metabolic rates are available in several papers and standards. However, local values are more difficult to retrieve. For local clothing, this study revealed that full and consistent data sets are not available in the published literature for typical office clothing sets. Furthermore, the values for local heat production were not verified for characteristic office activities, but were adapted empirically. Further analyses showed that variations in input parameters can lead to local skin temperature differences (∆T skin,loc  = 0.4-4.4°C). These differences can affect the local sensation output, where ∆T skin,loc  = 1°C is approximately one step on a 9-point thermal sensation scale. In conclusion, future research should include a systematic study of local clothing properties and the development of feasible methods for measuring and validating local heat production. © 2016 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  18. A local heat transfer analysis of lava cooling in the atmosphere: application to thermal diffusion-dominated lava flows

    NASA Astrophysics Data System (ADS)

    Neri, Augusto

    1998-05-01

    The local cooling process of thermal diffusion-dominated lava flows in the atmosphere was studied by a transient, one-dimensional heat transfer model taking into account the most relevant processes governing its behavior. Thermal diffusion-dominated lava flows include any type of flow in which the conductive-diffusive contribution in the energy equation largely overcomes the convective terms. This type of condition is supposed to be satisfied, during more or less extended periods of time, for a wide range of lava flows characterized by very low flow-rates, such as slabby and toothpaste pahoehoe, spongy pahoehoe, flow at the transition pahoehoe-aa, and flows from ephemeral vents. The analysis can be useful for the understanding of the effect of crust formation on the thermal insulation of the lava interior and, if integrated with adequate flow models, for the explanation of local features and morphologies of lava flows. The study is particularly aimed at a better knowledge of the complex non-linear heat transfer mechanisms that control lava cooling in the atmosphere and at the estimation of the most important parameters affecting the global heat transfer coefficient during the solidification process. The three fundamental heat transfer mechanisms with the atmosphere, that is radiation, natural convection, and forced convection by the wind, were modeled, whereas conduction and heat generation due to crystallization were considered within the lava. The magma was represented as a vesiculated binary melt with a given liquidus and solidus temperature and with the possible presence of a eutectic. The effects of different morphological features of the surface were investigated through a simplified description of their geometry. Model results allow both study of the formation in time of the crust and the thermal mushy layer underlying it, and a description of the behavior of the temperature distribution inside the lava as well as radiative and convective fluxes to the atmosphere. The analysis, performed by using parameters typical of Etnean lavas, particularly focuses on the non-intuitive relations between superficial cooling effects and inner temperature distribution as a function of the major variables involved in the cooling process. Results integrate recent modelings and measurements of the cooling process of Hawaiian pahoehoe flow lobes by Hon et al. (1994) and Keszthelyi and Denlinger (1996) and highlight the critical role played by surface morphology, lava thermal properties, and crystallization dynamics. Furthermore, the reported description of the various heat fluxes between lava and atmosphere can be extended to any other type of lava flows in which atmospheric cooling is involved.

  19. The effects of crystal proximity and crystal-binder adhesion on the thermal responses of ultrasonically-excited composite energetic materials

    NASA Astrophysics Data System (ADS)

    Roberts, Z. A.; Casey, A. D.; Gunduz, I. E.; Rhoads, J. F.; Son, S. F.

    2017-12-01

    Composite energetic materials have been shown to generate heat under certain ultrasonic excitations, enough to drive rapid reactions in some cases. In an attempt to isolate the proposed heat generation mechanisms of frictional and viscoelastic heating at crystal-crystal and crystal-binder interfaces, a systematic study was conducted with cyclotetramethylene-tetranitramine crystals arranged as discrete inclusions within Sylgard 184 binder. Groups of three embedded crystals, or "triads," were arranged in two geometries with the crystals either in contact or slightly separated. Additionally, samples with good crystal-binder adhesion as well as ones mechanically debonded using compression were considered. The samples were excited ultrasonically with a contact piezoelectric transducer, and the top surface of each sample was monitored via infrared thermography. The contacting triads showed evidence of an intense localized heat source conducting to the polymer surface above the crystal locations in contrast to the separated triads. The debonded samples of both types reached higher maximum surface temperatures, on average. The results of both two-way and nested analysis of variance indicate a statistically significant difference for both adhesion and separation distance on temperature rise. We conclude that friction between crystal contact points and a debonded, moving binder at the crystal interface (also a mode of friction) play a significant role in localized heat generation, while viscoelastic/viscoplastic heating appears comparatively minor for these specific excitation conditions. The significance of frictional heat generation over viscoelastic heating in these systems may influence future design considerations related to the selection of binder materials for composite energetic materials.

  20. Aerothermodynamic Testing of Protuberances and Penetrations on the NASA Crew Exploration Vehicle Heat Shield in the NASA Langley 20-Inch Mach 6 Air Tunnel

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.

    2008-01-01

    An experimental wind tunnel program is being conducted in support of an Agency wide effort to develop a replacement for the Space Shuttle and to support the NASA s long-term objective of returning to the moon and then on to Mars. This paper documents experimental measurements made on several scaled ceramic heat transfer models of the proposed Crew Exploration Vehicle. Global heat transfer images and heat transfer distributions obtained using phosphor thermography were used to infer interference heating on the Crew Exploration Vehicle Cycle 1 heat shield from local protuberances and penetrations for both laminar and turbulent heating conditions. Test parametrics included free stream Reynolds numbers of 1.0x10(exp 6)/ft to 7.25x10(exp 6)/ft in Mach 6 air at a fixed angle-of-attack. Single arrays of discrete boundary layer trips were used to trip the boundary layer approaching the protuberances/penetrations to a turbulent state. Also, the effects of three compression pad diameters, two radial locations of compression pad/tension tie location, compression pad geometry, and rotational position of compression pad/tension tie were examined. The experimental data highlighted in this paper are to be used to validate CFD tools that will be used to generate the flight aerothermodynamic database. Heat transfer measurements will also assist in the determination of the most appropriate engineering methods that will be used to assess local flight environments associated with protuberances/penetrations of the CEV thermal protection system.

  1. Contributions to urban heat island on the local neighborhood scale

    NASA Astrophysics Data System (ADS)

    Hertel, Daniel; Schlink, Uwe

    2017-04-01

    Already today around half of the global population is living in urban regions and recent studies expect a further increase until mid-21st century. Therefore, especially in the context of climate change, an increasing amount of urban inhabitants are affected by urban climate and air quality. One special characteristic of urban climate is the urban heat island (UHI) effect, where urbanized regions are warmer than the rural surroundings. With respect to climate change and the growing urbanization it is obvious that the UHI effect will tend to be intensified. To keep our cities worth living, it is necessary to think about adaptation and mitigation strategies which refer to both, climate protection as well as utilization of chances resulting from climate changes. One step to a more precisely adaptation, particularly on the neighborhood scale, is an improved understanding of the magnitude of bio geophysical processes (e.g.: radiation balance, convection efficiency, evapotranspiration, storage heat, anthropogenic heat etc.), which contribute to the urban warming. Considering that UHI can be expressed as temperature difference ΔT between urban and rural areas, we can interpret these processes as how they would change temperature, because of energy redistribution, from a rural area to an urbanized region. Up to now on the local scale there is a knowledge gap about these processes. The mentioned processes are parts of a surface energy balance (based on the work of Zhao et al., 2014). That means they refer to the surface UHI effect and not to the canopy layer UHI effect. Assuming that the urban region is a volume with the top at the height of the canopy layer, we can approximately identify the surface UHI effect as the canopy layer UHI effect since the information comes from both the surface and the atmosphere inside. This assumption is not valid for Zhao's approach because they analyzed whole cities and could neglect such processes within the volume. This contribution presents first results from my PhD project where I take micrometeorological simulations for a case study site ("Bayerischer Bahnhof" in Leipzig; Saxony, Germany; 51°20', 12°22') from the ENVI-met model and calculate the UHI as well as the contributing bio geophysical processes. The results are maps of the processes that directly quantify their contribution to the total UHI at each point in the area. The benefits of this approach can be seen in the small resolution (3x3 m) of the simulation area which gives further insights into local UHI variances. Also, the effects of restructuring within quarters and methods to avoid adverse health impacts on the residents can be developed in a more precisely and sophisticated way. Zhao, L., Lee, X., Smith, R.B., Oleson, K., (2014): Strong contributions of local background climate to urban heat islands. Nature 511: 216-219, doi: 10.1038/nature13462

  2. A review on potential use of low-temperature water in the urban environment as a thermal-energy source

    NASA Astrophysics Data System (ADS)

    Laanearu, J.; Borodinecs, A.; Rimeika, M.; Palm, B.

    2017-10-01

    The thermal-energy potential of urban water sources is largely unused to accomplish the up-to-date requirements of the buildings energy demands in the cities of Baltic Sea Region. A reason is that the natural and excess-heat water sources have a low temperature and heat that should be upgraded before usage. The demand for space cooling should increase in near future with thermal insulation of buildings. There are a number of options to recover heat also from wastewater. It is proposed that a network of heat extraction and insertion including the thermal-energy recovery schemes has potential to be broadly implemented in the region with seasonally alternating temperature. The mapping of local conditions is essential in finding the suitable regions (hot spots) for future application of a heat recovery schemes by combining information about demands with information about available sources. The low-temperature water in the urban environment is viewed as a potential thermal-energy source. To recover thermal energy efficiently, it is also essential to ensure that it is used locally, and adverse effects on environment and industrial processes are avoided. Some characteristics reflecting the energy usage are discussed in respect of possible improvements of energy efficiency.

  3. Effects of cancer cell permeability control on the efficiency of cell damage through surface plasmon resonance of gold nanoparticle (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hsiao, Jen-Hung; Yu, Jian-He; He, Yulu; Tu, Yi-Chou; Hua, Wei-Hsiang; Low, Meng Chun; Hsieh, Cheng-Che; Kiang, Yean-Woei; Yang, Chih-Chung

    2017-02-01

    Cancer cell killing efficiencies based on the photothermal effect caused by the surface plasmon resonance of metal nanoparticles (NPs) and the photodynamic effect caused by the singlet oxygen generation of a photosensitizer rely on the cell uptake efficiency of metal NP and photosensitizer. Perforation and heating can increase cell membrane permeability and hence can increase the cell uptake efficiency of NPs and drugs. In this paper, we demonstrate the variations of the cell damage efficiency under the illuminations of different lasers, which can produce mainly photothermal effect, mainly photodynamic effect, and mixed effect, when a pre-perforation and a pre-heating processes are applied. Au nanorings (NRIs) with their localized surface plasmon resonance wavelength around 1064 nm are used. The perforation process is undertaken by illuminating the cell samples by a femtosecond laser at 1064 nm with the power density lower than the cell damage threshold intensity. The heating process is implemented by illuminating cells with a low power continuous laser at 1064 nm. It is found that with the pre-perforation and pre-heating processes, the photodynamic effect is enhanced because the internalized Au NRI number and hence the internalized photosensitizer (AlPcS) molecule number are increased. However, the photothermal effect can be reduced because the adsorbed Au NRIs on cell membrane are effectively internalized during the pre-perforation and pre-heating processes. The photothermal effect is more effective when Au NRIs are adsorbed on cell membrane.

  4. Stochastic Acceleration of Ions Driven by Pc1 Wave Packets

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Sibeck, D. G.; Tel'nikhin, A. A.; Kronberg, T. K.

    2015-01-01

    The stochastic motion of protons and He(sup +) ions driven by Pc1 wave packets is studied in the context of resonant particle heating. Resonant ion cyclotron heating typically occurs when wave powers exceed 10(exp -4) nT sq/Hz. Gyroresonance breaks the first adiabatic invariant and energizes keV ions. Cherenkov resonances with the electrostatic component of wave packets can also accelerate ions. The main effect of this interaction is to accelerate thermal protons to the local Alfven speed. The dependencies of observable quantities on the wave power and plasma parameters are determined, and estimates for the heating extent and rate of particle heating in these wave-particle interactions are shown to be in reasonable agreement with known empirical data.

  5. Developing a model for effects of climate change on human health and health-environment interactions: Heat stress in Austin, Texas

    EPA Science Inventory

    Background/Question/Methods In December, 2010, a consortium of EPA, Centers for Disease Control, and state and local health officials convened in Austin, Texas for a “participatory modeling workshop” on climate change effects on human health and health-environment interactions. ...

  6. Developing a model for effects of climate change on human health and health-environment interactions: Heat stress in Austin, Texas presentation

    EPA Science Inventory

    Background/Question/Methods In December, 2010, a consortium of EPA, Centers for Disease Control, and state and local health officials convened in Austin, Texas for a “participatory modeling workshop” on climate change effects on human health and health-environment int...

  7. Radiative interactions in molecular gases under local and nonlocal thermodynamic equilibrium conditions

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Jha, M. K.

    1993-01-01

    Basic formulations, analyses, and numerical procedures are presented to investigate radiative heat interactions in diatomic and polyatomic gases under local and nonlocal thermodynamic equilibrium conditions. Essential governing equations are presented for both gray and nongray gases. Information is provided on absorption models, relaxation times, and transfer equations. Radiative flux equations are developed which are applicable under local and nonlocal thermodynamic equilibrium conditions. The problem is solved for fully developed laminar incompressible flows between two parallel plates under the boundary condition of a uniform surface heat flux. For specific applications, three diatomic and three polyatomic gases are considered. The results are obtained numerically by employing the method of variation of parameters. The results are compared under local and nonlocal thermodynamic equilibrium conditions at different temperature and pressure conditions. Both gray and nongray studies are conducted extensively for all molecular gases considered. The particular gases selected for this investigation are CO, NO, OH, CO2, H2O, and CH4. The temperature and pressure range considered are 300-2000 K and 0.1-10 atmosphere, respectively. In general, results demonstrate that the gray gas approximation overestimates the effect of radiative interaction for all conditions. The conditions of NLTE, however, result in underestimation of radiative interactions. The method developed for this study can be extended to solve complex problems of radiative heat transfer involving nonequilibrium phenomena.

  8. Occupational heat stress assessment and protective strategies in the context of climate change

    NASA Astrophysics Data System (ADS)

    Gao, Chuansi; Kuklane, Kalev; Östergren, Per-Olof; Kjellstrom, Tord

    2018-03-01

    Global warming will unquestionably increase the impact of heat on individuals who work in already hot workplaces in hot climate areas. The increasing prevalence of this environmental health risk requires the improvement of assessment methods linked to meteorological data. Such new methods will help to reveal the size of the problem and design appropriate interventions at individual, workplace and societal level. The evaluation of occupational heat stress requires measurement of four thermal climate factors (air temperature, humidity, air velocity and heat radiation); available weather station data may serve this purpose. However, the use of meteorological data for occupational heat stress assessment is limited because weather stations do not traditionally and directly measure some important climate factors, e.g. solar radiation. In addition, local workplace environmental conditions such as local heat sources, metabolic heat production within the human body, and clothing properties, all affect the exchange of heat between the body and the environment. A robust occupational heat stress index should properly address all these factors. This article reviews and highlights a number of selected heat stress indices, indicating their advantages and disadvantages in relation to meteorological data, local workplace environments, body heat production and the use of protective clothing. These heat stress and heat strain indices include Wet Bulb Globe Temperature, Discomfort Index, Predicted Heat Strain index, and Universal Thermal Climate Index. In some cases, individuals may be monitored for heat strain through physiological measurements and medical supervision prior to and during exposure. Relevant protective and preventive strategies for alleviating heat strain are also reviewed and proposed.

  9. Occupational heat stress assessment and protective strategies in the context of climate change.

    PubMed

    Gao, Chuansi; Kuklane, Kalev; Östergren, Per-Olof; Kjellstrom, Tord

    2018-03-01

    Global warming will unquestionably increase the impact of heat on individuals who work in already hot workplaces in hot climate areas. The increasing prevalence of this environmental health risk requires the improvement of assessment methods linked to meteorological data. Such new methods will help to reveal the size of the problem and design appropriate interventions at individual, workplace and societal level. The evaluation of occupational heat stress requires measurement of four thermal climate factors (air temperature, humidity, air velocity and heat radiation); available weather station data may serve this purpose. However, the use of meteorological data for occupational heat stress assessment is limited because weather stations do not traditionally and directly measure some important climate factors, e.g. solar radiation. In addition, local workplace environmental conditions such as local heat sources, metabolic heat production within the human body, and clothing properties, all affect the exchange of heat between the body and the environment. A robust occupational heat stress index should properly address all these factors. This article reviews and highlights a number of selected heat stress indices, indicating their advantages and disadvantages in relation to meteorological data, local workplace environments, body heat production and the use of protective clothing. These heat stress and heat strain indices include Wet Bulb Globe Temperature, Discomfort Index, Predicted Heat Strain index, and Universal Thermal Climate Index. In some cases, individuals may be monitored for heat strain through physiological measurements and medical supervision prior to and during exposure. Relevant protective and preventive strategies for alleviating heat strain are also reviewed and proposed.

  10. Physical techniques for delivering microwave energy to tissues.

    PubMed Central

    Hand, J. W.

    1982-01-01

    Some of the physical aspects of delivering microwave energy to tissues have been discussed. Effective penetration of a few cm may be achieved with external applicators whilst small coaxial or cylindrical devices can induce localized heating in sites accessible to catheters or to direct invasion. To heat deep tissue sites in general, systems of greater complexity involving a number of applicators with particular phase relationships between them are required. The problems of thermometry in the presence of electromagnetic fields fall outside the scope of this article. Their solution, however, is no less important to the future of clinical hyperthermia than the development of heating techniques. Finally, it should be remembered that physiological parameters such as blood flow have appreciable effects in determining the efficacy of the physical techniques described above. PMID:6950781

  11. Heating requirements and nonadiabatic surface effects for a model in the NTF cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Macha, J. M.; Landrum, D. B.; Pare, L. A., III; Johnson, C. B.

    1988-01-01

    A theoretical study has been made of the severity of nonadiabatic surface conditions arising from internal heat sources within a model in a cryogenic wind tunnel. Local surface heating is recognized as having an effect on the development of the boundary layer, which can introduce changes in the flow about the model and affect the wind tunnel data. The geometry was based on the NTF Pathfinder I wind tunnel model. A finite element heat transfer computer code was developed and used to compute the steady state temperature distribution within the body of the model, from which the surface temperature distribution was extracted. Particular three dimensional characteristics of the model were represented with various axisymmetric approximations of the geometry. This analysis identified regions on the surface of the model susceptible to surface heating and the magnitude of the respective surface temperatures. It was found that severe surface heating may occur in particular instances, but could be alleviated with adequate insulating material. The heat flux through the surface of the model was integrated to determine the net heat required to maintain the instrumentation cavity at the prescribed temperature. The influence of the nonadiabatic condition on boundary layer properties and on the validity of the wind tunnel simulation was also investigated.

  12. Convective heat transfer for a gaseous slip flow in micropipe and parallel-plate microchannel with uniform wall heat flux: effect of axial heat conduction

    NASA Astrophysics Data System (ADS)

    Haddout, Y.; Essaghir, E.; Oubarra, A.; Lahjomri, J.

    2017-12-01

    Thermally developing laminar slip flow through a micropipe and a parallel plate microchannel, with axial heat conduction and uniform wall heat flux, is studied analytically by using a powerful method of self-adjoint formalism. This method results from a decomposition of the elliptic energy equation into a system of two first-order partial differential equations. The advantage of this method over other methods, resides in the fact that the decomposition procedure leads to a selfadjoint problem although the initial problem is apparently not a self-adjoint one. The solution is an extension of prior studies and considers a first order slip model boundary conditions at the fluid-wall interface. The analytical expressions for the developing temperature and local Nusselt number in the thermal entrance region are obtained in the general case. Therefore, the solution obtained could be extended easily to any hydrodynamically developed flow and arbitrary heat flux distribution. The analytical results obtained are compared for select simplified cases with available numerical calculations and they both agree. The results show that the heat transfer characteristics of flow in the thermal entrance region are strongly influenced by the axial heat conduction and rarefaction effects which are respectively characterized by Péclet and Knudsen numbers.

  13. Convective heat transfer for a gaseous slip flow in micropipe and parallel-plate microchannel with uniform wall heat flux: effect of axial heat conduction

    NASA Astrophysics Data System (ADS)

    Haddout, Y.; Essaghir, E.; Oubarra, A.; Lahjomri, J.

    2018-06-01

    Thermally developing laminar slip flow through a micropipe and a parallel plate microchannel, with axial heat conduction and uniform wall heat flux, is studied analytically by using a powerful method of self-adjoint formalism. This method results from a decomposition of the elliptic energy equation into a system of two first-order partial differential equations. The advantage of this method over other methods, resides in the fact that the decomposition procedure leads to a selfadjoint problem although the initial problem is apparently not a self-adjoint one. The solution is an extension of prior studies and considers a first order slip model boundary conditions at the fluid-wall interface. The analytical expressions for the developing temperature and local Nusselt number in the thermal entrance region are obtained in the general case. Therefore, the solution obtained could be extended easily to any hydrodynamically developed flow and arbitrary heat flux distribution. The analytical results obtained are compared for select simplified cases with available numerical calculations and they both agree. The results show that the heat transfer characteristics of flow in the thermal entrance region are strongly influenced by the axial heat conduction and rarefaction effects which are respectively characterized by Péclet and Knudsen numbers.

  14. Quantitative analysis of the local phase transitions induced by the laser heating

    DOE PAGES

    Levlev, Anton V.; Susner, Michael A.; McGuire, Michael A.; ...

    2015-11-04

    Functional imaging enabled by scanning probe microscopy (SPM) allows investigations of nanoscale material properties under a wide range of external conditions, including temperature. However, a number of shortcomings preclude the use of the most common material heating techniques, thereby limiting precise temperature measurements. Here we discuss an approach to local laser heating on the micron scale and its applicability for SPM. We applied local heating coupled with piezoresponse force microscopy and confocal Raman spectroscopy for nanoscale investigations of a ferroelectric-paraelectric phase transition in the copper indium thiophosphate layered ferroelectric. Bayesian linear unmixing applied to experimental results allowed extraction of themore » Raman spectra of different material phases and enabled temperature calibration in the heated region. Lastly, the obtained results enable a systematic approach for studying temperature-dependent material functionalities in heretofore unavailable temperature regimes.« less

  15. Note: Simultaneous determination of local temperature and thickness of heated cantilevers using two-wavelength thermoreflectance.

    PubMed

    Park, Heeseung; Lee, Bong Jae; Lee, Jungchul

    2014-03-01

    In this work, we have demonstrated that two-wavelength thermoreflectance technique can be used to characterize the local thickness and temperature of heated cantilevers at steady-state operation. By taking the ratio of reflectances for two lasers with different wavelengths, the geometrical factor causing the mismatch between experimentally measured and theoretically calculated reflectances was eliminated. Based on the fitting analysis of the reflectance ratio of two wavelengths at various input powers to the heated cantilevers, the local temperature and thickness could be unambiguously determined.

  16. Local heating of the universe by the Higgs field

    NASA Astrophysics Data System (ADS)

    Belotsky, K. M.; Grobov, A. V.; Rubin, S. G.

    It is shown that the creation of primordial massive black holes is accompanied by a local heating of the matter. The developed mechanism is based on the interaction of the Higgs field and a scalar field responsible for black hole formation. We also consider dynamical behavior of parameters such as a scale and chemical composition of such heating regions.

  17. Remotely actuated localized pressure and heat apparatus and method of use

    NASA Technical Reports Server (NTRS)

    Merret, John B. (Inventor); Taylor, DeVor R. (Inventor); Wheeler, Mark M. (Inventor); Gale, Dan R. (Inventor)

    2004-01-01

    Apparatus and method for the use of a remotely actuated localized pressure and heat apparatus for the consolidation and curing of fiber elements in, structures. The apparatus includes members for clamping the desired portion of the fiber elements to be joined, pressure members and/or heat members. The method is directed to the application and use of the apparatus.

  18. Analysis of the Intra-City Variation of Urban Heat Island and its Relation to Land Surface/cover Parameters

    NASA Astrophysics Data System (ADS)

    Gerçek, D.; Güven, İ. T.; Oktay, İ. Ç.

    2016-06-01

    Along with urbanization, sealing of vegetated land and evaporation surfaces by impermeable materials, lead to changes in urban climate. This phenomenon is observed as temperatures several degrees higher in densely urbanized areas compared to the rural land at the urban fringe particularly at nights, so-called Urban Heat Island. Urban Heat Island (UHI) effect is related with urban form, pattern and building materials so far as it is associated with meteorological conditions, air pollution, excess heat from cooling. UHI effect has negative influences on human health, as well as other environmental problems such as higher energy demand, air pollution, and water shortage. Urban Heat Island (UHI) effect has long been studied by observations of air temperature from thermometers. However, with the advent and proliferation of remote sensing technology, synoptic coverage and better representations of spatial variation of surface temperature became possible. This has opened new avenues for the observation capabilities and research of UHIs. In this study, "UHI effect and its relation to factors that cause it" is explored for İzmit city which has been subject to excess urbanization and industrialization during the past decades. Spatial distribution and variation of UHI effect in İzmit is analysed using Landsat 8 and ASTER day & night images of 2015 summer. Surface temperature data derived from thermal bands of the images were analysed for UHI effect. Higher temperatures were classified into 4 grades of UHIs and mapped both for day and night. Inadequate urban form, pattern, density, high buildings and paved surfaces at the expanse of soil ground and vegetation cover are the main factors that cause microclimates giving rise to spatial variations in temperatures across cities. These factors quantified as land surface/cover parameters for the study include vegetation index (NDVI), imperviousness (NDISI), albedo, solar insolation, Sky View Factor (SVF), building envelope, distance to sea, and traffic space density. These parameters that cause variation in intra-city temperatures were evaluated for their relationship with different grades of UHIs. Zonal statistics of UHI classes and variations in average value of parameters were interpreted. The outcomes that highlight local temperature peaks are proposed to the attention of the decision makers for mitigation of Urban Heat Island effect in the city at local and neighbourhood scale.

  19. Vibrational pumping and heating under SERS conditions: fact or myth?

    PubMed

    Le Ru, E C; Etchegoin, P G

    2006-01-01

    We address in this paper the long debated issue of the possibility of vibrational pumping under Surface Enhanced Raman Scattering (SERS) conditions, both theoretically and experimentally. We revisit with simple theoretical models the mechanisms of vibrational pumping and its relation to heating. This presentation provides a clear classification of the various regimes of heating/pumping, from simple global laser heating to selective pumping of a single vibrational mode. We also propose the possibility of extreme pumping driven by stimulated phonon emission, and we introduce and apply a new experimental technique to study these effects in SERS. Our method relies on correlations between Raman peak parameters, and cross-correlation for two Raman peaks. We find strong evidence for local and dynamical heating, but no convincing evidence for selective pumping under our specific experimental SERS conditions.

  20. Combining the pressure effect with local heat treatment for improving the sheet metal forming process

    NASA Astrophysics Data System (ADS)

    Palumbo, G.; Piccininni, A.; Guglielmi, P.; Sorgente, D.; Tricarico, L.

    2016-08-01

    The present work deals with the advantages in the Hydromechanical Deep Drawing (HDD) when AA5754 Tailored Heat Treated Blanks (THTBs) are adopted. It is well known that the creation of a suitable distribution of material properties increases the process performance. When non heat-treatable alloys are considered, the THTB approach can be successfully applied to increase the Limit Drawing Ratio (LDR) by changing the peripheral zone into the annealed state starting from a cold-worked blank. If this approach is combined with the advantages of a counterpressure, even more remarkable improvements can be achieved. Due to the large number of involved parameters, the optimized design of both the local treatment and the pressure profile were investigated coupling an axial symmetric Finite Element model with the integration platform modeFRONTIER. Results confirmed the possibility of increasing the LDR from 2.0 (Deep Drawing using a blank in the annealed state) up to about 3.0 if combining the adoption of a THTB with the optimal pressure profile.

  1. Acoustic Levitator With Furnace And Laser Heating

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Stoneburner, James D.

    1991-01-01

    Acoustic-levitation apparatus incorporates electrical-resistance furnace for uniform heating up to temperature of about 1,000 degrees C. Additional local heating by pair of laser beams raise temperature of sample to more than 1,500 degrees C. High temperature single-mode acoustic levitator generates cylindrical-mode accoustic resonance levitating sample. Levitation chamber enclosed in electrical-resistance furnace. Infrared beams from Nd:YAG laser provide additional local heating of sample. Designed for use in containerless processing of materials in microgravity or in normal Earth gravity.

  2. Socio-economic factors affecting the conservation of natural woodlands in Central Riyadh Area – Saudi Arabia

    PubMed Central

    Al-Subaiee, Faisal Sultan

    2015-01-01

    This study aimed to identify some socioeconomic factors affecting local people in central Riyadh area for the utilization of wood and other energy sources in cooking and heating in order to develop some recommendations for conserving woodlands. The study results revealed that gas is the most common energy source used for cooking with a mean usage level of 2.79 (SD = 0.58). On the other hand, wood ranked first for heating with the highest mean, usage level of 1.90 (SD = 1.06). However, electricity and gas as sources of energy for heating ranked second and third with mean usage level of 1.81 and 0.80 respectively. The study revealed that local people with the university education were significantly making higher use of electricity for both cooking and heating and those with no formal education ranked the highest on wood use for both cooking and heating. In addition, those living in traditional houses significantly used more wood for cooking than those living in villas and apartments. Also, local people with high income levels significantly were using more electricity for heating than others. The study recommended conducting extension and environmental awareness raising programs to enhance local residents’ adoption of wood substitutes, promoting employment opportunities for unemployed locals, and subsidizing prices of alternative energy sources. PMID:27081355

  3. Photothermal effects during nanodiamond synthesis from a carbon aerogel in a laser-heated diamond anvil cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crane, Matthew J.; Smith, Bennett E.; Meisenheimer, Peter B.

    Nanodiamonds have emerged as promising materials for quantum computing, biolabeling, and sensing due to their ability to host color centers with remarkable photostability and long spin-coherence times at room temperature. Recently, a bottom-up, high-pressure, high-temperature (HPHT) approach was demonstrated for growing nanodiamonds with color centers from amorphous carbon precursors in a laser-heated diamond anvil cell (LH-DAC) that was supported by a near-hydrostatic noble gas pressure medium. However, a detailed understanding of the photothermal heating and its effect on diamond growth, including the phase conversion conditions and the temperature-dependence of color center formation, has not been reported. In this work, wemore » measure blackbody radiation during LH-DAC synthesis of nanodiamond from carbon aerogel to examine these temperature-dependent effects. Blackbody temperature measurements suggest that nanodiamond growth can occur at 16.3 GPa and 1800 K. We use Mie theory and analytical heat transport to develop a predictive photothermal heating model. This model demonstrates that melting the noble gas pressure medium during laser heating decreases the local thermal conductivity to drive a high spatial resolution of phase conversion to diamond. In conclusion, we observe a temperature-dependent formation of nitrogen vacancy centers and interpret this phenomenon in the context of HPHT carbon vacancy diffusion.« less

  4. Photothermal effects during nanodiamond synthesis from a carbon aerogel in a laser-heated diamond anvil cell

    DOE PAGES

    Crane, Matthew J.; Smith, Bennett E.; Meisenheimer, Peter B.; ...

    2018-05-17

    Nanodiamonds have emerged as promising materials for quantum computing, biolabeling, and sensing due to their ability to host color centers with remarkable photostability and long spin-coherence times at room temperature. Recently, a bottom-up, high-pressure, high-temperature (HPHT) approach was demonstrated for growing nanodiamonds with color centers from amorphous carbon precursors in a laser-heated diamond anvil cell (LH-DAC) that was supported by a near-hydrostatic noble gas pressure medium. However, a detailed understanding of the photothermal heating and its effect on diamond growth, including the phase conversion conditions and the temperature-dependence of color center formation, has not been reported. In this work, wemore » measure blackbody radiation during LH-DAC synthesis of nanodiamond from carbon aerogel to examine these temperature-dependent effects. Blackbody temperature measurements suggest that nanodiamond growth can occur at 16.3 GPa and 1800 K. We use Mie theory and analytical heat transport to develop a predictive photothermal heating model. This model demonstrates that melting the noble gas pressure medium during laser heating decreases the local thermal conductivity to drive a high spatial resolution of phase conversion to diamond. In conclusion, we observe a temperature-dependent formation of nitrogen vacancy centers and interpret this phenomenon in the context of HPHT carbon vacancy diffusion.« less

  5. Joule heating effects on particle immobilization in insulator-based dielectrophoretic devices.

    PubMed

    Gallo-Villanueva, Roberto C; Sano, Michael B; Lapizco-Encinas, Blanca H; Davalos, Rafael V

    2014-02-01

    In this work, the temperature effects due to Joule heating obtained by application of a direct current electric potential were investigated for a microchannel with cylindrical insulating posts employed for insulator-based dielectrophoresis. The conductivity of the suspending medium, the local electric field, and the gradient of the squared electric field, which directly affect the magnitude of the dielectrophoretic force exerted on particles, were computationally simulated employing COMSOL Multiphysics. It was observed that a temperature gradient is formed along the microchannel, which redistributes the conductivity of the suspending medium leading to an increase of the dielectrophoretic force toward the inlet of the channel while decreasing toward the outlet. Experimental results are in good agreement with simulations on the particle-trapping zones anticipated. This study demonstrates the importance of considering Joule heating effects when designing insulator-based dielectrophoresis systems. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Laser irradiation of carbon nanotube films: Effects and heat dissipation probed by Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mialichi, J. R.; Brasil, M. J. S. P.; Iikawa, F.

    We investigate the thermal properties of thin films formed by single- and multi-walled carbon nanotubes submitted to laser irradiation using Raman scattering as a probe of both the tube morphology and the local temperature. The nanotubes were submitted to heating/cooling cycles attaining high laser intensities ({approx}1.4 MW/cm{sup 2}) under vacuum and in the presence of an atmosphere, with and without oxygen. We investigate the heat diffusion of the irradiated nanotubes to their surroundings and the effect of laser annealing on their properties. The presence of oxygen during laser irradiation gives rise to an irreversible increase of the Raman efficiency ofmore » the carbon nanotubes and to a remarkable increase of the thermal conductivity of multi-walled films. The second effect can be applied to design thermal conductive channels in devices based on carbon nanotube films using laser beams.« less

  7. Experimental evaluation of joint designs for a space-shuttle orbiter ablative leading edge

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Kabana, W. P.

    1975-01-01

    The thermal performance of two types of ablative leading-edge joints for a space-shuttle orbiter were tested and evaluated. Chordwise joints between ablative leading-edge segments, and spanwise joints between ablative leading-edge segments and reusable surface insulation tiles were exposed to simulated shuttle heating environments. The data show that the thermal performance of models with chordwise joints to be as good as jointless models in simulated ascent-heating and orbital cold-soak environments. The suggestion is made for additional work on the joint seals, and, in particular, on the effects of heat-induced seal-material surface irregularities on the local flow.

  8. Effect of local cooling on pro-inflammatory cytokines and blood flow of the skin under surface pressure in rats: feasibility study.

    PubMed

    Lee, Bernard; Benyajati, Siribhinya; Woods, Jeffrey A; Jan, Yih-Kuen

    2014-05-01

    The primary purpose of this feasibility study was to establish a correlation between pro-inflammatory cytokine accumulation and severity of tissue damage during local pressure with various temperatures. The secondary purpose was to compare skin blood flow patterns for assessing the efficacy of local cooling on reducing skin ischemia under surface pressure. Eight Sprague-Dawley rats were assigned to two protocols, including pressure with local cooling (Δt = -10 °C) and pressure with local heating (Δt = 10 °C). Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin perfusion quantified by laser Doppler flowmetry and TNF-∗ and IL-1β levels were measured. Our results showed that TNF-α concentrations were increased more significantly with local heating than with local cooling under pressure whereas IL-1β did not change. Our results support the notion that weight bearing soft tissue damage may be reduced through temperature modulation and that non-invasive perfusion measurements using laser Doppler flowmetry may be capable of assessing viability. Furthermore, these results show that perfusion response to loading pressure may be correlated with changes in local pro-inflammatory cytokines. These relationships may be relevant for the development of cooling technologies for reducing risk of pressure ulcers. Copyright © 2014 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  9. Antibiotic stability over six weeks in aqueous solution at body temperature with and without heat treatment that mimics the curing of bone cement

    PubMed Central

    Samara, E.; Decosterd, L. A.; Richards, R. G.; Gautier, E.; Wahl, P.

    2017-01-01

    Objectives Thermal stability is a key property in determining the suitability of an antibiotic agent for local application in the treatment of orthopaedic infections. Despite the fact that long-term therapy is a stated goal of novel local delivery carriers, data describing thermal stability over a long period are scarce, and studies that avoid interference from specific carrier materials are absent from the orthopaedic literature. Methods In this study, a total of 38 frequently used antibiotic agents were maintained at 37°C in saline solution, and degradation and antibacterial activity assessed over six weeks. The impact of an initial supplementary heat exposure mimicking exothermically curing bone cement was also tested as this material is commonly used as a local delivery vehicle. Antibiotic degradation was assessed by liquid chromatography coupled to mass spectrometry, or by immunoassays, as appropriate. Antibacterial activity over time was determined by the Kirby-Bauer disk diffusion assay. Results The heat exposure mimicking curing bone cement had minimal effect on stability for most antibiotics, except for gentamicin which experienced approximately 25% degradation as measured by immunoassay. Beta-lactam antibiotics were found to degrade quite rapidly at 37°C regardless of whether there was an initial heat exposure. Excellent long-term stability was observed for aminoglycosides, glycopeptides, tetracyclines and quinolones under both conditions. Conclusions This study provides a valuable dataset for orthopaedic surgeons considering local application of antibiotics, and for material scientists looking to develop next-generation controlled or extended-release antibiotic carriers. Cite this article: E. Samara, T. F. Moriarty, L. A. Decosterd, R. G. Richards, E. Gautier, P. Wahl. Antibiotic stability over six weeks in aqueous solution at body temperature with and without heat treatment that mimics the curing of bone cement. Bone Joint J 2017;6:296–306. DOI: 10.1302/2046-3758.65.BJR-2017-0276.R1. PMID:28515059

  10. Effect of wall to total temperature ratio variation on heat transfer to the leeside of a space shuttle configuration at M equals 10.3

    NASA Technical Reports Server (NTRS)

    Dunavant, J. C.

    1974-01-01

    An experimental study has been conducted of the influence of wall to total temperature ratio on the heat transfer to the leeside of a 040A space shuttle configuration. The heat transfer tests were made at a Mach number of 10 and a Reynolds number of one million per foot for angles of attack from 0 deg to 30 deg. Range of wall to total temperature ratio was from 0.16 to 0.43. Where the heat transfer was relatively high and the laminar boundary layer attached, the local heat transfer decreased by about 20 percent as the wall to total temperature ratio was increased from the minimum to the maximum test value. On regions of separated flow and vortex reattachment, very low heating rates were measured at some conditions and indicate significant changes are occurring in the leeside flow field. No single trend of heat transfer variation with wall to total temperature ratio could be observed.

  11. Multi Seasonal and Diurnal Characterization of Sensible Heat Flux in an Arid Land Environment

    NASA Astrophysics Data System (ADS)

    Al-Mashharawi, S.; Aragon, B.; McCabe, M.

    2017-12-01

    In sparsely vegetated arid and semi-arid regions, the available energy is transformed primarily into sensible heat, with little to no energy partitioned into latent heat. The characterization of bare soil arid environments are rather poorly understood in the context of both local, regional and global energy budgets. Using data from a long-term surface layer scintillometer and co-located meteorological installation, we examine the diurnal and seasonal patterns of sensible heat flux and the net radiation to soil heat flux ratio. We do this over a bare desert soil located adjacent to an irrigated agricultural field in the central region of Saudi Arabia. The results of this exploratory analysis can be used to inform upon remote sensing techniques for surface flux estimation, to derive and monitor soil heat flux dynamics, estimate the heat transfer resistance and the thermal roughness length over bare soils, and to better inform efforts that model the advective effects that complicate the accurate representation of agricultural energy budgets in the arid zone.

  12. Experimental Study of Vane Heat Transfer and Film Cooling at Elevated Levels of Turbulence

    NASA Technical Reports Server (NTRS)

    Ames, Forrest E.

    1996-01-01

    This report documents the results of an experimental study on the influence of high level turbulence on vane film cooling and the influence of film cooling on vane heat transfer. Three different cooling configurations were investigated which included one row of film cooling on both pressure and suction surfaces, two staggered rows of film cooling on both suction and pressure surfaces, and a shower-head cooling array. The turbulence had a strong influence on film cooling effectiveness, particularly on the pressure surface where local turbulence levels were the highest. For the single row of holes, the spanwise mixing quickly reduced centerline effectiveness levels while mixing in the normal direction was more gradual. The film cooling had a strong influence on the heat transfer in the laminar regions of the vane. The effect of film cooling on heat transfer was noticeable in the turbulent regions but augmentation ratios were significantly lower. In addition to heat transfer and film cooling, velocity profiles were taken downstream of the film cooling rows at three spanwise locations. These profile comparisons documented the strong spanwise mixing due to the high turbulence. Total pressure exit measurements were also documented for the three configurations.

  13. Direct Measurement of Pyroelectric and Electrocaloric Effects in Thin Films

    NASA Astrophysics Data System (ADS)

    Pandya, Shishir; Wilbur, Joshua D.; Bhatia, Bikram; Damodaran, Anoop R.; Monachon, Christian; Dasgupta, Arvind; King, William P.; Dames, Chris; Martin, Lane W.

    2017-03-01

    An understanding of polarization-heat interactions in pyroelectric and electrocaloric thin-film materials requires that the electrothermal response is reliably characterized. While most work, particularly in electrocalorics, has relied on indirect measurement protocols, here we report a direct technique for measuring both pyroelectric and electrocaloric effects in epitaxial ferroelectric thin films. We demonstrate an electrothermal test platform where localized high-frequency (approximately 1 kHz) periodic heating and highly sensitive thin-film resistance thermometry allow the direct measurement of pyrocurrents (<10 pA ) and electrocaloric temperature changes (<2 mK ) using the "2-omega" and an adapted "3-omega" technique, respectively. Frequency-domain, phase-sensitive detection permits the extraction of the pyrocurrent from the total current, which is often convoluted by thermally-stimulated currents. The wide-frequency-range measurements employed in this study further show the effect of secondary contributions to pyroelectricity due to the mechanical constraints of the substrate. Similarly, measurement of the electrocaloric effect on the same device in the frequency domain (at approximately 100 kHz) allows for the decoupling of Joule heating from the electrocaloric effect. Using one-dimensional, analytical heat-transport models, the transient temperature profile of the heterostructure is characterized to extract pyroelectric and electrocaloric coefficients.

  14. Implementation of one and three dimensional models for heat transfer coeffcient identification over the plate cooled by the circular water jets

    NASA Astrophysics Data System (ADS)

    Malinowski, Zbigniew; Cebo-Rudnicka, Agnieszka; Hadała, Beata; Szajding, Artur; Telejko, Tadeusz

    2017-10-01

    A cooling rate affects the mechanical properties of steel which strongly depend on microstructure evolution processes. The heat transfer boundary condition for the numerical simulation of steel cooling by water jets can be determined from the local one dimensional or from the three dimensional inverse solutions in space and time. In the present study the inconel plate has been heated to about 900 °C and then cooled by six circular water jets. The plate temperature has been measured by 30 thermocouples. The heat transfer coefficient and the heat flux distributions at the plate surface have been determined in time and space. The one dimensional solutions have given a local error to the heat transfer coefficient of about 35%. The three dimensional inverse solution has allowed reducing the local error to about 20%. The uncertainty test has confirmed that a better approximation of the heat transfer coefficient distribution over the cooled surface can be obtained even for limited number of thermocouples. In such a case it was necessary to constrain the inverse solution with the interpolated temperature sensors.

  15. Local heat-transfer measurements on a large, scale-model turbine blade airfoil using a composite of a heater element and liquid crystals

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.; Russell, L. M.; Torres, F. J.

    1985-01-01

    Local heat transfer coefficients were experimentally mapped along the midchord of a five-time-size turbine blade airfoil in a static cascade operated at room temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a mylar sheet with a layer of cholesteric liquid crystals, that change color with temperature, and a heater sheet made of a carbon-impregnated paper, that produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. The local heat transfer coefficients are presented for Reynolds numbers from 2.8 x 10 to the 5th power to 7.6 x 10 to the 5th power. Comparisons are made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code. Also, a leading edge separation bubble was revealed by thermal and flow visualization.

  16. Local versus whole-body sweating adaptations following 14 days of traditional heat acclimation.

    PubMed

    Poirier, Martin P; Gagnon, Daniel; Kenny, Glen P

    2016-08-01

    The purpose of this study was to examine if local changes in sweat rate following 14 days of heat acclimation reflect those that occur at the whole-body level. Both prior to and following a 14-day traditional heat acclimation protocol, 10 males exercised in the heat (35 °C, ∼20% relative humidity) at increasing rates of heat production equal to 300 (Ex1), 350 (Ex2), and 400 (Ex3) W·m(-2). A 10-min recovery period followed Ex1, while a 20-min recovery period separated Ex2 and Ex3. The exercise protocol was performed in a direct calorimeter to measure whole-body sweat rate and, on a separate day, in a thermal chamber to measure local sweat rate (LSR), sweat gland activation (SGA), and sweat gland output (SGO) on the upper back, chest, and mid-anterior forearm. Post-acclimation, whole-body sweat rate was greater during each exercise bout (Ex1: 14.3 ± 0.9; Ex2: 17.3 ± 1.2; Ex3: 19.4 ± 1.3 g·min(-1), all p ≤ 0.05) relative to pre-acclimation (Ex1: 13.1 ± 0.6; Ex2: 15.4 ± 0.8; Ex3: 16.5 ± 1.3 g·min(-1)). In contrast, only LSR on the forearm increased with acclimation, and this increase was only observed during Ex2 (Post: 1.32 ± 0.33 vs. Pre: 1.06 ± 0.22 mg·min(-1)·cm(-2), p = 0.03) and Ex3 (Post: 1.47 ± 0.41 vs. Pre: 1.17 ± 0.23 mg·min(-1)·cm(-2), p = 0.05). The greater forearm LSR post-acclimation was due to an increase in SGO, as no changes in SGA were observed. Overall, these data demonstrate marked regional variability in the effect of heat acclimation on LSR, such that not all local measurements of sweat rate reflect the improvements observed at the whole-body level.

  17. Characterization of thermal tracer tests and heat exchanges in fractured media

    NASA Astrophysics Data System (ADS)

    de La Bernardie, Jérôme; Bour, Olivier; Guihéneuf, Nicolas; Chatton, Eliot; Labasque, Thierry; Longuevergne, Laurent; Le Lay, Hugo; Koch, Florian; Gerard, Marie-Françoise; Lavenant, Nicolas; Le Borgne, Tanguy

    2016-04-01

    Geothermal energy is a renewable energy source particularly attractive due to associated low greenhouse gas emission rates. Crystalline rocks are in general considered of poor interest for geothermal applications at shallow depths (< 100m), because of the low permeability of the medium. In some cases, fractures may enhance permeability, but thermal energy storage at these shallow depths is still remaining very challenging because of the low storativity of the medium. Within this framework, the purpose of this study is to test the possibility of efficient thermal energy storage in shallow fractured rocks with a single well semi open loop heat exchanger (standing column well). For doing so, several heat tracer tests have been achieved along a borehole between two connected fractures. The heat tracer tests have been achieved at the experimental site of Ploemeur (H+ observatory network). The tracer tests consist in monitoring the temperature in the upper fracture while injecting hot water in the deeper one thanks to a field boiler. For such an experimental setup, the main difficulty to interpret the data comes from the requirement for separating the temperature advective signal of the tracer test (temperature recovery) from the heat increase due to injection of hot water through the borehole which induces heat losses all along the injection tube in the water column. For doing so, in addition to a double straddle packer used for isolating the injection chamber, the particularity of the experimental set up is the use of fiber optic distributed temperature sensing (FO-DTS); an innovative technology which allows spatial and temporal monitoring of the temperature all along the well. Thanks to this tool, we were able to estimate heat increases coming from diffusion along the injection tube which is found much lower than localized temperature increases resulting from tracer test recovery. With local temperatures probes, separating both effects would not have been feasible. We also show through signal processing how diffusive and advective effects may be differentiated. This allowed us to estimate temperature recovery for different heat tracer durations and setups. In particular we show that temperature recovery is highly dependent on hydraulic configuration such as perfect dipole or fully convergent heat tracer tests.

  18. Effects of the distribution density of a biomass combined heat and power plant network on heat utilisation efficiency in village-town systems.

    PubMed

    Zhang, Yifei; Kang, Jian

    2017-11-01

    The building of biomass combined heat and power (CHP) plants is an effective means of developing biomass energy because they can satisfy demands for winter heating and electricity consumption. The purpose of this study was to analyse the effect of the distribution density of a biomass CHP plant network on heat utilisation efficiency in a village-town system. The distribution density is determined based on the heat transmission threshold, and the heat utilisation efficiency is determined based on the heat demand distribution, heat output efficiency, and heat transmission loss. The objective of this study was to ascertain the optimal value for the heat transmission threshold using a multi-scheme comparison based on an analysis of these factors. To this end, a model of a biomass CHP plant network was built using geographic information system tools to simulate and generate three planning schemes with different heat transmission thresholds (6, 8, and 10 km) according to the heat demand distribution. The heat utilisation efficiencies of these planning schemes were then compared by calculating the gross power, heat output efficiency, and heat transmission loss of the biomass CHP plant for each scenario. This multi-scheme comparison yielded the following results: when the heat transmission threshold was low, the distribution density of the biomass CHP plant network was high and the biomass CHP plants tended to be relatively small. In contrast, when the heat transmission threshold was high, the distribution density of the network was low and the biomass CHP plants tended to be relatively large. When the heat transmission threshold was 8 km, the distribution density of the biomass CHP plant network was optimised for efficient heat utilisation. To promote the development of renewable energy sources, a planning scheme for a biomass CHP plant network that maximises heat utilisation efficiency can be obtained using the optimal heat transmission threshold and the nonlinearity coefficient for local roads. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Thermal aspects of vehicle comfort.

    PubMed

    Holmér, I; Nilsson, H; Bohm, M; Norén, O

    1995-07-01

    The combined thermal effects of convection, radiation and conduction in a vehicle compartment need special measuring equipment accounting for spatial and temporal variations in the driver space. The most sophisticated equipment measures local heat fluxes at defined spots or areas of a man-shaped manikin. Manikin segment heat fluxes have been measured in a variety of vehicle climatic conditions (heat, cold, solar radiation etc.) and compared with thermal sensation votes and physiological responses of subjects exposed to the same conditions. High correlation was found for segment fluxes and mean thermal vote (MTV) of subjects for the same body segments. By calibrating the manikin under homogenous, wind still conditions, heat fluxes could be converted (and normalised) to an equivalent homogenous temperature (EHT). Regression of MTV-values on EHT-values was used as basis for the derivation of a comfort profile, specifying acceptable temperature ranges for 19 different body segments. The method has been used for assessment of the thermal climate in trucks and crane cabins in winter and summer conditions. The possibility for spatial resolution of thermal influences (e.g. by solar radiation or convection currents) appeared to be very useful in the analysis of system performance. Ventilation of driver's seats is a technical solution to reducing insulation of thigh, seat and back areas of the body. Constructions, however, may vary in efficiency. In one system seat ventilation allowed for almost 2 degrees C higher ambient conditions for unchanged general thermal sensation, in addition to the pronounced local effect. In a recent study the effects of various technical measures related to cabin design and HVAC-systems have been investigated.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Heat and mass transfer in MHD free convection from a moving permeable vertical surface by a perturbation technique

    NASA Astrophysics Data System (ADS)

    Abdelkhalek, M. M.

    2009-05-01

    Numerical results are presented for heat and mass transfer effect on hydromagnetic flow of a moving permeable vertical surface. An analysis is performed to study the momentum, heat and mass transfer characteristics of MHD natural convection flow over a moving permeable surface. The surface is maintained at linear temperature and concentration variations. The non-linear coupled boundary layer equations were transformed and the resulting ordinary differential equations were solved by perturbation technique [Aziz A, Na TY. Perturbation methods in heat transfer. Berlin: Springer-Verlag; 1984. p. 1-184; Kennet Cramer R, Shih-I Pai. Magneto fluid dynamics for engineers and applied physicists 1973;166-7]. The solution is found to be dependent on several governing parameter, including the magnetic field strength parameter, Prandtl number, Schmidt number, buoyancy ratio and suction/blowing parameter, a parametric study of all the governing parameters is carried out and representative results are illustrated to reveal a typical tendency of the solutions. Numerical results for the dimensionless velocity profiles, the temperature profiles, the concentration profiles, the local friction coefficient and the local Nusselt number are presented for various combinations of parameters.

  1. Cancer hyperthermia using magnetic nanoparticles.

    PubMed

    Kobayashi, Takeshi

    2011-11-01

    Magnetic-nanoparticle-mediated intracellular hyperthermia has the potential to achieve localized tumor heating without any side effects. The technique consists of targeting magnetic nanoparticles to tumor tissue followed by application of an external alternating magnetic field that induces heat through Néel relaxation loss of the magnetic nanoparticles. The temperature in tumor tissue is increased to above 43°C, which causes necrosis of cancer cells, but does not damage surrounding normal tissue. Among magnetic nanoparticles available, magnetite has been extensively studied. Recent years have seen remarkable advances in magnetite-nanoparticle-mediated hyperthermia; both functional magnetite nanoparticles and alternating-magnetic-field generators have been developed. In addition to the expected tumor cell death, hyperthermia treatment has also induced unexpected biological responses, such as tumor-specific immune responses as a result of heat-shock protein expression. These results suggest that hyperthermia is able to kill not only local tumors exposed to heat treatment, but also tumors at distant sites, including metastatic cancer cells. Currently, several research centers have begun clinical trials with promising results, suggesting that the time may have come for clinical applications. This review describes recent advances in magnetite nanoparticle-mediated hyperthermia. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effect of Localized Corrosion on Fatigue-Crack Growth in 2524-T3 and 2198-T851 Aluminum Alloys Used as Aircraft Materials

    NASA Astrophysics Data System (ADS)

    Moreto, J. A.; Broday, E. E.; Rossino, L. S.; Fernandes, J. C. S.; Bose Filho, W. W.

    2018-03-01

    Corrosion and fatigue of aluminum alloys are major issues for the in-service life assessment of aircraft structures and for the management of aging air fleets. The aim of this work was to evaluate the effect of localized corrosion on fatigue crack growth (FCG) resistance of the AA2198-T851 Al-Li alloy (Solution Heat Treated, Cold Worked, and Artificially Aged), comparing it with the FCG resistance of AA2524-T3 (Solution Heat Treated and Cold Worked), considering the effect of seawater fog environment. Before fatigue tests, the corrosion behavior of 2198-T851 and 2524-T3 aluminum alloys was verified using open circuit potential and potentiodynamic polarization techniques. Fatigue in air and corrosion fatigue tests were performed applying a stress ratio (R) of 0.1, 15 Hz (air) and 0.1 Hz (seawater fog) frequencies, using a sinusoidal waveform in all cases. The results showed that the localized characteristics of the 2198-T851 and 2524-T3 aluminum alloys are essentially related to the existence of intermetallic compounds, which, due to their different nature, may be cathodic or anodic in relation to the aluminum matrix. The corrosive medium has affected the FCG rate of both aluminum alloys, in a quite similar way.

  3. Effects of system-bath coupling on a photosynthetic heat engine: A polaron master-equation approach

    NASA Astrophysics Data System (ADS)

    Qin, M.; Shen, H. Z.; Zhao, X. L.; Yi, X. X.

    2017-07-01

    Stimulated by suggestions of quantum effects in energy transport in photosynthesis, the fundamental principles responsible for the near-unit efficiency of the conversion of solar to chemical energy became active again in recent years. Under natural conditions, the formation of stable charge-separation states in bacteria and plant reaction centers is strongly affected by the coupling of electronic degrees of freedom to a wide range of vibrational motions. These inspire and motivate us to explore the effects of the environment on the operation of such complexes. In this paper, we apply the polaron master equation, which offers the possibilities to interpolate between weak and strong system-bath coupling, to study how system-bath couplings affect the exciton-transfer processes in the Photosystem II reaction center described by a quantum heat engine (QHE) model over a wide parameter range. The effects of bath correlation and temperature, together with the combined effects of these factors are also discussed in detail. We interpret these results in terms of noise-assisted transport effect and dynamical localization, which correspond to two mechanisms underpinning the transfer process in photosynthetic complexes: One is resonance energy transfer and the other is the dynamical localization effect captured by the polaron master equation. The effects of system-bath coupling and bath correlation are incorporated in the effective system-bath coupling strength determining whether noise-assisted transport effect or dynamical localization dominates the dynamics and temperature modulates the balance of the two mechanisms. Furthermore, these two mechanisms can be attributed to one physical origin: bath-induced fluctuations. The two mechanisms are manifestations of the dual role played by bath-induced fluctuations depending on the range of parameters. The origin and role of coherence are also discussed. It is the constructive interplay between noise and coherent dynamics, rather than the mere presence or absence of coherence or noise, that is responsible for the optimal heat engine performance. In addition, we find that the effective voltage of QHE exhibits superior robustness against the bath noise as long as the system-bath coupling is not very strong.

  4. Effect of Local Thermal Equilibrium Misbalance on Long-wavelength Slow Magnetoacoustic Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakariakov, V. M.; Afanasyev, A. N.; Kumar, S.

    Evolution of slow magnetoacoustic waves guided by a cylindrical magnetic flux tube that represents a coronal loop or plume, is modeled accounting for the effects of finite gas pressure, weak nonlinearity, dissipation by thermal conduction and viscosity, and the misbalance between the cooling by optically thin radiation and unspecified heating of the plasma. An evolutionary equation of the Burgers–Malthus type is derived. It is shown that the cooling/heating misbalance, determined by the derivatives of the combined radiative cooling and heating function, with respect to the density, temperature, and magnetic field at the thermal equilibrium affect the wave rather strongly. Thismore » effect may either cause additional damping, or counteract it, or lead to the gradual amplification of the wave. In the latter case, the coronal plasma acts as an active medium for the slow magnetoacoustic waves. The effect of the cooling/heating misbalance could be important for coronal slow waves, and could be responsible for certain discrepancies between theoretical results and observations, in particular, the increased or decreased damping lengths and times, detection of the waves at certain heights only, and excitation of compressive oscillations. The results obtained open up a possibility for the diagnostics of the coronal heating function by slow magnetoacoustic waves.« less

  5. Periodic unsteady effects on turbulent boundary layer transport and heat transfer: An experimental investigation in a cylinder-wall junction flow

    NASA Astrophysics Data System (ADS)

    Xie, Qi

    Heat transfer in a turbulent boundary layer downstream of junction with a cylinder has many engineering applications including controlling heat transfer to the endwall in gas turbine passages and cooling of protruding electronic chips. The main objective of this research is to study the fundamental process of heat transport and wall heat transfer in a turbulent three-dimensional flow superimposed with local large-scale periodic unsteadiness generated by vortex shedding from the cylinder. Direct measurements of the Reynolds heat fluxes (/line{utheta},\\ /line{vtheta}\\ and\\ /line{wtheta}) and time-resolved wall heat transfer rate will provide insight into unsteady flow behavior and data for advanced turbulence models for numerical simulation of complex engineering flows. Experiments were conducted in an open-circuit, low-speed wind tunnel. Reynolds stresses and heat fluxes were obtained from turbulent heat-flux probes which consisted of two hot wires, arranged in an X-wire configuration, and a cold wire located in front of the X-wire. Thin-film surface heat flux sensors were designed for measuring time-resolved wall heat flux. A reference probe and conditional-sampling technique connected the flow field dynamics to wall heat transfer. An event detecting and ensemble-averaging method was developed to separate effects of unsteadiness from those of background turbulence. Results indicate that unsteadiness affects both heat transport and wall heat transfer. The flow behind the cylinder can be characterized by three regions: (1) Wake region, where unsteadiness is observed to have modest effect; (2) Unsteady region, where the strongest unsteadiness effect is found; (3) Outer region, where the flow approaches the two-dimensional boundary-layer behavior. Vortex shedding from both sides of the cylinder contributes to mixing enhancement in the wake region. Unsteadiness contributes up to 51% of vertical and 59% of spanwise turbulent heat fluxes in the unsteady region. The instantaneous wall Stanton number increased up to 100% compared with an undisturbed flow. Large-scale fluctuations of wall Stanton number were due to the periodic thinning and thickening of the thermal layer caused by periodic vertical velocity fluctuations. This suggests that the outerlayer motion affects near-wall flow behavior and wall heat transfer.

  6. Skin blood flow and local temperature independently modify sweat rate during passive heat stress in humans.

    PubMed

    Wingo, Jonathan E; Low, David A; Keller, David M; Brothers, R Matthew; Shibasaki, Manabu; Crandall, Craig G

    2010-11-01

    Sweat rate (SR) is reduced in locally cooled skin, which may result from decreased temperature and/or parallel reductions in skin blood flow. The purpose of this study was to test the hypotheses that decreased skin blood flow and decreased local temperature each independently attenuate sweating. In protocols I and II, eight subjects rested supine while wearing a water-perfused suit for the control of whole body skin and internal temperatures. While 34°C water perfused the suit, four microdialysis membranes were placed in posterior forearm skin not covered by the suit to manipulate skin blood flow using vasoactive agents. Each site was instrumented for control of local temperature and measurement of local SR (capacitance hygrometry) and skin blood flow (laser-Doppler flowmetry). In protocol I, two sites received norepinephrine to reduce skin blood flow, while two sites received Ringer solution (control). All sites were maintained at 34°C. In protocol II, all sites received 28 mM sodium nitroprusside to equalize skin blood flow between sites before local cooling to 20°C (2 sites) or maintenance at 34°C (2 sites). In both protocols, individuals were then passively heated to increase core temperature ~1°C. Both decreased skin blood flow and decreased local temperature attenuated the slope of the SR to mean body temperature relationship (2.0 ± 1.2 vs. 1.0 ± 0.7 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased skin blood flow, P = 0.01; 1.2 ± 0.9 vs. 0.07 ± 0.05 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased local temperature, P = 0.02). Furthermore, local cooling delayed the onset of sweating (mean body temperature of 37.5 ± 0.4 vs. 37.6 ± 0.4°C, P = 0.03). These data demonstrate that local cooling attenuates sweating by independent effects of decreased skin blood flow and decreased local skin temperature.

  7. Radiation asymmetries during disruptions on DIII-D caused by massive gas injectiona)

    NASA Astrophysics Data System (ADS)

    Commaux, N.; Baylor, L. R.; Jernigan, T. C.; Hollmann, E. M.; Humphreys, D. A.; Wesley, J. C.; Izzo, V. A.; Eidietis, N. W.; Lasnier, C. J.; Moyer, R. A.; Parks, P. B.; Foust, C. R.; Combs, S.; Meitner, S. J.

    2014-10-01

    One of the major challenges that the ITER tokamak will have to face during its operations are disruptions. During the last few years, it has been proven that the global consequences of a disruption can be mitigated by the injection of large quantities of impurities. But one aspect that has been difficult to study was the possibility of local effects inside the torus during such injection that could damage a portion of the device despite the global heat losses and generated currents remaining below design parameter. 3D MHD simulations show that there is a potential for large toroidal asymmetries of the radiated power during impurity injection due to the interaction between the particle injection plume and a large n = 1 mode. Another aspect of 3D effects is the potential occurrence of Vertical Displacement Events (VDE), which could induce large poloidal heat load asymmetries. This potential deleterious effect of 3D phenomena has been studied on the DIII-D tokamak, thanks to the implementation of a multi-location massive gas injection (MGI) system as well as new diagnostic capabilities. This study showed the existence of a correlation between the location of the n = 1 mode and the local heat load on the plasma facing components but shows also that this effect is much smaller than anticipated (peaking factor of ˜1.1 vs 3-4 according to the simulations). There seems to be no observable heat load on the first wall of DIII-D at the location of the impurity injection port as well as no significant radiation asymmetries whether one or 2 valves are fired. This study enabled the first attempt of mitigation of a VDE using impurity injection at different poloidal locations. The results showed a more favorable heat deposition when the VDE is mitigated early (right at the onset) by impurity injection. No significant improvement of the heat load mitigation efficiency has been observed for late particle injection whether the injection is done "in the way" of the VDE (upward VDE mitigated by injection from the upper part of the vessel vs the lower part) or not.

  8. Radiation asymmetries during disruptions on DIII-D caused by massive gas injection

    DOE PAGES

    Commaux, N.; Baylor, L. R.; Jernigan, T. C.; ...

    2014-10-17

    One of the major challenges that the ITER tokamak will have to face during its operations are disruptions. During the last few years, it has been proven that the global consequences of a disruption can be mitigated by the injection of large quantities of impurities. But one aspect that has been difficult to study was the possibility of local effects inside the torus during such injection that could damage a portion of the device despite the global heat losses and generated currents remaining below design parameter. 3D MHD simulations show that there is a potential for large toroidal asymmetries ofmore » the radiated power during impurity injection due to the interaction between the particle injection plume and a large n=1 mode. Another aspect of 3D effects is the potential occurrence of Vertical Displacement Events (VDE), which could induce large poloidal heat load asymmetries. This potential deleterious effect of 3D phenomena has been studied on the DIII-D tokamak thanks to the implementation of a multi-location massive gas injection (MGI) system as well as new diagnostic capabilities. This study showed the existence of a correlation between the location of the n=1 mode and the local heat load on the plasma facing components but shows also that this effect is much smaller than anticipated (peaking factor of ~1.1 vs 3-4 according to the simulations). There seems to be no observable heat load on the first wall of DIII-D at the location of the impurity injection port as well as no significant radiation asymmetries whether one or 2 valves are fired. This study enabled the first attempt of mitigation of a VDE using impurity injection at different poloidal locations. The results showed a more favorable heat deposition when the VDE is mitigated early (right at the onset) by impurity injection. As a result, no significant improvement of the heat load mitigation efficiency has been observed for late particle injection whether the injection is done “in the way” of the VDE (upward VDE mitigated by injection from the upper part of the vessel vs the lower part) or not.« less

  9. Novel Mitochondria-Targeted Heat-Soluble Proteins Identified in the Anhydrobiotic Tardigrade Improve Osmotic Tolerance of Human Cells

    PubMed Central

    Tanaka, Sae; Tanaka, Junko; Miwa, Yoshihiro; Horikawa, Daiki D.; Katayama, Toshiaki; Arakawa, Kazuharu; Toyoda, Atsushi; Kubo, Takeo; Kunieda, Takekazu

    2015-01-01

    Tardigrades are able to tolerate almost complete dehydration through transition to a metabolically inactive state, called “anhydrobiosis”. Late Embryogenesis Abundant (LEA) proteins are heat-soluble proteins involved in the desiccation tolerance of many anhydrobiotic organisms. Tardigrades, Ramazzottius varieornatus, however, express predominantly tardigrade-unique heat-soluble proteins: CAHS (Cytoplasmic Abundant Heat Soluble) and SAHS (Secretory Abundant Heat Soluble) proteins, which are secreted or localized in most intracellular compartments, except the mitochondria. Although mitochondrial integrity is crucial to ensure cellular survival, protective molecules for mitochondria have remained elusive. Here, we identified two novel mitochondrial heat-soluble proteins, RvLEAM and MAHS (Mitochondrial Abundant Heat Soluble), as potent mitochondrial protectants from Ramazzottius varieornatus. RvLEAM is a group3 LEA protein and immunohistochemistry confirmed its mitochondrial localization in tardigrade cells. MAHS-green fluorescent protein fusion protein localized in human mitochondria and was heat-soluble in vitro, though no sequence similarity with other known proteins was found, and one region was conserved among tardigrades. Furthermore, we demonstrated that RvLEAM protein as well as MAHS protein improved the hyperosmotic tolerance of human cells. The findings of the present study revealed that tardigrade mitochondria contain at least two types of heat-soluble proteins that might have protective roles in water-deficient environments. PMID:25675104

  10. Novel mitochondria-targeted heat-soluble proteins identified in the anhydrobiotic Tardigrade improve osmotic tolerance of human cells.

    PubMed

    Tanaka, Sae; Tanaka, Junko; Miwa, Yoshihiro; Horikawa, Daiki D; Katayama, Toshiaki; Arakawa, Kazuharu; Toyoda, Atsushi; Kubo, Takeo; Kunieda, Takekazu

    2015-01-01

    Tardigrades are able to tolerate almost complete dehydration through transition to a metabolically inactive state, called "anhydrobiosis". Late Embryogenesis Abundant (LEA) proteins are heat-soluble proteins involved in the desiccation tolerance of many anhydrobiotic organisms. Tardigrades, Ramazzottius varieornatus, however, express predominantly tardigrade-unique heat-soluble proteins: CAHS (Cytoplasmic Abundant Heat Soluble) and SAHS (Secretory Abundant Heat Soluble) proteins, which are secreted or localized in most intracellular compartments, except the mitochondria. Although mitochondrial integrity is crucial to ensure cellular survival, protective molecules for mitochondria have remained elusive. Here, we identified two novel mitochondrial heat-soluble proteins, RvLEAM and MAHS (Mitochondrial Abundant Heat Soluble), as potent mitochondrial protectants from Ramazzottius varieornatus. RvLEAM is a group3 LEA protein and immunohistochemistry confirmed its mitochondrial localization in tardigrade cells. MAHS-green fluorescent protein fusion protein localized in human mitochondria and was heat-soluble in vitro, though no sequence similarity with other known proteins was found, and one region was conserved among tardigrades. Furthermore, we demonstrated that RvLEAM protein as well as MAHS protein improved the hyperosmotic tolerance of human cells. The findings of the present study revealed that tardigrade mitochondria contain at least two types of heat-soluble proteins that might have protective roles in water-deficient environments.

  11. Spatial Temperature Mapping within Polymer Nanocomposites Undergoing Ultrafast Photothermal Heating via Gold Nanorods

    PubMed Central

    Maity, Somsubhra; Wu, Wei-Chen; Xu, Chao; Tracy, Joseph B.; Gundogdu, Kenan; Bochinski, Jason R.; Clarke, Laura I.

    2015-01-01

    Heat emanates from gold nanorods (GNRs) under ultrafast optical excitation of the localized surface plasmon resonance. The steady state nanoscale temperature distribution formed within a polymer matrix embedded with GNRs undergoing pulsed femtosecond photothermal heating is determined experimentally using two independent ensemble optical techniques. Physical rotation of the nanorods reveals the average local temperature of the polymer melt in the immediate spatial volume surrounding them while fluorescence of homogeneously-distributed perylene molecules monitors temperature over sample regions at larger distances from the GNRs. Polarization-sensitive fluorescence measurements of the perylene probes provide an estimate of the average size of the quasi-molten region surrounding each nanorod (that is, the boundary between softened polymer and solid material as the temperature decreases radially away from each particle) and distinguishes the steady state temperature in the solid and melt regions. Combining these separate methods enables nanoscale spatial mapping of the average steady state temperature distribution caused by ultrafast excitation of the GNRs. These observations definitively demonstrate the presence of a steady-state temperature gradient and indicate that localized heating via the photothermal effect within materials enables nanoscale thermal manipulations without significantly altering the bulk sample temperature in these systems. These quantitative results are further verified by reorienting nanorods within a solid polymer nanofiber without inducing any morphological changes to the highly temperature-sensitive nanofiber surface. Temperature differences of 70 – 90 °C were observed over a distances of ~100 nm. PMID:25379775

  12. Thermal modeling of grinding for process optimization and durability improvements

    NASA Astrophysics Data System (ADS)

    Hanna, Ihab M.

    Both thermal and mechanical aspects of the grinding process are investigated in detail in an effort to predict grinding induced residual stresses. An existing thermal model is used as a foundation for computing heat partitions and temperatures in surface grinding. By numerically processing data from IR temperature measurements of the grinding zone; characterizations are made of the grinding zone heat flux. It is concluded that the typical heat flux profile in the grinding zone is triangular in shape, supporting this often used assumption found in the literature. Further analyses of the computed heat flux profiles has revealed that actual grinding zone contact lengths exceed geometric contact lengths by an average of 57% for the cases considered. By integrating the resulting heat flux profiles; workpiece energy partitions are computed for several cases of dry conventional grinding of hardened steel. The average workpiece energy partition for the cases considered was 37%. In an effort to more accurately predict grinding zone temperatures and heat fluxes, refinements are made to the existing thermal model. These include consideration of contact length extensions due to local elastic deformations, variations of the assumed contact area ratio as a function of grinding process parameters, consideration of coolant latent heat of vaporization and its effect on heat transfer beyond the coolant boiling point, and incorporation of coolant-workpiece convective heat flux effects outside the grinding zone. The result of the model refinements accounting for contact length extensions and process-dependant contact area ratios is excellent agreement with IR temperature measurements over a wide range of grinding conditions. By accounting for latent heat of vaporization effects, grinding zone temperature profiles are shown to be capable of reproducing measured profiles found in the literature for cases on the verge of thermal surge conditions. Computed peak grinding zone temperatures for the aggressive grinding examples given are 30--50% lower than those computed using the existing thermal model formulation. By accounting for convective heat transfer effects outside the grinding zone, it is shown that while surface temperatures in the wake of the grinding zone may be significantly affected under highly convective conditions, computed residual stresses are less sensitive to such conditions. Numerical models are used to evaluate both thermally and mechanically induced stress fields in an elastic workpiece, while finite element modeling is used to evaluate residual stresses for workpieces with elastic-plastic material properties. Modeling of mechanical interactions at the local grit-workpiece length scale is used to create the often measured effect of compressive surface residual stress followed by a subsurface tensile peak. The model is shown to be capable of reproducing trends found in the literature of surface residual stresses which are compressive for low temperature grinding conditions, with surface stresses increasing linearly and becoming tensile with increasing temperatures. Further modifications to the finite element model are made to allow for transiently varying inputs for more complicated grinding processes of industrial components such as automotive cam lobes.

  13. SiO2 nanofluid planar jet impingement cooling on a convex heated plate

    NASA Astrophysics Data System (ADS)

    Asghari Lafmajani, Neda; Ebrahimi Bidhendi, Mahsa; Ashjaee, Mehdi

    2016-12-01

    The main objective of this paper is to investigate the heat transfer coefficient of a planar jet of SiO2 nanofluid that impinges vertically on the middle of a convex heated plate for cooling purposes. The planar jet issues from a rectangular slot nozzle. The convex aluminum plate has a thickness, width and length of 0.2, 40 and 130 mm, respectively, and is bent with a radius of 200 mm. A constant heat-flux condition is employed. 7 nm SiO2 particles are added to water to prepare the nanofluid with 0.1, 1 and 2 % (ml SiO2/ml H2O) concentrations. The tests are also performed at different Reynolds numbers from 1803 to 2782. Results indicate that adding the SiO2 nanoparticles can effectively increase both local and average heat transfer coefficients up to 39.37 and 32.78 %, respectively. These positive effects often are more pronounced with increasing Reynolds numbers. This enhancement increases with ascending the concentration of nanofluid, especially from 0.1 to 1 %.

  14. Effects of microwave heating on porous structure of regenerated powdered activated carbon used in xylose.

    PubMed

    Li, Wei; Wang, Xinying; Peng, Jinhui

    2014-01-01

    The regeneration of spent powdered activated carbons used in xylose decolourization by microwave heating was investigated. Effects of microwave power and microwave heating time on the adsorption capacity of regenerated activated carbons were evaluated. The optimum conditions obtained are as follows: microwave power 800W; microwave heating time 30min. Regenerated activated carbon in this work has high adsorption capacities for the amount of methylene blue of 16 cm3/0.1 g and the iodine number of 1000.06mg/g. The specific surface areas of fresh commercial activated carbon, spent carbon and regenerated activated carbon were calculated according to the Brunauer, Emmett and Teller method, and the pore-size distributions of these carbons were characterized by non-local density functional theory (NLDFT). The results show that the specific surface area and the total pore volume of regenerated activated carbon are 1064 m2/g and 1.181 mL/g, respectively, indicating the feasibility of regeneration of spent powdered activated carbon used in xylose decolourization by microwave heating. The results of surface fractal dimensions also confirm the results of isotherms and NLDFT.

  15. Alloying effect of copper concentration on the localized corrosion of aluminum alloy for heat exchanger tube

    NASA Astrophysics Data System (ADS)

    Hong, Min-Sung; Park, In-Jun; Kim, Jung-Gu

    2017-07-01

    This study examined the alloying effect of Cu content on the localized corrosion properties of Al alloy in synthetic acid rain containing 200 ppm of Cl- ion. In aluminum alloy tubes, a small amount of Cu is contained as the additive to improve the mechanical strength or as the impurity. The Cu-containing intermetallic compound, Al2Cu can cause galvanic corrosion because it has more noble potential than Al matrix. Therefore aluminum tube could be penetrated by localized corrosion attack. The results were obtained from electrochemical test, scanning electron microscopy, and time of flight secondary ion mass spectrometry (ToF-SIMS) mapping. Severe localized corrosion was occurred on the Al-0.03 wt% Cu alloy. The negative effect of Cu on the pitting corrosion was attributed to the presence of the Al2Cu precipitates.

  16. Projecting Heat-Related Mortality Impacts Under a Changing Climate in the New York City Region

    PubMed Central

    Knowlton, Kim; Lynn, Barry; Goldberg, Richard A.; Rosenzweig, Cynthia; Hogrefe, Christian; Rosenthal, Joyce Klein; Kinney, Patrick L.

    2007-01-01

    Objectives. We sought to project future impacts of climate change on summer heat-related premature deaths in the New York City metropolitan region. Methods. Current and future climates were simulated over the northeastern United States with a global-to-regional climate modeling system. Summer heat-related premature deaths in the 1990s and 2050s were estimated by using a range of scenarios and approaches to modeling acclimatization (e.g., increased use of air conditioning, gradual physiological adaptation). Results. Projected regional increases in heat-related premature mortality by the 2050s ranged from 47% to 95%, with a mean 70% increase compared with the 1990s. Acclimatization effects reduced regional increases in summer heat-related premature mortality by about 25%. Local impacts varied considerably across the region, with urban counties showing greater numbers of deaths and smaller percentage increases than less-urbanized counties. Conclusions. Although considerable uncertainty exists in climate forecasts and future health vulnerability, the range of projections we developed suggests that by midcentury, acclimatization may not completely mitigate the effects of climate change in the New York City metropolitan region, which would result in an overall net increase in heat-related premature mortality. PMID:17901433

  17. Magnetic properties of atmospheric PMx in a small settlement during heating and non-heating season

    NASA Astrophysics Data System (ADS)

    Petrovsky, E.; Kotlik, B.; Zboril, R.; Kapicka, A.; Grison, H.

    2012-04-01

    Magnetic properties of environmental samples can serve as fast and relatively cheap proxy method to investigate occurrence of iron oxides. These methods are very sensitive in detecting strongly magnetic compounds such as magnetite and maghemite and can reveal concentration and assess grain-size distribution of these minerals. This information can be significant in estimating e.g. the source of pollutants, monitoring pollution load, or investigating seasonal and climatic effects. We studied magnetic properties of PM1, PM2.5 and PM10, collected over 32-48 hours in a small settlement in south Bohemia during heating and non-heating season. The site is rather remote, with negligible traffic and industrial contributions to air pollution. Thus, the suggested seasonal effect should be dominantly due to local (domestic) heating, burning wood or coal. In our contribution we show typical differences in PMx concentration, which is much higher in the winter (heating) sample, accompanied by SEM analyses and magnetic data oriented on concentration and grain-size distribution of magnetite/maghemite particles. While concentration of Fe-oxides does not vary that much, significant seasonal differences were observed in composition and grain-size distribution, reflecting different sources of the dust particles.

  18. Transient thermal, hydraulic, and mechanical analysis of a counter flow offset strip fin intermediate heat exchanger using an effective porous media approach

    NASA Astrophysics Data System (ADS)

    Urquiza, Eugenio

    This work presents a comprehensive thermal hydraulic analysis of a compact heat exchanger using offset strip fins. The thermal hydraulics analysis in this work is followed by a finite element analysis (FEA) to predict the mechanical stresses experienced by an intermediate heat exchanger (IHX) during steady-state operation and selected flow transients. In particular, the scenario analyzed involves a gas-to-liquid IHX operating between high pressure helium and liquid or molten salt. In order to estimate the stresses in compact heat exchangers a comprehensive thermal and hydraulic analysis is needed. Compact heat exchangers require very small flow channels and fins to achieve high heat transfer rates and thermal effectiveness. However, studying such small features computationally contributes little to the understanding of component level phenomena and requires prohibitive computational effort using computational fluid dynamics (CFD). To address this issue, the analysis developed here uses an effective porous media (EPM) approach; this greatly reduces the computation time and produces results with the appropriate resolution [1]. This EPM fluid dynamics and heat transfer computational code has been named the Compact Heat Exchanger Explicit Thermal and Hydraulics (CHEETAH) code. CHEETAH solves for the two-dimensional steady-state and transient temperature and flow distributions in the IHX including the complicating effects of temperature-dependent fluid thermo-physical properties. Temperature- and pressure-dependent fluid properties are evaluated by CHEETAH and the thermal effectiveness of the IHX is also calculated. Furthermore, the temperature distribution can then be imported into a finite element analysis (FEA) code for mechanical stress analysis using the EPM methods developed earlier by the University of California, Berkeley, for global and local stress analysis [2]. These simulation tools will also allow the heat exchanger design to be improved through an iterative design process which will lead to a design with a reduced pressure drop, increased thermal effectiveness, and improved mechanical performance as it relates to creep deformation and transient thermal stresses.

  19. Lock-in thermography approach for imaging the efficiency of light emitters and optical coolers

    NASA Astrophysics Data System (ADS)

    Radevici, Ivan; Tiira, Jonna; Oksanen, Jani

    2017-02-01

    Developing optical cooling technologies requires access to reliable efficiency measurement techniques and ability to detect spatial variations in the efficiency and light emission of the devices. We investigate the possibility to combine the calorimetric efficiency measurement principles with lock-in thermography (LIT) and conventional luminescence microscopy to enable spatially resolved measurement of the efficiency, current spreading and local device heating of double diode structures (DDS) serving as test vessels for developing thermophotonic cooling devices. Our approach enables spatially resolved characterization and localization of the losses of the double diode structures as well as other light emitting semiconductor devices. In particular, the approach may allow directly observing effects like current crowding and surface recombination on the light emission and heating of the DDS devices.

  20. Recov'Heat: An estimation tool of urban waste heat recovery potential in sustainable cities

    NASA Astrophysics Data System (ADS)

    Goumba, Alain; Chiche, Samuel; Guo, Xiaofeng; Colombert, Morgane; Bonneau, Patricia

    2017-02-01

    Waste heat recovery is considered as an efficient way to increase carbon-free green energy utilization and to reduce greenhouse gas emission. Especially in urban area, several sources such as sewage water, industrial process, waste incinerator plants, etc., are still rarely explored. Their integration into a district heating system providing heating and/or domestic hot water could be beneficial for both energy companies and local governments. EFFICACITY, a French research institute focused on urban energy transition, has developed an estimation tool for different waste heat sources potentially explored in a sustainable city. This article presents the development method of such a decision making tool which, by giving both energetic and economic analysis, helps local communities and energy service companies to make preliminary studies in heat recovery projects.

  1. Innovative heating of large-size automotive Li-ion cells

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Guang; Liu, Teng; Wang, Chao-Yang

    2017-02-01

    Automotive Li-ion cells are becoming much larger and thicker in order to reduce the cell count and increase battery reliability, posing a new challenge to battery heating from the cold ambient due to poor through-plane heat transfer across a cell's multiple layers of electrodes and separators. In this work, widely used heating methods, including internal heating using the cell's resistance and external heating by resistive heaters, are compared with the recently developed self-heating Li-ion battery (SHLB) with special attention to the heating speed and maximum local temperature critical to battery safety. Both conventional methods are found to be slow due to low heating power required to maintain battery safety. The heating power in the external heating method is limited by the risk of local over-heating, in particular for thick cells. As a result, the external heating method is restricted to ∼20 min slow heating for a 30 °C temperature rise. In contrast, the SHLB is demonstrated to reach a heating speed of 1-2 °C/sec, ∼40 times faster for large-size thick cells, with nearly 100% heating efficiency and spatially uniform heating free from safety concerns.

  2. Remote Sensing of Urban Thermal Landscape Characteristics and Their Affects on Local and Regional Meteorology and Air Quality: An Overview of NASA EOS-IDS Project Atlanta

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.

    1999-01-01

    As an entity, the city is a manifestation of human "management" of the land. The act of city-building, however, drastically alters the biophysical environment, which ultimately, impacts local and regional land-atmosphere energy exchange processes. Because of the complexity of both the urban landscape and the attendant energy fluxes that result from urbanization, remote sensing offers the only real way to synoptically quantify these processes. One of the more important land-atmosphere fluxes that occurs over cities relates to the way that thermal energy is partitioned across the heterogeneous urban landscape. The individual land cover and surface material types that comprise the city, such as pavements and buildings, each have their own thermal energy regimes. As the collective urban landscape, the individual thermal energy responses from specific surfaces come together to form the urban heat island phenomena, which prevails as a dome of elevated air temperatures over cities. Although the urban heat island has been known to exist for well over 150 years, it is not understood how differences in thermal energy responses for land covers across the city interact to produce this phenomenon, or how the variability in thermal energy responses from different surface types drive its development. Additionally, it can be hypothesized that as cities grow in size through time, so do their urban heat islands. The interrelationships between urban sprawl and the respective growth of the urban heat island, however, have not been investigated. Moreover, little is known of the consequential effects of urban growth, land cover change, and the urban heat island as they impact local and regional meteorology and air quality.

  3. Regulation of the heat shock response under anoxia in the turtle, Trachemys scripta elegans.

    PubMed

    Krivoruchko, Anastasia; Storey, Kenneth B

    2010-03-01

    The effects of 20 h of anoxic submergence in cold water and 5 h of aerobic recovery on the heat shock response were analyzed in four organs of the anoxia-tolerant turtle Trachemys scripta elegans. Immunoblotting was used to analyze levels of active and inactive forms of the heat shock transcription factor 1 (HSF1), nuclear translocation of HSF1, and the levels of six heat shock proteins (HSPs). PCR was also used to retrieve the turtle HSF1 nucleotide sequence; its deduced amino acid sequence showed 97% identity with chicken HSF1. White skeletal muscle showed a strong fivefold increase in the amount of active HSF1 under anoxic conditions as well as an 80% increase in nuclear localization. This was accompanied by upregulation of five HSPs by 1.8- to 2.9-fold: Hsp25, Hsp40, Hsp70, Hsc70, and Hsp90, the latter two remained elevated after 5 h of aerobic recovery. Kidney and liver showed little change in active HSF1 content during anoxia and recovery, but a significant increase in the nuclear localization of HSF1 during anoxia. This supported enhanced expression of three HSPs in kidney (Hsp40, Hsc70, and Hsp90) and four in liver (Hsp40, Hsp60, Hsp70, Hsc70). Heart displayed a strong increase in active HSF1 during anoxia and recovery (6.6- to 6.8-fold higher than control) and increased nuclear localization but heart HSP levels did not rise. The data demonstrate organ-specific regulation of HSPs during anoxia exposure and aerobic recovery in T. s. elegans and suggest that the heat shock response is an important aspect of cytoprotection during facultative anaerobiosis, particularly with regard to underwater hibernation of turtles in cold water.

  4. Effect of Multiple Local Repairs on Microstructure and Mechanical Properties of T24 Steel Welded Joint

    NASA Astrophysics Data System (ADS)

    Chaus, Alexander S.; Kuhajdová, Andrea; Marônek, Milan; Dománková, Mária

    2018-05-01

    The effect of multiple local repairs on the microstructure and mechanical properties of the T24 steel welded joints was studied. T24 steel tubes were butt-welded by the GTAW method. Peripheral welded joints were made in four locations of the tube. In order to simulate the repair procedure, the welds were cut off from the root and the first local repair was performed. Other two local repairs were carried out in the same way. After each local repair, the microstructure and mechanical properties of the joints were evaluated. The results of the mechanical tests demonstrate that only two local repairs can be performed on the T24 steel peripheral welded joint. After the third local repair, impact energy of the welded joint was lower than required value, which is attributed to the coarser martensite and the coarser carbide precipitates formed in the heat-affected zone, compared with the weld metal.

  5. Local Peltier-effect-induced reversible metal–insulator transition in VO{sub 2} nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takami, Hidefumi; Kanki, Teruo, E-mail: kanki@sanken.osaka-u.ac.jp, E-mail: h-tanaka@sanken.osaka-u.ac.jp; Tanaka, Hidekazu, E-mail: kanki@sanken.osaka-u.ac.jp, E-mail: h-tanaka@sanken.osaka-u.ac.jp

    2016-06-15

    We report anomalous resistance leaps and drops in VO{sub 2} nanowires with operating current density and direction, showing reversible and nonvolatile switching. This event is associated with the metal–insulator phase transition (MIT) of local nanodomains with coexistence states of metallic and insulating phases induced by thermoelectric cooling and heating effects. Because the interface of metal and insulator domains has much different Peltier coefficient, it is possible that a significant Peltier effect would be a source of the local MIT. This operation can be realized by one-dimensional domain configuration in VO{sub 2} nanowires because one straight current path through the electronicmore » domain-interface enables theoretical control of thermoelectric effects. This result will open a new method of reversible control of electronic states in correlated electron materials.« less

  6. Influence of Oil on Refrigerant Evaporator Performance

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Soo; Nagata, Karsuya; Katsuta, Masafumi; Tomosugi, Hiroyuki; Kikuchi, Kouichiro; Horichi, Toshiaki

    In vapor compression refrigeration system using oil-lubricated compressors, some amount of oil is always circulated through the system. Oil circulation can have a significant influence on the evaporator performance of automotive air conditioner which is especially required to cool quickly the car interior after a period standing in the sun. An experimental investigation was carried out an electrically heated horizontal tube to measure local heat transfer coefficients for various flow rates and heat fluxes during forced convection boiling of pure refrigerant R12 and refrigerant-oil mixtures (0-11% oil concentration by weight) and the results were compared with oil free performance. Local heat transfer coefficients increased at the region of low vapor quality by the addition of oil. On the other hand, because the oil-rich liquid film was formed on the heat transfer surface, heat transfer coefficients gradually decreased as the vapor quality became higher. Average heat transfer coefficient reached a maximum at about 4% oil concentration and this trend agreed well with the results of Green and Furse. Previous correlations, using the properties of the refrigerant-oil mixture, could not predict satisfactorily the local heat transfer coefficients data. New correlation modified by oil concentration factor was developed for predicting the corresponding heat transfer coefficient for refrigerant-oil mixture convection boiling. The maximum percent deviation between predicted and measured heat transfer coefficient was within ±30%.

  7. Sequential and selective localized optical heating in water via on-chip dielectric nanopatterning.

    PubMed

    Morsy, Ahmed M; Biswas, Roshni; Povinelli, Michelle L

    2017-07-24

    We study the use of nanopatterned silicon membranes to obtain optically-induced heating in water. We show that by varying the detuning between an absorptive optical resonance of the patterned membrane and an illumination laser, both the magnitude and response time of the temperature rise can be controlled. This allows for either sequential or selective heating of different patterned areas on chip. We obtain a steady-state temperature of approximately 100 °C for a 805.5nm CW laser power density of 66 µW/μm 2 and observe microbubble formation. The ability to spatially and temporally control temperature on the microscale should enable the study of heat-induced effects in a variety of chemical and biological lab-on-chip applications.

  8. Electroless-plating technique for fabricating thin-wall convective heat-transfer models

    NASA Technical Reports Server (NTRS)

    Avery, D. E.; Ballard, G. K.; Wilson, M. L.

    1984-01-01

    A technique for fabricating uniform thin-wall metallic heat-transfer models and which simulates a Shuttle thermal protection system tile is described. Two 6- by 6- by 2.5-in. tiles were fabricated to obtain local heat transfer rates. The fabrication process is not limited to any particular geometry and results in a seamless thin-wall heat-transfer model which uses a one-wire thermocouple to obtain local cold-wall heat-transfer rates. The tile is relatively fragile because of the brittle nature of the material and the structural weakness of the flat-sided configuration; however, a method was developed and used for repairing a cracked tile.

  9. Multifunctional upconversion nanoparticles based on NaYGdF4 for laser induced heating, non-contact temperature sensing and controlled hyperthermia with use of pulsed periodic laser excitation

    NASA Astrophysics Data System (ADS)

    Pominova, Daria V.; Ryabova, Anastasia V.; Romanishkin, Igor D.; Grachev, Pavel V.; Burmistrov, Ivan A.; Kuznetsov, Sergei V.

    2018-04-01

    For clinical application in photothermal therapy the nanoparticles should be efficient light-to-heat converters and luminescent markers. In this work, we investigate upconversion nanoparticles with NaYxGd1-xF4 (x=0-1) host lattice as self-monitored thermo-agents for bioimaging and local laser hyperthermia with real-time temperature control. The ability of non-contact temperature sensing using NaYxGd1-xF4 on one hand and laser induced heating on the other hand was shown. It was found, that the heat conversion luminescence efficiency is strongly affected by the concentration ratio of Gd3+ to Y3+ ions in host lattice. The optimal composition among the studied is NaY0.4Gd0.4Yb0.17Er0.03 with luminescence efficiency of 3.5% under 1 W/cm2 pumping power. Higher Gd3+ concentrations lead to higher heating temperature, but also to the decrease of the luminescence intensity and the accuracy of the ratiometric temperature determination. It was also shown that the optimization of Yb3+ doping concentration is one of the possible ways for optimization of the conditions of laser induced photothermal effects. Experimental in vitro study of hyperthermia with use of upconversion nanoparticles on HeLa and C6 cell lines was performed. The investigated nanoparticles are capable of in vitro photothermal heating, luminescent localization and thermal sensing.

  10. The relationship between built-up areas and the spatial development of the mean maximum urban heat island in Debrecen, Hungary

    NASA Astrophysics Data System (ADS)

    Bottyán, Zsolt; Kircsi, Andrea; Szegedi, Sándor; Unger, János

    2005-03-01

    The climate of built-up regions differs significantly from rural regions and the most important modifying effect of urbanization on local climate is the urban temperature excess, otherwise called the urban heat island (UHI).This study examines the influence of built-up areas on the near-surface air temperature field in the case of the medium-sized city of Debrecen, Hungary. Mobile measurements were used under different weather conditions between March 2002 and March 2003. Efforts concentrated on the determination of the spatial distribution of mean maximum UHI intensity with special regard to land-use features such as built-up ratio and its areal extensions.In both (heating and non-heating) seasons the spatial distribution of the UHI intensity field showed a basically concentric shape with local anomalies. The mean maximum UHI intensity reaches more than 2.0 °C (heating season) and 2.5 °C (non-heating season) in the centre of the city. We established the relationship between the above-mentioned land-use parameters and mean maximum UHI intensity by means of multiple linear regression analysis. As the measured and predicted mean maximum UHI intensity patterns show, there is an obvious connection between the spatial distribution of urban thermal excess and the land-use parameters examined, so these parameters play a significant role in the development of the strong UHI intensity field over the city.

  11. Numerical Simulation of Supersonic Gap Flow

    PubMed Central

    Jing, Xu; Haiming, Huang; Guo, Huang; Song, Mo

    2015-01-01

    Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles. PMID:25635395

  12. Rapid Acclimation Ability Mediated by Transcriptome Changes in Reef-Building Corals.

    PubMed

    Bay, Rachael A; Palumbi, Stephen R

    2015-05-15

    Population response to environmental variation involves adaptation, acclimation, or both. For long-lived organisms, acclimation likely generates a faster response but is only effective if the rates and limits of acclimation match the dynamics of local environmental variation. In coral reef habitats, heat stress from extreme ocean warming can occur over several weeks, resulting in symbiont expulsion and widespread coral death. However, transcriptome regulation during short-term acclimation is not well understood. We examined acclimation during a 11-day experiment in the coral Acropora nana. We acclimated colonies to three regimes: ambient temperature (29 °C), increased stable temperature (31 °C), and variable temperature (29-33 °C), mimicking local heat stress conditions. Within 7-11 days, individuals acclimated to increased temperatures had higher tolerance to acute heat stress. Despite physiological changes, no gene expression changes occurred during acclimation before acute heat stress. However, we found strikingly different transcriptional responses to heat stress between acclimation treatments across 893 contigs. Across these contigs, corals acclimated to higher temperatures (31 °C or 29-33 °C) exhibited a muted stress response--the magnitude of expression change before and after heat stress was less than in 29 °C acclimated corals. Our results show that corals have a rapid phase of acclimation that substantially increases their heat resilience within 7 days and that alters their transcriptional response to heat stress. This is in addition to a previously observed longer term response, distinguishable by its shift in baseline expression, under nonstressful conditions. Such rapid acclimation may provide some protection for this species of coral against slow onset of warming ocean temperatures. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Rapid Acclimation Ability Mediated by Transcriptome Changes in Reef-Building Corals

    PubMed Central

    Bay, Rachael A.; Palumbi, Stephen R.

    2015-01-01

    Population response to environmental variation involves adaptation, acclimation, or both. For long-lived organisms, acclimation likely generates a faster response but is only effective if the rates and limits of acclimation match the dynamics of local environmental variation. In coral reef habitats, heat stress from extreme ocean warming can occur over several weeks, resulting in symbiont expulsion and widespread coral death. However, transcriptome regulation during short-term acclimation is not well understood. We examined acclimation during a 11-day experiment in the coral Acropora nana. We acclimated colonies to three regimes: ambient temperature (29 °C), increased stable temperature (31 °C), and variable temperature (29–33 °C), mimicking local heat stress conditions. Within 7–11 days, individuals acclimated to increased temperatures had higher tolerance to acute heat stress. Despite physiological changes, no gene expression changes occurred during acclimation before acute heat stress. However, we found strikingly different transcriptional responses to heat stress between acclimation treatments across 893 contigs. Across these contigs, corals acclimated to higher temperatures (31 °C or 29–33 °C) exhibited a muted stress response—the magnitude of expression change before and after heat stress was less than in 29 °C acclimated corals. Our results show that corals have a rapid phase of acclimation that substantially increases their heat resilience within 7 days and that alters their transcriptional response to heat stress. This is in addition to a previously observed longer term response, distinguishable by its shift in baseline expression, under nonstressful conditions. Such rapid acclimation may provide some protection for this species of coral against slow onset of warming ocean temperatures. PMID:25979751

  14. Cross diffusion effect on MHD mixed convection flow of nonlinear radiative heat and mass transfer of Casson fluid over a vertical plate

    NASA Astrophysics Data System (ADS)

    Ganesh Kumar, K.; Archana, M.; Gireesha, B. J.; Krishanamurthy, M. R.; Rudraswamy, N. G.

    2018-03-01

    A study on magnetohydrodynamic mixed convection flow of Casson fluid over a vertical plate has been modelled in the presence of Cross diffusion effect and nonlinear thermal radiation. The governing partial differential equations are remodelled into ordinary differential equations by using similarity transformation. The accompanied differential equations are resolved numerically by using Runge-Kutta-Fehlberg forth-fifth order along with shooting method (RKF45 Method). The results of various physical parameters on velocity and temperature profiles are given diagrammatically. The numerical values of the local skin friction coefficient, local Nusselt number and local Sherwood number also are shown in a tabular form. It is found that, effect of Dufour and Soret parameter increases the temperature and concentration component correspondingly.

  15. Numerical modeling of heat transfer in the fuel oil storage tank at thermal power plant

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Svetlana A.

    2015-01-01

    Presents results of mathematical modeling of convection of a viscous incompressible fluid in a rectangular cavity with conducting walls of finite thickness in the presence of a local source of heat in the bottom of the field in terms of convective heat exchange with the environment. A mathematical model is formulated in terms of dimensionless variables "stream function - vorticity vector speed - temperature" in the Cartesian coordinate system. As the results show the distributions of hydrodynamic parameters and temperatures using different boundary conditions on the local heat source.

  16. Multiphysics Computational Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen

    2007-01-01

    The objective of this effort is to develop an efficient and accurate computational heat transfer methodology to predict thermal, fluid, and hydrogen environments for a hypothetical solid-core, nuclear thermal engine - the Small Engine. In addition, the effects of power profile and hydrogen conversion on heat transfer efficiency and thrust performance were also investigated. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics platform, while formulations of conjugate heat transfer were implemented to describe the heat transfer from solid to hydrogen inside the solid-core reactor. The computational domain covers the entire thrust chamber so that the afore-mentioned heat transfer effects impact the thrust performance directly. The result shows that the computed core-exit gas temperature, specific impulse, and core pressure drop agree well with those of design data for the Small Engine. Finite-rate chemistry is very important in predicting the proper energy balance as naturally occurring hydrogen decomposition is endothermic. Locally strong hydrogen conversion associated with centralized power profile gives poor heat transfer efficiency and lower thrust performance. On the other hand, uniform hydrogen conversion associated with a more uniform radial power profile achieves higher heat transfer efficiency, and higher thrust performance.

  17. Effect of nanosecond UV laser irradiation on luminescence and absorption in silver- and copper-containing phosphate glasses

    NASA Astrophysics Data System (ADS)

    Murashov, A. A.; Sidorov, A. I.; Stoliarchuk, M. V.

    2018-03-01

    Experimental evidence is presented that nanosecond UV laser irradiation of silver- and copper-containing barium phosphate glasses leads to luminescence quenching in the visible range. Subsequent heat treatment induces an absorption in the range 350–500 nm. These effects are due to the ionisation and fragmentation of subnanometre molecular clusters by laser radiation and subsequent (heat treatment-induced) formation of nanoparticles possessing plasmon resonance. Our numerical modelling results demonstrate the feasibility of producing stable AgnCum hybrid molecular clusters in glass. Local modification of the optical properties of glass by laser light can be used for optical information recording.

  18. Drill-back studies examine fractured, heated rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollenberg, H.A.; Flexser, S.; Myer, L.R.

    1990-01-01

    To investigate the effects of heating on the mineralogical, geochemical, and mechanical properties of rock by high-level radioactive waste, cores are being examined from holes penetrating locations where electric heaters simulated the presence of a waste canister, and from holes penetration natural hydrothermal systems. Results to date indicate the localized mobility and deposition of uranium in an open fracture in heated granitic rock, the mobility of U in a breccia zone in an active hydrothermal system in tuff, and the presence of U in relatively high concentration in fracture-lining material in tuff. Mechanical -- property studies indicate that differences inmore » compressional- and shear-wave parameters between heated and less heated rock can be attributed to differences in the density of microcracks. Emphasis has shifted from initial studies of granitic rock at Stripa, Sweden to current investigations of welded tuff at the Nevada Test Site. 7 refs., 8 figs.« less

  19. Heat Transfer Characteristics of Mixed Electroosmotic and Pressure Driven Micro-Flows

    NASA Astrophysics Data System (ADS)

    Horiuchi, Keisuke; Dutta, Prashanta

    We analyze heat transfer characteristics of steady electroosmotic flows with an arbitrary pressure gradient in two-dimensional straight microchannels considering the effects of Joule heating in electroosmotic pumping. Both the temperature distribution and local Nusselt number are mathematically derived in this study. The thermal analysis takes into consideration of the interaction among advective, diffusive, and Joule heating terms to obtain the thermally developing behavior. Unlike macro-scale pipes, axial conduction in micro-scale cannot be negligible, and the governing energy equation is not separable. Thus, a method that considers an extended Graetz problem is introduced. Analytical results show that the Nusselt number of pure electrooosmotic flow is higher than that of plane Poiseulle flow. Moreover, when the electroosmotic flow and pressure driven flow coexist, it is found that adverse pressure gradient to the electroosmotic flow makes the thermal entrance length smaller and the heat transfer ability stronger than pure electroosmotic flow case.

  20. The flow of magnetohydrodynamic Maxwell nanofluid over a cylinder with Cattaneo-Christov heat flux model

    NASA Astrophysics Data System (ADS)

    Raju, C. S. K.; Sanjeevi, P.; Raju, M. C.; Ibrahim, S. M.; Lorenzini, G.; Lorenzini, E.

    2017-11-01

    A theoretical analysis is performed for studying the flow and heat and mass transfer characteristics of Maxwell fluid over a cylinder with Cattaneo-Christov and non-uniform heat source/sink. The Brownian motion and thermophoresis parameters also considered into account. Numerical solutions are carried out by using Runge-Kutta-based shooting technique. The effects of various governing parameters on the flow and temperature profiles are demonstrated graphically. We also computed the friction factor coefficient, local Nusselt and Sherwood numbers for the permeable and impermeable flow over a cylinder cases. It is found that the rising values of Biot number, non-uniform heat source/sink and thermophoresis parameters reduce the rate of heat transfer. It is also found that the friction factor coefficient is high in impermeable flow over a cylinder case when compared with the permeable flow over a cylinder case.

  1. Modelling heat transfer during flow through a random packed bed of spheres

    NASA Astrophysics Data System (ADS)

    Burström, Per E. C.; Frishfelds, Vilnis; Ljung, Anna-Lena; Lundström, T. Staffan; Marjavaara, B. Daniel

    2018-04-01

    Heat transfer in a random packed bed of monosized iron ore pellets is modelled with both a discrete three-dimensional system of spheres and a continuous Computational Fluid Dynamics (CFD) model. Results show a good agreement between the two models for average values over a cross section of the bed for an even temperature profiles at the inlet. The advantage with the discrete model is that it captures local effects such as decreased heat transfer in sections with low speed. The disadvantage is that it is computationally heavy for larger systems of pellets. If averaged values are sufficient, the CFD model is an attractive alternative that is easy to couple to the physics up- and downstream the packed bed. The good agreement between the discrete and continuous model furthermore indicates that the discrete model may be used also on non-Stokian flow in the transitional region between laminar and turbulent flow, as turbulent effects show little influence of the overall heat transfer rates in the continuous model.

  2. Thermophoresis on boundary layer heat and mass transfer flow of Walters-B fluid past a radiate plate with heat sink/source

    NASA Astrophysics Data System (ADS)

    Vasu, B.; Gorla, Rama Subba Reddy; Murthy, P. V. S. N.

    2017-05-01

    The Walters-B liquid model is employed to simulate medical creams and other rheological liquids encountered in biotechnology and chemical engineering. This rheological model introduces supplementary terms into the momentum conservation equation. The combined effects of thermal radiation and heat sink/source on transient free convective, laminar flow and mass transfer in a viscoelastic fluid past a vertical plate are presented by taking thermophoresis effect into account. The transformed conservation equations are solved using a stable, robust finite difference method. A parametric study illustrating the influence of viscoelasticity parameter ( Γ), thermophoretic parameter ( τ), thermal radiation parameter ( F), heat sink/source ( ϕ), Prandtl number ( Pr), Schmidt number ( Sc), thermal Grashof number ( Gr), solutal Grashof number ( Gm), temperature and concentration profiles as well as local skin-friction, Nusselt and Sherwood number is conducted. The results of this parametric study are shown graphically and inform of table. The study has applications in polymer materials processing.

  3. Mechanisms of double stratification and magnetic field in flow of third grade fluid over a slendering stretching surface with variable thermal conductivity

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Qayyum, Sajid; Alsaedi, Ahmed; Ahmad, Bashir

    2018-03-01

    This article addresses the magnetohydrodynamic (MHD) stagnation point flow of third grade fluid towards a nonlinear stretching sheet. Energy expression is based through involvement of variable thermal conductivity. Heat and mass transfer aspects are described within the frame of double stratification effects. Boundary layer partial differential systems are deduced. Governing systems are then converted into ordinary differential systems by invoking appropriate variables. The transformed expressions are solved through homotopic technique. Impact of embedded variables on velocity, thermal and concentration fields are displayed and argued. Numerical computations are presented to obtain the results of skin friction coefficient and local Nusselt and Sherwood numbers. It is revealed that larger values of magnetic parameter reduces the velocity field while reverse situation is noticed due to wall thickness variable. Temperature field and local Nusselt number are quite reverse for heat generation/absorption parameter. Moreover qualitative behaviors of concentration field and local Sherwood number are similar for solutal stratification parameter.

  4. Conduction block of mammalian myelinated nerve by local cooling to 15–30°C after a brief heating

    PubMed Central

    Zhang, Zhaocun; Lyon, Timothy D.; Kadow, Brian T.; Shen, Bing; Wang, Jicheng; Lee, Andy; Kang, Audry; Roppolo, James R.; de Groat, William C.

    2016-01-01

    This study aimed at understanding thermal effects on nerve conduction and developing new methods to produce a reversible thermal block of axonal conduction in mammalian myelinated nerves. In 13 cats under α-chloralose anesthesia, conduction block of pudendal nerves (n = 20) by cooling (5–30°C) or heating (42–54°C) a small segment (9 mm) of the nerve was monitored by the urethral striated muscle contractions and increases in intraurethral pressure induced by intermittent (5 s on and 20 s off) electrical stimulation (50 Hz, 0.2 ms) of the nerve. Cold block was observed at 5–15°C while heat block occurred at 50–54°C. A complete cold block up to 10 min was fully reversible, but a complete heat block was only reversible when the heating duration was less than 1.3 ± 0.1 min. A brief (<1 min) reversible complete heat block at 50–54°C or 15 min of nonblock mild heating at 46–48°C significantly increased the cold block temperature to 15–30°C. The effect of heating on cold block fully reversed within ∼40 min. This study discovered a novel method to block mammalian myelinated nerves at 15–30°C, providing the possibility to develop an implantable device to block axonal conduction and treat many chronic disorders. The effect of heating on cold block is of considerable interest because it raises many basic scientific questions that may help reveal the mechanisms underlying cold or heat block of axonal conduction. PMID:26740534

  5. Electron Fluid Description of Wave-Particle Interactions in Strong Buneman Turbulence

    NASA Astrophysics Data System (ADS)

    Che, Haihong

    2013-10-01

    To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation associated with electron heating in Buneman instability. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions can be described by a set of electron fluid equations. These equations show that the energy dissipation and momentum transports in Buneman instability are locally quasi-static but globally non-static and irreversible. Turbulence drag dissipates both the bulk energy of electron streams and the associated magnetic energy. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons. The net loss of streaming energy is converted into electron heat and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation which relates the turbulence-induced convective momentum transport and thermal momentum transport. Electron trapping and de-trapping drives local momentum transports, while phase mixing converts convective momentum into thermal momentum.These two local momentum transports sustain the Buneman waves and act as the micro-macro link in the anomalous heating process. This research is supported by the NASA Postdoctoral Program at NASA/GSFC administered by Oak Ridge Associated Universities through a contract with NASA.

  6. Investigation of transition from thermal- to solutal-Marangoni flow in dilute alcohol/water mixtures using nano-plasmonic heaters

    NASA Astrophysics Data System (ADS)

    Namura, Kyoko; Nakajima, Kaoru; Suzuki, Motofumi

    2018-02-01

    We experimentally investigated Marangoni flows around a microbubble in diluted 1-butanol/water, 2-propanol/water, and ethanol/water mixtures using the thermoplasmonic effect of gold nanoisland film. A laser spot on the gold nanoisland film acted as a highly localized heat source that was utilized to generate stable air microbubbles with diameters of 32-48 μm in the fluid and to induce a steep temperature gradient on the bubble surface. The locally heated bubble has a flow along the bubble surface, with the flow direction showing a clear transition depending on the alcohol concentrations. The fluid is driven from the hot to cold regions when the alcohol concentration is lower than the transition concentration, whereas it is driven from the cold to hot regions when the concentration is higher than the transition concentration. In addition, the transition concentration increases as the carbon number of the alcohol decreases. The observed flow direction transition is explained by the balance of the thermal- and solutal-Marangoni forces that are cancelled out for the transition concentration. The selective evaporation of the alcohol at the locally heated surface allows us to generate stable and rapid thermoplasmonic solutal-Marangoni flows in the alcohol/water mixtures.

  7. Investigation of heat flux on aerodynamic body in supersonic gas flow with local energy deposition

    NASA Astrophysics Data System (ADS)

    Dobrov, Y. V.; Lashkov, V. A.; Mashek, I. Ch.; Khoronzhuk, R. S.

    2018-05-01

    Existence and intensive growth of heat flux on a vehicle is one of the main problems in hypersonic flight. Experimental study of heat flux in the stagnation point of a blunt cylinder in supersonic flow was made using gradient heat flux sensor. It was found that a transfer function of the measuring system should be used for obtaining data at fast-changing heat flux measurements. It was established that it was possible to produce a short-term heat transfer from the surface of streamlined body with the help of microwave discharge. Numerical simulation showed that it is possible to change nature of the flow by means of local energy deposition in case of streamlined wedge.

  8. Amplitude-frequency effect of Y-cut langanite and langatate.

    PubMed

    Kim, Yoonkee

    2003-12-01

    Amplitude-frequency effect of a Y-cut langanite (LGN) resonator and a Y-cut langatate (LGT) resonator were measured. The frequency shifts from the baseline frequency with 1 mA were measured as a function of drive currents up to 28 mA. High-drive current shifted the frequency, but it also heated the crystal locally, causing temperature-related frequency changes. The local heat transfer and its influence on the frequency were analyzed. The amplitude-frequency shift was effectively measured, and was not affected by the temperature-related frequency changes. The 3rd, 5th, and 7th overtones (OT's) were found to behave as soft springs, i.e., resonant frequency decreases as drive current increases. The drive sensitivity coefficients of the 3rd and 5th OT's are in the vicinity of -2 ppb/mA2 for both resonators. The 7th OT's are higher than the other OT's: -5 approximately -7 ppb/mA2. The lowest drive sensitivity is -1.2 ppb/mA2 on the 5th OT of the LGT.

  9. Bubble induced flow field modulation for pool boiling enhancement over a tubular surface

    NASA Astrophysics Data System (ADS)

    Raghupathi, P. A.; Joshi, I. M.; Jaikumar, A.; Emery, T. S.; Kandlikar, S. G.

    2017-06-01

    We demonstrate the efficacy of using a strategically placed enhancement feature to modify the trajectory of bubbles nucleating on a horizontal tubular surface to increase both the critical heat flux (CHF) and the heat transfer coefficient (HTC). The CHF on a plain tube is shown to be triggered by a local dryout at the bottom of the tube due to vapor agglomeration. To mitigate this effect and delay CHF, the nucleating bubble trajectory is modified by incorporating a bubble diverter placed axially at the bottom of the tube. The nucleating bubble at the base of the diverter experiences a tangential evaporation momentum force (EMF) which causes the bubble to grow sideways away from the tube and avoid localized bubble patches that are responsible for CHF initiation. High speed imaging confirmed the lateral displacement of the bubbles away from the diverter closely matched with the theoretical predictions using EMF and buoyancy forces. Since the EMF is stronger at higher heat fluxes, bubble displacement increases with heat flux and results in the formation of separate liquid-vapor pathways wherein the liquid enters almost unobstructed at the bottom and the vapor bubble leaves sideways. Experimental results yielded CHF and HTC enhancements of ˜60% and ˜75%, respectively, with the diverter configuration when compared to a plain tube. This work can be used for guidance in developing enhancement strategies to effectively modulate the liquid-vapor flow around the heater surface at various locations to enhance HTC and CHF.

  10. Sensitization of Laser-beam Welded Martensitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Rajendran, Kousika Dhasanur; Lindner, Stefan

    Ferritic and martensitic stainless steels are an attractive alternative in vehicle production due to their inherent corrosion resistance. By the opportunity of press hardening, their strength can be increased to up to 2000 MPa, making them competitors for unalloyed ultra-high strength steels. Welding, nevertheless, requires special care, especially when it comes to joining of high strength heat treated materials. With an adopted in-line heat treatment of the welds in as-rolled as well as press hardened condition, materials with sufficient fatigue strength and acceptable structural behavior can be produced. Because of microstructural transformations in the base material such as grain coarsening and forced carbide precipitation, the corrosion resistance of the weld zone may be locally impaired. Typically the material in the heat-affected zone becomes sensitive to intergranular cracking in the form of knife-edge corrosion besides the fusion line. The current study comprises of two text scenarios. By an alternating climate test, general response in a corroding environment is screened. In order to understand the corrosion mechanisms and to localize the sensitive zones, sensitisation tests were undertaken. Furthermore, the applicability of a standard test according to ASTM 763-83 was examined. It was found that the alternative climate test does not reveal any corrosion effects. Testing by the oxalic acid test revealed clearly the effect of welding, weld heat treatment and state of thermal processing. Also application of the standard which originally suited for testing ferritic stainless steels could have been justified.

  11. Multiple-relaxation-time lattice Boltzmann kinetic model for combustion

    NASA Astrophysics Data System (ADS)

    Xu, Aiguo; Lin, Chuandong; Zhang, Guangcai; Li, Yingjun

    2015-04-01

    To probe both the hydrodynamic nonequilibrium (HNE) and thermodynamic nonequilibrium (TNE) in the combustion process, a two-dimensional multiple-relaxation-time (MRT) version of lattice Boltzmann kinetic model (LBKM) for combustion phenomena is presented. The chemical energy released in the progress of combustion is dynamically coupled into the system by adding a chemical term to the LB kinetic equation. Aside from describing the evolutions of the conserved quantities, the density, momentum, and energy, which are what the Navier-Stokes model describes, the MRT-LBKM presents also a coarse-grained description on the evolutions of some nonconserved quantities. The current model works for both subsonic and supersonic flows with or without chemical reaction. In this model, both the specific-heat ratio and the Prandtl number are flexible, the TNE effects are naturally presented in each simulation step. The model is verified and validated via well-known benchmark tests. As an initial application, various nonequilibrium behaviors, including the complex interplays between various HNEs, between various TNEs, and between the HNE and TNE, around the detonation wave in the unsteady and steady one-dimensional detonation processes are preliminarily probed. It is found that the system viscosity (or heat conductivity) decreases the local TNE, but increases the global TNE around the detonation wave, that even locally, the system viscosity (or heat conductivity) results in two kinds of competing trends, to increase and to decrease the TNE effects. The physical reason is that the viscosity (or heat conductivity) takes part in both the thermodynamic and hydrodynamic responses.

  12. Structural characterization and gas reactions of small metal particles by high-resolution TEM and TED

    NASA Technical Reports Server (NTRS)

    Heinemann, K.

    1985-01-01

    The interaction of 100 and 200 keV electron beams with amorphous alumina, titania, and aluminum nitride substrates and nanometer-size palladium particulate deposits was investigated for the two extreme cases of (1) large-area electron-beam flash-heating and (2) small-area high-intensity electron-beam irradiation. The former simulates a short-term heating effect with minimum electron irradiation exposure, the latter simulates high-dosage irradiation with minimum heating effect. All alumina and titania samples responded to the flash-heating treatment with significant recrystallization. However, the size, crystal structure, shape, and orientation of the grains depended on the type and thickness of the films and the thickness of the Pd deposit. High-dosage electron irradiation also readily crystallized the alumina substrate films but did not affect the titania films. The alumina recrystallization products were usually either all in the alpha phase, or they were a mixture of small grains in a number of low-temperature phases including gamma, delta, kappa, beta, theta-alumina. Palladium deposits reacted heavily with the alumina substrates during either treatment, but they were very little effected when supported on titania. Both treatments had the same, less prominent localized crystallization effect on aluminum nitride films.

  13. Double diffusive magnetohydrodynamic (MHD) mixed convective slip flow along a radiating moving vertical flat plate with convective boundary condition.

    PubMed

    Rashidi, Mohammad M; Kavyani, Neda; Abelman, Shirley; Uddin, Mohammed J; Freidoonimehr, Navid

    2014-01-01

    In this study combined heat and mass transfer by mixed convective flow along a moving vertical flat plate with hydrodynamic slip and thermal convective boundary condition is investigated. Using similarity variables, the governing nonlinear partial differential equations are converted into a system of coupled nonlinear ordinary differential equations. The transformed equations are then solved using a semi-numerical/analytical method called the differential transform method and results are compared with numerical results. Close agreement is found between the present method and the numerical method. Effects of the controlling parameters, including convective heat transfer, magnetic field, buoyancy ratio, hydrodynamic slip, mixed convective, Prandtl number and Schmidt number are investigated on the dimensionless velocity, temperature and concentration profiles. In addition effects of different parameters on the skin friction factor, [Formula: see text], local Nusselt number, [Formula: see text], and local Sherwood number [Formula: see text] are shown and explained through tables.

  14. Maximization of the Thermoelectric Cooling of a Graded Peltier Device by Analytical Heat-Equation Resolution

    NASA Astrophysics Data System (ADS)

    Thiébaut, E.; Goupil, C.; Pesty, F.; D'Angelo, Y.; Guegan, G.; Lecoeur, P.

    2017-12-01

    Increasing the maximum cooling effect of a Peltier cooler can be achieved through material and device design. The use of inhomogeneous, functionally graded materials may be adopted in order to increase maximum cooling without improvement of the Z T (figure of merit); however, these systems are usually based on the assumption that the local optimization of the Z T is the suitable criterion to increase thermoelectric performance. We solve the heat equation in a graded material and perform both analytical and numerical analysis of a graded Peltier cooler. We find a local criterion that we use to assess the possible improvement of graded materials for thermoelectric cooling. A fair improvement of the cooling effect (up to 36%) is predicted for semiconductor materials, and the best graded system for cooling is described. The influence of the equation of state of the electronic gas of the material is discussed, and the difference in term of entropy production between the graded and the classical system is also described.

  15. An approach to analyzing the intensity of the daytime surface urban heat island effect at a local scale.

    PubMed

    Xu, Shenlai

    2009-04-01

    A landscape index LI is proposed to evaluate the intensity of the daytime surface urban heat island (SUHI) effect at a local scale. Three aspects of this landscape index are crucial: the source landscape, the sink landscape, and the contribution of source and sink landscapes to the intensity of the SUHI. Source and sink landscape types are identified using the thermo-band of Landsat 7 with a spatial resolution of 60 m, along with appropriate threshold values for the Normalized Difference Vegetation Index, Modified Normalized Difference Water Index, and Normalized Difference Built-up Index. The landscape index was defined as the ratio of the contributions of the source and sink landscapes to the intensity of the SUHI. The intensity of the daytime SUHI is assessed with the help of the landscape index. Our analysis indicates the landscape index can be used to evaluate and compare the intensity of the daytime SUHI for different areas.

  16. Process optimization of joining by upset bulging with local heating

    NASA Astrophysics Data System (ADS)

    Rusch, Michael; Almohallami, Amer; Sviridov, Alexander; Bonk, Christian; Behrens, Bernd-Arno; Bambach, Markus

    2017-10-01

    Joining by upset bulging is a mechanical joining method where axial load is applied to a tube to form two revolving bulges, which clamp the parts to be joined and create a force and form fit. It can be used to join tubes with other structures such as sheets, plates, tubes or profiles of the same or different materials. Other processes such as welding are often limited in joining multi-material assemblies or high-strength materials. With joining by upset bulging at room temperature, the main drawback is the possible initiation of damage (cracks) in the inner buckling zone because of high local stresses and strains. In this paper, a method to avoid the formation of cracks is introduced. Before forming the bulge the tube is locally heated by an induction coil. For the construction steel (E235+N) a maximum temperature of 700 °C was used to avoid phase transformation. For the numerical study of the process the mechanical properties of the tube material were examined at different temperatures and strain rates to determine its flow curves. A parametrical FE model was developed to simulate the bulging process with local heating. Experiments with local heating were executed and metallographic studies of the bulging area were conducted. While specimens heated to 500 °C showed small cracks left, damage-free flanges could be created at 600 and 700 °C. Static testing of damage-free bulges showed improvements in tensile strength and torsion strength compared to bulges formed at room-temperature, while bending and compression behavior remained nearly unchanged. In cyclic testing the locally heated specimens underwent about 3.7 times as many cycles before failure as the specimens formed at room temperature.

  17. Ultrafast collisional ion heating by electrostatic shocks.

    PubMed

    Turrell, A E; Sherlock, M; Rose, S J

    2015-11-13

    High-intensity lasers can be used to generate shockwaves, which have found applications in nuclear fusion, proton imaging, cancer therapies and materials science. Collisionless electrostatic shocks are one type of shockwave widely studied for applications involving ion acceleration. Here we show a novel mechanism for collisionless electrostatic shocks to heat small amounts of solid density matter to temperatures of ∼keV in tens of femtoseconds. Unusually, electrons play no direct role in the heating and it is the ions that determine the heating rate. Ions are heated due to an interplay between the electric field of the shock, the local density increase during the passage of the shock and collisions between different species of ion. In simulations, these factors combine to produce rapid, localized heating of the lighter ion species. Although the heated volume is modest, this would be one of the fastest heating mechanisms discovered if demonstrated in the laboratory.

  18. Heating requirements and nonadiabatic surface effects for a model in the NTF (National Transonic Facility) cryogenic wind tunnel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macha, J.M.; Landrum, D.B.; Pare, L.A. III

    1988-01-01

    A theoretical study has been made of the severity of nonadiabatic surface conditions arising from internal heat sources within a model in a cryogenic wind tunnel. Local surface heating is recognized as having an effect on the development of the boundary layer, which can introduce changes in the flow about the model and affect the wind tunnel data. The geometry was based on the NTF Pathfinder I wind tunnel model. A finite element heat transfer computer code was developed and used to compute the steady state temperature distribution within the body of the model, from which the surface temperature distributionmore » was extracted. Particular three dimensional characteristics of the model were represented with various axisymmetric approximations of the geometry. This analysis identified regions on the surface of the model susceptible to surface heating and the magnitude of the respective surface temperatures. It was found that severe surface heating may occur in particular instances, but could be alleviated with adequate insulating material. The heat flux through the surface of the model was integrated to determine the net heat required to maintain the instrumentation cavity at the prescribed temperature. The influence of the nonadiabatic condition on boundary layer properties and on the validity of the wind tunnel simulation was also investigated. 20 refs., 12 figs.« less

  19. Heat Transfer in High-Temperature Fibrous Insulation

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran

    2002-01-01

    The combined radiation/conduction heat transfer in high-porosity, high-temperature fibrous insulations was investigated experimentally and numerically. The effective thermal conductivity of fibrous insulation samples was measured over the temperature range of 300-1300 K and environmental pressure range of 1.33 x 10(exp -5)-101.32 kPa. The fibrous insulation samples tested had nominal densities of 24, 48, and 72 kilograms per cubic meter and thicknesses of 13.3, 26.6 and 39.9 millimeters. Seven samples were tested such that the applied heat flux vector was aligned with local gravity vector to eliminate natural convection as a mode of heat transfer. Two samples were tested with reverse orientation to investigate natural convection effects. It was determined that for the fibrous insulation densities and thicknesses investigated no heat transfer takes place through natural convection. A finite volume numerical model was developed to solve the governing combined radiation and conduction heat transfer equations. Various methods of modeling the gas/solid conduction interaction in fibrous insulations were investigated. The radiation heat transfer was modeled using the modified two-flux approximation assuming anisotropic scattering and gray medium. A genetic-algorithm based parameter estimation technique was utilized with this model to determine the relevant radiative properties of the fibrous insulation over the temperature range of 300-1300 K. The parameter estimation was performed by least square minimization of the difference between measured and predicted values of effective thermal conductivity at a density of 24 kilograms per cubic meters and at nominal pressures of 1.33 x 10(exp -4) and 99.98 kPa. The numerical model was validated by comparison with steady-state effective thermal conductivity measurements at other densities and pressures. The numerical model was also validated by comparison with a transient thermal test simulating reentry aerodynamic heating conditions.

  20. Effects of Heat Treatment on Interface Microstructure and Mechanical Properties of Explosively Welded Ck60/St37 Plates

    NASA Astrophysics Data System (ADS)

    Yazdani, Majid; Toroghinejad, Mohammad Reza; Hashemi, Seyyed Mohammad

    2016-12-01

    This study explores the effects of heat treatment on the microstructure and mechanical properties of explosively welded Ck60 steel/St37 steel. The objective is to find an economical way for manufacturing bimetallic plates that can be used in the rolling stand of hot rolling mill units. The explosive ratio and stand-off distance are set at 1.7 and 1.5 t ( t = flyer thickness), respectively. Since explosive welding is accompanied by such undesirable metallurgical effects as remarkable hardening, severe plastic deformation, and even formation of local melted zones near the interface, heat treatment is required to overcome or alleviate these adverse effects. For this purpose, the composites are subjected to heat treatment in a temperature range of 600-700 °C at a rate of 90 °C/h for 1 h. Results demonstrate well-bonded composite plates with a wavy interface. In the as-welded case, vortex zones are formed along the interface; however, they are transformed into fine grains upon heat treatment. Microhardness is also observed to be maximum near the interface in the welded case before it decreases with increasing temperature. Shear strength is the highest in the as-welded specimen, which later decreases as a result of heat treatment. Moreover, the energy absorbed by the heat-treated specimens is observed to increase with increasing temperature so that the lowest value of absorbed energy belongs to the as-welded specimen. Finally, fractography is carried out using the scanning electron microscope to examine the specimens subjected to shear and impact tests. As a result of heat treatment, fracture surfaces exhibit dimpled ruptures and fail in the mixed mode, while failure in the as-welded specimens predominantly occurs in the brittle mode.

Top